WorldWideScience

Sample records for antineutrino reactions

  1. Study of charged current reactions induced by muon antineutrinos

    International Nuclear Information System (INIS)

    We present in this work a study of antineutrino reactions on light targets. We have used the Gargamelle cloud chamber with a propane-freon mix. In the 2 first chapters we give a brief description of the experimental setting and we present the selection criteria of the events. In the third chapter we analyse the data for the reaction anti-ν + p → μ+ + n that preserves strangeness. We have deduced the values of the axial (MA) and vector (MV) form factors: MA = (O.92 ± 0.08) GeV and MV = (0.86 ± 0.04) GeV. In the fourth chapter we study reactions in which strange particles appear (ΔS = 1) and we have determined their production cross-sections. The elastic reaction: anti-ν + p → μ+ + Λ is studied in a more accurate manner thanks to a 3-constraint adjustment that enables the selection of events occurring on free protons. We have deduced from our data the longitudinal, orthogonal and transverse polarization of Λ, we have got respectively Pl = -0.06 ± 0.44; Pp = 0.29 ± 0.41; Pt 1.05 ± 0.30. We have also deduced the values of the total cross-section as a function of the incident antineutrino energy E: σ (0.27 ± 0.02)*E*10-38 cm-2. E has been assessed from the energy deposited in the cloud chamber and we have adjusted the cross-section with a straight line as it is expected under the assumption of scale invariance. (A.C.)

  2. Quasielastic production of polarized hyperons in antineutrino--nucleon reactions

    CERN Document Server

    Akbar, F; Athar, M Sajjad; Singh, S K

    2016-01-01

    We have studied the longitudinal and perpendicular polarizations of final hyperon($\\Lambda$,$\\Sigma$) produced in the antineutrino induced quasielastic charged current reactions on nucleon targets. The nucleon-hyperon transition form factors are determined from the experimental data on quasielastic $(\\Delta S =0)$ charged current (anti)neutrino--nucleon scattering and the semileptonic decay of neutron and hyperons assuming G--invariance, T--invariance and SU(3) symmetry. The vector transition form factors are obtained in terms of nucleon electromagnetic form factors for which various parameterizations available in literature have been used. A dipole parameterization for the axial vector form factor and the pseudoscalar transition form factor derived in terms of axial vector form factor assuming PCAC and GT relation extended to strangeness sector have been used in numerical evaluations. The flux averaged cross section and polarization observables corresponding to CERN Gargamelle experiment have been calculated...

  3. Neutrino and antineutrino charge-exchange reactions on 12C

    International Nuclear Information System (INIS)

    We extend the formalism of weak interaction processes, obtaining new expressions for the transition rates, which greatly facilitate numerical calculations, for both neutrino-nucleus reactions and muon capture. Explicit violation of the conserved vector current hypothesis by the Coulomb field, as well as development of a sum-rule approach for inclusive cross sections, has been worked out. We have done a thorough study of exclusive (ground-state) properties of 12B and 12N within the projected quasiparticle random phase approximation (PQRPA). Good agreement with experimental data achieved in this way put into evidence the limitations of the standard RPA and QRPA models, which come from the inability of the RPA to open the p3/2 shell and from the nonconservation of the number of particles in the QRPA. The inclusive neutrino/antineutrino (ν/ν-tilde) reactions 12C(ν,e-)12N and 12C(ν-tilde,e+)12B are calculated within both the PQRPA and the relativistic QRPA. It is found that (i) the magnitudes of the resulting cross sections are close to the sum-rule limit at low energy, but significantly smaller than this limit at high energies, for both ν and ν-tilde; (ii) they increase steadily when the size of the configuration space is augmented, particularly for ν/ν-tilde energies >200 MeV; and (iii) they converge for sufficiently large configuration space and final-state spin. The quasi-elastic 12C(ν,μ-)12N cross section recently measured in the MiniBooNE experiment is briefly discussed. We study the decomposition of the inclusive cross section based on the degree of forbiddenness of different multipoles. A few words are dedicated to the ν/ν-tilde-12C charge-exchange reactions related to astrophysical applications.

  4. Calculation of reactor antineutrino spectra in TEXONO

    CERN Document Server

    Chen Dong Liang; Mao Ze Pu; Wong, T H

    2002-01-01

    In the low energy reactor antineutrino physics experiments, either for the researches of antineutrino oscillation and antineutrino reactions, or for the measurement of abnormal magnetic moment of antineutrino, the flux and the spectra of reactor antineutrino must be described accurately. The method of calculation of reactor antineutrino spectra was discussed in detail. Furthermore, based on the actual circumstances of NP2 reactors and the arrangement of detectors, the flux and the spectra of reactor antineutrino in TEXONO were worked out

  5. Neutrino and antineutrino induced reactions with nuclei between 1 and 30 GeV

    CERN Document Server

    Lalakulich, O; Mosel, U

    2012-01-01

    Background: Nuclear effects can have a significant impact on neutrino-nucleus interactions. In particular data from neutrino experiments with broad energy distributions require complex theoretical models that are able to take all the relevant channels into account as well as incorporate nuclear effects in both initial and final state interactions. Purpose: We investigate neutrino and antineutrino scattering on iron and carbon in the energy range from 1 to 30 GeV, which is relevant to current and coming experiments (MINOS, NOvA, Minerva). Method: The Giessen Boltzmann--Uehling--Uhlenbeck (GiBUU) model, which implements all reaction channels relevant for neutrino energies under consideration, is used for an investigation of neutrino-nucleus reactions. Results: Our calculations are compared with the recent NOMAD and MINOS data for the integrated inclusive cross sections. Predictions are made for the differential cross sections for semiinclusive final states (pions, kaons, nucleons) for the MINOS and NOvA beams. ...

  6. Study of neutral current reactions with production of a pion induced by muon antineutrinos

    International Nuclear Information System (INIS)

    In this work we have studied the 4 production reactions of a pion induced by muon anti-neutrino collisions with nucleons: anti-νμp → anti-νμpπ0 or anti-νμnπ+ and anti-νμn → anti-νμnπ0 or anti-νμpπ-. We have processed experimental data from the Gargamelle cloud chamber to assess the pion production cross-sections. Our results are consistent with the theoretical predictions of the Adler model and of the Fogli and Nardulli model within the framework of the Weinberg and Salam unified theory. As for the isospin structure of the weak hadronic neutral current, the iso-vectorial component is highlighted in the invariant mass spectra in the channels pπ0 and pπ-. Our results show that the isospin structure is not purely isoscalar or purely iso-vectorial but rather a mix of I = 0 and I = 1. We confirm that the sign of the product of the 2 coupling constants uL*dL is negative. (A.C.)

  7. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    CERN Document Server

    Vale, D; Paar, N

    2015-01-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for $^{56}$Fe and $^{208}$Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons $\\mathrm{p}(\\bar{\

  8. High flux lithium antineutrino source with variable hard spectrum

    CERN Document Server

    Lyashuk, V I

    2016-01-01

    The high flux antineutrino source with hard antineutrino spectrum based on neutron activation of 7Li and subsequent fast beta-decay (T 1/2 = 0.84 s) of the 8Li isotope with emission of antineutrino with energy up to 13 MeV - is discussed. Creation of the intensive isotope neutrino source of hard spectrum will allow to increase the detection statistics of neutrino interaction and it is especially urgent for oscillation experiments. The scheme of the proposed neutrino source is based on the continuous transport of the created 8Li to the neutrino detector, which moved away from the place of neutron activation. Analytical expressions for lithium antineutrino flux is obtained. The discussed source will ensure to increase the cross section for reactions with deuteron from several times to tens compare to the reactor antineutrino spectrum. An another unique feature of the installation is the possibility to vary smoothly the hardness of the antineutrino spectrum.

  9. Terrestrial and Reactor Antineutrinos in Borexino

    Science.gov (United States)

    Chen, M. C.; Calaprice, F. P.; Rothschild, C. G.

    1998-10-01

    The Earth is an abundant source of antineutrinos coming from the decay of radioactive elements in the mantle and crust. Detecting these antineutrinos is a challenge due to their small cross section and low energies. The Borexino solar neutrino experiment will also be an excellent detector for barν_e. With 300 tons of ultra-low-background liquid scintillator, surrounded by an efficient muon veto, the inverse-β-decay reaction: barνe + p arrow e^+ + n (Q = 1.8 MeV), can be exploited to detect terrestrial antineutrinos from the uranium and thorium decay chains, with little background. A direct measurement of the total uranium and thorium abundance would establish important geophysical constraints on the heat generation and thermal history of the Earth. Starting with the most recent uranium and thorium distribution and abundance data, and employing a global map of crustal type and thickness, we calculated the antineutrino fluxes for several sites. We estimate a terrestrial antineutrino event rate in Borexino of 10 events per year. This small signal can be distinguished over the neutrino background from the world's nuclear power reactors by measuring the positron energy spectrum from the barνe events. The possibility to perform a long-baseline oscillation experiment, reaching Δ m^2 ≈ 10-6 eV^2, using the nuclear reactors in Europe will also be discussed.

  10. Antineutrino Monitoring of Thorium Reactors

    CERN Document Server

    Akindele, Oluwatomi A; Norman, Eric B

    2015-01-01

    Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuels types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring.Thorium molten salt reactors (MSR) breed U-233, that if diverted constitute an IAEA direct use material. The antineutrino spectrum from the fission of U-233 has been determined, the feasibility of detecting the diversion of a significant quantity, 8 kg of U-233, within the IAEA timeliness goal of 30 days has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario at a 25 meter standoff by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos. It was found that the diversion of a signifi...

  11. Neutron radiative capture reactions on nuclei of relevance to 0νββ, dark matter and neutrino/antineutrino searches

    Directory of Open Access Journals (Sweden)

    Tornow W.

    2015-01-01

    Full Text Available A program is underway at the Triangle Universities Nuclear Laboratory (TUNL to measure the neutron capture cross section in the 0.5 to 15 MeV energy range on nuclei whose radioactive daughters could potentially create backgrounds in searches for rare events. Here, we refer to neutrino-less double-beta decay and dark-matter searches, and to detectors built for neutrino and/or antineutrino studies. Neutron capture cross-section data obtained by using the activation method are reported for 40Ar, 74,76Ge, 128,130Te and 136Xe and compared to model calculations and evaluations.

  12. Antineutrino analysis for continuous monitoring of nuclear reactors: Sensitivity study

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Christopher; Erickson, Anna [Georgia Institute of Technology, Nuclear and Radiological Engineering, G. W. Woodruff School of Mechanical Engineering, 770 State St. NW, Atlanta, Georgia 30332 (United States)

    2015-10-28

    This paper explores the various contributors to uncertainty on predictions of the antineutrino source term which is used for reactor antineutrino experiments and is proposed as a safeguard mechanism for future reactor installations. The errors introduced during simulation of the reactor burnup cycle from variation in nuclear reaction cross sections, operating power, and other factors are combined with those from experimental and predicted antineutrino yields, resulting from fissions, evaluated, and compared. The most significant contributor to uncertainty on the reactor antineutrino source term when the reactor was modeled in 3D fidelity with assembly-level heterogeneity was found to be the uncertainty on the antineutrino yields. Using the reactor simulation uncertainty data, the dedicated observation of a rigorously modeled small, fast reactor by a few-ton near-field detector was estimated to offer reduction of uncertainty on antineutrino yields in the 3.0–6.5 MeV range to a few percent for the primary power-producing fuel isotopes, even with zero prior knowledge of the yields.

  13. Reactor monitoring using antineutrino detectors

    Science.gov (United States)

    Bowden, N. S.

    2011-08-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactor as part of International Atomic Energy Agency (IAEA) and/or other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway worldwide.

  14. Antineutrino oscillation study in the muon antineutrino → electron antineutrino channel at the Brookhaven accelerator

    International Nuclear Information System (INIS)

    This thesis is devoted to the E816 experiment which looked for (anti)neutrino oscillations. This experiment was performed in the neutrino beam of the Brookhaven AGS during spring 1986. Following a short recall of the theoretical and experimental status, the beam line and the apparatus are described. The analysis is exposed in details with a special emphasis on final states including at least one electromagnetic shower and one prong. Preliminary results have been obtained and show an excess of 23 ±8.7±14.6 events interpreted as charged current antineutrino electron interactions. In terms of a limit we obtain for the probability P(antineutrino muon → antineutrino electron): P<4.4% (95% C.L.)

  15. Long-Term Testing and Properties of Acrylic for the Daya Bay Antineutrino Detectors

    CERN Document Server

    Krohn, M; Heeger, K M

    2012-01-01

    The Daya Bay reactor antineutrino experiment has recently measured the neutrino mixing parameter sin22{\\theta}13 by observing electron antineutrino disappearance over kilometer-scale baselines using six antineutrino detectors at near and far distances from reactor cores at the Daya Bay nuclear power complex. Liquid scintillator contained in transparent target vessels is used to detect electron antineutrinos via the inverse beta-decay reaction. The Daya Bay experiment will operate for about five years yielding a precision measurement of sin22{\\theta}13. We report on long-term studies of poly(methyl methacrylate) known as acrylic, which is the primary material used in the fabrication of the target vessels for the experiment's antineutrino detectors. In these studies, acrylic samples are subjected to gaseous and liquid environmental conditions similar to those experienced during construction, transport, and operation of the Daya Bay acrylic target vessels and detectors. Mechanical and optical stability of the ac...

  16. AGM2015: Antineutrino Global Map 2015

    CERN Document Server

    Usman, Shawn M; Dye, Stephen T; McDonough, William F; Learned, John G

    2015-01-01

    Every second greater than $10^{25}$ antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth's surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically a...

  17. KamLAND and Solar Antineutrino Spectrum

    CERN Document Server

    Chauhan, B C; Torrente-Lujan, E; Chauhan, Bhag C.; Pulido, Joao

    2004-01-01

    We use the recent KamLAND observations to predict the solar antineutrino spectrum at some confidence limits. We find that a scaling of the antineutrino probability with respect to the magnetic field profile --in the sense that the same probability function can be reproduced by any profile with a suitable peak field value-- can be utilised to obtain a general shape of the solar antineutrino spectrum. This scaling and the upper bound on the solar antineutrino event rate, that can be derived from the data, lead to: 1) an upper bound on the solar antineutrino flux, 2) the prediction of their energy spectrum, as the normalisation of the spectrum can be obtained from the total number of antineutrino events recorded in the experiment. We get $\\phi_{\\bar\

  18. The Daya Bay Antineutrino Detector Filling System and Liquid Mass Measurement

    CERN Document Server

    Band, H R; Draeger, E; Heeger, K M; Hinrichs, P; Lewis, C A; Mattison, H; McFarlane, M C; Webber, D M; Wenman, D; Wang, W; Wise, T; Xiao, Q

    2013-01-01

    The Daya Bay Reactor Neutrino Experiment has measured the neutrino mixing angle \\theta_{13} to world-leading precision. The experiment uses eight antineutrino detectors filled with 20-tons of gadolinium-doped liquid scintillator to detect antineutrinos emitted from the Daya Bay nuclear power plant through the inverse beta decay reaction. The precision measurement of sin^{2}2\\theta_{13} relies on the relative antineutrino interaction rates between detectors at near (400 m) and far (roughly 1.8 km) distances from the nuclear reactors. The measured interaction rate in each detector is directly proportional to the number of protons in the liquid scintillator target. A precision detector filling system was developed to simultaneously fill the three liquid zones of the antineutrino detectors and measure the relative target mass between detectors to <0.02%. This paper describes the design, operation, and performance of the system and the resulting precision measurement of the detectors' target liquid masses.

  19. AGM2015: Antineutrino Global Map 2015.

    Science.gov (United States)

    Usman, S M; Jocher, G R; Dye, S T; McDonough, W F; Learned, J G

    2015-09-01

    Every second greater than 10(25) antineutrinos radiate to space from Earth, shining like a faint antineutrino star. Underground antineutrino detectors have revealed the rapidly decaying fission products inside nuclear reactors, verified the long-lived radioactivity inside our planet, and informed sensitive experiments for probing fundamental physics. Mapping the anisotropic antineutrino flux and energy spectrum advance geoscience by defining the amount and distribution of radioactive power within Earth while critically evaluating competing compositional models of the planet. We present the Antineutrino Global Map 2015 (AGM2015), an experimentally informed model of Earth's surface antineutrino flux over the 0 to 11 MeV energy spectrum, along with an assessment of systematic errors. The open source AGM2015 provides fundamental predictions for experiments, assists in strategic detector placement to determine neutrino mass hierarchy, and aids in identifying undeclared nuclear reactors. We use cosmochemically and seismologically informed models of the radiogenic lithosphere/mantle combined with the estimated antineutrino flux, as measured by KamLAND and Borexino, to determine the Earth's total antineutrino luminosity at . We find a dominant flux of geo-neutrinos, predict sub-equal crust and mantle contributions, with ~1% of the total flux from man-made nuclear reactors.

  20. Reactor Antineutrinos Signal all over the world

    CERN Document Server

    Ricci, B; Baldoncini, M; Esposito, J; Ludhova, L; Zavatarelli, S

    2014-01-01

    We present an updated estimate of reactor antineutrino signal all over the world, with particular attention to the sites proposed for existing and future geo-neutrino experiment. In our calculation we take into account the most updated data on Thermal Power for each nuclear plant, on reactor antineutrino spectra and on three neutrino oscillation mechanism.

  1. Antineutrino Oscillations in the Atmospheric Sector

    Energy Technology Data Exchange (ETDEWEB)

    Himmel, Alexander I.; /Caltech

    2011-05-01

    This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neutrinos, as well as a search for {nu}{sub {mu}} {yields} {bar {nu}}{sub {mu}} transitions. Differences between neutrino and antineutrino oscillations could be a sign of physics beyond the Standard Model, including non-standard matter interactions or the violation of CPT symmetry. These measurements leverage the sign-selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. Antineutrino oscillations are observed at |{Delta}{bar m}{sub atm}{sup 2}| = (3.36{sub -0.40}{sup +0.46}(stat) {+-} 0.06(syst)) x 10{sup -3} eV{sup 2} and sin{sup 2}(2{bar {theta}}{sub 23}) = 0.860{sub -0.12}{sup +0.11}(stat) {+-} 0.01(syst). The oscillation parameters measured for antineutrinos and those measured by MINOS for neutrinos differ by a large enough margin that the chance of obtaining two values as discrepant as those observed is only 2%, assuming the two measurements arise from the same underlying mechanism, with the same parameter values. No evidence is seen for neutrino-to-antineutrino transitions.

  2. Antineutrino Oscillations in the Atmospheric Sector

    Energy Technology Data Exchange (ETDEWEB)

    Himmel, Alexander I. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2011-05-01

    This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neutrinos, as well as a search for vμ → $\\bar{v}$μ transitions. Differences between neutrino and antineutrino oscillations could be a sign of physics beyond the Standard Model, including non-standard matter interactions or the violation of CPT symmetry. These measurements leverage the sign-selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. Antineutrino oscillations are observed at |Δ$\\bar{m}$atm 2| = (3.36-0.40+0.46(stat) ± 0.06(syst)) x 10-3 eV2 and sin2(2$\\bar{θ}$23) = 0.860-0.12+0.11(stat) ± 0.01(syst). The oscillation parameters measured for antineutrinos and those measured by MINOS for neutrinos differ by a large enough margin that the chance of obtaining two values as discrepant as those observed is only 2%, assuming the two measurements arise from the same underlying mechanism, with the same parameter values. No evidence is seen for neutrino-to-antineutrino transitions.

  3. Charged current neutrino and antineutrino interactions in hydrogen and deuterium

    International Nuclear Information System (INIS)

    In this dissertation results are presented of two different (anti-)neutrino experiments with the Big European Bubble Chamber (BEBC) filled with hydrogen and deuterium successively and exposed to the wide band (anti-)neutrino beam at the SPS at CERN. Chapter 1 contains the description of the experimental set-up and in chapter 2 results of the experiment with BEBC filled with deuterium and exposed to the antineutrino beam are presented. The multiplicity distributions of the charged hadron shower produced in (anti-)neutrino interactions with protons and neutrons are studied and compared with the results from hadron-hadron experiments. In chapter 3 a study of the exclusive reaction γp→μ-pπ+ is presented, data being obtained from an exposure of BEBC filled with hydrogen to the wide band neutrino beam. The absolute cross-section of the dominant subchannel γp→μ-Δ++(1232) averaged over an energy range of Esub(γ) = 20-200 GeV is measured to be sigma = (0.59 +- 0.06) . 10-38 cm2. This value is in good agreement with the results of other experiments. The differential cross-section dsigma/dQ2, the Δ++ decay angular distributions and the density matrix elements are determined. The value of the axial mass determined using the Schreiner-Von Hippel parametrization of the Adler model by fitting the total cross-section is Msub(A) = 0.85 +- 0.10 GeV/c2. (Auth.)

  4. Reactor monitoring and safeguards using antineutrino detectors

    CERN Document Server

    Bowden, N S

    2008-01-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway across the globe.

  5. Daya Bay Antineutrino Detector Gas System

    CERN Document Server

    Band, H R; Chu, M-C; Heeger, K M; Kwok, M W; Shih, K; Wise, T; Xiao, Q

    2012-01-01

    The Daya Bay Antineutrino Detector gas system is designed to protect the liquid scintillator targets of the antineutrino detectors against degradation and contamination from exposure to ambient laboratory air. The gas system is also used to monitor the leak tightness of the antineutrino detector assembly. The cover gas system constantly flushes the gas volumes above the liquid scintillator with dry nitrogen to minimize oxidation of the scintillator over the five year lifetime of the experiment. This constant flush also prevents the infiltration of radon or other contaminants into these detecting liquids keeping the internal backgrounds low. Since the Daya Bay antineutrino detectors are immersed in the large water pools of the muon veto system, other gas volumes are needed to protect vital detector cables or gas lines. These volumes are also purged with dry gas. Return gas is monitored for oxygen content and humidity to provide early warning of potentially damaging leaks. The design and performance of the Daya...

  6. Web Application for Modeling Global Antineutrinos

    CERN Document Server

    Barna, Andrew

    2015-01-01

    Electron antineutrinos stream freely from rapidly decaying fission products within nuclear reactors and from long-lived radioactivity within Earth. Those with energy greater than 1.8 MeV are regularly observed by several kiloton-scale underground detectors. These observations estimate the amount of terrestrial radiogenic heating, monitor the operation of nuclear reactors, and measure the fundamental properties of neutrinos. The analysis of antineutrino observations at operating detectors or the planning of projects with new detectors requires information on the expected signal and background rates. We present a web application for modeling global antineutrino energy spectra and detection rates for any surface location. Antineutrino sources include all registered nuclear reactors as well as the crust and mantle of Earth. Visitors to the website may model the location and power of a hypothetical nuclear reactor, copy energy spectra, and analyze the significance of a selected signal relative to background.

  7. Antineutrino monitoring of spent nuclear fuel

    OpenAIRE

    Brdar, Vedran; Huber, Patrick; Kopp, Joachim

    2016-01-01

    Military and civilian applications of nuclear energy have left a significant amount of spent nuclear fuel over the past 70 years. Currently, in many countries world wide, the use of nuclear energy is on the rise. Therefore, the management of highly radioactive nuclear waste is a pressing issue. In this letter, we explore antineutrino detectors as a tool for monitoring and safeguarding nuclear waste material. We compute the flux and spectrum of antineutrinos emitted by spent nuclear fuel eleme...

  8. Neutrino Data and Neutrino-Antineutrino Transition

    CERN Document Server

    Alexeyev, E N

    2005-01-01

    A problem, whether a neutrino-antineutrino transition could be responsible for the muon neutrino deficit found in underground experiments (Super-Kamiokande, MACRO, Soudan 2) and in the accelerator long-baseline K2K experiment, is discussed in this paper. The intention of the work is not consideration of concrete models for muon neutrino-antineutrino transition but a desire to attract an attention to another possibility of understanding the nature of the measured muon neutrino deficit in neutrino experiments.

  9. Antineutrino Geophysics with Liquid Scintillator Detectors

    OpenAIRE

    Rothschild, Casey G.; Chen, Mark C.; Calaprice, Frank P.

    1997-01-01

    Detecting the antineutrinos emitted by the decay of radioactive elements in the mantle and crust could provide a direct measurement of the total abundance of uranium and thorium in the Earth. In calculating the antineutrino flux at specific sites, the local geology of the crust and the background from the world's nuclear power reactors are important considerations. Employing a global crustal map, with type and thickness data, and using recent estimates of the uranium and thorium distribution ...

  10. Antineutrino monitoring of spent nuclear fuel

    CERN Document Server

    Brdar, Vedran; Kopp, Joachim

    2016-01-01

    Military and civilian applications of nuclear energy have left a significant amount of spent nuclear fuel over the past 70 years. Currently, in many countries world wide, the use of nuclear energy is on the rise. Therefore, the management of highly radioactive nuclear waste is a pressing issue. In this letter, we explore antineutrino detectors as a tool for monitoring and safeguarding nuclear waste material. We compute the flux and spectrum of antineutrinos emitted by spent nuclear fuel elements as a function of time, and we illustrate the usefulness of antineutrino detectors in several benchmark scenarios. In particular, we demonstrate how a measurement of the antineutrino flux can help to re-verify the contents of a dry storage cask in case the monitoring chain by conventional means gets disrupted. We then comment on the usefulness of antineutrino detectors at long-term storage facilities such as Yucca mountain. Finally, we put forward antineutrino detection as a tool in locating underground "hot spots" in ...

  11. Workshop applied antineutrino physics 2007

    International Nuclear Information System (INIS)

    The 'Applied Antineutrino Physics 2007' workshop is the fourth international meeting devoted to the opening of the neutrino physics to more applied fields, such as geophysics and geochemistry, nuclear industry, as well as the nonproliferation. This meeting highlights the world efforts already engaged to exploit the single characteristics of the neutrinos for the control of the production of plutonium in the civil nuclear power reactor. The potential industrial application of the measurement of the thermal power of the nuclear plants by the neutrinos is also approached. earth neutrinos were for the first time highlighted in 2002 by the KamLAND experiment. Several international efforts are currently underway to use earth neutrinos to reveal the interior of the Earth. This meeting is an opportunity to adapt the efforts of detection to the real needs of geophysicists and geochemists (sources of radiogenic heat, potassium in the court, feathers.) Finally more futuristic topics such as the detection of nuclear explosions, of low powers, are also discussed. This document gathers only the slides of the presentations

  12. Workshop applied antineutrino physics 2007

    Energy Technology Data Exchange (ETDEWEB)

    Akiri, T.; Andrieu, B.; Anjos, J.; Argyriades, J.; Barouch, G.; Bernstein, A.; Bersillon, O.; Besida, O.; Bowden, N.; Cabrera, A.; Calmet, D.; Collar, J.; Cribier, M.; Kerret, H. de; Meijer, R. de; Dudziak, F.; Enomoto, S.; Fallot, M.; Fioni, G.; Fiorentini, G.; Gale, Ph.; Georgadze, A.; Giot, L.; Gonin, M.; Guillon, B.; Henson, C.; Jonkmans, G.; Kanamaru, S.; Kawasaki, T.; Kornoukhov, V.; Lasserre, Th.; Learned, J.G.; Lefebvre, J.; Letourneau, A.; Lhillier, D.; Lindner, M.; Lund, J.; Mantovani, F.; Mcdonough, B.; Mention, G.; Monteith, A.; Motta, D.; Mueller, Th.; Oberauer, L.; Obolensky, M.; Odrzywolek, A.; Petcov, S.; Porta, A.; Queval, R.; Reinhold, B.; Reyna, D.; Ridikas, D.; Sadler, L.; Schoenert, St.; Sida, J.L.; Sinev, V.; Suekane, F.; Suvorov, Y.; Svoboda, R.; Tang, A.; Tolich, N.; Tolich, K.; Vanka, S.; Vignaud, D.; Volpe, Ch.; Wong, H

    2007-07-01

    The 'Applied Antineutrino Physics 2007' workshop is the fourth international meeting devoted to the opening of the neutrino physics to more applied fields, such as geophysics and geochemistry, nuclear industry, as well as the nonproliferation. This meeting highlights the world efforts already engaged to exploit the single characteristics of the neutrinos for the control of the production of plutonium in the civil nuclear power reactor. The potential industrial application of the measurement of the thermal power of the nuclear plants by the neutrinos is also approached. earth neutrinos were for the first time highlighted in 2002 by the KamLAND experiment. Several international efforts are currently underway to use earth neutrinos to reveal the interior of the Earth. This meeting is an opportunity to adapt the efforts of detection to the real needs of geophysicists and geochemists (sources of radiogenic heat, potassium in the court, feathers.) Finally more futuristic topics such as the detection of nuclear explosions, of low powers, are also discussed. This document gathers only the slides of the presentations.

  13. Detection of Antineutrinos for Non-Proliferation

    CERN Document Server

    Nieto, M M; Teeter, C M; Wilson, W B; Stanbro, W D; Nieto, Michael Martin; Teeter, Corinne M.; Wilson, William B.; Stanbro, William D.

    2003-01-01

    We discuss the feasibility of using the detection of electron antineutrinos produced in fission to monitor the time dependence of the Plutonium content of nuclear power reactors and large (> 1 MWatt) research reactors. If practical such a scheme would allow world-wide, automated monitoring of reactors and, thereby, the detection of proliferation attempts. Although this idea shows some promise, we find that a practical scheme is difficult to envision. We also consider using fission antineutrino spectra to determine and attribute the fuel in an unexploded nuclear device. We find it would not be possible to determine the isotopic content of such a device in this manner. Finally, we examine the possibility of antineutrino detection of an unannounced low-yield (~ 1kton) nuclear explosion. We argue this can be ruled out completely.

  14. Antineutrino induced antikaon production off the nucleon

    CERN Document Server

    Alam, M Rafi; Athar, M Sajjad; Vacas, M J Vicente

    2011-01-01

    The charged current antikaon production off nucleons induced by antineutrinos is studied at low and intermediate energies. We extend here our previous calculation on kaon production induced by neutrinos. We have developed a microscopic model that starts from the SU(3) chiral Lagrangians and includes background terms and the resonant mechanisms associated to the lowest lying resonance in the channel, namely, the Sigma*(1385). Our results could be of interest for the background estimation of various neutrino oscillation experiments like MiniBooNE and SuperK. They can also be helpful for the planned antineutrino experiments like MINERvA, NOvA and T2K phase II and for beta-beam experiments with antineutrino energies around 1 GeV.

  15. Applied Anti-neutrino Physics 2013

    CERN Document Server

    2013-01-01

    This year, the 9th annual Applied Antineutrino Physics Workshop will be hosted by Sejong University, at the COEX conference center in Seoul South Korea. The workshop will be held on November 1(Friday) - 2(Saturday), 2013. Conveniently for many travelers, it takes place directly after and at the same venue as the 2013 IEEE Nuclear Science Symposium (http://www.nss-mic.org/2013/NSSMain.asp) Applied Antineutrino Physics describes an ensemble of experimental and theoretical efforts which aim to use the antineutrino signal from nuclear reactors, and from the Earth itself, in order to address practical problems in nonproliferation and geology respectively. Since the 2004 inception of these workshops, groups worldwide have made considerable advances in defining and expanding the field, garnering interest from the International Atomic Energy Agency (IAEA), which administers the worlds most important nonproliferation regime, and from the geology/geophysics community. This meeting will focus on the current activi...

  16. Low-energy Antineutrinos from the Sun

    CERN Document Server

    Pastor, S; Valle, José W F; Pastor, Sergio; Semikoz, Viktor B.; Valle, Jose W.F.

    1998-01-01

    We consider the sensitivity of future neutrino experiments in the low energy region, such as BOREXINO or HELLAZ, to a solar electron antineutrino signal. We show that, if neutrino conversions within the Sun result in partial polarization of initial solar neutrino fluxes, then a new opportunity arises to observe the electron antineutrinos and thus to probe the Majorana nature of the neutrinos. This is achieved by comparing the slopes of the energy dependence of the differential neutrino electron scattering cross section for different neutrino conversion scenarios. We also show how the \

  17. Reactor antineutrino fluxes - status and challenges

    CERN Document Server

    Huber, Patrick

    2016-01-01

    In this contribution we describe the current understanding of reactor antineutrino fluxes and point out some recent developments. This is not intended to be a complete review of this vast topic but merely a selection of observations and remarks, which despite their incompleteness, will highlight the status and the challenges of this field.

  18. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay.

    Science.gov (United States)

    An, F P; Balantekin, A B; Band, H R; Bishai, M; Blyth, S; Butorov, I; Cao, D; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J H; Cheng, J; Cheng, Y P; Cherwinka, J J; Chu, M C; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Dove, J; Draeger, E; Dwyer, D A; Edwards, W R; Ely, S R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, X H; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, L J; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lei, R T; Leitner, R; Leung, K Y; Leung, J K C; Lewis, C A; Li, D J; Li, F; Li, G S; Li, Q J; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, P Y; Lin, S K; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, J C; Liu, S S; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Martinez Caicedo, D A; McDonald, K T; McKeown, R D; Meng, Y; Mitchell, I; Monari Kebwaro, J; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Pan, H-R; Park, J; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, B; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Tsang, K V; Tull, C E; Tung, Y C; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, Q; Xia, D M; Xia, J K; Xia, X; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C G; Yang, L; Yang, M S; Yang, M T; Ye, M; Yeh, M; Young, B L; Yu, G Y; Yu, Z Y; Zang, S L; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y F; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2016-02-12

    This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55±0.04) ×10(-18)  cm(2) GW(-1) day(-1) or (5.92±0.14) ×10(-43)  cm(2) fission(-1). This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946±0.022 (0.991±0.023) relative to the flux predicted with the Huber-Mueller (ILL-Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ∼4σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.

  19. Precisely determined the spent nuclear fuel antineutrino flux and spectrum for Daya Bay antineutrino experiment

    CERN Document Server

    Ma, X B; Chen, Y X; Zhong, W L; An, F P

    2015-01-01

    Spent nuclear fuel (SNF) antineutrino flux is an important source of uncertainties for a reactor neutrino flux prediction. However, if one want to determine the contribution of spent fuel, many data are needed, such as the amount of spent fuel in the pool, the time after discharged from the reactor core, the burnup of each assembly, and the antineutrino spectrum of the isotopes in the spend fuel. A method to calculate the contribution of SNF is proposed in this study. In this method, reactor simulation code verified by experiment have been used to simulate the fuel depletion by taking into account more than 2000 isotopes and fission products, the quantity of SNF in each six spend fuel pool, and the antineutrino spectrum of SNF varying with time after SNF discharged from core. Results show that the contribution of SNF to the total antineutrino flux is about 0.26%~0.34%, and the shutdown impact is about 20%. The SNF spectrum would distort the softer part of antineutrino spectra, and the maximum contribution fro...

  20. Precision spectroscopy with reactor anti-neutrinos

    CERN Document Server

    Huber, P; Huber, Patrick; Schwetz, Thomas

    2004-01-01

    In this work we present an accurate parameterization of the anti-neutrino flux produced by the isotopes 235U, 239Pu and 241Pu in nuclear reactors. We determine the coefficients of this parameterization, as well as their covariance matrix, by performing a fit to spectra inferred from experimentally measured beta spectra. Subsequently we show that flux shape uncertainties play only a minor role in the KamLAND experiment, however, we find that future reactor neutrino experiments to measure the mixing angle $\\theta_{13}$ are sensitive to the fine details of the reactor neutrino spectra. Finally, we investigate the possibility to determine the isotopic composition in nuclear reactors through an anti-neutrino measurement. We find that with a 3 month exposure of a one ton detector the isotope fractions and the thermal reactor power can be determined at a few percent accuracy, which may open the possibility of an application for safeguard or non-proliferation objectives.

  1. Hanohano:A Deep Ocean Antineutrino Observatory

    CERN Document Server

    Batygov, M; Learned, J G; Matsuno, S; Pakvasa, S; Varner, G

    2008-01-01

    This paper presents the science potential of a deep ocean antineutrino observatory being developed at Hawaii and elsewhere. The observatory design allows for relocation from one site to another. Positioning the observaory some 60 km distant from a nuclear reactor complex enables preecision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy and theta_13. At a mid-Pacific location, the observatory measures the flux of uranium and thorium decay series antineutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subequent deployment at another mid-ocean location would test lateral homogeneity of uranium and thorium in earth's mantle. These measurements have significance for earth energy studies.

  2. The antineutrino energy structure in reactor experiments

    CERN Document Server

    Novella, P

    2015-01-01

    The recent observation of an energy structure in the reactor antineutrino spectrum is reviewed. The reactor experiments Daya Bay, Double Chooz and RENO have reported a consistent excess of antineutrinos deviating from the flux predictions, with a local significance of about 4$\\sigma$ between 4 and 6 MeV of the positron energy spectrum. The possible causes of the structure are analyzed in this work, along with the different experimental approaches developed to identify its origin. Considering the available data and results from the three experiments, the most likely explanation concerns the reactor flux predictions and the associated uncertainties. Therefore, the different current models are described and compared. The possible sources of incompleteness or inaccuracy of such models are discussed, as well as the experimental data required to improve their precision.

  3. KamLAND, solar antineutrinos and the solar magnetic field

    CERN Document Server

    Chauhan, B C; Torrente-Lujan, E; Chauhan, Bhag C.; Pulido, Joao

    2003-01-01

    In this work the possibility of detecting solar electron antineutrinos produced by a solar core magnetic field from the KamLAND recent observations is investigated. We find a scaling of the antineutrino probability with respect to the magnetic field profile in the sense that the same probability function can be reproduced by any profile with a suitable peak field value. In this way the solar electron antineutrino spectrum can be unambiguosly predicted. We use this scaling and the negative results indicated by the KamLAND experiment to obtain upper bounds on the solar electron antineutrino flux. We get $\\phi_{\\bar\

  4. Theory of Antineutrino Monitoring of Burning MOX Plutonium Fuels

    CERN Document Server

    Hayes, A C; Nieto, Michael Martin; WIlson, W B

    2011-01-01

    This letter presents the physics and feasibility of reactor antineutrino monitoring to verify the burnup of plutonium loaded in the reactor as a Mixed Oxide (MOX) fuel. It examines the magnitude and temporal variation in the antineutrino signals expected for different MOX fuels, for the purposes of nuclear accountability and safeguards. The antineutrino signals from reactor-grade and weapons-grade MOX are shown to be distinct from those from burning low enriched uranium. Thus, antineutrino monitoring could be used to verify the destruction of plutonium in reactors, though verifying the grade of the plutonium being burned is found to be more challenging.

  5. Hanohano:A Deep Ocean Antineutrino Observatory

    OpenAIRE

    Batygov, M.; Dye, S. T.; Learned, J. G.; Matsuno, S; Pakvasa, S.; Varner, G.

    2008-01-01

    This paper presents the science potential of a deep ocean antineutrino observatory being developed at Hawaii and elsewhere. The observatory design allows for relocation from one site to another. Positioning the observaory some 60 km distant from a nuclear reactor complex enables preecision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy and theta_13. At a mid-Pacific location, the observatory measures the flux of uranium and thorium decay serie...

  6. Cooperative Monitoring of Reactors with Antineutrino Detectors

    Science.gov (United States)

    Keefer, Gregory

    2011-04-01

    LLNL and SNL have been exploiting the unique characteristics of reactor antineutrinos for nearly a decade in an effort to develop an independent means of monitoring fissile material diversion for reactor safeguard programs. The current capabilities of antineutrino detectors used in a non-proliferation regime are such that the operational status, power levels and fissile content of the nuclear reactor can be determined in real-time. These experiments were performed at stand-off distances of a few tens of meters. In the last few years, the International Atomic Energy Agency has begun to consider the potential of this technology for its reactor safeguards regime. In this talk, I describe the state of the art for this application, and emphasize the natural overlap with ongoing efforts in fundamental physics to measure the oscillations of antineutrinos using nuclear reactors as sources. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Target Mass Monitoring and Instrumentation in the Daya Bay Antineutrino Detectors

    CERN Document Server

    Band, Henry R; Greenler, Lee S; Heeger, Karsten M; Hinrichs, Paul; Kang, Li; Lewis, Christine; Li, Shanfeng; Lin, Shengxin; McFarlane, Michael C; Wang, Wei; Webber, David M; Wei, Yadong; Wise, Thomas; Xiao, Qiang; Yang, Li; Zhang, Zhijian

    2012-01-01

    The Daya Bay experiment measures sin^2 2{\\theta}_13 using functionally identical antineutrino detectors located at distances of 300 to 2000 meters from the Daya Bay nuclear power complex. Each detector consists of three nested fluid volumes surrounded by photomultiplier tubes. These volumes are coupled to overflow tanks on top of the detector to allow for thermal expansion of the liquid. Antineutrinos are detected through the inverse beta decay reaction on the proton-rich scintillator target. A precise and continuous measurement of the detector's central target mass is achieved by monitoring the the fluid level in the overflow tanks with cameras and ultrasonic and capacitive sensors. In addition, the monitoring system records detector temperature and levelness at multiple positions. This monitoring information allows the precise determination of the detectors' effective number of target protons during data taking. We present the design, calibration, installation and in-situ tests of the Daya Bay real-time ant...

  8. Detection of Breeding Blankets Using Antineutrinos

    Science.gov (United States)

    Cogswell, Bernadette; Huber, Patrick

    2016-03-01

    The Plutonium Management and Disposition Agreement between the United States and Russia makes arrangements for the disposal of 34 metric tons of excess weapon-grade plutonium. Under this agreement Russia plans to dispose of its excess stocks by processing the plutonium into fuel for fast breeder reactors. To meet the disposition requirements this fuel would be burned while the fast reactors are run as burners, i.e., without a natural uranium blanket that can be used to breed plutonium surrounding the core. This talk discusses the potential application of antineutrino monitoring to the verification of the presence or absence of a breeding blanket. It is found that a 36 kg antineutrino detector, exploiting coherent elastic neutrino-nucleus scattering and made of silicon, could determine the presence of a breeding blanket at a liquid sodium cooled fast reactor at the 95% confidence level within 90 days. Such a detector would be a novel non-intrusive verification tool and could present a first application of coherent elastic neutrino-nucleus scattering to a real-world challenge.

  9. Antineutrino reactor safeguards - a case study

    CERN Document Server

    Christensen, Eric; Jaffke, Patrick

    2013-01-01

    Antineutrinos have been proposed as a means of reactor safeguards for more than 30 years and there has been impressive experimental progress in neutrino detection. In this paper we conduct, for the first time, a case study of the application of antineutrino safeguards to a real-world scenario - the North Korean nuclear crisis in 1994. We derive detection limits to a partial or full core discharge in 1989 based on actual IAEA safeguards access and find that two independent methods would have yielded positive evidence for a second core with very high confidence. To generalize our results, we provide detailed estimates for the sensitivity to the plutonium content of various types of reactors, including most types of plutonium production reactors, based on detailed reactor simulations. A key finding of this study is that a wide class of reactors with a thermal power of less than 0.1-1 GWth can be safeguarded achieving IAEA goals for quantitative sensitivity and timeliness with detectors right outside the reactor ...

  10. Testing Geological Models with Terrestrial Antineutrino Flux Measurements

    CERN Document Server

    Dye, Steve

    2009-01-01

    Uranium and thorium are the main heat producing elements in the earth. Their quantities and distributions, which specify the flux of detectable antineutrinos generated by the beta decay of their daughter isotopes, remain unmeasured. Geological models of the continental crust and the mantle predict different quantities and distributions of uranium and thorium. Many of these differences are resolvable with precision measurements of the terrestrial antineutrino flux. This precision depends on both statistical and systematic uncertainties. An unavoidable background of antineutrinos from nuclear reactors typically dominates the systematic uncertainty. This report explores in detail the capability of various operating and proposed geo-neutrino detectors for testing geological models.

  11. An improved measurement of muon antineutrino disappearance in MINOS

    CERN Document Server

    Adamson, P; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Cao, S V; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, X; Hylen, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mathis, M; Mayer, N; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Oliver, W P; Orchanian, M; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Phan-Budd, S; Plunkett, R K; Qiu, X; Radovic, A; Ratchford, J; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Strait, M; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Walding, J J; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Zwaska, R

    2012-01-01

    We report an improved measurement of muon anti-neutrino disappearance over a distance of 735km using the MINOS detectors and the Fermilab Main Injector neutrino beam in a muon anti-neutrino enhanced configuration. From a total exposure of 2.95e20 protons on target, of which 42% have not been previously analyzed, we make the most precise measurement of the anti-neutrino "atmospheric" delta-m squared = 2.62 +0.31/-0.28 (stat.) +/- 0.09 (syst.) and constrain the anti-neutrino atmospheric mixing angle >0.75 (90%CL). These values are in agreement with those measured for muon neutrinos, removing the tension reported previously.

  12. Improved Scintillator Materials For Compact Electron Antineutrino Detectors

    NARCIS (Netherlands)

    Dijkstra, Peter; Wortche, Heinrich J.; Browne, Wesley R.

    2012-01-01

    Recent developments provide new components holding the potential to improve the performance of liquid scintillation electron antineutrino detectors used as nuclear reactors monitors. Current systems raise issues regarding size, quantum efficiency, stability, and spatial resolution of the vertex dete

  13. Estimating terrestrial uranium and thorium by antineutrino flux measurements.

    Science.gov (United States)

    Dye, Stephen T; Guillian, Eugene H

    2008-01-01

    Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This article describes the methods and criteria to experimentally determine average concentrations of uranium and thorium in the continental crust and in the mantle by using site-specific measurements of the terrestrial antineutrino flux. Optimal, model-independent determinations involve significant exposures of antineutrino detectors remote from nuclear reactors at both a midcontinental and a midoceanic site. This would require major, new antineutrino detection projects. The results of such projects could yield a greatly improved understanding of the deep interior of the Earth.

  14. Estimating terrestrial uranium and thorium by antineutrino flux measurements

    CERN Document Server

    Dye, Stephen T

    2008-01-01

    Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This research report describes the methods and criteria to experimentally determine average concentrations of uranium and thorium in the continental crust and in the mantle using site-specific measurements of the terrestrial antineutrino flux. Optimal, model-independent determinations involve significant exposures of antineutrino detectors remote from nuclear reactors at both a mid-continental and a mid-oceanic site. This would require major, new antineutrino detection projects. The results of such projects could yield a greatly improved understa...

  15. Geoneutrinos and reactor antineutrinos at SNO+

    CERN Document Server

    Baldoncini, M; Wipperfurth, S A; Fiorentini, G; Mantovani, F; McDonough, W F; Ricci, B

    2016-01-01

    In the heart of the Creighton Mine near Sudbury (Canada), the SNO+ detector is foreseen to observe almost in equal proportion electron antineutrinos produced by U and Th in the Earth and by nuclear reactors. SNO+ will be the first long baseline experiment to measure a reactor signal dominated by CANDU cores ($\\sim$55\\% of the total reactor signal), which generally burn natural uranium. Approximately 18\\% of the total geoneutrino signal is generated by the U and Th present in the rocks of the Huronian Supergroup-Sudbury Basin: the 60\\% uncertainty on the signal produced by this lithologic unit plays a crucial role on the discrimination power on the mantle signal as well as on the geoneutrino spectral shape reconstruction, which can in principle provide a direct measurement of the Th/U ratio in the Earth.

  16. Simulation of the SONGS Reactor Antineutrino Flux Using DRAGON

    CERN Document Server

    Jones, C L

    2011-01-01

    For reactor antineutrino experiments, a thorough understanding of the fuel composition and isotopic evolution is of paramount importance for the extraction of $\\theta_{13}$. To accomplish these goals, we employ the deterministic lattice code DRAGON, and analyze the instantaneous antineutrino rate from the San Onofre Nuclear Generating Station (SONGS) Unit 2 reactor in California. DRAGON's ability to predict the rate for two consecutive fuel cycles is examined.

  17. Testing Geological Models with Terrestrial Antineutrino Flux Measurements

    OpenAIRE

    Dye, Steve

    2009-01-01

    Uranium and thorium are the main heat producing elements in the earth. Their quantities and distributions, which specify the flux of detectable antineutrinos generated by the beta decay of their daughter isotopes, remain unmeasured. Geological models of the continental crust and the mantle predict different quantities and distributions of uranium and thorium. Many of these differences are resolvable with precision measurements of the terrestrial antineutrino flux. This precision depends on bo...

  18. Experimental determination of the antineutrino spectrum of the fission products of {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Nils-Holger

    2013-10-09

    Fission of {sup 238}U contributes about 10 % to the antineutrino emission of a pressurized water reactor. In the present thesis, the beta spectrum of the fission products of {sup 238}U was determined in an experiment at the neutron source FRM II. This beta spectrum was subsequently converted into an antineutrino spectrum. This first measurement of the antineutrino spectrum supports all current and future reactor antineutrino experiments.

  19. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Karsten M. [Yale Univ., New Haven, CT (United States)

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  20. Progress Towards Deployable Antineutrino Detectors for Reactor Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, N; Bernstein, A; Dazeley, S; Keefer, G; Reyna, D; Cabrera-Palmer, B; Kiff, S

    2010-04-05

    Fission reactors emit large numbers of antineutrinos and this flux may be useful for the measurement of two quantities of interest for reactor safeguards: the reactor's power and plutonium inventory throughout its cycle. The high antineutrino flux and relatively low background rates means that simple cubic meter scale detectors at tens of meters standoff can record hundreds or thousands of antineutrino events per day. Such antineutrino detectors would add online, quasi-real-time bulk material accountancy to the set of reactor monitoring tools available to the IAEA and other safeguards agencies with minimal impact on reactor operations. Between 2003 and 2008, our LLNL/SNL collaboration successfully deployed several prototype safeguards detectors at a commercial reactor in order to test both the method and the practicality of its implementation in the field. Partially on the strength of the results obtained from these deployments, an Experts Meeting was convened by the IAEA Novel Technologies Group in 2008 to assess current antineutrino detection technology and examine how it might be incorporated into the safeguards regime. Here we present a summary of our previous deployments and discuss current work that seeks to provide expanded capabilities suggested by the Experts Panel, in particular aboveground detector operation.

  1. KamLAND, solar antineutrinos and their magnetic moment

    CERN Document Server

    Aliani, P; Picariello, M; Torrente-Lujan, E

    2003-01-01

    We investigate the possibility of detecting solar antineutrinos with the KamLAND experiment. These antineutrinos are predicted by spin-flavor oscillations at a significant rate even if this mechanism is not the leading solution to the SNP. The recent evidence from SNO shows that a) the neutrino oscillates, only around 34% of the initial solar neutrinos arrive at the Earth as electron neutrinos and b) the conversion is mainly into active neutrinos, however a non e, mu, tau component is allowed: the fraction of oscillation into non-mu-tau neutrinos is found to be cos^2(alpha) = 0.08^{+0.20}_{-0.40}. This residual flux could include sterile neutrinos and/or the antineutrinos of the active flavors. KamLAND is potentially sensitive to antineutrinos derived from solar ^8 B neutrinos. In case of negative results, we find that KamLAND could put strict limits on the flux of solar antineutrinos, Phi(^8 B) < 1.0 times 10^4 cm^{-2} s^{-1}, more than one order of magnitude smaller than existing limits, and on their app...

  2. Anti-neutrino oscillations with T2K

    CERN Document Server

    Salzgeber, M Ravonel

    2015-01-01

    T2K is a long-baseline neutrino oscillation experiment, in which a muon neutrino beam is produced at J-PARC and detected 295 km away at the Super-Kamiokande detector. The T2K experiment observed electron-neutrino appearance in 2012. This observation enables T2K to explore CP violation in the lepton sector by comparing electron-neutrino appearance and electron-antineutrino appearance. Indeed, the number of observed electron neutrino events up to 2012 is, though within statistical fluctuation, larger than the expectation, which suggests maximal CP violation. Since 2013, T2K has been accumulating data with a muon antineutrino beam. If the suggested maximal CP violation is true, electron-antineutrino appearance would be suppressed. The signal is further suppressed by the smaller cross section for antineutrinos compared to neutrinos. Hence the observation of electron-antineutrino appearance is an important next step. Furthermore, the CPT theorem imposes that the muon disappearance rate must be the same for muon ne...

  3. Integrated readout of organic scintillator and ZnS:Ag/6LiF for segmented antineutrino detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Kiff, Scott D.; Reyna, David; Monahan, James; Bowden, Nathaniel S.

    2010-11-01

    Antineutrino detection using inverse beta decay conversion has demonstrated the capability to measure nuclear reactor power and fissile material content for nuclear safeguards. Current efforts focus on aboveground deployment scenarios, for which highly efficient capture and identification of neutrons is needed to measure the anticipated antineutrino event rates in an elevated background environment. In this submission, we report on initial characterization of a new scintillation-based segmented design that uses layers of ZnS:Ag/{sup 6}LiF and an integrated readout technique to capture and identify neutrons created in the inverse beta decay reaction. Laboratory studies with multiple organic scintillator and ZnS:Ag/{sup 6}LiF configurations reliably identify {sup 6}Li neutron captures in 60 cm-long segments using pulse shape discrimination.

  4. Integrated readout of organic scintillator and ZnS:Ag/6LiF for segmented antineutrino detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Kiff, Scott D.; Reyna, David; Monahan, James (Drexel University, Philadelphia, PA); Bowden, Nathaniel S. (Lawrence Livermore National Laboratory, Livermore, CA)

    2010-10-01

    Antineutrino detection using inverse beta decay conversion has demonstrated the capability to measure nuclear reactor power and fissile material content for nuclear safeguards. Current efforts focus on aboveground deployment scenarios, for which highly efficient capture and identification of neutrons is needed to measure the anticipated antineutrino event rates in an elevated background environment. In this submission, we report on initial characterization of a new scintillation-based segmented design that uses layers of ZnS:Ag/{sup 6}LiF and an integrated readout technique to capture and identify neutrons created in the inverse beta decay reaction. Laboratory studies with multiple organic scintillator and ZnS:Ag/{sup 6}LiF configurations reliably identify {sup 6}Li neutron captures in 60 cm-long segments using pulse shape discrimination.

  5. Neutron detection and identification using ZnS:Ag/{sup 6}LiF in segmented antineutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kiff, Scott D., E-mail: skiff@sandia.gov [Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550 (United States); Bowden, Nathaniel [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Lund, Jim; Reyna, David [Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550 (United States)

    2011-10-01

    Antineutrino detection using inverse beta-decay conversion has demonstrated capability to measure nuclear reactor power and fissile material content for nuclear safeguards. Current efforts focus on aboveground deployment scenarios, for which a successful background rejection strategy will be needed to measure the anticipated antineutrino event rates. In this paper, we report on initial studies to quantify the intrinsic capture efficiency and particle identification capabilities of a new scintillation-based segmented design that uses layers of ZnS:Ag/{sup 6}LiF to capture and identify neutrons created in the inverse beta-decay reaction. Laboratory efficiency measurements are consistent with MCNP5 calculations, estimating {sup 6}Li neutron conversion efficiency above 50% for practical full-scale detector configurations.

  6. Simulation of Reactors for Antineutrino Experiments Using DRAGON

    CERN Document Server

    Winslow, L

    2011-01-01

    From the discovery of the neutrino to the precision neutrino oscillation measurements in KamLAND, nuclear reactors have proven to be an important source of antineutrinos. As their power and our knowledge of neutrino physics has increased, more sensitive measurements have become possible. The next generation of reactor antineutrino experiments require more detailed simulations of the reactor core. Many of the reactor simulation codes are proprietary which makes detailed studies difficult. Here we present the results of the open source DRAGON code and compare it to other industry standards for reactor modeling. We use published data from the Takahama reactor to determine the quality of the simulations. The propagation of the uncertainty to the antineutrino flux is also discussed.

  7. A reference worldwide model for antineutrinos from reactors

    CERN Document Server

    Baldoncini, Marica; Fiorentini, Giovanni; Mantovani, Fabio; Ricci, Barbara; Strati, Virginia; Xhixha, Gerti

    2014-01-01

    Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earth's surface information about natural radioactivity in the whole planet. In this framework we provide a reference worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency (IAEA). We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Borexino), planned (SNO+) and proposed (Juno, RENO-50, LENA and Hanohano) experimental sites. Uncertainties related to reactor antineutrino production, propagation and detection processes are estimated using a Monte Carlo based approach, which provides an overall site dependent uncertainty on the signal in the geoneutrino energy window on the order of 3%. We also implement the off-equilibrium correction to the reference reactor spectra associated with the long-lived isotopes and we estimate a 2.4% increase of the unoscillate...

  8. Antineutrino monitoring for the Iranian heavy water reactor

    CERN Document Server

    Christensen, Eric; Jaffke, Patrick; Shea, Thomas

    2014-01-01

    In this note we discuss the potential application of antineutrino monitoring to the Iranian heavy water reactor at Arak, the IR-40, as a non-proliferation measure. We demonstrate that an above ground detector positioned right outside the IR-40 reactor building could meet and in some cases significantly exceed the verification goals identified by IAEA for plutonium production or diversion from declared inventories. In addition to monitoring the reactor during operation, observing antineutrino emissions from long-lived fission products could also allow monitoring the reactor when it is shutdown. Antineutrino monitoring could also be used to distinguish different levels of fuel enrichment. Most importantly, these capabilities would not require a complete reactor operational history and could provide a means to re-establish continuity of knowledge in safeguards conclusions should this become necessary.

  9. Antineutrino flux from the Laguna Verde Nuclear Power Plant

    CERN Document Server

    Chavez-Estrada, Marisol

    2015-01-01

    We present a a calculation of the antineutrino flux produced by the reactors at the Laguna Verde Nuclear Power Plant in M\\'exico, based on the antineutrino spectra produced in the decay chains of the fission fragments of the main isotopes in the reactor core, and their fission rates, that have been calculated using the DRAGON simulation code. We also present an estimate of the number of expected events in a detector made of plastic scintillator with a mass of 1 ton, at 100 m from the reactor cores.

  10. Antineutrino Flux from the Laguna Verde Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Marisol Chavez-Estrada

    2015-01-01

    Full Text Available We present a calculation of the antineutrino flux produced by the reactors at the Laguna Verde Nuclear Power Plant in México, based on the antineutrino spectra produced in the decay chains of the fission fragments of the main isotopes in the reactor core, and their fission rates, which have been calculated using the DRAGON simulation code. We also present an estimate of the number of expected events in a detector made of plastic scintillator with a mass of 1 ton, at 100 m from the reactor cores.

  11. Spectral structure of electron antineutrinos from nuclear reactors.

    Science.gov (United States)

    Dwyer, D A; Langford, T J

    2015-01-01

    Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principles calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructures in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of these substructures can elucidate the nuclear processes occurring within reactors. These substructures can be a systematic issue for measurements utilizing the detailed spectral shape.

  12. Spectral Structure of Electron Antineutrinos from Nuclear Reactors

    CERN Document Server

    Dwyer, D A

    2014-01-01

    Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principle calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructure in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of this substructure can constrain nuclear reactor physics. The substructure can be a systematic uncertainty for measurements utilizing the detailed spectral shape.

  13. Geophysics with Hawaiian Anti-neutrino Observatory (Hanohano)

    Energy Technology Data Exchange (ETDEWEB)

    Maricic, J., E-mail: jelena.maricic@physics.drexel.edu [Drexel University, Philadelphia, PA, 19104, University of Hawaii, Honolulu, HI, 96822 (United States)

    2011-12-15

    The design studies are under way for the deep ocean anti-neutrino observatory located in the vicinity of the Big Island (Hawaii) with the main goal of measuring geo-neutrino flux from the mantle and core which can exclusively be done in a location far from the continental plates such is Hawaiian Islands chain. Hanohano will also accomplish the definitive measurement of the electron anti-neutrino signal from the core to observe or eliminate a hypothetical natural reactor in the Earth's core.

  14. Geophysics with Hawaiian Anti-neutrino Observatory (Hanohano)

    Science.gov (United States)

    Maricic, J.; Hanohano Collaboration

    2011-12-01

    The design studies are under way for the deep ocean anti-neutrino observatory located in the vicinity of the Big Island (Hawaii) with the main goal of measuring geo-neutrino flux from the mantle and core which can exclusively be done in a location far from the continental plates such is Hawaiian Islands chain. Hanohano will also accomplish the definitive measurement of the electron anti-neutrino signal from the core to observe or eliminate a hypothetical natural reactor in the Earth's core.

  15. Reactor Simulation for Antineutrino Experiments using DRAGON and MURE

    CERN Document Server

    Jones, C L; Conrad, J M; Djurcic, Z; Fallot, M; Giot, L; Keefer, G; Onillon, A; Winslow, L

    2011-01-01

    Rising interest in nuclear reactors as a source of antineutrinos for experiments motivates validated, fast, and accessible simulations to predict reactor fission rates. Here we present results from the DRAGON and MURE simulation codes and compare them to other industry standards for reactor core modeling. We use published data from the Takahama-3 reactor to evaluate the quality of these simulations against the independently measured fuel isotopic composition. The propagation of the uncertainty in the reactor operating parameters to the resulting antineutrino flux predictions is also discussed.

  16. Is there a high-y anomaly in antineutrino interactions

    International Nuclear Information System (INIS)

    We have analyzed data taken in the CERN narrow-band neutrino and antineutrino beams with regard to the ''high-y anomaly'' observed by previous experiments at Fermilab. At neutrino energies between 30 and 200 GeV, the anti ν and ν charged-current cross-section ratios and muon-inelasticity distributions disagree with the earlier results. In particular, there is no evidence for energy-dependent effects in the antineutrino data which constitute an important aspect of the alleged anomaly

  17. Antineutrino Flux from the Laguna Verde Nuclear Power Plant

    OpenAIRE

    Marisol Chavez-Estrada; Aguilar-Arevalo, Alexis A.

    2015-01-01

    We present a calculation of the antineutrino flux produced by the reactors at the Laguna Verde Nuclear Power Plant in M\\'exico, based on the antineutrino spectra produced in the decay chains of the fission fragments of the main isotopes in the reactor core, and their fission rates, that have been calculated using the DRAGON simulation code. We also present an estimate of the number of expected events in a detector made of plastic scintillator with a mass of 1 ton, at 100 m from the reactor co...

  18. Investigation of Large LGB Detectors for Antineutrino Detection

    CERN Document Server

    Nelson, P

    2011-01-01

    A detector material or configuration that can provide an unambiguous indication of neutron capture can substantially reduce random coincidence backgrounds in antineutrino detection and capture-gated neutron spectrometry applications. Here we investigate the performance of such a material, a composite of plastic scintillator and $^6$Li$_6^{nat}$Gd$(^{10}$BO$_{3})_{3}$:Ce (LGB) crystal shards of ~1 mm dimension and comprising 1% of the detector by mass. While it is found that the optical propagation properties of this material as currently fabricated are only marginally acceptable for antineutrino detection, its neutron capture identification ability is encouraging.

  19. Investigation of large LGB detectors for antineutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P. [Department of Physics, Naval Postgraduate School, Monterey, CA 93943 (United States); Bowden, N.S., E-mail: nbowden@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2011-12-21

    A detector material or configuration that can provide an unambiguous indication of neutron capture can substantially reduce random coincidence backgrounds in antineutrino detection and capture-gated neutron spectrometry applications. Here we investigate the performance of such a material, a composite of plastic scintillator and {sup 6}Li{sub 6}{sup nat}Gd({sup 10}BO{sub 3}){sub 3}:Ce (LGB) crystal shards of Almost-Equal-To 1 mm dimension and comprising 1% of the detector by mass. While it is found that the optical propagation properties of this material as currently fabricated are only marginally acceptable for antineutrino detection, its neutron capture identification ability is encouraging.

  20. A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lyubushkin, V.; Bunyatov, S.; Chukanov, A.; Klimov, O.; Kustov, D.; Nefedov, Yu.; Samoylov, O.; Tereshchenko, V. [JINR, Dubna (Russian Federation); Popov, B. [JINR, Dubna (Russian Federation); LPNHE, Univ. of Paris VI and VII, Paris (France); Kim, J.J.; Godley, A.; Ling, J.; Mishra, S.R.; Petti, R.; Seaton, M.; Wu, Q. [Univ. of South Carolina, Columbia, SC (United States); Camilleri, L.; Autiero, D.; Di Lella, L.; Couto e Silva, E. do; Ferrere, D.; Grant, A.; Kokkonen, J.; Linssen, L.; Placci, A.; Stiegler, U.; Tsesmelis, E.; Vidal-Sitjes, G.; Wilson, F.F. [CERN, Geneva (Switzerland); Levy, J.M.; Astier, P.; Banner, M.; Dumarchez, J.; Lachaud, C.; Letessier-Selvon, A.; Schahmaneche, K.; Touchard, A.M.; Vannucci, F. [LPNHE, Univ. of Paris VI and VII, Paris (France); Mezzetto, M.; Baldo-Ceolin, M.; Bobisut, F.; Collazuol, G.; Contalbrigo, M.; Gibin, D.; Guglielmi, A.; Lacaprara, S.; Laveder, M.; Rebuffi, L.; Sconza, A.; Zuccon, P. [Univ. of Padova (Italy); INFN, Padova (Italy); Naumov, D. [JINR, Dubna (Russian Federation); Univ. of Florence (Italy); INFN, Florence (Italy); Alekhin, S. [Inst. for High Energy Physics, Protvino, Moscow Region (Russian Federation); Baldisseri, A.; Besson, N.; Bouchez, J.; Gosset, J.; Hagner, C.; Mechain, X.; Meyer, J.P.; Stolarczyk, T.; Zaccone, H. [DAPNIA, Saclay (France); Bassompierre, G.; Gaillard, J.M.; Gouanere, M.; Mendiburu, J.P.; Nedelec, P.; Pessard, H.; Sillou, D. [LAPP, Annecy (France); Benslama, K.; Degaudenzi, H.; Joseph, C.; Juget, F.; Nguyen-Mau, C.; Sozzi, G.; Tareb-Reyes, M.; Tran, M.T.; Vacavant, L.; Vieira, J.M. [Univ. of Lausanne, Lausanne (Switzerland); Bird, I. [CERN, Geneva (Switzerland); Univ. of Lausanne (Switzerland); Blumenfeld, B.; Long, J. [Johns Hopkins Univ., Baltimore, MD (United States); Boyd, S.; Ellis, M.; Peak, L.S.; Ulrichs, J.; Varvell, K.E.; Yabsley, B.D. [Univ. of Sydney (Australia); Bueno, A. [Harvard Univ., Cambridge, MA (United States); ETH Zurich (Switzerland)] [and others

    2009-10-15

    We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions ({nu}{sub {mu}}n {yields}{mu}{sup -}p and anti {nu}{sub {mu}}p{yields}{mu}{sup +}n) using a set of experimental data collected by the NOMAD Collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly carbon) normalizing it to the total {nu}{sub {mu}}(anti {nu}{sub {mu}}) charged-current cross section. The results for the flux-averaged QEL cross sections in the (anti)neutrino energy interval 3-100 GeV are left angle {sigma}{sub qel} right angle {sub {nu}}{sub {mu}}=(0.92{+-}0.02(stat){+-}0.06(syst)) x 10{sup -38} cm{sup 2} and left angle {sigma}{sub qel} right angle {sub anti} {sub {nu}{sub {mu}}}{sub =}(0.81{+-}0.05(stat){+-}0.09(syst)) x 10{sup -38} cm{sup 2} for neutrino and antineutrino, respectively. The axial mass parameter M{sub A} was extracted from the measured quasi-elastic neutrino cross section. The corresponding result is M{sub A}=1.05{+-}0.02(stat){+-}0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross section and extracted from the pure Q{sup 2} shape analysis of the high purity sample of {nu}{sub {mu}} quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured M{sub A} is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of M{sub A} is lower than those recently published by K2K and MiniBooNE Collaborations. However, within the large errors quoted by these experiments on M{sub A}, these results are compatible with the more precise NOMAD value. (orig.)

  1. Neutron Capture and the Antineutrino Yield from Nuclear Reactors.

    Science.gov (United States)

    Huber, Patrick; Jaffke, Patrick

    2016-03-25

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ∼0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.

  2. Electron Neutrino and Antineutrino Appearance in the MINOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Schreckenberger, Adam Paul [Univ. of Minnesota, Minneapolis, MN (United States)

    2013-04-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline neutrino experiment that utilizes a particle beam and two steel-scintillator calorimeters designed to determine the parameters associated with muon neutrino disappearance. Analysis methods developed by the MINOS νe group have facilitated the placement of limits upon the mixing angle associated with νμ → νe oscillations. Since the polarity of the focusing horns can be switched, we can perform a similar analysis with an antineutrino-enriched beam to select electron antineutrino appearance candidates. Using 3.34e20 POT (protons on target) in the antineutrino mode, we exclude θ13 = 0 at the 80% C.L. A joint fit of the 3.34e20 POT antineutrino and 10.6e20 POT neutrino samples excluded θ13 = 0 at the 96% C.L. In addition, the combined data were used to produce exclusions regarding the CP-violating phase.

  3. Neutron capture and the antineutrino yield from nuclear reactors

    CERN Document Server

    Huber, Patrick

    2015-01-01

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low-energies below 3.2MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach 0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the non-equilibrium correction...

  4. Neutron Capture and the Antineutrino Yield from Nuclear Reactors

    Science.gov (United States)

    Huber, Patrick; Jaffke, Patrick

    2016-03-01

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low energies below 3.2 MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach ˜0.9 % of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the nonequilibrium correction. For naval reactors the nonlinear correction may reach the 5% level by the end of cycle.

  5. Monitoring Akkuyu Nuclear Reactor Using Anti-Neutrino Flux Measurement

    CERN Document Server

    Ozturk, Sertac; Ozcan, V Erkcan; Unel, Gokhan

    2016-01-01

    We present a simulation based study for monitoring Akkuyu Nuclear Power Plant's activity using anti-neutrino flux originating from the reactor core. A water Cherenkov detector has been designed and optimization studies have been performed using Geant4 simulation toolkit. A first study for the design of a monitoring detector facility for Akkuyu Nuclear Power Plant has been discussed in this paper.

  6. Measuring Antineutrino Oscillations with the MINOS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Justin John [Univ. of Oxford (United Kingdom)

    2008-09-01

    MINOS is a long baseline neutrino oscillation experiment. A manmade beam of predominantly muon neutrinos is detected both 1 km and 735 km from the production point by two functionally identical detectors. A comparison of the energy spectra measured by the two detectors shows the energy-dependent disappearance of muon neutrinos characteristic of oscillations and allows a measurement of the parameters governing the oscillations. This thesis presents work leading to measurements of disappearance in the 6% $\\bar{v}$μ background in that beam. A calibration is developed to correct for time-dependent changes in the responses of both detectors, reducing the corresponding uncertainty on hadronic energy measurements from 1.8% to 0.4% in the near detector and from 0.8% to 0.4% in the far detector. A method of selecting charged current $\\bar{v}$μ events is developed, with purities (efficiencies) of 96.5% (74.4%) at the near detector, and 98.8% (70.9%) at the far detector in the region below 10 GeV reconstructed antineutrino energy. A method of using the measured near detector neutrino energy spectrum to predict that expected at the far detector is discussed, and developed for use in the $\\bar{v}$μ analysis. Sources of systematic uncertainty contributing to the oscillation measurements are discussed. In the far detector, 32 charged current $\\bar{v}$μ events are observed below a reconstructed energy of 30 GeV, compared to an expectation of 47.8 for Δ$\\bar{m}$atm2 = Δ$\\bar{m}$atm2, sin2(2$\\bar{θ}$23) = sin2(2θ23). This deficit, in such a low-statistics sample, makes the result difficult to interpret in the context of an oscillation parameter measurement. Possible sources for the discrepancy are discussed, concluding that considerably more data are required for a definitive solution. Running MINOS with a dedicated $\\bar

  7. Measuring of fissile isotopes partial antineutrino spectra in direct experiment at nuclear reactor

    CERN Document Server

    Sinev, V V

    2009-01-01

    The direct measuring method is considered to get nuclear reactor antineutrino spectrum. We suppose to isolate partial spectra of the fissile isotopes by using the method of antineutrino spectrum extraction from the inverse beta decay positron spectrum applied at Rovno experiment. This admits to increase the accuracy of partial antineutrino spectra forming the total nuclear reactor spectrum. It is important for the analysis of the reactor core fuel composition and could be applied for non-proliferation purposes.

  8. A new anti-neutrino detection technique based on positronium tagging with plastic scintillators

    CERN Document Server

    Consolati, G; Jollet, C; Meregaglia, A; Minotti, A; Perasso, S; Tonazzo, A

    2015-01-01

    The main signature for anti-neutrino detection in reactor and geo-neutrino experiments based on scintillators is provided by the space-time coincidence of positron and neutron produced in the Inverse Beta Decay reaction. Such a signature strongly suppresses backgrounds and allows for measurements performed underground with a relatively high signal-to-background ratio. In an aboveground environment, however, the twofold coincidence technique is not sufficient to efficiently reject the high background rate induced by cosmogenic events. Enhancing the positron-neutron twofold coincidence efficiency has the potential to pave the way future aboveground detectors for reactor monitoring. We propose a new detection scheme based on a threefold coincidence, between the positron ionization, the ortho-positronium (o-Ps) decay, and the neutron capture, in a sandwich detector with alternated layers of plastic scintillator and aerogel powder. We present the results of a set of dedicated measurements on the achievable light y...

  9. Development of an advanced antineutrino detector for reactor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Classen, T., E-mail: classen2@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Bernstein, A.; Bowden, N.S. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Cabrera-Palmer, B. [Sandia Livermore National Laboratories, Livermore, CA 94550 (United States); Ho, A.; Jonkmans, G. [Atomic Energy of Canada, Limited, Chalk River Laboratories, Chalk River, ON (Canada); Kogler, L.; Reyna, D. [Sandia Livermore National Laboratories, Livermore, CA 94550 (United States); Sur, B. [Atomic Energy of Canada, Limited, Chalk River Laboratories, Chalk River, ON (Canada)

    2015-01-21

    Here we present the development of a compact antineutrino detector for the purpose of nuclear reactor monitoring, improving upon a previously successful design. This paper will describe the design improvements of the detector which increases the antineutrino detection efficiency threefold over the previous effort. There are two main design improvements over previous generations of detectors for nuclear reactor monitoring: dual-ended optical readout and single volume detection mass. The dual-ended optical readout eliminates the need for fiducialization and increases the uniformity of the detector's optical response. The containment of the detection mass in a single active volume provides more target mass per detector footprint, a key design criteria for operating within a nuclear power plant. This technology could allow for real-time monitoring of the evolution of a nuclear reactor core, independent of reactor operator declarations of fuel inventories, and may be of interest to the safeguards community.

  10. Neutrino mass hierarchy determination at reactor antineutrino experiments

    CERN Document Server

    Yang, Guang

    2015-01-01

    After the neutrino mixing angle $\\theta_{13}$ has been precisely measured by the reactor antineutrino experiments, one of the most important open questions left in neutrino physics is the neutrino mass hierarchy. Jiangmen Underground Neutrino Observatory (JUNO) is designed to determine the neutrino mass hierarchy (MH) without exploring the matter effect. The JUNO site location is optimized to have the best sensitivity for the mass hierarchy determination. JUNO will employ a 20 kton liquid scintillator detector located in a laboratory 700 meters underground. The excellent energy resolution and PMT coverage will give us an unprecedented opportunity to reach a 3-4 $\\sigma$ precision. In this paper, the JUNO detector design and simulation work will be presented. Also, RENO-50, another medium distance reactor antineutrino experiment, will do a similar measurement. With the efforts of these experiments, it is very likely that the neutrino mass hierarchy will be determined in the next 10 years.

  11. Development of PROSPECT detectors for precision antineutrino studies

    CERN Document Server

    Norcini, Danielle

    2015-01-01

    PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, will use two segmented detectors positioned 7-20 m from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory to measure the U-235 antineutrino spectrum and perform a search for short-baseline oscillations as a signature of eV-scale sterile neutrinos. PROSPECT has developed Li-6 loaded liquid scintillator detectors for efficient identification of reactor antineutrinos and has measured reactor and cosmogenic backgrounds in the HFIR reactor building. Multiple test detectors have been built, operated, and characterized at HFIR and elsewhere to understand the optical performance of the scintillator and pulse-shape discrimination capabilities for enhanced background rejection. The results from this R&D effort are discussed, in the context of the design and physics potential of PROSPECT.

  12. Reactor electron antineutrino disappearance in the Double Chooz experiment

    CERN Document Server

    Abe, Y; Anjos, J C dos; Barriere, J C; Bergevin, M; Bernstein, A; Bezerra, T J C; Bezrukhov, L; Blucher, E; Bowden, N S; Buck, C; Busenitz, J; Cabrera, A; Caden, E; Camilleri, L; Carr, R; Cerrada, M; Chang, P -J; Chimenti, P; Classen, T; Collin, A P; Conover, E; Conrad, J M; Crespo-Anadón, J I; Crum, K; Cucoanes, A; D'Agostino, M V; Damon, E; Dawson, J V; Dazeley, S; Dietrich, D; Djurcic, Z; Dracos, M; Durand, V; Ebert, J; Efremenko, Y; Elnimr, M; Etenko, A; Fallot, M; Fechner, M; von Feilitzsch, F; Felde, J; Franco, D; Franke, A J; Franke, M; Furuta, H; Gama, R; Gil-Botella, I; Giot, L; Goger-Neff, M; Gonzalez, L F G; Goodman, M C; Goon, J TM; Greiner, D; Haag, N; Hagner, C; Hara, T; Hartmann, F X; Haser, J; Hatzikoutelis, A; Hayakawa, T; Hofmann, M; Horton-Smith, G A; Hourlier, A; Ishitsuka, M; Jochum, J; Jollet, C; Jones, C L; Kaether, F; Kalousis, L N; Kamyshkov, Y; Kaplan, D M; Kawasaki, T; Keefer, G; Kemp, E; de Kerret, H; Kibe, Y; Konno, T; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C E; Langbrandtner, C; Lasserre, T; Letourneau, A; Lhuillier, D; Lima, H P; Lindner, M; López-Castanõ, J M; LoSecco, J M; Lubsandorzhiev, B K; Lucht, S; McKee, D; Maeda, J; Maesano, C N; Mariani, C; Maricic, J; Martino, J; Matsubara, T; Mention, G; Meregaglia, A; Miletic, T; Milincic, R; Miyata, H; Mueller, Th A; Nagasaka, Y; Nakajima, K; Novella, P; Obolensky, M; Oberauer, L; Onillon, A; Osborn, A; Ostrovskiy, I; Palomares, C; Pepe, I M; Perasso, S; Perrin, P; Pfahler, P; Porta, A; Potzel, W; Reichenbacher, J; Reinhold, B; Remoto, A; Rohling, M; Roncin, R; Roth, S; Sakamoto, Y; Santorelli, R; Sato, F; Schonert, S; Schoppmann, S; Schwetz, T; Shaevitz, M H; Shimojima, S; Shrestha, D; Sida, J-L; Sinev, V; Skorokhvatov, M; Smith, E; Spitz, J; Stahl, A; Stancu, I; Stokes, L F F; Strait, M; Stuken, A; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Svoboda, R; Terao, K; Tonazzo, A; Toups, M; Thi, H H Trinh; Valdiviesso, G; Veyssiere, C; Wagner, S; Watanabe, H; White, B; Wiebusch, C; Winslow, L; Worcester, M; Wurm, M; Yermia, F; Zimmer, V

    2012-01-01

    The Double Chooz experiment has observed 8,249 candidate electron antineutrino events in 227.93 live days with 33.71 GW-ton-years (reactor power x detector mass x livetime) exposure using a 10.3 cubic meter fiducial volume detector located at 1050 m from the reactor cores of the Chooz nuclear power plant in France. The expectation in case of theta13 = 0 is 8,937 events. The deficit is interpreted as evidence of electron antineutrino disappearance. From a rate plus spectral shape analysis we find sin^2 2{\\theta}13 = 0.109 \\pm 0.030(stat) \\pm 0.025(syst). The data exclude the no-oscillation hypothesis at 99.9% CL (3.1{\\sigma}).

  13. Which reactor antineutrino flux may be responsible for the anomaly?

    CERN Document Server

    Giunti, Carlo

    2016-01-01

    We investigate which among the reactor antineutrino fluxes from the decays of the fission products of $^{235}\\text{U}$, $^{238}\\text{U}$, $^{239}\\text{Pu}$, and $^{241}\\text{Pu}$ may be responsible for the reactor antineutrino anomaly. We find that it is the $^{235}\\text{U}$ flux, which contributes to the rates of all reactor neutrino experiments. From the fit of the data we obtain the precise determination $ \\sigma_{^{235}\\text{U}} = ( 6.34 \\pm 0.10 ) \\times 10^{-43} \\, \\text{cm}^2 / \\text{fission} $ of the $^{235}\\text{U}$ cross section per fission, which is more precise than the calculated value and differs from it by $2.0\\sigma$.

  14. Towards Earth AntineutRino TomograpHy (EARTH)

    OpenAIRE

    de Meijer, R. J.; Smit, F. D.; Brooks, F. D.; Fearick, R. W.; Woertche, H. J.; Mantovani, F

    2006-01-01

    The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection. Recent hypotheses target the core-mantle boundary (CMB) as a major source of natural radionuclides and therefore of radiogenic heat. A typical scale of the processes that take place at the CMB is abo...

  15. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Djurcic, Zelimir; Detwiler, Jason A.; Piepke, Andreas; Foster Jr., Vince R.; Miller, Lester; Gratta, Giorgio

    2008-08-06

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in {bar {nu}}{sub e} detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties, and their relevance to reactor {bar {nu}}{sub e} experiments.

  16. Estimating terrestrial uranium and thorium by antineutrino flux measurements

    OpenAIRE

    Dye, Stephen T.; Guillian, Eugene H.

    2008-01-01

    Uranium and thorium within the Earth produce a major portion of terrestrial heat along with a measurable flux of electron antineutrinos. These elements are key components in geophysical and geochemical models. Their quantity and distribution drive the dynamics, define the thermal history, and are a consequence of the differentiation of the Earth. Knowledge of uranium and thorium concentrations in geological reservoirs relies largely on geochemical model calculations. This research report desc...

  17. Science Potential of a Deep Ocean Antineutrino Observatory

    OpenAIRE

    Dye, Steve

    2006-01-01

    This paper presents science potential of a deep ocean antineutrino observatory under development at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy. At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's ma...

  18. Investigation of Large LGB Detectors for Antineutrino Detection

    OpenAIRE

    Nelson, P; Bowden, N. S.

    2011-01-01

    A detector material or configuration that can provide an unambiguous indication of neutron capture can substantially reduce random coincidence backgrounds in antineutrino detection and capture-gated neutron spectrometry applications. Here we investigate the performance of such a material, a composite of plastic scintillator and $^6$Li$_6^{nat}$Gd$(^{10}$BO$_{3})_{3}$:Ce (LGB) crystal shards of ~1 mm dimension and comprising 1% of the detector by mass. While it is found that the optical propag...

  19. Neutrino Geophysics at Baksan I: Possible Detection of Georeactor Antineutrinos

    CERN Document Server

    Domogatski, G; Mikaelyan, L A; Sinev, V

    2004-01-01

    J.M. Herndon in 90-s proposed a natural nuclear fission georeactor at the center of the Earth with a power output of 3-10 TW as an energy source to sustain the Earth magnetic field. R.S. Raghavan in 2002 y. pointed out that under certain condition antineutrinos generated in georeactor can be detected using massive scintillation detectors. We consider the underground Baksan Neutrino Observatory (4800 m.w.e.) as a possible site for developments in Geoneutrino physics. Here the intrinsic background level of less than one event/year in a liquid scintillation ~1000 target ton detector can be achieved and the main source of background is the antineutrino flux from power reactors. We find that this flux is ~10 times lower than at KamLAND detector site and two times lower than at Gran Sasso laboratory and thus at Baksan the georeactor hypothesis can be conclusively tested. We also discuss possible search for composition of georector burning nuclear fuel by analysis of the antineutrino energy spectrum.

  20. The double chooz experiment: simulation of reactor antineutrino spectra

    International Nuclear Information System (INIS)

    The Double Chooz experiment aims to study the oscillations of electron antineutrinos produced by the Chooz nuclear power station, located in France, in the Ardennes region. It will lead to an unprecedented accuracy on the value of the mixing angle θ13. Improving the current knowledge on this parameter, given by the Chooz experiment, requires a reduction of both statistical and systematic errors, that is to say not only observing a large data sample, but also controlling the experimental uncertainties involved in the production and detection of electron antineutrinos. The use of two identical detectors will cancel most of the experimental systematic uncertainties limiting the sensitivity to the value of the mixing angle. We present in this thesis, simulations of reactor antineutrino spectra that were carried out in order to control the sources of systematic uncertainty related to the production of these particles by the plant. We also discuss our work on controlling the normalization error of the experiment through the precise determination of the number of target protons by a weighing measurement and through the study of the fiducial volume of the detectors which requires an accurate modeling of neutron physics. After three years of data taking with two detectors, Double Chooz will be able to disentangle an oscillation signal for sin22θ13 ≥ 0.05 (at 3σ) or, if no oscillations are observed, to put a limit of sin22θ13 ≤ 0.03 at 90% C.L. (author)

  1. Antineutrino Neutral Current Interactions in MiniBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Dharmapalan, Ranjan [Univ. of Alabama, Tuscaloosa, AL (United States)

    2012-01-01

    This dissertation reports the antineutrino-nucleus neutral current elastic scattering cross section on CH2 measured by the MiniBooNE experiment located in Batavia, IL. The data set consists of 60,605 events passing the selection cuts corresponding to 10.1×1020 POT, which represents the world’s largest sample of antineutrino neutral current elastic scattering events. The final sample is more than one order of magnitude lager that the previous antineutrino NCE scattering cross section measurement reported by the BNL E734 experiment. The measurement presented in this dissertation also spans a wider range in Q2, including the low-Q2 regime where the cross section rollover is clearly visible. A X2-based minimization was performed to determine the best value of the axial mass, MA and the Pauli blocking scaling function, that matches the antineutrino NCE scattering data. However, the best fit values of MA=1.29 GeV and K=1.026 still give a relatively poor X2, which suggests that the underlying nuclear model (based largely on the relativistic Fermi gas model) may not be an accurate representation for this particular interaction. Additionally, we present a measurement of the antineutrino/neutrino-nucleus NCE scattering cross section ratio. The neutrino mode NCE sample used in this study, corresponding to 6.4 × 1020 POT, is also the world’s largest sample (also by an order of magnitude). We have demonstrated that the ratio measurement is robust, as most of the correlated errors cancel, as expected. Furthermore, this ratio also proves to be rather insensitive to variations in the axial mass and the Pauli blocking parameter. This is the first time that this ratio has been experimentally reported. We believe this measurement will aid the theoretical physics community to test various model predictions of neutrino-nucleon/nucleus interactions.

  2. Use of Antineutrino Detectors for Nuclear Reactor Safeguards Effectiveness Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A; Lambert, H E; Elayat, H A; O' Connell, W J; Rexroth, P; Baldwin, G; Bowden, N; Huelskamp, R

    2006-06-05

    As described in an earlier article [1], important information regarding reactor power and the amount and type of fissile material in reactor cores can be determined by measuring the antineutrino rate and energy spectrum, using a cubic meter scale antineutrino detector at tens of meters standoff from the core. Current International Atomic Energy Agency (IAEA) safeguards techniques do not provide such real-time quantitative information regarding core power levels and isotopic composition. The possible benefits of this approach are several and have been discussed in the earlier article. One key advantage is that the method gives the inspecting agency completely independent access to real-time information on the operational status and fissile content of the core. Furthermore, the unattended and non-intrusive nature of the technology may reduce the monitoring burden on the plant operator, even though more information is being provided than is available within the current IAEA safeguards regime. Here we present a detailed analytical framework for measuring the impact that such a detector might have on IAEA safeguards, if implemented. To perform the analysis, we will use initial data from our operating detector and a standard analysis technique for safeguards regimes, developed at Lawrence Livermore National Laboratory. Because characterization of the prototype detector is still underway, and because improvements in the prototype could have important impact on safeguards performance, the results presented here should be understood to be preliminary, and not reflective of the ultimate performance of the system. The structure of this paper is as follows. Reactor safeguards and the relevant properties of antineutrino detectors are briefly reviewed. A set of hypothetical diversion scenarios are then described, and one of these is analyzed using the Lawrence Livermore National Laboratory Integrated Safeguards System Analysis Tool (LISSAT) The probability of successful

  3. Antineutrino Oscillations and a Search for Non-standard Interactions with the MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Isvan, Zeynep [Univ. of Pittsburgh, PA (United States)

    2012-01-01

    MINOS searches for neutrino oscillations using the disappearance of muon neutrinos from the NuMI beam at Fermilab between two detectors. The Near Detector, located near the source, measures the beam composition before flavor change occurs. The energy spectrum is measured again at the Far Detector after neutrinos travel a distance. The mixing angle and mass splitting between the second and third mass states are extracted from the energy dependent difference between the spectra at the two detectors. NuMI is able to produce an antineutrino-enhanced beam as well as a neutrino-enhanced beam. Collecting data in antineutrino-mode allows the direct measurement of antineutrino oscillation parameters. From the analysis of the antineutrino mode data we measure $|\\Delta\\bar{m}^{2}_{\\text{atm}}| = 2.62^{+0.31}_{-0.28}\\times10^{-3}\\text{eV}^{2}$ and $\\sin^{2}(2\\bar{\\theta})_{23} = 0.95^{+0.10}_{-0.11}$, which is the most precise measurement of antineutrino oscillation parameters to date. A difference between neutrino and antineutrino oscillation parameters may indicate new physics involving interactions that are not part of the Standard Model, called non-standard interactions, that alter the apparent disappearance probability. Collecting data in neutrino and antineutrino mode independently allows a direct search for non-standard interactions. In this dissertation non-standard interactions are constrained by a combined analysis of neutrino and antineutrino datasets and no evidence of such interactions is found.

  4. Nuclear security applications of antineutrino detectors : current capabilities and future prospects.

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A.; Goodman, M.; Baldwin, G.; Learned, J.; Lund, J.; Reyna, D.; Svaboda, R. (High Energy Physics); (LLNL); (SNL); (LANL); (Univ. of Hawaii); (Univ. of California)

    2010-12-10

    Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline - Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This paper presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline with other ongoing fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.

  5. A study of antineutrino spectra from spent nuclear fuel at Daya Bay

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bin; RUAN Xi-Chao; NIE Yang-Bo; ZHOU Zu-Ying; AN Feng-Peng; CAO Jun

    2012-01-01

    The Daya Bay Reactor Antineutrino Experiment is designed to determine the as yet unknown neutrino mixing angle,θ13,by measuring the disappearance of electron antineutrinos from several nuclear reactor cores.The projected sensitivity in sin2(2θ13) of better than 0.01 at a 90% CL should be achieved after three years of data-taking.Antineutrinos emitted from spent nuclear fuel (SNF) distort the soft part of the energy spectrum.In this article,a calculation of the antineutrino spectra from the long-life isotopes in SNF is performed.A non-equilibrium generation of long half-life isotopes during the running time of the reactor is also analyzed.Finally,we show that the antineutrino event rate contribution from SNF,which has been stored in the SNF pool for several years,may be non-negligible.

  6. Neutrino Geophysics at Baksan I: Possible Detection of Georeactor Antineutrinos

    OpenAIRE

    Domogatski, G.; Kopeikin, V.; Mikaelyan, L.; Sinev, V.

    2004-01-01

    J.M. Herndon in 90-s proposed a natural nuclear fission georeactor at the center of the Earth with a power output of 3-10 TW as an energy source to sustain the Earth magnetic field. R.S. Raghavan in 2002 y. pointed out that under certain condition antineutrinos generated in georeactor can be detected using massive scintillation detectors. We consider the underground Baksan Neutrino Observatory (4800 m.w.e.) as a possible site for developments in Geoneutrino physics. Here the intrinsic backgro...

  7. Science Potential of a Deep Ocean Antineutrino Observatory

    CERN Document Server

    Dye, S

    2007-01-01

    This paper presents science potential of a deep ocean antineutrino observatory under development at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy. At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle.

  8. Experimental Study Of Terrestrial Electron Anti-neutrinos With Kamland

    CERN Document Server

    Tolich, N R

    2005-01-01

    The analysis presented here uses Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) to measure the rate of electron anti-neutrinos, ne&d1;' s , produced from terrestrial 238U and 212Th. 238U and 212Th are thought to be the main heat source driving mantle convection in the Earth, which in turn is responsible for plate tectonics. The total terrestrial 238U and 212Th content has been estimated from Earth models and rock samples from a very small fraction of the Earth. Until now there have been no direct measurements. Since ne&d1;' s have an exceedingly small cross section, they propagate undisturbed in the Earth interior, and their measurement near the Earth surface can be used to gain information on their sources. Based on a total of (2.63 ± 0.19) × 1031 target proton-years (0.506 kton- years), the 90% confidence interval for the total number of terrestrial 238U and 212Th ne&d1;' s detected is 4 to 40. This is consistent with the best models of terrestrial 23...

  9. Contribution of recently measured nuclear data to reactor antineutrino energy spectra predictions

    Directory of Open Access Journals (Sweden)

    Fallot M.

    2013-12-01

    Full Text Available This paper attempts to summarize the actual problematic of reactor antineutrino energy spectra in the frame of fundamental and applied neutrino physics. Nuclear physics is an important ingredient of reactor antineutrino experiments. These experiments are motivated by neutrino oscillations, i.e. the measure of the θ13 mixing angle. In 2011, after a new computation of the reactor antineutrino energy spectra, based on the conversion of integral data of the beta spectra from 235U, and 239;241Pu, a deficit of reactor antineutrinos measured by short baseline experiments was pointed out. This is called the “reactor anomaly”, a new puzzle in the neutrino physics area. Since then, numerous new experimental neutrino projects have emerged. In parallel, computations of the antineutrino spectra independant from the ILL data would be desirable. One possibility is the use of the summation method, summing all the contributions of the fission product beta decay branches that can be found in nuclear databases. Studies have shown that in order to obtain reliable summation antineutrino energy spectra, new nuclear physics measurements of selected fission product beta decay properties are required. In these proceedings, we will present the computation methods of reactor antineutrino energy spectra and the impact of recent beta decay measurements on summation method spectra. The link of these nuclear physics studies with short baseline line oscillation search will be drawn and new neutrino physics projects at research reactors will be briefly presented.

  10. Neutrino and antineutrino inclusive charged-current cross section measurements with the MINOS near detector

    OpenAIRE

    Adamson, P.; Andreopoulos, C.; Arms, K. E.; Armstrong, R.; Auty, D. J.; Ayres, D. S.; Backhouse, C.; Barnes, JR; Barr, G.; Barrett, W. L.; Devenish, N. E.; Falk, E.; Harris, P.G.; Hartnell, J.; et al, ...

    2010-01-01

    The energy dependence of the neutrino-iron and antineutrino-iron inclusive charged-current cross sections and their ratio have been measured using a high-statistics sample with the MINOS Near Detector exposed to the NuMI beam from the Main Injector at Fermilab. Neutrino and antineutrino fluxes were determined using a low hadronic energy subsample of charged-current events. We report measurements of neutrino-Fe (antineutrinoFe) cross section in the energy range 3-50 GeV (5-50 GeV) with precisi...

  11. Can Radiogenic Heat Sources Inside the Earth be located by their Antineutrino incoming Directions?

    CERN Document Server

    Domogatsky, G; Mikaelyan, L; Sinev, V

    2004-01-01

    Antineutrinos born in the U and Th decay chains inside the Earth (``Geoneutrinos'') carry out information on the amount and distribution of radiogenic heat sources, which is of fundamental importance for geophysics. Models of the Earth distribute U and Th masses mainly between the continental crust and the lower mantle. It has been much discussed recently that a number of detectors stationed at appropriate geographical sites can separate the crust and mantle contributions. In present work we analyze directional separation of antineutrino signals arriving from the crust and the lower mantle with only one detector. We find that with a ~30-kton liquid scintillation antineutrino spectrometer using $\\bar{{\

  12. Decay heat and anti-neutrino energy spectra in fission fragments from total absorption spectroscopy

    Science.gov (United States)

    Rykaczewski, Krzysztof

    2015-10-01

    Decay studies of over forty 238U fission products have been studied using ORNL's Modular Total Absorption Spectrometer. The results are showing increased decay heat values, by 10% to 50%, and the energy spectra of anti-neutrinos shifted towards lower energies. The latter effect is resulting in a reduced number of anti-neutrinos interacting with matter, often by tens of percent per fission product. The results for several studied nuclei will be presented and their impact on decay heat pattern in power reactors and reactor anti-neutrino physics will be discussed.

  13. Search for differences in oscillation parameters for atmospheric neutrinos and antineutrinos at Super-Kamiokande.

    Science.gov (United States)

    Abe, K; Hayato, Y; Iida, T; Ikeda, M; Iyogi, K; Kameda, J; Koshio, Y; Kozuma, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Takeuchi, Y; Ueno, K; Ueshima, K; Watanabe, H; Yamada, S; Yokozawa, T; Ishihara, C; Kaji, H; Lee, K P; Kajita, T; Kaneyuki, K; McLachlan, T; Okumura, K; Shimizu, Y; Tanimoto, N; Martens, K; Vagins, M R; Labarga, L; Magro, L M; Dufour, F; Kearns, E; Litos, M; Raaf, J L; Stone, J L; Sulak, L R; Goldhaber, M; Bays, K; Kropp, W R; Mine, S; Regis, C; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Albert, J B; Scholberg, K; Walter, C W; Wendell, R; Wongjirad, T M; Tasaka, S; Learned, J G; Matsuno, S; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Nishino, H; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Minamino, A; Nakaya, T; Fukuda, Y; Itow, Y; Mitsuka, G; Tanaka, T; Jung, C K; Taylor, I; Yanagisawa, C; Ishino, H; Kibayashi, A; Mino, S; Mori, T; Sakuda, M; Toyota, H; Kuno, Y; Kim, S B; Yang, B S; Ishizuka, T; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Yokoyama, M; Totsuka, Y; Chen, S; Heng, Y; Yang, Z; Zhang, H; Kielczewska, D; Mijakowski, P; Connolly, K; Dziomba, M; Wilkes, R J

    2011-12-01

    We present a search for differences in the oscillations of antineutrinos and neutrinos in the Super-Kamiokande-I, -II, and -III atmospheric neutrino sample. Under a two-flavor disappearance model with separate mixing parameters between neutrinos and antineutrinos, we find no evidence for a difference in oscillation parameters. Best-fit antineutrino mixing is found to be at (Δm2,sin2 2θ)=(2.0×10(-3)  eV2, 1.0) and is consistent with the overall Super-K measurement. PMID:22242990

  14. Search for Differences in Oscillation Parameters for Atmospheric Neutrinos and Antineutrinos at Super-Kamiokande

    CERN Document Server

    Abe, K; Iida, T; Ikeda, M; Iyogi, K; Kameda, J; Koshio, Y; Kozuma, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Takeuchi, Y; Ueno, K; Ueshima, K; Watanabe, H; Yamada, S; Yokozawa, T; Ishihara, C; Kaji, H; Lee, K P; Kajita, T; Kaneyuki, K; McLachlan, T; Okumura, K; Shimizu, Y; Tanimoto, N; Martens, K; Vagins, M R; Labarga, L; Magro, L M; Dufour, F; Kearns, E; Litos, M; Raaf, J L; Stone, J L; Sulak, L R; Goldhaber, M; Bays, K; Kropp, W R; Mine, S; Regis, C; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Albert, J B; Scholberg, K; Walter, C W; Wendell, R; Wongjirad, T M; Tasaka, S; Learned, J G; Matsuno, S; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Nishino, H; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Minamino, A; Nakaya, T; Fukuda, Y; Itow, Y; Mitsuka, G; Tanaka, T; Jung, C K; Taylor, I; Yanagisawa, C; Ishino, H; Kibayashi, A; Mino, S; Mori, T; Sakuda, M; Toyota, H; Kuno, Y; Kim, S B; Yang, B S; Ishizuka, T; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Yokoyama, M; Totsuka, Y; Chen, S; Heng, Y; Yang, Z; Zhang, H; Kielczewska, D; Mijakowski, P; Connolly, K; Dziomba, M; Wilkes, R J

    2011-01-01

    We present a search for differences in the oscillations of antineutrinos and neutrinos in the Super-Kamiokande -I, -II, and -III atmospheric neutrino sample. Under a two-flavor disappearance model with separate mixing parameters between neutrinos and antineutrinos, we find no evidence for a difference in oscillation parameters. Best fit antineutrino mixing is found to be at (dm2bar, sin2 2 thetabar) = (2.0x10^-3 eV^2, 1.0) and is consistent with the overall Super-K measurement.

  15. Uncertainties analysis of fission fraction for reactor antineutrino experiments using DRAGON

    CERN Document Server

    Ma, X B; Chen, Y X; Zhong, W L; An, F P

    2014-01-01

    Rising interest in nuclear reactors as a source of antineutrinos for experiments motivates validated, fast, and accessible simulation to predict reactor rates. First, DRAGON was developed to calculate the fission rates of the four most important isotopes in fissions,235U,238U,239Pu and141Pu, and it was validated for PWRs using the Takahama benchmark. The fission fraction calculation function was validated through comparing our calculation results with MIT's results. we calculate the fission fraction of the Daya Bay reactor core, and compare its with those calculated by the commercial reactor simulation program SCIENCE, which is used by the Daya Bay nuclear power plant, and the results was consist with each other. The uncertainty of the antineutrino flux by the fission fraction was studied, and the uncertainty of the antineutrino flux by the fission fraction simulation is 0.6% per core for Daya Bay antineutrino experiment.

  16. A new approach to anti-neutrino running in long baseline neutrino oscillation experiments

    CERN Document Server

    Agarwalla, Sanjib K; Link, Jonathan M; Mohapatra, Debabrata

    2010-01-01

    We study the possibility to replace the anti-neutrino run of a long baseline neutrino oscillation experiment, with anti-neutrinos from muon decay at rest. The low energy of these neutrinos allows the use of inverse beta decay for detection in a Gadolinium-doped water Cerenkov detector. We show that this approach yields a factor of five times larger anti-neutrino event sample. The resulting discovery reaches in theta_13, the mass hierarchy and leptonic CP violation are compared with those from a conventional superbeam experiment with combined neutrino and anti-neutrino running. We find that this approach yields a greatly improved reach for CP violation and theta_13 while leaving the ability to measure the mass hierarchy intact.

  17. An Improved Measurement of Electron Antineutrino Disappearance at Daya Bay

    CERN Document Server

    Webber, David M

    2012-01-01

    The theory of neutrino oscillations explains changes in neutrino flavor, count rates, and spectra from solar, atmospheric, accelerator, and reactor neutrinos. These oscillations are characterized by three mixing angles and two mass-squared differences. The solar mixing angle, {\\theta}_12, and the atmospheric mixing angle, {\\theta}_23, have been well measured, but until recently the neutrino mixing angle {\\theta}_13 was not well known. The Daya Bay experiment, located northeast of Hong Kong at the Guangdong Nuclear Power Complex in China, has made a precise measurement of electron antineutrino disappearance using six functionally-identical gadolinium-doped liquid scintillator-based detectors at three sites with distances between 364 and 1900 meters from six reactor cores. This proceeding describes the Daya Bay updated result, using 127 days of good run time collected between December 24, 2011 and May 11, 2012. For the far site, the ratio of the observed number of events to the expected number of events assumin...

  18. Detection of reactor antineutrino coherent scattering off nuclei with a two-phase noble gas detector

    OpenAIRE

    Akimov, Dmitri; Bondar, Alexander; Burenkov, Alexander; Buzulutskov, Alexei

    2009-01-01

    Estimation of the signal amplitudes and counting rates for coherent scattering of reactor antineutrino off atomic nuclei in two-phase xenon and argon detectors has been done. A conceptual design of detector based on the existing technologies and experience has been proposed. It is shown that a condensed xenon/argon two-phase detector possesses the necessary sensitivity for the use in experiment on detection of coherent scattering of the reactor antineutrino off nuclei. It is shown that a two-...

  19. Recoilless Resonance Absorption of Tritium Antineutrinos and Time-Energy Uncertainty Relation

    OpenAIRE

    Bilenky, S. M.

    2007-01-01

    We discuss neutrino oscillations in an experiment with M\\"ossbauer recoilless resonance absorbtion of tritium antineutrinos, proposed recently by Raghavan. We demonstrate that small energy uncertainty of antineutrinos which ensures a large resonance absorption cross section is in a conflict with the energy uncertainty which, according to the time-energy uncertainty relation, is necessary for neutrino oscillations to happen. The search for neutrino oscillations in the M\\"ossbauer neutrino expe...

  20. Remote safeguards and monitoring of reactors with antineutrinos.

    Energy Technology Data Exchange (ETDEWEB)

    Reyna, David

    2010-10-01

    The current state-of-the-art in antineutrino detection is such that it is now possible to remotely monitor the operational status, power levels and fissile content of nuclear reactors in real-time. This non-invasive and incorruptible technique has been demonstrated at civilian power reactors in both Russia and the United States and has been of interest to the IAEA Novel Technologies Unit for several years. Expert's meetings were convened at IAEA headquarters in 2003 and again in 2008. The latter produced a report in which antineutrino detection was called a 'highly promising technology for safeguards applications' at nuclear reactors and several near-term goals and suggested developments were identified to facilitate wider applicability. Over the last few years, we have been working to achieve some of these goals and improvements. Specifically, we have already demonstrated the successful operation of non-toxic detectors and most recently, we are testing a transportable, above-ground detector system, which is fully contained within a standard 6 meter ISO container. If successful, such a system could allow easy deployment at any reactor facility around the world. As well, our previously demonstrated ability to remotely monitor the data and respond in real-time to reactor operational changes could allow the verification of operator declarations without the need for costly site-visits. As the global nuclear power industry expands around the world, the burden on maintaining operational histories and safeguarding inventories will increase greatly. Such a system for providing remote data to verify operator's declarations could greatly reduce the need for frequent site inspections while still providing a robust warning of anomalies requiring further investigation.

  1. Remote safeguards and monitoring of reactors with antineutrinos.

    Energy Technology Data Exchange (ETDEWEB)

    Kiff, Scott D.; Dazeley, Steven (Lawrence Livermore National Laboratory, Livermore, CA); Reyna, David; Cabrera-Palmer, Belkis; Bernstein, Adam (Lawrence Livermore National Laboratory, Livermore, CA); Keefer, Greg (Lawrence Livermore National Laboratory, Livermore, CA); Bowden, Nathaniel S. (Lawrence Livermore National Laboratory, Livermore, CA)

    2010-09-01

    The current state-of-the-art in antineutrino detection is such that it is now possible to remotely monitor the operational status, power levels and fissile content of nuclear reactors in real-time. This non-invasive and incorruptible technique has been demonstrated at civilian power reactors in both Russia and the United States and has been of interest to the IAEA Novel Technologies Unit for several years. Expert's meetings were convened at IAEA headquarters in 2003 and again in 2008. The latter produced a report in which antineutrino detection was called a 'highly promising technology for safeguards applications' at nuclear reactors and several near-term goals and suggested developments were identified to facilitate wider applicability. Over the last few years, we have been working to achieve some of these goals and improvements. Specifically, we have already demonstrated the successful operation of non-toxic detectors and most recently, we are testing a transportable, above-ground detector system, which is fully contained within a standard 6 meter ISO container. If successful, such a system could allow easy deployment at any reactor facility around the world. As well, our previously demonstrated ability to remotely monitor the data and respond in real-time to reactor operational changes could allow the verification of operator declarations without the need for costly site-visits. As the global nuclear power industry expands around the world, the burden on maintaining operational histories and safeguarding inventories will increase greatly. Such a system for providing remote data to verify operator's declarations could greatly reduce the need for frequent site inspections while still providing a robust warning of anomalies requiring further investigation.

  2. Above-ground antineutrino detection for nuclear reactor monitoring

    International Nuclear Information System (INIS)

    Antineutrino monitoring of nuclear reactors has been demonstrated many times (Klimov et al., 1994 [1]; Bowden et al., 2009 [2]; Oguri et al., 2014 [3]), however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detection media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of 6Li. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron's annihilation gammas, a signature that is absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe that this technology will ultimately be applicable to potential safeguards scenarios such as those recently described by Huber et al. (2014) [4,5

  3. Above-ground antineutrino detection for nuclear reactor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sweany, M.; Brennan, J.; Cabrera-Palmer, B.; Kiff, S.; Reyna, D.; Throckmorton, D.

    2015-01-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times (Klimov et al., 1994 [1]; Bowden et al., 2009 [2]; Oguri et al., 2014 [3]), however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detection media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by {sup 6}LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of {sup 6}Li. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron's annihilation gammas, a signature that is absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe that this technology will ultimately be applicable to potential safeguards scenarios such as those recently described by Huber et al. (2014) [4,5].

  4. Present status of sensitive detector of reactor’s antineutrinos using scintillating detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fajt, L.; Mamedov, F.; Přidal, P.; Špavorová, M.; Štekl, I. [Institute of Experimental and Applied Physics, CTU in Prague (Czech Republic); Belov, V.; Egorov, V. G.; Fomina, M.; Kuznetsov, A.; Ponomarev, D.; Rozova, I.; Zhitnikov, I. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Burešová, H. [ENVINET a.s., Nuvia Group, Tǐebíč (Czech Republic)

    2015-08-17

    In 2011, the reanalysis of the reactor antineutrinos spectra led to the formulation of the Reactor Antineutrino Anomaly (RAA) [1], which indicates the discrepancy between measured and expected antineutrino fluxes on short baselines. This discrepancy appears to favor the existence of the fourth “sterile” neutrino with |Δm{sup 2}|>1 eV{sup 2}. To confirm or reject this hypothesis a high sensitive antineutrino detector located close to the reactor is required. In addition to that such a detector could be used to online monitor the isotopic composition of the reactor core and to prevent illegal production and removal of{sup 239}Pu, which is the essential part of nuclear weapons. Detector DANSSino [2] already proved that even a compact antineutrino detector (∼ 1 m{sup 3}) based on polystyrene is capable of antineutrino detection in the close vicinity of a reactor core (∼ 10 m) with signal to background ratio about one. As a common activity between JINR Dubna and IEAP CTU a new prototype of detector (called S{sup 3}) has been proposed and is under construction. The construction design, selected results of Monte Carlo simulations and results of benchmark tests are presented.

  5. KamLAND Bounds on Solar Antineutrinos and neutrino transition magnetic moments

    CERN Document Server

    Torrente-Lujan, E

    2003-01-01

    We investigate the possibility of detecting solar antineutrinos with the KamLAND experiment. These antineutrinos are predicted by spin-flavor oscillations at a significant rate even if this mechanism is not the leading solution to the SNP. The recent evidence from SNO shows that the solar flux could contain a residual component including sterile neutrinos and/or the antineutrinos of the active flavors. KamLAND is sensitive to antineutrinos originated from solar ${}^8$B neutrinos. From KamLAND negative results after 145 days of data taking, we obtain model independent limits on the total flux of solar antineutrinos $\\Phi({}^8 B)< 1.1-3.5\\times 10^4 cm^{-2} s^{-1}$, more than one order of magnitude smaller than existing limits,and on their appearance probability $P<0.15%$ (95% CL). Assuming a concrete model for antineutrino production by spin-flavor precession, this upper bound implies an upper limit on the product of the intrinsic neutrino magnetic moment and the value of the solar magnetic field $\\mu B&...

  6. Search for electron antineutrinos associated with gravitational wave events GW150914 and GW151226 using KamLAND

    CERN Document Server

    Gando, A; Hachiya, T; Hayashi, A; Hayashida, S; Ikeda, H; Inoue, K; Ishidoshiro, K; Karino, Y; Koga, M; Matsuda, S; Mitsui, T; Nakamura, K; Obara, S; Oura, T; Ozaki, H; Shimizu, I; Shirahata, Y; Shirai, J; Suzuki, A; Takai, T; Tamae, K; Teraoka, Y; Ueshima, K; Watanabe, H; Kozolov, A; Takemoto, Y; Yoshida, S; Fushimi, K; Piepke, A; Banks, T I; Berger, B E; Fujikawa, B K; O'Donnell, T; Learned, J G; Maricic, J; Sakai, M; Winslow, L A; Krupczak, E; Ouellet, J; Efremenko, Y; Karwowski, H J; Markoff, D M; Tornow, W; Detwiler, J A; Enomoto, S; Decowski, M P

    2016-01-01

    We present a search for low energy antineutrino events coincident with the gravitational wave events GW150914 and GW151226, and the candidate event LVT151012 using KamLAND, a kiloton-scale antineutrino detector. We find no inverse beta-decay neutrino events within $\\pm 500$ seconds of either gravitational wave signal. This non-detection is used to constrain the electron antineutrino fluence and the luminosity of the astrophysical sources.

  7. A new anti-neutrino detection technique based on positronium tagging with plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Consolati, G. [Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa 34, 20156 Milano (Italy); Franco, D., E-mail: dfranco@in2p3.fr [APC, Univ. Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs. de Paris, Sorbonne Paris Cité, 75205 Paris (France); Jollet, C. [IPHC, Université de Strasbourg, CNRS/IN2P3, 67037 Strasbourg (France); Meregaglia, A., E-mail: amerega@in2p3.fr [IPHC, Université de Strasbourg, CNRS/IN2P3, 67037 Strasbourg (France); Minotti, A. [IPHC, Université de Strasbourg, CNRS/IN2P3, 67037 Strasbourg (France); Perasso, S.; Tonazzo, A. [APC, Univ. Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs. de Paris, Sorbonne Paris Cité, 75205 Paris (France)

    2015-09-21

    The main signature for anti-neutrino detection in reactor and geo-neutrino experiments based on scintillators is provided by the space–time coincidence of positron and neutron produced in the Inverse Beta Decay reaction. Such a signature strongly suppresses backgrounds and allows for measurements performed underground with a relatively high signal-to-background ratio. In an aboveground environment, however, the twofold coincidence technique is not sufficient to efficiently reject the high background rate induced by cosmogenic events. Enhancing the positron–neutron twofold coincidence efficiency may pave the way to future aboveground detectors for reactor monitoring. We propose a new detection scheme based on a threefold coincidence, among the positron ionization, the ortho-positronium (o-Ps) decay, and the neutron capture, in a sandwich detector with alternated layers of plastic scintillator and aerogel powder. We present the results of a set of dedicated measurements on the achievable light yield and on the o-Ps formation and lifetime. The efficiencies for signal detection and background rejection of a preliminary detector design are also discussed.

  8. Effects of Recent Reactor Anti-neutrino Spectra on Neutrino Oscillations

    Science.gov (United States)

    Sterbenz, Ciara

    2015-10-01

    The β-decay of nuclear fission fragments produces a very large ve flux from nuclear reactions. The shape of the expected flux has previously been predicted by converting the measured β-electron spectrum to an ve spectrum. Recent reactor neutrino experiments, however, find a large shoulder in the observed ve spectrum relative to this prediction in the energy region 5 - 7 MeV. Accurate knowledge of the expected ve flux from reactors is important for oscillation experiments that only involve one neutrino detector. In this project, I examine the implications of these spectral changes on the ν oscillation result found by the KamLAND experiment. At the time of their finding, the spectral anomaly from 5 - 7 MeV had not be observed. I have re-derived the oscillation parameters Δm2 and sin2 (2 θ) using the anti-neutrino flux from Daya Bay and from nuclear database predictions. With these new expected fluxes, these oscillation parameters shifted and their uncertainties increased. I compare the new oscillation parameters with those derived from solar neutrino oscillation data.

  9. Measurement of charm production in antineutrino charged-current interactions

    CERN Document Server

    Onengüt, G; De Jong, M; Konijn, J; Melzer, O; Oldeman, R G C; Pesen, E; Van der Poel, C A F J; Visschers, J L; Güler, M; Köse, U; Serin-Zeyrek, M; Kama, S; Sever, R; Tolun, P; Zeyrek, M T; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Brunner, J; Chizhov, M; Cussans, D G; Doucet, M; Fabre, Jean-Paul; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Saltzberg, D; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; FLoverre, P; Ludovici, L; Maslennikov, A L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Spada, F R; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2004-01-01

    During the years 1994-97, the emulsion target of the CHORUS detector was exposed to the wideband neutrino beam of the CERN SPS collecting about 10^6 neutrino interactions. A measurement of nubar_mu-induced charm production is performed by usingthe presence of a 5% nubarmu component in the nu_mu beam. The measurement takes advantage of the capability to observe the decay topology in the emulsion. The analysis is based on a sample of charged-current interactions with at least one identified muon. About 100 000 vere located in the emulsion target and fully reconstructed. By requiring a positive muon charge as determined by the CHORUS spectrometer, 32-nubar_mu induced charm events were observed with an estimated background of 3.2 events. At an average antineutrino energy in the neutrino beam of 18GeV, the charm production rate induced by anitneutrinos is measured to be sigma(nubar_muN -> mu+cbarX)/sigma(nubar_muN -> mu+X) = (5.0^+1.4_-0.9(stat) +- 0.7(syst))%. The ratio between neutral and charged charm productio...

  10. Towards Earth AntineutRino TomograpHy (EARTH)

    CERN Document Server

    De Meijer, R J; Fearick, R W; Mantovani, F; Smit, F D; Wörtche, H J

    2006-01-01

    The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection. Recent hypotheses target the core-mantle boundary (CMB) as a major source of natural radionuclides and therefore of radiogenic heat. A typical scale of the processes that take place at the CMB is about 200km. To observe these processes from the surface requires an angular resolution of about 3 degrees. EARTH aims at creating a high-resolution 3D-map of the radiogenic heat sources in the interior of the Earth. It will thereby contribute to a better understanding of a number of geophysical phenomena observed at the surface of the Earth. This condition requires a completely different approach from the monolithic detector systems as e.g. KamLAND. This paper presents, for such telescopes, the boundary conditions set by ph...

  11. Improved Measurement of Electron Antineutrino Disappearance at Daya Bay (Proceeding to NuFact12)

    CERN Document Server

    Qian, Xin

    2012-01-01

    The Daya Bay experiment was designed to be the largest and the deepest underground among the many current-generation reactor antineutrino experiments. With functionally identical detectors deployed at multiple baselines, the experiment aims to achieve the most precise measurement of $\\sin^2 2\\theta_{13}$. The antineutrino rates measured in the two near experimental halls are used to predict the rate at the far experimental hall (average distance of 1648 m from the reactors), assuming there is no neutrino oscillation. The ratio of the measured over the predicted far-hall antineutrino rate is then used to constrain the $\\sin^2 2\\theta_{13}$. The relative systematic uncertainty on this ratio is expected to be 0.2$\\sim$0.4%. In this talk, we present an improved measurement of the electron antineutrino disappearance at Daya Bay. With data of 139 days, the deficit of the antineutrino rate in the far experimental hall was measured to be 0.056 $\\pm$ 0.007 (stat.) $\\pm$ 0.003 (sys.). In the standard three-neutrino fra...

  12. Experimental determination of the antineutrino spectrum of the fission products of U238

    International Nuclear Information System (INIS)

    Accurate predictions of the antineutrino spectrum emitted by a nuclear reactor are of paramount importance for current and future reactor neutrino experiments. The antineutrinos are produced in the β - decays of the fission daughters of the four main fuel isotopes 235U, 238U, 239Pu, and 241Pu. One way to calculate the total anti νe - spectrum emitted by a fuel assembly is to experimentally determine the cumulative β-spectra emitted after fission of these four main fuel isotopes and to convert these into the corresponding anti νe-spectra. Three of the four spectra could already be determined in the 1980's, but only recently an experiment at the scientific neutron source FRM II in Garching could be performed to measure the anti νe-spectrum of 238U which contributes 10 % to the total antineutrino output of a standard PWR. With this spectrum, it is now possible to predict the antineutrino output of a reactor without the use of theoretical calculations for the contributing spectra. This talk describes the results of the experiment and discusses the impact on the current analysis of reactor neutrino experiments and the reactor antineutrino anomaly, which may give a hint on the possible existence of light sterile neutrinos.

  13. A search for low-energy neutrino and antineutrino signals correlated with gamma-ray bursts with Borexino

    CERN Document Server

    Agostini, M; Appel, S; Atroshchenko, V; Bellini, G; Benziger, J; Bick, D; Bonfini, G; Bravo, D; Caccianiga, B; Calaprice, F; Caminata, A; Carlini, M; Cavalcante, P; Chepurnov, A; Choi, K; D'Angelo, D; Davini, S; de Kerret, H; Derbin, A; Di Noto, L; Drachnev, I; Etenko, A; Fomenko, K; Franco, D; Gabriele, F; Galbiati, C; Ghiano, C; Giammarchi, M; Goeger-Neff, M; Goretti, A; Gromov, M; Hagner, C; Hungerford, E; Ianni, Aldo; Ianni, Andrea; Jany, A; Jedrzejczak, K; Jeschke, D; Kobychev, V; Korablev, D; Korga, G; Kryn, D; Laubenstein, M; Lehnert, B; Litvinovich, E; Lombardi, F; Lombardi, P; Ludhova, L; Lukyanchenko, G; Machulin, I; Manecki, S; Maneschg, W; Manuzio, G; Marcocci, S; Meroni, E; Meyer, M; Miramonti, L; Misiaszek, M; Montuschi, M; Mosteiro, P; Muratova, V; Neumair, B; Oberauer, L; Obolensky, M; Ortica, F; Pallavicini, M; Papp, L; Pocar, A; Ranucci, G; Razeto, A; Re, A; Romani, A; Roncin, R; Rossi, N; Scheonert, S; Semenov, D; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Thurn, J; Toropova, M; Unzhakov, E; Vishneva, A; Vogelaar, R B; von Feilitzsch, F; Wang, H; Weinz, S; Winter, J; Wojcik, M; Wurm, M; Yokley, Z; Zaimidoroga, O; Zavatarelli, S; Zuber, K; Zuzel, G

    2016-01-01

    A search for neutrino and antineutrino events correlated with 2,350 gamma-ray bursts (GRBs) is performed with Borexino data collected between December 2007 and November 2015. No statistically significant excess over background is observed. We look for electron antineutrinos ($\\bar{\

  14. Neutrino Geophysics at Baksan (Part II): Possible Studies of Antineutrino- and Radiogenic Heat Sources in Earth Interior

    OpenAIRE

    Domogatsky, G.; Kopeikin, V.; Mikaelyan, L.; Sinev, V.

    2004-01-01

    Antineutrinos born inside the Earth (``geoneutrinos'') carry out information of fundamental importance for understanding of the origin and evolution of our planet. We show that Baksan Neutrino Observatory is one of the best sites for detection and analysis of geoneutrinos using large liquid scintillation spectrometer. Also we present a short story of concept of Earth as antineutrino source (1960 - 2004 yy)

  15. aCORN: A Measurement of the Beta-Antineutrino Correlation in Neutron Decay

    Science.gov (United States)

    Jones, Gordon

    2015-10-01

    The aCORN experiment has measured the electron-antineutrino angular correlation coefficient (the ``a'' coefficient) in free neutron decay. aCORN uses the dependence of the recoil proton momentum on the opening angle between the electron and the neutrino to form an asymmetry. The apparatus accepts decays where the antineutrino is restricted to two momentum groups having equal solid angle. In this geometry, proton time of flight distinguishes between decays with a large or small opening angle between the electron and the antineutrino. The correlation coefficient is determined from the asymmetry between two branches of the time of flight spectrum. The asymmetry was measured on the NG-6 neutron beam at the NIST Center for Neutron Research (NCNR), and a subsequent measurement has been started on the higher flux NG-C beam. An overview of the method and systematic effects will be presented, including results from the NG-6 dataset. National Science Foundation.

  16. Monitoring nuclear reactors with anti-neutrino detectors: the ANGRA project

    Energy Technology Data Exchange (ETDEWEB)

    Chimenti, Pietro; Leigui, Marcelo Augusto [UFABC - Universidade Federal do ABC. Rua Santa Adelia, 166. Bairro Bangu. Santo Andre - SP (Brazil); Anjos, Joao; Azzi, Gabriel; Rafael, Gama; Ademarlaudo, Barbosa; Lima, Herman; VAZ, Mario; Villar, Arthur [Centro Brasileiro de Pesquisas Fisicas - CBPF, Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro, RJ - 22290-180 (Brazil); Gonzales, Luis Fernando; Bezerra, Thiago; Kemp, Ernesto [Unicamp, State University of Campinas, Cidade Universitaria ' Zeferino Vaz' , Barao Geraldo - Campinas, Sao Paulo (Brazil); Nunokawa, Hiroshi [Department of Physics, Pontifical Catholic University - PUC, Rua Marques de Sao Vicente, 225, 22451-900 Gavea - Rio de Janeiro - RJ (Brazil); Guedes, Germano; Faria, Paulo Cesar [Universidade Estadual de Feira de Santana - UEFS, Avenida Transnordestina, Novo Horizonte (Brazil); Pepe, Iuri [Universidade Federal da Bahia - UFBA (Brazil)

    2010-07-01

    We describe the status of the ANGRA Project, aimed at developing an anti-neutrino detector for monitoring nuclear reactors. Indeed the detection of anti-neutrinos provides a unique handle for non-invasive measurements of the nuclear fuel. This kind of measurements are of deep interest for developing new safeguards tools which may help in nuclear non-proliferation programs. The ANGRA experiment, placed at about 30 m from the core of the 4 GW Brazilian nuclear power reactor ANGRA II, is based on a water Cherenkov detector with about one ton target mass. A few thousand antineutrino interactions per day are expected. The latest results from simulations and the status of the construction are presented. (authors)

  17. The Physics of antineutrinos in DUNE and resolution of octant degeneracy

    CERN Document Server

    Nath, Newton; Goswami, Srubabati

    2016-01-01

    We study the capability of the DUNE experiment, which will be the first beam based experiment with a wide band flux profile, to uncover the octant of the leptonic mixing angle $\\theta_{23}$ (i.e., $\\theta_{23}$ is $45^\\circ$). In this work, we find that for the DUNE baseline of 1300 km, due to enhanced matter effect, the neutrino and antineutrino probabilities are different which creates a tension in the case of combined runs because of which octant sensitivity also can come from disappearance channel. In view of this, we study the physics of antineutrinos in DUNE and explore the role of antineutrinos run that is required to resolve the octant degeneracy at a certain confidence levels.

  18. Search for the disappearance of muon antineutrinos in the NuMI neutrino beam

    CERN Document Server

    Adamson, P; Ayres, D S; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Cao, S V; Cavanaugh, S; Cherdack, D; Childress, S; Choudhary, B C; Coelho, J A B; Coleman, S J; Corwin, L; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Dorman, M; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grant, N; Grzelak, K; Habig, A; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Howcroft, C; Huang, X; Hylen, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Lefeuvre, G; Ling, J; Litchfield, P J; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mathis, M; Mayer, N; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Ochoa-Ricoux, J P; Oliver, W P; Orchanian, M; Pahlka, R; Paley, J; Patterson, R B; Pawloski, G; Pearce, G F; Phan-Budd, S; Plunkett, R K; Qiu, X; Ratchford, J; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Strait, M; Tagg, N; Talaga, R L; Tavera, M A; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Walding, J J; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Yang, T; Zwaska, R

    2011-01-01

    We report constraints on muon antineutrino oscillation parameters that were obtained by using the two MINOS detectors to measure the 7% antineutrino component of the NuMI neutrino beam. In the Far Detector, we select 130 events in the charged-current muon antineutrino sample, compared to a prediction of 136.4 +/- 11.7(stat) ^{+10.2}_{-8.9}(syst) events under the assumption |dm2bar|=2.32x10^-3 eV^2, snthetabar=1.0. A fit to the two-flavor oscillation approximation constrains |dm2bar|<3.37x10^-3 eV^2 at the 90% confidence level with snthetabar=1.0.

  19. Antineutrino emission and gamma background characteristics from a thermal research reactor

    CERN Document Server

    Bui, V M; Fallot, M; Communeau, V; Cormon, S; Estienne, M; Lenoir, M; Peuvrel, N; Shiba, T; Cucoanes, A S; Elnimr, M; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Thiolliere, N; Yermia, F; Zakari-Issoufou, A -A

    2016-01-01

    The detailed understanding of the antineutrino emission from research reactors is mandatory for any high sensitivity experiments either for fundamental or applied neutrino physics, as well as a good control of the gamma and neutron backgrounds induced by the reactor operation. In this article, the antineutrino emission associated to a thermal research reactor: the OSIRIS reactor located in Saclay, France, is computed in a first part. The calculation is performed with the summation method, which sums all the contributions of the beta decay branches of the fission products, coupled for the first time with a complete core model of the OSIRIS reactor core. The MCNP Utility for Reactor Evolution code was used, allowing to take into account the contributions of all beta decayers in-core. This calculation is representative of the isotopic contributions to the antineutrino flux which can be found at research reactors with a standard 19.75\\% enrichment in $^{235}$U. In addition, the required off-equilibrium correction...

  20. Reactor and Antineutrino Spectrum Calculations for the Double Chooz First Phase Results

    International Nuclear Information System (INIS)

    The Double Chooz reactor oscillation experiment is designed to search for a non-vanishing value of the mixing angle θ13. For the first phase of the experiment with only the far detector running, the reactor electron antineutrino flux is normalized via reactor simulation. For this first phase and from its last results, Double Chooz observed an evidence for a reactor electron antineutrino disappearance. In 227.93 days of far detector live time, we obtained sin22θ13=0.109±0.030(stat)±0.025(syst). This result excludes the no-oscillation hypothesis at 99.8% CL

  1. Precise measurement of neutrino and anti-neutrino differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Tzanov, M.; Naples, D.; Boyd, S.; McDonald, J.; Radescu, V.; Adams, T.; Alton, A.; Avvakumov, S.; deBarbaro, L.; deBarbaro, P.; Bernstein, R.H.; Bodek, A.; Bolton, T.; Brau, J.; Buchholz, D.; Budd, H.; Bugel, L.; Conrad, J.; Drucker, R.B.; Fleming, B.T.; Frey, R.; /Pittsburgh U. /Cincinnati U. /Columbia U. /Fermilab /Kansas State U. /Northwestern

    2005-09-01

    The NuTeV experiment at Fermilab has obtained a unique high statistics sample of neutrino and anti-neutrino interactions using its high-energy sign-selected beam. We present a measurement of the differential cross section for charged-current neutrino and anti-neutrino scattering from iron. Structure functions, F{sub 2}(x,Q{sup 2}) and xF{sub 3}(x,Q{sup 2}), are determined by fitting the inelasticity, y, dependence of the cross sections. This measurement has significantly improved systematic precision as a consequence of more precise understanding of hadron and muon energy scales.

  2. Antineutrino Background from Spent Fuel Storage in sensitive Searches for theta_13 at Reactors

    CERN Document Server

    Kopeikin, V; Sinev, V

    2004-01-01

    Sensitive searches for antineutrino oscillations in atmospheric mass parameter region much discussed in recent years are based on accurate comparison of the inverse beta decay positron spectra measured in two (or more) detectors, far and near, stationed e.g. at ~1000 m and ~100 m from the reactor(s). We show that antineutrinos emitted from the stored irradiated fuel can differently distort the soft part of positron spectra measured in the far and near detector and thus mimic (or hide) the oscillation signal

  3. Antineutrino Background from Spent Fuel Storage in sensitive Searches for theta_13 at Reactors

    OpenAIRE

    Kopeikin, V.; Mikaelyan, L.; Sinev, V.

    2004-01-01

    Sensitive searches for antineutrino oscillations in atmospheric mass parameter region much discussed in recent years are based on accurate comparison of the inverse beta decay positron spectra measured in two (or more) detectors, far and near, stationed e.g. at ~1000 m and ~100 m from the reactor(s). We show that antineutrinos emitted from the stored irradiated fuel can differently distort the soft part of positron spectra measured in the far and near detector and thus mimic (or hide) the osc...

  4. Two Particle-Hole Excitations in Charged Current Quasielastic Antineutrino--Nucleus Scattering

    CERN Document Server

    Nieves, J; Vacas, M J Vicente

    2013-01-01

    We evaluate the quasielastic and multinucleon contributions to the antineutrino nucleus scattering cross section and compare our results with the recent MiniBooNE data. We use a local Fermi gas model that includes RPA correlations and gets the multinucleon part from a systematic many body expansion of the $W$ boson selfenergy in the nuclear medium. The same model had been quite successful for the neutrino cross section and contains no new parameters. We have also analysed the relevance of 2p2h events for the antineutrino energy reconstruction.

  5. Two particle–hole excitations in charged current quasielastic antineutrino-nucleus scattering

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, J., E-mail: jmnieves@ific.uv.es [Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia–CSIC, Institutos de Investigación de Paterna, E-46071 Valencia (Spain); Ruiz Simo, I. [Dipartimento di Fisica, Università di Trento, I-38123 Trento (Italy); Vicente Vacas, M.J. [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia–CSIC, Institutos de Investigación de Paterna, E-46071 Valencia (Spain)

    2013-04-10

    We evaluate the quasielastic and multinucleon contributions to the antineutrino-nucleus scattering cross section and compare our results with the recent MiniBooNE data. We use a local Fermi gas model that includes RPA correlations and gets the multinucleon part from a systematic many body expansion of the W boson selfenergy in the nuclear medium. The same model had been quite successful for the neutrino cross section and contains no new parameters. We have also analyzed the relevance of 2p2h events for the antineutrino energy reconstruction.

  6. Nuclear effect study on nucleon structure functions, in comparison with antineutrino interactions on neon and deuterium

    International Nuclear Information System (INIS)

    We have studied the nuclear effects on high energy antineutrino charged current interactions by comparing the data which were taken in the Bubble Chamber BEBC filled with Neon and Deuterium. On the one hand, the study of nuclear reinteractions gave us the possibility to estimate the formation time of hadrons. On the other hand, the comparison of structure functions does not show any significant difference between Neon and Deuterium. Though this result does not contradict the effects observed with charged leptons by the EMC and SLAC experiments, it is strongly incompatible with certain theoretical interpretations which implied a stronger effect in antineutrino interactions

  7. Search for Lorentz invariance and CPT violation with muon antineutrinos in the MINOS Near Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); et al.

    2012-02-01

    We have searched for sidereal variations in the rate of antineutrino interactions in the MINOS Near Detector. Using antineutrinos produced by the NuMI beam, we find no statistically significant sidereal modulation in the rate. When this result is placed in the context of the Standard Model Extension theory we are able to place upper limits on the coefficients defining the theory. These limits are used in combination with the results from an earlier analysis of MINOS neutrino data to further constrain the coefficients.

  8. Search for differences in oscillation parameters for atmospheric neutrinos and antineutrinos at Super-Kamiokande

    OpenAIRE

    Abe, K.; Labarga, L.; Magro, L. M.; Super-Kamiokande Collaboration, .

    2011-01-01

    Artículo escrito por muchos autores, sólo se referencian el primero, los autores que firman como Universidad Autónoma de Madrid y el grupo de colaboración en el caso de que aparezca en el artículo We present a search for differences in the oscillations of antineutrinos and neutrinos in the Super-Kamiokande-I, -II, and -III atmospheric neutrino sample. Under a two-flavor disappearance model with separate mixing parameters between neutrinos and antineutrinos, we find no evidence for a differ...

  9. Final Report for Monitoring of Reactor Antineutrinos with Compact Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Orrell, John L.; Collar, J. I.

    2009-07-01

    This 2008 NCMR project has pursued measurement of the antineutrino-nucleus coherent scattering interaction using a low-energy threshold germanium gamma-ray spectrometer of roughly one-half kilogram total mass. These efforts support development of a compact system for monitoring the antineutrino emission from nuclear reactor cores. Such a monitoring system is relevant to nuclear safeguards and nuclear non-proliferation in general by adding a strong method for assuring quantitative material balance of special nuclear material in the nuclear fuel cycle used in electricity generation.

  10. Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection

    CERN Document Server

    Aberle, C; Gramlich, B; Hartmann, F X; Lindner, M; Schönert, S; Schwan, U; Wagner, S; Watanabe, H

    2011-01-01

    Over the course of several decades organic liquid scintillators form the basis for successful neutrino detectors. For electron antineutrino detection at nuclear reactor plants, gadolinium loaded liquid scintillators provide efficient background suppression. In the Double Chooz reactor antineutrino experiment a newly developed gadolinium-loaded scintillator is utilized for the first time. Its large scale production and characterization as well as the creation of an additional metalfree scintillator are presented. Both organic liquids are used in the inner part of the Double Chooz detectors.

  11. First Test of Lorentz Violation with a Reactor-based Antineutrino Experiment

    CERN Document Server

    Abe, Y; Anjos, J C dos; Bergevin, M; Bernstein, A; Bezerra, T J C; Bezrukhov, L; Blucher, E; Bowden, N S; Buck, C; Busenitz, J; Cabrera, A; Caden, E; Camilleri, L; Carr, R; Cerrada, M; Chang, P -J; Chimenti, P; Classen, T; Collin, A P; Conover, E; Conrad, J M; Crespo-Anadón, J I; Crum, K; Cucoanes, A; D'Agostino, M V; Damon, E; Dawson, J V; Dazeley, S; Dietrich, D; Djurcic, Z; Dracos, M; Durand, V; Ebert, J; Efremenko, Y; Elnimr, M; Erickson, A; Fallot, M; Fechner, M; von Feilitzsch, F; Felde, J; Fischer, V; Franco, D; Franke, A J; Franke, M; Furuta, H; Gama, R; Gil-Botella, I; Giot, L; Göger-Neff, M; Gonzalez, L F G; Goodman, M C; Goon, J TM; Greiner, D; Haag, N; Habib, S; Hagner, C; Hara, T; Hartmann, F X; Haser, J; Hatzikoutelis, A; Hayakawa, T; Hofmann, M; Horton-Smith, G A; Ishitsuka, M; Jochum, J; Jollet, C; Jones, C L; Kaether, F; Kalousis, L N; Kamyshkov, Y; Kaplan, D M; Katori, T; Kawasaki, T; Keefer, G; Kemp, E; de Kerret, H; Konno, T; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C E; Lasserre, T; Letourneau, A; Lhuillier, D; Lima, H P; Lindner, M; López-Castanõ, J M; LoSecco, J M; Lubsandorzhiev, B K; Lucht, S; McKee, D; Maeda, J; Maesano, C N; Mariani, C; Maricic, J; Martino, J; Matsubara, T; Mention, G; Meregaglia, A; Meyer, M; Miletic, T; Milincic, R; Miyata, H; Mueller, Th A; Nagasaka, Y; Nakajima, K; Novella, P; Obolensky, M; Oberauer, L; Onillon, A; Osborn, A; Ostrovskiy, I; Palomares, C; Pepe, I M; Perasso, S; Perrin, P; Pfahler, P; Porta, A; Potzel, W; Pronost, G; Reichenbacher, J; Reinhold, B; Remoto, A; Röhling, M; Roncin, R; Roth, S; Rybolt, B; Sakamoto, Y; Santorelli, R; Sato, F; Schönert, S; Schoppmann, S; Schwetz, T; Shaevitz, M H; Shrestha, D; Sida, J -L; Sinev, V; Skorokhvatov, M; Smith, E; Spitz, J; Stahl, A; Stancu, I; Stokes, L F F; Strait, M; Stüken, A; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Terao, K; Tonazzo, A; Toups, M; Thi, H H Trinh; Valdiviesso, G; Veyssiere, C; Wagner, S; Watanabe, H; White, B; Wiebusch, C; Winslow, L; Worcester, M; Wurm, M; Yanovitch, E; Yermia, F; Zimmer, V

    2012-01-01

    We present a search for Lorentz violation with 8249 candidate electron antineutrino events taken by the Double Chooz experiment in 227.9 live days of running. This analysis, featuring a search for a sidereal time dependence of the events, is the first test of Lorentz invariance using a reactor-based antineutrino source. No sidereal variation is present in the data and the disappearance results are consistent with sidereal time independent oscillations. Under the Standard-Model Extension (SME), we set the first limits on fourteen Lorentz violating coefficients associated with transitions between electron and tau flavor, and set two competitive limits associated with transitions between electron and muon flavor.

  12. Precise Measurement of Neutrino and Anti-neutrino Differential Cross Sections

    CERN Document Server

    Tzanov, M; Boyd, S; McDonald, J; Radescu, V; Adams, T; Alton, A; Avvakumov, S; De Barbaro, L; De Barbaro, P; Bernstein, R H; Bodek, A; Bolton, T; Brau, J E; Buchholz, D; Budd, H; Bugel, L; Conrad, J; Drucker, R B; Fleming, B T; Frey, R; Formaggio, J A; Goldman, J; Goncharov, M; Harris, D A; Johnson, R A; Kim, J H; Koutsoliotas, S; Lamm, M J; Marsh, W; Mason, D; McFarland, K S; McNulty, C; Nienaber, P; Romosan, A; Sakumoto, W K; Schellman, H; Shaevitz, M H; Spentzouris, P; Stern, E G; Suwonjandee, N; Tobien, N; Vakili, M; Vaitaitis, A; Yang, U K; Yu, J; Zeller, G P; Zimmerman, E D

    2006-01-01

    The NuTeV experiment at Fermilab has obtained a unique high statistics sample of neutrino and anti-neutrino interactions using its high-energy sign-selected beam. We present a measurement of the differential cross section for charged-current neutrino and anti-neutrino scattering from iron. Structure functions, F_2(x,Q^2) and xF_3(x,Q^2), are determined by fitting the inelasticity, y, dependence of the cross sections. This measurement has significantly improved systematic precision as a consequence of more precise understanding of hadron and muon energy scales.

  13. Experimental Determination of the Antineutrino Spectrum of the Fission Products of $^{238}$U

    CERN Document Server

    Haag, N; Hofmann, M; Oberauer, L; Potzel, W; Schreckenbach, K; Wagner, F M

    2013-01-01

    An experiment was performed at the scientific neutron source FRM II in Garching to determine the cumulative antineutrino spectrum of the fission products of $^{238}$U. This was achieved by irradiating target foils of natural uranium with a thermal and a fast neutron beam and recording the emitted $\\beta$-spectra with a gamma-suppressing electron-telescope. The obtained $\\beta$-spectrum of the fission products of $^{235}$U was normalized to the data of the magnetic spectrometer BILL of $^{235}$U. This method strongly reduces systematic errors in the $^{238}$U measurement. The $\\beta$-spectrum of $^{238}$U was converted into the corresponding antineutrino spectrum. The final $\\bar\

  14. A Experiment to Determine the Mass of the Electron Antineutrino.

    Science.gov (United States)

    Sur, Bhaskar

    The fact that neutrinos may have mass has attracted considerable attention in recent years both on the theoretical and experimental forefronts. The advent of Grand Unified Theories, the candidacy of neutrinos as dark matter, the proposed neutrino oscillation (and MSW effect) solution to the Solar Neutrino Puzzle and the observance of neutrinos from Supernova 1987A have further stimulated experimental efforts to directly probe neutrino masses by looking for dynamical effects. The technique of examining the end -point spectrum of Tritium beta-decay has long been used in this vein. The recent report of a positive electron antineutrino mass of 30 +/- 2 ev by the ITEP group in Moscow and the subsequent results from Los Alamos, Zurich and Japan which are in conflict with this value have stirred some controversy in this field. The present experiment uses a technique which is different from the usual magnetic-electrostatic analysis of the beta-spectrum employed by most groups--that of sperical electrostatic retarding field analysis. This method yields an integrated spectrum of the source and because of this and the large solid angle of acceptance of the spectrometer, the experiment yields very good statistics. Also the proposed source in this case is frozen T_2 for which the various correction factors can be estimated very accurately. The design, construction and testing of the spectrometer is described in detail in this dissertation as is the procedure used for fitting the data and calculating the correction factors to be applied to it. Due to a series of unfortunate accidents, the experiment has not yet been completed, but having proved that the intrinsic (point source) resolution is only 5 to 10 ev, the total efficiency about 2% and the background count rate about 20 counts per second, the experiment is expected to yield a mass limit of the order of 20 ev when run with a source of strength of about 30 milliCurie for a few days in the very near future.

  15. Neutrino nucleus reactions within the GiBUU model

    CERN Document Server

    Lalakulich, O; Mosel, U

    2011-01-01

    The GiBUU model, which implements all reaction channels relevant at medium neutrino energy, is used to investigate the neutrino and antineutrino scattering on iron. Results for integrated cross sections are compared with NOMAD and MINOS data. It is shown, that final state interaction can noticeably change the spectra of the outgoing hadrons. Predictions for the Miner$\

  16. Neutrino and antineutrino inclusive charged-current cross section measurement with the MINOS near detector

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debdatta [Univ. of Pittsburgh, PA (United States)

    2009-01-01

    This thesis presents the measurement of energy dependence of the neutrino-nucleon inclusive charged current cross section on an isoscalar target in the range 3-50 GeV for neutrinos and 5-50 GeV energy range for antineutrinos. The data set was collected with the MINOS Near Detector using the wide band NuMI beam at Fermilab. The size of the charged current sample is 1.94 x 106 neutrino events and 1.60 x 105 antineutrino events. The flux has been extracted using a low hadronic energy sub-sample of the charged current events. The energy dependence of the cross section is obtained by dividing the charged current sample with the extracted flux. The neutrino and antineutrino cross section exhibits a linear dependence on energy at high energy but shows deviations from linear behavior at low energy. We also present a measurement of the ratio of antineutrino to neutrino inclusive cross section.

  17. Search for time-independent Lorentz violation using muon neutrino to muon antineutrino transitions in MINOS

    CERN Document Server

    Adamson, P; Aurisano, A; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Carroll, T J; Castromonte, C M; Chen, R; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; de Rijck, S; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Flanagan, W; Frohne, M V; Gabrielyan, M; Gallagher, H R; Germani, S; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Holin, A; Huang, J; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; O'Connor, J; Orchanian, M; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Perch, A; Pfützner, M M; Phan, D D; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sail, P; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tian, X; Timmons, A; Todd, J; Tognini, S C; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Zwaska, R

    2016-01-01

    Data from the MINOS experiment has been used to search for mixing between muon neutrinos and muon antineutrinos using a time-independent Lorentz-violating formalism derived from the Standard-Model Extension (SME). MINOS is uniquely capable of searching for muon neutrino-antineutrino mixing given its long baseline and ability to distinguish between neutrinos and antineutrinos on an event-by-event basis. Neutrino and antineutrino interactions were observed in the MINOS Near and Far Detectors from an exposure of 10.56$\\times10^{20}$ protons-on-target from the NuMI neutrino-optimized beam. No evidence was found for such transitions and new, highly stringent limits were placed on the SME coefficients governing them. We place the first limits on the SME parameters $(c_{L})^{TT}_{\\mu\\mu} $ and $(c_{L})^{TT}_{\\tau\\tau}$ at $-8.4\\times10^{-23} < (c_{L})^{TT}_{\\mu\\mu} < 8.0\\times10^{-23}$ and $-8.0\\times10^{-23} < (c_{L})^{TT}_{\\tau\\tau} < 8.4\\times10^{-23}$, and the world's best limits on the $\\tilde{g}^{Z...

  18. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    CERN Document Server

    An, F P; Band, H R; Bishai, M; Blyth, S; Butorov, I; Cao, D; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J H; Cheng, J; Cheng, Y P; Cherwinka, J J; Chu, M C; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Dove, J; Draeger, E; Dwyer, D A; Edwards, W R; Ely, S R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, X H; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, L J; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lei, R T; Leitner, R; Leung, K Y; Leung, J K C; Lewis, C A; Li, D J; Li, F; Li, G S; Li, Q J; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, P Y; Lin, S K; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, J C; Liu, S S; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Caicedo, D A Martinez; McDonald, K T; McKeown, R D; Meng, Y; Mitchell, I; Kebwaro, J Monari; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Pan, H -R; Park, J; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, B; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Tsang, K V; Tull, C E; Tung, Y C; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, Q; Xia, D M; Xia, J K; Xia, X; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C G; Yang, L; Yang, M S; Yang, M T; Ye, M; Yeh, M; Young, B L; Yu, G Y; Yu, Z Y; Zang, S L; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, Y M; Zhang, Y X; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y F; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2015-01-01

    This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW$_{th}$ nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579~m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 $\\pm$ 0.04) $\\times$ 10$^{-18}$~cm$^2$/GW/day or (5.92 $\\pm$ 0.14) $\\times$ 10$^{-43}$~cm$^2$/fission. This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is $0.946\\pm0.022$ ($0.991\\pm0.023$) relative to the flux predicted with the Huber+Mueller (ILL+Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2$\\sigma$ over the full energy range with a local significance of up to $\\sim$4$\\sigma$ between 4-6 MeV. A reactor antineutrino spectrum...

  19. Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment

    CERN Document Server

    An, F P; Band, H R; Bishai, M; Blyth, S; Cao, D; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J -H; Cheng, J; Cheng, Y P; Cheng, Z K; Cherwinka, J J; Chu, M C; Chukanov, A; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Dolgareva, M; Dove, J; Dwyer, D A; Edwards, W R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, X H; Guo, Z; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Huo, W; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Jones, D; Joshi, J; Kang, L; Kettell, S H; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lee, J H C; Lei, R T; Leitner, R; Leung, J K C; Li, C; Li, D J; Li, F; Li, G S; Li, Q J; Li, S; Li, S C; Li, W D; Li, X N; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, S; Lin, S K; Lin, Y -C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, J L; Liu, J C; Loh, C W; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Lv, Z; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Malyshkin, Y; Caicedo, D A Martinez; McDonald, K T; McKeown, R D; Mitchell, I; Mooney, M; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevskiy, A; Pan, H -R; Park, J; Patton, S; Pec, V; Peng, J C; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Treskov, K; Tsang, K V; Tull, C E; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, C -H; Wu, Q; Wu, W J; Xia, D M; Xia, J K; Xing, Z Z; Xu, J Y; Xu, J L; Xu, Y; Xue, T; Yang, C G; Yang, H; Yang, L; Yang, M S; Yang, M T; Ye, M; Ye, Z; Yeh, M; Young, B L; Yu, Z Y; Zeng, S; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, X T; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y B; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2016-01-01

    A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GW$_{\\rm th}$ nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of $\\overline{\

  20. Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    CERN Document Server

    An, F P; Band, H R; Bishai, M; Blyth, S; Cao, D; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J -H; Cheng, J; Cheng, Y P; Cheng, Z K; Cherwinka, J J; Chu, M C; Chukanov, A; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Dolgareva, M; Dove, J; Dwyer, D A; Edwards, W R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, R P; Guo, X H; Guo, Z; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Huo, W; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Joshi, J; Kang, L; Kettell, S H; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lee, J H C; Lei, R T; Leitner, R; Li, C; Li, D J; Li, F; Li, G S; Li, Q J; Li, S; Li, S C; Li, W D; Li, X N; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, S; Lin, S K; Lin, Y -C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, J L; Liu, J C; Loh, C W; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Lv, Z; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Malyshkin, Y; Caicedo, D A Martinez; McDonald, K T; McKeown, R D; Mitchell, I; Mooney, M; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevskiy, A; Pan, H -R; Park, J; Patton, S; Pec, V; Peng, J C; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Treskov, K; Tsang, K V; Tull, C E; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, C -H; Wu, Q; Wu, W J; Xia, D M; Xia, J K; Xing, Z Z; Xu, J Y; Xu, J L; Xu, Y; Xue, T; Yang, C G; Yang, H; Yang, L; Yang, M S; Yang, M T; Ye, M; Ye, Z; Yeh, M; Young, B L; Yu, Z Y; Zeng, S; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, X T; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y B; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2016-01-01

    A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GW$_{\\mathrm{th}}$ nuclear reactors and detected by eight antineutrino detectors deployed in two near (510~m and 560~m flux-weighted baselines) and one far (1580~m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be $0.946\\pm0.020$ ($0.992\\pm0.021$) for the Huber+Mueller (ILL+Vogel) model. A 2.9 $\\sigma$ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6~MeV was found in the measured spectrum, with a local significance of 4.4 $\\sigma$. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent p...

  1. New Decay Data Sub-library for Calculation of Nuclear Reactors Antineutrino Spectra

    Science.gov (United States)

    Sonzogni, Alejandro; McCutchan, Elizabeth; Johnson, Timothy

    2015-10-01

    The ENDF/B-VII.1 decay data sub-library contains up-to-date decay properties for all known nuclides and can be used in a wide variety of applications such as decay heat, delayed nu-bar and astrophysics. We have recently completed an upgrade to the ENDF/B-VII.1 decay data sub-library in order to better calculate antineutrino spectra from fission of actinide nuclides. This sub-library has been used to identify the main contributors to the antineutrino spectra as well as to derive a systematic behavior of the energy integrated spectra similar to that of the beta-delayed neutron multiplicities. The main improvements have been the use of the TAGS data from Algora et al and Greenwood et al, as well as some of the single beta spectrum data from Rudstam et al to obtain beta minus level feedings. Additionally, we have calculated the antineutrino spectra for neutron energies higher than thermal, needed for highly-enriched uranium cores, such as the HFIR in ORNL that will be used in the PROSPECT experiment. These calculations are relevant since the high precision beta spectra which are used in many antineutrino calculations were measured at thermal energies. The impact of the fission yield data on these calculations will be discussed. This work was sponsored by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

  2. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Science.gov (United States)

    Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2016-03-01

    Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  3. Reconstructing the direction of reactor antineutrinos via electron scattering in Gd-doped water Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Hellfeld, D. [Texas A & M Univ., College Station, TX (United States); Dazeley, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marianno, C. [Texas A & M Univ., College Station, TX (United States)

    2015-11-25

    The potential of elastic antineutrino-electron scattering (ν¯e + e → ν¯e + e) in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13 km standoff from a 3.758 GWt light water nuclear reactor. Background was estimated via independent simulations and by appropriately scaling published measurements from similar detectors. Many potential backgrounds were considered, including solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclide and water-borne radon decays, and gamma rays from the photomultiplier tubes, detector walls, and surrounding rock. The detector response was modeled using a GEANT4-based simulation package. The results indicate that with the use of low radioactivity PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. The directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. Lastly, the results provide a list of theoretical conditions that, if satisfied in practice, would enable nuclear reactor antineutrino directionality in a Gd-doped water Cherenkov detector approximately 10 km from a large power reactor.

  4. The relativistic Green's function model in charged-current quasielastic neutrino and antineutrino scattering at MINER$\

    OpenAIRE

    Meucci, Andrea; Giusti, Carlotta

    2014-01-01

    The analysis of charged-current quasielastic neutrino and antineutrino-nucleus scattering cross sections requires relativistic theoretical descriptions also accounting for the role of final-state interactions. We compare the results of the relativistic Green's function model with the data recently published by the MINER$\

  5. Neutrino and antineutrino inclusive charged-current cross section measurement with the MINOS near detector

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debdatta; /Pittsburgh U.

    2009-03-01

    This thesis presents the measurement of energy dependence of the neutrino-nucleon inclusive charged current cross section on an isoscalar target in the range 3-50 GeV for neutrinos and 5-50 GeV energy range for antineutrinos. The data set was collected with the MINOS Near Detector using the wide band NuMI beam at Fermilab. The size of the charged current sample is 1.94 x 10{sup 6} neutrino events and 1.60 x 10{sup 5} antineutrino events. The flux has been extracted using a low hadronic energy sub-sample of the charged current events. The energy dependence of the cross section is obtained by dividing the charged current sample with the extracted flux. The neutrino and antineutrino cross section exhibits a linear dependence on energy at high energy but shows deviations from linear behavior at low energy. We also present a measurement of the ratio of antineutrino to neutrino inclusive cross section.

  6. Determination of the Sensitivity of the Antineutrino Probe for Reactor Core Monitoring

    Science.gov (United States)

    Cormon, S.; Fallot, M.; Bui, V.-M.; Cucoanes, A.; Estienne, M.; Lenoir, M.; Onillon, A.; Shiba, T.; Yermia, F.; Zakari-Issoufou, A.-A.

    2014-06-01

    This paper presents a feasibility study of the use of the detection of reactor-antineutrinos (νbare) for non proliferation purpose. To proceed, we have started to study different reactor designs with our simulation tools. We use a package called MCNP Utility for Reactor Evolution (MURE), initially developed by CNRS/IN2P3 labs to study Generation IV reactors. The MURE package has been coupled to fission product beta decay nuclear databases for studying reactor antineutrino emission. This method is the only one able to predict the antineutrino emission from future reactor cores, which don't use the thermal fission of 235U, 239Pu and 241Pu. It is also the only way to include off-equilibrium effects, due to neutron captures and time evolution of the fission product concentrations during a reactor cycle. We will present here the first predictions of antineutrino energy spectra from innovative reactor designs (Generation IV reactors). We will then discuss a summary of our results of non-proliferation scenarios involving the latter reactor designs, taking into account reactor physics constraints.

  7. A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay

    CERN Document Server

    An, F.P.; Band, H.R.; Bishai, M.; Blyth, S.; Butorov, I.; Cao, G.F.; Cao, J.; Cen, W.R.; Chan, Y.L.; Chang, J.F.; Chang, L.C.; Chang, Y.; Chen, H.S.; Chen, Q.Y.; Chen, S.M.; Chen, Y.X.; Chen, Y.; Cheng, J.H.; Cheng, J.; Cheng, Y.P.; Cherwinka, J.J.; Chu, M.C.; Cummings, J.P.; de Arcos, J.; Deng, Z.Y.; Ding, X.F.; Ding, Y.Y.; Diwan, M.V.; Draeger, E.; Dwyer, D.A.; Edwards, W.R.; Ely, S.R.; Gill, R.; Gonchar, M.; Gong, G.H.; Gong, H.; Grassi, M.; Gu, W.Q.; Guan, M.Y.; Guo, L.; Guo, X.H.; Hackenburg, R.W.; Han, R.; Hans, S.; He, M.; Heeger, K.M.; Heng, Y.K.; Hor, Y.K.; Hsiung, Y.B.; Hu, B.Z.; Hu, L.M.; Hu, L.J.; Hu, T.; Hu, W.; Huang, E.C.; Huang, H.X.; Huang, X.T.; Huber, P.; Hussain, G.; Jaffe, D.E.; Jaffke, P.; Jen, K.L.; Jetter, S.; Ji, X.P.; Ji, X.L.; Jiao, J.B.; Johnson, R.A.; Kang, L.; Kettell, S.H.; Kramer, M.; Kwan, K.K.; Kwok, M.W.; Kwok, T.; Langford, T.J.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R.T.; Leitner, R.; Leung, A.; Leung, J.K.C.; Lewis, C.A.; Li, D.J.; Li, F.; Li, G.S.; Li, Q.J.; Li, S.C.; Li, W.D.; Li, X.N.; Li, X.Q.; Li, Y.F.; Li, Z.B.; Liang, H.; Lin, C.J.; Lin, G.L.; Lin, P.Y.; Lin, S.K.; Ling, J.J.; Link, J.M.; Littenberg, L.; Littlejohn, B.R.; Liu, D.W.; Liu, H.; Liu, J.L.; Liu, J.C.; Liu, S.S.; Lu, C.; Lu, H.Q.; Lu, J.S.; Luk, K.B.; Ma, Q.M.; Ma, X.Y.; Ma, X.B.; Ma, Y.Q.; McDonald, K.T.; McKeown, R.D.; Meng, Y.; Mitchell, I.; Kebwaro, J.Monari; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H.Y.; Ning, Z.; Ochoa-Ricoux, J.P.; Olshevski, A.; Patton, S.; Pec, V.; Peng, J.C.; Piilonen, L.E.; Pinsky, L.; Pun, C.S.J.; Qi, F.Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X.C.; Shao, B.B.; Steiner, H.; Sun, G.X.; Sun, J.L.; Tang, W.; Themann, H.; Tsang, K.V.; Tull, C.E.; Tung, Y.C.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C.H.; Wang, M.; Wang, N.Y.; Wang, R.G.; Wang, W.; Wang, W.W.; Wang, X.; Wang, Y.F.; Wang, Z.; Wang, Z.; Wang, Z.M.; Wei, H.Y.; Wen, L.J.; Whisnant, K.; White, C.G.; Whitehead, L.; Wise, T.; Wong, H.L.H.; Wong, S.C.F.; Worcester, E.; Wu, Q.; Xia, D.M.; Xia, J.K.; Xia, X.; Xing, Z.Z.; Xu, J.Y.; Xu, J.L.; Xu, J.; Xu, Y.; Xue, T.; Yan, J.; Yang, C.G.; Yang, L.; Yang, M.S.; Yang, M.T.; Ye, M.; Yeh, M.; Yeh, Y.S.; Young, B.L.; Yu, G.Y.; Yu, Z.Y.; Zang, S.L.; Zhan, L.; Zhang, C.; Zhang, H.H.; Zhang, J.W.; Zhang, Q.M.; Zhang, Y.M.; Zhang, Y.X.; Zhang, Y.M.; Zhang, Z.J.; Zhang, Z.Y.; Zhang, Z.P.; Zhao, J.; Zhao, Q.W.; Zhao, Y.F.; Zhao, Y.B.; Zheng, L.; Zhong, W.L.; Zhou, L.; Zhou, N.; Zhuang, H.L.; Zou, J.H.

    2015-01-01

    We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9$\\times$10$^5$ GW$_{\\rm th}$-ton-days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six $^{241}$Am-$^{13}$C radioactive calibration sources reduced the background by a factor of two for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of $\\sin^{2}2\\theta_{13}$ and $|\\Delta m^2_{ee}|$ were halved as a result of these improvements. Ana...

  8. Simulation results of liquid and plastic scintillator detectors for reactor antineutrino detection - A comparison

    International Nuclear Information System (INIS)

    A simulation study of two kinds of scintillation detectors has been done using GEANT4. We compare plastic scintillator and liquid scintillator based designs for detecting electron antineutrinos emitted from the core of reactors. The motivation for this study is to set up an experiment at the research reactor facility at BARC for very short baseline neutrino oscillation study and remote reactor monitoring

  9. Search for Time-Independent Lorentz Violation using Muon Neutrino to Muon Antineutrino Transitions in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P.; et al.

    2016-05-10

    Data from the MINOS experiment has been used to search for mixing between muon neutrinos and muon antineutrinos using a time-independent Lorentz-violating formalism derived from the Standard-Model Extension (SME). MINOS is uniquely capable of searching for muon neutrino-antineutrino mixing given its long baseline and ability to distinguish between neutrinos and antineutrinos on an event-by-event basis. Neutrino and antineutrino interactions were observed in the MINOS Near and Far Detectors from an exposure of 10.56$\\times10^{20}$ protons-on-target from the NuMI neutrino-optimized beam. No evidence was found for such transitions and new, highly stringent limits were placed on the SME coefficients governing them. We place the first limits on the SME parameters $(c_{L})^{TT}_{\\mu\\mu} $ and $(c_{L})^{TT}_{\\tau\\tau}$ at $-8.4\\times10^{-23} < (c_{L})^{TT}_{\\mu\\mu} < 8.0\\times10^{-23}$ and $-8.0\\times10^{-23} < (c_{L})^{TT}_{\\tau\\tau} < 8.4\\times10^{-23}$, and the world's best limits on the $\\tilde{g}^{ZT}_{\\mu\\overline{\\mu}}$ and $\\tilde{g}^{ZT}_{\\tau\\overline{\\tau}}$ parameters at $|\\tilde{g}^{ZT}_{\\mu\\overline{\\mu}}| < 3.3\\times 10^{-23}$ and $|\\tilde{g}^{ZT}_{\\tau\\overline{\\tau}}| < 3.3\\times 10^{-23}$, all limits quoted at $3\\sigma$.

  10. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  11. Photon emission in (anti)neutrino neutral current interactions with nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Wang En; Alvarez-Ruso, Luis; Nieves, Juan [Instituto de Fisica Corpuscular, Centro Mixto CSIC-UV, Valencia (Spain)

    2013-06-10

    Photon emission induced by E{sub {nu}}{approx} 1 GeV (anti)neutrino neutral current (NC) interactions with nuclei is studied with a dynamical microscopic model. This process is a relevant background for {nu}{sub e} appearance oscillation experiments. We find a strong reduction of the cross section due to nuclear effects.

  12. First Measurement of the Muon Anti-Neutrino Charged Current Quasielastic Double-Differential Cross-Section

    Energy Technology Data Exchange (ETDEWEB)

    Grange, Joseph M. [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    This dissertation presents the first measurement of the muon antineutrino charged current quasi-elastic double-differential cross section. These data significantly extend the knowledge of neutrino and antineutrino interactions in the GeV range, a region that has recently come under scrutiny due to a number of conflicting experimental results. To maximize the precision of this measurement, three novel techniques were employed to measure the neutrino background component of the data set. Representing the first measurements of the neutrino contribution to an accelerator-based antineutrino beam in the absence of a magnetic field, the successful execution of these techniques carry implications for current and future neutrino experiments.

  13. Energy dependence of total cross sections for neutrino and antineutrino interactions are energies below 35 GeV

    International Nuclear Information System (INIS)

    Further analysis of experimental data obtained in neutrino IHEP-ITEP experiment in Serpukhov is presented. Energy dependences of total cross sections for neutrino-nucleon and antineutrino-nucleon charged-current interactions in the energy range 5-35 GeV have been obtained. There is a tendency for a slow decrease of neutrino cross section with energy increase and a slope constancy of antineutrino cross section. It agrees well with QCD predictions

  14. Neutrino and antineutrino CCQE scattering in the SuperScaling Approximation from MiniBooNE to NOMAD energies

    Energy Technology Data Exchange (ETDEWEB)

    Megias, G.D. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla (Spain); Amaro, J.E. [Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teorica y Computacional, Universidad de Granada, 18071 Granada (Spain); Barbaro, M.B., E-mail: barbaro@to.infn.it [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Caballero, J.A. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla (Spain); Donnelly, T.W. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-08-09

    We compare the predictions of the SuperScaling model for charged-current quasielastic muonic neutrino and antineutrino scattering from {sup 12}C with experimental data spanning an energy range up to 100 GeV. We discuss the sensitivity of the results to different parametrizations of the nucleon vector and axial-vector form factors. Finally, we show the differences between electron and muon (anti)neutrino cross sections relevant for the νSTORM facility.

  15. Neutrino and antineutrino CCQE scattering in the SuperScaling Approximation from MiniBooNE to NOMAD energies

    CERN Document Server

    Amaro, J E; Caballero, J A; Donnelly, T W; Megias, G D

    2013-01-01

    We compare the predictions of the SuperScaling model for charged current quasielastic muonic neutrino and antineutrino scattering from $^{12}$C with experimental data spanning an energy range up to 100 GeV. We discuss the sensitivity of the results to different parametrizations of the nucleon vector and axial-vector form factors. Finally, we show the differences between electron and muon (anti-)neutrino cross sections relevant for the $\

  16. Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions

    CERN Document Server

    Li, Yu-Feng

    2014-01-01

    We discuss reactor antineutrino oscillations with non-standard interactions (NSIs) at the neutrino production and detection processes. The neutrino oscillation probability is calculated with a parametrization of the NSI parameters by splitting them into the averages and differences of the production and detection processes respectively. The average parts induce constant shifts of the neutrino mixing angles from their true values, and the difference parts can generate the energy (and baseline) dependent corrections to the initial mass-squared differences. We stress that only the shifts of mass-squared differences are measurable in reactor antineutrino experiments. Taking Jiangmen Underground Neutrino Observatory (JUNO) as an example, we analyze how NSIs influence the standard neutrino measurements and to what extent we can constrain the NSI parameters.

  17. Search for Perturbations of Nuclear Decay Rates Induced by Reactor Electron Antineutrinos

    CERN Document Server

    Barnes, V E; Bryan, C D; Cinko, N; Deichert, G G; Gruenwald, J T; Heim, J M; Kaplan, H B; LaZur, R; Neff, D; Nistor, J M; Sahelijo, N; Fischbach, E

    2016-01-01

    We report the results of an experiment conducted near the High Flux Isotope Reactor of Oak Ridge National Laboratory, designed to address the question of whether a flux of reactor-generated electron antineutrinos can alter the rates of weak nuclear interaction-induced decays for Mn-54, Na-22, and Co-60. This experiment, while quite sensitive, cannot exclude perturbations less than one or two parts in $10^4$ in $\\beta$ decay (or electron capture) processes, in the presence of an antineutrino flux of $3\\times 10^{12}$ cm$^{-2}$ s$^{-1}$. The present experimental methods are applicable to a wide range of isotopes. Improved sensitivity in future experiments may be possible if we can understand and reduce the dominant systematic uncertainties.

  18. Measurement of antineutrino oscillation with the full detector configuration at Daya Bay

    CERN Document Server

    Grassi, Marco

    2016-01-01

    In this poster, we present the latest measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. A total exposure of $6.9 \\times 10^5$ GW$_{\\mathrm{th}}$ ton days was achieved in November 2013 after 617 day of data taking. The most precise estimates to date of the neutrino mass and mixing parameters $|\\Delta \\mathrm{m}^2_{ee}|$ and $\\sin^2 2 \\theta_{13}$ were obtained with an analysis of the relative antineutrino rates and energy spectra between detectors. The value of the two parameters was found to be $\\sin^2 2 \\theta_{13} = 0.084 \\pm 0.005$ and $|\\Delta \\mathrm{m}^2_{ee}| = (2.42 \\pm 0.11) \\times 10^{-3}\\,\\mathrm{eV}^2$. This report focuses in particular on describing how improvements in the calibration and in the energy response model contributed to achieve this result.

  19. Determination of the fission coefficients in thermal nuclear reactors for antineutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Lenilson M. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Cabral, Ronaldo G., E-mail: rgcabral@ime.eb.b [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Anjos, Joao C.C. dos, E-mail: janjos@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Dept. GLN - G

    2011-07-01

    The nuclear reactors in operation periodically need to change their fuel. It is during this process that these reactors are more vulnerable to occurring of several situations of fuel diversion, thus the monitoring of the nuclear installations is indispensable to avoid events of this nature. Considering this fact, the most promissory technique to be used for the nuclear safeguard for the nonproliferation of nuclear weapons, it is based on the detection and spectroscopy of antineutrino from fissions that occur in the nuclear reactors. The detection and spectroscopy of antineutrino, they both depend on the single contribution for the total number of fission of each actinide in the core reactor, these contributions receive the name of fission coefficients. The goal of this research is to show the computational and mathematical modeling used to determinate these coefficients for PWR reactors. (author)

  20. Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment

    CERN Document Server

    Abe, Y; Akiri, T; Anjos, J C dos; Ardellier, F; Barbosa, A F; Baxter, A; Bernstein, A; Bezerra, T J C; Bezrukhov, L; Blucher, E; Bongrand, M; Bowden, N S; Buck, C; Busenitz, J; Cabrera, A; Caden, E; Camilleri, L; Carr, R; Cerrada, M; Chang, P -J; Chimenti, P; Classen, T; Collin, A; Conover, E; Conrad, J M; Cormon, S; Crespo-Anadón, J I; Cribier, M; Crum, K; Cucoanes, A; D'Agostino, M V; Damon, E; Dawson, J V; Dazeley, S; Dierckxsens, M; Dietrich, D; Djurcic, Z; Dracos, M; Durand, V; Efremenko, Y; Endo, Y; Etenko, A; Falk, E; Fallot, M; Fechner, M; von Feilitzsch, F; Felde, J; Fernandes, S M; Franco, D; Franke, A; Franke, M; Furuta, H; Gama, R; Gil-Botella, I; Giot, L; Göger-Neff, M; Gonzalez, L F G; Goodman, M C; Goon, J TM; Greiner, D; Guillon, B; Haag, N; Hagner, C; Hara, T; Hartmann, F X; Hartnell, J; Haruna, T; Haser, J; Hatzikoutelis, A; Hayakawa, T; Hofmann, M; Horton-Smith, G; Ishitsuka, M; Jochum, J; Jollet, C; Jones, C L; Kaether, F; Kalousis, L; Kamyshkov, Y; Kaplan, D; Kawasaki, T; Keefer, G; Kemp, E; de Kerret, H; Kibe, Y; Konno, T; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C E; Langbrandtner, C; Lasserre, T; Letourneau, A; Lhuillier, D; Lima, H P; Lindner, M; Liu, Y; López-Castanõ, J M; LoSecco, J M; Lubsandorzhiev, B K; Lucht, S; McKee, D; Maeda, J; Maesano, C N; Mariani, C; Maricic, J; Martino, J; Matsubara, T; Mention, G; Meregaglia, A; Miletic, T; Milincic, R; Milzstajn, A; Miyata, H; Motta, D; Mueller, Th A; Nagasaka, Y; Nakajima, K; Novella, P; Obolensky, M; Oberauer, L; Onillon, A; Osborn, A; Ostrovskiy, I; Palomares, C; Peeters, S J M; Pepe, I M; Perrin, P; Pfahler, P; Porta, A; Potzel, W; Queval, R; Reichenbacher, J; Reinhold, B; Remoto, A; Reyna, D; Röhling, M; Roth, S; Rubin, H A; Sakamoto, Y; Santorelli, R; Sato, F; Schönert, S; Schoppmann, S; Schwan, U; Schwetz, T; Shaevitz, M; Shrestha, D; Sida, J-L; Sinev, V; Skorokhvatov, M; Smith, E; Stahl, A; Stancu, I; Strait, M; Stüken, A; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Sun, Z; Svoboda, R; Tabata, H; Tamura, N; Terao, K; Tonazzo, A; Toups, M; Thi, H H Trinh; Veyssiere, C; Vignaud, D; Wagner, S; Watanabe, H; White, B; Wiebusch, C; Winslow, L; Worcester, M; Wurm, M; Yanovitch, E; Yermia, F; Zbiri, K; Zimmer, V

    2011-01-01

    The Double Chooz Experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. A ratio of 0.944 $\\pm$ 0.016 (stat) $\\pm$ 0.040 (syst) observed to predicted events was obtained in 101 days of running at the Chooz Nuclear Power Plant in France, with two 4.25 GW$_{th}$ reactors. The results were obtained from a single 10 m$^3$ fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 measurement as an anchor point. The deficit can be interpreted as an indication of a non-zero value of the still unmeasured neutrino mixing parameter \\sang. Analyzing both the rate of the prompt positrons and their energy spectrum we find \\sang = 0.086 $\\pm$ 0.041 (stat) $\\pm$ 0.030 (syst), or, at 90% CL, 0.015 $<$ \\sang $\\ <$ 0.16.

  1. The Physics and Nuclear Nonproliferation Goals of WATCHMAN: A WAter CHerenkov Monitor for ANtineutrinos

    CERN Document Server

    Askins, M; Bernstein, A; Dazeley, S; Dye, S T; Handler, T; Hatzikoutelis, A; Hellfeld, D; Jaffke, P; Kamyshkov, Y; Land, B J; Learned, J G; Marleau, P; Mauger, C; Gann, G D Orebi; Roecker, C; Rountree, S D; Shokair, T M; Smy, M B; Svoboda, R; Sweany, M; Vagins, M R; van Bibber, K A; Vogelaar, R B; Wetstein, M J; Yeh, M

    2015-01-01

    This article describes the physics and nonproliferation goals of WATCHMAN, the WAter Cherenkov Monitor for ANtineutrinos. The baseline WATCHMAN design is a kiloton scale gadolinium-doped (Gd) light water Cherenkov detector, placed 13 kilometers from a civil nuclear reactor in the United States. In its first deployment phase, WATCHMAN will be used to remotely detect a change in the operational status of the reactor, providing a first- ever demonstration of the potential of large Gd-doped water detectors for remote reactor monitoring for future international nuclear nonproliferation applications. During its first phase, the detector will provide a critical large-scale test of the ability to tag neutrons and thus distinguish low energy electron neutrinos and antineutrinos. This would make WATCHMAN the only detector capable of providing both direction and flavor identification of supernova neutrinos. It would also be the third largest supernova detector, and the largest underground in the western hemisphere. In a...

  2. Quasielastic neutrino and antineutrino interaction at the Serpukhov accelerator (IHEP-ITEP collaboration)

    International Nuclear Information System (INIS)

    Preliminary results on the energy dependence of quasielastic differential and total cross-sections for neutrino and antineutrino scattering in the νsub(μ)n → μ-p and anti νsub(μ)p → μ+n interactions in the energy region 3 <= E <= 30 GeV obtined in the aluminium spark chamber detector are presented. The data are compared with the predictions of classical V-A theory with current vector conservation assumption. The best fit parameters for axial mass are Msub(A)=1.00+-0.07 and Msub(A)=1.04+-0.08 from the neutrino and antineutrino data respectively. It is shown that experimental data are in good agreement with the predictions of the standart V-A theory

  3. Advances toward a transportable antineutrino detector system for reactor monitoring and safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Reyna, D. [Sandia National Laboratories, Livermore, CA 94550 (United States); Bernstein, A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lund, J.; Kiff, S.; Cabrera-Palmer, B. [Sandia National Laboratories, Livermore, CA 94550 (United States); Bowden, N. S.; Dazeley, S.; Keefer, G. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2011-07-01

    Nuclear reactors have served as the neutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Our SNL/LLNL collaboration has demonstrated that such antineutrino based monitoring is feasible using a relatively small cubic meter scale liquid scintillator detector at tens of meters standoff from a commercial Pressurized Water Reactor (PWR). With little or no burden on the plant operator we have been able to remotely and automatically monitor the reactor operational status (on/off), power level, and fuel burnup. The initial detector was deployed in an underground gallery that lies directly under the containment dome of an operating PWR. The gallery is 25 meters from the reactor core center, is rarely accessed by plant personnel, and provides a muon-screening effect of some 20-30 meters of water equivalent earth and concrete overburden. Unfortunately, many reactor facilities do not contain an equivalent underground location. We have therefore attempted to construct a complete detector system which would be capable of operating in an aboveground location and could be transported to a reactor facility with relative ease. A standard 6-meter shipping container was used as our transportable laboratory - containing active and passive shielding components, the antineutrino detector and all electronics, as well as climate control systems. This aboveground system was deployed and tested at the San Onofre Nuclear Generating Station (SONGS) in southern California in 2010 and early 2011. We will first present an overview of the initial demonstrations of our below ground detector. Then we will describe the aboveground system and the technological developments of the two antineutrino

  4. Improved limit on the electron-antineutrino rest mass from tritium ß-decay

    OpenAIRE

    Weinheimer, Christian; Przyrembel, Michael; Backe, Hartmut; H. Barth; Bonn, Jochen; Degen, Beate; Edling, Thomas; Fischer, H.; Fleischmann, L.; Grooß, Jens-Uwe; Haid, R.; Hermanni, Antje; Kube, Gero; Leiderer, Paul; Loeken, Thomas

    1993-01-01

    The endpoint region of the β-spectrum of tritium was remeasured by an electrostatic spectrometer with magnetic guiding field. It enabled the search for a rest mass of the electron-antineutrino with improved precision. The result is m2v=−39±34stat±15syst(eV/c2)2, from which an upper limit of mv

  5. Upper limit on the cross section for reactor antineutrinos changing 22Na decay rates

    CERN Document Server

    de Meijer, R J

    2014-01-01

    In this paper we present results of a long-term observation of the decay of 22Na in the presence of a nuclear fission reactor. The measurements were made outside the containment wall of and underneath the Koeberg nuclear power plant near Cape Town, South Africa. Antineutrino fluxes ranged from ~5*10^11 to 1.6*10^13 cm^-2 s^-1 during this period. We show that the coincidence summing technique provides a sensitive tool to measure a change in the total decay constant as well as the branching ratio between EC and beta+ decay of 22Na to the first excited state in 22Ne. We observe a relative change in count rate between reactor-ON and reactor-OFF equal to (-0.51+/-0.11)*10^-4. After evaluating possible systematic uncertainties we conclude that the effect is either due to a hidden instrumental cause or due to an interaction between antineutrinos and the 22Na nucleus. An upper limit of ~0.03 barn has been deduced for observing any change in the decay rate of 22Na due to antineutrino interactions.

  6. Detection of anomalous reactor activity using antineutrino count evolution over the course of a reactor cycle

    Science.gov (United States)

    Bulaevskaya, Vera; Bernstein, Adam

    2011-06-01

    This paper analyzes the sensitivity of antineutrino count rate measurements to changes in the fissile content of civil power reactors. Such measurements may be useful in IAEA reactor safeguards applications. We introduce a hypothesis testing procedure to identify statistically significant differences between the antineutrino count rate evolution of a standard "baseline" fuel cycle and that of an anomalous cycle, in which plutonium is removed and replaced with an equivalent fissile worth of uranium. The test would allow an inspector to detect anomalous reactor activity, or to positively confirm that the reactor is operating in a manner consistent with its declared fuel inventory and power level. We show that with a reasonable choice of detector parameters, the test can detect replacement of 82 kg of plutonium in 90 days with 95% probability, while controlling the false positive rate at 5%. We show that some improvement on this level of sensitivity may be obtained by various means, including use of the method in conjunction with existing reactor safeguards methods. We also identify a necessary and sufficient minimum daily antineutrino count rate and a maximum tolerable background rate to achieve the quoted sensitivity, and list examples of detectors in which such rates have been attained.

  7. Lithium antineutrino source in the tandem scheme of the accelerator and neutron producting tungsten target

    CERN Document Server

    Lyashuk, V I

    2016-01-01

    The antineutrinos of the neutron rich 8Li isotope is characterized by hard and good defined spectrum - averaged energy is 6.5 MeV and maximal - up to 13 MeV. An intensive antineutrino source with such parameters can be unique instrument for neutrino investigations and especially for search of sterile neutrinos. The 8Li can be produced by (n,gamma)-activation of 7Li isotope. The proposed scheme of the antineutrino source is based on the lithium blanket around the accelerator neutron producting target. We propose to use heavy water solution of the lithium hydroxide instead of lithium in metallic state. Such solution for lithium blanket substance ensure the large perspectives in real steps for creation of this installation. An analyses of neutron fields in the blanket and distribution of 8Li creation allows to propose the next principal steps in the construction of the lithium blanket. We propose to enclose the blanket volume isolating it's central part with more high 8Li production. This solution allows to decr...

  8. How Unequal Fluxes of High Energy Astrophysical Neutrinos and Antineutrinos can Fake New Physics

    CERN Document Server

    Nunokawa, Hiroshi; Funchal, Renata Zukanovich

    2016-01-01

    Flavor ratios of very high energy astrophysical neutrinos, which can be studied at the Earth by a neutrino telescope such as IceCube, can serve to diagnose their production mechanism at the astrophysical source. The flavor ratios for neutrinos and antineutrinos can be quite different as we do not know how they are produced in the astrophysical environment. Due to this uncertainty the neutrino and antineutrino flavor ratios at the Earth also could be quite different. Nonetheless, it is generally assumed that flavor ratios for neutrinos and antineutrinos are the same at the Earth, in fitting the high energy astrophysical neutrino data. This is a reasonable assumption for the limited statistics for the data we currently have. However, in the future the fit must be performed allowing for a possible discrepancy in these two fractions in order to be able to disentangle different production mechanisms at the source from new physics in the neutrino sector. To reinforce this issue, in this work we show that a wrong as...

  9. Neutrino–antineutrino mass splitting in the Standard Model and baryogenesis

    Directory of Open Access Journals (Sweden)

    Kazuo Fujikawa

    2015-04-01

    Full Text Available On the basis of a previously proposed mechanism of neutrino–antineutrino mass splitting in the Standard Model, which is Lorentz and SU(2×U(1 invariant but non-local to evade the CPT theorem, we discuss the possible implications of neutrino–antineutrino mass splitting on neutrino physics and baryogenesis. It is shown that non-locality within a distance scale of the Planck length, that may not be fatal to unitarity in a generic effective theory, can generate the neutrino–antineutrino mass splitting of the order of the observed neutrino mass differences, which is tested in oscillation experiments, and a non-negligible baryon asymmetry depending on the estimate of sphaleron dynamics. The one-loop order induced electron–positron mass splitting in the Standard Model is shown to be finite and estimated at ∼10−20 eV, well below the experimental bound <10−2 eV. The induced CPT violation in the K-meson in the Standard Model is expected to be even smaller and well below the experimental bound |mK−mK¯|<0.44×10−18 GeV.

  10. Supernova Relic Electron Neutrinos and anti-Neutrinos in future Large-scale Observatories

    CERN Document Server

    Volpe, C

    2007-01-01

    We investigate the signal from supernova relic neutrinos in future large scale observatories, such as MEMPHYS (UNO, Hyper-K), LENA and GLACIER, at present under study. We discuss that complementary information might be gained from the observation of supernova relic electron anti-neutrinos and neutrinos using the scattering on protons on one hand, and on nuclei such as oxygen, carbon or argon on the other hand. When determining the relic neutrino fluxes we also include, for the first time, the coupling of the neutrino magnetic moment to magnetic fields within the core-collapse supernova. We present numerical results on both the relic electron neutrino and anti-neutrino fluxes and on the number of events for electron neutrinos on carbon, oxygen and argon, as well as electron anti-neutrinos on protons, for various oscillation scenarios. The observation of supernova relic neutrinos might provide us with unique information on core-collapse supernova explosions, on the star formation history and on neutrino propert...

  11. Experimental study of invariance violations in neutrino and antineutrino reactions at high energy

    International Nuclear Information System (INIS)

    This work is dedicated to the study of the structure functions in neutrino-nucleon interactions and to the interpretation of observed violations of scaling invariance. The first chapter describes the experimental setting, the Cargamelle cloud chamber has been used. The second chapter presents the data analysis, the event selection methodology, the muon identification and the energy correction that takes into account the non-detected particles. We also present the bi-dimensional x and q2 distribution of events that is necessary to the determination of the structure functions. In the third chapter we detail the theoretical basis of our analysis: we define relevant kinematic variables and we discuss the scale invariance in the light of the quark-parton model. The violations of the scale invariance are considered first in the formalism of quantum chromodynamics and then in the view of higher twist or mass corrections. The fourth chapter deals with the experimental determination of the structure functions and of the violations of the scaling invariance. (A.C.)

  12. Nuclear Reactor Simulations for Unveiling Diversion Scenarios: capabilities of the antineutrino probe

    Energy Technology Data Exchange (ETDEWEB)

    Bui, V.M.; Fallot, M.; Giot, L.; Guillon, B.; Martino, J.; Yermia, F. [SUBATECH - CNRS-IN2P3 - Univ. of Nantes - EMN, Nantes (France); Nuttin, A. [LPSC - CNRS-IN2P3/UJF/INPG, Grenoble (France)

    2009-06-15

    After many years of fundamental research, physicists have a good understanding of the neutrinos detection techniques. It is now possible to apply neutrino physics as a new tool to monitor nuclear power plants. We already know that modest size detectors are achievable to fulfill that task such as the SONGS 1 and the future Nucifer detectors. In parallel, sophisticated simulations of reactors and their associated antineutrino flux and energy spectrum have been developed to predict the neutrino signature of the fuel burnup and of a diversion. Taking advantage of the tremendous quantity of information available nowadays in nuclear databases, the total {beta} spectrum of a reactor is built by adding the contributions of all the {beta} branches involved in the decay of all fission products (FP). A package called MCNP Utility for Reactor Evolution (MURE) computes the fuel and FP inventories by simulating the neutronics and time evolution of a reactor core. MURE, initially developed by CNRS/IN2P3/LPSC Grenoble and IPN Orsay to study Generation IV reactors, is a precision code written in C++ which automates the preparation and computation of successive MCNP calculations either for precision burnup or thermal-hydraulics purpose. MURE will be soon available at NEA. The only user-defined inputs driving the time evolution of the isotopic composition of the core are the initial fuel composition, the refueling scheme, and the thermal power. The evolution of the antineutrino flux and energy spectrum with the fuel burnup, as well as the effect of neutron capture on various nuclei are taken into account. Nonproliferation scenarios and burnup monitoring with antineutrinos have been studied using these tools for PWR and Candu reactors. A full core simulation of an N4-PWR will be presented in a first part. Gross unveiling diversion scenarios using a PWR have been simulated in order to test the ability of the antineutrino probe. A channel of a Heavy Water Reactor (Candu 600) loaded with

  13. Neutrino nucleus reactions at high energies within the GiBUU model

    CERN Document Server

    Lalakulich, O; Leitner, T; Mosel, U

    2011-01-01

    The GiBUU model, which implements all reaction channels relevant at medium neutrino energy, is used to investigate the neutrino and antineutrino scattering on iron. Results for integrated cross sections are compared with NOMAD and MINOS data. It is shown, that final state interaction can noticeably change the spectra of the outgoing hadrons. Predictions for the Miner$\

  14. Quasi-elastic interactions and one-pion production by neutrinos and anti-neutrinos on a deuterium target

    International Nuclear Information System (INIS)

    In this thesis, the weak charged current interactions of neutrinos and antineutrinos with nucleons are described, in which the neutrino scatters in a quasi-elastic way with the nucleon, leaving an excited nucleon state. The experiments have been performed in the bubble chamber BEBC, filled with deuterium and exposed to the CERN Wide Band (anti-)neutrino beams. This gave the opportunity to study both interactions on protons and on neutrons separately, whereas the measurement of the exclusive channels could be performed with a high precision. After a short introduction of the relevant theories (standard model; QCD; one-pion production models; FKR quark model), the experimental set-up at CERN is described as well as the bubble chamber picture facility in Amsterdam. Next, results of the neutrino and antineutrino experiments are given followed by a comparison with theory. (Auth.)

  15. Measurements of the Inclusive Neutrino and Antineutrino Charged Current Cross Sections in MINERvA Using the Low-$\

    CERN Document Server

    DeVan, J; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Budd, H; Cai, T; Carneiro, M F; da Motta, H; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Endress, E; Felix, J; Fields, L; Fine, R; Gago, A M; Galindo, R; Gallagher, H; Ghosh, A; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; Caicedo, D A Martinez; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman,; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Ramirez, M A; Ransome, R D; Ray, H; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Salinas, C J Solano; Sultana, M; Falero, S Sánchez; Tice, B G; Valencia, E; Wolcott, J; Wospakrik, M; Zhang, D

    2016-01-01

    The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an {\\em in situ} prediction of the shape of the flux as a function of neutrino energy from 2--50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy ($\

  16. Light collection and pulse-shape discrimination in elongated scintillator cells for the PROSPECT reactor antineutrino experiment

    Science.gov (United States)

    Ashenfelter, J.; Balantekin, B.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bowes, A.; Brodsky, J. P.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Commeford, K.; Davee, D.; Dean, D.; Deichert, G.; Diwan, M. V.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Goddard, B. W.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Langford, T. J.; Littlejohn, B. R.; Martinez Caicedo, D. A.; McKeown, R. D.; Mendenhall, M. P.; Mueller, P.; Mumm, H. P.; Napolitano, J.; Neilson, R.; Norcini, D.; Pushin, D.; Qian, X.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Sheets, S.; Stemen, N. T.; Surukuchi, P. T.; Varner, R. L.; Viren, B.; Wang, W.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y. R.; Zangakis, G.; Zhang, C.; Zhang, X.

    2015-11-01

    A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified.

  17. Light Collection and Pulse-Shape Discrimination in Elongated Scintillator Cells for the PROSPECT Reactor Antineutrino Experiment

    CERN Document Server

    Ashenfelter, J; Band, H R; Barclay, G; Bass, C D; Berish, D; Bowden, N S; Bowes, A; Brodsky, J P; Bryan, C D; Cherwinka, J J; Chu, R; Classen, T; Commeford, K; Davee, D; Dean, D; Deichert, G; Diwan, M V; Dolinski, M J; Dolph, J; Dwyer, D A; Gaison, J K; Galindo-Uribarri, A; Gilje, K; Glenn, A; Goddard, B W; Green, M; Han, K; Hans, S; Heeger, K M; Heffron, B; Jaffe, D E; Langford, T J; Littlejohn, B R; Caicedo, D A Martinez; McKeown, R D; Mendenhall, M P; Mueller, P; Mumm, H P; Napolitano, J; Neilson, R; Norcini, D; Pushin, D; Qian, X; Romero, E; Rosero, R; Saldana, L; Seilhan, B S; Sharma, R; Sheets, S; Stemen, N T; Surukuchi, P T; Varner, R L; Viren, B; Wang, W; White, B; White, C; Wilhelmi, J; Williams, C; Wise, T; Yao, H; Yeh, M; Yen, Y -R; Zangakis, G; Zhang, C; Zhang, X

    2015-01-01

    A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron/gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell long axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified.

  18. Neutrino-antineutrino pair production by a photon in a dense matter

    CERN Document Server

    Lobanov, A E

    2006-01-01

    The possibility of radiative effects that are due to interaction of fermions with a dense matter is investigated. Neutrino-antineutrino photo-production is studied. The rate of this process is calculated in the Furry picture. It is demonstrated that this effect does not disappear even if the medium refractive index is assumed to be equal to unity. The rate obtained strongly depends on the polarization states of the particles involved. This leads to evident spatial asymmetries, which may have certain consequences observable in astrophysical and cosmological studies.

  19. Recent Results of the Relativistic Green's Function Model in Quasielastic Neutrino and Antineutrino-Nucleus Scattering

    CERN Document Server

    Giusti, Carlotta

    2014-01-01

    The analysis of quasielastic neutrino and antineutrino-nucleus scattering cross sections requires relativistic theoretical descriptions also accounting for the role of final-state interactions (FSI). In the relativistic Green's function (RGF) model FSI are described by a complex optical potential where the imaginary part recovers the contribution of final-state channels that are not included in other models based on the impulse approximation. The RGF results are compared with the data recently published by the MiniBooNE and MINER$\

  20. Measurement of the electron antineutrino mass from the beta spectrum of gaseous tritium

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, D.A.

    1986-12-01

    A measurement has been made of the mass of the electron antineutrino using the beta spectrum from a source of gaseous molecular tritium, and an upper limit of 36 eV/c/sup 2/ has been set on this mass. This measurement is the first upper limit on neutrino mass that does not rely on assumptions about the atomic configuration after the beta decay, and it has significantly smaller systematic errors associated with it than do previous measurements. 130 refs., 83 figs., 8 tabs.

  1. Charged kaon production by coherent scattering of neutrinos and antineutrinos on nuclei

    CERN Document Server

    Alvarez-Ruso, L; Simo, I Ruiz; Valverde, M; Vacas, M J Vicente

    2012-01-01

    With the aim of achieving a better and more complete understanding of neutrino interactions with nuclear targets, the coherent production of charged kaons induced by neutrinos and antineutrinos is investigated in the energy range of some of the current neutrino experiments. We follow a microscopic approach which, at the nucleon level, incorporates the most important mechanisms allowed by the chiral symmetry breaking pattern of QCD. The distortion of the outgoing (anti)kaon is taken into account by solving the Klein-Gordon equation with realistic optical potentials. Angular and momentum distributions are studied, as well as the energy and nuclear dependence of the total cross section.

  2. New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products.

    Science.gov (United States)

    Fallot, M; Cormon, S; Estienne, M; Algora, A; Bui, V M; Cucoanes, A; Elnimr, M; Giot, L; Jordan, D; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Taín, J L; Yermia, F; Zakari-Issoufou, A-A

    2012-11-16

    In this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the (102;104;105;106;107)Tc, (105)Mo, and (101)Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes (235,238)U and (239,241)Pu. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the γ component of the decay heat of (239)Pu, solving a large part of the γ discrepancy in the 4-3000 s range. They have been measured by using the total absorption technique, insensitive to the pandemonium effect. The calculations are performed by using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of (235)U, (239,241)Pu, and, in particular, (238)U for which no measurement has been published yet. We conclude that new total absorption technique measurements are mandatory to improve the reliability of the predicted spectra.

  3. Model-independent determination of the axial mass parameter in quasielastic antineutrino-nucleon scattering

    CERN Document Server

    Bhattacharya, Bhubanjyoti; Tropiano, Anthony J

    2015-01-01

    Understanding the charged current quasielestic (CCQE) neutrino-nucleus interaction is important for precision studies of neutrino oscillations. The theoretical description of the interaction depends on the combination of a nuclear model with the knowledge of form factors. While the former has received considerable attention, the latter, in particular the axial form factor, is implemented using the historical dipole model. Instead, we use a model-independent approach, presented in a previous study, to analyze the muon antineutrino CCQE mineral oil data published by the MiniBooNE collaboration. We combine the cross section for scattering of antineutrinos off protons in carbon and hydrogen, using the same axial form factor for both. The extracted value of the axial mass parameter $m_A = 0.84^{+0.12}_{-0.04} \\pm {0.11} \\, {\\rm GeV}$ is in very good agreement with the model-independent value extracted from MiniBooNE's neutrino data. Going beyond a one-parameter description of the axial form factor, we extract valu...

  4. New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products

    CERN Document Server

    Fallot, M; Estienne, M; Algora, A; Bui, V M; Cucoanes, A; Elnimr, M; Giot, L; Jordan, D; Martino, J; Onillon, A; Porta, A; Pronost, G; Taín, J L; Yermia, F; Zakari-Issoufou, A -A

    2012-01-01

    In this paper, we study the impact of the inclusion of the recently measured beta decay properties of the $^{102;104;105;106;107}$Tc, $^{105}$Mo, and $^{101}$Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes $^{235, 238}$U, and $^{239,241}$Pu. These actinides are the main contributors to the fission processes in Pressurized Water Reactors. The beta feeding probabilities of the above-mentioned Tc, Mo and Nb isotopes have been found to play a major role in the $\\gamma$ component of the decay heat of $^{239}$Pu, solving a large part of the $\\gamma$ discrepancy in the 4 to 3000\\,s range. They have been measured using the Total Absorption Technique (TAS), avoiding the Pandemonium effect. The calculations are performed using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of $^{235}$U, $^{239,241}$Pu ...

  5. Limits on the oscillation plus decay model using published MINOS neutrino and antineutrino data

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Abner Leonel Gadelha; Gomes, Ricardo Avelino [Universidade Federal de Goias (UFGO), Goiania (Brazil). Instituto de Fisica; Peres, Orlando Goulart [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin

    2013-07-01

    Full text: The neutrino oscillation model is the theoretical model that explains the so called anomalous neutrino phenomena. Models such as neutrino decay and decoherence failed to explain the neutrino experimental results. Nevertheless, it was proposed that the oscillation model could be the dominant model with the possibility to add alternative models to it and determine limits for the parameters of the additional models. In this phenomenological work we considered the neutrino oscillation plus decay model and used the published data from the MINOS experiment. MINOS is a long-baseline neutrino experiment with two magnetized detectors (the Near Detector at Fermilab, 1 km from the target and depth of 225 meters of water equivalent (mwe), and the Far Detector at Soudan, MN, 735 km from the target and depth of 2100 mwe) exposed to the NuMI (Neutrinos at the Main Injector) beam. We used recent results from neutrino and antineutrino configurations of the NuMI beam and fitted by a 2-flavor oscillation model - transition from ν{sub μ} (ν{sub -}bar{sub μ}) to ν{sub τ} (ν{sub -}bar{sub τ}). We show the best fit and allowed region found for neutrino and antineutrino data, reproducing the published results. We then combined the data and under the oscillation plus decay framework calculated 1D and 2D allowed regions to determine limits for the decay parameter. (author)

  6. Measurement of the Antineutrino Double-Differential Charged-Current Quasi-Elastic Scattering Cross Section at MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, Cheryl [Northwestern U.

    2016-01-01

    Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande, hope to measure charge-parity (CP) violation in the lepton sector. In order to do this, they must dramatically reduce their current levels of uncertainty, particularly those due to neutrino-nucleus interaction models. As CP violation is a measure of the difference between the oscillation properties of neutrinos and antineutrinos, data about how the less-studied antineutrinos interact is especially valuable. We present the MINERvA experiment's first double-differential scattering cross sections for antineutrinos on scintillator, in the few-GeV range relevant to experiments such as DUNE and NOvA. We also present total antineutrino-scintillator quasi-elastic cross sections as a function of energy, which we compare to measurements from previous experiments. As well as being useful to help reduce oscillation experiments' uncertainty, our data can also be used to study the prevalence of various cor relation and final-state interaction effects within the nucleus. We compare to models produced by different model generators, and are able to draw first conclusions about the predictions of these models.

  7. First Observations of Separated Atmospheric Muon Neutrino and Muon Anti-Neutrino Events in the MINOS Detector

    CERN Document Server

    Adamson, P; Allison, W W M; Alner, G J; Anderson, K; Andreopoulos, C; Andrews, M; Andrews, R; Arroyo, C; Avvakumov, S; Ayres, D S; Baller, B; Barish, B; Barker, M A; Barnes, P D; Barr, G; Barrett, W L; Beall, E; Becker, B R; Belias, A; Bergfeld, T; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bocean, V; Bock, B; Bock, G J; Bogert, D; Border, P M; Bower, C; Boyd, S; Buckley-Geer, E; Byon-Wagner, A; Böhm, J; Böhnlein, D J; Cabrera, A; Chapman, J D; Chase, T R; Chernichenko, S K; Childress, S; Choudhary, B C; Cobb, J H; Cossairt, J D; Courant, H; Crane, D A; Culling, A J; Dawson, J W; De Muth, D M; De Santo, A; Dierckxsens, M; Diwan, M V; Dorman, M; Drake, G; Ducar, R; Durkin, T; Erwin, A R; Escobar, C O; Evans, J; Fackler, O D; Falk-Harris, E; Feldman, G J; Felt, N; Fields, T H; Ford, R; Frohne, M V; Gallagher, H R; Gebhard, M; Godley, A; Gogos, J; Goodman, M C; Gornushkin, Yu; Gouffon, P; Grashorn, E; Grossman, N; Grudzinski, J J; Grzelak, K; Guarino, V; Habig, A; Halsall, R; Hanson, J; Harris, D; Harris, P G; Hartnell, J; Hartouni, E P; Hatcher, R; Heller, K; Hill, N; Ho, Y; Howcroft, C; Hylen, J; Ignatenko, M A; Indurthy, D; Irwin, G M; James, C; Jenner, L; Jensen, D; Joffe-Minor, T M; Kafka, T; Kang, H J; Kasahara, S M; Kilmer, J; Kim, H; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kostin, M; Krakauer, D A; Kumaratunga, S; Ladran, A S; Lang, K; Laughton, C; Lebedev, A; Lee, R; Lee, W Y; Libkind, M A; Litchfield, P J; Litchfield, R P; Liu, J; Longley, N P; Lucas, P; Luebke, W; Madani, S; Maher, E; Makeev, V; Mann, W A; Marchionni, A; Marino, A D; Marshak, M L; Marshall, J S; McDonald, J; McGowan, A; Meier, J R; Merzon, G I; Messier, M D; Michael, D G; Milburn, R H; Miller, J L; Miller, W H; Mishra, S R; Miyagawa, P S; Moore, Cristopher; Morf, J; Morse, R; Mualem, L; Mufson, S; Murgia, S; Murtagh, M J; Musser, J; Naples, D; Nelson, C; Nelson, J K; Newman, H B; Nezrick, F A; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, J; Oliver, W P; Onuchin, V A; Osiecki, T; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovich, Z; Pearce, G F; Pearson, N; Peck, C W; Perry, C; Peterson, E A; Petyt, D A; Ping, H; Piteira, R; Pla-Dalmau, A; Plunkett, R K; Price, L E; Proga, M; Pushka, D R; Rahman, D; Rameika, R A; Raufer, T M; Read, A L; Rebel, B; Reyna, D E; Rosenfeld, C; Rubin, H A; Ruddick, K; Ryabov, V A; Saakyan, R; Sanchez, M C; Saoulidou, N; Schneps, J; Schoessow, P V; Schreiner, P; Schwienhorst, R; Semenov, V K; Seun, S M; Shanahan, P; Shield, P D; Smart, W; Smirnitsky, A V; Smith, C; Smith, P N; Sousa, A; Speakman, B; Stamoulis, P; Stefanik, A; Sullivan, P; Swan, J M; Symes, P A; Tagg, N; Talaga, R L; Tetteh-Lartey, E; Thomas, J; Thompson, J; Thomson, M A; Thron, J L; Trendler, R; Trevor, J; Trostin, I; Tsarev, V A; Tzanakos, G S; Urheim, J; Vahle, P; Vakili, M; Vaziri, K; Velissaris, C; Verebryusov, V; Viren, B; Wai, L; Ward, C P; Ward, D R; Watabe, M; Webb, R C; Weber, A; Wehmann, A; West, N; White, C; White, R F; Wojcicki, S G; Wright, D M; Wu, Q K; Yan, W G; Yang, T; Yumiceva, F X; Yun, J C; Zheng, H; Zois, M; Zwaska, R

    2006-01-01

    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of muon neutrino and muon anti-neutrino charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations giving: R_data(up/down)/R_MC(up/down) = 0.62^{+0.19}_{-0.14} (stat.) +- 0.02 (sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98 % confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field muon neutrino and muon anti-neutrino interactions are separated. The ratio of muon neutrino to muon anti-neutrino events in the data is compared to the Monte Carlo expectation assuming neutrinos and anti-neutrinos osci...

  8. Measurement of muon neutrino and antineutrino induced single neutral pion production cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Colin E. [Yale Univ., New Haven, CT (United States)

    2011-05-01

    Elucidating the nature of neutrino oscillation continues to be a goal in the vanguard of the efforts of physics experiment. As neutrino oscillation searches seek an increasingly elusive signal, a thorough understanding of the possible backgrounds becomes ever more important. Measurements of neutrino-nucleus interaction cross sections are key to this understanding. Searches for νμ → νe oscillation - a channel that may yield insight into the vanishingly small mixing parameter θ13, CP violation, and the neutrino mass hierarchy - are particularly susceptible to contamination from neutral current single π0 (NC 1π0) production. Unfortunately, the available data concerning NC 1π0 production are limited in scope and statistics. Without satisfactory constraints, theoretical models of NC 1π0 production yield substantially differing predictions in the critical Eν ~ 1 GeV regime. Additional investigation of this interaction can ameliorate the current deficiencies. The Mini Booster Neutrino Experiment (MiniBooNE) is a short-baseline neutrino oscillation search operating at the Fermi National Accelerator Laboratory (Fermilab). While the oscillation search is the principal charge of the MiniBooNE collaboration, the extensive data (~ 106 neutrino events) offer a rich resource with which to conduct neutrino cross section measurements. This work concerns the measurement of both neutrino and antineutrino NC 1π0 production cross sections at MiniBooNE. The size of the event samples used in the analysis exceeds that of all other similar experiments combined by an order of magnitude. We present the first measurements of the absolute NC 1π0 cross section as well as the first differential cross sections in both neutrino and antineutrino mode. Specifically, we measure single differential cross sections with respect to pion momentum and pion angle. We find the

  9. Measurement of muon neutrino and antineutrino induced single neutral pion production cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Colin; /Yale U.

    2010-12-01

    Elucidating the nature of neutrino oscillation continues to be a goal in the vanguard of the efforts of physics experiment. As neutrino oscillation searches seek an increasingly elusive signal, a thorough understanding of the possible backgrounds becomes ever more important. Measurements of neutrino-nucleus interaction cross sections are key to this understanding. Searches for {nu}{sub {mu}} {yields} {nu}{sub e} oscillation - a channel that may yield insight into the vanishingly small mixing parameter {theta}{sub 13}, CP violation, and the neutrino mass hierarchy - are particularly susceptible to contamination from neutral current single {pi}{sup 0} (NC 1{pi}{sup 0}) production. Unfortunately, the available data concerning NC 1{pi}{sup 0} production are limited in scope and statistics. Without satisfactory constraints, theoretical models of NC 1{pi}{sup 0} production yield substantially differing predictions in the critical E{sub {nu}} {approx} 1 GeV regime. Additional investigation of this interaction can ameliorate the current deficiencies. The Mini Booster Neutrino Experiment (MiniBooNE) is a short-baseline neutrino oscillation search operating at the Fermi National Accelerator Laboratory (Fermilab). While the oscillation search is the principal charge of the MiniBooNE collaboration, the extensive data ({approx} 10{sup 6} neutrino events) offer a rich resource with which to conduct neutrino cross section measurements. This work concerns the measurement of both neutrino and antineutrino NC 1{pi}{sup 0} production cross sections at MiniBooNE. The size of the event samples used in the analysis exceeds that of all other similar experiments combined by an order of magnitude. We present the first measurements of the absolute NC 1{pi}{sup 0} cross section as well as the first differential cross sections in both neutrino and antineutrino mode. Specifically, we measure single differential cross sections with respect to pion momentum and pion angle. We find the flux

  10. Method of Fission Product Beta Spectra Measurements for Predicting Reactor Anti-neutrino Emission

    CERN Document Server

    Asner, D M; Campbell, L W; Greenfield, B; Kos, M S; Orrell, J L; Schram, M; VanDevender, B; Wood, 1 L S; Wootan, D W

    2014-01-01

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron rich fission products that subsequently beta decay and emit electron anti-neutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to current precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent re-considerations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable i...

  11. Measurement of Muon Antineutrino Quasi-Elastic Scattering on a Hydrocarbon Target at E_{\

    CERN Document Server

    Fields, L; Aliaga, L; Altinok, O; Bodek, A; Boehnlein, D; Bradford, R; Brooks, W K; Budd, H; Butkevich, A; Caicedo, D A M; Castromonte, C M; Christy, M E; da Motta, H; Damiani, D S; Danko, I; Datta, M; Day, M; DeMaat, R; Devan, J; Diaz, G A; Dytman, S A; Eberly, B; Edmondson, D A; Felix, J; Fitzpatrick, T; Fiorentini, G A; Gago, A M; Gallagher, H; Gobbi, B; Gran, R; Harris, D A; Higuera, A; Howley, I J; Hurtado, K; Jerkins, M; Kafka, T; Kanter, M O; Keppel, C; Kordosky, M; Krajeski, A H; Kulagin, S A; Le, T; Leister, A G; Maggi, G; Maher, E; Manly, S; Mann, W A; Marshall, C M; McFarland, K S; McGivern, C L; McGowan, A M; Mislivec, A; Morfin, J G; Mousseau, J; Naples, D; Nelson, J K; Niculescu, G; Niculescu, I; Ochoa, N; O'Connor, C D; Osta, J; Palomino, J L; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Pena, C; Rakotondravohitra, L; Ransome, R D; Ray, H; Ren, L; Rodrigues, P A; Sassin, K E; Schellman, H; Schmitz, D W; Schneider, R M; Schulte, E C; Sedita, P; Simon, C; Snider, F D; Snyder, M C; Sobczyk, J T; Salinas, C J Solano; Tagg, N; Tan, W; Tice, B G; Tzanakos, G; Velasquez, J P; Walding, J; Walton, T; Wolcott, J; Wolthuis, B A; Zavala, G; Zhang, D; Ziemer, B P

    2013-01-01

    We have isolated muon anti-neutrino charged-current quasi-elastic interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross-section, d{\\sigma}/dQ^2, and compare to several theoretical models of quasi-elastic scattering. Good agreement is obtained with a model where the nucleon axial mass, M_A, is set to 0.99 GeV/c^2 but the nucleon vector form factors are modified to account for the observed enhancement, relative to the free nucleon case, of the cross-section for the exchange of transversely polarized photons in electron-nucleus scattering. Our data at higher Q^2 favor this interpretation over an alternative in which the axial mass is increased.

  12. Nuclear disintegration modes research with missing antineutrino in the Frejus detector

    International Nuclear Information System (INIS)

    The Frejus detector is a 900 tons fine grained calorimeter built in order to look for nucleon decay. It has reached a fiducial sensitivity of 1.3 kt. year after four years of data taking. In this thesis the decay modes with a missing anti-neutrino and one meson are studied. The analyses of all the meson decay channels are described, in particular those where the final state involves only photons or a muon due to K+ decay. The topological and kinematical cuts are different for all the channels; the detection efficiency computed by Monte -Carlo simulation ranges from 10% to 16%. The background is due to atmospheric neutrino interactions in the detector, and is estimated from a simulation. Data are consistent with the calculated background, which is smaller or close to one event per decay channel. Lower nucleon lifetime limits are obtained, which range from 0.9 1031 to 2.9 1031 years

  13. Neutrino Spin-Flavor Conversions and Electron Antineutrino emission from the Sun with Random Magnetic Field

    CERN Document Server

    Semikoz, V B; Popov, V Yu; Rez, A I; Sokoloff, D D

    2000-01-01

    The magnetic field in the solar convective zone has a random small-scale component with the r.m.s. value substancially exceeding the strength of a regular large-scale field. For two Majorana neutrino flavors and two helicities in the presence of a neutrino transition magnetic moment and nonzero neutrino mixing we analize the displacement of the allowed (Delta m^2 - sin^2 2theta)-parameter region reconciled for all Underground experiments with solar neutrinos in dependence on the r.m.s. magnetic field value b. In contrary with the RSFP scenario with a regular large-scale magnetic field, we find an effective production of electron antineutrinos in the Sun even for small neutrino mixing through the cascade conversions like nu_eL -> \\bar{nu}_muR -> forbidden while opening LOW MSW as the allowed one from the non-observation of 100 kG and correlation lengths shorter than L_0 < 1000 km.

  14. Terrestrial matter effects on reactor antineutrino oscillations at JUNO or RENO-50: how small is small?

    CERN Document Server

    Li, Yu-Feng; Xing, Zhi-zhong

    2016-01-01

    We have carefully examined, in both analytical and numerical ways, how small the terrestrial matter effects can be in a given medium-baseline reactor antineutrino oscillation experiment like JUNO or RENO-50. Taking the ongoing JUNO experiment for example, we show that the inclusion of terrestrial matter effects may reduce the sensitivity of the neutrino mass ordering measurement by \\Delta \\chi^2_{\\rm MO} \\simeq 0.6, and a neglect of such effects may shift the best-fit values of the flavor mixing angle \\theta_{12} and the neutrino mass-squared difference \\Delta_{21} by about 1\\sigma to 2\\sigma in the future data analysis. In addition, a preliminary estimate indicates that a 2\\sigma sensitivity of establishing the terrestrial matter effects can be achieved for about 10 years of data taking at JUNO with the help of a proper near detector implementation.

  15. Calorimetric measurement of the SOX anti-neutrino source for sterile neutrino search

    Energy Technology Data Exchange (ETDEWEB)

    Altenmueller, Konrad; Agostini, Matteo; Papp, Laszlo; Schoenert, Stefan [Physik Department and Excellence Cluster Universe, Technische Universitaet Muenchen (Germany); Collaboration: Borexino-Collaboration

    2015-07-01

    A thermal calorimeter is under development to measure with <1% accuracy the heat release of the Cerium anti-neutrino source for the SOX experiment, which is looking for eV-scale sterile neutrinos. The heat release is proportional to the source activity and thus to the emitted neutrino flux, which is an important parameter of the experiment. The calorimeter design is based on a copper heat exchanger mounted around the source with integrated water lines for the heat extraction. Heat loss through conduction and radiation is minimized by suspending the set-up through Kevlar ropes and inserting it inside a thermalized vacuum tank with radiation shields. The device is currently being assembled and tested at TUM in Garching.

  16. Anharmonicity of internal atomic oscillation and effective antineutrino mass evaluation from gaseous molecular tritium \\beta -decay

    CERN Document Server

    Lokhov, Alexey V

    2016-01-01

    Data analysis of the next generation effective antineutrino mass measurement experiment KATRIN requires reliable knowledge of systematic corrections. In particular, the width of the daughter molecular ion excitation spectrum rovibrational band should be known with a better then 1% precision. Very precise ab initio quantum calculations exist, and we compare them with the well known tritium molecule parameters within the framework of a phenomenological model. The rovibrational band width with accuracy of a few percent is interpreted as a result of the zero-point atomic oscillation in the harmonic potential. The Morse interatomic potential is used to investigate the impact of anharmonic atomic oscillations. The calculated corrections cannot account for the difference between the ab initio quantum calculations and the phenomenological model.

  17. Neutrino mass bound in the standard scenario for supernova electronic antineutrino emission

    CERN Document Server

    Pagliaroli, Giulia; Vissani, Francesco

    2010-01-01

    Based on recent improvements of the supernova electron antineutrino emission model, we update the limit on neutrino mass from the SN1987A data collected by Kamiokande-II, IMB and Baksan. We derive the limit of 5.8 eV at 95 % CL, that we show to be remarkably insensitive to the astrophysical uncertainties. Also we evaluate the ultimate mass sensitivity of this method for a detector like Super-Kamiokande. We find that the bound lies in the sub-eV region, 0.8 eV at 95 % CL being a typical outcome, competitive with the values that are presently probed in laboratory. However, this bound is subject to strong statistical fluctuations, correlated to the characteristics of the first few events detected. We briefly comment on the prospects offered by future detectors.

  18. Consistent analysis of neutral- and charged-current (anti)neutrino scattering off carbon

    International Nuclear Information System (INIS)

    Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for the correct interpretation of results of ongoing and planned oscillation experiments. To clarify a possible source of disagreement between recent measurements of the cross sections on carbon, we analyze the available data within an approach based on the realistic spectral function of carbon, treating neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes on equal footing. We show that the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of the NCE and CCQE data does not seem to support the contribution of multinucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections

  19. Consistent analysis of neutral- and charged-current (anti)neutrino scattering off carbon

    CERN Document Server

    Ankowski, Artur M

    2013-01-01

    Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for the correct interpretation of results of ongoing and planned oscillation experiments. To clarify a possible source of disagreement between recent measurements of the cross sections on carbon, we analyze the available data within an approach based on the realistic spectral function of carbon, treating neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes on equal footing. We show that the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of the NCE and CCQE data does not seem to support the contribution of multinucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections.

  20. Consistent analysis of neutral- and charged-current (anti)neutrino scattering off carbon

    Science.gov (United States)

    Ankowski, Artur M.

    2015-05-01

    Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for the correct interpretation of results of ongoing and planned oscillation experiments. To clarify a possible source of disagreement between recent measurements of the cross sections on carbon, we analyze the available data within an approach based on the realistic spectral function of carbon, treating neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes on equal footing. We show that the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of the NCE and CCQE data does not seem to support the contribution of multinucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections.

  1. Consistent analysis of neutral- and charged-current (anti)neutrino scattering off carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ankowski, Artur M. [INFN and Department of Physics,“Sapienza” Università di Roma, I-00185 Roma (Italy)

    2015-05-15

    Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for the correct interpretation of results of ongoing and planned oscillation experiments. To clarify a possible source of disagreement between recent measurements of the cross sections on carbon, we analyze the available data within an approach based on the realistic spectral function of carbon, treating neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes on equal footing. We show that the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of the NCE and CCQE data does not seem to support the contribution of multinucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections.

  2. Detection of Anomalous Reactor Activity Using Antineutrino Count Rate Evolution Over the Course of a Reactor Cycle

    CERN Document Server

    Bulaevskaya, Vera

    2010-01-01

    This paper analyzes the sensitivity of antineutrino count rate measurements to changes in the fissile content of civil power reactors. Such measurements may be useful in IAEA reactor safeguards applications. We introduce a hypothesis testing procedure to identify statistically significant differences between the antineutrino count rate evolution of a standard 'baseline' fuel cycle and that of an anomalous cycle, in which plutonium is removed and replaced with an equivalent fissile worth of uranium. The test would allow an inspector to detect anomalous reactor activity, or to positively confirm that the reactor is operating in a manner consistent with its declared fuel inventory and power level. We show that with a reasonable choice of detector parameters, the test can detect replacement of 73 kg of plutonium in 90 days with 95% probability, while controlling the false positive rate at 5%. We show that some improvement on this level of sensitivity may be expected by various means, including use of the method i...

  3. A feasibility study of boron-loaded liquid scintillator for the detection of electron anti-neutrinos

    CERN Document Server

    Wang, S C; Leung, R W S; Wang, S L; Chang, C Y; Chen Chi Ping; Cheng, K C; Ho, T I; Lai, W P; Liu, H M; Mao, Z P; Shih, I C; Wong, H T; Yu, Z Q

    1999-01-01

    Boron-loaded liquid scintillator offers some potential advantages as a detector for electron anti-neutrinos. A research program was carried out with the objective of developing such scintillators. The crucial feature is the pulse shape discrimination properties following the neutron capture by sup 1 sup 0 B. Results of the R and D efforts are presented. The feasibility and the technical difficulties of carrying out a full-scale neutrino experiment based on this approach are discussed. (author)

  4. Acrylic Target Vessels for a High-Precision Measurement of theta13 with the Daya Bay Antineutrino Detectors

    CERN Document Server

    Band, H R; Cherwinka, J; Cao, J; Chang, Y; Edwards, B; He, W; Heeger, K M; Heng, Y; Ho, T; Hsiung, B; Greenler, L; Kettell, S; Lewis, C; Luk, K B; Li, X; Littlejohn, B R; Pagac, A; Wang, C H; Wang, W; Wang, Y; Wise, T; Xiao, Q; Yeh, M; Zhuang, H

    2012-01-01

    This paper describes in detail the acrylic target vessels used to encapsulate the target and gamma catcher regions in the Daya Bay experiment's first pair of antineutrino detectors. We give an overview of the design, fabrication, shipping, and installation of the acrylic target vessels and their liquid overflow tanks. The acrylic quality assurance program and vessel characterization, which measures all geometric, optical, and material properties relevant to {\

  5. Geneva University: Observation of electron-antineutrino disappearance at Daya Bay

    CERN Multimedia

    Université de Genève

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Monday 19 March 2012 COLLOQUE DE PHYSIQUE 5 p.m. - École de Physique, Auditoire Stueckelberg Observation of electron-antineutrino disappearance at Daya Bay  Professor Yifang Wang Institute of High Energy Physics of the Chinese Academy of Sciences Beijing The Daya Bay Reactor Neutrino Experiment, a multinational collaboration operating in the south of China, today reported the first results of its search for the last, most elusive piece of a long-standing puzzle: how is it that neutrinos can appear to vanish as they travel? The surprising answer opens a gateway to a new understanding of fundamental physics and may eventually solve the riddle of why there is far more ordinary matter than antimatter in the Universe today....

  6. Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS.

    Science.gov (United States)

    Adamson, P; Anghel, I; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Castromonte, C M; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mathis, M; Mayer, N; McGowan, A M; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Moed Sher, S; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; O'Connor, J; Oliver, W P; Orchanian, M; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Phan-Budd, S; Plunkett, R K; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Tognini, S C; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Zwaska, R

    2013-06-21

    We report measurements of oscillation parameters from ν(μ) and ν(μ) disappearance using beam and atmospheric data from MINOS. The data comprise exposures of 10.71×10(20) protons on target in the ν(μ)-dominated beam, 3.36×10(20) protons on target in the ν(μ)-enhanced beam, and 37.88 kton yr of atmospheric neutrinos. Assuming identical ν and ν oscillation parameters, we measure |Δm2| = (2.41(-0.10)(+0.09))×10(-3)  eV2 and sin2(2θ) = 0.950(-0.036)(+0.035). Allowing independent ν and ν oscillations, we measure antineutrino parameters of |Δm2| = (2.50(-0.25)(+0.23))×10(-3)  eV2 and sin2(2θ) = 0.97(-0.08)(+0.03), with minimal change to the neutrino parameters. PMID:23829728

  7. Earth Radioactivity Measurements with a Deep Ocean Anti-neutrino Observatory

    CERN Document Server

    Dye, S T; Learned, J G; Maricic, J; Matsuno, S; Pakvasa, S; Varner, G; Wilcox, M

    2006-01-01

    We consider the detector size, location, depth, backgrounds, and radio-purity required of a mid-Pacific deep-ocean instrument to accomplish the twin goals of making a definitive measurement of the electron anti-neutrino flux due to uranium and thorium decays from Earth's mantle and core, and of testing the hypothesis for a natural nuclear reactor at the core of Earth. We take the experience with the KamLAND detector in Japan as our baseline for sensitivity and background estimates. We conclude that an instrument adequate to accomplish these tasks should have an exposure of at least 10 kilotonne-years (kT-y), should be placed at least at 4 km depth, may be located close to the Hawaiian Islands (no significant background from them), and should aim for KamLAND radio-purity levels, except for radon where it should be improved by a factor of at least 40. With an exposure of 10 kT-y we should achieve a 24% measurement of the U/Th content of the mantle plus core. Exposure at multiple ocean locations for testing late...

  8. Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS.

    Science.gov (United States)

    Adamson, P; Anghel, I; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Castromonte, C M; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mathis, M; Mayer, N; McGowan, A M; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Moed Sher, S; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; O'Connor, J; Oliver, W P; Orchanian, M; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Phan-Budd, S; Plunkett, R K; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Tognini, S C; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Zwaska, R

    2013-06-21

    We report measurements of oscillation parameters from ν(μ) and ν(μ) disappearance using beam and atmospheric data from MINOS. The data comprise exposures of 10.71×10(20) protons on target in the ν(μ)-dominated beam, 3.36×10(20) protons on target in the ν(μ)-enhanced beam, and 37.88 kton yr of atmospheric neutrinos. Assuming identical ν and ν oscillation parameters, we measure |Δm2| = (2.41(-0.10)(+0.09))×10(-3)  eV2 and sin2(2θ) = 0.950(-0.036)(+0.035). Allowing independent ν and ν oscillations, we measure antineutrino parameters of |Δm2| = (2.50(-0.25)(+0.23))×10(-3)  eV2 and sin2(2θ) = 0.97(-0.08)(+0.03), with minimal change to the neutrino parameters.

  9. Supernova neutrinos and antineutrinos: ternary luminosity diagram and spectral split patterns

    International Nuclear Information System (INIS)

    In core-collapse supernovae, the νe and ν-bar e species may experience collective flavor swaps to non-electron species νx, within energy intervals limited by relatively sharp boundaries (''splits''). These phenomena appear to depend sensitively upon the initial energy spectra and luminosities. We investigate the effect of generic variations of the fractional luminosities (le, lē, lx) with respect to the usual ''energy equipartition'' case (1/6, 1/6, 1/6), within an early-time supernova scenario with fixed thermal spectra and total luminosity. We represent the constraint le+lē+4lx = 1 in a ternary diagram, which is explored via numerical experiments (in single-angle approximation) over an evenly-spaced grid of points. In inverted hierarchy, single splits arise in most cases, but an abrupt transition to double splits is observed for a few points surrounding the equipartition one. In normal hierarchy, collective effects turn out to be unobservable at all grid points but one, where single splits occur. Admissible deviations from equipartition may thus induce dramatic changes in the shape of supernova (anti)neutrino spectra. The observed patterns are interpreted in terms of initial flavor polarization vectors (defining boundaries for the single/double split transitions), lepton number conservation, and minimization of potential energy

  10. First Anti-neutrino Oscillation Results from the T2K Experiment

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Neutrinos are some of the most abundant but yet most elusive particles in the universe. They have almost no mass, only interact weakly and relatively little is known about their properties. Furthermore it has been firmly established over the last decade that neutrinos can undergo flavour transitions as mass and flavor eigenstates are not identical. These neutrino oscillations have been studied using natural sources as well as nuclear reactors or with neutrinos produced at accelerators. T2K is a long baseline neutrino oscillation beam that uses a beam of muon (anti-)neutrinos that is directed form J-PARC at the east cost of Japan over a distance of almost 300 km to the SuperKamiokande water Cherenkov detector in the west. The facility is complemented by a near detector complex 280 m downstream of the neutrino production target to characterise the beam and the neutrino interaction dynamics. T2K has taken data with a muon neutrino beam since early 2010 and is studying the disappearance of muon neutrinos as well...

  11. Neutrino-antineutrino Mass Splitting in the Standard Model: Neutrino Oscillation and Baryogenesis

    CERN Document Server

    Fujikawa, Kazuo

    2015-01-01

    By adding a neutrino mass term to the Standard Model, which is Lorentz and $SU(2)\\times U(1)$ invariant but non-local to evade $CPT$ theorem, it is shown that non-locality within a distance scale of the Planck length, that may not be fatal to unitarity in generic effective theory, can generate the neutrino-antineutrino mass splitting of the order of observed neutrino mass differences, which is tested in oscillation experiments, and non-negligible baryon asymmetry depending on the estimate of sphaleron dynamics. The one-loop order induced electron-positron mass splitting in the Standard Model is shown to be finite and estimated at $\\sim 10^{-20}$ eV, well below the experimental bound $< 10^{-2}$ eV. The induced $CPT$ violation in the $K$-meson in the Standard Model is expected to be even smaller and well below the experimental bound $|m_{K}-m_{\\bar{K}}|<0.44\\times 10^{-18}$ GeV.

  12. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M.; Burns, Kimberly A.; Campbell, Luke W.; Greenfield, Bryce A.; Kos, Marek S.; Orrell, John L.; Schram, Malachi; VanDevender, Brent A.; Wood, Lynn S.; Wootan, David W.

    2015-03-01

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  13. Data processing and storage in the Daya Bay Reactor Antineutrino Experiment

    CERN Document Server

    He, Miao

    2015-01-01

    The Daya Bay Reactor Antineutrino Experiment reported the first observation of the non-zero neutrino mixing angle $\\theta_{13}$ using the first 55 days of data. It has also provided the most precise measurement of $\\theta_{13}$ with the extended data to 621 days. Daya Bay will keep running for another 3 years or so. There is about 100 TB raw data produced per year, as well as several copies of reconstruction data with similar volume to the raw data for each copy. The raw data is transferred to Daya Bay onsite and two offsite clusters: IHEP in Beijing and LBNL in California, with a short latency. There is quasi-real-time data processing at both onsite and offsite clusters, for the purpose of data quality monitoring, detector calibration and preliminary data analyses. The physics data production took place a couple of times per year according to the physics analysis plan. This paper will introduce the data movement and storage, data processing and monitoring, and the automation of the calibration.

  14. Measurement of Muon Antineutrino Oscillations with an Accelerator-Produced Off-Axis Beam.

    Science.gov (United States)

    Abe, K; Andreopoulos, C; Antonova, M; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bartet-Friburg, P; Batkiewicz, M; Bay, F; Berardi, V; Berkman, S; Bhadra, S; Blondel, A; Bolognesi, S; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buizza Avanzini, M; Calland, R G; Cao, S; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Chikuma, N; Christodoulou, G; Clifton, A; Coleman, J; Collazuol, G; Cremonesi, L; Dabrowska, A; De Rosa, G; Dealtry, T; Denner, P F; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Dolan, S; Drapier, O; Duffy, K E; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Feusels, T; Finch, A J; Fiorentini, G A; Friend, M; Fujii, Y; Fukuda, D; Fukuda, Y; Furmanski, A P; Galymov, V; Garcia, A; Giffin, S G; Giganti, C; Gizzarelli, F; Gonin, M; Grant, N; Hadley, D R; Haegel, L; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayashino, T; Hayato, Y; Helmer, R L; Hierholzer, M; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Hogan, M; Holeczek, J; Horikawa, S; Hosomi, F; Huang, K; Ichikawa, A K; Ieki, K; Ikeda, M; Imber, J; Insler, J; Intonti, R A; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Izmaylov, A; Jacob, A; Jamieson, B; Jiang, M; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kim, H; Kim, J; King, S; Kisiel, J; Knight, A; Knox, A; Kobayashi, T; Koch, L; Koga, T; Konaka, A; Kondo, K; Kopylov, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Liptak, Z J; Litchfield, R P; Li, X; Longhin, A; Lopez, J P; Ludovici, L; Lu, X; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martins, P; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Ma, W Y; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Mezzetto, M; Mijakowski, P; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K G; Nakamura, K; Nakamura, K D; Nakayama, S; Nakaya, T; Nakayoshi, K; Nantais, C; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; Nowak, J; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Patel, N D; Pavin, M; Payne, D; Perkin, J D; Petrov, Y; Pickard, L; Pickering, L; Pinzon Guerra, E S; Pistillo, C; Popov, B; Posiadala-Zezula, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reinherz-Aronis, E; Riccio, C; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Rychter, A; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shah, R; Shaikhiev, A; Shaker, F; Shaw, D; Shiozawa, M; Shirahige, T; Short, S; Smy, M; Sobczyk, J T; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Stewart, T; Suda, Y; Suvorov, S; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Terhorst, D; Terri, R; Thakore, T; Thompson, L F; Tobayama, S; Toki, W; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vallari, Z; Vasseur, G; Wachala, T; Wakamatsu, K; Walter, C W; Wark, D; Warzycha, W; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Wilson, J R; Wilson, R J; Yamada, Y; Yamamoto, K; Yamamoto, M; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoo, J; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2016-05-01

    T2K reports its first measurements of the parameters governing the disappearance of ν[over ¯]_{μ} in an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic ν[over ¯]_{μ} beam, produced with a peak energy of 0.6 GeV at J-PARC, is observed at the far detector Super-Kamiokande, 295 km away, where the ν[over ¯]_{μ} survival probability is expected to be minimal. Using a data set corresponding to 4.01×10^{20} protons on target, 34 fully contained μ-like events were observed. The best-fit oscillation parameters are sin^{2}(θ[over ¯]_{23})=0.45 and |Δm[over ¯]_{32}^{2}|=2.51×10^{-3}  eV^{2} with 68% confidence intervals of 0.38-0.64 and 2.26-2.80×10^{-3}  eV^{2}, respectively. These results are in agreement with existing antineutrino parameter measurements and also with the ν_{μ} disappearance parameters measured by T2K. PMID:27203315

  15. Electromagnetic and weak form factors of nucleon and charged quasielastic scatterings of neutrino (antineutrino) and nucleon

    CERN Document Server

    Li, Bing An

    2014-01-01

    The study of electromagnetic and weak form factors of nucleon (charged quasielastic scatterings of neutrino (antineutrino) and nucleon) done in $70^\\prime s$ and published in Chinese journals is reviewed. In the approach of the study antiquark components are introduced to the wave functions of nucleon and the study shows that the antiquark components of nucleon play an essential role in the EM and weak form factors of nucleon. The SU(6) symmetric wave functions of baryons in the rest frame ( s-wave in the rest frame) have been constructed. In these wave functions there are both quark and antiquark components. Using Lorentz transformations these wave functions are boosted to moving frame. In terms of effective Lagrangian these wave functions are used to study the EM and weak form factors of nucleon and $p \\rightarrow \\Delta$. The ratio $\\mu_p G^p_E/G^p_M$, $G^n_E$, $G^n_M$, $G^*_M$, $E1+$ and $S1+$ of $p \\rightarrow \\Delta$ are predicted. The axial-vector form factors of nucleon is predicted to be $G_A(q^2)/G_...

  16. The diffuse neutrino flux from supernovae: upper limit on the electron neutrino component from the non-observation of antineutrinos at SuperKamiokande

    CERN Document Server

    Lunardini, C

    2006-01-01

    I derive an upper bound on the electron neutrino component of the diffuse supernova neutrino flux from the constraint on the antineutrino component at SuperKamiokande. The connection between antineutrino and neutrino channels is due to the similarity of the muon and tau neutrino and antineutrino fluxes produced in a supernova, and to the conversion of these species into electron neutrinos and antineutrinos inside the star. The limit on the electron neutrino flux is 5.5 cm^-2 s^-1 above 19.3 MeV of neutrino energy, and is stronger than the direct limit from LSD by three orders of magnitude. It represents the minimal sensitivity required at future direct searches, and is intriguingly close to the reach of the SNO and ICARUS experiments. The electron neutrino flux will have a lower bound if the electron antineutrino flux is measured. Indicatively, the first can be smaller than the second at most by a factor of 2-3 depending on the details of the neutrino spectra at production.

  17. Global Analysis of the Source and Detector Nonstandard Interactions Using the Short Baseline Neutrino- and Antineutrino-Electron Scattering Data

    CERN Document Server

    Khan, Amir N

    2016-01-01

    We present a global analysis of the semileptonic and purely Leptonic nonuniversal and flavor-changing nonstandard neutrino interactions in all the known short-baseline neutrino- and antineutrino-electron scattering experiments. The nonstandard effects at the source and at the detector can be more transparent in these experiments because of the negligibly small ratio between the baselines and the neutrino energies, which is not enough for the neutrinos to oscillate, and thus can be sensitive to the new physics at the both ends. We use data from two electron-neutrino electron scattering experiments and six electron-antineutrino electron scattering experiments and combine them to find the best fits on the nonstandard parameters using the source-only, detector-only analyses, and then find the interplay between the two cases. The bounds obtained in some cases are stronger and new, in some cases comparable to the current ones, and in the other cases weaker. For instance, the bound obtained from the interplay betwee...

  18. Messung der Impulsverteilung der Antiquarks im Nukleon aus der inklusiven tiefinelastischen Antineutrino Nukleon Reaktion ueber geladene Stroeme

    CERN Document Server

    Klasen, Hans Peter

    1981-01-01

    In this thesis the antiquark momentum distribution in the nucleus as a function of x and Q2 is determined. This determination is based on the measurement of the differential cross-section at high y for inclusive antineutrino nucleon charged current interactions. The portion of antineutrino scattering off quarks is corrected by the also measured neutrino cross-section. For the measurement of the cross-section 150 000 anti v- und 35 000 v-events, which were produced in the CERN wide band beam, in the energy range from 20 GeV to 160 GeV and 27 000 anti v- and 63 000 v-events measured in the narrow band beam in the energy range from 20 GeV to 200 GeV are used. The measurement was performed with the detector of the CERN-Dortmund-Heidelberg-Saclay collaboration. The detector serves at the same time as target, as hadron energy calorimeter and as muon spectrometer. The measured antiquark momentum distribution shows a strong rise for x<0.1 as a function of Q2. It will be shown that this scaling violation cannot be ...

  19. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for ^{235}U(n,fission) at Thermal and Fast Neutron Energies.

    Science.gov (United States)

    Sonzogni, A A; McCutchan, E A; Johnson, T D; Dimitriou, P

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 ^{235}U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of ^{86}Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel. PMID:27081973

  20. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for 235U (n ,fission) at Thermal and Fast Neutron Energies

    Science.gov (United States)

    Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.; Dimitriou, P.

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 235U 235 fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of 86Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.

  1. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for ^{235}U(n,fission) at Thermal and Fast Neutron Energies.

    Science.gov (United States)

    Sonzogni, A A; McCutchan, E A; Johnson, T D; Dimitriou, P

    2016-04-01

    Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 ^{235}U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of ^{86}Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.

  2. Measurement of the mixing leptonic parameter θ13 at the Double Chooz reactor antineutrino experiment

    International Nuclear Information System (INIS)

    The Double Chooz experiment aims at measuring the neutrino mixing parameter θ13 by studying the oscillations of de ν-bare produced by the Chooz nuclear reactors located in France. The experimental concept consists in comparing the signal of two identical 10.3 m3 detectors, allowing to cancel most of the experimental systematic uncertainties. The near detector, whose goal is the flux normalization and a measurement without oscillation, is expected to be delivered in 2013. The farthest detector from the source is taking data since April 2011 and is sensitive to θ13, which is expected to affect both the rate and the shape of the measured de ν-bare. In this thesis, are first presented the Double Chooz experiment, with its ν-bare source, its detection method, and the expected signal and backgrounds. In order to perform a selection, important quantities have to be reconstructed, calibrated, and saved in data files. The channel time offsets determination, the energy and vertex reconstruction algorithm CocoReco, the reconstruction packages of the Common Trunk, and the light trees maker Cheetah are especially presented. Concerning the data analysis, all the selection cuts and results for signal and backgrounds are discussed, particularly the multiplicity cut, the multiple off time window method, the lithium veto cut, and the cosmogenic 9Li background studies. The Double Chooz experiment observed 8,249 de -bare candidates in 227.93 days in its far detector only. The reactor antineutrino flux prediction used the Bugey 4 flux measurement after correction for differences in core composition. The expectation in case of no-oscillation is 8,937 events and this deficit is interpreted as evidence for ν-bare disappearance. From a rate and shape analysis, is found sin22θ = 0,109± 0,030 (stat) ± 0,025 (syst), with Δm231 = 2,32 x 10-3 eV2, while the no-oscillation hypothesis is even excluded at 2.9 σ. (author)

  3. Anti-Neutrino Charged Current Quasi-Elastic Scattering in MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Chvojka, Jesse John [Univ. of Rochester, NY (United States)

    2012-01-01

    in neutrino interactions. We present the first cross-section measurement for MINER A, the differential cross-section dσ/dQ2 for muon anti-neutrino CCQE scattering on polystyrene scintillator (CH) as well as comparisons to several final state models.

  4. Neutrino-induced reactions on nuclei

    Science.gov (United States)

    Gallmeister, K.; Mosel, U.; Weil, J.

    2016-09-01

    Background: Long-baseline experiments such as the planned deep underground neutrino experiment (DUNE) require theoretical descriptions of the complete event in a neutrino-nucleus reaction. Since nuclear targets are used this requires a good understanding of neutrino-nucleus interactions. Purpose: Develop a consistent theory and code framework for the description of lepton-nucleus interactions that can be used to describe not only inclusive cross sections, but also the complete final state of the reaction. Methods: The Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of quantum-kinetic transport theory is used, with improvements in its treatment of the nuclear ground state and of 2p2h interactions. For the latter an empirical structure function from electron scattering data is used as a basis. Results: Results for electron-induced inclusive cross sections are given as a necessary check for the overall quality of this approach. The calculated neutrino-induced inclusive double-differential cross sections show good agreement data from neutrino and antineutrino reactions for different neutrino flavors at MiniBooNE and T2K. Inclusive double-differential cross sections for MicroBooNE, NOvA, MINERvA, and LBNF/DUNE are given. Conclusions: Based on the GiBUU model of lepton-nucleus interactions a good theoretical description of inclusive electron-, neutrino-, and antineutrino-nucleus data over a wide range of energies, different neutrino flavors, and different experiments is now possible. Since no tuning is involved this theory and code should be reliable also for new energy regimes and target masses.

  5. Neutrinos from SN 1987A - Implications for cooling of the nascent neutron star and the mass of the electron antineutrino

    Science.gov (United States)

    Loredo, Thomas J.; Lamb, Don Q.

    1989-01-01

    Data on neutrinos from SN 1987A are compared here with parameterized models of the neutrino emission using a consistent and straightforward statistical methodology. The empirically measured detector background spectra are included in the analysis, and the data are compared with a much wider variety of neutrino emission models than was explored previously. It is shown that the inferred neutrino emission model parameters are strongly correlated. The analysis confirms that simple models of the neutrino cooling of the nascent neutron star formed by the SN adequately explain the data. The inferred radius and binding energy of the neutron star are in excellent agreement with model calculations based on a wide range of equations of state. The results also raise the upper limit of the electron antineutrino rest mass to roughly 25 eV at the 95 percent confidence level, roughly 1.5-5 times higher than found previously.

  6. Anharmonicity of internal atomic oscillation and effective antineutrino mass evaluation from gaseous molecular tritium β-decay

    Science.gov (United States)

    Lokhov, Alexey V.; Titov, Nikita A.

    2016-07-01

    Data analysis of the next-generation effective antineutrino mass measurement experiment KATRIN requires reliable knowledge of systematic corrections. In particular, the width of the daughter molecular ion excitation spectrum rovibrational band should be known with better than 1% precision. Very precise ab initio quantum calculations exist, and we compare them with the well-known tritium molecule parameters within the framework of a phenomenological model. The rovibrational band width with accuracy of a few percent is interpreted as a result of the zero-point atomic oscillation in the harmonic potential. The Morse interatomic potential is used to investigate the impact of anharmonic atomic oscillations. The calculated corrections cannot account for the difference between the ab initio quantum calculations and the phenomenological model.

  7. Off-shell effects in the relativistic mean field model and their role in CC (anti)neutrino scattering at MiniBooNE kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, M.V., E-mail: martin.inrne@gmail.com [Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, CEI Moncloa, Madrid E-28040 (Spain); Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); González-Jiménez, R.; Caballero, J.A. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla (Spain); Barbaro, M.B. [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Donnelly, T.W. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Udías, J.M. [Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, CEI Moncloa, Madrid E-28040 (Spain)

    2013-11-25

    The relativistic mean field (RMF) model is used to describe nucleons in the nucleus and thereby to evaluate the effects of having dynamically off-shell spinors. Compared with free, on-shell nucleons as employed in some other models, within the RMF nucleons are described by relativistic spinors with strongly enhanced lower components. In this work it is seen that for MiniBooNE kinematics, neutrino charged-current quasielastic cross sections show some sensitivity to these off-shell effects, while for the antineutrino-nucleus case the total cross sections are seen to be essentially independent of the enhancement of the lower components. As was found to be the case when comparing the RMF results with the neutrino-nucleus data, the present impulse approximation predictions within the RMF also fall short of the MiniBooNE antineutrino-nucleus data.

  8. Les expériences Nucifer et Stéréo : étude des antineutrinos de réacteurs à courte distance

    OpenAIRE

    Pequignot, Maxime

    2015-01-01

    In spite of a faint interaction with their environment, neutrinos can be now clearly detected thanks to a proven technology based on liquid scintillators and photomultiplier tubes. The advances made these last years allow to reduce the size and the complexity of the detectors and therefore naturally lead to the first applications with these particles. As the first experiment to be placed at 7.2 m of a nuclear core, the Nucifer detector demonstrates the possibility of counting antineutrinos co...

  9. CeLAND: search for a 4th light neutrino state with a 3 PBq 144Ce-144Pr electron antineutrino generator in KamLAND

    CERN Document Server

    Gando, A; Hayashida, S; Ikeda, H; Inoue, K; Ishidoshiro, K; Ishikawa, H; Koga, M; Matsuda, R; Matsuda, S; Mitsui, T; Motoki, D; Nakamura, K; Oki, Y; Otani, M; Shimizu, I; Shirai, J; Suekane, F; Suzuki, A; Takemoto, Y; Tamae, K; Ueshima, K; Watanabe, H; Xu, B D; Yamada, S; Yamauchi, Y; Yoshida, H; Cribier, M; Durero, M; Fischer, V; Gaffiot, J; Jonqueres, N; Kouchner, A; Lasserre, T; Leterme, D; Letourneau, A; Lhuillier, D; Mention, G; Rampal, G; Scola, L; Veyssiere, Ch; Vivier, M; Yala, P; Berger, B E; Kozlov, A; Banks, T; Dwyer, D; Fujikawa, B K; Han, K; Kolomensky, Yu G; Mei, Y; O'Donnell, T; Decowski, P; Markoff, D M; Yoshida, S; Kornoukhov, V N; Gelis, T V M; Tikhomirov, G V; Learned, J G; Maricic, J; Matsuno, S; Milincic, R; Karwowski, H J; Efremenko, Y; Detwiler, A; Enomoto, S

    2013-01-01

    The reactor neutrino and gallium anomalies can be tested with a 3-4 PBq (75-100 kCi scale) 144Ce-144Pr antineutrino beta-source deployed at the center or next to a large low-background liquid scintillator detector. The antineutrino generator will be produced by the Russian reprocessing plant PA Mayak as early as 2014, transported to Japan, and deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND) as early as 2015. KamLAND's 13 m diameter target volume provides a suitable environment to measure the energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, sterile neutrino state. This will provide a comprehensive test of the electron dissaperance neutrino anomalies and could lead to the discovery of a 4th neutrino state for Delta_m^2 > 0.1 eV^2 and sin^2(2theta) > 0.05.

  10. Theoretical update on low energy neutrino-nucleus reactions

    CERN Document Server

    Nieves, J; Amaro, J E; Valverde, M; Hernández, E

    2008-01-01

    We review Quasielastic (QE) inclusive and semi--inclusive neutrino/antineutrino Charged Current (CC) and Neutral Current (NC) induced nuclear reactions at intermediate energies. We pay special attention to nuclear corrections besides Pauli blocking: Long and Short range nuclear correlations (RPA and SRC) and particle and hole Spectral Functions (SF). We also critically review the use of the Plane and Distorted Wave Impulse approximations (PWIA and DWIA) to describe inclusive one nucleon knockout reactions off nuclei. In this context, we present results from a Monte Carlo cascade method to account for the rescattering of the outgoing nucleon. Finally, we examine the effects of chiral non-resonant terms in neutrino pion production off the nucleon, and present some preliminary results on nuclear coherent pion production induced by neutrinos.

  11. Measurement of Neutrino and Antineutrino Charged-Current Inclusive Cross Sections with the MINERvA Detector

    Energy Technology Data Exchange (ETDEWEB)

    Devan, Joshua D. [College of William and Mary, Williamsburg, VA (United States)

    2015-01-01

    Neutrinos are a nearly massless, neutral particle in the Standard Model that only interact via the weak interaction. Experimental confirmation of neutrino oscillations, in which a neutrino created as a particular type (electron, muon or tau) can be observed as a different type after propagating some distance, earned the 2015 Nobel Prize in Physics. Neutrino oscillation experiments rely on accurate measurements of neutrino interactions with matter, such as that presented here. Neutrinos also provide a unique probe of the nucleus, complementary to electron scattering experiments. This thesis presents a measurement of the charged-current inclusive cross section for muon neutrinos and antineutrinos in the energy range 2 to 50 GeV with the MINERvA detector. MINERvA is a neutrino scattering experiment in the NuMI neutrino beam at Fermilab, near Chicago. A cross section measures the probability of an interaction occurring, measured here as a function of neutrino energy. To extract a cross section from data, the observed rate of interactions is corrected for detector efficiency and divided by the number of scattering nucleons in the target and the flux of neutrinos in the beam. The neutrino flux is determined with the low-$\

  12. Single photon production induced by (anti)neutrino neutral current scattering on nucleons and nuclear targets

    CERN Document Server

    Alvarez-Ruso, L; Wang, E

    2015-01-01

    We review our theoretical approach to neutral current photon emission on nucleons and nuclei in the few-GeV energy region, relevant for neutrino oscillation experiments. These reactions are dominated by the weak excitation of the $\\Delta(1232)$ resonance but there are also important non-resonant contributions. We have also included terms mediated by nucleon excitations from the second resonance region. On nuclei, Pauli blocking, Fermi motion and the in-medium $\\Delta$ resonance broadening have been taken into account for both incoherent and coherent reaction channels. With this model, the number and distributions of photon events at the MiniBooNE and T2K experiments have been obtained. We have also compared to the NOMAD upper limit at higher energies. The implications of our findings and future perspectives are discussed.

  13. Single photon production induced by (anti)neutrino neutral current scattering on nucleons and nuclear targets

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Ruso, L.; Nieves, J. [Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, E-46071 Valencia (Spain); Wang, E. [Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, E-46071 Valencia (Spain); Department of Physics, Zhengzhou University, Zhengzhou, Henan 450001 (China)

    2015-10-15

    We review our theoretical approach to neutral current photon emission on nucleons and nuclei in the few-GeV energy region, relevant for neutrino oscillation experiments. These reactions are dominated by the weak excitation of the Δ(1232) resonance but there are also important non-resonant contributions. We have also included terms mediated by nucleon excitations from the second resonance region. On nuclei, Pauli blocking, Fermi motion and the in-medium Δ resonance broadening have been taken into account for both incoherent and coherent reaction channels. With this model, the number and distributions of photon events at the MiniBooNE and T2K experiments have been obtained. We have also compared to the NOMAD upper limit at higher energies. The implications of our findings and future perspectives are discussed.

  14. Measurements of cross-section of charge current inclusive of antineutrino scattering off nucleons using carbon, iron, lead and scintillator at MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Rakotondravohitra, Laza [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-08-18

    Neutrino physics is one of the most active fields in the domaine of high energy physics during the last century. The need of precise measurement of neutrino-nucleus interactions required by the neutrino oscillation experiments is a an exiting step. These measurements of cross-section are more than essential for neutrino oscillation experiment. Over the year, many measurements from varieties of experiments have been presented. MINERνA is one of the world leaders in measuring cross-section of neutrino and antineutrino -nucleus interactions. MINERνA is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. In order to study nuclear dependence, MINERνA is endowed with different types of solid nuclear targets as well are liquid targets such as helium and water. This thesis presents measurements of cross-section of antineutrino scattering off nucleons using a variety of solid nuclear targets, carbon, iron, lead and also polystyrene scintillator (CH). The data set of antineutrino used for this analysis was taken between March and July 2010 with a total of 1.60X1020 protons on target. Charged current inclusive interactions were selected by requiring a positive muon and kinematics limitation of acceptance of the muon spectrometer are applied. The analysis requires neutrino energy between 2GeV et 20GeV and the angle of muon θmu < 17degree . The absolute cross-section # as function of neutrino energy and the differential cross-section dσ/ dxbj measured and shown the corresponding systematics for each nuclear targets. Data results are compared with prediction of the models implemented in the neutrino events generators GENIE 2.6.2 used by the experiment.

  15. Production of W-+ with an anomalous magnetic moment via the collision of an ultrahigh-energy (anti)neutrino on a target nucleon

    CERN Document Server

    Rosado, A

    2003-01-01

    We discuss the production of W-+ bosons in deep inelastic processes (anti-nu)nu + nucleon --> l+- + W-+ + X, in the context of an electroweak model in which the vector boson self interactions may be different from those prescribed by the electroweak standard model. We present results which show the strong dependence of the cross section on the anomalous magnetic dipole moment kappa of the W+-. We show that even small deviations from the standard model value of kappa (kappa=1) could imply observable deviations in the cross section rates of W-+ production through the collision of an ultrahigh energy (anti)neutrino on a target nucleon.

  16. Untersuchung der Eigenschaften neutraler Stroeme in der semileptonischen inklusiven Neutrino und Antineutrino Nukleon Wechselwirkung

    CERN Document Server

    Kroger, Bernd

    1981-01-01

    In the dechromatic neutron beam of the CERN-SPS results obtained with the CHARM detector from the deep inelastic inclusive neutrino-nucleon scattering were analyzed according to following reactions: #betta#sub(μ)(anti #betta#sub(μ))+N->μ-(μ+) + hadrons and #betta#sub(μ)(anti #betta#sub(μ))+N->#betta#sub(μ)(anti #betta#sub(μ)) + hadrons. The aim of these studies was the determination of the coupling of neutral currents in the weak interaction. All data can be well described by the standard model for the unification of the electrogmagnetic and weak interaction in connection with the quarkparton model, if a Weinberg angle of sin2deltasub(w)=0.222+-0.016 is assumed. (orig./HSI)

  17. Reactor anti-neutrinos: measurement of the θ13 leptonic mixing angle and search for potential sterile neutrinos

    International Nuclear Information System (INIS)

    The Double Chooz experiment aims to measure the θ13 mixing angle through the disappearance -induced by the oscillation phenomenon - of anti-neutrinos produced by the Chooz nuclear reactors. In order to reduce systematic uncertainties, the experiment relies on the relative comparison of detected signals in two identical liquid scintillator detectors. The near one, giving the normalization of the emitted flux, is currently being built and will be delivered in spring 2014. The far detector, sensitive to θ13, is located at about one kilometer and is taking data since 2011. In this first phase of the experiment, the far detector data are compared to a prediction of the emitted neutrino flux to estimate θ13. In this thesis, the Double Chooz experiment and its analysis are presented, especially the background studies and the rejection of parasitic signals due to light emitted by photo-multipliers. Neutron fluxes between the different detector volumes impact the definition of the fiducial volume of neutrino interactions and the efficiency of detection. Detailed studies of these effects are presented. As part of the Double Chooz experiment, studies were performed to improve the prediction of neutrino flux emitted by reactors. This work revealed a deficit of observed neutrino rates in the short baseline experiments of last decades. This deficit could be explained by an oscillation to a sterile state. The Stereo project aims to observe a typical signature of oscillations: the distortion of neutrino spectra both in energy and baseline. This thesis presents the detector concept and simulations as well as sensitivity studies. Background sources and the foreseen shielding are also discussed. (author)

  18. Measurement of neutrino mixing angle θ13 and mass difference Δ mee2 from reactor antineutrino disappearance in the RENO experiment

    Science.gov (United States)

    Kim, Soo-Bong

    2016-07-01

    RENO (Reactor Experiment for Neutrino Oscillation) made a definitive measurement of the smallest neutrino mixing angle θ13 in 2012, based on the disappearance of reactor electron antineutrinos. The experiment has obtained a more precise value of the mixing angle and the first result on neutrino mass difference Δ mee2 from an energy and baseline dependent reactor neutrino disappearance using ∼500 days of data. Based on the ratio of inverse-beta-decay (IBD) prompt spectra measured in two identical far and near detectors, we obtain sin2 ⁡ (2θ13) = 0.082 ± 0.009 (stat .) ± 0.006 (syst .) and | Δ mee2 | = [2.62-0.23+0.21 (stat .)-0.13+0.12 (syst .) ] ×10-3 eV2. An excess of reactor antineutrinos near 5 MeV is observed in the measured prompt spectrum with respect to the most commonly used models. The excess is found to be consistent with coming from reactors. A successful measurement of θ13 is also made in an IBD event sample with a delayed signal of neutron capture on hydrogen. A precise value of θ13 would provide important information on determination of the leptonic CP phase if combined with a result of an accelerator neutrino beam experiment.

  19. A PRECISION MEASUREMENT OF THE NEUTRINO MIXING ANGLE THETA (SUB 13) USING REACTOR ANTINEUTRINOS AT DAYA BAY.

    Energy Technology Data Exchange (ETDEWEB)

    KETTELL, S.; ET AL.

    2006-10-16

    This document describes the design of the Daya Bay reactor neutrino experiment. Recent discoveries in neutrino physics have shown that the Standard Model of particle physics is incomplete. The observation of neutrino oscillations has unequivocally demonstrated that the masses of neutrinos are nonzero. The smallness of the neutrino masses (<2 eV) and the two surprisingly large mixing angles measured have thus far provided important clues and constraints to extensions of the Standard Model. The third mixing angle, {delta}{sub 13}, is small and has not yet been determined; the current experimental bound is sin{sup 2} 2{theta}{sub 13} < 0.17 at 90% confidence level (from Chooz) for {Delta}m{sub 31}{sup 2} = 2.5 x 10{sup -3} eV{sup 2}. It is important to measure this angle to provide further insight on how to extend the Standard Model. A precision measurement of sin{sup 2} 2{theta}{sub 13} using nuclear reactors has been recommended by the 2004 APS Multi-divisional Study on the Future of Neutrino Physics as well as a recent Neutrino Scientific Assessment Group (NUSAG) report. We propose to perform a precision measurement of this mixing angle by searching for the disappearance of electron antineutrinos from the nuclear reactor complex in Daya Bay, China. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will be vital in resolving the neutrino-mass hierarchy and future measurements of CP violation in the lepton sector because this technique cleanly separates {theta}{sub 13} from CP violation and effects of neutrino propagation in the earth. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will provide important, complementary information to that from long-baseline, accelerator-based experiments. The goal of the Daya Bay experiment is to reach a sensitivity of 0.01 or better in sin{sup 2} 2{theta}{sub 13} at 90% confidence level.

  20. Neutrino reactions in hot and dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Lohs, Andreas

    2015-04-13

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  1. Measurement of the neutral to charged current cross section ratios in neutrino and antineutrino nucleon interactions and determination of the Weinberg angle

    International Nuclear Information System (INIS)

    The cross section ratios of neutral and charged current interactions induced by neutrinos and antineutrinos in iron have been measured in the 200 GeV narrow-band beam at the CERN SPS. We find Rsub(ν)=0.301+-0.007 and Rsub(anti ν)=0.363+-0.015 for a hadron energy cut of 10 GeV. The results are in agreement with the standard model of electroweak interactions. In the MS renormalization scheme at the scale of the W boson mass sin2Osub(w)(msub(w))=0.226+-0.012 is obtained, where the error represents the experimental uncertainty. The theoretical uncertainty is estimated to be Δ sind2Osub(w)=+-0.006. (orig.)

  2. Determination of the nucleon structure functions in the study of the inclusive charged current interactions of neutrinos and antineutrinos in iron between 30 and 200 GeV

    International Nuclear Information System (INIS)

    In the deep inelastic neutrino scattering experiment of the CERN-Dortmund-Heidelberg-Saclay collaboration realized on the CERN SPS narrow band beam, we have measured 23000 charged current neutrino and 6200 antineutrino interactions. The structure functions of the nucleon have been extracted from the differential cross sections on iron and compared with parton model predictions. The total cross sections and the fraction of momentum carried by the antiquarks in the nucleon have been measured as function of the neutrino energy. The structure functions obtained for different Q2 bins show significant deviations from scale invariance. The data are in agreement with QCD predictions for a value of the scale parameter Λ between 300 and 700 MeV

  3. Piezonuclear Reactions

    CERN Document Server

    Cardone, Fabio; Petrucci, Andrea

    2010-01-01

    In this paper, we deal with the subject of piezonuclear reactions, namely nuclear reactions (of new type) triggered by pressure waves. We discuss the experimental evidences obtained in the last two decades, which can be summarized essentially as follows: experiments in cavitation of liquids, where transmutation of elements, creation of elements and emission of neutrons have been observed; emission of neutrons in brittle failure of solids subjected to mechanical pressure; alteration of the lifetime of un unstable element (thorium) subjected to cavitation. A theoretical model to explain these facts is proposed. Future perspectives of these experimental and theoretical investigations are also underlined.

  4. Cross sections for neutrino and antineutrino induced pion production on hydrocarbon in the few-GeV region using MINERvA

    CERN Document Server

    McGivern, C L; Eberly, B; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Cai, T; Carneiro, M F; Christy, M E; da Motta, H; Dytman, S A; Diaz, G A; Endress, E; Felix, J; Fields, L; Fine, R; Galindo, R; Gallagher, H; Golan, T; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kiveni, M; Kleykamp, J; Kordosky, M; Maher, E; Manly, S; Mann, W A; Marshall, C M; Caicedo, D A Martinez; McFarland, K S; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfin, J G; Mousseau, J; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman,; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ramirez, M A; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Simon, C; Salinas, C J Solano; Falero, S Sanchez; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zhang, D

    2016-01-01

    Separate samples of charged-current pion production events representing two semi-inclusive channels nu_mu-CC(pi+) and anu_mu-CC(pi0) have been obtained using neutrino and antineutrino exposures of the MINERvA detector. Distributions in kinematic variables based upon muon-track reconstructions are analyzed and compared for the two samples. The differential cross sections for muon production angle, muon momentum, and four-momentum transfer Q2, are reported, and cross sections versus neutrino energy are obtained. Comparisons with predictions of current neutrino event generators are used to clarify the role of the Delta(1232) and higher-mass baryon resonances in CC pion production and to show the importance of pion final-state interactions. For the nu_mu-CC(pi+) (anu_mu-CC(pi0)) sample, the absolute data rate is observed to lie below (above) the predictions of some of the event generators by amounts that are typically 1-to-2 sigma. However the generators are able to reproduce the shapes of the differential cross ...

  5. The electron antineutrino angular correlation coefficient a in free neutron decay. Testing the standard model with the aSPECT-spectrometer

    International Nuclear Information System (INIS)

    The β-decay of free neutrons is a strongly over-determined process in the Standard Model (SM) of Particle Physics and is described by a multitude of observables. Some of those observables are sensitive to physics beyond the SM. For example, the correlation coefficients of the involved particles belong to them. The spectrometer aSPECT was designed to measure precisely the shape of the proton energy spectrum and to extract from it the electron anti-neutrino angular correlation coefficient a. A first test period (2005/2006) showed the ''proof-of-principles''. The limiting influence of uncontrollable background conditions in the spectrometer made it impossible to extract a reliable value for the coefficient a (published in 2008). A second measurement cycle (2007/2008) aimed to under-run the relative accuracy of previous experiments (δa)/(a)=5%. I performed the analysis of the data taken there which is the emphasis of this doctoral thesis. A central point are background studies. The systematic impact of background on a was reduced to (δa(syst.))/(a)=0.61 %. The statistical accuracy of the analyzed measurements is (δa(stat.))/(a)∼1.4 %. Besides, saturation effects of the detector electronics were investigated which were initially observed. These turned out not to be correctable on a sufficient level. An applicable idea how to avoid the saturation effects is discussed in the last chapter. (orig.)

  6. Coherent production of single pions and ρ mesons in charged-current interactions of neutrinos and antineutrinos on neon nuclei at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    The coherent production of π and ρ mesons in νμ(bar νμ)--neon charged-current interactions has been studied using the Fermilab 15-foot bubble chamber filled with a heavy Ne-H2 mix and exposed to the Teva- tron quadrupole triplet (anti)neutrino beam. The νμ (bar νμ) beam had an average energy of 80 GeV (70 GeV). From a sample corresponding to approximately 28 000 charged-current interactions, net signals of (53±9) μ±πminus-plus coherent events and (19±7) μ±πminus-plusπ0 coherent events are extracted. For E>10 GeV, the coherent pion production cross section is determined to be (3.2±0.7)x10-38 cm2 per neon nucleus whereas the coherent ρ production cross section is (2.1±0.8)x10-38 cm2 per neon nucleus. These cross sections and the kinematical characteristics of the coherent events at |t|2 are found to be in general agreement with the predictions of a model based on the hadron dominance and, in the pion case, on the partially conserved axial-vector current hypothesis. Also discussed is the coherent production of systems consisting of three pions

  7. 3-flavor and 4-flavor implications of the latest T2K and NOνA electron (anti-)neutrino appearance results

    Science.gov (United States)

    Palazzo, Antonio

    2016-06-01

    The two long-baseline experiments T2K and NO νA have recently presented new findings. T2K has shown the first νbare appearance data while NO νA has released the first νe appearance results. These data are of particular importance because they allow us to probe for the first time in a direct (or manifest) way the leptonic CP-violation. In fact, it is the first time that a hint of CP-violation arises from the comparison of the observations of neutrinos and antineutrinos. We consider the implications of such new results both for the standard 3-flavor framework and for the non-standard 3 + 1 scheme involving one sterile neutrino species. The 3-flavor analysis shows a consolidation of the previous trends, namely a slight preference for sin ⁡ δ statistical significance close to 90% C.L., and a mild preference (at more than 68% C.L.) for the normal hierarchy. In a 3 + 1 framework, the data constrain two CP-phases (δ13 ≡ δ and δ14), which exhibit a slight preference for the common value δ13 ≃δ14 ≃ - π / 2. Interestingly, in the enlarged four neutrino scheme the preference for the normal hierarchy found within the 3-flavor framework completely disappears. This indicates that light sterile neutrinos may constitute a potential source of fragility in the capability of the two LBL experiments of discriminating the neutrino mass hierarchy.

  8. Viability of $\\Delta m^2\\sim$ 1 eV$^2$ sterile neutrino mixing models in light of MiniBooNE electron neutrino and antineutrino data from the Booster and NuMI beamlines

    CERN Document Server

    Karagiorgi, G; Conrad, J; Shaevitz, M H; Sorel, M

    2009-01-01

    This paper examines sterile neutrino oscillation models in light of recently published results from the MiniBooNE Experiment. The new MiniBooNE data include the updated neutrino results, including the low energy region, and the first antineutrino results, as well as first results from the off-axis NuMI beam observed in the MiniBooNE detector. These new global fits also include data from LSND, KARMEN, NOMAD, Bugey, CHOOZ, CCFR84, and CDHS. Constraints from atmospheric oscillation data have been imposed.

  9. Background for Terrestrial Antineutrino Investigations: Radionuclide Distribution, Georeactor Fission Events, and Boundary Conditions on Fission Power Production

    CERN Document Server

    Herndon, J M; Edgerley, Dennis A.

    2005-01-01

    Estimated masses of fissioning and non-fissioning radioactive elements and their respective distributions within the Earth are presented, based upon the fundamental identity of the components of the interior 82% of the Earth, the endo-Earth, with corresponding components of the Abee enstatite chondrite meteorite. Within limits of existing data, the following generalizations concerning the endo-Earth radionuclides can be made: (1) Most of the K-40 may be expected to exist in combination with oxygen in the silicates of the lower mantle, perhaps being confined to the upper region of the lower mantle where it transitions to the upper mantle; (2) Uranium may be expected to exist at the center of the Earth where it may undergo self-sustaining nuclear fission chain reactions, but there is a possibility that some non-fissioning uranium may be found scattered diffusely within the core floaters which are composed of CaS and MgS; and, (3) Thorium may be expected to occur within the core floaters at the core-mantle bound...

  10. Chain reaction

    International Nuclear Information System (INIS)

    Chain Reaction is a work of recent American political history. It seeks to explain how and why America came to depend so heavily on its experts after World War II, how those experts translated that authority into political clout, and why that authority and political discretion declined in the 1970s. The author's research into the internal memoranda of the Atomic Energy Commission substantiates his argument in historical detail. It was not the ravages of American anti-intellectualism, as so many scholars have argued, that brought the experts back down to earth. Rather, their decline can be traced to the very roots of their success after World War II. The need to over-state anticipated results in order to garner public support, incessant professional and bureaucratic specialization, and the sheer proliferation of expertise pushed arcane and insulated debates between experts into public forums at the same time that a broad cross section of political participants found it easier to gain access to their own expertise. These tendencies ultimately undermined the political influence of all experts. (author)

  11. Catalysis of Photochemical Reactions.

    Science.gov (United States)

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  12. On thermonuclear reaction rates

    OpenAIRE

    Hans J. Haubold; Mathai, Arak Mathai

    1996-01-01

    Nuclear reactions govern major aspects of the chemical evolution of galaxies and stars. Analytic study of the reaction rates and reaction probability integrals is attempted here. Exact expressions for the reaction rates and reaction probability integrals for nuclear reactions in the cases of nonresonant, modified nonresonant, screened nonresonant and resonant cases are given. These are expressed in terms of H-functions, G-functions and in computable series forms. Computational aspects are als...

  13. Practice Gaps: Drug Reactions.

    Science.gov (United States)

    Wolverton, Stephen E

    2016-07-01

    The term "drug reactions" is relevant to dermatology in three categories of reactions: cutaneous drug reactions without systemic features, cutaneous drug reactions with systemic features, and systemic drugs prescribed by the dermatologist with systematic adverse effects. This article uses examples from each of these categories to illustrate several important principles central to drug reaction diagnosis and management. The information presented will help clinicians attain the highest possible level of certainty before making clinical decisions. PMID:27363888

  14. Microfluidic chemical reaction circuits

    Science.gov (United States)

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  15. Common Reactions After Trauma

    Science.gov (United States)

    ... here Enter ZIP code here Common Reactions After Trauma Public This section is for Veterans, General Public, Family, & Friends Common Reactions After Trauma Available in Spanish: Reacciones Comunes Después de un ...

  16. Anaphylaxis-Like Reactions

    Science.gov (United States)

    ... be "primed" by previous exposure to cause anaphylaxis, anaphylactoid reactions can occur with no previous exposure at all. ... an X-ray. Although the mechanism of an anaphylactoid reaction is different, the treatment is the same as ...

  17. Microscale Thermite Reactions.

    Science.gov (United States)

    Arnaiz, Francisco J.; Aguado, Rafael; Arnaiz, Susana

    1998-01-01

    Describes the adaptation of thermite (aluminum with metal oxides) reactions from whole-class demonstrations to student-run micro-reactions. Lists detailed directions and possible variations of the experiment. (WRM)

  18. Preequilibrium Nuclear Reactions

    International Nuclear Information System (INIS)

    After a survey on existing experimental data on precompound reactions and a description of preequilibrium reactions, theoretical models and quantum mechanical theories of preequilibrium emission are presented. The 25 papers of this meeting are analyzed separately

  19. Double Pion Production Reactions

    CERN Document Server

    Oset, E; Cano, F; Hernández, E; Kamalov, S S; Nacher, J C; Tejedor, J A G

    1999-01-01

    We report on reactions producing two pions induced by real and virtual photons or nucleons. The role of different resonances in these reactions is emphasized. Novel results on coherent two pion photoproduction in nuclei are also reported.

  20. Chemical transport reactions

    CERN Document Server

    Schäfer, Harald

    2013-01-01

    Chemical Transport Reactions focuses on the processes and reactions involved in the transport of solid or liquid substances to form vapor phase reaction products. The publication first offers information on experimental and theoretical principles and the transport of solid substances and its special applications. Discussions focus on calculation of the transport effect of heterogeneous equilibria for a gas motion between equilibrium spaces; transport effect and the thermodynamic quantities of the transport reaction; separation and purification of substances by means of material transport; and

  1. Anaphylactoid reactions to paracetamol

    OpenAIRE

    Ayonrinde, O.; Saker, B.

    2000-01-01

    The toxic effects of paracetamol in overdose quantities are well recognised but the occurrence of anaphylactoid reactions to paracetamol is infrequently identified by consumers and health care professionals. Nevertheless adverse reactions to this drug, even in therapeutic doses, can have fatal or near fatal consequences. A case of an anaphylactoid reaction to paracetamol is described.


Keywords: paracetamol; anaphylaxis; allergy; hypersensitivity

  2. Backward emitted high-energy neutrons in hard reactions of p and π+ on carbon

    Science.gov (United States)

    Malki, A.; Alster, J.; Asryan, G.; Averichev, Y.; Barton, D.; Baturin, V.; Bukhtoyarova, N.; Carroll, A.; Heppelmann, S.; Kawabata, T.; Leksanov, A.; Makdisi, Y.; Minina, E.; Navon, I.; Nicholson, H.; Ogawa, A.; Panebratsev, Yu.; Piasetzky, E.; Schetkovsky, A.; Shimanskiy, S.; Tang, A.; Watson, J. W.; Yoshida, H.; Zhalov, D.

    2002-01-01

    Beams of protons and pions of 5.9 GeV/c were incident on a C target. Neutrons emitted into the backward hemisphere, in the laboratory system, were detected in (triple) coincidence with two emerging particles of tranverse momenta pt>0.6 GeV/c. We determined that for (46.5+/-3.7)% of the proton-induced events and for (40.8+/-4.5)% of the pion-induced events with the two high-pt particles, there is also at least one backward emitted neutron with momentum greater than 0.32 GeV/c. This observation is in sharp contrast to a well- established universal pattern from a large variety of earlier inclusive measurements with hadrons, electrons, photons, neutrinos, and antineutrinos where the probability for backward nucleon emission was in the 5 to 10 % range. We present also a measurement of the momentum spectra for the backward going neutrons. The spectra have the same universal shape observed in the inclusive reactions. We speculate that the enhanced backward neutron emission in this semi-inclusive region could be an indication for a strong dependence of the cross section on the squared total center-of-mass energy (s) and for the importance of short-range nucleon-nucleon correlations.

  3. Evolved Models for Elementary Particles and Atoms Require Alternating Neutrino/Antineutrino Pairs Along Interlocked or Looped Strings. Traveling Waves, TW, and Standing Waves, SW, Alternate at Nodal Notches

    Science.gov (United States)

    McLeod, Roger David; McLeod, David Matthew

    2009-05-01

    Our hydrogen atom interacts with a neutron star. Its stringy TW/SW electron is cut by a neutrino scissor that instantly becomes its end anti-node. The string has one extra neutrino in 100,000. Antimatter remains concealed. Our Dumbo Proton of a TW state is similarly cut. Inside the star, electron string/spring compresses 100,000 and 1836 times more, to proton's linear mass density. Electrostatics encourages that caboose, stringy electron, to couple with a cut proton. Linear charge densities neutralize while composite length contracts 20%. The writhing string evicts an antineutrino at closure on Pauli's authority, becoming Mickey Neutron, with looped quarks. Unstable Mickey Neutron has his ear notch forced into an ear notch of stable Dumbo Proton, achieving immortality in this deuteron marriage. Tritium is in a m'enage a trois. Alpha Nucleus has a # grid. Meta state Ne-20 predicts alpha eviction to O-16. Schr"odinger finally prevails, so string theory and Wave Mechanics can prosper.

  4. Cosmetic tattoo pigment reaction

    OpenAIRE

    Greywal, Tanya; Cohen, Philip R

    2016-01-01

    BackgroundCutaneous reactions to tattoos are most commonly granulomatous or lichenoid. PurposeWe describe a woman who developed a lymphocytic reaction following a cosmetic tattoo procedure with black dye. The reaction occurred not only at the site of the tattoos (eyebrows and eyelash lines), but also in non-tattooed skin (bilateral malar cheeks). Methods and MaterialsWe reviewed PubMed for the following terms: cosmetic, dye, granuloma, granulomatous, lichenoid, lymphocytic, ...

  5. Anaphylactic reactions to cinoxacin.

    OpenAIRE

    Stricker, B H; Slagboom, G.; Demaeseneer, R.; Slootmaekers, V.; Thijs, I.; Olsson, S

    1988-01-01

    During 1981 to mid-1988 three cases of anaphylactic shock after treatment with the quinolone derivative cinoxacin were reviewed by the Netherlands Centre for Monitoring of Adverse Reactions to Drugs and 17 cases of an anaphylactic type of reaction notified to the World Health Organisation Collaborating Centre for International Drug Monitoring. In five out of six patients for whom data were available the reaction began shortly after taking a single capsule of a second or next course of treatme...

  6. Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun

    CERN Document Server

    Mosteiro, P; Benziger, J; Bick, D; Bonfini, G; Bravo, D; Caccianiga, B; Cadonati, L; Calaprice, F; Caminata, A; Cavalcante, P; Chavarria, A; Chepurnov, A; D'Angelo, D; Davini, S; Derbin, A; Empl, A; Etenko, A; Fomenko, K; Franco, D; Gabriele, F; Galbiati, C; Gazzana, S; Ghiano, C; Giammarchi, M; Goeger-Neff, M; Goretti, A; Gromov, M; Hagner, C; Hungerford, E; Ianni, Al; Ianni, An; Kobychev, V; Korablev, D; Korga, G; Kryn, D; Laubenstein, M; Lehnert, B; Lewke, T; Litvinovich, E; Lombardi, F; Lombardi, P; Ludhova, L; Lukyanchenko, G; Machulin, I; Manecki, S; Maneschg, W; Marcocci, S; Meindl, Q; Meroni, E; Meyer, M; Miramonti, L; Misiaszek, M; Montuschi, M; Muratova, V; Oberauer, L; Obolensky, M; Ortica, F; Otis, K; Pallavicini, M; Papp, L; Perasso, L; Pocar, A; Ranucci, G; Razeto, A; Re, A; Romani, A; Rossi, N; Saldanha, R; Salvo, C; Schoenert, S; Simgen, H; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; von Feilitzsch, F; Wang, H; Winter, J; Wojcik, M; Wright, A; Wurm, M; Zaimidoroga, O; Zavatarelli, S; Zuber, K; Zuzel, G

    2015-01-01

    The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos reaching Earth, providing us with key information about what goes on at the core of our star. Several experiments have now confirmed the observation of neutrino oscillations by detecting neutrinos from secondary nuclear processes in the Sun; this is the first direct spectral measurement of the neutrinos from the keystone proton-proton fusion. This observation is a crucial step towards the completion of the spectroscopy of pp-chain neutrinos, as well as further validation of the LMA-MSW model of neutrino oscillations.

  7. Reaction kinetics of polybutylene terephthalate polycondensation reaction

    NARCIS (Netherlands)

    Darda, P. J.; Hogendoorn, J. A.; Versteeg, G. F.; Souren, F.

    2005-01-01

    The kinetics of the forward polycondensation reaction of polybutylene terephthalate (PBT) has been investigated using thermogravimetric analysis (TGA). PBT - prepolymer with an initial degree of polymerization of 5.5 was used as starting material. The PBT prepolymer was prepared from dimethyl tereph

  8. Reactions at Solid Surfaces

    CERN Document Server

    Ertl, Gerhard

    2009-01-01

    Expanding on the ideas first presented in Gerhard Ertl's acclaimed Baker Lectures at Cornell University, Reactions at Solid Surfaces comprises an authoritative, self-contained, book-length introduction to surface reactions for both professional chemists and students alike. Outlining our present understanding of the fundamental processes underlying reactions at solid surfaces, the book provides the reader with a complete view of how chemistry works at surfaces, and how to understand and probe the dynamics of surface reactions. Comparing traditional surface probes with more modern ones, and brin

  9. Desosamine in multicomponent reactions

    NARCIS (Netherlands)

    Achatz, Sepp; Dömling, Alexander

    2006-01-01

    Desosamine occurring ubiquitously in natural products is introduced into isocyanide based multicomponent reaction chemistry. Corresponding products are of potential interest for the design of novel antibiotics. © 2006.

  10. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  11. Degradations and Rearrangement Reactions

    Science.gov (United States)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  12. Chemical reaction and separation method

    NARCIS (Netherlands)

    Jansen, J.C.; Kapteijn, F.; Strous, S.A.

    2005-01-01

    The invention is directed to process for performing a chemical reaction in a reaction mixture, which reaction produces water as by-product, wherein the reaction mixture is in contact with a hydroxy sodalite membrane, through which water produced during the reaction is removed from the reaction mixtu

  13. Biochemical reaction engineering for redox reactions.

    Science.gov (United States)

    Wandrey, Christian

    2004-01-01

    Redox reactions are still a challenge for biochemical engineers. A personal view for the development of this field is given. Cofactor regeneration was an obstacle for quite some time. The first technical breakthrough was achieved with the system formate/formate dehydrogenase for the regeneration of NADH2. In cases where the same enzyme could be used for chiral reduction as well as for cofactor regeneration, isopropanol as a hydrogen source proved to be beneficial. The coproduct (acetone) can be removed by pervaporation. Whole-cell reductions (often yeast reductions) can also be used. By proper biochemical reaction engineering, it is possible to apply these systems in a continuous way. By cloning a formate dehydrogenase and an oxidoreductase "designer bug" can be obtained where formate is used instead of glucose as the hydrogen source. Complex sequences of redox reactions can be established by pathway engineering with a focus on gene overexpression or with a focus on establishing non-natural pathways. The success of pathway engineering can be controlled by measuring cytosolic metabolite concentrations. The optimal exploitation of such systems calls for the integrated cooperation of classical and molecular biochemical engineering.

  14. Hypersensitivity reactions to corticosteroids.

    Science.gov (United States)

    Vatti, Rani R; Ali, Fatima; Teuber, Suzanne; Chang, Christopher; Gershwin, M Eric

    2014-08-01

    Hypersensitivity reactions to corticosteroids (CS) are rare in the general population, but they are not uncommon in high-risk groups such as patients who receive repeated doses of CS. Hypersensitivity reactions to steroids are broadly divided into two categories: immediate reactions, typically occurring within 1 h of drug administration, and non-immediate reactions, which manifest more than an hour after drug administration. The latter group is more common. We reviewed the literature using the search terms "hypersensitivity to steroids, adverse effects of steroids, steroid allergy, allergic contact dermatitis, corticosteroid side effects, and type I hypersensitivity" to identify studies or clinical reports of steroid hypersensitivity. We discuss the prevalence, mechanism, presentation, evaluation, and therapeutic options in corticosteroid hypersensitivity reactions. There is a paucity of literature on corticosteroid allergy, with most reports being case reports. Most reports involve non-systemic application of corticosteroids. Steroid hypersensitivity has been associated with type I IgE-mediated allergy including anaphylaxis. The overall prevalence of type I steroid hypersensitivity is estimated to be 0.3-0.5%. Allergic contact dermatitis (ACD) is the most commonly reported non-immediate hypersensitivity reaction and usually follows topical CS application. Atopic dermatitis and stasis dermatitis of the lower extremities are risk factors for the development of ACD from topical CS. Patients can also develop hypersensitivity reactions to nasal, inhaled, oral, and parenteral CS. A close and detailed evaluation is required for the clinician to confirm the presence of a true hypersensitivity reaction to the suspected drug and choose the safest alternative. Choosing an alternative CS is not only paramount to the patient's safety but also ameliorates the worry of developing an allergic, and potentially fatal, steroid hypersensitivity reaction. This evaluation becomes

  15. Electron transfer reactions

    CERN Document Server

    Cannon, R D

    2013-01-01

    Electron Transfer Reactions deals with the mechanisms of electron transfer reactions between metal ions in solution, as well as the electron exchange between atoms or molecules in either the gaseous or solid state. The book is divided into three parts. Part 1 covers the electron transfer between atoms and molecules in the gas state. Part 2 tackles the reaction paths of oxidation states and binuclear intermediates, as well as the mechanisms of electron transfer. Part 3 discusses the theories and models of the electron transfer process; theories and experiments involving bridged electron transfe

  16. The Reaction Wheel Pendulum

    CERN Document Server

    Block, Daniel J; Spong, Mark W

    2007-01-01

    This monograph describes the Reaction Wheel Pendulum, the newest inverted-pendulum-like device for control education and research. We discuss the history and background of the reaction wheel pendulum and other similar experimental devices. We develop mathematical models of the reaction wheel pendulum in depth, including linear and nonlinear models, and models of the sensors and actuators that are used for feedback control. We treat various aspects of the control problem, from linear control of themotor, to stabilization of the pendulum about an equilibrium configuration using linear control, t

  17. Nucleon induced reactions

    International Nuclear Information System (INIS)

    The collection contains full texts of 37 contributions; all fall within the INIS Subject Scope. The topics treated include some unsolved problems of nuclear reactions and relevant problems of nuclear structure at low and intermediate energies. (Z.S.)

  18. Reaction Qualifications Revisited

    DEFF Research Database (Denmark)

    Lippert-Rasmussen, Kasper

    2009-01-01

      When, in a competitive sphere, people are selected on the basis of qualifications only, their chances of acquiring positions of advantage may seem to depend entirely upon their abilities, not discriminatory bias. However, if reaction qualifications - i.e. characteristics which contribute...... to a person's effectiveness by causing a favourable reaction in customers, co-workers etc. (for short: recipients) - are involved, this assumption is false. Building on work by Wertheimer, Mason, and Miller, this paper proposes an account of the reaction qualifications that count, from the point of view...... preferences, recipients should not respond to the applicant actually hired on the basis of their (the recipients') racial preferences. My account decomposes the meritocratic ideal into four separate norms, one of which applies to recipients rather than to selectors. Finally, it defends the view that reaction...

  19. Autocatalysis in reaction networks.

    Science.gov (United States)

    Deshpande, Abhishek; Gopalkrishnan, Manoj

    2014-10-01

    The persistence conjecture is a long-standing open problem in chemical reaction network theory. It concerns the behavior of solutions to coupled ODE systems that arise from applying mass-action kinetics to a network of chemical reactions. The idea is that if all reactions are reversible in a weak sense, then no species can go extinct. A notion that has been found useful in thinking about persistence is that of "critical siphon." We explore the combinatorics of critical siphons, with a view toward the persistence conjecture. We introduce the notions of "drainable" and "self-replicable" (or autocatalytic) siphons. We show that: Every minimal critical siphon is either drainable or self-replicable; reaction networks without drainable siphons are persistent; and nonautocatalytic weakly reversible networks are persistent. Our results clarify that the difficulties in proving the persistence conjecture are essentially due to competition between drainable and self-replicable siphons.

  20. Chemisorption And Precipitation Reactions

    Science.gov (United States)

    The transport and bioavailability of chemical components within soils is, in part, controlled by partitioning between solids and solution. General terms used to describe these partitioning reactions include chemisorption and precipitation. Chemisorption is inclusive of the suit...

  1. Ofloxacin induced hypersensitivity reaction

    Directory of Open Access Journals (Sweden)

    Hari Babu Ramineni

    2015-01-01

    Full Text Available Ofloxacin is a commonly used antimicrobial agent to combat various infections. The adverse profile of quinolones includes gastrointestinal symptoms, which are the most frequent, neuropsychiatric symptoms, hematologic abnormalities are less common. We report a rare case of ofloxacin induced hypersensitivity reaction in a 57 year old female patient with complaints of rashes over the axilla, upper limb and back, abdomen, thorax associated with exfoliation of skin all over the axilla associated with severe itching. Based on history and clinical examination patient was diagnosed as ofloxacin induced hypersensitivity reaction and was successfully treated with antihistamines and corticosteroids. Pharmacovigilance should be a part of patient care in order to reduce occurrence of adverse drug reaction and also encourage practitioners in reporting so as to gather more and more data regarding adverse drug reactions. [Int J Res Med Sci 2015; 3(1.000: 349-351

  2. Allergic reactions in anaesthesia

    DEFF Research Database (Denmark)

    Krøigaard, M; Garvey, L H; Menné, T;

    2005-01-01

    BACKGROUND: The aim of this retrospective survey of possible allergic reactions during anaesthesia was to investigate whether the cause suspected by anaesthetists involved corresponded with the cause found on subsequent investigation in the Danish Anaesthesia Allergy Centre (DAAC). METHODS: Case...... notes and anaesthetic charts from 111 reactions in 107 patients investigated in the DAAC were scrutinized for either suspicions of or warnings against specific substances stated to be the cause of the supposed allergic reaction. RESULTS: In 67 cases, one or more substances were suspected. In 49...... match, the right substance being suspected, but investigations showed an additional allergen or several substances, including the right substance being suspected. CONCLUSIONS: An informed guess is not a reliable way of determining the cause of a supposed allergic reaction during anaesthesia and may put...

  3. Adverse reactions to cosmetics

    OpenAIRE

    Dogra A; Minocha Y; Kaur S

    2003-01-01

    Adverse reaction to cosmetics constitute a small but significant number of cases of contact dermatitis with varied appearances. These can present as contact allergic dermatitis, photodermatitis, contact irritant dermatitis, contact urticaria, hypopigmentation, hyperpigmentotion or depigmentation, hair and nail breakage. Fifty patients were included for the study to assess the role of commonly used cosmetics in causing adverse reactions. It was found that hair dyes, lipsticks and surprisingly ...

  4. EXERCISE AND REACTION TIMES

    OpenAIRE

    Varun; Neeraj; Ushadhar; Yogesh; Rinku

    2015-01-01

    OBJECTIVES: Physical exercise provides multiple benefits to an individual. It is known that exercising regularly can prevent coronary heart disease, hypertension and obesity and improve flexibility. The effect of exercise on visual reaction time needs to be studied, a s the existing data on the benefit of aerobic exercise on psychomotor functions is insufficient. MATERIALS AND METHODS: Online Visual reaction time is measured before and after exercise. Subjects were ...

  5. Oxygen evolution reaction catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  6. Meson production in + reactions

    Indian Academy of Sciences (India)

    H Machner; M Betigeri; J Bojowald; A Budzanowski; A Chatterjee; J Ernst; L Freindl; D Frekers; W Garske; K Grewer; A Hamacher; J Ilieva; L Jarczyk; K Kilian; S Kliczewski; W Klimala; D Kolev; T Kutsarova; J Lieb; H Machner; A Magiera; H Nann; L Pentchev; H S Plendl; D Protić; B Razen; P Von Rossen; B J Roy; R Siudak; J Smyrski; R V Srikantiah; A Strzałkowski; R Tsenov; K Zwoll

    2001-08-01

    Total and differential cross sections for the reactions $p+d → 3He + 0 with = ; and + → 3H + + were measured with the GEM detector at COSY for beam momenta between threshold and the maximum of the corresponding baryon resonance. For both reactions a strong forward–backward asymmetry was found. The data were compared with model calculations. The aspect of isospin symmetry breaking is studied.

  7. Immediate reaction to clarithromycin.

    Science.gov (United States)

    Gangemi, S; Ricciardi, L; Fedele, R; Isola, S; Purello-D'Ambrosio, F

    2001-01-01

    We present the case of bronchospastic reaction to clarithromycin had during a drug challenge test. Personal allergic history was negative for respiratory allergies and positive for adverse drug reactions to general and regional anesthesia and to ceftriaxone. After the administration of 1/4 of therapeutic dose of clarithromycin the patient showed dyspnea, cough and bronchospasm in all the lung fields. The positivity of the test was confirmed by the negativity to the administration of placebo. The quickness and the clinical characteristic of the adverse reaction suggest a pathogenic mechanism of immediate-type hypersensitivity. On reviewing the literature we have found no reports of bronchospastic reaction to clarithromycin. Macrolides are a class of antibiotics mainly used in the last years in place of beta-lactams because of a broad spectrum of action and a low allergic power. In fact, there are few reports on allergic reactions to these molecules. Clarithromycin is one of the latest macrolides, characterised by the presence of a 14-carbon-atom lactone ring as erythromycin, active on a wide spectrum of pathogens.

  8. Marketing Mix Reactions to Entry

    OpenAIRE

    Robinson, William T.

    1988-01-01

    Initial product, distribution, marketing expenditure, and price reactions by incumbents are examined for 115 entrants into oligopolistic markets. The most common reaction pattern is either no reaction or only a single reaction. It is very unusual for entrants to face reactions across the entire marketing mix. Reactions in the first two years after entry are explained as a function of the entrant's strategy, incumbent characteristics, and industry characteristics. The explanation provides insi...

  9. Introduction to chemical reaction engineering

    International Nuclear Information System (INIS)

    This deals with chemical reaction engineering with thirteen chapters. The contents of this book are introduction on reaction engineering, chemical kinetics, thermodynamics and chemical reaction, abnormal reactor, non-isothermal reactor, nonideal reactor, catalysis in nonuniform system, diffusion and reaction in porosity catalyst, design catalyst heterogeneous reactor in solid bed, a high molecule polymerization, bio reaction engineering, reaction engineering in material process, control multi-variable reactor process using digital computer.

  10. Chemical kinetics of gas reactions

    CERN Document Server

    Kondrat'Ev, V N

    2013-01-01

    Chemical Kinetics of Gas Reactions explores the advances in gas kinetics and thermal, photochemical, electrical discharge, and radiation chemical reactions. This book is composed of 10 chapters, and begins with the presentation of general kinetic rules for simple and complex chemical reactions. The next chapters deal with the experimental methods for evaluating chemical reaction mechanisms and some theories of elementary chemical processes. These topics are followed by discussions on certain class of chemical reactions, including unimolecular, bimolecular, and termolecular reactions. The rema

  11. Adverse reactions to cosmetics

    Directory of Open Access Journals (Sweden)

    Dogra A

    2003-03-01

    Full Text Available Adverse reaction to cosmetics constitute a small but significant number of cases of contact dermatitis with varied appearances. These can present as contact allergic dermatitis, photodermatitis, contact irritant dermatitis, contact urticaria, hypopigmentation, hyperpigmentotion or depigmentation, hair and nail breakage. Fifty patients were included for the study to assess the role of commonly used cosmetics in causing adverse reactions. It was found that hair dyes, lipsticks and surprisingly shaving creams caused more reaction as compared to other cosmetics. Overall incidence of contact allergic dermatitis seen was 3.3% with patients own cosmetics. Patch testing was also done with the basic ingredients and showed positive results in few cases where casual link could be established. It is recommended that labeling of the cosmetics should be done to help the dermatologists and the patients to identify the causative allergen in cosmetic preparation.

  12. Inflammatory reaction in chondroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, Sigeki [Dept. of Orthopedic Surgery, Nagoya Univ. School of Medicine (Japan); Sato, Keiji [Dept. of Orthopedic Surgery, Nagoya Univ. School of Medicine (Japan); Sugiura, Hideshi [Dept. of Orthopedic Surgery, Nagoya Univ. School of Medicine (Japan); Iwata, Hisashi [Dept. of Orthopedic Surgery, Nagoya Univ. School of Medicine (Japan)

    1996-05-01

    The objective of this study was to evaluate the inflammatory reaction accompanying chondroblastoma and to define the value of the finding in clinical practice. We reviewed the clinical, radiographic, and magnetic resonance (MR) findings in six patients with histologically proven chondroblastoma. In all cases, MR imaging showered marrow and soft tissue edema. In four of six cases, periosteal reaction related to intra-osseous edema was more clearly demonstrated on MR imaging than on radiographs. Follow-up MR studies after surgery were available in three patients and all showed disappearance of inflammatory responses such as marrow and soft tissue edema, and reactive synovitis. We propose that these inflammatory reactions of chondroblastomas are inportant signs for detecting residual tumor in recurrences after surgery, as well as for making a precise diagnosis. The MR changes may also be valuable in demonstrating eradication of the tumor. (orig./MG)

  13. Nuclear structure, nuclear reaction

    OpenAIRE

    Etchegoyen, Maria Cristina Berisso de.; Sinclair, D.; Dr. D. Sinclair

    1982-01-01

    In this thesis, particle- particle angular correlations for reactions in non-zero degree geometry and with non-zero spin nuclei are performed and found to be a valuable tool for spin determination, (d-α) angular correlations in the reaction process 14N(6Li,d)18F* (α)14N are measured for three high excited states in 18F with a 6Li beam of 36MeV. Spins and parities for two of the observed states are determined, and in agreement with theoretical predictions, these states are s...

  14. Neutrino Experiments at Reactors

    Science.gov (United States)

    Reines, F.; Gurr, H. S.; Jenkins, T. L.; Munsee, J. H.

    1968-09-09

    A description is given of the electron-antineutrino program using a large fission reactor. A search has been made for a neutral weak interaction via the reaction (electron antineutrino + d .> p + n + electron antineutrino), the reaction (electron antineutrino + d .> n + n + e{sup +}) has now been detected, and an effort is underway to observe the elastic scattering reaction (electron antineutrino + e{sup -} .> electron antineutrino + e{sup -}) as well as to measure more precisely the reaction (electron antineutrino + p .> n + e{sup+}). The upper limit on the elastic scattering reaction which we have obtained with our large composite NaI, plastic, liquid scintillation detector is now about 50 times the predicted value.

  15. Oral Hypersensitivity Reactions

    Science.gov (United States)

    ... and ulcers. Affected individuals may complain of a burning sensation and mouth sensitivity to cold, hot, and spicy foods. Lichenoid ... melon, and pineapple, are all associated with this syndrome. You should inform your ... reaction in the mouth, though some are more common than others. If ...

  16. Multinucleon transfer reactions

    International Nuclear Information System (INIS)

    Nuclear reactions induced by complex nuclei are studied. The description of the single neutron transfer is used to show some aspect of the theoretical treatment of transfer reactions and rules concerning the dependence of cross sections on quantum numbers of the initial and final channels are deduced. Strongly excited states of 20Ne, 19F, sup(16,17)0, 15N were studied experimentally by using different projectile-target combinations in the four-particle, eight-particle and ten-particle transfer reactions, leading to the some final nuclei. Obtained results are discussed. In addition, studies of the projectile break-up phenomenon were performed. The dissociation of 6Li and 7Li projectiles was investigated in reactions on Pb, Sn and Ni nuclei. These nuclei were chosen to allow measurements at one incident energy below, above and at the Coulomb barrier. The observed spectra indicate that the process proceeds primarily via the resonance level but the shape deviates from the shape which was calculated assuming isotropic decay of the excited 6Li in its center of mass system. The investigations of the elastic scattering turned out to be more fruitful and allowed to define better the Coulomb barrier for the 6Li-target system. (S.B.)

  17. Cluster knockout reactions

    Indian Academy of Sciences (India)

    Arun K Jain; B N Joshi

    2014-04-01

    Cluster knockout reactions are expected to reveal the amount of clustering (such as that of , d and even of heavier clusters such as 12C, 16O etc.) in the target nucleus. In simple terms, incident medium high-energy nuclear projectile interacts strongly with the cluster (present in the target nucleus) as if it were existing as a free entity. Theoretically, the relatively softer interactions of the two outgoing particles with the residual nucleus lead to optical distortions and are treated in terms of distorted wave (DW) formalism. The long-range projectile–cluster interaction is accounted for, in terms of the finite range (FR) direct reaction formalism, as against the more commonly adopted zero-range (ZR) distorted wave impulse approximation (DWIA) formalism. Comparison of the DWIA calculations with the observed data provide information about the momentum distribution and the clustering spectroscopic factor of the target nucleus. Interesting results and some recent advancements in the area of (, 2) reactions and heavy cluster knockout reactions are discussed. Importance of the finite-range vertex and the final-state interactions are brought out.

  18. Azlactone Reaction Developments.

    Science.gov (United States)

    de Castro, Pedro P; Carpanez, Arthur G; Amarante, Giovanni W

    2016-07-18

    Azlactones (also known as oxazolones) are heterocycles usually employed in the stereoselective synthesis of α,α-amino acids, heterocycles and natural products. The versatility of the azlactone scaffold arises from the numerous reactive sites, allowing its application in a diversity of transformations. This review aims to cover classical and recent applications of oxazolones, especially those involving stereoselective processes. After a short introduction on their structures and intrinsic reactivities, dynamic kinetic resolution (DKR) processes as well as reactions involving stereoselective formation of a new σ C-C bond, such as alkylation/allylation/arylation, aldol, ene, Michael and Mannich reactions will be exposed. Additionally, cycloadditions, Steglich rearrangement and sulfenylation reactions will also be discussed. Recent developments of the well-known Erlenmeyer azlactones will be described. For the most examples, the proposed mechanism, activation modes and/or key reaction intermediates will be exposed to rationalize both the final product and the observed stereochemistry. Finally, this review gives an overview of the synthetic utility of oxazolones. PMID:27245128

  19. EXERCISE AND REACTION TIMES

    Directory of Open Access Journals (Sweden)

    Varun

    2015-03-01

    Full Text Available OBJECTIVES: Physical exercise provides multiple benefits to an individual. It is known that exercising regularly can prevent coronary heart disease, hypertension and obesity and improve flexibility. The effect of exercise on visual reaction time needs to be studied, a s the existing data on the benefit of aerobic exercise on psychomotor functions is insufficient. MATERIALS AND METHODS: Online Visual reaction time is measured before and after exercise. Subjects were instructed to run on the spot with a springy step in ex aggerated motion for 50 to 60 counts at 2 counts per second, maintaining a constant rhythm. RESULTS: We observed that reaction time was significantly lower after performance of exercise. Individuals reported improved mental alertness, feel good factor, bet ter mood and increase circulation. CONCLUSION: Improving reaction times in sports can help the athlete to optimize his performance in making decisions and increasing attention span for example getting off the starting blocks sooner or successfully making c ontact with the ball. In addition this study shows that use of physical exercise helps improve cognitive function. Exercise proves to be a cheap non pharmacological alternative to improve cognitive performance.

  20. Reaction Formulation: A Bibliography.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, Bonnie C.

    Reaction formation was studied by Sigmund Freud. This defense mechanism may be related to repression, substitution, reversal, and compensation (or over-compensation). Alfred Adler considered compensation a basic process in his individual psychology. Anna Freud discussed some defense mechanisms, and Bibring, Dwyer, Huntington, and Valenstein…

  1. Explaining competitive reaction effects

    NARCIS (Netherlands)

    Leeflang, P.S.H.; Wittink, D.R.

    2001-01-01

    Changes in promotional expenditure decisions for a brand, as in other marketing decisions, should be based on the expected impact on purchase and consumption behavior as well as on the likely reactions by competitors. Purchase behavior may be predicted from estimated demand functions. Competitive re

  2. The Gewald multicomponent reaction

    NARCIS (Netherlands)

    Huang, Yijun; Doemling, Alexander

    2011-01-01

    The Gewald reaction of sulfur, cyanoacetic acid derivatives, and oxo-component (G-3CR) yielding highly substituted 2-aminothiophene derivatives has seen diverse applications in combinatorial and medicinal chemistry. Its products are of great use in pharmaceutical industry mainly as small molecular w

  3. Managing Your Emotional Reactions

    Science.gov (United States)

    ... takes a bit more practice for some people. Learning to React Well Managing emotional reactions means choosing how and when to express ... easier to make choices that work out well. Learning to react well takes ... at taking emotional situations in stride and expressing emotions in healthy ...

  4. Reaction product imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, D.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  5. Chemical Reactions at Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Michael Henderson and Nancy Ryan Gray

    2010-04-14

    Chemical reactions at surfaces underlie some of the most important processes of today, including catalysis, energy conversion, microelectronics, human health and the environment. Understanding surface chemical reactions at a fundamental level is at the core of the field of surface science. The Gordon Research Conference on Chemical Reactions at Surfaces is one of the premiere meetings in the field. The program this year will cover a broad range of topics, including heterogeneous catalysis and surface chemistry, surfaces in environmental chemistry and energy conversion, reactions at the liquid-solid and liquid-gas interface, electronic materials growth and surface modification, biological interfaces, and electrons and photons at surfaces. An exciting program is planned, with contributions from outstanding speakers and discussion leaders from the international scientific community. The conference provides a dynamic environment with ample time for discussion and interaction. Attendees are encouraged to present posters; the poster sessions are historically well attended and stimulate additional discussions. The conference provides an excellent opportunity for junior researchers (e.g. graduate students or postdocs) to present their work and interact with established leaders in the field.

  6. Photoneutron reactions in astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Varlamov, V. V., E-mail: Varlamov@depni.sinp.msu.ru; Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.; Stopani, K. A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2014-12-15

    Among key problems in nuclear astrophysics, that of obtaining deeper insight into the mechanism of synthesis of chemical elements is of paramount importance. The majority of heavy elements existing in nature are produced in stars via radiative neutron capture in so-called s- and r processes, which are, respectively, slow and fast, in relation to competing β{sup −}-decay processes. At the same time, we know 35 neutron-deficient so-called bypassed p-nuclei that lie between {sup 74}Se and {sup 196}Hg and which cannot originate from the aforementioned s- and r-processes. Their production is possible in (γ, n), (γ, p), or (γ, α) photonuclear reactions. In view of this, data on photoneutron reactions play an important role in predicting and describing processes leading to the production of p-nuclei. Interest in determining cross sections for photoneutron reactions in the threshold energy region, which is of particular importance for astrophysics, has grown substantially in recent years. The use of modern sources of quasimonoenergetic photons obtained in processes of inverse Compton laser-radiation scattering on relativistic electronsmakes it possible to reveal rather interesting special features of respective cross sections, manifestations of pygmy E1 and M1 resonances, or the production of nuclei in isomeric states, on one hand, and to revisit the problem of systematic discrepancies between data on reaction cross sections from experiments of different types, on the other hand. Data obtained on the basis of our new experimental-theoretical approach to evaluating cross sections for partial photoneutron reactions are invoked in considering these problems.

  7. The human acrosome reaction

    Institute of Scientific and Technical Information of China (English)

    H.W.G.Baker; D.Y.Liu; C.Garrett; M.Martic

    2000-01-01

    We developed tests of sperm-oocyte interaction: sperm-zona binding, zona-induced acrosome reaction, spermzona penetration and sperm-oolemma binding, using oocytes which failed to fertilise in clinical in vitro fertilization (IVF). Although oocyte defects contribute to failure of sperm oocyte interaction, rarely are all oocytes from one woman affected. Low or zero fertilization in standard IVFwas usually caused by sperm abnormalities. Poor sperm-zona pellucida binding was frequently associated with failure of standard IVF and obvious defects of sperm motility or morphology. The size and shape of the acrosome is particularly important for sperm binding to the oocyte. The proportion of acrosome intact sperm in the insemination medium was related to the IVF rate. Inducing the acrosome reaction with a calcium ionophore reduced sperm-zona binding. Blocking acrosome dispersal with an acrosin inhibitor prevented spermzona penetration. Sperm-zona penetration was even more highly related to IVF rates than was sperm-zona binding. Some patients had low or zero fertilization rates with standard IVF but normal sperm by conventional tests and normal sperm-zona binding. Few of their sperm underwent the acrosome reaction on the surface of the zona and none penetrated the zona. In contrast, fertilization and pregnancy rates were high with intracytoplasmic sperm injection. We call thiscondition defective zona pellucida induced acrosome reaction. Discovery of the nature of the abnormalities in the signal transduction and effector pathways of the human zona pellucida induced acrosome reaction should result in simpler tests and treatments for the patients and also provide new leads for contraceptive development.

  8. Photooxidative reactions of psoralens

    International Nuclear Information System (INIS)

    The mechanism and biological significance of photooxidative reactions of psoralens are reviewed. Skin-photosensitizing activities of bifunctional and monofunctional psoralens are compared. Antioxidants tocopherols and butilated hydroxytoluene inhibit photochemical reactions of psoralens responsible for induction of erythema. The same antioxidants do not inhibit PUVA-therapy of psriasis. Though psoralens can generate singlet oxygen under UVA-irradiation (315 - 400 nm), nevertheless singlet oxygen does not play significant role in 8-methoxypsoralen (8-MOP) sensitized photooxidation of tocopherol or dihydroxyphenylalanine (DOPA). SH-compounds enhance the rate of 8-MOP sensitized photooxidation of DOPA by a factor of four, simultaneously the rate of oxidation of SH-groups is enhanced many fold in the presence of DOPA. Under UVA-irradiation in organic solvents psoralens are photooxidized. Dimeric photooxidized psoralens are easily destructed in water medium, their destruction induce oxidation of unsaturated lipids and DOPA. (author)

  9. Neutrons from Piezonuclear Reactions

    CERN Document Server

    Cardone, F; Mignani, R; Perconti, W; Petrucci, A; Rosetto, F; Spera, G

    2007-01-01

    We report the results obtained by cavitating water solutions of iron salts (iron chloride and iron nitrate) with different concentrations at different ultrasound powers. In all cases we detected a neutron radiation well higher than the background level. The neutron production is perfectly reproducible and can at some extent be controlled. These evidences for neutron emission generated by cavitation support some preliminary clues for the possibility of piezonuclear reactions (namely nuclear reactions induced by pressure and shock waves) obtained in the last ten years. We have been able for the first time to state some basic features of such a neutron emission induced by cavitation, namely: 1) a marked threshold behavior in power, energy and time; 2) its occurring without a concomitant production of gamma radiation.

  10. Reaction chemistry of cerium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  11. Polymerase chain reaction

    OpenAIRE

    Gaurav Solanki

    2015-01-01

    The polymerase chain reaction (PCR) is a technique in molecular biology to amplify a single or a few copies of a piece of DNA across several orders of magnitude, generating thousands to millions of copies of a particular DNA sequence. PCR is now a common and often indispensable technique used in medical and biological research labs for a variety of applications. There are three major steps involved in the PCR technique: denaturation, annealing and extension. PCR is useful in the investigation...

  12. Two photon reactions

    International Nuclear Information System (INIS)

    Some recent results from the field of photon-photon interaction are presented. After a brief general introduction author discusses resonance production, exclusive processes with the four pion final state (γγ→π+π-π+π-), exclusive reaction γγ→psi psi, γγ - 2 body final state and jet production. Total hadronic cross sections for γγ - interactions and the photon structure function are also considered. (M.F.W.)

  13. Photochemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Moore, B.C. [Lawrence Berkeley Laboratory, Livermore, CA (United States)

    1993-12-01

    The purpose of the program is to develop a fundamental understanding of unimolecular and bimolecular reaction dynamics with application in combustion and energy systems. The energy dependence in ketene isomerization, ketene dissociation dynamics, and carbonyl substitution on organometallic rhodium complexes in liquid xenon have been studied. Future studies concerning unimolecular processes in ketene as well as energy transfer and kinetic studies of methylene radicals are discussed.

  14. Astrophysical Reaction Rates as a Challenge for Nuclear Reaction Theory

    OpenAIRE

    Rauscher, T.

    2010-01-01

    The relevant energy ranges for stellar nuclear reactions are introduced. Low-energy compound and direct reactions are discussed. Stellar modifications of the cross sections are presented. Implications for experiments are outlined.

  15. Insect bite reactions

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2013-01-01

    Full Text Available Insects are a class of living creatures within the arthropods. Insect bite reactions are commonly seen in clinical practice. The present review touches upon the medically important insects and their places in the classification, the sparse literature on the epidemiology of insect bites in India, and different variables influencing the susceptibility of an individual to insect bites. Clinical features of mosquito bites, hypersensitivity to mosquito bites Epstein-Barr virus NK (HMB-EBV-NK disease, eruptive pseudoangiomatosis, Skeeter syndrome, papular pruritic eruption of HIV/AIDS, and clinical features produced by bed bugs, Mexican chicken bugs, assassin bugs, kissing bugs, fleas, black flies, Blandford flies, louse flies, tsetse flies, midges, and thrips are discussed. Brief account is presented of the immunogenic components of mosquito and bed bug saliva. Papular urticaria is discussed including its epidemiology, the 5 stages of skin reaction, the SCRATCH principle as an aid in diagnosis, and the recent evidence supporting participation of types I, III, and IV hypersensitivity reactions in its causation is summarized. Recent developments in the treatment of pediculosis capitis including spinosad 0.9% suspension, benzyl alcohol 5% lotion, dimethicone 4% lotion, isopropyl myristate 50% rinse, and other suffocants are discussed within the context of evidence derived from randomized controlled trials and key findings of a recent systematic review. We also touch upon a non-chemical treatment of head lice and the ineffectiveness of egg-loosening products. Knockdown resistance (kdr as the genetic mechanism making the lice nerves insensitive to permethrin is discussed along with the surprising contrary clinical evidence from Europe about efficacy of permethrin in children with head lice carrying kdr-like gene. The review also presents a brief account of insects as vectors of diseases and ends with discussion of prevention of insect bites and some

  16. Organic chemistry: Reactions triggered electrically

    Science.gov (United States)

    Xiang, Limin; Tao, N. J.

    2016-03-01

    Single-molecule experiments have revealed that chemical reactions can be controlled using electric fields -- and that the reaction rate is sensitive to both the direction and the strength of the applied field. See Letter p.88

  17. The nuclear reaction matrix

    Energy Technology Data Exchange (ETDEWEB)

    Krenciglowa, E.M.; Kung, C.L.; Kuo, T.T.S.; Osnes, E.

    1976-09-24

    Different definitions of the reaction matrix G appropriate to the calculation of nuclear structure are reviewed and discussed. Qualitative physical arguments are presented in support of a two-step calculation of the G-matrix for finite nuclei. In the first step the high-energy excitations are included using orthogonalized plane-wave intermediate states, and in the second step the low-energy excitations are added in, using harmonic oscillator intermediate states. Accurate calculations of G-matrix elements for nuclear structure calculations in the Aapprox. =18 region are performed following this procedure and treating the Pauli exclusion operator Q/sub 2//sub p/ by the method of Tsai and Kuo. The treatment of Q/sub 2//sub p/, the effect of the intermediate-state spectrum and the energy dependence of the reaction matrix are investigated in detail. The present matrix elements are compared with various matrix elements given in the literature. In particular, close agreement is obtained with the matrix elements calculated by Kuo and Brown using approximate methods. (AIP)

  18. Zeolite Catalyzed Aldol Condensation Reactions

    OpenAIRE

    Adedayo I. Inegbenebor; Raphael C. Mordi; Oluwakayode M. Ogunwole

    2015-01-01

    The review is based on the description of zeolite structure, uses, synthesis, and catalytic aldol reaction in aldol condensation. An internal aldolcondensation reaction has been achieved over ZSM-5 zeolite with high silica-alumina ratio at 350oC. It therefore follows that zeolite canfunction as a catalyst in aldol type condensation reactions and that weak acid sites as well as a small number of active sites favor the aldolcondensation reaction of carbonyl compounds. However, the mixed condens...

  19. Mass Transfer with Chemical Reaction.

    Science.gov (United States)

    DeCoursey, W. J.

    1987-01-01

    Describes the organization of a graduate course dealing with mass transfer, particularly as it relates to chemical reactions. Discusses the course outline, including mathematics models of mass transfer, enhancement of mass transfer rates by homogeneous chemical reaction, and gas-liquid systems with chemical reaction. (TW)

  20. Status of breakup reaction theory

    International Nuclear Information System (INIS)

    Recent studies on breakup reactions with the continuum-discretized coupled-channels method are reviewed. The topics covered are: four-body breakup processes for 6He induced reaction, dynamical relativistic effects on Coulomb breakup, microscopic description of projectile breakup processes, description of ternary processes (new triple-α reaction rate) and new approach to inclusive breakup processes.

  1. Neutrino and Antineutrino Interactions in Deuterium

    CERN Multimedia

    2002-01-01

    This experiment uses BEBC filled with deuterium and exposed to the wide-band neutrino beam N1. The use of deuterium as the target material allows to study interactions on both neutrons and protons. The charge of the target nucleon can be inferred from the number of positive and negative particles in the final state. \\\\ \\\\ Some of the physics aims of this experiment are to measure separately the cross sections @s^n and @s^p on neutrons and protons to determine the structure functions F|n(x,Q|2) and F|p(x,Q|2), the fragmentation functions D(z,Q|2) and the ratio of neutral to charged current interactions. \\\\ \\\\ Additional problems under investigation are the production of nucleon isobars, and of resonances in general, the production of strange and of charmed particles, and the problems of deuterium structure.

  2. Detection of antineutrinos for reactor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Duk [Center for Underground Physics, Institute of Basic Science, Daejeon (Korea, Republic of)

    2016-04-15

    Reactor neutrinos have been detected in the past 50 years by various detectors for different purposes. Beginning in the 1980s, neutrino physicists have tried to use neutrinos to monitor reactors and develop an optimized detector for nuclear safeguards. Recently, motivated by neutrino oscillation physics, the technology and scale of reactor neutrino detection have progressed considerably. In this review, I will give an overview of the detection technology for reactor neutrinos, and describe the issues related to further improvements in optimized detectors for reactor monitoring.

  3. Nuclear reactions an introduction

    CERN Document Server

    Paetz gen. Schieck, Hans

    2014-01-01

    Nuclei and nuclear reactions offer a unique setting for investigating three (and in some cases even all four) of the fundamental forces in nature. Nuclei have been shown – mainly by performing scattering experiments with electrons, muons, and neutrinos – to be extended objects with complex internal structures: constituent quarks; gluons, whose exchange binds the quarks together; sea-quarks, the ubiquitous virtual quark-antiquark pairs and, last but not least, clouds of virtual mesons, surrounding an inner nuclear region, their exchange being the source of the nucleon-nucleon interaction.   The interplay between the (mostly attractive) hadronic nucleon-nucleon interaction and the repulsive Coulomb force is responsible for the existence of nuclei; their degree of stability, expressed in the details and limits of the chart of nuclides; their rich structure and the variety of their interactions. Despite the impressive successes of the classical nuclear models and of ab-initio approaches, there is clearly no ...

  4. Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Gaurav Solanki

    2012-10-01

    Full Text Available The polymerase chain reaction (PCR is a technique in molecular biology to amplify a single or a few copies of a piece of DNA across several orders of magnitude, generating thousands to millions of copies of a particular DNA sequence. PCR is now a common and often indispensable technique used in medical and biological research labs for a variety of applications. There are three major steps involved in the PCR technique: denaturation, annealing and extension. PCR is useful in the investigation and diagnosis of a growing number of diseases. PCR is also used in forensics laboratories. PCR can identify genes that have been implicated in the development of cancer. The present paper is an attempt to review basics of PCR in relation to its methods, application and use.

  5. Eikonal reaction theory

    CERN Document Server

    Yahiro, Masanobu; Minomo, Kosho

    2011-01-01

    We present an accurate method of treating the one-neutron removal reaction at intermediate incident energies induced by both nuclear and Coulomb interactions. In the method, the nuclear and Coulomb breakup processes are consistently treated by the method of continuum discretized coupled channels without making the adiabatic approximation to the Coulomb interaction, so that the removal cross section calculated never diverges. This method is applied to recently measured one-neutron removal cross section for $^{31}$Ne+$^{12}$C scattering at 230 MeV/nucleon and $^{31}$Ne+$^{208}$Pb scattering at 234 MeV/nucleon. The spectroscopic factor and the asymptotic normalization coefficient of the last neutron in $^{31}$Ne are evaluated.

  6. Nuclear reactions in astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M.; Rayet, M. (Universite Libre de Bruxelles (BE))

    1990-06-01

    At all times and at all astrophysical scales, nuclear reactions have played and continue to play a key role. This concerns the energetics as well as the production of nuclides (nucleosynthesis). After a brief review of the observed composition of various objects in the universe, and especially of the solar system, the basic ingredients that are required in order to build up models for the chemical evolution of galaxies are sketched. Special attention is paid to the evaluation of the stellar yields through an overview of the important burning episodes and nucleosynthetic processes that can develop in non-exploding or exploding stars. Emphasis is put on the remaining astrophysical and nuclear physics uncertainties that hamper a clear understanding of the observed characteristics, and especially compositions, of a large variety of astrophysical objects.

  7. Kinetics of Bio-Reactions

    DEFF Research Database (Denmark)

    Villadsen, John

    2015-01-01

    his chapter predicts the specific rates of reaction by means of a mathematical expression, the kinetics of the reaction. This expression can be derived through a mechanistic interpretation of an enzymatically catalyzed reaction, but it is essentially of empirical nature for cell reactions....... The models can be used in mass balances for design of processes under process conditions not yet studied experimentally. The value of the predictive kinetic model depends on the quality of the experimental data on which the model is based, and well-founded kinetic models for enzyme reactions have...... a considerable predictive power. This is also true for cell reaction models, when the model is used in its proper context. The chapter first discusses the kinetics for enzymatically catalyzed reactions (“enzyme reactions”). The kinetics can be derived from a mechanistic model. Then, the chapter derives empirical...

  8. Resonance Reaction in Diffusion-Influenced Bimolecular Reactions

    CERN Document Server

    Kolb, Jakob J; Dzubiella, Joachim

    2016-01-01

    We investigate the influence of a stochastically fluctuating step-barrier potential on bimolecular reaction rates by exact analytical theory and stochastic simulations. We demonstrate that the system exhibits a new resonant reaction behavior with rate enhancement if an appropriately defined fluctuation decay length is of the order of the system size. Importantly, we find that in the proximity of resonance the standard reciprocal additivity law for diffusion and surface reaction rates is violated due to the dynamical coupling of multiple kinetic processes. Together, these findings may have important repercussions on the correct interpretation of various kinetic reaction problems in complex systems, as, e.g., in biomolecular association or catalysis.

  9. Hemolytic Transfusion Reactions

    Directory of Open Access Journals (Sweden)

    Fatih Mehmet Azık

    2011-12-01

    Full Text Available The prevalence of fatal hemolytic transfusion reactions (HTRs is approximately 1:200000 per unit. Acute HTRs occur during or within 24 h after administration of a blood product. Transfusion of incompatible red blood cells (RBCs, and, more rarely, of a large volume of incompatible plasma usually are the causative agents. Delayed HTRs are caused by a secondary immune response to an antigen on the donor’s RBCs. Different mechanisms lead to intra- and extravascular hemolysis, such as complete complement activation, phagocytosis of RBCs covered with C3b by macrophages after incomplete complement activation, or destruction of RBCs covered only with IgG by direct cell to cell contact with K cells. The clinical consequences of HTRs are triggered via several pathophysiological pathways. Formation of anaphylatoxins, release of cytokines causing a systemic inflammatory response syndrome, activation of the kinin system, the intrinsic clotting cascade and fibrinolysis result in hypotension, disseminated intravascular coagulation, diffuse bleeding, and disruption of microcirculation leading to renal failure and shock. In this review, the symptoms of HTR are introduced, laboratory investigations and treatment are described, and some recommendations for prevention are given. (Journal of Current Pediatrics 2011; 9: 127-32

  10. Two chamber reaction furnace

    Science.gov (United States)

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  11. Microwave-Accelerated Organic Reactions

    Institute of Scientific and Technical Information of China (English)

    LU; TaJung

    2001-01-01

    The use of microwave technology in accelerating organic reactions has received intense attention leading to immense growth recently. Accordingly, we have been interested in improving the efficacy of organic processes by microwave irradiation. Here we report our results on the microwave assisted 1,3-dipolar cycloaddition reaction of nitrile oxides with allylic alcohols, the cleavage reaction of 1,3-diketones under alkaline conditions, and the formation of carbamates from isocyanates with alcohols. The reactions carried out under microwave irradiation, in general, required considerably less reaction time and afforded the desired products in higher yields than those under classical conditions. In all the cases we have studied, the procedures are simplified, the purity of the products are higher, and the cost of reaction is greatly reduced employing microwave.  ……

  12. Microwave-Accelerated Organic Reactions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ The use of microwave technology in accelerating organic reactions has received intense attention leading to immense growth recently. Accordingly, we have been interested in improving the efficacy of organic processes by microwave irradiation. Here we report our results on the microwave assisted 1,3-dipolar cycloaddition reaction of nitrile oxides with allylic alcohols, the cleavage reaction of 1,3-diketones under alkaline conditions, and the formation of carbamates from isocyanates with alcohols. The reactions carried out under microwave irradiation, in general, required considerably less reaction time and afforded the desired products in higher yields than those under classical conditions. In all the cases we have studied, the procedures are simplified, the purity of the products are higher, and the cost of reaction is greatly reduced employing microwave.

  13. The Paterno-Buchi reaction

    DEFF Research Database (Denmark)

    Brogaard, Rasmus Yding; Schalk, Oliver; Boguslavskiy, Andrey E.;

    2012-01-01

    .2]paracyclophane in order to obtain a model system in pre-reactive conformation for the PB reaction. We studied the excited-state dynamics of the isolated molecule in a molecular beam using femtosecond time-resolved photoelectron spectroscopy and ab initio calculations. The results show that inter-system crossing...... within two picoseconds competes efficiently with the reaction in the singlet manifold. Thus, the PB reaction in this model system takes place in the triplet state on a time scale of nanoseconds. This result stresses the importance of triplet states in the excited-state pathway of the PB reaction......The Paternò-Büchi (PB) reaction between an excited carbonyl compound and an alkene has been widely studied, but so far little is known about the excited-state dynamics of the reaction. In this investigation, we used a compound in which a formyl and a vinyl group are attached to a [2...

  14. The Glaser–Hay reaction

    DEFF Research Database (Denmark)

    Vilhelmsen, Mie Højer; Jensen, Jonas; Tortzen, Christian;

    2013-01-01

    on the scope of this reaction by using both 13C NMR and UV/Vis spectroscopic methods. The former method was used to study the kinetics of the coupling of aryl-substituted alkynes as the aryl carbon resonances of the reactants and products have similar NOEs and relaxation times. The reaction was found......), was found to have a significant effect on the rate of the reaction: The percentage of alkyne remaining after a certain time decreased linearly with the rate of stirring. On the basis of systematic studies, the optimized conditions for the coupling reaction using CuCl/TMEDA as the catalyst system......The oxidative Glaser–Hay coupling of two terminal alkynes to furnish a butadiyne is a key reaction for acetylenic scaffolding. Although the reaction is performed under rather simple conditions [CuCl/TMEDA/O2 (air)], the mechanism is still under debate. Herein we present detailed studies...

  15. Electrophilic Substitution Reactions of Indoles

    Science.gov (United States)

    Sundberg, Richard J.

    The topic of this chapter is electrophilic substitution of indole and its derivatives. The indole ring is highly reactive at its 3-position toward protonation, halogenation, alkylation and acylation. Electrophilic substitution can be combined with inter- or intramolecular addition at C-2. Intramolecular alkylation by iminium ions (Pictet-Spengler reaction) is particularly useful. Enantioselectivity can be achieved in many conjugate addition reactions. These reactions have been applied to synthesis of both natural products and drugs.

  16. Electrochemical reactions and ionization processes

    OpenAIRE

    Girault, Hubert; Liu, Baohong; Qiao, Liang; Bi, Hongyan; Prudent, Michel; Lion, Niels; Abonnenc, Mélanie

    2010-01-01

    Electrochemical or photo-electrochemical reactions in both electrospray ionization and laser desorption ionization are discussed stressing the role of the electrode reaction in influencing the ionization process. In particular, upon application of a high voltage during electrospray ionization, the emitter includes a working electrode, where redox reactions are observed, such as electro-generation of benzoquinone and metal ions. In contrast, the target plate in laser-induced desorption ionizat...

  17. Nuclear astrophysics from direct reactions

    OpenAIRE

    2008-01-01

    Accurate nuclear reaction rates are needed for primordial nucleosynthesis and hydrostatic burning in stars. The relevant reactions are extremely difficult to measure directly in the laboratory at the small astrophysical energies. In recent years direct reactions have been developed and applied to extract low-energy astrophysical S-factors. These methods require a combination of new experimental techniques and theoretical efforts, which are the subject of this presentation.

  18. Influences of Reaction Parameters on the Product of a Geothermite Reaction: A Multi-Component Oxidation-Reduction Reaction Study

    OpenAIRE

    Faierson, Eric J.

    2009-01-01

    This study investigated an oxidation-reduction reaction involving a mixture of minerals, glass, and aluminum that exhibited thermite-type reaction behavior. Thermite reactions are a class of Self-propagating High-temperature Synthesis (SHS) reactions. Chemical reactions between raw minerals and a reducing agent, which exhibit thermite-type reaction behavior, are termed geothermite reactions by the author. Geothermite reactions have the potential for use in In-Situ Resource Utilization (ISRU...

  19. [Reaction mechanism studies of heavy ion induced nuclear reactions

    International Nuclear Information System (INIS)

    This report contains papers that discuss: Target Dependence of Complex Fragment Emission in 47-MeV/u La-Induced Reactions; Deconvolution of Time-of-Flight Data to Improve Mass Identification; and Study of the Reaction of La + Al at E/A = 50 MeV with Landau-Vlasov Dynamics

  20. Dynamic Reaction Figures: An Integrative Vehicle for Understanding Chemical Reactions

    Science.gov (United States)

    Schultz, Emeric

    2008-01-01

    A highly flexible learning tool, referred to as a dynamic reaction figure, is described. Application of these figures can (i) yield the correct chemical equation by simply following a set of menu driven directions; (ii) present the underlying "mechanism" in chemical reactions; and (iii) help to solve quantitative problems in a number of different…

  1. Progress in microscopic direct reaction modeling of nucleon induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, M.; Bauge, E.; Hilaire, S.; Lechaftois, F.; Peru, S.; Pillet, N.; Robin, C. [CEA, DAM, DIF, Arpajon (France)

    2015-12-15

    A microscopic nuclear reaction model is applied to neutron elastic and direct inelastic scatterings, and pre-equilibrium reaction. The JLM folding model is used with nuclear structure information calculated within the quasi-particle random phase approximation implemented with the Gogny D1S interaction. The folding model for direct inelastic scattering is extended to include rearrangement corrections stemming from both isoscalar and isovector density variations occurring during a transition. The quality of the predicted (n,n), (n,n{sup '}), (n,xn) and (n,n{sup '}γ) cross sections, as well as the generality of the present microscopic approach, shows that it is a powerful tool that can help improving nuclear reactions data quality. Short- and long-term perspectives are drawn to extend the present approach to more systems, to include missing reactions mechanisms, and to consistently treat both structure and reaction problems. (orig.)

  2. Microscopic effective reaction theory for deuteron-induced reactions

    CERN Document Server

    Neoh, Yuen Sim; Minomo, Kosho; Ogata, Kazuyuki

    2016-01-01

    The microscopic effective reaction theory is applied to deuteron-induced reactions. A reaction model-space characterized by a $p+n+{\\rm A}$ three-body model is adopted, where A is the target nucleus, and the nucleon-target potential is described by a microscopic folding model based on an effective nucleon-nucleon interaction in nuclear medium and a one-body nuclear density of A. The three-body scattering wave function in the model space is obtained with the continuum-discretized coupled-channels method (CDCC), and the eikonal reaction theory (ERT), an extension of CDCC, is applied to the calculation of neutron removal cross sections. Elastic scattering cross sections of deuteron on $^{58}$Ni and $^{208}$Pb target nuclei at several energies are compared with experimental data. The total reaction cross sections and the neutron removal cross sections at 56 MeV on 14 target nuclei are calculated and compared with experimental values.

  3. Astronomy with Radioactivities: Chapter 9, Nuclear Reactions

    OpenAIRE

    Wiescher, M.; Rauscher, T.

    2010-01-01

    Nuclear reaction rates determine the abundances of isotopes in stellar burning processes. A multitude of reactions determine the reaction flow pattern which is described in terms of reaction network simulations. The reaction rates are determined by laboratory experiments supplemented by nuclear reaction and structure theory. We will discuss the experimental approach as well as the theoretical tools for obtaining the stellar reaction rates. A detailed analysis of a reaction is only possible fo...

  4. Chemistry of heavy ion reactions

    International Nuclear Information System (INIS)

    The use of heavy ions to induce nuclear reactions was reported as early as 1950. Since that time it has been one of the most active areas of nuclear research. Intense beams of ions as heavy as uranium with energies high enough to overcome the Coulomb barriers of even the heaviest elements are available. The wide variety of possible reactions gives rise to a multitude of products which have been studied by many ingenious chemical and physical techniques. Chemical techniques have been of special value for the separation and unequivocal identification of low yield species from the plethora of other nuclides present. Heavy ion reactions have been essential for the production of the trans-Md elements and a host of new isotopes. The systematics of compound nucleus reactions, transfer reactions, and deeply inelastic reactions have been elucidated using chemical techniques. A review of the variety of chemical procedures and techniques which have been developed for the study of heavy ion reactions and their products is given. Determination of the chemical properties of the trans-Md elements, which are very short-lived and can only be produced an ''atom-at-a-time'' via heavy ion reactions, is discussed. 53 refs., 19 figs

  5. Free Radical Reactions in Food.

    Science.gov (United States)

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…

  6. Zeolite Catalyzed Aldol Condensation Reactions

    Directory of Open Access Journals (Sweden)

    Adedayo I. Inegbenebor

    2015-03-01

    Full Text Available The review is based on the description of zeolite structure, uses, synthesis, and catalytic aldol reaction in aldol condensation. An internal aldolcondensation reaction has been achieved over ZSM-5 zeolite with high silica-alumina ratio at 350oC. It therefore follows that zeolite canfunction as a catalyst in aldol type condensation reactions and that weak acid sites as well as a small number of active sites favor the aldolcondensation reaction of carbonyl compounds. However, the mixed condensation product was found to be favored at temperatures above 300oCand the self-condensation of ethanal to crotonaldehyde was favored at temperatures below 300oC. It has also been suggested that both Brønstedand Lewis acids are involved in aldol reactions with Lewis acid sites the most probable catalytic sites. The zeolite group of minerals has founduse in many chemical and allied industries.

  7. Effective reaction rates for diffusion-limited reaction cycles

    Science.gov (United States)

    Nałecz-Jawecki, Paweł; Szymańska, Paulina; Kochańczyk, Marek; Miekisz, Jacek; Lipniacki, Tomasz

    2015-12-01

    Biological signals in cells are transmitted with the use of reaction cycles, such as the phosphorylation-dephosphorylation cycle, in which substrate is modified by antagonistic enzymes. An appreciable share of such reactions takes place in crowded environments of two-dimensional structures, such as plasma membrane or intracellular membranes, and is expected to be diffusion-controlled. In this work, starting from the microscopic bimolecular reaction rate constants and using estimates of the mean first-passage time for an enzyme-substrate encounter, we derive diffusion-dependent effective macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle. Each EMRRC was found to be half of the harmonic average of the microscopic rate constant (phosphorylation c or dephosphorylation d), and the effective (crowding-dependent) motility divided by a slowly decreasing logarithmic function of the sum of the enzyme concentrations. This implies that when c and d differ, the two EMRRCs scale differently with the motility, rendering the steady-state fraction of phosphorylated substrate molecules diffusion-dependent. Analytical predictions are verified using kinetic Monte Carlo simulations on the two-dimensional triangular lattice at the single-molecule resolution. It is demonstrated that the proposed formulas estimate the steady-state concentrations and effective reaction rates for different sets of microscopic reaction rates and concentrations of reactants, including a non-trivial example where with increasing diffusivity the fraction of phosphorylated substrate molecules changes from 10% to 90%.

  8. Eikonal reaction theory for two-neutron removal reactions

    CERN Document Server

    Minomo, K; Egashira, K; Ogata, K; Yahiro, M

    2014-01-01

    The eikonal reaction theory (ERT) proposed lately is a method of calculating one-neutron removal reactions at intermediate incident energies in which Coulomb breakup is treated accurately with the continuum discretized coupled-channels method. ERT is extended to two-neutron removal reactions. ERT reproduces measured one- and two-neutron removal cross sections for 6He scattering on 12C and 208Pb targets at 240 MeV/nucleon and also on a 28Si target at 52 MeV/nucleon. For the heavier target in which Coulomb breakup is important, ERT yields much better agreement with the measured cross sections than the Glauber model.

  9. Integrated Microreactors for Reaction Automation: New Approaches to Reaction Development

    Science.gov (United States)

    McMullen, Jonathan P.; Jensen, Klavs F.

    2010-07-01

    Applications of microsystems (microreactors) in continuous-flow chemistry have expanded rapidly over the past two decades, with numerous reports of higher conversions and yields compared to conventional batch benchtop equipment. Synthesis applications are enhanced by chemical information gained from integrating microreactor components with sensors, actuators, and automated fluid handling. Moreover, miniaturized systems allow experiments on well-defined samples at conditions not easily accessed by conventional means, such as reactions at high pressure and temperatures. The wealth of synthesis information that could potentially be acquired through use of microreactors integrated with physical sensors and analytical chemistry techniques for online reaction monitoring has not yet been well explored. The increased efficiency resulting from use of continuous-flow microreactor platforms to automate reaction screening and optimization encourages a shift from current batchwise chemical reaction development to this new approach. We review advances in this new area and provide application examples of online monitoring and automation.

  10. Drug hypersensitivity reactions involving skin.

    Science.gov (United States)

    Hausmann, Oliver; Schnyder, Benno; Pichler, Werner J

    2010-01-01

    Immune reactions to drugs can cause a variety of diseases involving the skin, liver, kidney, lungs, and other organs. Beside immediate, IgE-mediated reactions of varying degrees (urticaria to anaphylactic shock), many drug hypersensitivity reactions appear delayed, namely hours to days after starting drug treatment, showing a variety of clinical manifestations from solely skin involvement to fulminant systemic diseases which may be fatal. Immunohistochemical and functional studies of drug-specific T cells in patients with delayed reactions confirmed a predominant role for T cells in the onset and maintenance of immune-mediated delayed drug hypersensitivity reactions (type IV reactions). In these reactions, drug-specific CD4+ and CD8+ T cells are stimulated by drugs through their T cell receptors (TCR). Drugs can stimulate T cells in two ways: they can act as haptens and bind covalently to larger protein structures (hapten-carrier model), inducing a specific immune response. In addition, they may accidentally bind in a labile, noncovalent way to a particular TCR of the whole TCR repertoire and possibly also major histocompatibility complex (MHC)-molecules - similar to their pharmacologic action. This seems to be sufficient to reactivate certain, probably in vivo preactivated T cells, if an additional interaction of the drug-stimulated TCR with MHC molecules occurs. The mechanism was named pharmacological interaction of a drug with (immune) receptor and thus termed the p-i concept. This new concept may explain the frequent skin symptoms in drug hypersensitivity to oral or parenteral drugs. Furthermore, the various clinical manifestations of T cell-mediated drug hypersensitivity may be explained by distinct T cell functions leading to different clinical phenotypes. These data allowed a subclassification of the delayed hypersensitivity reactions (type IV) into T cell reactions which, by releasing certain cytokines and chemokines, preferentially activate and recruit

  11. [Food hypersensibility: inhalation reactions are different from ingestion reactions].

    Science.gov (United States)

    Baranes, T; Bidat, E

    2008-06-01

    Eight children, aged from 3 to 9 years, presented to inhaled peanut an immediate allergic reaction. All were sensitized to peanut but none had already ingested it overtly. A strict avoidance diet was prescribed concerning this food allergen. An oral provocation challenge was realized to determine the eliciting dose (ED) to ingestion. The ED was high enough to allow all the children a less restrictive diet. Inhaled allergic reaction to peanut does not always justify a strict avoidance diet. PMID:18456474

  12. Palladium-catalyzed coupling reactions

    CERN Document Server

    Molnár, Árpád

    2013-01-01

    This handbook and ready reference brings together all significant issues of practical importance for interested readers in one single volume. While covering homogeneous and heterogeneous catalysis, the text is unique in focusing on such important aspects as using different reaction media, microwave techniques or catalyst recycling. It also provides a comprehensive treatment of modern-day coupling reactions and emphasizes those topics that show potential for future development, such as continuous flow systems, water as a reaction medium, and catalyst immobilization, among others. With i

  13. Chemical potential and reaction electronic flux in symmetry controlled reactions.

    Science.gov (United States)

    Vogt-Geisse, Stefan; Toro-Labbé, Alejandro

    2016-07-15

    In symmetry controlled reactions, orbital degeneracies among orbitals of different symmetries can occur along a reaction coordinate. In such case Koopmans' theorem and the finite difference approximation provide a chemical potential profile with nondifferentiable points. This results in an ill-defined reaction electronic flux (REF) profile, since it is defined as the derivative of the chemical potential with respect to the reaction coordinate. To overcome this deficiency, we propose a new way for the calculation of the chemical potential based on a many orbital approach, suitable for reactions in which symmetry is preserved. This new approach gives rise to a new descriptor: symmetry adapted chemical potential (SA-CP), which is the chemical potential corresponding to a given irreducible representation of a symmetry group. A corresponding symmetry adapted reaction electronic flux (SA-REF) is also obtained. Using this approach smooth chemical potential profiles and well defined REFs are achieved. An application of SA-CP and SA-REF is presented by studying the Cs enol-keto tautomerization of thioformic acid. Two SA-REFs are obtained, JA'(ξ) and JA'' (ξ). It is found that the tautomerization proceeds via an in-plane delocalized 3-center 4-electron O-H-S hypervalent bond which is predicted to exist only in the transition state (TS) region. © 2016 Wiley Periodicals, Inc.

  14. Bulk Nuclear Properties from Reactions

    OpenAIRE

    Danielewicz, P.

    2002-01-01

    Extraction of bulk nuclear properties by comparing reaction observables to results from semiclassical transport-model simulations is discussed. Specific properties include the nuclear viscosity, incompressibility and constraints on the nuclear pressure at supranormal densities.

  15. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  16. Legendre Analysis of Hadronic Reactions

    CERN Document Server

    Azimov, Ya I

    2016-01-01

    Expansions over Legendre functions are suggested as a model-independent way of compact presentation of modern precise and high-statistics data for two-hadron reactions. Some properties of the expansions are described.

  17. Statistical emission in nuclear reactions

    International Nuclear Information System (INIS)

    Statistical model in nuclear reactions has been extensively developed in the past decades, mainly by V. Weisskopf. However, a clear understanding of the experimental situation regarding low- and medium- energy nuclear reaction is not yet settled. The interpretation is complicated by the fact that often the reactions proceed via other mechanisms, for instance direct effects. The purpose 'of the present paper is to show how a great number of experiments can be put in agreement with the statistical formulas, and particularly the resonance measurements for slow neutrons, the evaporation spectra from medium-energy (n, n'), (p, n) and (n, p) reactions and the (n, p) cross-sections at 14 MeV. From the set of experiments discussed it is possible to obtain a consistent table of a, the parameter of the level density formula. (author)

  18. Color Changes Mark Polymer Reactions.

    Science.gov (United States)

    Krieger, James H.

    1980-01-01

    Describes how polydiacetylenes can be used as educational aids. These polymers have conjugated backbones, which cause changes in color when the polydiacetylenes undergo various chemical and physical processes. Diagrams summarize all chemical reactions and their associated color changes. (CS)

  19. Transfer reactions in nuclear astrophysics

    Science.gov (United States)

    Bardayan, D. W.

    2016-08-01

    To a high degree many aspects of the large-scale behavior of objects in the Universe are governed by the underlying nuclear physics. In fact the shell structure of nuclear physics is directly imprinted into the chemical abundances of the elements. The tranquility of the night sky is a direct result of the relatively slow rate of nuclear reactions that control and determines a star’s fate. Understanding the nuclear structure and reaction rates between nuclei is vital to understanding our Universe. Nuclear-transfer reactions make accessible a wealth of knowledge from which we can extract much of the required nuclear physics information. A review of transfer reactions for nuclear astrophysics is presented with an emphasis on the experimental challenges and opportunities for future development.

  20. Spatial model of autocatalytic reactions

    OpenAIRE

    De Anna, Pietro; Di Patti, Francesca; Fanelli, Duccio; McKane, Alan J.; Dauxois, Thierry

    2010-01-01

    Biological cells with all of their surface structure and complex interior stripped away are essentially vesicles - membranes composed of lipid bilayers which form closed sacs. Vesicles are thought to be relevant as models of primitive protocells, and they could have provided the ideal environment for pre-biotic reactions to occur. In this paper, we investigate the stochastic dynamics of a set of autocatalytic reactions, within a spatially bounded domain, so as to mimic a primordial cell. The ...

  1. Thermodynamics of random reaction networks.

    Directory of Open Access Journals (Sweden)

    Jakob Fischer

    Full Text Available Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  2. Psychosocial reactions to physical illness.

    OpenAIRE

    Lipowski, Z J

    1983-01-01

    Recently medical educators have emphasized the need for physicians to acquire the skills to deal with psychologic aspects of patient care. To facilitate this task a descriptive schema is presented for use in evaluating patients' psychosocial reactions to physical illness. Three core components of such reactions are: the personal meaning of illness, emotional responses to illness and modes of coping with illness. Clinical application of this schema may help with patient management and prevent ...

  3. Drug Reactions in Oral Mucosa

    Directory of Open Access Journals (Sweden)

    Emine Derviş

    2012-12-01

    Full Text Available Both immunologic and nonimmunologic drug reactions can be seen in oral mucosa. Since considerable number of these reactions heals spontaneously without being noticed by the patients, exact frequency of the lesions is unknown. Most common lesions are xerostomia, taste disorders, mucosal ulcerations and edema. In this article, oral lesions resulting from drug intake similar to those from oral lesions of local and systemic diseases, and diagnostic problems caused by these similarities, have been reviewed.

  4. Polarization phenomena in collinear reactions

    Science.gov (United States)

    Moravcsik, Michael J.; Arash, Firooz

    1985-06-01

    It is shown for a collinear reaction containing four particles with arbitrary spins which amplitudes remain nonzero and how they are related to the observables. In terms of primary observables all submatrices relating products of amplitudes to observables either vanish or turn into one-by-one submatrices, except the 8i types which may turn into three-by-three submatrices, but these latter submatrices are mostly avoidable when determining amplitudes. In terms of the secondary observables the 1M and 2i submatrices are slightly larger. Specifically, it is shown that in collinear reactions all observables in which only one particle is polarized (no matter how) vanish. Since reactions at very high energies are expected to be predominantly very close to being collinear, the smallness of such observables in such reactions can be expected on general grounds but polarization effects involving observables with more than one polarized particle can very well be very large. An iterative approximation method for the polarization analysis of reactions at very high energies is suggested. The results of this paper are also applicable to all models in which helicity conservation holds, since they are, for all t values, formally identical with collinear reactions.

  5. Polarization phenomena in collinear reactions

    International Nuclear Information System (INIS)

    It is shown for a collinear reaction containing four particles with arbitrary spins which amplitudes remain nonzero and how they are related to the observables. In terms of primary observables all submatrices relating products of amplitudes to observables either vanish or turn into one-by-one submatrices, except the 8/sub i/ types which may turn into three-by-three submatrices, but these latter submatrices are mostly avoidable when determining amplitudes. In terms of the secondary observables the 1/sub M/ and 2/sub i/ submatrices are slightly larger. Specifically, it is shown that in collinear reactions all observables in which only one particle is polarized (no matter how) vanish. Since reactions at very high energies are expected to be predominantly very close to being collinear, the smallness of such observables in such reactions can be expected on general grounds but polarization effects involving observables with more than one polarized particle can very well be very large. An iterative approximation method for the polarization analysis of reactions at very high energies is suggested. The results of this paper are also applicable to all models in which helicity conservation holds, since they are, for all t values, formally identical with collinear reactions

  6. Reaction rates for mesoscopic reaction-diffusion kinetics.

    Science.gov (United States)

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.

  7. Reaction rates for a generalized reaction-diffusion master equation.

    Science.gov (United States)

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.

  8. Reaction rates for a generalized reaction-diffusion master equation

    Science.gov (United States)

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.

  9. Reaction rates for mesoscopic reaction-diffusion kinetics

    Science.gov (United States)

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.

  10. Nuclear Reactions for Astrophysics and Other Applications

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  11. Reaction pathways of propene pyrolysis.

    Science.gov (United States)

    Qu, Yena; Su, Kehe; Wang, Xin; Liu, Yan; Zeng, Qingfeng; Cheng, Laifei; Zhang, Litong

    2010-05-01

    The gas-phase reaction pathways in preparing pyrolytic carbon with propene pyrolysis have been investigated in detail with a total number of 110 transition states and 50 intermediates. The structure of the species was determined with density functional theory at B3PW91/6-311G(d,p) level. The transition states and their linked intermediates were confirmed with frequency and the intrinsic reaction coordinates analyses. The elementary reactions were explored in the pathways of both direct and the radical attacking decompositions. The energy barriers and the reaction energies were determined with accurate model chemistry method at G3(MP2) level after an examination of the nondynamic electronic correlations. The heat capacities and entropies were obtained with statistical thermodynamics. The Gibbs free energies at 298.15 K for all the reaction steps were reported. Those at any temperature can be developed with classical thermodynamics by using the fitted (as a function of temperature) heat capacities. It was found that the most favorable paths are mainly in the radical attacking chain reactions. The chain was proposed with 26 reaction steps including two steps of the initialization of the chain to produce H and CH(3) radicals. For a typical temperature (1200 K) adopted in the experiments, the highest energy barriers were found in the production of C(3) to be 203.4 and 193.7 kJ/mol. The highest energy barriers for the production of C(2) and C were found 174.1 and 181.4 kJ/mol, respectively. These results are comparable with the most recent experimental observation of the apparent activation energy 201.9 +/- 0.6 or 137 +/- 25 kJ/mol. PMID:20082392

  12. Exchange Reactions. Proceedings of the Symposium on Exchange Reactions

    International Nuclear Information System (INIS)

    The mechanisms and kinetics of chemical reactions are of great interest to chemists. The study of exchange reactions in particular helps to shed light on the dynamics of chemical change, providing an insight into the structures and the reactivities of the chemical species involved. The main theme of this meeting was the subject of oxidation-reduction reactions in which the net result is the transfer of one or more electrons between the different oxidation states of the same element. Other studies reported included the transfer of protons, atoms, complex ligands or organic radicals between molecules. Heterogeneous exchange, which is of importance in many cases of catalytic action, was also considered. For a long time isotopic tracers have formed the most convenient means of studying exchange reactions and today a considerable amount of work continues to be done with their aid. Consequently, several papers presented at this Symposium reported on work carried out by purely radiochemical tracer methods. In recognition, however, of the important role which nuclear magnetic resonance and electron spin resonance play in this field, in particular in the study of fast reactions, a number of reports on investigations in which these techniques had been used was included in the programme. By kind invitation of the United States Government the Symposium on Exchange Reactions was held from 31 May to 4 June at the Brookhaven National Laboratory, Upton, Long Island, N.Y., USA. It was attended by 46 participants from nine countries and one inter-governmental organization. The publication of these Proceedings makes the contents of the papers and the discussion available to a wider audience

  13. A comprehensive survey of nuclear reactions; Panorama des reactions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cugnon, J. [Liege Univ., IFPA, AGO Dept. (Belgium)

    2007-07-01

    The various mechanisms of nuclear reactions are surveyed and classified in different regimes, based on the notions of coherent mechanisms and hard versus soft processes. The emphasis is put on the concepts at the basis of the understanding of these regimes and on the elements of nuclear structure which are involved in these different regimes, as well as the on the possibility of extracting this information. Due to lack of space and for pedagogical reasons, the discussion is limited to nucleon-induced and light-ion-induced reactions. However, a few remarks are given concerning some specific probes, such as weakly bound projectiles or neutron-rich nuclei. (author)

  14. Acute anaphylactic reaction to expired chlorpheniramine injection

    Institute of Scientific and Technical Information of China (English)

    Beuy Joob; Viroj Wiwanitkit

    2014-01-01

    Chlorpheniramine is a widely used drug for management of allergic reaction.The serious adverse reaction to this drug is extremely rare.In this report, the authors present a case of acute anaphylactic reaction to expired chlorpheniramine injection.

  15. Combustion kinetics and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  16. The Reaction of Acenaphthene with Nitrobenzene

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The reaction of acenaphthene with nitrobenzene was investigated in the presence of AlCl3 . The results showed that the reaction proceeded via carboncation-electrophilic substitution reaction and free radical substitution reaction pathway. The products of acenaphthenyl phenylamine and biacenaphthyl could be synthesized by this reaction. The influence of the amount of AlCl3 and the temperature on the components of products were also studied in this reaction.

  17. Adverse Reactions to Radiographic Contrast Material

    OpenAIRE

    Bush, William H.; Mullarkey, Michael F.; Webb, D. Robert

    1980-01-01

    Major adverse reactions to radiographic contrast media will occur more often as contrast material is now also administered during computerized tomographic (CT) scanning. Differentiation of the two major contrast reactions, the vagus reaction and the anaphylactoid reaction, is essential. Bradycardia is the key finding for identifying the vagus reaction. The vagus reaction involving hypotension and bradycardia requires treatment with large doses of atropine given intravenously. The immediate ge...

  18. OXYGEN-18 + OXYGEN-18 Reactions.

    Science.gov (United States)

    Yuan, Ren-Feng

    Cross sections for the ^{18 }O + ^{18}O reactions (fusion, inelastic excitation and transfer reactions) have been determined in the range 6.73 <=q E_{c.m}<=q 13.24 MeV by measuring the low-lying gamma-ray transitions in the residual nuclei with a high resolution Ge detector. A statistical model calculation of the populations of the residual nuclear states was employed in deducing cross sections from the measured gamma -yields. gamma-ray angular distributions were determined at E_{lab} = 20.0 MeV. The total fusion cross sections were compared with an IWBC calculation employing a parameter set obtained from fitting elastic scattering data. The interaction barrier shape has been obtained by means of the BKN inversion procedure and compared with the barriers for other oxygen isotopes. The inelastic scattering cross section and the two-neutron transfer reaction cross section are reproduced well by the DWBA approach.

  19. A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity.

    Science.gov (United States)

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    While diabatic approaches are ubiquitous for the understanding of electron-transfer reactions and have been mooted as being of general relevance, alternate applications have not been able to unify the same wide range of observed spectroscopic and kinetic properties. The cause of this is identified as the fundamentally different orbital configurations involved: charge-transfer phenomena involve typically either 1 or 3 electrons in two orbitals whereas most reactions are typically closed shell. As a result, two vibrationally coupled electronic states depict charge-transfer scenarios whereas three coupled states arise for closed-shell reactions of non-degenerate molecules and seven states for the reactions implicated in the aromaticity of benzene. Previous diabatic treatments of closed-shell processes have considered only two arbitrarily chosen states as being critical, mapping these states to those for electron transfer. We show that such effective two-state diabatic models are feasible but involve renormalized electronic coupling and vibrational coupling parameters, with this renormalization being property dependent. With this caveat, diabatic models are shown to provide excellent descriptions of the spectroscopy and kinetics of the ammonia inversion reaction, proton transfer in N2H7(+), and aromaticity in benzene. This allows for the development of a single simple theory that can semi-quantitatively describe all of these chemical phenomena, as well as of course electron-transfer reactions. It forms a basis for understanding many technologically relevant aspects of chemical reactions, condensed-matter physics, chemical quantum entanglement, nanotechnology, and natural or artificial solar energy capture and conversion.

  20. Photonuclear reactions on titanium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Belyshev, S. S. [Moscow State University (Russian Federation); Dzhilavyan, L. Z. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Ishkhanov, B. S.; Kapitonov, I. M. [Moscow State University (Russian Federation); Kuznetsov, A. A., E-mail: kuznets@depni.sinp.msu.ru; Orlin, V. N.; Stopani, K. A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2015-03-15

    The photodisintegration of titanium isotopes in the giant-dipole-resonance energy region is studied by the photon-activation method. Bremsstrahlung photons whose spectrum has the endpoint energy of 55 MeV is used. The yields and integrated cross sections are determined for photoproton reactions on the titanium isotopes {sup 47,48,49,50}Ti. The respective experimental results are compared with their counterparts calculated on the basis of the TALYS code and a combined photonucleon-reaction model. The TALYS code disregards the isospin structure of the giant dipole resonance and is therefore unable to describe the yield of photoproton reactions on the heavy titanium isotopes {sup 49,50}Ti.

  1. Spatial model of autocatalytic reactions

    Science.gov (United States)

    de Anna, Pietro; di Patti, Francesca; Fanelli, Duccio; McKane, Alan J.; Dauxois, Thierry

    2010-05-01

    Biological cells with all of their surface structure and complex interior stripped away are essentially vesicles—membranes composed of lipid bilayers which form closed sacs. Vesicles are thought to be relevant as models of primitive protocells, and they could have provided the ideal environment for prebiotic reactions to occur. In this paper, we investigate the stochastic dynamics of a set of autocatalytic reactions, within a spatially bounded domain, so as to mimic a primordial cell. The discreteness of the constituents of the autocatalytic reactions gives rise to large sustained oscillations even when the number of constituents is quite large. These oscillations are spatiotemporal in nature, unlike those found in previous studies, which consisted only of temporal oscillations. We speculate that these oscillations may have a role in seeding membrane instabilities which lead to vesicle division. In this way synchronization could be achieved between protocell growth and the reproduction rate of the constituents (the protogenetic material) in simple protocells.

  2. Postcolumn reaction detectors for HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Frei, R.W.; Jansen, H.; Brinkman, U.A.T.

    1985-12-01

    Currently, the best and most reliable HPLC (high-performance liquid chromatography) detectors are UV-VIS absorbance, fluorescence, and electrochemical detectors. It is attractive to try to expand their range of application by using suitable chemical derivatization techniques to convert the analytes of interest with their originally poor detection properties into compounds that can be detected with high sensitivity with these detectors. Besides an improvement of the detection properties, the chemical reaction can also enhance the selectivity of the total analytical method. The derivatization can be carried out either prior to the HPLC separation or by doing the reaction in an on-line postcolumn mode. Comparative advantages and disadvantages of these two approaches have been discussed previously. This paper will discuss on-line postcolumn derivatization. A general scheme of an HPLC system equipped with an on-line postcolumn reaction detector is given. 40 references, 6 figures, 2 tables.

  3. Anaphylactoid reactions to radiocontrast media.

    Science.gov (United States)

    Canter, Lauren M

    2005-01-01

    As the role for diagnostic and therapeutic contrast-enhanced imaging increases, review of the epidemiology, mechanisms, risk factors, and pretreatment for radiocontrast-mediated anaphylactoid reactions becomes more and more pertinent. Ongoing research has failed to elucidate the precise mechanisms of both early and late reactions, though the current data point to a multifactorial pathogenesis. The risk of reactions has decreased over time as contrast media have evolved from ionic, high-osmolality to nonionic, low-osmolality formulations; however, the expense of the low-osmolality agents limit their universal use. Today, 1-12% of patients exhibit adverse responses ranging from mild to severe, with individual risk depending on the type of contrast administered and certain baseline patient characteristics. For those high-risk patients who must receive contrast, effective pretreatment guidelines have been established. PMID:16119034

  4. Light in elementary biological reactions

    Science.gov (United States)

    Sundström, Villy

    2000-09-01

    Light plays an important role in biology. In this review we discuss several processes and systems where light triggers a biological response, i.e. photosynthesis, vision, photoreceptors. For these functions Nature has chosen simple elementary chemical reactions, which occur in highly specialized and organized structures. The high efficiency and specificity of these reactions make them interesting for applications in light energy conversion and opto-electronics. In order to emphasize the synergism in studies of natural and synthetic systems we will discuss a few of each kind, with similar functions. In all cases light triggers a rapid sequence of events, which makes ultrafast spectroscopy an ideal tool to disentangle reaction mechanisms and dynamics.

  5. Inorganic Reaction Mechanisms Part II: Homogeneous Catalysis

    Science.gov (United States)

    Cooke, D. O.

    1976-01-01

    Suggests several mechanisms for catalysis by metal ion complexes. Discusses the principal factors of importance in these catalysis reactions and suggests reactions suitable for laboratory study. (MLH)

  6. Microscopic effective reaction theory for direct nuclear reactions

    Directory of Open Access Journals (Sweden)

    Ogata Kazuyuki

    2016-01-01

    Full Text Available Some recent activities with the microscopic effective reaction theory (MERT on elastic, inelastic, breakup, transfer, and knockout processes are reviewed briefly. As a possible alternative to MERT, a description of elastic and inelastic scattering with the continuum particle-vibration coupling (cPVC method is also discussed.

  7. Vision 2020. Reaction Engineering Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Klipstein, David H. [Reaction Design, San Diego, CA (United States); Robinson, Sharon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2001-01-01

    The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).

  8. Interface reactions in film materials

    Institute of Scientific and Technical Information of China (English)

    Fengwu Zhu; Zhonghai Zhai; Guanghua Yu

    2003-01-01

    Interface reaction (IR) is a frequently observed phenomenon in the study of advanced thin film materials. It is very important to study the reaction conditions at which IR happens and then to suppress or make use of it, the necessary conditions, including both thermodynamical and dynamical conditions of IR were discussed in detail. IRs in various systems, including oxide/silicon,oxide/metal, metal/metal, metal/semiconductor and semiconductor/semiconductor, were reviewed. Methods to suppress and make use of IR were also introduced.

  9. Fundamentals of chemical reaction engineering

    CERN Document Server

    Davis, Mark E

    2012-01-01

    Appropriate for a one-semester undergraduate or first-year graduate course, this text introduces the quantitative treatment of chemical reaction engineering. It covers both homogeneous and heterogeneous reacting systems and examines chemical reaction engineering as well as chemical reactor engineering. The authors take a chemical approach, helping students develop an intuitive feeling for concepts, rather than an engineering approach, which tends to overlook the inner workings of systems and objects.Each chapter contains numerous worked-out problems and real-world vignettes involving commercia

  10. Reactions

    DEFF Research Database (Denmark)

    Søndergaard, Morten

    2011-01-01

    construction; and 2) As a construction of a new reactive modality of the (art) museum as ‘archive of reality' - showing the outline of a cultural institution that oscillates between the instituting and institutionalizing competences of the (art) museum - between knowledge-based and experience-based exhibiting......  My concern is to understand augmentation as an emergent modality - among many others in ‘the expanding digital field' (Søndergaard M. , Transformative Creativity in the Expanded Digital Field, 2009)' - attributed to the production of contemporary art and the ‘archive of knowledge' in the (art......) museum. Augmentation, in this expanding digital field, is part of a production of new public spaces, as well as a new reality that affects and traverses art and institutions immanently and througout. The expanding digital field is transforming art and the art museum in a number of fundamental ways, a few...

  11. Reduction of chemical reaction models

    Science.gov (United States)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  12. Multispecies reaction-diffusion systems

    OpenAIRE

    Aghamohammadi, A.; Fatollahi, A. H.; Khorrami, M.; Shariati, A.

    2000-01-01

    Multispecies reaction-diffusion systems, for which the time evolution equation of correlation functions become a closed set, are considered. A formal solution for the average densities is found. Some special interactions and the exact time dependence of the average densities in these cases are also studied. For the general case, the large time behaviour of the average densities has also been obtained.

  13. Recyclization reactions leading to benzimidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Mamedov, Vakhid A; Murtazina, Anna M [A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan (Russian Federation)

    2011-05-31

    The published data on the recyclization reactions that afford benzimidazoles are generalized and systematized. Both classical and new methods of benzimidazole synthesis are considered. Attention is focused on the publications over the recent 10-15 years; of the earlier publications, only those unknown to the wide circle of chemists are analyzed.

  14. Apparent tunneling in chemical reactions

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Hansen, Flemming Yssing; Billing, G. D.

    2000-01-01

    A necessary condition for tunneling in a chemical reaction is that the probability of crossing a barrier is non-zero, when the energy of the reactants is below the potential energy of the barrier. Due to the non-classical nature (i.e, momentum uncertainty) of vibrational states this is, however...

  15. Reactions of ethanol on Ru

    NARCIS (Netherlands)

    Sturm, J. M.; Lee, C. J.; F. Bijkerk,

    2013-01-01

    The adsorption and reactions of ethanol on Ru(0001) were studied with temperature-programmed desorption (TPD) and reflection-absorption infrared spectroscopy (RAIRS). Ethanol was found to adsorb intact onto Ru(0001) below 100 K. From 175 K to 200 K, ethanol is converted into ethoxy groups, which und

  16. INTERFACE REACTION IN MAGNETIC MULTILAYERS

    Institute of Scientific and Technical Information of China (English)

    G.H. Yu; M.H. Li; F.W. Zhu; X.F. Cui; J.L. Jin

    2001-01-01

    Ta/NiO/NiFe/Ta multilayers were prepared by rf reactive and dc magnetron sputter-ing. The exchange coupling field (Hex) between NiO and NiFe reached 120Oe. Thecomposition and chemical states at the interface region of NiO/NiFe were studied us-ing the x-ray photoelectron spectroscopy (XPS) and peak decomposition technique. Theresults show that there are two thermodynamically favorable reactions at NiO/NiFeinterface: NiO+Fe = Ni+FeO and 3NiO+2Fe 3Ni+Fe2 O3. The thickness of thechemical reaction as estimated by angle-resolved XPS was about 1-1.5nm. These in-terrace reaction products are magnetic defects, and we believe that the Hex and thecoereivity (He) of NiO/NiFe ave affected by these defects. Moreover, the results alsoshow that there is an "intermixing layer" at the Ta/NiO (and NiO/Ta) interface dueto a thermodynamically favorable reaction: 2Ta+5NiO=5Ni+Ta2O5. This interfacereaction has an effect on the exchange coupling as well. The thickness of the "inter-mixing layer" as estimated by XPS depth-profiles was about 8-10nm.

  17. Reactants encapsulation and Maillard Reaction

    NARCIS (Netherlands)

    Troise, A.D.; Fogliano, V.

    2013-01-01

    In the last decades many efforts have been addressed to the control of Maillard Reaction products in different foods with the aim to promote the formation of compounds having the desired color and flavor and to reduce the concentration of several potential toxic molecules. Encapsulation, already app

  18. Detecting deception through reaction times

    NARCIS (Netherlands)

    B. Verschuere; K. Suchotzki; E. Debey

    2015-01-01

    Reaction times (RTs) are among the oldest measures in psychology, and remain popular in several psychology disciplines. However, they have been largely neglected as a cue for deception, reflecting the sceptic's view that RTs fall under voluntary control and are easily manipulated. From our review of

  19. Strangeness exchange reactions and hypernuclei

    International Nuclear Information System (INIS)

    Recent progress in the spectroscopy of Λ and Σ hypernuclei is reviewed. Prospects for the production of doubly strange hypernuclei at a future kaon factory are assessed. It is suggested that the (K-,K+) reaction on a nuclear target may afford an optimal way of producing the H dibaryon, a stable six quark object with J/sup π/ = O+, S = -2

  20. Experimental Demonstrations in Teaching Chemical Reactions.

    Science.gov (United States)

    Hugerat, Muhamad; Basheer, Sobhi

    2001-01-01

    Presents demonstrations of chemical reactions by employing different features of various compounds that can be altered after a chemical change occurs. Experimental activities include para- and dia-magnetism in chemical reactions, aluminum reaction with base, reaction of acid with carbonates, use of electrochemical cells for demonstrating chemical…

  1. GREENER REACTIONS UNDER SOLVENT FREE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Hiren M. Marvaniya

    2011-06-01

    Full Text Available The toxicity and volatile nature of many organic solvents, particularly chlorinated hydrocarbons that are widely used in huge amounts for organic reactions have posed a serious threat to the environment. Thus, design of solventless catalytic reaction has received tremendous attention in recent times in the area of green synthesis. A solvent-free or solid state reaction may be carried out using the reactants alone or incorporating them in clays, zeolites, silica, alumina or other matrices to achieve high degree of stereoselectivity in the products, to reduce byproducts, to maximize rate of reaction. We illustrate the environmentally benign approach to 1,2-Oxazine-2- oxides, Michael addition, Wohl–Ziegler reaction, Acylation, Heck reaction, Tishchenko reaction, Diels– Alder reaction, Reformatsky and Luche Reaction, Oxidative coupling Reaction, Synthesis of chalcones, Synthesis of Dihydropyrimidinones

  2. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  3. Investigating Reaction-Driven Cracking

    Science.gov (United States)

    Kelemen, P. B.; Hirth, G.; Savage, H. M.

    2013-12-01

    Many metamorphic reactions lead to large volume changes, and potentially to reaction-driven cracking [1,2]. Large-scale hydration of mantle peridotite to produce serpentine or talc is invoked to explain the rheology of plate boundaries, the nature of earthquakes, and the seismic properties of slow-spread ocean crust and the 'mantle wedge' above subduction zones. Carbonation of peridotite may be an important sink in the global carbon cycle. Zones of 100% magnesite + quartz replacing peridotite, up to 200 m thick, formed where oceanic mantle was thrust over carbonate-bearing metasediments in Oman. Talc + carbonate is an important component of the matrix in subduction mélanges at Santa Catalina Island , California, and the Sanbagawa metamorphic belt, Japan. Engineered systems to emulate natural mineral carbonation could provide relatively inexpensive CO2 capture and storage [3]. More generally, engineered reaction-driven cracking could supplement or replace hydraulic fracture in geothermal systems, solution mining, and extraction of tight oil and gas. The controls on reaction-driven cracking are poorly understood. Hydration and carbonation reactions can be self-limiting, since they potentially reduce permeability and armor reactive surfaces [4]. Also, in some cases, hydration or carbonation may take place at constant volume. Small changes in volume due to precipitation of solid products increases stress, destabilizing solid reactants, until precipitation and dissolution rates become equal at a steady state stress [5]. In a third case, volume change due to precipitation of solid products causes brittle failure. This has been invoked on qualitative grounds to explain, e.g., complete serpentinization of mantle peridotite [6]. Below ~ 300°C, the available potential energy for hydration and carbonation of olivine could produce stresses of 100's of MPa [2], sufficient to fracture rocks to 10 km depth or more, causing brittle failure below the steady state stress required

  4. Radiation Reaction on Brownian Motions

    CERN Document Server

    Seto, Keita

    2016-01-01

    Tracking the real trajectory of a quantum particle is one of the interpretation problem and it is expressed by the Brownian (stochastic) motion suggested by E. Nelson. Especially the dynamics of a radiating electron, namely, radiation reaction which requires us to track its trajectory becomes important in the high-intensity physics by PW-class lasers at present. It has been normally treated by the Furry picture in non-linear QED, but it is difficult to draw the real trajectory of a quantum particle. For the improvement of this, I propose the representation of a stochastic particle interacting with fields and show the way to describe radiation reaction on its Brownian motion.

  5. Programmability of Chemical Reaction Networks

    Science.gov (United States)

    Cook, Matthew; Soloveichik, David; Winfree, Erik; Bruck, Jehoshua

    Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior.

  6. Nuclear Reactions from Lattice QCD

    CERN Document Server

    Briceño, Raúl A; Luu, Thomas C

    2014-01-01

    One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low- energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path ...

  7. Tuberculin reaction and BCG scar

    DEFF Research Database (Denmark)

    Timmermann, Clara Amalie Gade; Biering-Sørensen, Sofie; Aaby, Peter;

    2015-01-01

    rate ratio (MRR) comparing children with a BCG scar with those without was 0.42 (95% CI = 0.19; 0.93). There was a similar tendency for TST positivity: MRR = 0.47 (95% CI = 0.14; 1.54). For LBW children who had both a positive TST reaction and a scar, the MRR was 0.22 (95% CI = 0.05; 0.87). For NBW...

  8. Cellular reactions to patterned biointerfaces

    OpenAIRE

    Schulte, Vera Antonie

    2012-01-01

    The subject of this thesis is to study cellular reactions to topographically, mechanically and biochemically tunable polymeric biomaterials. Different aspects of in vitro cell-biomaterial interactions were systematically studied with the murine fibroblast cell line NIH L929 and primary human dermal fibroblasts (HDFs). Besides a general cytocompatibility assessment of the applied materials and the quantification of cell adhesion per se, cell morphological changes (e.g. cell spreading) and intr...

  9. Hydrogen tunneling in enzyme reactions

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Y.; Murray, C.J.; Klinman, J.P.

    1989-03-10

    Primary and secondary protium-to-tritium (H/T) and deuterium-to-tritium (D/T) kinetic isotope effects for the catalytic oxidation of benzyl alcohol to benzaldehyde by yeast alcohol dehydrogenase (YADH) at 25 degrees Celsius have been determined. Previous studies showed that this reaction is nearly or fully rate limited by the hydrogen-transfer step. Semiclassical mass considerations that do not include tunneling effects would predict that kH/kT = (kD/kT)3.26, where kH, kD, and kT are the rate constants for the reaction of protium, deuterium, and tritium derivatives, respectively. Significant deviations from this relation have now been observed for both primary and especially secondary effects, such that experimental H/T ratios are much greater than those calculated from the above expression. These deviations also hold in the temperature range from 0 to 40 degrees Celsius. Such deviations were previously predicted to result from a reaction coordinate containing a significant contribution from hydrogen tunneling.

  10. Hydrogen Tunneling in Enzyme Reactions

    Science.gov (United States)

    Cha, Yuan; Murray, Christopher J.; Klinman, Judith P.

    1989-03-01

    Primary and secondary protium-to-tritium (H/T) and deuterium-to-tritium (D/T) kinetic isotope effects for the catalytic oxidation of benzyl alcohol to benzaldehyde by yeast alcohol dehydrogenase (YADH) at 25 degrees Celsius have been determined. Previous studies showed that this reaction is nearly or fully rate limited by the hydrogen-transfer step. Semiclassical mass considerations that do not include tunneling effects would predict that kH/kT = (kD/kT)3.26, where kH, kD, and kT are the rate constants for the reaction of protium, deuterium, and tritium derivatives, respectively. Significant deviations from this relation have now been observed for both primary and especially secondary effects, such that experimental H/T ratios are much greater than those calculated from the above expression. These deviations also hold in the temperature range from 0 to 40 degrees Celsius. Such deviations were previously predicted to result from a reaction coordinate containing a significant contribution from hydrogen tunneling.

  11. Kinetics of nitroxyl radical reactions

    International Nuclear Information System (INIS)

    Absolute rate-constants for the reaction of the nitroxyl free radicals TAN and TMPN with radiation-chemically-formed radicals and ions have been determined. k(TAN + X) (in M-1 sec-1) = 4.0 x 109 (for X =OH), 2.9 x 1010(esub(aq)-), 8.0 x 109 (H), 7.2 x 108 (CH2OH), 4.0 x 108 (CH3CHOH), 4.3 x 108 ((CH3)2COH), 2.8 x 108 (CH2(CH3)2COH), 5.9 x 107 (glucose radical), 4.0 x 108 (c-C5H9), and k(TMPN + X) = 3.4 x 109 (OH), 7.8 x 109 (esub(aq)-), 4.9 x 109 (H), 4.4 x 108 (CH2OH), 4.9 x 108 (CH3CHOH), 3.6 x 108 ((CH3)2COH), 1.5 x 108 (CH2(CH3)2COH), 4.9 x 107 (glucose radical), 4.3 x 108 (c-C5H9). Direct measurements by means of a pulse-radiolysis conductivity technique were based on the formation and destruction of charged species in these reactions within certain pH ranges. It is indicated that the radiosensitizing nitroxyles undergo both redox and addition reactions. (author)

  12. Reaction Selectivity in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Kliewer, Christopher J.

    2009-02-02

    The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility, and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.

  13. Reaction Kinetics of Nanostructured Silicon Carbide

    Science.gov (United States)

    Wallis, Kendra; Zerda, T. W.

    2006-10-01

    Nanostructured silicon carbide (SiC) is of interest particularly for use in nanocomposites that demonstrate high hardness as well as for use in semiconductor applications. Reaction kinetics studies of solid-solid reactions are relatively recent and present a method of determining the reaction mechanism and activation energy by measuring reaction rates. We have used induction heating to heat quickly, thus reducing the error in reaction time measurements. Data will be presented for reactions using silicon nanopowder (melting point of silicon. Using the well-known Avrami-Erofeev model, a two-parameter chi- square fit of the data provided a rate constant (k) and parameter (n), related to the reaction mechanism, for each temperature. From these data, an activation energy of 138 kJ/mol was calculated. In addition, the parameter n suggests the reaction mechanism, which will also be discussed. Experiments are continuing at higher temperatures to consider the liquid- solid reaction as well.

  14. Modelling Chemical Reasoning to Predict Reactions

    CERN Document Server

    Segler, Marwin H S

    2016-01-01

    The ability to reason beyond established knowledge allows Organic Chemists to solve synthetic problems and to invent novel transformations. Here, we propose a model which mimics chemical reasoning and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outperforms a rule-based expert system in the reaction prediction task for 180,000 randomly selected binary reactions. We show that our data-driven model generalises even beyond known reaction types, and is thus capable of effectively (re-) discovering novel transformations (even including transition-metal catalysed reactions). Our model enables computers to infer hypotheses about reactivity and reactions by only considering the intrinsic local structure of the graph, and because each single reaction prediction is typically ac...

  15. Non-Markovian polymer reaction kinetics

    CERN Document Server

    Guérin, Thomas; Voituriez, Raphaël; 10.1038/NCHEM.1378

    2012-01-01

    Describing the kinetics of polymer reactions, such as the formation of loops and hairpins in nucleic acids or polypeptides, is complicated by the structural dynamics of their chains. Although both intramolecular reactions, such as cyclization, and intermolecular reactions have been studied extensively, both experimentally and theoretically, there is to date no exact explicit analytical treatment of transport-limited polymer reaction kinetics, even in the case of the simplest (Rouse) model of monomers connected by linear springs. We introduce a new analytical approach to calculate the mean reaction time of polymer reactions that encompasses the non-Markovian dynamics of monomer motion. This requires that the conformational statistics of the polymer at the very instant of reaction be determined, which provides, as a by-product, new information on the reaction path. We show that the typical reactive conformation of the polymer is more extended than the equilibrium conformation, which leads to reaction times sign...

  16. Reaction path synthesis methodology for waste minimization

    Institute of Scientific and Technical Information of China (English)

    HU; Shanying; LI; Mingheng; LI; Yourun; SHEN; Jingzhu; LIU

    2004-01-01

    It is a key step for reducing waste generation in chemical processes to design optimal reaction paths. In this paper, methods of waste minimization for reaction path synthesis problems are proposed to realize eco-industrial production mode with minimum waste emission. A new conception of simple stoichiometric reaction is presented for reaction path synthesis problem. All simple stoichiometric reactions can be obtained by mathematical transformation for atom matrix of a reaction system. Based on the conception, a two-tier optimization method for complex reaction path synthesis problems is addressed. The first step is to determine the economic optimal overall reactions, and the second step to decompose each overall reaction into several sub-reactions and find out the best thermodynamic feasible reaction path. Further, a method of reaction path synthesis with waste closed-cycle is proposed based on simple stoichiometric reactions for achieving zero waste emission to poly-generation problem of multi-products. Case studies show that the proposed methods can efficiently solve practical reaction path synthesis problems.

  17. Chemical reactions in solvents and melts

    CERN Document Server

    Charlot, G

    1969-01-01

    Chemical Reactions in Solvents and Melts discusses the use of organic and inorganic compounds as well as of melts as solvents. This book examines the applications in organic and inorganic chemistry as well as in electrochemistry. Organized into two parts encompassing 15 chapters, this book begins with an overview of the general properties and the different types of reactions, including acid-base reactions, complex formation reactions, and oxidation-reduction reactions. This text then describes the properties of inert and active solvents. Other chapters consider the proton transfer reactions in

  18. Metal-catalyzed asymmetric aldol reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Luiz C.; Lucca Junior, Emilio C. de; Ferreira, Marco A. B.; Polo, Ellen C., E-mail: ldias@iqm.unicamp.br [Universidade de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2012-12-15

    The aldol reaction is one of the most powerful and versatile methods for the construction of C-C bonds. Traditionally, this reaction was developed in a stoichiometric version; however, great efforts in the development of chiral catalysts for aldol reactions were performed in recent years. Thus, in this review article, the development of metal-mediated chiral catalysts in Mukaiyama-type aldol reaction, reductive aldol reaction and direct aldol reaction are discussed. Moreover, the application of these catalysts in the total synthesis of complex molecules is discussed. (author)

  19. Reaction cross-section predictions for nucleon induced reactions

    CERN Document Server

    Nobre, G P A; Escher, J E; Dietrich, F S

    2010-01-01

    A microscopic calculation of the optical potential for nucleon-nucleus scattering has been performed by explicitly coupling the elastic channel to all the particle-hole (p-h) excitation states in the target and to all relevant pickup channels. These p-h states may be regarded as doorway states through which the flux flows to more complicated configurations, and to long-lived compound nucleus resonances. We calculated the reaction cross sections for the nucleon induced reactions on the targets $^{40,48}$Ca, $^{58}$Ni, $^{90}$Zr and $^{144}$Sm using the QRPA description of target excitations, coupling to all inelastic open channels, and coupling to all transfer channels corresponding to the formation of a deuteron. The results of such calculations were compared to predictions of a well-established optical potential and with experimental data, reaching very good agreement. The inclusion of couplings to pickup channels were an important contribution to the absorption. For the first time, calculations of excitatio...

  20. Effect of Pozzolanic Reaction Products on Alkali-silica Reaction

    Institute of Scientific and Technical Information of China (English)

    WEI Fengyan; LAN Xianghui; LV Yinong; XU Zhongzi

    2006-01-01

    The effect of fly ash on controlling alkali-silica reaction (ASR) in simulated alkali solution was studied. The expansion of mortar bars and the content of Ca(OH)2 in cement paste cured at 80 ℃ for 91 d were measured. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were employed to study the microstructure of C-S-H. TEM/energy dispersive spectroscopy (EDS) was then used to determine the composition of C-S-H. The pore structure of the paste was analyzed by mercury intrusion porosimetry (MIP). The results show that the contents of fly ash of 30% and 45% can well inhibit ASR. And the content of Ca(OH)2 decreases with the increase of fly ash. That fly ash reacted with Ca(OH)2 to produce C-S-H with a low Ca/Si molar ratio could bind more Na+ and K+ ions, and produce a reduction in the amount of soluble alkali available for ASR. At the same time, the C-S-H produced by pozzolanic reaction converted large pores to smaller ones (gel pores smaller than 10 nm) to densify the pore structure. Perhaps that could inhibit alkali transport to aggregate for ASR.

  1. Fragmentation processes in nuclear reactions

    International Nuclear Information System (INIS)

    Fragmentation processes in nuclear collisions are reviewed. The main emphasis is put on light ion breakup at nonrelativistic energies. The post- and prior-form DWBA theories are discussed. The post-form DWBA, appropriate for the ''spectator breakup'' describes elastic as well as inelastic breakup modes. This theory can also account for the stripping to unbound states. The theoretical models are compared to typical experimental results to illustrate the various possible mechanisms. It is discussed, how breakup reactions can be used to study high-lying single particle strength in the continuum; how it can yield information about momentum distributions of fragments in the nucleus. (orig.)

  2. Forgiveness, retaliation and paranoid reactions.

    Science.gov (United States)

    Hunter, R C

    1978-04-01

    It has been suggested that clinical states from grudgingness and habitual bitterness through to delusions of persecution are best resolved by forgiving. The process of forgiving requires that previously unacknowledged impulses, particularly aggressive ones, are accepted in oneself and others. If the therapist is aware of this, he can, in the transference, reinforce the patient's good introjects by providing a non-judgemental, acceptant model for the patient and thereby facilitate the adoption of the forgiving attitude. Sometimes habitual forgiving can occur as a reaction formation, and should be dealt with as such.

  3. Quantum control in nuclear reaction

    International Nuclear Information System (INIS)

    A frontier field beyond atom and molecular control will be concentrated on the controlling of nuclei. Both theoretical design and laboratory experiments extremely need to be developed with the great progress of quantum physics and laser technology. This work is to focus on the computational approach to achieve the quantum control in nuclear reaction with a stable semi-discrete numerical paradigm in high dimensions. A reasonable physical model is established by multi-Klein–Gordon Schroedinger dynamics. Demonstrative experiments would provide the confident guidance to control quantum system at nuclei scale in real laboratory. (author)

  4. Chemical reactions at aqueous interfaces

    Science.gov (United States)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1

  5. Kinetics of heterogeneous catalytic reactions

    CERN Document Server

    Boudart, Michel

    2014-01-01

    This book is a critical account of the principles of the kinetics of heterogeneous catalytic reactions in the light of recent developments in surface science and catalysis science. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase acc

  6. Control Electronics For Reaction Wheel

    Science.gov (United States)

    Chamberlin, Keith

    1995-01-01

    Bidirectional operation achieved with single-polarity main power supply. Control circuitry generates pulse-width-modulated 800-Hz waveforms to drive two-phase ac motor and reaction wheel. Operates partly in response to digital magnitude-and-direction torque command generated by external control subsystem and partly in response to tachometric feedback in form of two once-per-revolution sinusoids with amplitudes proportional to speed. Operation in either of two modes called "normal" and "safehold." In normal mode, drive pulses timed so that, on average over one or few cycles, motor applies commanded torque. In safehold mode, pulses timed to keep motor running at set speed in one direction.

  7. Photo nuclear reactions by QMD

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Tomoyuki; Niita, Koji; Chiba, Satoshi; Maruyama, Toshiki; Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-05-01

    QMD (Quantum Molecular Dynamics) was applied to photo nuclear reaction. Advantages of QMD were explained. The cross section of (Cr, pX) at 375 MeV/c was simulated. The results showed three peaks, the peak in the lowest momentum indicated contribution of statistics decay and the middle one, the largest peak, was contribution of quasi-free process (QF) which consisted of two-step process. Then, the total cross section of {pi} photoproduction for three target nuclei (C, Al and Cu) was simulated by QMD. The obtained values were larger than the experimental values, so that the present QMD calculation showed small {pi} adsorption. (S.Y.)

  8. Competing reaction channels in IR-laser-induced unimolecular reactions

    Energy Technology Data Exchange (ETDEWEB)

    Berman, M.R.

    1981-01-01

    The competing reaction channels in the unimolecular decomposition of two molecules, formaldehyde and tetralin were studied. A TEA CO/sub 2/ laser was used as the excitation source in all experiments. The dissociation of D/sub 2/CO was studied by infrared multiphoton dissociation (MPD) and the small-molecule nature of formaldehyde with regard to MPD was explored. The effect of collisions in MPD were probed by the pressure dependence of the MPD yield and ir fluorescence from multiphoton excited D/sub 2/CO. MPD yield shows a near cubic dependence in pure D/sub 2/CO which is reduced to a 1.7 power dependence when 15 torr of NO is added. The peak amplitude of 5 ..mu..m ir fluorescence from D/sub 2/CO is proportional to the square of the D/sub 2/CO pressure in pure D/sub 2/CO or in the presence of 50 torr of Ar. Results are explained in terms of bottlenecks to excitation at the v = 1 level which are overcome by a combination of vibrational energy transfer and rotational relaxation. The radical/molecule branching ratio in D/sub 2/CO MPD was 0.10 +- 0.02 at a fluence of 125 J/cm/sup 2/ at 946.0 cm/sup -1/. The barrier height to molecular dissociation was calculated to be 3.6 +- 2.0 kcal/mole below the radical threshold or 85.0 +- 3.0 kcal/mole above the ground state of D/sub 2/CO. In H/sub 2/CO, this corresponds to 2.5 +- 2.0 kcal/mole below the radical threshold or 83.8 +- 3.0 kcal/mole above the ground state. Comparison with uv data indicate that RRKM theory is an acceptable description of formaldehyde dissociation in the 5 to 10 torr pressure range. The unimolecular decomposition of tetralin was studied by MPD and SiF/sub 4/ - sensitized pyrolysis. Both techniques induce decomposition without the interference of catalytic surfaces. Ethylene loss is identified as the lowest energy reaction channel. Dehydrogenation is found to result from step-wise H atom loss. Isomerization via disproportionation is also identified as a primary reaction channel.

  9. Competing reaction channels in IR-laser-induced unimolecular reactions

    International Nuclear Information System (INIS)

    The competing reaction channels in the unimolecular decomposition of two molecules, formaldehyde and tetralin were studied. A TEA CO2 laser was used as the excitation source in all experiments. The dissociation of D2CO was studied by infrared multiphoton dissociation (MPD) and the small-molecule nature of formaldehyde with regard to MPD was explored. The effect of collisions in MPD were probed by the pressure dependence of the MPD yield and ir fluorescence from multiphoton excited D2CO. MPD yield shows a near cubic dependence in pure D2CO which is reduced to a 1.7 power dependence when 15 torr of NO is added. The peak amplitude of 5 μm ir fluorescence from D2CO is proportional to the square of the D2CO pressure in pure D2CO or in the presence of 50 torr of Ar. Results are explained in terms of bottlenecks to excitation at the v = 1 level which are overcome by a combination of vibrational energy transfer and rotational relaxation. The radical/molecule branching ratio in D2CO MPD was 0.10 +- 0.02 at a fluence of 125 J/cm2 at 946.0 cm-1. The barrier height to molecular dissociation was calculated to be 3.6 +- 2.0 kcal/mole below the radical threshold or 85.0 +- 3.0 kcal/mole above the ground state of D2CO. In H2CO, this corresponds to 2.5 +- 2.0 kcal/mole below the radical threshold or 83.8 +- 3.0 kcal/mole above the ground state. Comparison with uv data indicate that RRKM theory is an acceptable description of formaldehyde dissociation in the 5 to 10 torr pressure range. The unimolecular decomposition of tetralin was studied by MPD and SiF4 - sensitized pyrolysis. Both techniques induce decomposition without the interference of catalytic surfaces. Ethylene loss is identified as the lowest energy reaction channel. Dehydrogenation is found to result from step-wise H atom loss. Isomerization via disproportionation is also identified as a primary reaction channel

  10. Heavy atom isotope effects on enzymatic reactions

    Science.gov (United States)

    Paneth, Piotr

    1994-05-01

    The theory of isotope effects, which has proved to be extremely useful in providing geometrical details of transition states in a variety of chemical reactions, has recently found an application in studies of enzyme-catalyzed reactions. These reactions are multistep in nature with few steps being partially rate-limiting, thus interpretation of these isotope effects is more complex. The theoretical framework of heavy-atom isotope effects on enzymatic reactions is critically analyzed on the basis of recent results of: carbon kinetic isotope effects on carbonic anhydrase and catalytic antibodies; multiple carbon, deuterium isotope effects on reactions catalyzed by formate decarboxylase; oxygen isotope effects on binding processes in reactions catalyzed by pyruvate kinase; and equilibrium oxygen isotope effect on binding an inhibitor to lactate dehydrogenase. The advantages and disadvantages of reaction complexity in learning details of formal and molecular mechanisms are discussed in the examples of reactions catalyzed by phosphoenolpyruvate carboxylase, orotidine decarboxylase and glutamine synthetase.

  11. Effective radii of deuteron induced reactions

    CERN Document Server

    Hashimoto, Shintaro; Ogata, Kazuyuki; Minomo, Kosho; Chiba, Satoshi

    2011-01-01

    The continuum-discretized coupled-channels method (CDCC) for exclusive reactions and the eikonal reaction theory (ERT) as an extension of CDCC to inclusive reactions are applied to deuteron induced reactions. The CDCC result reproduces experimental data on the reaction cross section for $d+^{58}$Ni scattering at 200 MeV/nucleon and ERT does data on the neutron-stripping cross section for inclusive $^7$Li$(d,n)$ reaction at 40 MeV. For deuteron induced reactions at 200 MeV/nucleon, target-dependence of the reaction, elastic-breakup, nucleon-stripping, nucleon-removal, complete- and incomplete-fusion cross sections is clearly explained by simple formulae. Accuracy of the Glauber model is also investigated.

  12. Precautions and Adverse Reactions during Blood Transfusion

    Science.gov (United States)

    ... fever and need another transfusion may be given acetaminophen before the next transfusion. Allergic reactions Symptoms of an allergic reaction include itching, a widespread rash, swelling, dizziness, and headache. Less common symptoms are breathing difficulties, ...

  13. Reaction Wheel with Embedded MEMS IMU Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is to embed a MEMS IMU Sensor Chip into a reaction wheel to measure its spin rate as well as wheel attitude rate. We propose to use a reaction wheel...

  14. Catalytic Hydrogenation Reaction of Naringin-Chalcone. Study of the Electrochemical Reaction

    OpenAIRE

    B. A. López de Mishima; H. T. Mishima; A. N. Giannuzzo; M. A. Nazareno

    2000-01-01

    The electrocatalytic hydrogenation reaction of naringin derivated chalcone is studied. The reaction is carried out with different catalysts in order to compare with the classic catalytic hydrogenation.

  15. Nuclear reactions from lattice QCD

    Science.gov (United States)

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-02-01

    One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, quantum chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three-nucleon (and higher) interactions in a consistent manner. Currently, lattice quantum chromodynamics (LQCD) provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between LQCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from LQCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.

  16. Contact-Allergic Reactions to Cosmetics

    OpenAIRE

    An Goossens

    2011-01-01

    Contact-allergic reactions to cosmetics may be delayed-type reactions such as allergic and photo-allergic contact dermatitis, and more exceptionally also immediate-type reactions, that is, contact urticaria. Fragrances and preservative agents are the most important contact allergens, but reactions also occur to category-specific products such as hair dyes and other hair-care products, nail cosmetics, sunscreens, as well as to antioxidants, vehicles, emulsifiers, and, in fact, any possible cos...

  17. Indirect techniques for astrophysical reaction rates determinations

    Science.gov (United States)

    Hammache, F.; Oulebsir, N.; Benamara, S.; De Séréville, N.; Coc, A.; Laird, A.; Stefan, I.; Roussel, P.

    2016-05-01

    Direct measurements of nuclear reactions of astrophysical interest can be challenging. Alternative experimental techniques such as transfer reactions and inelastic scattering reactions offer the possibility to study these reactions by using stable beams. In this context, I will present recent results that were obtained in Orsay using indirect techniques. The examples will concern various astrophysical sites, from the Big-Bang nucleo synthesis to the production of radioisotopes in massive stars.

  18. Nuclear reaction rates and the primordial nucleosynthesis

    OpenAIRE

    Mishra, Abhishek; Basu, D. N.

    2011-01-01

    The theoretical predictions of the primordial abundances of elements in the big-bang nucleosynthesis (BBN) are dominated by uncertainties in the input nuclear reaction rates. We investigate the effect of modifying these reaction rates on light element abundance yields in BBN by replacing the thirty-five reaction rates out of the existing eighty-eight. We have studied these yields as functions of evolution time or temperature. We find that using these new reaction rates results in only a littl...

  19. The Rate Laws for Reversible Reactions.

    Science.gov (United States)

    King, Edward L.

    1986-01-01

    Provides background information for teachers on the rate laws for reversible reactions. Indicates that although prediction of the form of the rate law for a reverse reaction given the rate law for the forward reaction is not certain, the number of possibilities is limited because of relationships described. (JN)

  20. Reaction-Map of Organic Chemistry

    Science.gov (United States)

    Murov, Steven

    2007-01-01

    The Reaction-Map of Organic Chemistry lists all the most commonly studied reactions in organic chemistry on one page. The discussed Reaction-Map will act as another learning aide for the students, making the study of organic chemistry much easier.

  1. An Iodine Fluorescence Quenching Clock Reaction

    Science.gov (United States)

    Weinberg, Richard B.; Muyskens, Mark

    2007-01-01

    Clock reactions based upon competing oxidation and reduction reactions of iodine and starch as the most popular type of chemistry example is presented to illustrate the redox phenomena, reaction kinetics, and principles of chemical titration. The examination of the photophysical principles underlying the iodine fluorescence quenching clock…

  2. Chapter 19 (Part 3): Enolate Reactions

    OpenAIRE

    Christiansen, Mike A

    2012-01-01

    In this video I'll continue teaching you about various reactions (with mechanisms) that we can do using carbonyl compounds, due to the acidities of their alpha-hydrogens. These reactions include the aldol reaction, the Claisen condensation, the Robinson annulation, acid-catalyzed decarboxylation, and the malonic ester synthesis. --Dr. Mike Christiansen from Utah State University

  3. Emotional and Behavioral Reaction to Intrusive Thoughts

    Science.gov (United States)

    Berry, Lisa-Marie; May, Jon; Andrade, Jackie; Kavanagh, David

    2010-01-01

    A self-report measure of the emotional and behavioral reactions to intrusive thoughts was developed. The article presents data that confirm the stability, reliability, and validity of the new seven-item measure. Emotional and behavioral reactions to intrusions emerged as separate factors on the Emotional and Behavioral Reactions to Intrusions…

  4. Direct mechanism in solar nuclear reactions

    OpenAIRE

    Oberhummer, H; Staudt, G.

    1994-01-01

    A short overview of the direct reaction mechanism and the models used for the analysis of such processes is given. Nuclear reactions proceeding through the direct mechanism and involved in solar hydrogen burning are discussed. The significance of these nuclear reactions with respect to the solar neutrino problem is investigated.

  5. Reaction Order Ambiguity in Integrated Rate Plots

    Science.gov (United States)

    Lee, Joe

    2008-01-01

    Integrated rate plots are frequently used in reaction kinetics to determine orders of reactions. It is often emphasised, when using this methodology in practice, that it is necessary to monitor the reaction to a substantial fraction of completion for these plots to yield unambiguous orders. The present article gives a theoretical and statistical…

  6. Incidents of chemical reactions in cell equipment

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, N.M.; Barlow, C.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  7. Charged particle reaction cross sections and nucleosynthesis

    International Nuclear Information System (INIS)

    The role of proton and α-particle induced reactions in carbon, neon, oxygen and silicon burning in massive stars is surveyed. The problems associated with determining thermonuclear reaction rates for reactions with widely spaced resonances and with closely spaced or overlapping resonances are discussed and the associated experimental approaches are reviewed. Experimental techniques which have been used in the measurement of reaction cross sections are discussed and their strengths and weaknesses are identified. Recent developments in attempts to establish reliable statistical-model codes for calculation of reaction cross sections are presented and discussed. The results of experimental tests of statistical model codes are summarised and evaluated

  8. Kinetic studies of elementary chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Durant, J.L. Jr. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  9. Electromagnetic effects on explosive reaction and plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Douglas G [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Mace, Jonathan L [Los Alamos National Laboratory; Pemberton, Steven J [Los Alamos National Laboratory; Sandoval, Thomas D [Los Alamos National Laboratory; Lee, Richard J [INDIAN HEAD DIVISION

    2010-01-01

    A number of studies have reported that electric fields can have quantifiable effects on the initiation and growth of detonation, yet the mechanisms of these effects are not clear. Candidates include Joule heating of the reaction zone, perturbations to the activation energy for chemical reaction, reduction of the Peierls energy barrier that facilitates dislocation motion, and acceleration of plasma projected from the reaction zone. In this study the possible role of plasma in the initiation and growth of explosive reaction is investigated. The effects of magnetic and electric field effects on reaction growth will be reviewed and recent experiments reported.

  10. Limits for Stochastic Reaction Networks

    DEFF Research Database (Denmark)

    Cappelletti, Daniele

    of reactions. Let the rates of degradation of the intermediate species be functions of a parameter N that tends to innity. We consider a reduced system where the intermediate species have been eliminated, and nd conditions on the degradation rate of the intermediates such that the behaviour of the reduced...... network tends to that of the original one. In particular, we prove a uniform punctual convergence in distribution and weak convergence of the integrals of continuous functions along the paths of the two models. Under some extra conditions, we also prove weak convergence of the two processes. The result....... Such species, in the deterministic modelling regime, assume always the same value at any positive steady state. In the stochastic setting, we prove that, if the initial condition is a point in the basin of attraction of a positive steady state of the corresponding deterministic model and tends to innity...

  11. Radiation reaction of multipole moments

    Science.gov (United States)

    Kazinski, P. O.

    2007-08-01

    A Poincaré-invariant description is proposed for the effective dynamics of a localized system of charged particles in classical electrodynamics in terms of the intrinsic multipole moments of the system. A relativistic-invariant definition for the intrinsic multipole moments of a system of charged particles is given. A new generally covariant action functional for a relativistic perfect fluid is proposed. In the case of relativistic charged dust, it is proven that the description of the problem of radiation reaction of multipole moments by the model of particles is equivalent to the description of this problem by a hydrodynamic model. An effective model is obtained for a pointlike neutral system of charged particles that possesses an intrinsic dipole moment, and the free dynamics of this system is described. The bound momentum of a point dipole is found.

  12. Radiation reaction for multipole moments

    CERN Document Server

    Kazinski, P O

    2006-01-01

    We propose a Poincare-invariant description for the effective dynamics of systems of charged particles by means of intrinsic multipole moments. To achieve this goal we study the effective dynamics of such systems within two frameworks -- the particle itself and hydrodynamical one. We give a relativistic-invariant definition for the intrinsic multipole moments both pointlike and extended relativistic objects. Within the hydrodynamical framework we suggest a covariant action functional for a perfect fluid with pressure. In the case of a relativistic charged dust we prove the equivalence of the particle approach to the hydrodynamical one to the problem of radiation reaction for multipoles. As the particular example of a general procedure we obtain the effective model for a neutral system of charged particles with dipole moment.

  13. [Paranoid syndrome, paranoid reaction, paranoia].

    Science.gov (United States)

    Pavlovský, P

    2006-01-01

    The term paranoid is derived from the Greek word paranoia meaning nadnese. It does not only mean self-reference, but there are various personality features as they are hostility, a tendency towards aggressiveness, irritability, a lack of sense of humour, feelings of overestimation of one-self and a tendency towards accusations. These features may appear also within normal psychology and they becomeclinically important after thein increase of intensity and conspicuousness (los sof hearing, long-term abuse of alcohol and psychostimulants) and organic disorders of the brain may contribute to the development of paranoidity. A mechanism of projection is considered as a decivise factor from the point of view of dynamic psychiatry. Clinically unimportant sign sof paranoidity can be observed due to unusual situations. If a paranoid reaction becomes more serious, formation of a paranoid delusion should be taken to account. In our koncept the term paranoid and paranoidity should be used only as a psychopathological term.

  14. Selected aspects of fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D

    2003-01-01

    In this lecture, we present selected aspects of nuclear fusion. The importance of the initial geometry of the reaction and its relation to fusion barrier are first discussed. The effect of deformation leading to the notion of barrier distribution is then illustrated. After a brief overview of the advantages of macroscopic theories, the dynamics of nuclear system under large amplitude motion is reviewed. The di-nuclear concept is presented to understand the competition between fusion and quasi-fission. This concept is then generalized to account for the dissipative dynamics in multidimensional collective space. The last part of this lecture is devoted to new aspects encountered with radioactive beams specific properties of very extended neutron rich system, influence of pygmy or soft dipole resonances and charge exchange far from stability are discussed. (author)

  15. Nuclear structure and pion reactions

    International Nuclear Information System (INIS)

    Shell model analyses of inelastic pion and electron scattering are used to derive many body wave functions suitable for DCX studies of masses 14 and 18. These calculations show clear evidence for the need to include core-excitations in the wave functions of the ground and excited states of these nuclei. The appropriate enhancement and quenching of the isoscalar and isovector one-body density matrix elements are deduced, and their possible effects on DCX cross-sections discussed. Effective (q-dependent) transitions, obtained from microscopic core-polarization calculations, are found to give an excellent description of the pion angular distributions and π+/π- ratios in this mass region, justifying the use of effective charges in shell model studies of pion reactions. 13 refs., 12 figs

  16. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  17. Heuristics-Guided Exploration of Reaction Mechanisms

    CERN Document Server

    Bergeler, Maike; Proppe, Jonny; Reiher, Markus

    2015-01-01

    For the investigation of chemical reaction networks, the efficient and accurate determination of all relevant intermediates and elementary reactions is inevitable. The complexity of such a network may grow rapidly, in particular if reactive species are involved that might cause a myriad of side reactions. Without automation, a complete investigation of complex reaction mechanisms is tedious and possibly unfeasible. Therefore, only the expected dominant reaction paths of a chemical reaction network (e.g., a catalytic cycle or an enzymatic cascade) are usually explored in practice. Here, we present a computational protocol that constructs such networks in a parallelized and automated manner. Molecular structures of reactive complexes are generated based on heuristic rules and subsequently optimized by electronic-structure methods. Pairs of reactive complexes related by an elementary reaction are then automatically detected and subjected to an automated search for the connecting transition state. The results are...

  18. A Networks Approach to Modeling Enzymatic Reactions.

    Science.gov (United States)

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes.

  19. Evolutionary change in continuous reaction norms

    DEFF Research Database (Denmark)

    Murren, Courtney J; Maclean, Heidi J; Diamond, Sarah E;

    2014-01-01

    Understanding the evolution of reaction norms remains a major challenge in ecology and evolution. Investigating evolutionary divergence in reaction norm shapes between populations and closely related species is one approach to providing insights. Here we use a meta-analytic approach to compare...... divergence in reaction norms of closely related species or populations of animals and plants across types of traits and environments. We quantified mean-standardized differences in overall trait means (Offset) and reaction norm shape (including both Slope and Curvature). These analyses revealed that...... contributed to the best-fitting models, especially for Offset, Curvature, and the total differences (Total) between reaction norms. Congeneric species had greater differences in reaction norms than populations, and novel environmental conditions increased the differences in reaction norms between populations...

  20. Reaction of nitrile pollutants in high temperature water: Reaction pathway analysis and kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, B.; Harrell, C.; Klein, M.T. [Univ. of Delaware, Newark, DE (United States); LaMarca, C. [E.I. du Pont de Nemours & Co., Wilmington, DE (United States)

    1996-12-31

    The reaction chemistry of acetonitrile and benzonitrile in High Temperature Water (HTW) was investigated. The reaction products were the associated amides and carboxylic acids. A kinetic model incorporating two autocatalytic steps captured the kinetics observed. The optimized rate constants highlighted differences in the reaction chemistry of aliphatic and aromatic nitrites at these reaction conditions. 6 refs., 3 figs., 2 tabs.

  1. Trimolecular reactions of uranium hexafluoride with water.

    Science.gov (United States)

    Lind, Maria C; Garrison, Stephen L; Becnel, James M

    2010-04-01

    The hydrolysis reaction of uranium hexafluoride (UF(6)) is a key step in the synthesis of uranium dioxide (UO(2)) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF(6) molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizable barrier of 78.2 kJ x mol(-1), indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO(2) product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF(6) molecules and one water molecule, and (2) the reaction of two water molecules with a single UF(6) molecule. The predicted reaction of two UF(6) molecules with one water molecule displays an interesting "fluorine-shuttle" mechanism, a significant energy barrier of 69.0 kJ x mol(-1) to the formation of UF(5)OH, and an enthalpy of reaction (DeltaH(298)) of +17.9 kJ x mol(-1). The reaction of a single UF(6) molecule with two water molecules displays a "proton-shuttle" mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ x mol(-1) and an exothermic enthalpy of reaction (DeltaH(298)) of -13.9 kJ x mol(-1). The exothermic nature of the overall UF(6) + 2H(2)O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging. PMID:20210345

  2. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    (full text) During the last year our activities were spread over the three major domains: nuclear, atomic and material physics. The nuclear physics experimental programme covered a broad range of nuclear reactions induced by light and heavy ions. New experiments were performed at the compact C-30 cyclotron at Swierk, at University of Jyvaeskylae, GSI Darmstadt, LN Saturne. Prospects for future experiments on nucleon structure at Forschungszentrum Juelich were open. The collaboration with INR Kiev was tightened and work was done in order to prepare experiments at the C-200 heavy ion cyclotron in Warsaw. An effort to install the ion guide isotope separator on line (IGISOL) at the C-200 cyclotron has also to be mentioned A half a year stay of Dr. Nicholas Keeley in the Department, who received The Royal Society/Polish Academy of Science grant, resulted in many interesting results on breakup of light nuclei. Details can be found in the short abstracts presented in this report. As far as atomic physics is concerned, the activity of a group lead by Prof. Marian Jaskola yielded various new results. The experiments were performed at the University of Erlangen, in close collaboration with the Pedagogical University in Kielce and the University of Basel. Fast neutrons generated in the 3H(d,n)4He reaction induced by the 2 MeV deuteron beam from the Van der Graaff accelerator at the Department were used to calibrate solid state-nuclear-track detectors. This was a very good year for material physics research: Jan Kaczanowski and Slawomir Kwiatkawski received Ph.D. degrees based on dissertation research performed in the material physics research programme, while Pawel Kolodziej completed his MSc. thesis in collaboration with the Institute of Electronic Materials Technology in Warsaw, Research Center Karlsruhe, University of Jena and CSNSM Orsay many results were obtained. Lech Nowicki and Prof. Andrzej Turos were awarded by the Director of the IPJ prizes for their scientific

  3. Glycation Reactions of Casein Micelles.

    Science.gov (United States)

    Moeckel, Ulrike; Duerasch, Anja; Weiz, Alexander; Ruck, Michael; Henle, Thomas

    2016-04-13

    After suspensions of micellar casein or nonmicellar sodium caseinate had been heated, respectively, in the presence and absence of glucose for 0-4 h at 100 °C, glycation compounds were quantitated. The formation of Amadori products as indicators for the "early" Maillard reaction were in the same range for both micellar and nonmicellar caseins, indicating that reactive amino acid side chains within the micelles are accessible for glucose in a comparable way as in nonmicellar casein. Significant differences, however, were observed concerning the formation of the advanced glycation end products (AGEs), namely, N(ε)-carboxymethyllysine (CML), pyrraline, pentosidine, and glyoxal-lysine dimer (GOLD). CML could be observerd in higher amounts in nonmicellar casein, whereas in the micelles the pyrraline formation was increased. Pentosidine and GOLD were formed in comparable amounts. Furthermore, the extent of protein cross-linking was significantly higher in the glycated casein micelles than in the nonmicellar casein samples. Dynamic light scattering and scanning electron microscopy showed that glycation has no influence on the size of the casein micelles, indicating that cross-linking occurs only in the interior of the micelles, but altered the surface morphology. Studies on glycation and nonenzymatic cross-linking can contribute to the understanding of the structure of casein micelles. PMID:27018258

  4. 2005 Chemical Reactions at Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cynthia M. Friend

    2006-03-14

    The Gordon Research Conference (GRC) on 2005 Chemical Reactions at Surfaces was held at Ventura Beach Marriott, Ventura California from February 13, 2005 through February 18, 2005. The Conference was well-attended with 124 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, 'free time' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  5. Vertical two chamber reaction furnace

    Science.gov (United States)

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  6. Piezonuclear reactions - do they exist?

    CERN Document Server

    Ericsson, G; Sjöstrand, H; Traneus, E

    2009-01-01

    In a number of recent articles in this journal F. Cardone and collaborators have claimed the observation of several striking nuclear phenomena which they attribute to "piezonuclear reactions". One such claim [Phys. Lett. A 373 (2009) 1956] is that subjecting a solution of 228Th to cavitation leads to a "transformation" of thorium nuclei that is 104 times faster than the normal nuclear decay for this isotope. In a "Comment" [Phys. Lett. A 373 (2009) 3795] to the thorium work, we have criticized the evidence provided for this claim. In a "Reply" [Phys. Lett. A 373 (2009) 3797] Cardone et al. answer only some minor points but avoid addressing the real issue. The information provided in their Reply displays a worrying lack of control of their experimental situation and the data they put forward as evidence for their claims. We point out several shortcomings and errors in the described experimental preparations, set-up and reporting, as well as in the data analysis. We conclude that the evidence presented by Cardo...

  7. Proton transfer reaction - mass spectrometry

    International Nuclear Information System (INIS)

    Proton transfer reaction mass spectrometry (PTR-MS) provides on-line monitoring of volatile organic compounds (VOCs) with a low detection threshold and a fast response time. Commercially available set-ups are usually based on quadrupole analysers but recently new instruments based on time-of-flight (PTR-ToF-MS) analysers have been proposed and commercialized. PTR-MS has been successfully applied to a variety of fields including environmental science, food science and technology, plant physiology and medical science. Many new challenges arise from the newly available PTR-ToF-MS instruments, ranging from mass calibration and absolute VOC concentration determination to data mining and sample classification. This thesis addresses some of these problems in a coherent framework. Moreover, relevant applications in food science and technology are presented. It includes twelve papers published in peer reviewed journals. Some of them address methodological issues regarding PTR-ToF-MS; the others contain applicative studies of PTR-ToF-MS to food science and technology. Among them, there are the first two published applications of PTR-ToF-MS in this field. (author)

  8. Controlling chemical reactions of a single particle

    CERN Document Server

    Ratschbacher, Lothar; Sias, Carlo; Köhl, Michael

    2012-01-01

    The control of chemical reactions is a recurring theme in physics and chemistry. Traditionally, chemical reactions have been investigated by tuning thermodynamic parameters, such as temperature or pressure. More recently, physical methods such as laser or magnetic field control have emerged to provide completely new experimental possibilities, in particular in the realm of cold collisions. The control of reaction pathways is also a critical component to implement molecular quantum information processing. For these undertakings, single particles provide a clean and well-controlled experimental system. Here, we report on the experimental tuning of the exchange reaction rates of a single trapped ion with ultracold neutral atoms by exerting control over both their quantum states. We observe the influence of the hyperfine interaction on chemical reaction rates and branching ratios, and monitor the kinematics of the reaction products. These investigations advance chemistry with single trapped particles towards achi...

  9. Reaction Coordinates and Mechanistic Hypothesis Tests.

    Science.gov (United States)

    Peters, Baron

    2016-05-27

    Reaction coordinates are integral to several classic rate theories that can (a) predict kinetic trends across conditions and homologous reactions, (b) extract activation parameters with a clear physical interpretation from experimental rates, and (c) enable efficient calculations of free energy barriers and rates. New trajectory-based rare events methods can provide rates directly from dynamical trajectories without a reaction coordinate. Trajectory-based frameworks can also generate ideal (but abstract) reaction coordinates such as committors and eigenfunctions of the master equation. However, rates and mechanistic insights obtained from trajectory-based methods and abstract coordinates are not readily generalized across simulation conditions or reaction families. We discuss methods for identifying physically meaningful reaction coordinates, including committor analysis, variational transition state theory, Kramers-Langer-Berezhkovskii-Szabo theory, and statistical inference methods that can use path sampling data to screen, mix, and optimize thousands of trial coordinates. Special focus is given to likelihood maximization and inertial likelihood maximization approaches. PMID:27090846

  10. Reaction Coordinates and Mechanistic Hypothesis Tests.

    Science.gov (United States)

    Peters, Baron

    2016-05-27

    Reaction coordinates are integral to several classic rate theories that can (a) predict kinetic trends across conditions and homologous reactions, (b) extract activation parameters with a clear physical interpretation from experimental rates, and (c) enable efficient calculations of free energy barriers and rates. New trajectory-based rare events methods can provide rates directly from dynamical trajectories without a reaction coordinate. Trajectory-based frameworks can also generate ideal (but abstract) reaction coordinates such as committors and eigenfunctions of the master equation. However, rates and mechanistic insights obtained from trajectory-based methods and abstract coordinates are not readily generalized across simulation conditions or reaction families. We discuss methods for identifying physically meaningful reaction coordinates, including committor analysis, variational transition state theory, Kramers-Langer-Berezhkovskii-Szabo theory, and statistical inference methods that can use path sampling data to screen, mix, and optimize thousands of trial coordinates. Special focus is given to likelihood maximization and inertial likelihood maximization approaches.

  11. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    Science.gov (United States)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  12. Kinetics of Model Reactions for Interfacial Polymerization

    Directory of Open Access Journals (Sweden)

    Henry Hall

    2012-02-01

    Full Text Available To model the rates of interfacial polycondensations, the rates of reaction of benzoyl chloride and methyl chloroformate with various aliphatic monoamines in acetonitrile were determined at 25 °C. Buffering with picric acid slowed these extremely fast reactions so the rate constants could be determined from the rate of disappearance of picrate ion. The rates of the amine reactions correlated linearly with their Swain-Scott nucleophilicities.

  13. A Unified Theory of Chemical Reactions

    CERN Document Server

    Aubry, S

    2014-01-01

    We propose a new and general formalism for elementary chemical reactions where quantum electronic variables are used as reaction coordinates. This formalism is in principle applicable to all kinds of chemical reactions ionic or covalent. Our theory reveals the existence of an intermediate situation between ionic and covalent which may be almost barrierless and isoenegetic and which should be of high interest for understanding biochemistry.

  14. Is EC class predictable from reaction mechanism?

    OpenAIRE

    Nath Neetika; Mitchell John BO

    2012-01-01

    We thank the Scottish Universities Life Sciences Alliance (SULSA) and the Scottish Overseas Research Student Awards Scheme of the Scottish Funding Council (SFC) for financial support. Background: We investigate the relationships between the EC (Enzyme Commission) class, the associated chemical reaction, and the reaction mechanism by building predictive models using Support Vector Machine (SVM), Random Forest (RF) and k-Nearest Neighbours (kNN). We consider two ways of encoding the reaction...

  15. Anaphylactoid Reactions to Tolmetin After Interrupted Dosage

    OpenAIRE

    Bretza, Joseph A.; Novey, Harold S.

    1985-01-01

    Seven patients had anaphylactoid reactions after ingesting tolmetin sodium. In each case the reaction followed readministration of the drug after an interrupted period of at least three days and within 90 minutes of taking a single 400-mg capsule. None of the patients had had prior anaphylaxis and none were judged atopic. Skin tests to an extract of the drug (0.02 mg) were uniformly negative, whereas a higher concentration produced a nonspecific irritant reaction. In vitro tests in one patien...

  16. Anaphylactoid reactions with gastrointestinal contrast media.

    Science.gov (United States)

    Skucas, J

    1997-04-01

    Significant anaphylactoid reactions to gastrointestinal contrast media are rare. Whether a patient who is atopic or has asthma is predisposed to these reactions is speculative. The rare patient who previously had a severe allergic reaction to such a product probably should not undergo a subsequent examination with a similar agent. The American College of Radiology classification of contrast media side effects can also be applied to the gastrointestinal contrast media. PMID:9124150

  17. Kinetics of Model Reactions for Interfacial Polymerization

    OpenAIRE

    Henry Hall; Robert Bates; Jeffrey Robertson; Anne Padias; Trevor Centeno-Hall

    2012-01-01

    To model the rates of interfacial polycondensations, the rates of reaction of benzoyl chloride and methyl chloroformate with various aliphatic monoamines in acetonitrile were determined at 25 °C. Buffering with picric acid slowed these extremely fast reactions so the rate constants could be determined from the rate of disappearance of picrate ion. The rates of the amine reactions correlated linearly with their Swain-Scott nucleophilicities.

  18. Neutrino nuclear response and photo nuclear reaction

    OpenAIRE

    Ejiri, H.; Titov, A. I.; .Boswell, M; Young, A.

    2013-01-01

    Photo nuclear reactions are shown to be used for studying neutrino/weak nuclear responses involved in astro-neutrino nuclear interactions and double beta decays. Charged current weak responses for ground and excited states are studied by using photo nuclear reactions through isobaric analog states of those states, while neutral current weak responses for excited states are studied by using photo nuclear reactions through the excited states. The weak interaction strengths are studied by measur...

  19. Acute anaphylactoid reactions during hemodialysis in France.

    Science.gov (United States)

    Forêt, M; Kuentz, F; Meftahi, H; Milongo, R; Hachache, T; Elsener, M; Dechelette, E; Cordonnier, D

    1987-04-01

    A retrospective survey of anaphylactoid reactions during dialysis in France was conducted. In 52 of 112 hemodialysis units surveyed 111 patients who had suffered one or more anaphylactoid reactions during dialysis were identified. According to the Hamilton/Adkinson classification, in 31 patients reactions were minor, in 54 patients moderate, and in 26 patients severe. Four patients died of their reactions. A preponderance of reactions (75 and 11%) occurred with cuprammonium cellulose hollow-fiber and plate dialyzers, respectively. Severe dialyzer reactions were found to occur more frequently after the long (weekend) interdialytic interval. In an in vitro study, six brands of cuprammonium cellulose hollow-fiber dialyzers were rinsed with water and the eluates analyzed by size exclusion chromatography for contaminant particles. Substantial variation in the amount of extractable material was found between dialyzers of different brands, despite the fact that all dialyzers used membranes from the same manufacturer. Previous data by others has suggested that this extractable material is a derivative of cellulose. Results of our epidemiologic survey in France are similar to those previously reported in the United States and suggest an increased incidence of dialyzer reactions with ethylene oxide-sterilized cuprammonium cellulose dialyzers. The presence of cellulose-derived particles in the rinsing fluid of such dialyzers and the possible increased incidence of reactions after the long (weekend) interdialytic interval suggest that allergy to cellulose-derived particles eluted from cellulosic dialyzers may contribute to dialyzer hypersensitivity reactions.

  20. Weber's Law in Autocatalytic Reaction Networks

    CERN Document Server

    Inoue, Masayo

    2011-01-01

    Biological responses often obey Weber's law, according to which the magnitude of the response depends only on the fold change in the external input. In this study, we demonstrate that a system involving a simple autocatalytic reaction shows such response when a chemical is slowly synthesized by the reaction from a faster influx process. We also show that an autocatalytic reaction process occurring in series or in parallel can obey Weber's law with an oscillatory adaptive response. Considering the simplicity and ubiquity of the autocatalytic process, our proposed mechanism is thought to be commonly observed in biological reactions.