WorldWideScience

Sample records for antineutrino flux measurements

  1. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay.

    Science.gov (United States)

    An, F P; Balantekin, A B; Band, H R; Bishai, M; Blyth, S; Butorov, I; Cao, D; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J H; Cheng, J; Cheng, Y P; Cherwinka, J J; Chu, M C; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Dove, J; Draeger, E; Dwyer, D A; Edwards, W R; Ely, S R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, X H; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, L J; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lei, R T; Leitner, R; Leung, K Y; Leung, J K C; Lewis, C A; Li, D J; Li, F; Li, G S; Li, Q J; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, P Y; Lin, S K; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, J C; Liu, S S; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Martinez Caicedo, D A; McDonald, K T; McKeown, R D; Meng, Y; Mitchell, I; Monari Kebwaro, J; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Pan, H-R; Park, J; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, B; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Tsang, K V; Tull, C E; Tung, Y C; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, Q; Xia, D M; Xia, J K; Xia, X; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C G; Yang, L; Yang, M S; Yang, M T; Ye, M; Yeh, M; Young, B L; Yu, G Y; Yu, Z Y; Zang, S L; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y F; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2016-02-12

    This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55±0.04) ×10(-18)  cm(2) GW(-1) day(-1) or (5.92±0.14) ×10(-43)  cm(2) fission(-1). This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946±0.022 (0.991±0.023) relative to the flux predicted with the Huber-Mueller (ILL-Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ∼4σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.

  2. Prospects for improved understanding of isotopic reactor antineutrino fluxes

    Science.gov (United States)

    Gebre, Y.; Littlejohn, B. R.; Surukuchi, P. T.

    2018-01-01

    Predictions of antineutrino fluxes produced by fission isotopes in a nuclear reactor have recently received increased scrutiny due to observed differences in predicted and measured inverse beta decay (IBD) yields, referred to as the "reactor antineutrino flux anomaly." In this paper, global fits are applied to existing IBD yield measurements to produce constraints on antineutrino production by individual plutonium and uranium fission isotopes. We find that fits including measurements from highly U 235 -enriched cores and fits including Daya Bay's new fuel evolution result produce discrepant best-fit IBD yields for U 235 and Pu 239 . This discrepancy can be alleviated in a global analysis of all data sets through simultaneous fitting of Pu 239 , U 235 , and U 238 yields. The measured IBD yield of U 238 in this analysis is (7.02 ±1.65 )×10-43 cm2/fission , nearly two standard deviations below existing predictions. Future hypothetical IBD yield measurements by short-baseline reactor experiments are examined to determine their possible impact on the global understanding of isotopic IBD yields. It is found that future improved short-baseline IBD yield measurements at both high-enriched and low-enriched cores can significantly improve constraints for U 235 , U 238 , and Pu 239 , providing comparable or superior precision to existing conversion- and summation-based antineutrino flux predictions. Systematic and experimental requirements for these future measurements are also investigated.

  3. Anti-neutrino flux in a research reactor for non-proliferation application

    Energy Technology Data Exchange (ETDEWEB)

    Khakshournia, Samad; Foroughi, Shokoufeh [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Atomic Energy Organization of Iran (AEOI)

    2017-11-15

    Owing to growing interest in the study of emitted antineutrinos from nuclear reactors to test the Atomic Energy Agency safeguards, antineutrino flux was studied in the Tehran Research Reactor (TRR) using ORIGEN code. According to our prediction, antineutrino rate was obtained 2.6 x 10{sup 17} (v{sub e}/sec) in the core No. 57F of the TRR. Calculations indicated that evolution of antineutrino flux was very slow with time and the performed refueling had not an observable effect on antineutrino flux curve for a 5 MW reactor with the conventional refueling program. It is seen that for non-proliferation applications the measurement of the contribution of {sup 239}Pu to the fission using an antineutrino detector is not viable in the TRR.

  4. Calculation of reactor antineutrino spectra in TEXONO

    CERN Document Server

    Chen Dong Liang; Mao Ze Pu; Wong, T H

    2002-01-01

    In the low energy reactor antineutrino physics experiments, either for the researches of antineutrino oscillation and antineutrino reactions, or for the measurement of abnormal magnetic moment of antineutrino, the flux and the spectra of reactor antineutrino must be described accurately. The method of calculation of reactor antineutrino spectra was discussed in detail. Furthermore, based on the actual circumstances of NP2 reactors and the arrangement of detectors, the flux and the spectra of reactor antineutrino in TEXONO were worked out

  5. Analysis of the Daya Bay Reactor Antineutrino Flux Changes with Fuel Burnup

    Science.gov (United States)

    Hayes, A. C.; Jungman, Gerard; McCutchan, E. A.; Sonzogni, A. A.; Garvey, G. T.; Wang, X. B.

    2018-01-01

    We investigate the recent Daya Bay results on the changes in the antineutrino flux and spectrum with the burnup of the reactor fuel. We find that the discrepancy between current model predictions and the Daya Bay results can be traced to the original measured U 235 /Pu 239 ratio of the fission β spectra that were used as a base for the expected antineutrino fluxes. An analysis of the antineutrino spectra that is based on a summation over all fission fragment β decays, using nuclear database input, explains all of the features seen in the Daya Bay evolution data. However, this summation method still allows for an anomaly. We conclude that there is currently not enough information to use the antineutrino flux changes to rule out the possible existence of sterile neutrinos.

  6. Antineutrino flux and spectrum calculation for spent nuclear fuel for the Daya Bay antineutrino experiment

    Science.gov (United States)

    Ma, X. B.; Zhao, Y. F.; Chen, Y. X.; Zhong, W. L.; An, F. P.

    2017-10-01

    The antineutrino flux from spent nuclear fuel (SNF) is an important source of uncertainty when making estimates of a reactor neutrino flux. However, to determine the contribution from SNF, sufficient data is needed such as the amount of spent fuel in the pool, the time after discharged from the reactor core, the burnup of each assembly, and the antineutrino spectrum of each isotope in the SNF. A method to calculate this contribution is proposed. A reactor simulation code verified against experimental data has been used to simulate fuel depletion by taking into account more than 2000 isotopes and fission products, the quantity of SNF in each of the six spent fuel pools, and the time variation of the antineutrino spectra after SNF discharging from the core. Results show that the SNF contribution to the total antineutrino flux is about 0.26%-0.34%, and the shutdown impact is about 20%. The SNF spectrum alters the softer part of the antineutrino spectra, and the maximum contribution from the SNF is about 3.0%. Nevertheless, there is an 18% difference between the line evaluate method and under evaluate method. In addition, non-equilibrium effects are also discussed, and the results are compatible considering the uncertainties.

  7. Long Distance Reactor Antineutrino Flux Monitoring

    Science.gov (United States)

    Dazeley, Steven; Bergevin, Marc; Bernstein, Adam

    2015-10-01

    The feasibility of antineutrino detection as an unambiguous and unshieldable way to detect the presence of distant nuclear reactors has been studied. While KamLAND provided a proof of concept for long distance antineutrino detection, the feasibility of detecting single reactors at distances greater than 100 km has not yet been established. Even larger detectors than KamLAND would be required for such a project. Considerations such as light attenuation, environmental impact and cost, which favor water as a detection medium, become more important as detectors get larger. We have studied both the sensitivity of water based detection media as a monitoring tool, and the scientific impact such detectors might provide. A next generation water based detector may be able to contribute to important questions in neutrino physics, such as supernova neutrinos, sterile neutrino oscillations, and non standard electroweak interactions (using a nearby compact accelerator source), while also providing a highly sensitive, and inherently unshieldable reactor monitoring tool to the non proliferation community. In this talk I will present the predicted performance of an experimental non proliferation and high-energy physics program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674192.

  8. The upper limit of the solar antineutrino flux according to the LSD array data

    International Nuclear Information System (INIS)

    Al'etta, M.; Antonioli, P.; Badino, D.

    1997-01-01

    The analysis of the experimental data obtained at the LSD liquid scintillation detector is carried out with the aim of searching the possible flux of electron antineutrinos from Sun. The most strong at present upper limit for the electron antineutrino flux of solar origin is determined: ≤ 1.0 x 10 5 cm -2 x s -1 (the reliability level of 90%)

  9. Opportunities for applied measurements using the PROSPECT antineutrino detector: reactor physics and safeguards

    Science.gov (United States)

    Bowden, Nathaniel; Prospect Collaboration

    2015-10-01

    Disagreement of reactor antineutrino spectrum and flux measurements with updated predictions indicates that we have much to learn about the complicated processes underlying antineutrino production in reactors, as well as hinting at new physics. A number of new efforts seek to address these questions, including the PROSPECT experiment planned at the HFIR research reactor. In addition to greatly advancing our understanding of reactor antineutrino emissions, PROSPECT can support a rich applied physics program. The detection technology developed for PROSPECT will enable precision antineutrino spectrum measurements close to essentially any reactor type. Here we describe how such measurements provide opportunities to probe fissile isotope and fission daughter distributions, and their potential use for reactor physics and safeguards applications. LLNL-ABS-673983. Prepared by LLNL under Contract DE-AC52-07NA27344.

  10. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay.

    Science.gov (United States)

    An, F P; Balantekin, A B; Band, H R; Bishai, M; Blyth, S; Cao, D; Cao, G F; Cao, J; Chan, Y L; Chang, J F; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J; Cheng, Z K; Cherwinka, J J; Chu, M C; Chukanov, A; Cummings, J P; Ding, Y Y; Diwan, M V; Dolgareva, M; Dove, J; Dwyer, D A; Edwards, W R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guo, L; Guo, X H; Guo, Y H; Guo, Z; Hackenburg, R W; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hsiung, Y B; Hu, B Z; Hu, T; Huang, E C; Huang, H X; Huang, X T; Huang, Y B; Huber, P; Huo, W; Hussain, G; Jaffe, D E; Jen, K L; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Jones, D; Kang, L; Kettell, S H; Khan, A; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lee, J H C; Lei, R T; Leitner, R; Leung, J K C; Li, C; Li, D J; Li, F; Li, G S; Li, Q J; Li, S; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, S; Lin, S K; Lin, Y-C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, J L; Liu, J C; Loh, C W; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, X Y; Ma, X B; Ma, Y Q; Malyshkin, Y; Martinez Caicedo, D A; McDonald, K T; McKeown, R D; Mitchell, I; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ochoa-Ricoux, J P; Olshevskiy, A; Pan, H-R; Park, J; Patton, S; Pec, V; Peng, J C; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Qiu, R M; Raper, N; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Steiner, H; Stoler, P; Sun, J L; Tang, W; Taychenachev, D; Treskov, K; Tsang, K V; Tull, C E; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, C-H; Wu, Q; Wu, W J; Xia, D M; Xia, J K; Xing, Z Z; Xu, J L; Xu, Y; Xue, T; Yang, C G; Yang, H; Yang, L; Yang, M S; Yang, M T; Yang, Y Z; Ye, M; Ye, Z; Yeh, M; Young, B L; Yu, Z Y; Zeng, S; Zhan, L; Zhang, C; Zhang, C C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, R; Zhang, X T; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhou, L; Zhuang, H L; Zou, J H

    2017-06-23

    The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW_{th} reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective ^{239}Pu fission fractions F_{239} from 0.25 to 0.35, Daya Bay measures an average IBD yield σ[over ¯]_{f} of (5.90±0.13)×10^{-43}  cm^{2}/fission and a fuel-dependent variation in the IBD yield, dσ_{f}/dF_{239}, of (-1.86±0.18)×10^{-43}  cm^{2}/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the ^{239}Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ. This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes ^{235}U, ^{239}Pu, ^{238}U, and ^{241}Pu. Based on measured IBD yield variations, yields of (6.17±0.17) and (4.27±0.26)×10^{-43}  cm^{2}/fission have been determined for the two dominant fission parent isotopes ^{235}U and ^{239}Pu. A 7.8% discrepancy between the observed and predicted ^{235}U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.

  11. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    Science.gov (United States)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Chan, Y. L.; Chang, J. F.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guo, L.; Guo, X. H.; Guo, Y. H.; Guo, Z.; Hackenburg, R. W.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huang, Y. B.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jen, K. L.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Kang, L.; Kettell, S. H.; Khan, A.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Qiu, R. M.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Stoler, P.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Yang, Y. Z.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, C. C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, R.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhou, L.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2017-06-01

    The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 G Wth reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective 239Pu fission fractions F239 from 0.25 to 0.35, Daya Bay measures an average IBD yield σ¯f of (5.90 ±0.13 )×10-43 cm2/fission and a fuel-dependent variation in the IBD yield, d σf/d F239, of (-1.86 ±0.18 )×10-43 cm2/fission . This observation rejects the hypothesis of a constant antineutrino flux as a function of the 239Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1 σ . This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes 235U, 239Pu, 238U, and 241Pu. Based on measured IBD yield variations, yields of (6.17 ±0.17 ) and (4.27 ±0.26 )×10-43 cm2 /fission have been determined for the two dominant fission parent isotopes 235U and 239Pu. A 7.8% discrepancy between the observed and predicted 235U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.

  12. Measuring Antineutrino Oscillations with the MINOS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Justin John [Univ. of Oxford (United Kingdom)

    2008-09-01

    MINOS is a long baseline neutrino oscillation experiment. A manmade beam of predominantly muon neutrinos is detected both 1 km and 735 km from the production point by two functionally identical detectors. A comparison of the energy spectra measured by the two detectors shows the energy-dependent disappearance of muon neutrinos characteristic of oscillations and allows a measurement of the parameters governing the oscillations. This thesis presents work leading to measurements of disappearance in the 6% $\\bar{v}$μ background in that beam. A calibration is developed to correct for time-dependent changes in the responses of both detectors, reducing the corresponding uncertainty on hadronic energy measurements from 1.8% to 0.4% in the near detector and from 0.8% to 0.4% in the far detector. A method of selecting charged current $\\bar{v}$μ events is developed, with purities (efficiencies) of 96.5% (74.4%) at the near detector, and 98.8% (70.9%) at the far detector in the region below 10 GeV reconstructed antineutrino energy. A method of using the measured near detector neutrino energy spectrum to predict that expected at the far detector is discussed, and developed for use in the $\\bar{v}$μ analysis. Sources of systematic uncertainty contributing to the oscillation measurements are discussed. In the far detector, 32 charged current $\\bar{v}$μ events are observed below a reconstructed energy of 30 GeV, compared to an expectation of 47.8 for Δ$\\bar{m}$atm2 = Δ$\\bar{m}$atm2, sin2(2$\\bar{θ}$23) = sin2(2θ23). This deficit, in such a low-statistics sample, makes the result difficult to interpret in the context of an oscillation parameter measurement. Possible sources for the discrepancy are discussed, concluding that considerably more data are required for a definitive solution. Running MINOS with a dedicated $\\bar

  13. Neutrino and antineutrino inclusive charged-current cross section measurement with the MINOS near detector

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debdatta [Univ. of Pittsburgh, PA (United States)

    2009-01-01

    This thesis presents the measurement of energy dependence of the neutrino-nucleon inclusive charged current cross section on an isoscalar target in the range 3-50 GeV for neutrinos and 5-50 GeV energy range for antineutrinos. The data set was collected with the MINOS Near Detector using the wide band NuMI beam at Fermilab. The size of the charged current sample is 1.94 x 106 neutrino events and 1.60 x 105 antineutrino events. The flux has been extracted using a low hadronic energy sub-sample of the charged current events. The energy dependence of the cross section is obtained by dividing the charged current sample with the extracted flux. The neutrino and antineutrino cross section exhibits a linear dependence on energy at high energy but shows deviations from linear behavior at low energy. We also present a measurement of the ratio of antineutrino to neutrino inclusive cross section.

  14. Sterile neutrinos or flux uncertainties? — Status of the reactor anti-neutrino anomaly

    Science.gov (United States)

    Dentler, Mona; Hernández-Cabezudo, Álvaro; Kopp, Joachim; Maltoni, Michele; Schwetz, Thomas

    2017-11-01

    The ˜ 3 σ discrepancy between the predicted and observed reactor anti-neutrino flux, known as the reactor anti-neutrino anomaly, continues to intrigue. The recent discovery of an unexpected bump in the reactor anti-neutrino spectrum, as well as indications that the flux deficit is different for different fission isotopes seems to disfavour the explanation of the anomaly in terms of sterile neutrino oscillations. We critically review this conclusion in view of all available data on electron (anti)neutrino disappearance. We find that the sterile neutrino hypothesis cannot be rejected based on global data and is only mildly disfavored compared to an individual rescaling of neutrino fluxes from different fission isotopes. The main reason for this is the presence of spectral features in recent data from the NEOS and DANSS experiments. If state-of-the-art predictions for reactor fluxes are taken at face value, sterile neutrino oscillations allow a consistent description of global data with a significance close to 3 σ relative to the no-oscillation case. Even if reactor fluxes and spectra are left free in the fit, a 2 σ hint in favour of sterile neutrinos remains, with allowed parameter regions consistent with an explanation of the anomaly in terms of oscillations.

  15. First Measurement of one Pion Production in Charged Current Neutrino and Antineutrino events on Argon

    Energy Technology Data Exchange (ETDEWEB)

    Scanavini, Scanavini,Giacomo [Yale U.

    2017-01-01

    This thesis presents a work done in the context of the Fermilab Neutrino Intensity Frontier. In this analysis, the cross section of single charged pion production in charged-current neutrino and antineutrino interactions with the argon nucleus target are measured. These measurements are performed using the Argon Neutrino Test (ArgoNeuT) detector exposed to the Fermilab Neutrino From The Main Injector (NuMI) beam operating in the low energy antineutrino mode. The signal is a charged-current μ interaction in the detector, with exactly one charged pion exiting the target nucleus, with momentum above 100 MeV/c. There shouldn’t be any 0 or kaons in the final state. There is no restriction on other mesons or nucleons. Total and differential cross section measurements are presented. The results are reported in terms of outgoing muon angle and momentum, outgoing pion angle and angle between outgoing pion and muon. The total cross sections, averaged over the flux, are found to be 8.2 ± 0.9 (stat) +0.9 -1.1 (syst) × 10-38 cm2 per argon nuclei and 2.5 ± 0.4 (stat) ± 0.5 (syst) × 10-37 cm2 per argon nuclei for antineutrino and neutrino respectively at a mean neutrino energy of 3.6 GeV (antineutrinos) and 9.6 GeV (neutrinos). This is the first time the single pion production in charged-current interactions cross section is measured on argon nuclei.

  16. The reactor antineutrino anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Haser, Julia; Buck, Christian; Lindner, Manfred [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Major discoveries were made in the past few years in the field of neutrino flavour oscillation. Nuclear reactors produce a clean and intense flux of electron antineutrinos and are thus an essential neutrino source for the determination of oscillation parameters. Most currently the reactor antineutrino experiments Double Chooz, Daya Bay and RENO have accomplished to measure θ{sub 13}, the smallest of the three-flavour mixing angles. In the course of these experiments two anomalies emerged: (1) the reanalysis of the reactor predictions revealed a deficit in experimentally observed antineutrino flux, known as the ''reactor antineutrino anomaly''. (2) The high precision of the latest generation of neutrino experiments resolved a spectral shape distortion relative to the expected energy spectra. Both puzzles are yet to be solved and triggered new experimental as well as theoretical studies, with the search for light sterile neutrinos as most popular explanation for the flux anomaly. This talk outlines the two reactor antineutrino anomalies. Discussing possible explanations for their occurrence, recent and upcoming efforts to solve the reactor puzzles are highlighted.

  17. Measuring of fissile isotopes partial antineutrino spectra in direct experiment at nuclear reactor

    OpenAIRE

    Sinev, V. V.

    2009-01-01

    The direct measuring method is considered to get nuclear reactor antineutrino spectrum. We suppose to isolate partial spectra of the fissile isotopes by using the method of antineutrino spectrum extraction from the inverse beta decay positron spectrum applied at Rovno experiment. This admits to increase the accuracy of partial antineutrino spectra forming the total nuclear reactor spectrum. It is important for the analysis of the reactor core fuel composition and could be applied for non-prol...

  18. Measurement of Neutrino and Antineutrino Total Charged-Current Cross Sections on Carbon with MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Lu [Univ. of Pittsburgh, PA (United States)

    2017-01-01

    This thesis presents a measurement of charged-current inclusive cross sections of muon neutrino and antineutrino interaction on carbon, and antineutrino to neutrino cross section ratio, r, in the energy range 2 - 22 GeV, with data collected in the MINERA experiment. The dataset corresponds to an exposure of 3.2 x 1020 protons on target (POT) for neutrinos and 1.01020 POT for antineutrinos. Measurement of neutrino and antineutrino charged-current inclusive cross sections provides essential constraints for future long baseline neutrino oscillation experiment at a few GeV energy range. Our measured antineutrino cross section has an uncertainty in the range 6.1% - 10.5% and is the most precise measurement below 6 GeV to date. The measured r has an uncertainty of 5.0% - 7.5%. This is the rst measurement below 6 GeV since Gargamelle in 1970s. The cross sections are measured as a function of neutrino energy by dividing the eciency corrected charged-current sample with extracted uxes. Fluxes are obtained using the low- method, which uses low hadronic energy subsamples of charged-current inclusive sample to extract ux. Measured cross sections show good agreement with the prediction of neutrino interaction models above 7 GeV, and are about 10% below the model below 7 GeV. The measured r agrees with the GENIE model [1] over the whole energy region. The measured cross sections and r are compared with world data.

  19. Measurement of charm production in antineutrino charged-current interactions

    CERN Document Server

    Onengüt, G; De Jong, M; Konijn, J; Melzer, O; Oldeman, R G C; Pesen, E; Van der Poel, C A F J; Visschers, J L; Güler, M; Köse, U; Serin-Zeyrek, M; Kama, S; Sever, R; Tolun, P; Zeyrek, M T; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Brunner, J; Chizhov, M; Cussans, D G; Doucet, M; Fabre, Jean-Paul; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Saltzberg, D; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; FLoverre, P; Ludovici, L; Maslennikov, A L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Spada, F R; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2004-01-01

    During the years 1994-97, the emulsion target of the CHORUS detector was exposed to the wideband neutrino beam of the CERN SPS collecting about 10^6 neutrino interactions. A measurement of nubar_mu-induced charm production is performed by usingthe presence of a 5% nubarmu component in the nu_mu beam. The measurement takes advantage of the capability to observe the decay topology in the emulsion. The analysis is based on a sample of charged-current interactions with at least one identified muon. About 100 000 vere located in the emulsion target and fully reconstructed. By requiring a positive muon charge as determined by the CHORUS spectrometer, 32-nubar_mu induced charm events were observed with an estimated background of 3.2 events. At an average antineutrino energy in the neutrino beam of 18GeV, the charm production rate induced by anitneutrinos is measured to be sigma(nubar_muN -> mu+cbarX)/sigma(nubar_muN -> mu+X) = (5.0^+1.4_-0.9(stat) +- 0.7(syst))%. The ratio between neutral and charged charm productio...

  20. Measurement of total and differential cross sections of neutrino and antineutrino coherent π± production on carbon

    Science.gov (United States)

    Mislivec, A.; Higuera, A.; Aliaga, L.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Caceres v., G. F. R.; Cai, T.; Martinez Caicedo, D. A.; Carneiro, M. F.; Chavarria, E.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Gran, R.; Harris, D. A.; Hurtado, K.; Jena, D.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; Messerly, B.; Miller, J.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Nguyen, C.; Norrick, A.; Nuruzzaman, Paolone, V.; Perdue, G. N.; Ramírez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Sultana, M.; Sánchez Falero, S.; Tagg, N.; Valencia, E.; Wospakrik, M.; Yaeggy, B.; Zavala, G.; MinerνA Collaboration

    2018-02-01

    Neutrino induced coherent charged pion production on nuclei, ν¯ μA →μ±π∓A , is a rare inelastic interaction in which the four-momentum squared transferred to the nucleus is nearly zero, leaving it intact. We identify such events in the scintillator of MINERvA by reconstructing |t | from the final state pion and muon momenta and by removing events with evidence of energetic nuclear recoil or production of other final state particles. We measure the total neutrino and antineutrino cross sections as a function of neutrino energy between 2 and 20 GeV and measure flux integrated differential cross sections as a function of Q2 , Eπ, and θπ . The Q2 dependence and equality of the neutrino and antineutrino cross sections at finite Q2 provide a confirmation of Adler's partial conservation of axial current hypothesis.

  1. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M.; Burns, Kimberly A.; Campbell, Luke W.; Greenfield, Bryce A.; Kos, Marek S.; Orrell, John L.; Schram, Malachi; VanDevender, Brent A.; Wood, Lynn S.; Wootan, David W.

    2015-03-01

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  2. Calorimetric measurement of the SOX anti-neutrino source for sterile neutrino search

    Energy Technology Data Exchange (ETDEWEB)

    Altenmueller, Konrad; Agostini, Matteo; Papp, Laszlo; Schoenert, Stefan [Physik Department and Excellence Cluster Universe, Technische Universitaet Muenchen (Germany); Collaboration: Borexino-Collaboration

    2015-07-01

    A thermal calorimeter is under development to measure with <1% accuracy the heat release of the Cerium anti-neutrino source for the SOX experiment, which is looking for eV-scale sterile neutrinos. The heat release is proportional to the source activity and thus to the emitted neutrino flux, which is an important parameter of the experiment. The calorimeter design is based on a copper heat exchanger mounted around the source with integrated water lines for the heat extraction. Heat loss through conduction and radiation is minimized by suspending the set-up through Kevlar ropes and inserting it inside a thermalized vacuum tank with radiation shields. The device is currently being assembled and tested at TUM in Garching.

  3. Measurement of muon neutrino and antineutrino induced single neutral pion production cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Colin E. [Yale Univ., New Haven, CT (United States)

    2011-05-01

    Elucidating the nature of neutrino oscillation continues to be a goal in the vanguard of the efforts of physics experiment. As neutrino oscillation searches seek an increasingly elusive signal, a thorough understanding of the possible backgrounds becomes ever more important. Measurements of neutrino-nucleus interaction cross sections are key to this understanding. Searches for νμ → νe oscillation - a channel that may yield insight into the vanishingly small mixing parameter θ13, CP violation, and the neutrino mass hierarchy - are particularly susceptible to contamination from neutral current single π0 (NC 1π0) production. Unfortunately, the available data concerning NC 1π0 production are limited in scope and statistics. Without satisfactory constraints, theoretical models of NC 1π0 production yield substantially differing predictions in the critical Eν ~ 1 GeV regime. Additional investigation of this interaction can ameliorate the current deficiencies. The Mini Booster Neutrino Experiment (MiniBooNE) is a short-baseline neutrino oscillation search operating at the Fermi National Accelerator Laboratory (Fermilab). While the oscillation search is the principal charge of the MiniBooNE collaboration, the extensive data (~ 106 neutrino events) offer a rich resource with which to conduct neutrino cross section measurements. This work concerns the measurement of both neutrino and antineutrino NC 1π0 production cross sections at MiniBooNE. The size of the event samples used in the analysis exceeds that of all other similar experiments combined by an order of magnitude. We present the first measurements of the absolute NC 1π0 cross section as well as the first differential cross sections in both neutrino and antineutrino mode. Specifically, we measure single differential cross sections with respect to pion momentum and pion angle. We find the

  4. Reactors as a source of antineutrinos: the effect of fuel loading and burnup for mixed oxide fuels

    OpenAIRE

    Bernstein, Adam; Bowden, Nathaniel; Erickson, Anna

    2016-01-01

    In a conventional light water reactor loaded with a range of uranium and plutonium-based fuel mixtures, the variation in antineutrino production over the cycle reflects both the initial core fissile inventory and its evolution. Under the assumption of constant thermal power, we calculate the rate at which antineutrinos are emitted from variously fueled cores, and the evolution of that rate as measured by a representative ton-scale antineutrino detector. We find that antineutrino flux decrease...

  5. An assessment of anti-neutrino mass determination via electrostatic measurements of tritium beta-decay

    International Nuclear Information System (INIS)

    Le Bas, P.A.

    1984-01-01

    Data on the mass of the anti-neutrino determined via electrostatic measurements of tritium beta-decay are assessed. Relativistic calculations concerning the finite mass of the electron anti-neutrino and the recoil of the nucleus, are given for the theoretical end-point spectrum of tritium beta-decay. The specifications are given for an electrostatic Spherical Retarding Beta-Spectrometer, and an electrostatic Cylindrical Mirror Analyser, both used in the tritium beta-decay experiment. The electrostatic measurements lead to a value of less than 50 ev (90% C.L.) for the electron anti-neutrino mass. These results are discussed in terms of the resolution of the electrostatic equipment and the Monte Carlo simulations of the data collection. (UK)

  6. Antineutrino Monitoring of Spent Nuclear Fuel

    Science.gov (United States)

    Brdar, Vedran; Huber, Patrick; Kopp, Joachim

    2017-11-01

    Military and civilian applications of nuclear energy have left a significant amount of spent nuclear fuel over the past 70 years. Currently, in many countries worldwide, the use of nuclear energy is on the rise. Therefore, the management of highly radioactive nuclear waste is a pressing issue. In this paper, we explore antineutrino detectors as a tool for monitoring and safeguarding nuclear-waste material. We compute the flux and spectrum of antineutrinos emitted by spent nuclear fuel elements as a function of time, and we illustrate the usefulness of antineutrino detectors in several benchmark scenarios. In particular, we demonstrate how a measurement of the antineutrino flux can help to reverify the contents of a dry storage cask in case the monitoring chain by conventional means gets disrupted. We then comment on the usefulness of antineutrino detectors at long-term storage facilities such as Yucca mountain. Finally, we put forward antineutrino detection as a tool in locating underground "hot spots" in contaminated areas such as the Hanford site in Washington state.

  7. First Measurement of the Muon Anti-Neutrino Charged Current Quasielastic Double-Differential Cross-Section

    Energy Technology Data Exchange (ETDEWEB)

    Grange, Joseph M. [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    This dissertation presents the first measurement of the muon antineutrino charged current quasi-elastic double-differential cross section. These data significantly extend the knowledge of neutrino and antineutrino interactions in the GeV range, a region that has recently come under scrutiny due to a number of conflicting experimental results. To maximize the precision of this measurement, three novel techniques were employed to measure the neutrino background component of the data set. Representing the first measurements of the neutrino contribution to an accelerator-based antineutrino beam in the absence of a magnetic field, the successful execution of these techniques carry implications for current and future neutrino experiments.

  8. Precise measurement of neutrino and anti-neutrino differential cross sections on iron

    Energy Technology Data Exchange (ETDEWEB)

    Tzanov, Martin Mihaylov [Pittsburgh U.

    2005-11-01

    This thesis will present a precise measurement of the differential cross section for charged current neutrino and anti-neutrino scattering from iron. The NuTeV experiment took data during 1996-97 and collected 8.6 10 º and 2.4 10 º charged-current (CC) interactions. The experiment combines sign-selected neutrino and antineutrino beams and the upgraded CCFR iron-scintillator neutrino detector. A precision continuous calibration beam was used to determine the muon and hadron energy scales to a precision of about a factor of two better than previous experiments. The structure functions F (x,Q2) and xF3(x,Q2) are extracted and compared with theory and previous measurements.

  9. How unequal fluxes of high energy astrophysical neutrinos and antineutrinos can fake new physics

    International Nuclear Information System (INIS)

    Nunokawa, Hiroshi; Panes, Boris; Funchal, Renata Zukanovich

    2016-01-01

    Flavor ratios of very high energy astrophysical neutrinos, which can be studied at the Earth by a neutrino telescope such as IceCube, can serve to diagnose their production mechanism at the astrophysical source. The flavor ratios for neutrinos and antineutrinos can be quite different as we do not know how they are produced in the astrophysical environment. Due to this uncertainty the neutrino and antineutrino flavor ratios at the Earth also could be quite different. Nonetheless, it is generally assumed that flavor ratios for neutrinos and antineutrinos are the same at the Earth, in fitting the high energy astrophysical neutrino data. This is a reasonable assumption for the limited statistics for the data we currently have. However, in the future the fit must be performed allowing for a possible discrepancy in these two fractions in order to be able to disentangle different production mechanisms at the source from new physics in the neutrino sector. To reinforce this issue, in this work we show that a wrong assumption about the distribution of neutrino flavor ratios at the Earth may indeed lead to misleading interpretations of IceCube results.

  10. How unequal fluxes of high energy astrophysical neutrinos and antineutrinos can fake new physics

    Energy Technology Data Exchange (ETDEWEB)

    Nunokawa, Hiroshi [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, C.P. 38071, 22452-970, Rio de Janeiro (Brazil); Panes, Boris; Funchal, Renata Zukanovich [Instituto de Física, Universidade de São Paulo, C.P. 66.318, 05315-970 São Paulo (Brazil)

    2016-10-21

    Flavor ratios of very high energy astrophysical neutrinos, which can be studied at the Earth by a neutrino telescope such as IceCube, can serve to diagnose their production mechanism at the astrophysical source. The flavor ratios for neutrinos and antineutrinos can be quite different as we do not know how they are produced in the astrophysical environment. Due to this uncertainty the neutrino and antineutrino flavor ratios at the Earth also could be quite different. Nonetheless, it is generally assumed that flavor ratios for neutrinos and antineutrinos are the same at the Earth, in fitting the high energy astrophysical neutrino data. This is a reasonable assumption for the limited statistics for the data we currently have. However, in the future the fit must be performed allowing for a possible discrepancy in these two fractions in order to be able to disentangle different production mechanisms at the source from new physics in the neutrino sector. To reinforce this issue, in this work we show that a wrong assumption about the distribution of neutrino flavor ratios at the Earth may indeed lead to misleading interpretations of IceCube results.

  11. Measurement of the mixing leptonic parameter θ13 at the Double Chooz reactor antineutrino experiment

    International Nuclear Information System (INIS)

    Durand, V.

    2012-01-01

    The Double Chooz experiment aims at measuring the neutrino mixing parameter θ13 by studying the oscillations of de ν-bar e produced by the Chooz nuclear reactors located in France. The experimental concept consists in comparing the signal of two identical 10.3 m 3 detectors, allowing to cancel most of the experimental systematic uncertainties. The near detector, whose goal is the flux normalization and a measurement without oscillation, is expected to be delivered in 2013. The farthest detector from the source is taking data since April 2011 and is sensitive to θ 13 , which is expected to affect both the rate and the shape of the measured de ν-bar e . In this thesis, are first presented the Double Chooz experiment, with its ν-bar e source, its detection method, and the expected signal and backgrounds. In order to perform a selection, important quantities have to be reconstructed, calibrated, and saved in data files. The channel time offsets determination, the energy and vertex reconstruction algorithm CocoReco, the reconstruction packages of the Common Trunk, and the light trees maker Cheetah are especially presented. Concerning the data analysis, all the selection cuts and results for signal and backgrounds are discussed, particularly the multiplicity cut, the multiple off time window method, the lithium veto cut, and the cosmogenic 9 Li background studies. The Double Chooz experiment observed 8,249 de ν-bar e candidates in 227.93 days in its far detector only. The reactor antineutrino flux prediction used the Bugey 4 flux measurement after correction for differences in core composition. The expectation in case of no-oscillation is 8,937 events and this deficit is interpreted as evidence for ν-bar e disappearance. From a rate and shape analysis, is found sin 2 2θ = 0,109± 0,030 (stat) ± 0,025 (syst), with Δm 2 31 = 2,32 x 10 -3 eV 2 , while the no-oscillation hypothesis is even excluded at 2.9 σ. (author) [fr

  12. Development of PROSPECT detectors for precision antineutrino studies

    OpenAIRE

    Norcini, Danielle; collaboration, for the PROSPECT

    2015-01-01

    PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, will use two segmented detectors positioned 7-20 m from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory to measure the U-235 antineutrino spectrum and perform a search for short-baseline oscillations as a signature of eV-scale sterile neutrinos. PROSPECT has developed Li-6 loaded liquid scintillator detectors for efficient identification of reactor antineutrinos and has measured reactor and cosmogenic b...

  13. Measurement of the electroweak coupling of neutrinos and antineutrinos on electrons

    International Nuclear Information System (INIS)

    Jonker, M.

    1983-01-01

    This thesis describes the analysis of the events induced by elastic scattering of neutrinos and antineutrinos on electrons and interprets the results in terms of the coupling strength of (anti)neutrino on electrons. The data for this analysis were obtained with the electronic calorimeter of the CHARM (Amsterdam, Cern, Hamburg, Moscow, Rome) collaboration during the wide band neutrino beam exposures of 1979, 1980 and 1981 in the neutrino facility of the SPS (Super Proton Synchrotron) at CERN (Conseil Europeen pour la Recherche Nucleaire, Geneva, Switzerland). In chapter 1 a historical overview of the early neutrino physics and a description of the phenomenological Lagrangian is given, followed by an introduction to the electroweak unification model. The neutrino detector of the CHARM collaboration is described in chapter 2. Chapter 3 deals with the on-line monitoring system of this detector which has been under the responsibility of the author. The wide band neutrino facility of the CERN SPS is described in chapter 4, followed by a discussion of the experimental method to measure the neutrino energy spectra of the neutrino beams. The electromagnetic shower development process is reviewed in chapter 5 and is followed by a description of the technique that was used to separate showers of electromagnetic and hadronic origin. Chapter 6 discusses the observed signal of the (anti)neutrinos scattering on electrons and interprets these events in terms of the parameters related to the strength of the coupling of neutrinos to electrons. (Auth.)

  14. Measurement of Neutrino and Antineutrino Charged-Current Inclusive Cross Sections with the MINERvA Detector

    Energy Technology Data Exchange (ETDEWEB)

    Devan, Joshua D. [College of William and Mary, Williamsburg, VA (United States)

    2015-01-01

    Neutrinos are a nearly massless, neutral particle in the Standard Model that only interact via the weak interaction. Experimental confirmation of neutrino oscillations, in which a neutrino created as a particular type (electron, muon or tau) can be observed as a different type after propagating some distance, earned the 2015 Nobel Prize in Physics. Neutrino oscillation experiments rely on accurate measurements of neutrino interactions with matter, such as that presented here. Neutrinos also provide a unique probe of the nucleus, complementary to electron scattering experiments. This thesis presents a measurement of the charged-current inclusive cross section for muon neutrinos and antineutrinos in the energy range 2 to 50 GeV with the MINERvA detector. MINERvA is a neutrino scattering experiment in the NuMI neutrino beam at Fermilab, near Chicago. A cross section measures the probability of an interaction occurring, measured here as a function of neutrino energy. To extract a cross section from data, the observed rate of interactions is corrected for detector efficiency and divided by the number of scattering nucleons in the target and the flux of neutrinos in the beam. The neutrino flux is determined with the low-$\

  15. Radon flux measurement methodologies

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1984-01-01

    Five methods for measuring radon fluxes are evaluated: the accumulator can, a small charcoal sampler, a large-area charcoal sampler, the ''Big Louie'' charcoal sampler, and the charcoal tent sampler. An experimental comparison of the five flux measurement techniques was also conducted. Excellent agreement was obtained between the measured radon fluxes and fluxes predicted from radium and emanation measurements

  16. Reactor anti-neutrinos: measurement of the θ13 leptonic mixing angle and search for potential sterile neutrinos

    International Nuclear Information System (INIS)

    Collin, A.

    2014-01-01

    The Double Chooz experiment aims to measure the θ 13 mixing angle through the disappearance -induced by the oscillation phenomenon - of anti-neutrinos produced by the Chooz nuclear reactors. In order to reduce systematic uncertainties, the experiment relies on the relative comparison of detected signals in two identical liquid scintillator detectors. The near one, giving the normalization of the emitted flux, is currently being built and will be delivered in spring 2014. The far detector, sensitive to θ 13 , is located at about one kilometer and is taking data since 2011. In this first phase of the experiment, the far detector data are compared to a prediction of the emitted neutrino flux to estimate θ 13 . In this thesis, the Double Chooz experiment and its analysis are presented, especially the background studies and the rejection of parasitic signals due to light emitted by photo-multipliers. Neutron fluxes between the different detector volumes impact the definition of the fiducial volume of neutrino interactions and the efficiency of detection. Detailed studies of these effects are presented. As part of the Double Chooz experiment, studies were performed to improve the prediction of neutrino flux emitted by reactors. This work revealed a deficit of observed neutrino rates in the short baseline experiments of last decades. This deficit could be explained by an oscillation to a sterile state. The Stereo project aims to observe a typical signature of oscillations: the distortion of neutrino spectra both in energy and baseline. This thesis presents the detector concept and simulations as well as sensitivity studies. Background sources and the foreseen shielding are also discussed. (author) [fr

  17. Measurement of the Antineutrino Double-Differential Charged-Current Quasi-Elastic Scattering Cross Section at MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, Cheryl [Northwestern U.

    2016-01-01

    Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande, hope to measure charge-parity (CP) violation in the lepton sector. In order to do this, they must dramatically reduce their current levels of uncertainty, particularly those due to neutrino-nucleus interaction models. As CP violation is a measure of the difference between the oscillation properties of neutrinos and antineutrinos, data about how the less-studied antineutrinos interact is especially valuable. We present the MINERvA experiment's first double-differential scattering cross sections for antineutrinos on scintillator, in the few-GeV range relevant to experiments such as DUNE and NOvA. We also present total antineutrino-scintillator quasi-elastic cross sections as a function of energy, which we compare to measurements from previous experiments. As well as being useful to help reduce oscillation experiments' uncertainty, our data can also be used to study the prevalence of various cor relation and final-state interaction effects within the nucleus. We compare to models produced by different model generators, and are able to draw first conclusions about the predictions of these models.

  18. KamLAND and Solar Antineutrino Spectrum

    CERN Document Server

    Chauhan, B C; Torrente-Lujan, E; Chauhan, Bhag C.; Pulido, Joao

    2004-01-01

    We use the recent KamLAND observations to predict the solar antineutrino spectrum at some confidence limits. We find that a scaling of the antineutrino probability with respect to the magnetic field profile --in the sense that the same probability function can be reproduced by any profile with a suitable peak field value-- can be utilised to obtain a general shape of the solar antineutrino spectrum. This scaling and the upper bound on the solar antineutrino event rate, that can be derived from the data, lead to: 1) an upper bound on the solar antineutrino flux, 2) the prediction of their energy spectrum, as the normalisation of the spectrum can be obtained from the total number of antineutrino events recorded in the experiment. We get $\\phi_{\\bar\

  19. Reactors as a Source of Antineutrinos: Effects of Fuel Loading and Burnup for Mixed-Oxide Fuels

    Science.gov (United States)

    Bernstein, Adam; Bowden, Nathaniel S.; Erickson, Anna S.

    2018-01-01

    In a conventional light-water reactor loaded with a range of uranium and plutonium-based fuel mixtures, the variation in antineutrino production over the cycle reflects both the initial core fissile inventory and its evolution. Under an assumption of constant thermal power, we calculate the rate at which antineutrinos are emitted from variously fueled cores, and the evolution of that rate as measured by a representative ton-scale antineutrino detector. We find that antineutrino flux decreases with burnup for low-enriched uranium cores, increases for full mixed-oxide (MOX) cores, and does not appreciably change for cores with a MOX fraction of approximately 75%. Accounting for uncertainties in the fission yields in the emitted antineutrino spectra and the detector response function, we show that the difference in corewide MOX fractions at least as small as 8% can be distinguished using a hypothesis test. The test compares the evolution of the antineutrino rate relative to an initial value over part or all of the cycle. The use of relative rates reduces the sensitivity of the test to an independent thermal power measurement, making the result more robust against possible countermeasures. This rate-only approach also offers the potential advantage of reducing the cost and complexity of the antineutrino detectors used to verify the diversion, compared to methods that depend on the use of the antineutrino spectrum. A possible application is the verification of the disposition of surplus plutonium in nuclear reactors.

  20. Reactor antineutrino detector iDREAM.

    Science.gov (United States)

    Gromov, M. B.; Lukyanchenko, G. A.; Novikova, G. J.; Obinyakov, B. A.; Oralbaev, A. Y.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2017-09-01

    Industrial Detector for Reactor Antineutrino Monitoring (iDREAM) is a compact (≈ 3.5m 2) industrial electron antineutrino spectrometer. It is dedicated for remote monitoring of PWR reactor operational modes by neutrino method in real-time. Measurements of antineutrino flux from PWR allow to estimate a fuel mixture in active zone and to check the status of the reactor campaign for non-proliferation purposes. LAB-based gadolinium doped scintillator is exploited as a target. Multizone architecture of the detector with gamma-catcher surrounding fiducial volume and plastic muon veto above and below ensure high efficiency of IBD detection and background suppression. DAQ is based on Flash ADC with PSD discrimination algorithms while digital trigger is programmable and flexible due to FPGA. The prototype detector was started up in 2014. Preliminary works on registration Cerenkov radiation produced by cosmic muons were established with distilled water inside the detector in order to test electronic and slow control systems. Also in parallel a long-term measurements with different scintillator samples were conducted.

  1. Precision Search for Muon Antineutrino Disappearance Oscillations Using a Dual Baseline Technique

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Gary Li [Columbia Univ., New York, NY (United States)

    2013-01-01

    A search for short baseline muon antineutrino disappearance with the SciBooNE and MiniBooNE experiments at Fermi National Accelerator Laboratory in Batavia, Illinois is presented. Short baseline muon antineutrino disappearance measurements help constrain sterile neutrino models. The two detectors observe muon antineutrinos from the same beam, therefore the combined analysis of their data sets serves to partially constrain some of the flux and cross section uncertainties. A likelihood ratio method was used to set a 90% confidence level upper limit on muon antineutrino disappearance that dramatically improves upon prior sterile neutrino oscillation limits in the Δm2=0.1-100 eV2 region.

  2. Radiation flux measuring device

    International Nuclear Information System (INIS)

    Corte, E.; Maitra, P.

    1977-01-01

    A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures

  3. Measurement of the neutron and proton structure functions from neutrino and antineutrino scattering in deuterium

    Science.gov (United States)

    Allasia, D.; Angelini, C.; Baldini, A.; Barlag, S.; Bertanza, L.; Bigi, A.; Bisi, V.; Bobisut, F.; Bolognese, T.; Borg, A.; Calimani, E.; Capiluppi, P.; Casali, R.; Ciampolillo, S.; Derkaoui, J.; Faccini-Turluer, M. L.; Fantechi, R.; Flaminio, V.; Frodesen, A. G.; Gamba, D.; Giacomelli, G.; Graziani, G.; Halsteinslid, A.; Hornaes, A.; Huzita, H.; Jongejans, B.; Lippi, I.; Loreti, M.; Louedec, C.; Mandrioli, G.; Marzari-Chiesa, A.; Nappi, A.; Pazzi, R.; Pierazzini, G. M.; Riccati, L.; Romero, A.; Rossi, A. M.; Sconza, A.; Serra-Lugaresi, P.; Tenner, A.; van Apeldoorn, G. W.; van Dam, P.; Vignaud, D.; Visser, C.; Wigmans, R.

    1984-02-01

    Data from an exposure of the BEBC bubble chamber filled with deuterium to neutrino and antineutrino wide band beams have been used to extract the x dependence of the structure functions for scattering on protons and neutrons and the fractional momentum distributions of the valence quarks and the antiquarks of different flavours. The difference F n2 - F p2 is compared with recent data from high energy μD scattering. A result is also obtained on the sum rule giving the difference between the number of up and down quarks in the nucleon.

  4. Antineutrino Oscillations in the Atmospheric Sector

    Energy Technology Data Exchange (ETDEWEB)

    Himmel, Alexander I. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2011-05-01

    This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neutrinos, as well as a search for vμ → $\\bar{v}$μ transitions. Differences between neutrino and antineutrino oscillations could be a sign of physics beyond the Standard Model, including non-standard matter interactions or the violation of CPT symmetry. These measurements leverage the sign-selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. Antineutrino oscillations are observed at |Δ$\\bar{m}$atm 2| = (3.36-0.40+0.46(stat) ± 0.06(syst)) x 10-3 eV2 and sin2(2$\\bar{θ}$23) = 0.860-0.12+0.11(stat) ± 0.01(syst). The oscillation parameters measured for antineutrinos and those measured by MINOS for neutrinos differ by a large enough margin that the chance of obtaining two values as discrepant as those observed is only 2%, assuming the two measurements arise from the same underlying mechanism, with the same parameter values. No evidence is seen for neutrino-to-antineutrino transitions.

  5. Reactor neutron flux measuring device

    International Nuclear Information System (INIS)

    Okutani, Yasushi; Hayakawa, Toshifumi.

    1994-01-01

    The present invention concerns a device for displaying an approximate neutron flux distribution to recognize the neutron flux distribution of the whole reactor in a short period of time. The device of the present invention displays, the results of measurement for neutron fluxes collected by a data collecting section on every results of the measurements at measuring points situating at horizontally identical positions of the reactor core. In addition, every results of the measurements at the measuring points situating at the identical height in the reactor core are accumulated, and the results of the integration are graphically displayed. With such procedures, the neutron flux distribution in the entire reactor is approximately displayed. Existent devices could not recognize the neutron flux distribution of the entire reactor at a glance and it took much time for the recognition. The device of the present invention can recognize the neutron flux distribution of the entire reactor in a short period of time. (I.S.)

  6. Measurements of cross-section of charge current inclusive of antineutrino scattering off nucleons using carbon, iron, lead and scintillator at MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Rakotondravohitra, Laza [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-08-18

    Neutrino physics is one of the most active fields in the domaine of high energy physics during the last century. The need of precise measurement of neutrino-nucleus interactions required by the neutrino oscillation experiments is a an exiting step. These measurements of cross-section are more than essential for neutrino oscillation experiment. Over the year, many measurements from varieties of experiments have been presented. MINERνA is one of the world leaders in measuring cross-section of neutrino and antineutrino -nucleus interactions. MINERνA is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. In order to study nuclear dependence, MINERνA is endowed with different types of solid nuclear targets as well are liquid targets such as helium and water. This thesis presents measurements of cross-section of antineutrino scattering off nucleons using a variety of solid nuclear targets, carbon, iron, lead and also polystyrene scintillator (CH). The data set of antineutrino used for this analysis was taken between March and July 2010 with a total of 1.60X1020 protons on target. Charged current inclusive interactions were selected by requiring a positive muon and kinematics limitation of acceptance of the muon spectrometer are applied. The analysis requires neutrino energy between 2GeV et 20GeV and the angle of muon θmu < 17degree . The absolute cross-section # as function of neutrino energy and the differential cross-section dσ/ dxbj measured and shown the corresponding systematics for each nuclear targets. Data results are compared with prediction of the models implemented in the neutrino events generators GENIE 2.6.2 used by the experiment.

  7. Notes on neutron flux measurement

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1984-01-01

    The main purpose of this work is to get an useful guide to carry out topical neutron flux measurements. Although the foil activation technique is used in the majority of the cases, other techniques, such as those based on fission chambers and self-powered neutron detectors, are also shown. Special interest is given to the description and application of corrections on the measurement of relative and absolute induced activities by several types of detectors (scintillators, G-M and gas proportional counters). The thermal arid epithermal neutron fluxes, as determined in this work, are conventional or effective (West cots fluxes), which are extensively used by the reactor experimentalists; however, we also give some expressions where they are related to the integrated neutron fluxes, which are used in neutron calculations. (Author) 16 refs

  8. A PRECISION MEASUREMENT OF THE NEUTRINO MIXING ANGLE THETA (SUB 13) USING REACTOR ANTINEUTRINOS AT DAYA BAY.

    Energy Technology Data Exchange (ETDEWEB)

    KETTELL, S.; ET AL.

    2006-10-16

    This document describes the design of the Daya Bay reactor neutrino experiment. Recent discoveries in neutrino physics have shown that the Standard Model of particle physics is incomplete. The observation of neutrino oscillations has unequivocally demonstrated that the masses of neutrinos are nonzero. The smallness of the neutrino masses (<2 eV) and the two surprisingly large mixing angles measured have thus far provided important clues and constraints to extensions of the Standard Model. The third mixing angle, {delta}{sub 13}, is small and has not yet been determined; the current experimental bound is sin{sup 2} 2{theta}{sub 13} < 0.17 at 90% confidence level (from Chooz) for {Delta}m{sub 31}{sup 2} = 2.5 x 10{sup -3} eV{sup 2}. It is important to measure this angle to provide further insight on how to extend the Standard Model. A precision measurement of sin{sup 2} 2{theta}{sub 13} using nuclear reactors has been recommended by the 2004 APS Multi-divisional Study on the Future of Neutrino Physics as well as a recent Neutrino Scientific Assessment Group (NUSAG) report. We propose to perform a precision measurement of this mixing angle by searching for the disappearance of electron antineutrinos from the nuclear reactor complex in Daya Bay, China. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will be vital in resolving the neutrino-mass hierarchy and future measurements of CP violation in the lepton sector because this technique cleanly separates {theta}{sub 13} from CP violation and effects of neutrino propagation in the earth. A reactor-based determination of sin{sup 2} 2{theta}{sub 13} will provide important, complementary information to that from long-baseline, accelerator-based experiments. The goal of the Daya Bay experiment is to reach a sensitivity of 0.01 or better in sin{sup 2} 2{theta}{sub 13} at 90% confidence level.

  9. Experimental determination of the antineutrino spectrum of the fission products of 238U

    International Nuclear Information System (INIS)

    Haag, Nils-Holger

    2013-01-01

    Fission of 238 U contributes about 10 % to the antineutrino emission of a pressurized water reactor. In the present thesis, the beta spectrum of the fission products of 238 U was determined in an experiment at the neutron source FRM II. This beta spectrum was subsequently converted into an antineutrino spectrum. This first measurement of the antineutrino spectrum supports all current and future reactor antineutrino experiments.

  10. Experimental determination of the antineutrino spectrum of the fission products of {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Nils-Holger

    2013-10-09

    Fission of {sup 238}U contributes about 10 % to the antineutrino emission of a pressurized water reactor. In the present thesis, the beta spectrum of the fission products of {sup 238}U was determined in an experiment at the neutron source FRM II. This beta spectrum was subsequently converted into an antineutrino spectrum. This first measurement of the antineutrino spectrum supports all current and future reactor antineutrino experiments.

  11. Measurement of the muon antineutrino double-differential cross section for quasielastic-like scattering on hydrocarbon at Eν˜3.5 GeV

    Science.gov (United States)

    Patrick, C. E.; Aliaga, L.; Bashyal, A.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Caceres v., G. F. R.; Carneiro, M. F.; Chavarria, E.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Gran, R.; Han, J. Y.; Harris, D. A.; Henry, S.; Hurtado, K.; Jena, D.; Kleykamp, J.; Kordosky, M.; Le, T.; Lu, X.-G.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nowak, G. M.; Nuruzzaman, Paolone, V.; Perdue, G. N.; Peters, E.; Ramírez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Sultana, M.; Sánchez Falero, S.; Teklu, A. M.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; Zhang, D.; Miner ν A Collaboration

    2018-03-01

    We present double-differential measurements of antineutrino charged-current quasielastic scattering in the MINERvA detector. This study improves on a previous single-differential measurement by using updated reconstruction algorithms and interaction models and provides a complete description of observed muon kinematics in the form of a double-differential cross section with respect to muon transverse and longitudinal momentum. We include in our signal definition zero-meson final states arising from multinucleon interactions and from resonant pion production followed by pion absorption in the primary nucleus. We find that model agreement is considerably improved by a model tuned to MINERvA inclusive neutrino scattering data that incorporates nuclear effects such as weak nuclear screening and two-particle, two-hole enhancements.

  12. Measurement of the neutral to charged current cross section ratios in neutrino and antineutrino nucleon interactions and determination of the Weinberg angle

    International Nuclear Information System (INIS)

    Abramowicz, H.; Groot, J.G.H. de; Hansl-Kozanecka, T.; Knobloch, J.; May, J.; Navarria, F.L.; Palazzi, P.; Para, A.; Ranjard, F.; Rothberg, J.; Schlatter, D.; Steinberger, J.; Taureg, H.; Rueden, W. von; Wahl, H.; Wotschak, J.; Duda, J.; Eisele, F.; Klasen, H.P.; Kleinknecht, K.; Lierl, H.; Pollmann, D.; Pszola, B.; Renk, B.; Willutzki, H.J.; Dydak, F.; Flottmann, T.; Geweniger, C.; Hepp, V.; Krolikowski, J.; Tittel, K.; Bloch, P.; Bloch-Devaux, B.; Guyot, C.; Loucatos, S.; Maillard, J.; Merlo, J.P.; Peyaud, B.; Rander, J.; Savoy-Navarro, A.; Turlay, R.; He, J.T.; Ruan, T.Z.; Wu, W.M.

    1985-01-01

    The cross section ratios of neutral and charged current interactions induced by neutrinos and antineutrinos in iron have been measured in the 200 GeV narrow-band beam at the CERN SPS. We find Rsub(ν)=0.301+-0.007 and Rsub(anti ν)=0.363+-0.015 for a hadron energy cut of 10 GeV. The results are in agreement with the standard model of electroweak interactions. In the MS renormalization scheme at the scale of the W boson mass sin 2 Osub(w)(msub(w))=0.226+-0.012 is obtained, where the error represents the experimental uncertainty. The theoretical uncertainty is estimated to be Δ sind 2 Osub(w)=+-0.006. (orig.)

  13. Determining reactor fuel type from continuous antineutrino monitoring

    OpenAIRE

    Jaffke, Patrick; Huber, Patrick

    2016-01-01

    We investigate the ability of an antineutrino detector to determine the fuel type of a reactor. A hypothetical 5t antineutrino detector is placed 25m from the core and measures the spectral shape and rate of antineutrinos emitted by fission fragments in the core for a number of 90 day periods. Our results indicate that four major fuel types can be differentiated from the variation of fission fractions over the irradiation time with a true positive probability of detection at 95%. In addition,...

  14. The reactor antineutrino anomaly and low energy threshold neutrino experiments

    Science.gov (United States)

    Cañas, B. C.; Garcés, E. A.; Miranda, O. G.; Parada, A.

    2018-01-01

    Short distance reactor antineutrino experiments measure an antineutrino spectrum a few percent lower than expected from theoretical predictions. In this work we study the potential of low energy threshold reactor experiments in the context of a light sterile neutrino signal. We discuss the perspectives of the recently detected coherent elastic neutrino-nucleus scattering in future reactor antineutrino experiments. We find that the expectations to improve the current constraints on the mixing with sterile neutrinos are promising. We also analyze the measurements of antineutrino scattering off electrons from short distance reactor experiments. In this case, the statistics is not competitive with inverse beta decay experiments, although future experiments might play a role when compare it with the Gallium anomaly.

  15. Antineutrino monitoring for the Iranian heavy water reactor

    OpenAIRE

    Christensen, Eric; Huber, Patrick; Jaffke, Patrick; Shea, Thomas

    2014-01-01

    In this note we discuss the potential application of antineutrino monitoring to the Iranian heavy water reactor at Arak, the IR-40, as a non-proliferation measure. We demonstrate that an above ground detector positioned right outside the IR-40 reactor building could meet and in some cases significantly exceed the verification goals identified by IAEA for plutonium production or diversion from declared inventories. In addition to monitoring the reactor during operation, observing antineutrino ...

  16. Measurements of hadron yields from the T2K replica target in the NA61/SHINE experiment for neutrino flux prediction in T2K

    CERN Document Server

    AUTHOR|(CDS)2086777

    T2K is an accelerator-based long-baseline neutrino experiment in Japan. The main goal of the T2K experiment is a search for CP violation in the lepton sector by measuring electron (anti)neutrino appearance in a muon (anti)neutrino beam. Initial (anti)neutrino flux is produced in decays of hadrons which originate from the interactions and the re-interactions of a $30\\:$GeV proton beam with a $90\\:$cm long graphite target. Knowledge of the T2K neutrino flux is limited due to large hadron production uncertainties. A series of hadron production measurements were done to solve this problem, in the NA61/SHINE experiment at CERN. Measurements were performed with a proton beam and two target types: a thin graphite target and a replica of the T2K target. Work presented in this thesis concentrates on the T2K replica target data taken in 2010 and the development of the analysis and calibration software. The aim of these measurements is to fully constrain production of $\\pi^+$, $\\pi^-$, $K^+$, $K^-$ and $p$ coming from t...

  17. Neutron flux measurement by mobile detectors

    International Nuclear Information System (INIS)

    Verchain, M.

    1987-01-01

    Various incore instrumentation systems and their technological evolution are first reviewed. Then, for 1300 MWe PWR nuclear power plant, temperature and neutron flux measurement are described. Mobile fission chambers, with their large measuring range and accurate location allow a good knowledge of the core. Other incore measures are possible because of flux detector thimble tubes inserted in the reactor core [fr

  18. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  19. Antineutrino Oscillations and a Search for Non-standard Interactions with the MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Isvan, Zeynep [Univ. of Pittsburgh, PA (United States)

    2012-01-01

    MINOS searches for neutrino oscillations using the disappearance of muon neutrinos from the NuMI beam at Fermilab between two detectors. The Near Detector, located near the source, measures the beam composition before flavor change occurs. The energy spectrum is measured again at the Far Detector after neutrinos travel a distance. The mixing angle and mass splitting between the second and third mass states are extracted from the energy dependent difference between the spectra at the two detectors. NuMI is able to produce an antineutrino-enhanced beam as well as a neutrino-enhanced beam. Collecting data in antineutrino-mode allows the direct measurement of antineutrino oscillation parameters. From the analysis of the antineutrino mode data we measure $|\\Delta\\bar{m}^{2}_{\\text{atm}}| = 2.62^{+0.31}_{-0.28}\\times10^{-3}\\text{eV}^{2}$ and $\\sin^{2}(2\\bar{\\theta})_{23} = 0.95^{+0.10}_{-0.11}$, which is the most precise measurement of antineutrino oscillation parameters to date. A difference between neutrino and antineutrino oscillation parameters may indicate new physics involving interactions that are not part of the Standard Model, called non-standard interactions, that alter the apparent disappearance probability. Collecting data in neutrino and antineutrino mode independently allows a direct search for non-standard interactions. In this dissertation non-standard interactions are constrained by a combined analysis of neutrino and antineutrino datasets and no evidence of such interactions is found.

  20. Eddy Correlation Flux Measurement System (ECOR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  1. Determining Reactor Fuel Type from Continuous Antineutrino Monitoring

    Science.gov (United States)

    Jaffke, Patrick; Huber, Patrick

    2017-09-01

    We investigate the ability of an antineutrino detector to determine the fuel type of a reactor. A hypothetical 5-ton antineutrino detector is placed 25 m from the core and measures the spectral shape and rate of antineutrinos emitted by fission fragments in the core for a number of 90-d periods. Our results indicate that four major fuel types can be differentiated from the variation of fission fractions over the irradiation time with a true positive probability of detection at approximately 95%. In addition, we demonstrate that antineutrinos can identify the burnup at which weapons-grade mixed-oxide (MOX) fuel would be reduced to reactor-grade MOX, on average, providing assurance that plutonium-disposition goals are met. We also investigate removal scenarios where plutonium is purposefully diverted from a mixture of MOX and low-enriched uranium fuel. Finally, we discuss how our analysis is impacted by a spectral distortion around 6 MeV observed in the antineutrino spectrum measured from commercial power reactors.

  2. Workshop applied antineutrino physics 2007

    International Nuclear Information System (INIS)

    Akiri, T.; Andrieu, B.; Anjos, J.; Argyriades, J.; Barouch, G.; Bernstein, A.; Bersillon, O.; Besida, O.; Bowden, N.; Cabrera, A.; Calmet, D.; Collar, J.; Cribier, M.; Kerret, H. de; Meijer, R. de; Dudziak, F.; Enomoto, S.; Fallot, M.; Fioni, G.; Fiorentini, G.; Gale, Ph.; Georgadze, A.; Giot, L.; Gonin, M.; Guillon, B.; Henson, C.; Jonkmans, G.; Kanamaru, S.; Kawasaki, T.; Kornoukhov, V.; Lasserre, Th.; Learned, J.G.; Lefebvre, J.; Letourneau, A.; Lhillier, D.; Lindner, M.; Lund, J.; Mantovani, F.; Mcdonough, B.; Mention, G.; Monteith, A.; Motta, D.; Mueller, Th.; Oberauer, L.; Obolensky, M.; Odrzywolek, A.; Petcov, S.; Porta, A.; Queval, R.; Reinhold, B.; Reyna, D.; Ridikas, D.; Sadler, L.; Schoenert, St.; Sida, J.L.; Sinev, V.; Suekane, F.; Suvorov, Y.; Svoboda, R.; Tang, A.; Tolich, N.; Tolich, K.; Vanka, S.; Vignaud, D.; Volpe, Ch.; Wong, H.

    2007-01-01

    The 'Applied Antineutrino Physics 2007' workshop is the fourth international meeting devoted to the opening of the neutrino physics to more applied fields, such as geophysics and geochemistry, nuclear industry, as well as the nonproliferation. This meeting highlights the world efforts already engaged to exploit the single characteristics of the neutrinos for the control of the production of plutonium in the civil nuclear power reactor. The potential industrial application of the measurement of the thermal power of the nuclear plants by the neutrinos is also approached. earth neutrinos were for the first time highlighted in 2002 by the KamLAND experiment. Several international efforts are currently underway to use earth neutrinos to reveal the interior of the Earth. This meeting is an opportunity to adapt the efforts of detection to the real needs of geophysicists and geochemists (sources of radiogenic heat, potassium in the court, feathers.) Finally more futuristic topics such as the detection of nuclear explosions, of low powers, are also discussed. This document gathers only the slides of the presentations

  3. Workshop applied antineutrino physics 2007

    Energy Technology Data Exchange (ETDEWEB)

    Akiri, T.; Andrieu, B.; Anjos, J.; Argyriades, J.; Barouch, G.; Bernstein, A.; Bersillon, O.; Besida, O.; Bowden, N.; Cabrera, A.; Calmet, D.; Collar, J.; Cribier, M.; Kerret, H. de; Meijer, R. de; Dudziak, F.; Enomoto, S.; Fallot, M.; Fioni, G.; Fiorentini, G.; Gale, Ph.; Georgadze, A.; Giot, L.; Gonin, M.; Guillon, B.; Henson, C.; Jonkmans, G.; Kanamaru, S.; Kawasaki, T.; Kornoukhov, V.; Lasserre, Th.; Learned, J.G.; Lefebvre, J.; Letourneau, A.; Lhillier, D.; Lindner, M.; Lund, J.; Mantovani, F.; Mcdonough, B.; Mention, G.; Monteith, A.; Motta, D.; Mueller, Th.; Oberauer, L.; Obolensky, M.; Odrzywolek, A.; Petcov, S.; Porta, A.; Queval, R.; Reinhold, B.; Reyna, D.; Ridikas, D.; Sadler, L.; Schoenert, St.; Sida, J.L.; Sinev, V.; Suekane, F.; Suvorov, Y.; Svoboda, R.; Tang, A.; Tolich, N.; Tolich, K.; Vanka, S.; Vignaud, D.; Volpe, Ch.; Wong, H

    2007-07-01

    The 'Applied Antineutrino Physics 2007' workshop is the fourth international meeting devoted to the opening of the neutrino physics to more applied fields, such as geophysics and geochemistry, nuclear industry, as well as the nonproliferation. This meeting highlights the world efforts already engaged to exploit the single characteristics of the neutrinos for the control of the production of plutonium in the civil nuclear power reactor. The potential industrial application of the measurement of the thermal power of the nuclear plants by the neutrinos is also approached. earth neutrinos were for the first time highlighted in 2002 by the KamLAND experiment. Several international efforts are currently underway to use earth neutrinos to reveal the interior of the Earth. This meeting is an opportunity to adapt the efforts of detection to the real needs of geophysicists and geochemists (sources of radiogenic heat, potassium in the court, feathers.) Finally more futuristic topics such as the detection of nuclear explosions, of low powers, are also discussed. This document gathers only the slides of the presentations.

  4. Towards Compact Antineutrino Detectors for Safeguarding Nuclear Reactors

    International Nuclear Information System (INIS)

    Meijer, R.J. de; Smit, F.D.; Woertche, H.J.

    2010-01-01

    research programs aim at developing scintillator materials, with a high flame point and weak or no quenching. Moreover we require (Pulse Shape Discrimination) PSD to differentiate between gammas and alphas and Bayesian filtering for background suppression. The second method is triggered by a recent paper indicating an effect of neutrinos on beta- decay. We are investigating the 'mirror' reaction of antineutrinos on beta+ decay. Although we have reduced the effect already by two orders of magnitude, the present upper limit would still allow antineutrino-flux monitoring at nuclear power reactors. (author)

  5. The U238 antineutrino spectrum in the Double Chooz experiment

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Nils; Oberauer, Lothar; Potzel, Walter; Schreckenbach, Klaus [Technische Universitaet, Muenchen (Germany); Lachenmaier, Tobias [Eberhard Karls Universitaet, Tuebingen (Germany)

    2011-07-01

    The DoubleChooz experiment aims at the determination of the unknown neutrino mixing parameter {Theta}{sub 13}. Two liquid scintillator detectors will measure an electron antineutrino disappearance at the Chooz site in the French ardennes. In order to improve the sensitivity, the antineutrino spectrum emitted by the Chooz reactor cores has to be determined with high accuracy. This talk focusses on the U238 spectrum, which is the only contributing spectrum, that was not measured until now. The final U238 beta spectrum is presented, and its implementation into the analysis framework is shown.

  6. Turbulent Fogwater Flux Measurements Above A Forest

    Science.gov (United States)

    Burkard, R.; Eugster, W.; Buetzberger, P.; Siegwolf, R.

    Many forest ecosystems in elevated regions receive a significant fraction of their wa- ter and nutrient input by the interception of fogwater. Recently, several studies have demonstrated the suitability of the eddy covariance technique for the direct measure- ment of turbulent liquid water fluxes. Since summer 2001 a fogwater flux measure- ment equipment has been running at a montane site above a mixed forest canopy in Switzerland. The measurement equipment consists of a high-speed size-resolving droplet spectrometer and a three-dimensional ultrasonic anemometer. The chemical composition of the fogwater was determined from samples collected with a modified Caltech active strand collector. The deposition of nutrients by fog (occult deposition) was calculated by multiplying the total fogwater flux (total of measured turbulent and calculated gravitational flux) during each fog event by the ionic concentrations found in the collected fogwater. Several uncertainties still exist as far as the accuracy of the measurements is con- cerned. Although there is no universal statistical approach for testing the quality of the liquid water flux data directly, results of independent data quality checks of the two time series involved in the flux computation and accordingly the two instruments (ultrasonic anemometer and the droplet spectrometer) are presented. Within the measurement period, over 80 fog events with a duration longer than 2.5 hours were analyzed. An enormous physical and chemical heterogeneity among these fog events was found. We assume that some of this heterogeneity is due to the fact that fog or cloud droplets are not conservative entities: the turbulent flux of fog droplets, which can be referred to as the liquid water flux, is affected by phase change processes and coagulation. The measured coexistence of upward fluxes of small fog droplets (di- ameter < 10 µm) with the downward transport of larger droplets indicates the influ- ence of such processes. With the

  7. Apparatus for measuring low thermal fluxes

    International Nuclear Information System (INIS)

    Aranovitch, R.; Warnery, M.

    1972-01-01

    Device for the measurement of slight wall heat fluxes, made up of a metallic contact plate combined with a shaft; temperature measurement elements are spaced along the shaft which is kept at a cold adjustable reference temperature lower than that of the walls; heat insulation is provided for the exposed part of the plate and for the shaft [fr

  8. Measurement of the electron antineutrino angular correlation coefficient a with the neutron decay spectrometer aSPECT

    International Nuclear Information System (INIS)

    Simson, Martin

    2010-01-01

    This thesis describes measurements with the retardation spectrometer aSPECT at the Institut Laue-Langevin in Grenoble. The goal of the measurement is to determine the angular correlation coefficient a from the form of the proton recoil spectrum in the decay of the free neutron in order to determine a precise value for the ratio of the weak axial vector and vector coupling constants of the nucleon. A big improvement was achieved with the use of a silicon drift detector which was used here for the first time to detect low energetic protons. A saturation effect of the electronics that was only discovered during the analysis of the data from neutron decay proved to be not correctable. The findings from analysis, simulations and test experiments gained in this work should allow a measurement of a with high precision in a future beamtime. (orig.)

  9. Measurement of the electron antineutrino angular correlation coefficient a with the neutron decay spectrometer aSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Simson, Martin

    2010-09-21

    This thesis describes measurements with the retardation spectrometer aSPECT at the Institut Laue-Langevin in Grenoble. The goal of the measurement is to determine the angular correlation coefficient a from the form of the proton recoil spectrum in the decay of the free neutron in order to determine a precise value for the ratio of the weak axial vector and vector coupling constants of the nucleon. A big improvement was achieved with the use of a silicon drift detector which was used here for the first time to detect low energetic protons. A saturation effect of the electronics that was only discovered during the analysis of the data from neutron decay proved to be not correctable. The findings from analysis, simulations and test experiments gained in this work should allow a measurement of a with high precision in a future beamtime. (orig.)

  10. Eddy Correlation Flux Measurement System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  11. Dual neutron flux/temperature measurement sensor

    Science.gov (United States)

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  12. Neutron flux measurement utilizing Campbell technique

    International Nuclear Information System (INIS)

    Kropik, M.

    2000-01-01

    Application of the Campbell technique for the neutron flux measurement is described in the contribution. This technique utilizes the AC component (noise) of a neutron chamber signal rather than a usually used DC component. The Campbell theorem, originally discovered to describe noise behaviour of valves, explains that the root mean square of the AC component of the chamber signal is proportional to the neutron flux (reactor power). The quadratic dependence of the reactor power on the root mean square value usually permits to accomplish the whole current power range of the neutron flux measurement by only one channel. Further advantage of the Campbell technique is that large pulses of the response to neutrons are favoured over small pulses of the response to gamma rays in the ratio of their mean square charge transfer and thus, the Campbell technique provides an excellent gamma rays discrimination in the current operational range of a neutron chamber. The neutron flux measurement channel using state of the art components was designed and put into operation. Its linearity, accuracy, dynamic range, time response and gamma discrimination were tested on the VR-1 nuclear reactor in Prague, and behaviour under high neutron flux (accident conditions) was tested on the TRIGA nuclear reactor in Vienna. (author)

  13. Measuring Convective Mass Fluxes Over Tropical Oceans

    Science.gov (United States)

    Raymond, David

    2017-04-01

    Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and

  14. Measurement of the electron-antineutrino angular correlation coefficient a in neutron beta decay with the spectrometer aSPECT

    International Nuclear Information System (INIS)

    Petzoldt, G.

    2007-01-01

    In the four beam times we performed at the FRM-II, we were able to show that the spectrometer works in principle and that a determination of a with it is possible. A set of routines has been written for decoding and analyzing the raw data. The routines are written in C using the ROOT libraries and can be easily adapted or expanded. We have found a reliable way to extract the proton count rates from the data by building pulseheight spectra for each measurement, subtracting background measurements from those and fitting the resulting peak with a Gaussian. The background of the measurements was studied in detail. The background caused by electrons from neutron decay is very well understood and conforms quantitatively to our expectation. Due to the spatial resolution of our detector and the time resolution provided by our DAQ electronics, we were able to study correlated electron-proton pairs from one neutron decay event. They form a clearly visible peak in a time- and channel-distance spectrum, which can be shifted in the channel-dimension by varying the voltages applied to the lower and upper E x B electrodes. Performing a pulseheight analysis for both involved particles allowed us to obtain a fairly clean energy spectrum of the background caused by electrons from neutron decay in our detector. Using these correlations for data analysis may be of interest for future neutron decay experiments which use segmented detectors. (orig.)

  15. Measurement of the electron-antineutrino angular correlation coefficient a in neutron beta decay with the spectrometer aSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Petzoldt, G.

    2007-08-29

    In the four beam times we performed at the FRM-II, we were able to show that the spectrometer works in principle and that a determination of a with it is possible. A set of routines has been written for decoding and analyzing the raw data. The routines are written in C using the ROOT libraries and can be easily adapted or expanded. We have found a reliable way to extract the proton count rates from the data by building pulseheight spectra for each measurement, subtracting background measurements from those and fitting the resulting peak with a Gaussian. The background of the measurements was studied in detail. The background caused by electrons from neutron decay is very well understood and conforms quantitatively to our expectation. Due to the spatial resolution of our detector and the time resolution provided by our DAQ electronics, we were able to study correlated electron-proton pairs from one neutron decay event. They form a clearly visible peak in a time- and channel-distance spectrum, which can be shifted in the channel-dimension by varying the voltages applied to the lower and upper E x B electrodes. Performing a pulseheight analysis for both involved particles allowed us to obtain a fairly clean energy spectrum of the background caused by electrons from neutron decay in our detector. Using these correlations for data analysis may be of interest for future neutron decay experiments which use segmented detectors. (orig.)

  16. Daya Bay Antineutrino Detector Gas System

    OpenAIRE

    Band, H. R.; Cherwinka, J. J.; Chu, M-C.; Heeger, K. M.; Kwok, M. W.; Shih, K.; Wise, T.; Xiao, Q.

    2012-01-01

    The Daya Bay Antineutrino Detector gas system is designed to protect the liquid scintillator targets of the antineutrino detectors against degradation and contamination from exposure to ambient laboratory air. The gas system is also used to monitor the leak tightness of the antineutrino detector assembly. The cover gas system constantly flushes the gas volumes above the liquid scintillator with dry nitrogen to minimize oxidation of the scintillator over the five year lifetime of the experimen...

  17. A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lyubushkin, V.; Bunyatov, S.; Chukanov, A.; Klimov, O.; Kustov, D.; Nefedov, Yu.; Samoylov, O.; Tereshchenko, V. [JINR, Dubna (Russian Federation); Popov, B. [JINR, Dubna (Russian Federation); LPNHE, Univ. of Paris VI and VII, Paris (France); Kim, J.J.; Godley, A.; Ling, J.; Mishra, S.R.; Petti, R.; Seaton, M.; Wu, Q. [Univ. of South Carolina, Columbia, SC (United States); Camilleri, L.; Autiero, D.; Di Lella, L.; Couto e Silva, E. do; Ferrere, D.; Grant, A.; Kokkonen, J.; Linssen, L.; Placci, A.; Stiegler, U.; Tsesmelis, E.; Vidal-Sitjes, G.; Wilson, F.F. [CERN, Geneva (Switzerland); Levy, J.M.; Astier, P.; Banner, M.; Dumarchez, J.; Lachaud, C.; Letessier-Selvon, A.; Schahmaneche, K.; Touchard, A.M.; Vannucci, F. [LPNHE, Univ. of Paris VI and VII, Paris (France); Mezzetto, M.; Baldo-Ceolin, M.; Bobisut, F.; Collazuol, G.; Contalbrigo, M.; Gibin, D.; Guglielmi, A.; Lacaprara, S.; Laveder, M.; Rebuffi, L.; Sconza, A.; Zuccon, P. [Univ. of Padova (Italy); INFN, Padova (Italy); Naumov, D. [JINR, Dubna (Russian Federation); Univ. of Florence (Italy); INFN, Florence (Italy); Alekhin, S. [Inst. for High Energy Physics, Protvino, Moscow Region (Russian Federation); Baldisseri, A.; Besson, N.; Bouchez, J.; Gosset, J.; Hagner, C.; Mechain, X.; Meyer, J.P.; Stolarczyk, T.; Zaccone, H. [DAPNIA, Saclay (France); Bassompierre, G.; Gaillard, J.M.; Gouanere, M.; Mendiburu, J.P.; Nedelec, P.; Pessard, H.; Sillou, D. [LAPP, Annecy (France); Benslama, K.; Degaudenzi, H.; Joseph, C.; Juget, F.; Nguyen-Mau, C.; Sozzi, G.; Tareb-Reyes, M.; Tran, M.T.; Vacavant, L.; Vieira, J.M. [Univ. of Lausanne, Lausanne (Switzerland); Bird, I. [CERN, Geneva (Switzerland); Univ. of Lausanne (Switzerland); Blumenfeld, B.; Long, J. [Johns Hopkins Univ., Baltimore, MD (United States); Boyd, S.; Ellis, M.; Peak, L.S.; Ulrichs, J.; Varvell, K.E.; Yabsley, B.D. [Univ. of Sydney (Australia); Bueno, A. [Harvard Univ., Cambridge, MA (United States); ETH Zurich (Switzerland)] [and others

    2009-10-15

    We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions ({nu}{sub {mu}}n {yields}{mu}{sup -}p and anti {nu}{sub {mu}}p{yields}{mu}{sup +}n) using a set of experimental data collected by the NOMAD Collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly carbon) normalizing it to the total {nu}{sub {mu}}(anti {nu}{sub {mu}}) charged-current cross section. The results for the flux-averaged QEL cross sections in the (anti)neutrino energy interval 3-100 GeV are left angle {sigma}{sub qel} right angle {sub {nu}}{sub {mu}}=(0.92{+-}0.02(stat){+-}0.06(syst)) x 10{sup -38} cm{sup 2} and left angle {sigma}{sub qel} right angle {sub anti} {sub {nu}{sub {mu}}}{sub =}(0.81{+-}0.05(stat){+-}0.09(syst)) x 10{sup -38} cm{sup 2} for neutrino and antineutrino, respectively. The axial mass parameter M{sub A} was extracted from the measured quasi-elastic neutrino cross section. The corresponding result is M{sub A}=1.05{+-}0.02(stat){+-}0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross section and extracted from the pure Q{sup 2} shape analysis of the high purity sample of {nu}{sub {mu}} quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured M{sub A} is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of M{sub A} is lower than those recently published by K2K and MiniBooNE Collaborations. However, within the large errors quoted by these experiments on M{sub A}, these results are compatible with the more precise NOMAD value. (orig.)

  18. Anthropogenic methane ebullition and continuous flux measurement

    Science.gov (United States)

    Alshboul, Zeyad

    2017-04-01

    Keywords: Methane, Wastewater, Effluent, Anaerobic treatment. Municipal wastewater treatment plants (WWTPs) have shown to emit significant amount of methane during treatment processes. While most of studies cover only in-plant diffusive methane flux, magnitude and sources of methane ebullition have not well assessed. Moreover, the reported results of methane emissions from WWTPs are based on low spatial and temporal resolution. Using a continuous measurement approach of methane flux rate for effluent system and secondary clarifier treatment process at one WWTP in Southwest Germany, our results show that high percentage of methane is emitted by ebullition during the anaerobic treatment (clarification pond) with high spatial and temporal variability. Our measurements revealed that no ebullition is occur at the effluent system. The observed high contribution of methane ebullition to the total in-plant methane emission, emphasizes the need for considering in-plant methane emission by ebullition as well as the spatial and temporal variability of these emissions.

  19. Search for differences in oscillation parameters for atmospheric neutrinos and antineutrinos at Super-Kamiokande.

    Science.gov (United States)

    Abe, K; Hayato, Y; Iida, T; Ikeda, M; Iyogi, K; Kameda, J; Koshio, Y; Kozuma, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Takeuchi, Y; Ueno, K; Ueshima, K; Watanabe, H; Yamada, S; Yokozawa, T; Ishihara, C; Kaji, H; Lee, K P; Kajita, T; Kaneyuki, K; McLachlan, T; Okumura, K; Shimizu, Y; Tanimoto, N; Martens, K; Vagins, M R; Labarga, L; Magro, L M; Dufour, F; Kearns, E; Litos, M; Raaf, J L; Stone, J L; Sulak, L R; Goldhaber, M; Bays, K; Kropp, W R; Mine, S; Regis, C; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Albert, J B; Scholberg, K; Walter, C W; Wendell, R; Wongjirad, T M; Tasaka, S; Learned, J G; Matsuno, S; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Nishino, H; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Minamino, A; Nakaya, T; Fukuda, Y; Itow, Y; Mitsuka, G; Tanaka, T; Jung, C K; Taylor, I; Yanagisawa, C; Ishino, H; Kibayashi, A; Mino, S; Mori, T; Sakuda, M; Toyota, H; Kuno, Y; Kim, S B; Yang, B S; Ishizuka, T; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Yokoyama, M; Totsuka, Y; Chen, S; Heng, Y; Yang, Z; Zhang, H; Kielczewska, D; Mijakowski, P; Connolly, K; Dziomba, M; Wilkes, R J

    2011-12-09

    We present a search for differences in the oscillations of antineutrinos and neutrinos in the Super-Kamiokande-I, -II, and -III atmospheric neutrino sample. Under a two-flavor disappearance model with separate mixing parameters between neutrinos and antineutrinos, we find no evidence for a difference in oscillation parameters. Best-fit antineutrino mixing is found to be at (Δm2,sin2 2θ)=(2.0×10(-3)  eV2, 1.0) and is consistent with the overall Super-K measurement.

  20. A new measurement of the ratio of the cross sections of muon-neutrino and muon-antineutrino scattering on electrons

    International Nuclear Information System (INIS)

    Bergsma, F.; Dorenbosch, J.; Allaby, J.V.; Amaldi, U.; Barbiellini, G.; Baubillier, M.; Busi, C.; Flegel, W.; Grancagnolo, F.; Lanceri, L.; Metcalf, M.; Nieuwenhuis, C.; Panman, J.; Plunkett, R.; Santoni, C.; Winter, K.; Abt, I.; Aspiazu, J.; Buesser, F.W.; Daumann, H.; Gall, P.D.; Hebbeker, T.; Niebergall, F.; Schuett, P.; Staehelin, P.; Barone, L.; Borgia, B.; Capone, A.; Diemoz, M.; Dore, U.; Ferroni, F.; Longo, E.; Luminari, L.; Monacelli, P.; Notaristefani, F. de; Rome Univ.; Morganti, S.; Valente, V.

    1984-01-01

    A new experimental determination of the electro-weak mixing angle thetasub(W) is reported based on a second exposure of the CHARM calorimeter to the CERN-SPS wide-band beam. The ratio R of muon-neutrino- and muon-antineutrino-electron scattering cross sections has been determined from a sample of 37+-10 and 35+-10 events. The experimental result is R=1.26 (+0.72-0.45), corresponding to a value of sin 2 thetasub(W)=0.216+-0.055. The total sample of events collected in the CHARM calorimeter during the two exposures is (83+-16)νsub(μ)e events and (112+-21)anti νsub(μ)e events, leading to the final result sin 2 thetasub(W)=0.215+-0.032. The systematic error is estimated to be +-0.012. (orig.)

  1. Advanced Tethersonde for High-Speed Flux Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flux measurements of trace gases and other quantities, such as latent heat, are of great importance in scientific field research. One typical flux measurement setup...

  2. Advanced Tethersonde for High-Speed Flux Measurements, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flux measurements of trace gases and other quantities, such as latent heat, are of great importance in scientific field research. One typical flux measurement setup...

  3. Reactor flux calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D. [Commissariat à l' Énergie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France)

    2013-02-15

    The status of the prediction of reactor anti-neutrino spectra is presented. The most accurate method is still the conversion of total β spectra of fissionning isotopes as measured at research reactors. Recent re-evaluations of the conversion process led to an increased predicted flux by few percent and were at the origin of the so-called reactor anomaly. The up to date predictions are presented with their main sources of error. Perspectives are given on the complementary ab-initio predictions and upcoming experimental cross-checks of the predicted spectrum shape.

  4. Net charge of quark jets in (anti)neutrino interactions

    International Nuclear Information System (INIS)

    Teper, M.

    1981-01-01

    We analyse recent measurements of the net charges of quark jets in neutrino and antineutrino interactions. The data indicates that (i) the two quarks in the nucleon fragmentation region prefer to behave as a diquark rather than as a pair of independent quarks, and (ii) the struck quark does not appear to suffer any soft charge exchange of the kind that occurs when a valence quark inside a nucleon is slowed to x approx. O. (orig.)

  5. Measurements of neutron flux in the RA reactor

    International Nuclear Information System (INIS)

    Raisic, N.

    1961-12-01

    This report includes the following separate parts: Thermal neutron flux in the experimental channels od RA reactor; Epithermal neutron flux in the experimental channels od RA reactor; Fast neutron flux in the experimental channels od RA reactor; Thermal neutron flux in the thermal column and biological experimental channel; Neutronic measurements in the RA reactor cell; Temperature reactivity coefficient of the RA reactor; design of the device for measuring the activity of wire [sr

  6. AmeriFlux Measurement Component (AMC) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Reichl, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Biraud, S. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-01

    An AMC system was installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope Alaska (NSA) Barrow site, also known as NSA C1 at the ARM Data Archive, in August 2012. A second AMC system was installed at the third ARM Mobile Facility deployment at Oliktok Point, also known as NSA M1. This in situ system consists of 12 combination soil temperature and volumetric water content (VWC) reflectometers and one set of upwelling and downwelling PAR sensors, all deployed within the fetch of the Eddy Correlation Flux Measurement System. Soil temperature and VWC sensors placed at two depths (10 and 30 cm below the vegetation layer) at six locations (or microsites) allow soil property inhomogeneity to be monitored across a landscape. The soil VWC and temperature sensors used at NSA C1 are the Campbell Scientific CS650L and the sensors at NSA M1 use the Campbell Scientific CS655. The two sensors are nearly identical in function, and vendor specifications are based on the CS650 unless otherwise stated.

  7. The measurements of thermal neutron flux distribution in a paraffin

    Indian Academy of Sciences (India)

    The term `thermal flux' implies a Maxwellian distribution of velocity and energy corresponding to the most probable velocity of 2200 ms-1 at 293.4 K. In order to measure the thermal neutron flux density, the foil activation method was used. Thermal neutron flux determination in paraffin phantom by counting the emitted rays of ...

  8. Dis-aggregation of airborne flux measurements using footprint analysis

    NARCIS (Netherlands)

    Hutjes, R.W.A.; Vellinga, O.S.; Gioli, B.; Miglietta, F.

    2010-01-01

    Aircraft measurements of turbulent fluxes are generally being made with the objective to obtain an estimate of regional exchanges between land surface and atmosphere, to investigate the spatial variability of these fluxes, but also to learn something about the fluxes from some or all of the land

  9. An alternative method for the measurement of neutron flux

    Indian Academy of Sciences (India)

    Abstract. A simple and easy method for measuring the neutron flux is presented. This paper deals with the experimental verification of neutron dose rate–flux relationship for a non-dissipative medium. Though the neutron flux cannot be obtained from the dose rate in a dissipative medium, experimental result shows that for ...

  10. An alternative method for the measurement of neutron flux

    Indian Academy of Sciences (India)

    A simple and easy method for measuring the neutron flux is presented. This paper deals with the experimental verification of neutron dose rate–flux relationship for a non-dissipative medium. Though the neutron flux cannot be obtained from the dose rate in a dissipative medium, experimental result shows that for ...

  11. The measurements of thermal neutron flux distribution in a paraffin ...

    Indian Academy of Sciences (India)

    The term `thermal flux' implies a Maxwellian distribution of velocity and energy corresponding to the most probable velocity of 2200 ms-1 at 293.4 K. In order to measure the thermal neutron flux density, the foil activation method was used. Thermal neutron flux determination in paraffin phantom by counting the emitted rays of ...

  12. Antineutrino Neutral Current Interactions in MiniBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Dharmapalan, Ranjan [Univ. of Alabama, Tuscaloosa, AL (United States)

    2012-01-01

    This dissertation reports the antineutrino-nucleus neutral current elastic scattering cross section on CH2 measured by the MiniBooNE experiment located in Batavia, IL. The data set consists of 60,605 events passing the selection cuts corresponding to 10.1×1020 POT, which represents the world’s largest sample of antineutrino neutral current elastic scattering events. The final sample is more than one order of magnitude lager that the previous antineutrino NCE scattering cross section measurement reported by the BNL E734 experiment. The measurement presented in this dissertation also spans a wider range in Q2, including the low-Q2 regime where the cross section rollover is clearly visible. A X2-based minimization was performed to determine the best value of the axial mass, MA and the Pauli blocking scaling function, that matches the antineutrino NCE scattering data. However, the best fit values of MA=1.29 GeV and K=1.026 still give a relatively poor X2, which suggests that the underlying nuclear model (based largely on the relativistic Fermi gas model) may not be an accurate representation for this particular interaction. Additionally, we present a measurement of the antineutrino/neutrino-nucleus NCE scattering cross section ratio. The neutrino mode NCE sample used in this study, corresponding to 6.4 × 1020 POT, is also the world’s largest sample (also by an order of magnitude). We have demonstrated that the ratio measurement is robust, as most of the correlated errors cancel, as expected. Furthermore, this ratio also proves to be rather insensitive to variations in the axial mass and the Pauli blocking parameter. This is the first time that this ratio has been experimentally reported. We believe this measurement will aid the theoretical physics community to test various model predictions of neutrino-nucleon/nucleus interactions.

  13. AmeriFlux Measurement Network: Science Team Research

    Energy Technology Data Exchange (ETDEWEB)

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  14. Use of Antineutrino Detectors for Nuclear Reactor Safeguards Effectiveness Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A; Lambert, H E; Elayat, H A; O' Connell, W J; Rexroth, P; Baldwin, G; Bowden, N; Huelskamp, R

    2006-06-05

    As described in an earlier article [1], important information regarding reactor power and the amount and type of fissile material in reactor cores can be determined by measuring the antineutrino rate and energy spectrum, using a cubic meter scale antineutrino detector at tens of meters standoff from the core. Current International Atomic Energy Agency (IAEA) safeguards techniques do not provide such real-time quantitative information regarding core power levels and isotopic composition. The possible benefits of this approach are several and have been discussed in the earlier article. One key advantage is that the method gives the inspecting agency completely independent access to real-time information on the operational status and fissile content of the core. Furthermore, the unattended and non-intrusive nature of the technology may reduce the monitoring burden on the plant operator, even though more information is being provided than is available within the current IAEA safeguards regime. Here we present a detailed analytical framework for measuring the impact that such a detector might have on IAEA safeguards, if implemented. To perform the analysis, we will use initial data from our operating detector and a standard analysis technique for safeguards regimes, developed at Lawrence Livermore National Laboratory. Because characterization of the prototype detector is still underway, and because improvements in the prototype could have important impact on safeguards performance, the results presented here should be understood to be preliminary, and not reflective of the ultimate performance of the system. The structure of this paper is as follows. Reactor safeguards and the relevant properties of antineutrino detectors are briefly reviewed. A set of hypothetical diversion scenarios are then described, and one of these is analyzed using the Lawrence Livermore National Laboratory Integrated Safeguards System Analysis Tool (LISSAT) The probability of successful

  15. Daya Bay Antineutrino Detector gas system

    Science.gov (United States)

    Band, H. R.; Cherwinka, J. J.; Chu, M.-C.; Heeger, K. M.; Kwok, M. W.; Shih, K.; Wise, T.; Xiao, Q.

    2012-11-01

    The Daya Bay Antineutrino Detector gas system is designed to protect the liquid scintillator targets of the antineutrino detectors against degradation and contamination from exposure to ambient laboratory air. The gas system is also used to monitor the leak tightness of the antineutrino detector assembly. The cover gas system constantly flushes the gas volumes above the liquid scintillator with dry nitrogen to minimize oxidation of the scintillator over the five year lifetime of the experiment. This constant flush also prevents the infiltration of radon or other contaminants into these detecting liquids keeping the internal backgrounds low. Since the Daya Bay antineutrino detectors are immersed in the large water pools of the muon veto system, other gas volumes are needed to protect vital detector cables or gas lines. These volumes are also purged with dry gas. Return gas is monitored for oxygen content and humidity to provide early warning of potentially damaging leaks. The design and performance of the Daya Bay Antineutrino Detector gas system is described.

  16. A Direction-Sensitive Detector for Electron Antineutrinos

    Science.gov (United States)

    Brooks, F. D.; Drosg, M.; Smit, F. D.

    2011-12-01

    A modular design is proposed for an electron antineutrino detector based on boron-doped liquid scintillator. Tests have been carried out on small detector systems using neutrons to simulate the antineutrino detection signature. Results from these tests are reported, and the possibility of using a larger system of similar design to detect reactor antineutrinos is discussed.

  17. Neutron Flux Measurement Produced by BNCT Target using Proton Beam

    International Nuclear Information System (INIS)

    Ha, Jang Ho; Kim, Yong Kyun; Chai, Jong Seo; Kim, Jong Kyung

    2005-01-01

    We are investigating neutron production target system performance for boron captured neutron therapy (BNCT). The epithermal neutron is useful for this therapy and in present study we performed a simple method to measure neutron flux and energy, which are important for the accurate cancer therapy. The simple method and result of neutron flux and energy measurement experiment are presented

  18. Applied Anti-neutrino Physics 2013

    CERN Document Server

    2013-01-01

    This year, the 9th annual Applied Antineutrino Physics Workshop will be hosted by Sejong University, at the COEX conference center in Seoul South Korea. The workshop will be held on November 1(Friday) - 2(Saturday), 2013. Conveniently for many travelers, it takes place directly after and at the same venue as the 2013 IEEE Nuclear Science Symposium (http://www.nss-mic.org/2013/NSSMain.asp) Applied Antineutrino Physics describes an ensemble of experimental and theoretical efforts which aim to use the antineutrino signal from nuclear reactors, and from the Earth itself, in order to address practical problems in nonproliferation and geology respectively. Since the 2004 inception of these workshops, groups worldwide have made considerable advances in defining and expanding the field, garnering interest from the International Atomic Energy Agency (IAEA), which administers the worlds most important nonproliferation regime, and from the geology/geophysics community. This meeting will focus on the current activi...

  19. Helium cosmic ray flux measurements at Mars

    International Nuclear Information System (INIS)

    Lee, Kerry; Pinsky, Lawrence; Andersen, Vic; Zeitlin, Cary; Cleghorn, Tim; Cucinotta, Frank; Saganti, Premkumar; Atwell, William; Turner, Ron

    2006-01-01

    The helium energy spectrum in Martian orbit has been observed by the MARIE charged particle spectrometer aboard the 2001 Mars Odyssey spacecraft. The orbital data were taken from March 13, 2002 to October 28, 2003, at which time a very intense Solar Particle Event caused a loss of communication between the instrument and the spacecraft. The silicon detector stack in MARIE is optimized for the detection of protons and helium in the energy range below 100MeV/n, which typically includes almost all of the flux during SPEs. This also makes MARIE an efficient detector for GCR helium in the energy range of 50-150MeV/n. We will present the first fully normalized flux results from MARIE, using helium ions in this energy range

  20. Anti-neutrino disintegration of the deuteron

    International Nuclear Information System (INIS)

    Mueller, W.; Gari, M.; Max-Planck-Institut fuer Chemie

    1981-01-01

    The anti-neutrino disintegration of the deuteron (anti ν + D → anti ν + n + p and anti νsub(e) + D → + e + + n + n) is calculated using realistic two-body states. Meson-exchange currents are considered in the one-boson-exchange limit. The results are discussed as corrections to the cross sections obtained in effective range approximations. It is shown that the ratio of the cross sections (sigma - /sigma 0 ) for reactor antineutrinos is practically independent of the nuclear physics uncertainties. (orig.)

  1. Integrated passive flux measurement in groundwater: design and performance of iFLUX samplers

    Science.gov (United States)

    Verreydt, Goedele; Razaei, Meisam; Meire, Patrick; Van Keer, Ilse; Bronders, Jan; Seuntjens, Piet

    2017-04-01

    The monitoring and management of soil and groundwater is a challenge. Current methods for the determination of movement or flux of pollution in groundwater use no direct measurements but only simulations based on concentration measurements and Darcy velocity estimations. This entails large uncertainties which cause remediation failures and higher costs for contaminated site owners. On top of that, the lack of useful data makes it difficult to get approval for a risk-based management approach which completely avoids costly remedial actions. The iFLUX technology is a key development of Dr. Goedele Verreydt at the University of Antwerp and VITO. It is supported by the passive flux measurement technology as invented by Prof. Mike Annable and his team at the University of Florida. The iFLUX technology includes an in situ measurement device for capturing dynamic groundwater quality and quantity, the iFLUX sampler, and an associated interpretation and visualization method. The iFLUX sampler is a modular passive sampler that provides simultaneous in situ point determinations of a time-averaged target compound mass flux and water flux. The sampler is typically installed in a monitoring well where it intercepts the groundwater flow and captures the compounds of interest. The sampler consists of permeable cartridges which are each packed with a specific sorbent matrix. The sorbent matrix of the water flux cartridge is impregnated with known amounts of water soluble resident tracers. These tracers are leached from the matrix at rates proportional to the groundwater flux. The measurements of the contaminants and the remaining resident tracer are used to determine groundwater and target compound fluxes. Exposure times range from 1 week to 6 months, depending on the expected concentration and groundwater flow velocity. The iFLUX sampler technology has been validated and tested at several field projects. Currently, 4 cartridges are tested and available: 1 waterflux cartridge to

  2. A new approach of surface flux measurements using DTS

    Science.gov (United States)

    van Emmerik, T. H. M.; Wenker, K. J. R.; Rimmer, A.; de Jong, S. A. P.; Lechinsky, Y.; van de Giesen, N. C.

    2012-04-01

    Estimation of surface fluxes is a difficult task, especially over lakes. Determining latent heat flux (evaporation), sensible heat flux and ground heat flux involves measurements and (or calculations) of net radiation, air temperature, water temperature, wind speed and relative humidity. This research presents a new method to measure surface fluxes by means of Distributed Temperature Sensing (DTS). From 0.5 m above lake level to 1.5 m under lake level DTS was applied to measure temperature. Using a PVC hyperboloid construction, a floating standalone measuring device was developed. This new setup distinguished itself by the open construction, so it is almost insensitive to direct radiation. While most of the lake ground heat changes occur very close to the lake surface, most measuring methods only obtain rough results. With this construction it was possible to create a spiral shaped fiber-optic cable setup, with which a vertical spatial resolution of 0.02 m and a temporal resolution of 1 min was obtained. The new method was tested in the deep Lake Kinneret (Israel) from 6 October, 2011 to 11 October, 2011and in the shallow Lake Binaba (Ghana) from 24 October, 2011 to 28 October, 2011. This study shows that with the developed method it is possible to capture the energy fluxes within the top water layer with a high resolution. When the old low resolution method was compared with the new high resolution method, it could be concluded that the impact of the surface fluxes in the upper layer is high on the energy balance on a daily scale. During the measuring period it was possible to use the temperature measured by the DTS to determine the sensible heat flux, the latent heat flux and the ground heat flux of both lakes.

  3. Antineutrino-nucleon total cross section and ratio of antineutrino cross section on neutrons and protons

    CERN Document Server

    Erriquez, O; Bisi, V; Bonetti, S; Bullock, F W; Cavalli, D; Engel, J P; Eranzinetti, C; Escubes, B; Esten, M J; Fogli-Muciaccia, M T; Gamba, D; Guyonnet, J L; Halsteinslid, A; Henderson, R C W; Huss, D; Jones, T W; Marzari-Chiesa, A; Mauri, F; Myklebost, K; Natali, S; Nuzzo, S; Paty, M; Pullia, A; Racca, C; Ramzan, F A; Riccati, L; Riester, J L; Rognebakke, A; Rollier, M; Romero, A; Skjeggestad, O

    1979-01-01

    On a selected sample of 2171 events, observed in the heavy liquid bubble chamber Gargamelle at CERN, the charged current total cross section for antineutrino on nucleons has been determined to the laboratory energy 8 GeV. (7 refs).

  4. Device for measuring neutron-flux distribution density

    International Nuclear Information System (INIS)

    Rozenbljum, N.D.; Mitelman, M.G.; Kononovich, A.A.; Kirsanov, V.S.; Zagadkin, V.A.

    1977-01-01

    An arrangement is described for measuring the distribution of neutron flux density over the height of a nuclear reactor core and which may be used for monitoring energy release or for detecting deviations of neutron flux from an optimal level so that subsequent balance can be achieved. It avoids mutual interference of detectors. Full constructional details are given. (UK)

  5. The measurements of thermal neutron flux distribution in a paraffin ...

    Indian Academy of Sciences (India)

    at 293.4 K. In order to measure the thermal neutron flux density, the foil activation method was used. Thermal neutron flux determination in paraffin phantom by counting the emitted rays of indium foils with two different detectors (Geiger–. Muller counter and NaI(Tl)) was the aim of this project. The relative differences of the ...

  6. Fluxes of chemically reactive species inferred from mean concentration measurements

    NARCIS (Netherlands)

    Galmarini, S.; Vilà-Guerau De Arellano, J.; Duyzer, J.H.

    1997-01-01

    A method is presented for the calculation of the fluxes of chemically reactive species on the basis of routine measurements of meteorological variables and chemical species. The method takes explicity into account the influence of chemical reactions on the fluxes of the species. As a demonstration

  7. Sensors for Metering Heat Flux Area Density and Metrological Equipment for the Heat Flux Density Measurement

    Science.gov (United States)

    Doronin, D. O.

    2018-04-01

    The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.

  8. Axial flux data for fuel measurement

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, R.P.

    1964-02-11

    A survey of the PITA-18 nonpoisonous spline program was conducted in conjunction with a study to determine the best method of eliminating the variability of axial flux on the fuel performance parameter, q. The results of this survey and the conclusions reached in the rupture coefficient study were found to be inter-dependent such that both are presented in this report. The data from the PITA-18 nonpoisonous spline program, as received, is the output of the NOLA-2 computer program. One quantity of interest is the rupture potential relative to a cosine, commonly referred to as the relative rupture potential. As programmed, the relative rupture potential, which was derived by applying the rupture model to individual fuel elements, might be expected to vary linearly with the rupture rate. The use of the relative rupture potential was studied over the period of July 1962 through December 1963. The results of this study are presented.

  9. Dilepton and trilepton production by antineutrinos and neutrinos in neon

    Science.gov (United States)

    Gerbier, G.; Bertrand, D.; Guy, J.; Marage, P.; Aderholz, M.; Armenise, N.; Bartley, J. H.; Baton, J. P.; Brisson, V.; Belusevic, R.; Brou, D.; Bullock, F. W.; Calicchio, M.; Clayton, E. F.; Coghen, T.; Cooper-Sarkar, A. M.; Erriquez, O.; Fitch, P. J.; Hulth, P. O.; Jones, G. T.; Kasper, P.; Klein, H.; Kochowski, C.; Lagraa, M.; Leighton-Davis, S.; Middleton, R.; Miller, D. B.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; Nuzzo, S.; O'Neale, S.; Parker, M. A.; Petiau, P.; Sacton, J.; Sansum, R. A.; Schmitz, N.; Simopoulou, E.; Talebzadeh, M.; Varvell, K.; Vallee, C.; Vayaki, A.; Venus, W.; Wachsmuth, H.; Wells, J.; Wittek, W.; Zevgolatakos, E.

    1985-03-01

    A sample of over 25,000 fully measured neutrino and antineutrino charged current interactions in BEBC includes 192 dilepton candidates. The prompt signal after subtraction of background is 41 ±7µ+ e -, 35±7µ+µ- events frombar v interactions, and 32±7µ-µ+ events from ν interactions. There are 2 trileptons, µ-µ- e + and µ-µ-µ+. Results are compared with other experimental data and with the standard model. Limits to prompt like sign µ+ e +, µ+µ+ and µ-µ- signals are given and compared with other experiments and with theoretical calculations.

  10. Measurements of EUV coronal holes and open magnetic flux

    International Nuclear Information System (INIS)

    Lowder, C.; Qiu, J.; Leamon, R.; Liu, Y.

    2014-01-01

    Coronal holes are regions on the Sun's surface that map the footprints of open magnetic field lines. We have developed an automated routine to detect and track boundaries of long-lived coronal holes using full-disk extreme-ultraviolet (EUV) images obtained by SOHO/EIT, SDO/AIA, and STEREO/EUVI. We measure coronal hole areas and magnetic flux in these holes, and compare the measurements with calculations by the potential field source surface (PFSS) model. It is shown that, from 1996 through 2010, the total area of coronal holes measured with EIT images varies between 5% and 17% of the total solar surface area, and the total unsigned open flux varies between (2-5)× 10 22 Mx. The solar cycle dependence of these measurements is similar to the PFSS results, but the model yields larger hole areas and greater open flux than observed by EIT. The AIA/EUVI measurements from 2010-2013 show coronal hole area coverage of 5%-10% of the total surface area, with significant contribution from low latitudes, which is under-represented by EIT. AIA/EUVI have measured much enhanced open magnetic flux in the range of (2-4)× 10 22 Mx, which is about twice the flux measured by EIT, and matches with the PFSS calculated open flux, with discrepancies in the location and strength of coronal holes. A detailed comparison between the three measurements (by EIT, AIA-EUVI, and PFSS) indicates that coronal holes in low latitudes contribute significantly to the total open magnetic flux. These low-latitude coronal holes are not well measured with either the He I 10830 line in previous studies, or EIT EUV images; neither are they well captured by the static PFSS model. The enhanced observations from AIA/EUVI allow a more accurate measure of these low-latitude coronal holes and their contribution to open magnetic flux.

  11. Lithium Gadolinium Borate in Plastic Scintillator as an Antineutrino Detection Material

    Science.gov (United States)

    2010-06-01

    commercial reactor stage is fuel assembly inventory accountancy, reactor operator declarations of power and burnup and auditing by the IAEA. Current...of the groups that first established the correlation between reactor antineutrino flux, thermal power, and fuel burnup has proposed a cubic meter...certainly all escape without depositing much energy. The expected ratio for Gd captures to Li or B is hard to calculate as it depends strongly on the

  12. Present and Future Experiments in Non-equilibrium Reactor Antineutrino Energy Spectrum

    OpenAIRE

    Kopeikin, V. I.; Mikaelyan, L. A.

    2005-01-01

    Considerable efforts that have been undertaken in the recent years in low energy antineutrino experiments require further systematic investigations in line of reactor antineutrino spectroscopy as a metrological basis of these experiments. We consider some effects associated with the non-equilibrium of reactor antineutrino radiation and residual antineutrino emission from spent reactor fuel in contemporary antineutrino experiments.

  13. Determining Maximum Glycolytic Capacity Using Extracellular Flux Measurements.

    Directory of Open Access Journals (Sweden)

    Shona A Mookerjee

    Full Text Available Measurements of glycolytic rate and maximum glycolytic capacity using extracellular flux analysis can give crucial information about cell status and phenotype during normal operation, development of pathology, differentiation, and malignant transformation. They are also of great use when assessing the effects of chemical or drug treatments. Here, we experimentally define maximum glycolytic capacity, demonstrate how it differs from glycolytic rate, and provide a protocol for determining the basal glycolytic rate and maximum glycolytic capacity in cells using extracellular flux measurements. The results illustrate the power of extracellular flux analysis to describe the energetics of adherent cells in culture in a fully quantitative way.

  14. Determining Maximum Glycolytic Capacity Using Extracellular Flux Measurements.

    Science.gov (United States)

    Mookerjee, Shona A; Nicholls, David G; Brand, Martin D

    2016-01-01

    Measurements of glycolytic rate and maximum glycolytic capacity using extracellular flux analysis can give crucial information about cell status and phenotype during normal operation, development of pathology, differentiation, and malignant transformation. They are also of great use when assessing the effects of chemical or drug treatments. Here, we experimentally define maximum glycolytic capacity, demonstrate how it differs from glycolytic rate, and provide a protocol for determining the basal glycolytic rate and maximum glycolytic capacity in cells using extracellular flux measurements. The results illustrate the power of extracellular flux analysis to describe the energetics of adherent cells in culture in a fully quantitative way.

  15. CeLAND: search for a 4th light neutrino state with a 3 PBq 144Ce-144Pr electron antineutrino generator in KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    Gando, A; Gando, Y; Hayashida, S; Ikeda, H; Inoue, K; Ishidoshiro, K; Ishikawa, H; Koga, M; Matsuda, R; Matsuda, S; Mitsui, T; Motoki, D; Nakamura, K; Oki, Y; Otani, M; Shimizu, I; Shirai, J; Suekane, F; Suzuki, A; Takemoto, Y; Tamae, K; Ueshima, K; Watanabe, H; Xu, BD; Yamada, S; Yamauchi, Y; Yoshida, H; Cribier, M; Durero, M; Fischer, V; Gaffiot, J; Jonqueres, N; Kouchner, A; Lasserre, T; Leterme, D; Letourneau, A; Lhuillier, D; Mention, G; Rampal, G; Scola, L; Veyssiere, C; Vivier, M; Yala, P; Berger, BE; Kozlov, A; Banks, T; Dwyer, D; Fujikawa, BK; Han, K; Kolomensky, YG; Mei, Y; O' Donnell, T; Decowski, P; Markoff, DM; Yoshida, S; Kornoukhov, VN; Gelis, TVM; Tikhomirov, GV; Learned, JG; Maricic, J; Matsuno, S; Milincic, R; Karwowski, HJ; Efremenko, Y; Detwiler, A; Enomoto, S

    2017-05-12

    The reactor neutrino and gallium anomalies can be tested with a 3-4 PBq (75-100 kCi scale) 144Ce-144Pr antineutrino beta-source deployed at the center or next to a large low-background liquid scintillator detector. The antineutrino generator will be produced by the Russian reprocessing plant PA Mayak as early as 2014, transported to Japan, and deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND) as early as 2015. KamLAND's 13 m diameter target volume provides a suitable environment to measure the energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, sterile neutrino state. This will provide a comprehensive test of the electron dissaperance neutrino anomalies and could lead to the discovery of a 4th neutrino state for Δm$2\\atop{new}$ ≳ 0.1 eV2 and sin2(2θnew) > 0.05.

  16. Nitrous Oxide flux measurements under various amendments

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset consists of measurements of soil nitrous oxide emissions from soils under three different amendments: glucose, cellulose, and manure. Data includes the...

  17. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  18. Antineutrino and gamma emission from the OSIRIS research reactor

    Directory of Open Access Journals (Sweden)

    Giot Lydie

    2017-01-01

    Full Text Available For the first time, the summation method has been coupled with a complete reactor model, in order to predict the antineutrino emission of a research reactor. This work, discussed in the first part of this paper, allows us to predict the low energy part of the antineutrino spectrum, evidencing the important contribution of actinides to the antineutrino emission. Experimental conditions at short distance from research reactors are challenging, because the reactor itself produces huge gamma background that induce accidental and correlated backgrounds in an antineutrino target. The understanding of this background is of utmost importance and triggered the second part of the work presented here.

  19. How to choose methods for lake greenhouse gas flux measurements?

    Science.gov (United States)

    Bastviken, David

    2017-04-01

    Lake greenhouse gas (GHG) fluxes are increasingly recognized as important for lake ecosystems as well as for large scale carbon and GHG budgets. However, many of our flux estimates are uncertain and it can be discussed if the presently available data is representative for the systems studied or not. Data are also very limited for some important flux pathways. Hence, many ongoing efforts try to better constrain fluxes and understand flux regulation. A fundamental challenge towards improved knowledge and when starting new studies is what methods to choose. A variety of approaches to measure aquatic GHG exchange is used and data from different methods and methodological approaches have often been treated as equally valid to create large datasets for extrapolations and syntheses. However, data from different approaches may cover different flux pathways or spatio-temporal domains and are thus not always comparable. Method inter-comparisons and critical method evaluations addressing these issues are rare. Emerging efforts to organize systematic multi-lake monitoring networks for GHG fluxes leads to method choices that may set the foundation for decades of data generation and therefore require fundamental evaluation of different approaches. The method choices do not only regard the equipment but also for example consideration of overall measurement design and field approaches, relevant spatial and temporal resolution for different flux components, and accessory variables to measure. In addition, consideration of how to design monitoring approaches being affordable, suitable for widespread (global) use, and comparable across regions is needed. Inspired by discussions with Prof. Dr. Cristian Blodau during the EGU General Assembly 2016, this presentation aims to (1) illustrate fundamental pros and cons for a number of common methods, (2) show how common methodological approaches originally adapted for other environments can be improved for lake flux measurements, (3) suggest

  20. Micrometeorological flux measurements of aerosol and gases above Beijing

    Science.gov (United States)

    Nemitz, Eiko; Langford, Ben; Mullinger, Neil; Cowan, Nicholas; Coyle, Mhairi; Acton, William Joe; Lee, James; Fu, Pingqing

    2017-04-01

    Air pollution is estimated to cause 1.6 million premature deaths in China every year and in the winter 2016/17 Beijing had to issue health alerts and put in place ad hoc limitations on industrial and vehicular activity. Much of this pollution is attributed to emissions from industrial processes and in particular coal combustion. By contrast, the diffuse pollutant sources within the city are less well understood. This includes, e.g., emissions from the Beijing traffic fleet, the sewage system, food preparation, solid fuel combustion in the streets and small industrial processes. Within the framework of a major UK-Chinese collaboration to study air pollution and its impact on human health in Beijing, we therefore measured fluxes of a large range of pollutants from a height of 102 m on the 325 m meteorological tower at the Institute of Atmospheric Physics. Several instruments were mounted at 102 m: fluxes of CO2 and H2O were measured with an infrared gas analyser (LiCOR 7500) and fluxes of ozone with a combination of a relative fast-response ozone analyser (ROFI) and a 2B absolute O3 instrument. Total particle number fluxes were measured with a condensation particle counter (TSI CPC 3785), and size-segregated fluxes over the size range 0.06 to 20 μm with a combination of an optical Ultrafine High Sensitivity Aerosol Spectrometer (UHSAS) and an Aerodynamic Particle Sizer Spectrometer (TSI APS3321). Ammonia (NH3) fluxes were measured for the first time above the urban environment using an Aerodyne compact quantum cascade laser (QCL). In addition, composition resolved aerosol fluxes were measured with an Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), operated in a measurement container at the bottom of the tower, which subsampled from a 120 m long copper tube (15 mm OD). The analysis so far suggests that, due to often low wind speeds, fluxes were at times de-coupled from the surface. Fluxes normalised by CO2, a tracer for the amount of fossil fuel consumed, should be

  1. Comparison between elementary flux modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells.

    Science.gov (United States)

    Beurton-Aimar, Marie; Beauvoit, Bertrand; Monier, Antoine; Vallée, François; Dieuaide-Noubhani, Martine; Colombié, Sophie

    2011-06-20

    (13)C metabolic flux analysis is one of the pertinent ways to compare two or more physiological states. From a more theoretical standpoint, the structural properties of metabolic networks can be analysed to explore feasible metabolic behaviours and to define the boundaries of steady state flux distributions. Elementary flux mode analysis is one of the most efficient methods for performing this analysis. In this context, recent approaches have tended to compare experimental flux measurements with topological network analysis. Metabolic networks describing the main pathways of central carbon metabolism were set up for a bacteria species (Corynebacterium glutamicum) and a plant species (Brassica napus) for which experimental flux maps were available. The structural properties of each network were then studied using the concept of elementary flux modes. To do this, coefficients of flux efficiency were calculated for each reaction within the networks by using selected sets of elementary flux modes. Then the relative differences - reflecting the change of substrate i.e. a sugar source for C. glutamicum and a nitrogen source for B. napus - of both flux efficiency and flux measured experimentally were compared. For both organisms, there is a clear relationship between these parameters, thus indicating that the network structure described by the elementary flux modes had captured a significant part of the metabolic activity in both biological systems. In B. napus, the extension of the elementary flux mode analysis to an enlarged metabolic network still resulted in a clear relationship between the change in the coefficients and that of the measured fluxes. Nevertheless, the limitations of the method to fit some particular fluxes are discussed. This consistency between EFM analysis and experimental flux measurements, validated on two metabolic systems allows us to conclude that elementary flux mode analysis could be a useful tool to complement (13)C metabolic flux analysis

  2. Calorimeter probes for measuring high thermal flux. [in arc jets

    Science.gov (United States)

    Russell, L. D.

    1979-01-01

    Expendable, slug-type calorimeter probes were developed for measuring high heat-flux levels of 10-30 kW/sq cm in electric-arc jet facilities. The probes were constructed with thin tungsten caps mounted on Teflon bodies. The temperature of the back surface of the tungsten cap is measured, and its time rate of change gives the steady-state absorbed heat flux as the calorimeter probe heats to destruction when inserted into the arc jet. Design, construction, test, and performance data are presented.

  3. Densitometric tomography using the measurement of muon flux

    Science.gov (United States)

    Hivert, F.; Busto, J.; Brunner, J.; Salin, P.; Gaffet, S.

    2013-12-01

    The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g. seismic imaging, electric prospection or gravimetry. The present work develops a recent method to investigate the in situ density of rocks using atmospheric the muon flux measurement , its attenuation depending on the rock density and thickness. This new geophysical technique have been mainly applied in volcanology (Lesparre N., 2011) using scintillator detectors. The present project (T2DM2) aims to realize underground muons flux measurements in order to characterizing the rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measure with a new Muon telescope instrumentation using Micromegas detectors in Time Projection Chambers (TPC) configuration. The first step of the work presented considers the muon flux simulation using the Gaisser model, for the interactions between muons and atmospheric particles, and the MUSIC code (Kudryavtsev V. A., 2008) for the muons/rock interactions. The results show that the muon flux attenuation caused by density variations are enough significant to be observed until around 500 m depth and for period of time in the order of one month. Such a duration scale and depth of investigation is compatible with the duration of the water transfer processes involved within the Karst unsaturated zone where LSBB is located. Our work now concentrates on the optimization of the spatial distribution of detectors that will be deployed in future.

  4. New Decay Data Sub-library for Calculation of Nuclear Reactors Antineutrino Spectra

    Science.gov (United States)

    Sonzogni, Alejandro; McCutchan, Elizabeth; Johnson, Timothy

    2015-10-01

    The ENDF/B-VII.1 decay data sub-library contains up-to-date decay properties for all known nuclides and can be used in a wide variety of applications such as decay heat, delayed nu-bar and astrophysics. We have recently completed an upgrade to the ENDF/B-VII.1 decay data sub-library in order to better calculate antineutrino spectra from fission of actinide nuclides. This sub-library has been used to identify the main contributors to the antineutrino spectra as well as to derive a systematic behavior of the energy integrated spectra similar to that of the beta-delayed neutron multiplicities. The main improvements have been the use of the TAGS data from Algora et al and Greenwood et al, as well as some of the single beta spectrum data from Rudstam et al to obtain beta minus level feedings. Additionally, we have calculated the antineutrino spectra for neutron energies higher than thermal, needed for highly-enriched uranium cores, such as the HFIR in ORNL that will be used in the PROSPECT experiment. These calculations are relevant since the high precision beta spectra which are used in many antineutrino calculations were measured at thermal energies. The impact of the fission yield data on these calculations will be discussed. This work was sponsored by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

  5. Soil heat flux measurements in an open forest

    NARCIS (Netherlands)

    vanderMeulen, MJW; Klaassen, W; Kiely, G

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  6. Measurements of carbon dioxide and heat fluxes during monsoon ...

    Indian Academy of Sciences (India)

    Measurements of carbon dioxide and heat fluxes during monsoon-2011 season over rural site of India by eddy covariance technique. M N Patil∗. , T Dharmaraj, R T Waghmare, T V Prabha and J R Kulkarni. Indian Institute of Tropical Meteorology, Dr Homi Bhabha Road, Pune 411 008, India. ∗. Corresponding author.

  7. Calibration corrections of solar tower flux density measurements

    International Nuclear Information System (INIS)

    Ulmer, Steffen; Luepfert, Eckhard; Pfaender, Markus; Buck, Reiner

    2004-01-01

    The PSA flux density measuring system PROHERMES measures the concentrated solar radiation in the entrance aperture of solar tower receivers with a white rotating bar as target and a CCD-camera taking images. The calibration is done with commercial flux gauges placed in the measurement plane. To improve the calibration of the system and to reveal systematic errors, measurements are performed with two different types of commercial flux gauges (Thermogage sensors with and without quartz window) and a large custom-made calorimeter used as reference. The comparison shows that the sensors without quartz window measure about 5-8% higher and the sensors with quartz window about 100% higher. This error is explained with the differences in the spectral composition of the radiation and different angles of incidence between the manufacturer calibration and the solar measurements and corrections are proposed. Spectral changes of the sunlight during the day and year can affect the measurements by more than 10%. By selecting a correction filter adapted to the camera sensitivity, this influence can be reduced to less than 2.5%. Due to the reflective properties of the target coating, changes in angle of incidence can affect the measurements. In standard solar field conditions, this error is less than 0.5%, but for special conditions a correction of the systematic error of up to 8% is proposed

  8. BVOC ecosystem flux measurements at a high latitude wetland site

    Directory of Open Access Journals (Sweden)

    T. Holst

    2010-02-01

    Full Text Available In this study, we present summertime concentrations and fluxes of biogenic volatile organic compounds (BVOCs measured at a sub-arctic wetland in northern Sweden using a disjunct eddy-covariance (DEC technique based on a proton transfer reaction mass spectrometer (PTR-MS. The vegetation at the site was dominated by Sphagnum, Carex and extit{Eriophorum} spp. The measurements reported here cover a period of 50 days (1 August to 19 September 2006, approximately one half of the growing season at the site, and allowed to investigate the effect of day-to-day variation in weather as well as of vegetation senescence on daily BVOC fluxes, and on their temperature and light responses. The sensitivity drift of the DEC system was assessed by comparing H3O+-ion cluster formed with water molecules (H3O+(H2O at m37 with water vapour concentration measurements made using an adjacent humidity sensor, and the applicability of the DEC method was analysed by a comparison of sensible heat fluxes for high frequency and DEC data obtained from the sonic anemometer. These analyses showed no significant PTR-MS sensor drift over a period of several weeks and only a small flux-loss due to high-frequency spectrum omissions. This loss was within the range expected from other studies and the theoretical considerations.

    Standardised (20 °C and 1000 μmol m−2 s−1 PAR summer isoprene emission rates found in this study of 329 μg C m−2 (ground area h−1 were comparable with findings from more southern boreal forests, and fen-like ecosystems. On a diel scale, measured fluxes indicated a stronger temperature dependence than emissions from temperate or (subtropical ecosystems. For the first time, to our knowledge, we report ecosystem methanol fluxes from a sub-arctic ecosystem. Maximum daytime emission fluxes were around 270 μg m−2 h−1

  9. A refined measurement of the sunspot radiative flux deficit

    International Nuclear Information System (INIS)

    Bray, R.J.

    1981-01-01

    New measurements of the radiative flux deficits of two large sunspots are presented, based on detailed isophotometric maps. Results are given separately for umbrae and penumbrae. The umbral and penumbral deficits are 4-5 x 10 10 and 1-1.5 x 10 10 erg cm -2 s -1 respectively, the larger figures referring to the larger spot. Over limited areas centered on the umbral cores the deficits for the two spots amount to 76 and 86% of the photospheric flux. (orig.)

  10. Flux depression and the absolute measurement of the thermal neutron flux density

    International Nuclear Information System (INIS)

    Bensch, Friedrich.

    1977-01-01

    The thermal neutron flux depression in a diffusing medium by an absorbing foil has been treated in numerous papers. The results are re-examined in an attempt to find a uniform and physically meaningful representation of the 'activation correction'. This quantity can be split up into a combination of probabilities. Thus, it is possible to determine the activation correction for any moderator and foil material. Measurements confirm the utility of the concepts introduced

  11. Fourier transform and controlling of flux in scalar hysteresis measurement

    International Nuclear Information System (INIS)

    Kuczmann, Miklos

    2008-01-01

    The paper deals with a possible realization of eliminating the effect of noise in scalar hysteresis measurements. The measured signals have been transformed into the frequency domain, and, after applying digital filter, the spectrums of the filtered signals have been transformed back to the time domain. The proposed technique results in an accurate noise-removal algorithm. The paper illustrates a fast controlling algorithm applying the inverse of the actually measured hysteresis loop, and another proportional one to measure distorted flux pattern. By developing the mentioned algorithms, it aims at the controlling of a more complicated phenomena, i.e. measuring the vector hysteresis characteristics

  12. N2O eddy covariance fluxes: From field measurements to flux calculation

    Science.gov (United States)

    Lognoul, Margaux; Debacq, Alain; Heinesch, Bernard; Aubinet, Marc

    2017-04-01

    From March to October 2016, we performed eddy covariance measurements in a sugar beet crop at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site) in Belgium. N2O and H2O atmospheric concentrations were measured at 10 Hz using a quantum-cascade laser spectrometer (Aerodyne Research, Inc.) and combined to wind speed 3D components measured with a sonic anemometer (Gill HS-50). Flux computation was carried out using the EddyPro Software (LI-COR) with a focus on adaptations needed for tracers like N2O. Data filtering and quality control were performed according to Vickers and Mahrt (1997) and Mauder and Foken (2004). The flags were adapted to N2O time series. In this presentation, different computation steps will be presented. More specifically: 1) Considering that a large proportion of N2O fluxes are small (within ± 0.5 nmol m-2 s-1), the classical stationarity test might lead to excessive data filtering and in such case, some searchers have chosen to use the running mean (RM) as a detrend method over block averaging (BA) and to filter data otherwise. For our dataset, BA mean fluxes combined to the stationarity test did not significantly differ from RM fluxes when the averaging window was 300s or larger, but were significantly larger otherwise, suggesting that significant eddies occurred at the 5-min timescale and that they were not accounted for with a shorter averaging window. 2) The determination of time-lag in the case of N2O fluxes can become tricky for two reasons : (1) the signal amplitude can differ from one time period to the next, making it difficult to use the method of covariance maximization and (2) an additional clock drift can appear if the spectrometer is not logging on the same computer than the anemometer. In our case, the N2O signal was strong enough to solve both problems and to perform time-lag compensation according to the covariance maximization, with a default value equal to the mode of the lag distribution. The automatic time

  13. Review of Reactor Antineutrino Experiments

    OpenAIRE

    Djurcic, Zelimir

    2012-01-01

    As discussed elsewhere, the measurement of a non-zero value for $\\theta_{13}$ would open up a wide range of possibilities to explore CP-violation and the mass hierarchy. Experimental methods to measure currently the unknown mixing angle $\\theta_{13}$ include accelerator searches for the $\

  14. Magnetic flux surface measurements at the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Otte, Matthias; Andreeva, Tamara; Biedermann, Christoph; Bozhenkov, Sergey; Geiger, Joachim; Sunn Pedersen, Thomas [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Lazerson, Samuel [Princeton Plasma Physics Laboratory, Princeton (United States)

    2016-07-01

    Recently the first plasma operation phase of the Wendelstein 7-X stellarator has been started at IPP Greifswald. Wendelstein 7-X is an optimized stellarator with a complex superconducting magnet system consisting of 50 non-planar and 20 planar field coils and further 10 normal conducting control and 5 trim coils. The magnetic confinement and hence the expected plasma performance are decisively determined by the properties of the magnet system, especially by the existence and quality of the magnetic flux surfaces. Even small error fields may result in significant changes of the flux surface topology. Therefore, measurements of the vacuum magnetic flux surfaces have been performed before plasma operation. The first experimental results confirm the existence and quality of the flux surfaces to the full extend from low field up to the nominal field strength of B=2.5T. This includes the dedicated magnetic limiter configuration that is exclusively used for the first plasma operation. Furthermore, the measurements are indicating that the intrinsic error fields are within the tolerable range and can be controlled utilizing the trim coils as expected.

  15. Novel Sensor for the In Situ Measurement of Uranium Fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Hatfield, Kirk [Univ. of Florida, Gainesville, FL (United States)

    2015-02-10

    The goal of this project was to develop a sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of flux for uranium and groundwater in porous media. Measurable contaminant fluxes [J] are essentially the product of concentration [C] and groundwater flux or specific discharge [q ]. The sensor measures [J] and [q] by changes in contaminant and tracer amounts respectively on a sorbent. By using measurement rather than inference from static parameters, the sensor can directly advance conceptual and computational models for field scale simulations. The sensor was deployed in conjunction with DOE in obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) at the Rifle IFRC Site in Rifle, Colorado. Project results have expanded our current understanding of how field-scale spatial variations in fluxes of uranium, groundwater and salient electron donor/acceptors are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The coupling between uranium, various nutrients and micro flora can be used to estimate field-scale rates of uranium attenuation and field-scale transitions in microbial communities. This research focuses on uranium (VI), but the sensor principles and design are applicable to field-scale fate and transport of other radionuclides. Laboratory studies focused on sorbent selection and calibration, along with sensor development and validation under controlled conditions. Field studies were conducted at the Rifle IFRC Site in Rifle, Colorado. These studies were closely coordinated with existing SBR (formerly ERSP) projects to complement data collection. Small field tests were conducted during the first two years that focused on evaluating field-scale deployment procedures and validating sensor performance under

  16. A new disjunct eddy-covariance system for BVOC flux measurements - validation on CO2 and H2O fluxes

    Science.gov (United States)

    Baghi, R.; Durand, P.; Jambert, C.; Jarnot, C.; Delon, C.; Serça, D.; Striebig, N.; Ferlicoq, M.; Keravec, P.

    2012-12-01

    The disjunct eddy covariance (DEC) method is an interesting alternative to the conventional eddy covariance (EC) method because it allows the estimation of turbulent fluxes of species for which fast sensors are not available. We have developed and validated a new disjunct sampling system (called MEDEE). This system is built with chemically inert materials. Air samples are taken quickly and alternately in two cylindrical reservoirs, the internal pressures of which are regulated by a moving piston. The MEDEE system was designed to be operated either on the ground or aboard an aircraft. It is also compatible with most analysers since it transfers the air samples at a regulated pressure. To validate the system, DEC and EC measurements of CO2 and latent heat fluxes were performed concurrently during a field campaign. EC fluxes were first compared to simulated DEC (SDEC) fluxes and then to actual DEC fluxes. Both the simulated and actual DEC fluxes showed a good agreement with EC fluxes in terms of correlation. The determination coefficients (R2) were 0.93 and 0.91 for DEC and SDEC latent heat fluxes, respectively. For DEC and SDEC CO2 fluxes R2 was 0.69 in both cases. The conditions of low fluxes experienced during the campaign impaired the comparison of the different techniques especially for CO2 flux measurements. Linear regression analysis showed an 14% underestimation of DEC fluxes for both CO2 and latent heat compared to EC fluxes. A first field campaign, focusing on biogenic volatile organic compound (BVOC) emissions, was carried out to measure isoprene fluxes above a downy oak (Quercus Pubescens) forest in the south-east of France. The measured standard emission rate was in the lower range of reported values in earlier studies. Further analysis will be conducted through ground-based and airborne campaigns in the coming years.

  17. Reactor Monitoring with Antineutrinos - A Progress Report

    Science.gov (United States)

    Bernstein, Adam

    2012-08-01

    The Reactor Safeguards regime is the name given to a set of protocols and technologies used to monitor the consumption and production of fissile materials in nuclear reactors. The Safeguards regime is administered by the International Atomic Energy Agency (IAEA), and is an essential component of the global Treaty on Nuclear Nonproliferation, recently renewed by its 189 remaining signators. (The 190th, North Korea, withdrew from the Treaty in 2003). Beginning in Russia in the 1980s, a number of researchers worldwide have experimentally demonstrated the potential of cubic meter scale antineutrino detectors for non-intrusive real-time monitoring of fissile inventories and power output of reactors. The detectors built so far have operated tens of meters from a reactor core, outside of the containment dome, largely unattended and with remote data acquisition for an entire 1.5 year reactor cycle, and have achieved levels of sensitivity to fissile content of potential interest for the IAEA safeguards regime. In this article, I will describe the unique advantages of antineutrino detectors for cooperative monitoring, consider the prospects and benefits of increasing the range of detectability for small reactors, and provide a partial survey of ongoing global research aimed at improving near-field and far field monitoring and discovery of nuclear reactors.

  18. O2-MAVS: an Instrument for Measuring Oxygen Flux

    Science.gov (United States)

    2010-06-01

    authors note that the decline is consistent with what would be predicted from laboratory studies of the effects of warming and ocean acidification on...calcium carbonate minerals. Approximately 10-20% of all the carbonate production in the ocean occurs in a region that amounts to just 0.17% of the area...fluxes at the air-water surface using the GF technique [46-49]. The gradients of carbon dioxide in the atmosphere are very small. To measure

  19. An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements

    Science.gov (United States)

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hörtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-07-01

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land-atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be taken of

  20. Particle fluxes in the Bay of Bengal measurEd. by sediment traps

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Parthiban, G.

    Particle fluxes were measured between October, 1987 and March, 1988 using six automated time series sediment traps at three locations in the northern, central and southern Bay of Bengal. Particle fluxes varied between 16.8 and 345 mg m/2 day/1...

  1. Flux Loop Measurements of the Magnetic Flux Density in the CMS Magnet Yoke

    CERN Document Server

    Klyukhin, V I; Ball, A.; Curé, B.; Gaddi, A.; Gerwig, H.; Mulders, M.; Hervé, A.; Loveless, R.

    2016-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 3-D Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The first attempt is made to measure the magnetic flux density in the steel blocks of the CMS magnet yoke using the standard magnet discharge with the current ramp down speed of 1.5 A/...

  2. Analysis of neutron flux measurement systems using statistical functions

    International Nuclear Information System (INIS)

    Pontes, Eduardo Winston

    1997-01-01

    This work develops an integrated analysis for neutron flux measurement systems using the concepts of cumulants and spectra. Its major contribution is the generalization of Campbell's theorem in the form of spectra in the frequency domain, and its application to the analysis of neutron flux measurement systems. Campbell's theorem, in its generalized form, constitutes an important tool, not only to find the nth-order frequency spectra of the radiation detector, but also in the system analysis. The radiation detector, an ionization chamber for neutrons, is modeled for cylindrical, plane and spherical geometries. The detector current pulses are characterized by a vector of random parameters, and the associated charges, statistical moments and frequency spectra of the resulting current are calculated. A computer program is developed for application of the proposed methodology. In order for the analysis to integrate the associated electronics, the signal processor is studied, considering analog and digital configurations. The analysis is unified by developing the concept of equivalent systems that can be used to describe the cumulants and spectra in analog or digital systems. The noise in the signal processor input stage is analysed in terms of second order spectrum. Mathematical expressions are presented for cumulants and spectra up to fourth order, for important cases of filter positioning relative to detector spectra. Unbiased conventional estimators for cumulants are used, and, to evaluate systems precision and response time, expressions are developed for their variances. Finally, some possibilities for obtaining neutron radiation flux as a function of cumulants are discussed. In summary, this work proposes some analysis tools which make possible important decisions in the design of better neutron flux measurement systems. (author)

  3. Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS

    CERN Document Server

    Bernardini, P; Bozza, C; Brugnera, R; Cecchetti, A; Cecchini, S; Collazuol, G; Corso, F Dal; De Mitri, I; De Serio, M; Di Ferdinando, D; Dore, U; Dusini, S; Fabbricatore, P; Fanin, C; Fini, R A; Garfagnini, A; Grella, G; Kose, U; Laveder, M; Loverre, P; Longhin, A; Marsella, G; Mancarella, G; Mandrioli, G; Mauri, N; Medinaceli, E; Mezzetto, M; Muciaccia, M T; Orecchini, D; Paoloni, A; Pastore, A; Patrizii, L; Pozzato, M; Rescigno, R; Rosa, G; Simone, S; Sioli, M; Sirri, G; Spurio, M; Stanco, L; Stellacci, S; Surdo, A; Tenti, M; Togo, V

    2011-01-01

    Tensions in several phenomenological models grew with experimental results on neutrino/antineutrino oscillations at Short-Baseline (SBL) and with the recent, carefully recomputed, antineutrino fluxes from nuclear reactors. At a refurbished SBL CERN-PS facility an experiment aimed to address the open issues has been proposed [1], based on the technology of imaging in ultra-pure cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of the physics case was performed. We tackled specific physics models and we optimized the neutrino beam through a full simulation. Experimental aspects not fully covered by the LAr detection, i.e. the measurements of the lepton charge on event-by-event basis and their energy over a wide range, were also investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino interactions play an important role in disentangling different phenomenological scenarios provided their charge state is determined. Also, the study of muon appearance/disappearance ca...

  4. Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS

    CERN Document Server

    Stanco, Luca (INFN-Padova)

    2011-01-01

    Tensions in several phenomenological models grew with experimental results on neu- trino/antineutrino oscillations at Short-Baseline (SBL) and with the recent, carefully recomputed, antineutrino fluxes from nuclear reactors. At a refurbished SBL CERN- PS facility an experiment aimed to address the open issues has been proposed [1], based on the technology of imaging in ultra-pure cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of the physics case was performed. We tackled specific physics models and we optimized the neutrino beam through a full simulation. Experimental aspects not fully covered by the LAr detection, i.e. the measurements of the lepton charge on event-by-event basis and their energy over a wide range, were also investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino interactions play an important role in disentangling different phenomenological scenarios provided their charge state is determined. Also, the study of muon appearance/disappearance...

  5. MEASURING THE SOURCES OF THE INTERGALACTIC IONIZING FLUX

    International Nuclear Information System (INIS)

    Cowie, L. L.; Barger, A. J.; Trouille, L.

    2009-01-01

    We use a wide-field (0.9 deg 2 ) X-ray sample with optical and Galaxy Evolution Explorer (GALEX) ultraviolet observations to measure the contribution of active galactic nuclei (AGNs) to the ionizing flux as a function of redshift. Our analysis shows that the AGN contribution to the metagalactic ionizing background peaks at around z = 2. The measured values of the ionizing background from the AGNs are lower than previous estimates and confirm that ionization from AGNs is insufficient to maintain the observed ionization of the intergalactic medium (IGM) at z > 3. We show that only X-ray sources with broad lines in their optical spectra have detectable ionizing flux and that the ionizing flux seen in an AGN is not correlated with its X-ray color. We also use the GALEX observations of the GOODS-N region to place a 2σ upper limit of 0.008 on the average ionization fraction f ν (700 A)/f ν (1500 A) for 626 UV selected galaxies in the redshift range z = 0.9-1.4. We then use this limit to estimate an upper bound to the galaxy contribution in the redshift range z = 0-5. If the z ∼ 1.15 ionization fraction is appropriate for higher-redshift galaxies, then contributions from the galaxy population are also too low to account for the IGM ionization at the highest redshifts (z > 4).

  6. The reactor neutron flux and period measure meter

    International Nuclear Information System (INIS)

    Wei Ying

    1997-11-01

    The main performance indexes of developed reactor neutron flux and period measure meter (as an intermediate range measuring instrument of nuclear instrumentation system in nuclear power plant) are introduced. The meter's function, working principle, hardware constitution, application software, and the characteristics of the meter are described. The meter adopts the advanced digital technology, it can do calculating and processing by a microprocessor to get the values of power and period. It also can give the output singles as required. The characters of the meter are high accuracy, good ability to resist disturbance, small temperature coefficient and convenient for operation, etc

  7. Doppler lidar measurement of profiles of turbulence and momentum flux

    Science.gov (United States)

    Eberhard, Wynn L.; Cupp, Richard E.; Healy, Kathleen R.

    1989-01-01

    A short-pulse CO2 Doppler lidar with 150-m range resolution measured vertical profiles of turbulence and momentum flux. Example measurements are reported of a daytime mixed layer with strong mechanical mixing caused by a wind speed of 15 m/sec, which exceeded the speed above the capping inversion. The lidar adapted an azimuth scanning technique previously demonstrated by radar. Scans alternating between two elevation angles allow determination of mean U-squared, V-squared, and W-squared. Expressions were derived to estimate the uncertainty in the turbulence parameters. A new processing method, partial Fourier decomposition, has less uncertainty than the filtering used earlier.

  8. Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions

    Directory of Open Access Journals (Sweden)

    Yu-Feng Li

    2014-11-01

    Full Text Available We discuss reactor antineutrino oscillations with non-standard interactions (NSIs at the neutrino production and detection processes. The neutrino oscillation probability is calculated with a parametrization of the NSI parameters by splitting them into the averages and differences of the production and detection processes respectively. The average parts induce constant shifts of the neutrino mixing angles from their true values, and the difference parts can generate the energy (and baseline dependent corrections to the initial mass-squared differences. We stress that only the shifts of mass-squared differences are measurable in reactor antineutrino experiments. Taking Jiangmen Underground Neutrino Observatory (JUNO as an example, we analyze how NSIs influence the standard neutrino measurements and to what extent we can constrain the NSI parameters.

  9. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    Science.gov (United States)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  10. Greenhouse gases regional fluxes estimated from atmospheric measurements

    International Nuclear Information System (INIS)

    Messager, C.

    2007-07-01

    build up a new system to measure continuously CO 2 (or CO), CH 4 , N 2 O and SF 6 mixing ratios. It is based on a commercial gas chromatograph (Agilent 6890N) which have been modified to reach better precision. Reproducibility computed with a target gas on a 24 hours time step gives: 0.06 ppm for CO 2 , 1.4 ppb for CO, 0.7 ppb for CH 4 , 0.2 ppb for N 2 O and 0.05 ppt for SF 6 . The instrument's run is fully automated, an air sample analysis takes about 5 minutes. In July 2006, I install instrumentation on a telecommunication tall tower (200 m) situated near Orleans forest in Trainou, to monitor continuously greenhouse gases (CO 2 , CH 4 , N 2 O, SF 6 ), atmospheric tracers (CO, Radon-222) and meteorological parameters. Intake lines were installed at 3 levels (50, 100 and 180 m) and allow us to sample air masses along the vertical. Continuous measurement started in January 2007. I used Mace Head (Ireland) and Gif-sur-Yvette continuous measurements to estimate major greenhouse gases emission fluxes at regional scale. To make the link between atmospheric measurements and surface fluxes, we need to quantify dilution due to atmospheric transport. I used Radon-222 as tracer (radon tracer method) and planetary boundary layer heights estimates from ECMWF model (boundary layer budget method) to parameterize atmospheric transport. In both cases I compared results to available emission inventories. (author)

  11. The AmeriFlux Network of Long-Term CO{sub 2} Flux Measurement Stations: Methodology and Intercomparability

    Energy Technology Data Exchange (ETDEWEB)

    Hollinger, D. Y.; Evans, R. S.

    2003-05-20

    A portable flux measurement system has been used within the AmeriFlux network of CO{sub 2} flux measurement stations to enhance the comparability of data collected across the network. No systematic biases were observed in a comparison between portable system and site H, LE, or CO{sub 2} flux values although there were biases observed between the portable system and site measurement of air temperature and PPFD. Analysis suggests that if values from two stations differ by greater than 26% for H, 35% for LE, and 32% for CO{sub 2} flux they are likely to be significant. Methods for improving the intercomparability of the network are also discussed.

  12. Heavy quark production by neutrinos and antineutrinos

    International Nuclear Information System (INIS)

    Scott, D.M.; Tanaka, K.

    1979-01-01

    The rate for producing t- and b-quarks in, respectively, neutrino and antineutrino interactions with nucleons are estimated. Experimental quark parton distribution functions, SU(2) x SU(2) x U(1) gauge group mixing angles, and threshold suppression through rescaling are used in the calculation. The ratios to total cross sections of b-quark production by anti nu, R/sub b//sup anti nu/, and t-quark production by ν, R/sub t//sup nu/, are, respectively, R/sub b//sup anti nu/ approximately equal to 10 -4 and R/sub t//sup nu/ approximately equal to 10 -5 for an incident energy of 200 GeV. 13 references

  13. Measured and calculated longwave radiation fluxes and their year to year variation at Mizuho Station, Antarctica

    OpenAIRE

    Takashi, Yamanouchi

    1984-01-01

    Together with measurements at Mizuho Station during POLEX-South, longwave radiation fluxes are calculated for the same measurement conditions. Comparing the measured and calculated downward longwave fluxes, good agreement is found for most months in 1979 and several months in 1980; however, large disagreements are seen for winter months in 1980. The variation of longwave radiation between 1979 and 1980 is examined using measured and calculated fluxes. The measured downward longwave flux in th...

  14. Study for Reactor Monitoring using Anti-neutrino Detection in the Neos experiment

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bo Young; Sun, Gwang Min [KAERI, Daejeon (Korea, Republic of); Jeon, Eun Ju [ISB, Daejeon (Korea, Republic of); and others

    2016-05-15

    In this study we describe a feasibility study of reactor monitoring using antineutrino detection in the Neutrino Experiment for Oscillation at Short baseline (NEOS) at Hanbit power plant. Recently, in the perspective of nonproliferation issues and misuse of nuclear energy as a fast-growing nuclear energy industry, the application of anti-neutrino measurement has been proposed and the feasibility studies has been carried out as a novel technology for monitoring the burning process of nuclear power reactor. The NEOS detector with 1000 L Gd-doped liquid scintillator was installed in tendon gallery at Hanbit power station unit 5 and has been collecting close to 2000 IBD events per day with the signal to noise ratio of ∼ 20. As a preliminary result, we demonstrate the possibility of monitoring nuclear power reactor with the IBD counting rate during reactor power ON, ramping up, and OFF.

  15. A Comparison Framework for Reactor Anti-Neutrino Detectors in Near-Field Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mendenhall, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brodsky, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-03

    Electron anti-neutrino ( e) detectors can support nuclear safeguards, from reactor monitoring to spent fuel characterization. In recent years, the scientific community has developed multiple detector concepts, many of which have been prototyped or deployed for specific measurements by their respective collaborations. However, the diversity of technical approaches, deployment conditions, and analysis techniques complicates direct performance comparison between designs. We have begun development of a simulation framework to compare and evaluate existing and proposed detector designs for nonproliferation applications in a uniform manner. This report demonstrates the intent and capabilities of the framework by evaluating four detector design concepts, calculating generic reactor antineutrino counting sensitivity, and capabilities in a plutonium disposition application example.

  16. Direct measurement of nitrogen gas fluxes from continental shelf sediments

    Science.gov (United States)

    Devol, Allan H.

    1991-01-01

    IT has been suggested that denitrification in continental shelf and slope sediments is the most important sink in the marine nitrogen cycle1-4. This conclusion has been reached, not from direct measurements of denitrification in these areas, but rather from indirect estimates derived from pore-water models of diagenetic processes. In highly bioturbated continental shelf and slope sediments with steep pore-water gradients, such indirect estimates may not be applicable5,6.1 have now made direct, in situ measurements of denitrification in sediments of the eastern North Pacific continental margin by determining the flux of molecular nitrogen out of the sediments into the overlying water. Denitrification rates in continental shelf sediments measured in this fashion averaged 3.7 pmol N cm-2s-1. The flux of nitrate from the overlying water into the sediments was only 1.5 pmol N cm-2s-1, showing that most of the nitrogen gas production is coupled to nitrification within the sediments. The denitrification rates observed here are four to five times those estimated previously by indirect methods for these same sediments, and indicate the limitations of such indirect estimates. My results suggest that the global denitrification rate in shelf and slope sediments may be greater than previously thought, and confirm the importance of sedimentary denitrification in the marine nitrogen budget.

  17. Turbulent heat flux measurements in thermally stable boundary layers

    Science.gov (United States)

    Williams, Owen J.; van Buren, Tyler; Smits, Alexander J.

    2014-11-01

    Thermally stable turbulent boundary layers are prevalent in the polar regions and nocturnal atmospheric surface layer but heat and momentum flux measurements in such flow are often difficult. Here, a new method is employed using a nanoscale cold-wire (T-NSTAP) adjacent to a 2D PIV light sheet to measure these fluxes within rough-wall turbulent boundary layer. This method combines the advantages of fast thermal frequency response with measurement of the spatial variation of the velocity field. Resolution is limited solely by the separation of the probe and the light sheet. The new technique is used to examine the applicability of Monin-Obukhov similarity over a range of Richardson numbers from weak to strongly stable. In addition, the velocity fields are conditionally averaged subject to strong deviations of temperature above and below the local average in an effort to determine the relationship between the coherent turbulent motions and the fluctuating temperature field. This work was supported by the Princeton University Cooperative Institute for Climate Science.

  18. Performance measurements at the fast flux test facility

    International Nuclear Information System (INIS)

    In 1984, Fast Flux Test Facility (FFTF) management recognized the need to develop a measurement system that would quantify the operational performance of the FFTF and the human resources needed to operate it. Driven by declining budgets and the need to safely manage a manpower rampdown at FFTF, an early warning system was developed. Although the initiating event for the early warning system was the need to safely manage a manpower rampdown, many related uses have evolved. The initial desired objective for the FFTF performance measurements was to ensure safety and control of key performance trends. However, the early warning system has provided a more quantitative, supportable basis upon which to make decisions. From this initial narrow focus, efforts in the FFTF plant and supporting organizations are leading to measurement of and, subsequently, improvements in productivity. Pilot projects utilizing statistical process control have started with longer range productivity improvement

  19. Antineutrino monitoring of burning mixed oxide plutonium fuels

    Science.gov (United States)

    Hayes, A. C.; Trellue, H. R.; Nieto, Michael Martin; Wilson, W. B.

    2012-02-01

    Background: Antineutrino monitoring of reactors is an enhanced nuclear safeguard that is being explored by several international groups. A key question is whether such a scheme could be used to verify the destruction of plutonium loaded in a reactor as mixed oxide (MOX) fuel.Purpose: To explore the effectiveness of antineutrino monitoring for the purposes of nuclear accountability and safeguarding of MOX plutonium, we examine the magnitude and temporal variation in the antineutrino signals expected for different loadings of MOX fuels.Methods: Reactor burn simulations are carried out for four different MOX fuel loadings and the antineutrino signals as a function of fuel burnup are computed and compared.Results: The antineutrino signals from reactor-grade and weapons-grade MOX are shown to be distinct from those from burning low enriched uranium, and this signal difference increases as the MOX plutonium fraction of the reactor core increases.Conclusion: Antineutrino monitoring could be used to verify the destruction of plutonium in reactors, although verifying the grade of the plutonium being burned is found to be more challenging.

  20. Characterization of Detector Response for PROSPECT - A Precision Reactor Oscillation and SPECTrum Measurement

    Science.gov (United States)

    Goddard, Brian; Dolinski, Michelle; Prospect Collaboration

    2015-10-01

    Recently, several experiments have reported an approximately 5% deficit of antineutrinos from nuclear reactors when the measured flux is compared with that predicted by current nuclear models. This is termed the ``Reactor Antineutrino Anomaly''. Furthermore, the predicted shape of the antineutrino spectrum is not in agreement with measurements from those experiments. The PROSPECT (Precision Reactor Oscillation and SPECTrum Measurement) collaboration plans to investigate this anomaly and constrain the shape of the spectrum with a high precision, short baseline (7-20m) measurement of the antineutrino spectrum from Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) which will include a search for sterile neutrinos as one possible solution to the anomaly. PROSPECT will utilize a segmented, lithium-loaded liquid scintillator detector and is taking a phased approach to detector design by building progressively larger prototypes of this final detector with several prototypes already constructed and taking data. This poster will report on the ongoing analysis of the detector response of these prototypes including aspects such as position reconstruction, energy resolution, and pulse shape discrimination.

  1. Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux

    International Nuclear Information System (INIS)

    Lee, Hyunjin; Chai, Kwankyo; Kim, Jongkyu; Lee, Sangnam; Yoon, Hwanki; Yu, Changkyun; Kang, Yongheack

    2014-01-01

    We evaluated optical performance of a solar furnace in the KIER (Korea Institute of Energy Research) by measuring the highly concentrated solar flux with the flux mapping method. We presented and analyzed optical performance in terms of concentrated solar flux distribution and power distribution. We investigated concentration ratio, stagnation temperature, total power, and concentration accuracy with help of a modeling code based on the ray tracing method and thereby compared with other solar furnaces. We also discussed flux changes by shutter opening angles and by position adjustment of reflector facets. In the course of flux analysis, we provided a better understanding of reference flux measurement for calibration, reflectivity measurement with a portable reflectometer, shadowing area consideration for effective irradiation, as well as accuracy and repeatability of flux measurements. The results in the present study will help proper utilization of a solar furnace by facilitating comparison between flux measurements at different conditions and flux estimation during operation

  2. Measuring the Magnetic Flux Density in the CMS Steel Yoke

    CERN Document Server

    Klyukhin, V I; Ball, A; Curé, B; Gaddi, A; Gerwig, H; Hervé, A; Mulders, M; Loveless, R

    2012-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. Accurate characterization of the magnetic field everywhere in the CMS detector is required. To measure the field in and around the steel, a system of 22 flux-loops and 82 3-D Hall sensors is installed on the return yoke blocks. Fast discharges of the solenoid (190 s time-constant) made during the CMS magnet surface commissioning test at the solenoid central fields of 2.64, 3.16, 3.68 and 4.01 T were used to induce voltages in the flux-loops. The voltages are measured on-line a...

  3. Field-scale evaluation of the passive flux meter for simultaneous measurement of groundwater and contaminant fluxes.

    Science.gov (United States)

    Annable, Michael D; Hatfield, Kirk; Cho, Jaehyun; Klammler, Harald; Parker, Beth L; Cherry, John A; Rao, P Suresh C

    2005-09-15

    A new method, passive flux meter (PFM), has been developed and field-tested for simultaneously measuring contaminant and groundwater fluxes in the saturated zone at hazardous waste sites. The PFM approach uses a sorptive permeable medium placed in either a borehole or monitoring well to intercept contaminated groundwater and release "resident" tracers. The sorbent pack is placed in a groundwater flow field for a specified exposure time and then recovered for extraction and analysis. By quantifying the mass fraction of resident tracers lost and the mass of contaminant sorbed, groundwater and contaminant fluxes are calculated. Here, we assessed the performance of PFMs at the Canadian Forces Base Borden field site in Ontario, Canada. Two field tests were conducted under imposed groundwater flow fields: (1) radial flow to a well and (2) linear flow in a test channel confined by sheet pile walls on three sides. Both tests demonstrate that the local fluxes measured by PFM and averaged overthe screen interval were within 15% of imposed groundwaterflow and within 30% of measured contaminant mass flux. Patterns in depth variations in groundwater and contaminant fluxes, determined by the PFM approach, allow for site characterization at a higher spatial resolution. These results support the PMF method as a potential innovative alternative for measuring groundwater and contaminant fluxes in screened wells.

  4. Sound power flux measurements in strongly exited ducts with flow

    Science.gov (United States)

    Holland, Keith R.; Davies, Peter O. A. L.; van der Walt, Danie C.

    2002-12-01

    This contribution describes new robust procedures for the measurement of sound power flux at appropriate axial positions along a duct with flow, using pairs of flush wall mounted microphones, or pressure transducers. The technology includes the application of selective averaging, order tracking, and optimized sampling rate methods to identify the small fraction of the total fluctuating wave energy that is being propagated along the flow path in a reverberent, or highly reactive duct system. Such measurements can also be used to quantify the local acoustic characteristics that govern the generation, transfer, and propagation of wave energy in the system. Illustrative examples include the determination of the acoustic characteristics of individual silencing elements installed in IC engine intakes and exhausts both on the flow bench and during controlled acceleration or run down on a test bed, where the wave component spectral levels approached 170 dB.

  5. AmeriFlux Measurement Component (AMC) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Reichl, Ken [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Biraud, Sebastien C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-01

    An AMC system was installed at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility North Slope of Alaska (NSA) Barrow site, also known as NSA C1 at the ARM Data Archive, in August 2012. A second AMC system was installed at the third ARM Mobile Facility deployment at Oliktok Point, also known as NSA M1. This in situ system consists of 12 combination soil temperature and volumetric water content (VWC) reflectometers and one set of upwelling and downwelling photosynthetically active radiation (PAR) sensors, all deployed within the fetch of the Eddy Correlation Flux Measurement System. Soil temperature and VWC sensors placed at two depths (10 and 30 cm below the vegetation layer) at six locations (or microsites) allow soil property inhomogeneity to be monitored across a landscape.

  6. Flux

    DEFF Research Database (Denmark)

    Ravn, Ib

    . FLUX betegner en flyden eller strømmen, dvs. dynamik. Forstår man livet som proces og udvikling i stedet for som ting og mekanik, får man et andet billede af det gode liv end det, som den velkendte vestlige mekanicisme lægger op til. Dynamisk forstået indebærer det gode liv den bedst mulige...... kanalisering af den flux eller energi, der strømmer igennem os og giver sig til kende i vore daglige aktiviteter. Skal vores tanker, handlinger, arbejde, samvær og politiske liv organiseres efter stramme og faste regelsæt, uden slinger i valsen? Eller skal de tværtimod forløbe ganske uhindret af regler og bånd...

  7. Digital module for neutron flux measurement by Campbell method

    International Nuclear Information System (INIS)

    Baratte, G.

    1987-02-01

    The study reported here concerns a wide range measurement channel for reactor control instrumentation but it may also be useful for specific measurements requiring the Campbell method. A wide range measurement channel allows the processing of the signal issued from a single fission chamber so it's possible to insure control of nuclear reactors in three different running modes: pulse processing, fluctuations and current. The study described in this note includes three parts: - the analogical wide range neutron measurement channel is presented in the first chapter; the fluctuation mode is thoroughly studied; the results of tests and proper limitations of analogical processing are summarized. A theoretical study of the neutron flux measurement by numerical calculation of the fluctuation signal variance is given in the second chapter. The digital module is described in the third chapter; the results of experiments are analysed. The validity of the digital method is proved by means of a practical realisation. The performances obtained with the digital fluctuation test model may be compared with those given by the analogical fluctuation channel which can be used for the control of lower fission rates. The digital module may also be used for any fluctuation measurement where very short response time and broad spectral band of analysis are not strictly necessary [fr

  8. An alternative method for the measurement of neutron flux

    Indian Academy of Sciences (India)

    Here, the neutron flux inferred from the neutron count rate obtained with R-12 SDD shows an excellent agreement with the flux inferred from the neutron dose rate in a non-dissipative medium. Keywords. Neutron dose; neutron flux; superheated droplet detector; bubble nucleation. PACS Nos 29.40.Rg; 29.40.–n; 29.25.Dz. 1.

  9. Measurements of carbon dioxide and heat fluxes during monsoon ...

    Indian Academy of Sciences (India)

    Using these observations, we explored the diurnal variability of CO2 flux along with sensible and latent heat. The CO2 flux was positive during night-time and negative during daytime and in phase with convective instability. The CO2 flux relationships with the meteorological parameters such as wind speed, temperature and ...

  10. New (anti)neutrino results from the T2K experiment on CP violation in the lepton sector

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    T2K is a long-baseline neutrino experiment in which a muon neutrino beam produced by J-PARC in Tokai is sent 295 km across Japan to the Super-Kamiokande detector, to study neutrino oscillations via the disappearance of muon neutrinos and the appearance of electron neutrinos. Since the start of operations in 2010, T2K has conclusively observed muon neutrino to electron neutrino oscillations, opening the door to the observation of CP violation in neutrino mixing, and performed the most precise measurement of the muon neutrino disappearance parameters. In a joint analysis between these two modes, T2K placed its first constraints on the CP-violating phase delta. Starting in 2014, T2K has been running primarily with an antineutrino beam in order to study the corresponding antineutrino oscillations, resulting in leading measurements of the muon antineutrino disappearance parameters. The joint analysis of neutrino and antineutrino data indicates that CP-conserving parameters lie outside the 90% confidence interval....

  11. Instrumental requirements for the measurement of pollutant fluxes

    International Nuclear Information System (INIS)

    Hicks, B.B.

    1975-01-01

    Numerical models that include dry deposition at the surface as a sink for atmospheric contamination usually parameterize this surface flux by means of a deposition velocity which relates the surface flux to the appropriate concentration of material in air at various heights. Although it can be argued that this type of formulation hides too many critical factors in its simplicity, more realistic methods for formulating F/sub c/ do not appear to be as attractive from the viewpoint of numerical simulation. Thus, there is considerable incentive to improve our knowledge of v/sub d/, preferably through carefully-controlled field experiments, especially in order to determine values appropriate over the long times and large distances which are of interest in regional scale simulations. Experimental evaluations of deposition velocity are becoming more common, particularly in the chemically interesting cases of SO 2 and O 3 . Some of the experimental requirements imposed by the turbulent properties of the atmosphere that are involved in the deposition process are discussed, with emphasis on the accuracy and drifts of sensors suitable for measuring gradients

  12. Automatic solar image motion measurements. [electronic disk flux monitoring

    Science.gov (United States)

    Colgate, S. A.; Moore, E. P.

    1975-01-01

    The solar seeing image motion has been monitored electronically and absolutely with a 25 cm telescope at three sites along the ridge at the southern end of the Magdalena Mountains west of Socorro, New Mexico. The uncorrelated component of the variations of the optical flux from two points at opposite limbs of the solar disk was continually monitored in 3 frequencies centered at 0.3, 3 and 30 Hz. The frequency band of maximum signal centered at 3 Hz showed the average absolute value of image motion to be somewhat less than 2sec. The observer estimates of combined blurring and image motion were well correlated with electronically measured image motion, but the observer estimates gave a factor 2 larger value.

  13. A Novel Flux Linkage Indirect Measurement for Switched Reluctance Motor

    Science.gov (United States)

    Li, Pang; Zhang, Lei; Yu, Yue

    2017-05-01

    This paper presents a indirect detection system of flux linkage characteristic of switched reluctance motor based on dsPACE, fixed rotor position by mechanical indexing for Static flux linkage detection, the phase windings is excited by the step voltage signal, the voltage and phase current are collected real -time, and calculate flux linkage. The advantages of the method is that the parameters are optimized by ControlDesk, the flux linkage detection model is built by Simulink, no writing program, simple, easy implementation. An 1.5kw three-phase 12/8 SRM experimental prototype was constructed, the detection results of the Static flux linkage and dynamic flux linkage verified its validity and feasibility.

  14. Measurement of NOx fluxes from a tall tower in Beijing

    Science.gov (United States)

    Squires, Freya; Dunmore, Rachel; Lewis, Alastair; Vaughan, Adam; Mullinger, Neil; Nemitz, Eiko; Wild, Oliver; Zhang, Qiang; Hamilton, Jacqueline; Lee, James; Fu, Pingqing

    2017-04-01

    Nitrogen Oxides (NOx, the sum of nitrogen monoxide (NO) and nitrogen dioxide (NO2)) are significant anthropogenic pollutants emitted from most combustion processes. NOx is a precursor species to the formation of O3 and secondary aerosols and, in high concentrations, NO2 can have adverse effects on human health through action as a respiratory irritant. For these reasons, there has been increased focus on improving NOx emissions inventories, typically developed using 'bottom-up' estimates of emissions from their sources, which are used to predict current and future air quality and to guide abatement strategy. Recent studies have shown a discrepancy between NOx inventories and measured NOx emissions for UK cities, highlighting the limitations of bottom-up emissions inventories and the importance of accurate measurement data to improve the estimates. Similarly, inventories in China are associated with large uncertainties and are rapidly changing with time in response to economic development and new environmental regulation. Here, we present data collected as part of the Air Pollutants in Beijing (AIRPOLL-Beijing) campaign from an urban site located at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP, CAS) (39˚ 58'28"N, 116˚ 22'16"E) in central Beijing. NOx concentrations were measured using a state-of-the-art chemiluminescence instrument, sampling from an inlet at 100 metres on a meteorological tower. Measurements at 5 Hz coupled with wind vector data measured by a sonic anemometer located at the same height as the inlet allowed NOx emission fluxes to be calculated using the eddy covariance method. Measurements were made during the period 11/11/2016 - 10/12/2016 and compared to existing emission estimates from The Multi-resolution Emission Inventory for China (MEIC) inventory. It is anticipated that this work will be used to evaluate the accuracy of emissions inventories for Beijing, to develop improved emissions estimates and thus provide

  15. The measurements of thermal neutron flux distribution in a paraffin ...

    Indian Academy of Sciences (India)

    neutron flux density, the foil activation method was used. Thermal neutron flux determination in paraffin phantom by counting the emitted rays of indium foils with two different detectors (Geiger–. Muller counter and NaI(Tl)) was the aim of this project. The relative differences of the outcome of the experiments were between ...

  16. Evaluation of the flux gradient technique for measurement of ozone surface fluxes over snowpack at Summit, Greenland

    Directory of Open Access Journals (Sweden)

    F. Bocquet

    2011-10-01

    Full Text Available A multi-step procedure for investigating ozone surface fluxes over polar snow by the tower gradient method was developed and evaluated. These measurements were then used to obtain five months (April–August 2004 of turbulent ozone flux data at the Summit research camp located in the center of the Greenland ice shield. Turbulent fluxes were determined by the gradient method incorporating tower measurements of (a ozone gradients measured by commercial ultraviolet absorption analyzers, (b ambient temperature gradients using aspirated thermocouple sensors, and (c wind speed gradients determined by cup anemometers. All gradient instruments were regularly inter-compared by bringing sensors or inlets to the same measurement height. The developed protocol resulted in an uncertainty on the order of 0.1 ppbv for 30-min averaged ozone gradients that were used for the ozone flux calculations. This protocol facilitated a lower sensitivity threshold for the ozone flux determination of ∼8 × 10−3μg m−2 s−1, respectively ∼0.01 cm s−1 for the ozone deposition velocity for typical environmental conditions encountered at Summit. Uncertainty in the 30-min ozone exchange measurements (evaluated by the Monte Carlo statistical approach was on the order of 10−2 cm s−1. This uncertainty typically accounted to ~20–100% of the ozone exchange velocities that were determined. These measurements are among the most sensitive ozone deposition determinations reported to date. This flux experiment allowed for measurements of the relatively low ozone uptake rates encountered for polar snow, and thereby the study of their environmental and spring-versus-summer dependencies.

  17. Search for coherent muon pair production by neutrinos and antineutrinos

    International Nuclear Information System (INIS)

    Bergsma, F.; Dorenbosch, J.; Jonker, M.; Nieuwenhuis, C.; Allaby, J.V.; Amaldi, U.; Barbiellini, G.; Barone, L.; Capone, A.; Flegel, W.; Metcalf, M.; Panman, J.; Winter, K.; Aspiazu, J.; Buesser, F.W.; Daumann, H.; Gall, P.D.; Metz, E.; Niebergall, F.; Ranitzsch, K.H.; Staehelin, P.; Baroncelli, A.; Borgia, B.; Bosio, C.; Ferroni, F.; Longo, E.; Monacelli, P.; De Notaristefani, F.; Pistilli, P.; Santoni, C.; Tortora, L.; Valente, V.

    1983-01-01

    A search for coherent μ + μ - pair production has been made using the CHARM neutrino detector exposed to wide-band horn-focussed neutrino and antineutrino beams at the 400 GeV CERN SPS. Out of 3.3 x 10 6 neutrino and antineutrino induced CC events with energy greater than 10 GeV, we find two events which can be attributed to coherent production off the target nuclei (CaCO 3 ). This allows a limit to be set on the diagonal four-lepton coupling constant Gsub(d) < 1.5 Gsub(f) (90% CL). (orig.)

  18. Investigation of large LGB detectors for antineutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P. [Department of Physics, Naval Postgraduate School, Monterey, CA 93943 (United States); Bowden, N.S., E-mail: nbowden@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2011-12-21

    A detector material or configuration that can provide an unambiguous indication of neutron capture can substantially reduce random coincidence backgrounds in antineutrino detection and capture-gated neutron spectrometry applications. Here we investigate the performance of such a material, a composite of plastic scintillator and {sup 6}Li{sub 6}{sup nat}Gd({sup 10}BO{sub 3}){sub 3}:Ce (LGB) crystal shards of Almost-Equal-To 1 mm dimension and comprising 1% of the detector by mass. While it is found that the optical propagation properties of this material as currently fabricated are only marginally acceptable for antineutrino detection, its neutron capture identification ability is encouraging.

  19. Is there a high-y anomaly in antineutrino interactions

    International Nuclear Information System (INIS)

    Holder, M.; Knobloch, J.; May, J.; Paar, H.P.; Palazzi, P.; Schlatter, D.; Steinberger, J.; Suter, H.; Wahl, H.; Williams, E.G.H.; Eisele, F.; Geweniger, C.; Kleinknecht, K.; Spahn, G.; Wilutzki, H.; Dorth, W.; Dydak, F.; Hepp, V.; Tittel, K.; Wotschack, J.; Bloch, P.; Devaux, B.; Grimm, M.; Maillard, J.; Peyaud, B.; Rander, J.; Savoy-Navarro, A.; Turlay, R.; Navarria, F.L.

    1977-01-01

    We have analyzed data taken in the CERN narrow-band neutrino and antineutrino beams with regard to the ''high-y anomaly'' observed by previous experiments at Fermilab. At neutrino energies between 30 and 200 GeV, the anti ν and ν charged-current cross-section ratios and muon-inelasticity distributions disagree with the earlier results. In particular, there is no evidence for energy-dependent effects in the antineutrino data which constitute an important aspect of the alleged anomaly

  20. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    DEFF Research Database (Denmark)

    Selsted, Merete Bang; Ambus, Per; Michelsen, Anders

    2011-01-01

    mol−1 to 510 μmol mol−1. All CO2 fluxes were measured by the static chamber methodology. Although the FACE technique enriches the atmosphere with CO2 to a fixed level, the above ground CO2 concentrations may nevertheless locally vary strongly (from about ambient to 1000 μmol mol−1). Deployment...... of static chambers to FACE experiments should therefore be performed with great care in order to ensure reproducible conditions with respect to chamber headspace CO2 concentration. We demonstrate that that the fluxes measured by closed chambers relate linearly to the initial headspace CO2 concentration...... concentration, and the flux also decreased in FACE plots, to 0.79 times that at low concentration. Similar SR in control plots was decreased 0.94 times in control plots and 0.88 times in FACE plots. We found that a useful method to achieve stable and reproducible chamber headspace and soil CO2 concentration...

  1. ACCENT-BIAFLUX workshop 2005, trace gas and aerosol flux measurement and techniques. Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Werner, A.; Soerensen, L.L. (eds.)

    2005-04-01

    The woorkshop trace gas and aerosol flux measurement techniques in the second meeting within the Biosphere Atmosphere Exchange of Pollutions (BIAFLUX) group in the EU-network project Atmospheric Composition Change (ACCENT). The goal of the workshop is to obtain an overview of techniques for measurements of gas and aerosol fluxes and to gather the knowledge of uncertainties in flux measurements and calculations. The workshop is funded by ACCENT. The abstract book presents abstracts of 21 oral presentations and 26 poster presentations. (LN)

  2. Temperature-dependent attenuation of ex-vessel flux measurements at the Hanford Fast Flux Test Facility

    International Nuclear Information System (INIS)

    McLane, F.E.; Wood, M.R.; Rathbun, J.L.

    1982-01-01

    Indicated nuclear power, developed by measuring leakage neutrons, has been found to be temperature dependent at the Hanford Fast Flux Test Facility (FFTF). The magnitude, sense and speed of response of the effect suggest that hot sodium above th core and shield is a significant cause. Future designs which may minimize this effect are discussed

  3. Comparison of eddy covariance and modified Bowen ratio methods for measuring gas fluxes and implications for measuring fluxes of persistent organic pollutants

    Directory of Open Access Journals (Sweden)

    D. J. Bolinius

    2016-04-01

    Full Text Available Semi-volatile persistent organic pollutants (POPs cycle between the atmosphere and terrestrial surfaces; however measuring fluxes of POPs between the atmosphere and other media is challenging. Sampling times of hours to days are required to accurately measure trace concentrations of POPs in the atmosphere, which rules out the use of eddy covariance techniques that are used to measure gas fluxes of major air pollutants. An alternative, the modified Bowen ratio (MBR method, has been used instead. In this study we used data from FLUXNET for CO2 and water vapor (H2O to compare fluxes measured by eddy covariance to fluxes measured with the MBR method using vertical concentration gradients in air derived from averaged data that simulate the long sampling times typically required to measure POPs. When concentration gradients are strong and fluxes are unidirectional, the MBR method and the eddy covariance method agree within a factor of 3 for CO2, and within a factor of 10 for H2O. To remain within the range of applicability of the MBR method, field studies should be carried out under conditions such that the direction of net flux does not change during the sampling period. If that condition is met, then the performance of the MBR method is neither strongly affected by the length of sample duration nor the use of a fixed value for the transfer coefficient.

  4. RATES OF PHOTOSPHERIC MAGNETIC FLUX CANCELLATION MEASURED WITH HINODE

    International Nuclear Information System (INIS)

    Park, Soyoung; Chae, Jongchul; Litvinenko, Yuri E.

    2009-01-01

    Photospheric magnetic flux cancellation on the Sun is generally believed to be caused by magnetic reconnection occurring in the low solar atmosphere. Individual canceling magnetic features are observationally characterized by the rate of flux cancellation. The specific cancellation rate, defined as the rate of flux cancellation divided by the interface length, gives an accurate estimate of the electric field in the reconnecting current sheet. We have determined the specific cancellation rate using the magnetograms taken by the Solar Optical Telescope (SOT) aboard the Hinode satellite. The specific rates determined with SOT turned out to be systematically higher than those based on the data taken by the Michelson Doppler Imager (MDI) aboard the Solar and Heliospheric Observatory. The median value of the specific cancellation rate was found to be 8 x 10 6 G cm s -1 -a value four times that obtained from the MDI data. This big difference is mainly due to a higher angular resolution and better sensitivity of the SOT, resulting in magnetic fluxes up to five times larger than those obtained from the MDI. The higher rates of flux cancellation correspond to either faster inflows or stronger magnetic fields of the reconnection inflow region, which may have important consequences for the physics of photospheric magnetic reconnection.

  5. Estimating Total Heliospheric Magnetic Flux from Single-Point in Situ Measurements

    Science.gov (United States)

    Owens, M. J.; Arge, C. N.; Crooker, N. U.; Schwardron, N. A.; Horbury, T. S.

    2008-01-01

    A fraction of the total photospheric magnetic flux opens to the heliosphere to form the interplanetary magnetic field carried by the solar wind. While this open flux is critical to our understanding of the generation and evolution of the solar magnetic field, direct measurements are generally limited to single-point measurements taken in situ by heliospheric spacecraft. An observed latitude invariance in the radial component of the magnetic field suggests that extrapolation from such single-point measurements to total heliospheric magnetic flux is possible. In this study we test this assumption using estimates of total heliospheric flux from well-separated heliospheric spacecraft and conclude that single-point measurements are indeed adequate proxies for the total heliospheric magnetic flux, though care must be taken when comparing flux estimates from data collected at different heliocentric distances.

  6. Monitoring of spent nuclear fuel with antineutrino detectors

    Science.gov (United States)

    Brdar, Vedran

    2017-09-01

    We put forward the possibility of employing antineutrino detectors in order to control the amounts of spent nuclear fuel in repositories or, alternatively, to precisely localize the underground sources of nuclear material. For instance, we discuss the applicability in determining a possible leakage of stored nuclear material which would aid in preventing environmental problems. The long-term storage facilities are also addressed.

  7. On neutrino and antineutrino scattering by electrons, and by partons

    International Nuclear Information System (INIS)

    Bell, J.S.; Dass, G.V.

    1975-09-01

    Assuming a non-derivative point interaction, and Born approximation, there are some simple relations between neutrino and antineutrino scattering on electrons or partons. They have been observed already, for some special cases, in the results of explicit calculations. Here they are obtained from simple general considerations. (author)

  8. Anti-neutrino imprint in solar neutrino flare

    Science.gov (United States)

    Fargion, D.

    2006-10-01

    A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\

  9. Electron Neutrino and Antineutrino Appearance in the MINOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Schreckenberger, Adam Paul [Univ. of Minnesota, Minneapolis, MN (United States)

    2013-04-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline neutrino experiment that utilizes a particle beam and two steel-scintillator calorimeters designed to determine the parameters associated with muon neutrino disappearance. Analysis methods developed by the MINOS νe group have facilitated the placement of limits upon the mixing angle associated with νμ → νe oscillations. Since the polarity of the focusing horns can be switched, we can perform a similar analysis with an antineutrino-enriched beam to select electron antineutrino appearance candidates. Using 3.34e20 POT (protons on target) in the antineutrino mode, we exclude θ13 = 0 at the 80% C.L. A joint fit of the 3.34e20 POT antineutrino and 10.6e20 POT neutrino samples excluded θ13 = 0 at the 96% C.L. In addition, the combined data were used to produce exclusions regarding the CP-violating phase.

  10. Towards earth AntineutRino TomograpHy (EARTH)

    NARCIS (Netherlands)

    De Meijer, R. J.; Smit, F. D.; Brooks, F. D.; Fearick, R. W.; Wortche, H. J.; Mantovani, F.

    2006-01-01

    The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection.

  11. Gradient heat flux measurement as monitoring method for the diesel engine

    Science.gov (United States)

    Sapozhnikov, S. Z.; Mityakov, V. Yu; Mityakov, A. V.; Vintsarevich, A. V.; Pavlov, A. V.; Nalyotov, I. D.

    2017-11-01

    The usage of gradient heat flux measurement for monitoring of heat flux on combustion chamber surface and optimization of diesel work process is proposed. Heterogeneous gradient heat flux sensors can be used at various regimes for an appreciable length of time. Fuel injection timing is set by the position of the maximum point on the angular heat flux diagram however, the value itself of the heat flux may not be considered. The development of such an approach can be productive for remote monitoring of work process in the cylinders of high-power marine engines.

  12. Neutron flux measurement at the Baksan Underground Scintillation Telescope

    Science.gov (United States)

    Kochkarov, M. M.; Boliev, M. M.; Dzaparova, I. M.; Novoseltseva, R. V.; Novoseltsev, Yu. F.; Petkov, V. B.; Volchenko, V. I.; Volchenko, G. V.; Yanin, A. F.

    2018-01-01

    The characteristics of fast neutrons produced by cosmic-ray muons at the Baksan Underground Scintillation Telescope (BUST) are investigated. A novel approach to the problem consists in estimating the neutron flux by the production rate of the unstable radioactive nuclide 12 B in the ( n, p) reaction on carbon nuclei of the BUST organic scintillator. The processing of the data collected in 2002-2015 yielded {N_{{{12}_B}}} = 337 ± 2.5 events consistent with those of the reaction 12 C( n, p)12 B. For the BUST internal planes, the background of fast neutrons with E > 28.6 MeV is experimentally estimated as Φ ∝ 10-11cm-2 s-1. This is lower than the theoretically predicted total neutron flux by nearly two orders of magnitude. The disagreement with predictions is attributed to the suppression of neutron flux in the external scintillator planes of the detector.

  13. Measurements and Phenomenological Modeling of Magnetic FluxBuildup in Spheromak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Talamas, C A; Hooper, E B; Jayakumar, R; McLean, H S; Wood, R D; Moller, J M

    2007-12-14

    Internal magnetic field measurements and high-speed imaging at the Sustained Spheromak Physics Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, R. H. Bulmer, Nucl. Fusion 39, 863 (1999)] are used to study spheromak formation and field buildup. The measurements are analyzed in the context of a phenomenological model of magnetic helicity based on the topological constraint of minimum helicity in the open flux before reconnecting and linking closed flux. Two stages are analyzed: (1) the initial spheromak formation, i. e. when all flux surfaces are initially open and reconnect to form open and closed flux surfaces, and (2) the stepwise increase of closed flux when operating the gun on a new mode that can apply a train of high-current pulses to the plasma. In the first stage, large kinks in the open flux surfaces are observed in the high-speed images taken shortly after plasma breakdown, and coincide with large magnetic asymmetries recorded in a fixed insertable magnetic probe that spans the flux conserver radius. Closed flux (in the toroidal average sense) appears shortly after this. This stage is also investigated using resistive magnetohydrodynamic simulations. In the second stage, a time lag in response between open and closed flux surfaces after each current pulse is interpreted as the time for the open flux to build helicity, before transferring it through reconnection to the closed flux. Large asymmetries are seen during these events, which then relax to a slowly decaying spheromak before the next pulse.

  14. Measurement of neutron and charged particle fluxes toward earthquake prediction

    Science.gov (United States)

    Maksudov, Asatulla U.; Zufarov, Mars A.

    2017-12-01

    In this paper, we describe a possible method for predicting the earthquakes, which is based on simultaneous recording of the intensity of fluxes of neutrons and charged particles by detectors, commonly used in nuclear physics. These low-energy particles originate from radioactive nuclear processes in the Earth's crust. The variations in the particle flux intensity can be the precursor of the earthquake. A description is given of an electronic installation that records the fluxes of charged particles in the radial direction, which are a possible response to the accumulated tectonic stresses in the Earth's crust. The obtained results showed an increase in the intensity of the fluxes for 10 or more hours before the occurrence of the earthquake. The previous version of the installation was able to indicate for the possibility of an earthquake (Maksudov et al. in Instrum Exp Tech 58:130-131, 2015), but did not give information about the direction of the epicenter location. In this regard, the installation was modified by adding eight directional detectors. With the upgraded setup, we have received both the predictive signals, and signals determining the directions of the location of the forthcoming earthquake, starting 2-3 days before its origin.

  15. First flux measurement in a SINQ supermirror neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Schlumpf, N.; Bauer, G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    On Dec. 3, 1996, the Swiss spallation neutron source SINQ was taken into operation and produced its first neutrons successfully. The neutron spectrum within one of the supermirror guides was estimated by a chopper Time-of-Flight method. The result shows a 30% higher neutron intensity at the flux maximum than expected from previous Monte-Carlo simulations. (author) 1 fig., 4 refs.

  16. Inertial-Dissipation flux measurements over south Bay of Bengal ...

    Indian Academy of Sciences (India)

    The data were collected on ORV Sagar Kanya during BOBMEX-Pilot cruise during the period 23rd October 1998 to 12th November 1998 over south Bay of Bengal. The fluxes are estimated using the data collected through fast response sensors namely Gill anemometer, Sonic anemometer and IR Hygrometer. In this paper ...

  17. Quantitative comparison of in situ soil CO2 flux measurement methods

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose

    2002-01-01

    Development of reliable regional or global carbon budgets requires accurate measurement of soil CO2 flux. We conducted laboratory and field studies to determine the accuracy and comparability of methods commonly used to measure in situ soil CO2 fluxes. Methods compared included CO2...

  18. A bottom-up perspective of the net land methanol flux: synthesis of global eddy covariance flux measurements

    Science.gov (United States)

    Wohlfahrt, Georg; Amelynck, Crist; Ammann, Christof; Arneth, Almut; Bamberger, Ines; Goldstein, Allen; Hansel, Armin; Heinesch, Bernhard; Holst, Thomas; Hörtnagl, Lukas; Karl, Thomas; Neftel, Albrecht; McKinney, Karena; Munger, William; Schade, Gunnar; Schoon, Niels

    2014-05-01

    Methanol (CH3OH) is, after methane, the second most abundant VOC in the troposphere and globally represents nearly 20% of the total biospheric VOC emissions. With typical concentrations of 1-10 ppb in the continental boundary layer, methanol plays a crucial role in atmospheric chemistry, which needs to be evaluated in the light of ongoing changes in land use and climate. Previous global methanol budgets have approached the net land flux by summing up the various emission terms (namely primary biogenic and anthropogenic emissions, plant decay and biomass burning) and by subtracting dry and wet deposition, resulting in a net land flux in the range of 75-245 Tg y-1. The data underlying these budget calculations largely stem from small-scale leaf gas exchange measurements and while recently column-integrated remotely sensed methanol concentrations have become available for constraining budget calculations, there have been few attempts to contrast model calculations with direct net ecosystem-scale methanol flux measurements. Here we use eddy covariance methanol flux measurements from 8 sites in Europe and North America to study the magnitude of and controls on the diurnal and seasonal variability in the net ecosystem methanol flux. In correspondence with leaf-level literature, our data show that methanol emission and its strong environmental and biotic control (by temperature and stomatal conductance) prevailed at the more productive (agricultural) sites and at a perturbed forest site. In contrast, at more natural, less productive sites substantial deposition of methanol occurred, in particular during periods of surface wetness. These deposition processes are poorly represented by currently available temperature/light and/or production-driven modelling algorithms. A new framework for modelling the bi-directional land-atmosphere methanol exchange is proposed which accounts for the production of methanol in leaves, the regulation of leaf methanol emission by stomatal

  19. Measurement and simulation of thermal neutron flux distribution in the RTP core

    Science.gov (United States)

    Rabir, Mohamad Hairie B.; Jalal Bayar, Abi Muttaqin B.; Hamzah, Na’im Syauqi B.; Mustafa, Muhammad Khairul Ariff B.; Karim, Julia Bt. Abdul; Zin, Muhammad Rawi B. Mohamed; Ismail, Yahya B.; Hussain, Mohd Huzair B.; Mat Husin, Mat Zin B.; Dan, Roslan B. Md; Ismail, Ahmad Razali B.; Husain, Nurfazila Bt.; Jalil Khan, Zareen Khan B. Abdul; Yakin, Shaiful Rizaide B. Mohd; Saad, Mohamad Fauzi B.; Masood, Zarina Bt.

    2018-01-01

    The in-core thermal neutron flux distribution was determined using measurement and simulation methods for the Malaysian’s PUSPATI TRIGA Reactor (RTP). In this work, online thermal neutron flux measurement using Self Powered Neutron Detector (SPND) has been performed to verify and validate the computational methods for neutron flux calculation in RTP calculations. The experimental results were used as a validation to the calculations performed with Monte Carlo code MCNP. The detail in-core neutron flux distributions were estimated using MCNP mesh tally method. The neutron flux mapping obtained revealed the heterogeneous configuration of the core. Based on the measurement and simulation, the thermal flux profile peaked at the centre of the core and gradually decreased towards the outer side of the core. The results show a good agreement (relatively) between calculation and measurement where both show the same radial thermal flux profile inside the core: MCNP model over estimation with maximum discrepancy around 20% higher compared to SPND measurement. As our model also predicts well the neutron flux distribution in the core it can be used for the characterization of the full core, that is neutron flux and spectra calculation, dose rate calculations, reaction rate calculations, etc.

  20. Comparison of ecosystem water flux measured with the Eddy covariance- and the direct xylem sap flux method in a mountainous forest

    Energy Technology Data Exchange (ETDEWEB)

    Stefanicki, G.; Geissbuehler, P.; Siegwolf, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The Eddy covariance technique allows to measure different components of turbulent air fluxes, including the flow of water vapour. Sap flux measurements determine directly the water flow in tree stems. We compared the water flux just above the crowns of trees in a forest by the technique of Eddy covariance and the water flux by the xylem sap flux method. These two completely different approaches showed a good qualitative correspondence. The correlation coefficient is 0.8. With an estimation of the crown diameter of the measured tree we also find a very good quantitative agreement. (author) 3 figs., 5 refs.

  1. Chemically-resolved aerosol eddy covariance flux measurements in urban Mexico City during MILAGRO 2006

    Science.gov (United States)

    Zalakeviciute, R.; Alexander, M. L.; Allwine, E.; Jimenez, J. L.; Jobson, B. T.; Molina, L. T.; Nemitz, E.; Pressley, S. N.; VanReken, T. M.; Ulbrich, I. M.; Velasco, E.; Lamb, B. K.

    2012-08-01

    As part of the MILAGRO 2006 field campaign, the exchange of atmospheric aerosols with the urban landscape was measured from a tall tower erected in a heavily populated neighborhood of Mexico City. Urban submicron aerosol fluxes were measured using an eddy covariance method with a quadrupole aerosol mass spectrometer during a two week period in March, 2006. Nitrate and ammonium aerosol concentrations were elevated at this location near the city center compared to measurements at other urban sites. Significant downward fluxes of nitrate aerosol, averaging -0.2 μg m-2 s-1, were measured during daytime. The urban surface was not a significant source of sulfate aerosols. The measurements also showed that primary organic aerosol fluxes, approximated by hydrocarbon-like organic aerosols (HOA), displayed diurnal patterns similar to CO2 fluxes and anthropogenic urban activities. Overall, 47% of submicron organic aerosol emissions were HOA, 35% were oxygenated (OOA) and 18% were associated with biomass burning (BBOA). Organic aerosol fluxes were bi-directional, but on average HOA fluxes were 0.1 μg m-2 s-1, OOA fluxes were -0.03 μg m-2 s-1, and BBOA fluxes were -0.03 μg m-2 s-1. After accounting for size differences (PM1 vs PM2.5) and using an estimate of the black carbon component, comparison of the flux measurements with the 2006 gridded emissions inventory of Mexico City, showed that the daily-averaged total PM emission rates were essentially identical for the emission inventory and the flux measurements. However, the emission inventory included dust and metal particulate contributions, which were not included in the flux measurements. As a result, it appears that the inventory underestimates overall PM emissions for this location.

  2. Determination of solar proton fluxes and energies at high solar latitudes by UV radiation measurements

    Science.gov (United States)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The latitudinal variation of the solar proton flux and energy causes a density increase at high solar latitudes of the neutral gas penetrating the heliosphere. Measurements of the neutral density by UV resonance radiation observations from interplanetary spacecraft thus permit deductions on the dependence of the solar proton flux on heliographic latitude. Using both the results of Mariner 10 measurements and of other off-ecliptic solar wind observations, the values of the solar proton fluxes and energies at polar heliographic latitudes are determined for several cases of interest. The Mariner 10 analysis, together with IPS results, indicate a significant decrease of the solar proton flux at polar latitudes.

  3. Neutrino and antineutrino charge-exchange reactions on 12C

    International Nuclear Information System (INIS)

    Samana, A. R.; Krmpotic, F.; Paar, N.; Bertulani, C. A.

    2011-01-01

    We extend the formalism of weak interaction processes, obtaining new expressions for the transition rates, which greatly facilitate numerical calculations, for both neutrino-nucleus reactions and muon capture. Explicit violation of the conserved vector current hypothesis by the Coulomb field, as well as development of a sum-rule approach for inclusive cross sections, has been worked out. We have done a thorough study of exclusive (ground-state) properties of 12 B and 12 N within the projected quasiparticle random phase approximation (PQRPA). Good agreement with experimental data achieved in this way put into evidence the limitations of the standard RPA and QRPA models, which come from the inability of the RPA to open the p 3/2 shell and from the nonconservation of the number of particles in the QRPA. The inclusive neutrino/antineutrino (ν/ν-tilde) reactions 12 C(ν,e - ) 12 N and 12 C(ν-tilde,e + ) 12 B are calculated within both the PQRPA and the relativistic QRPA. It is found that (i) the magnitudes of the resulting cross sections are close to the sum-rule limit at low energy, but significantly smaller than this limit at high energies, for both ν and ν-tilde; (ii) they increase steadily when the size of the configuration space is augmented, particularly for ν/ν-tilde energies >200 MeV; and (iii) they converge for sufficiently large configuration space and final-state spin. The quasi-elastic 12 C(ν,μ - ) 12 N cross section recently measured in the MiniBooNE experiment is briefly discussed. We study the decomposition of the inclusive cross section based on the degree of forbiddenness of different multipoles. A few words are dedicated to the ν/ν-tilde- 12 C charge-exchange reactions related to astrophysical applications.

  4. A fast gauge for energy flux density measurement

    Science.gov (United States)

    Garcia, Jorge; Bana de Schor, Beatriz

    1990-01-01

    Herein, the design and characterization of a fast energy flux density gauge are described. The gauge is based on a thermoelectrical pair with the junction made of a thin layer of silver. High absorptivity is attained by an electrolytic deposit of platinum black on the silver coat. Dynamic calibration gives a response time below 100 microsec. Computer methods to obtain the energy flux density from temperature-time history were evaluated. The results of the tests performed with igniters of pelleted boron/potassium nitrate and black powder, used in solid propellant ignition, are shown. The gauge developed can be applied to fast processes which require small response time. The gauge does not need previous calibration, it is resistant to vibrations and accelerations, and, at the same time, it is small in size, economical, and easy to build.

  5. Continuous SO2 flux measurements for Vulcano Island, Italy

    Directory of Open Access Journals (Sweden)

    Fabio Vita

    2012-06-01

    Full Text Available The La Fossa cone of Vulcano Island (Aeolian Archipelago, Italy is a closed conduit volcano. Today, Vulcano Island is characterized by sulfataric activity, with a large fumarolic field that is mainly located in the summit area. A scanning differential optical absorption spectroscopy instrument designed by the Optical Sensing Group of Chalmers University of Technology in Göteborg, Sweden, was installed in the framework of the European project "Network for Observation of Volcanic and Atmospheric Change", in March 2008. This study presents the first dataset of SO2 plume fluxes recorded for a closed volcanic system. Between 2008 and 2010, the SO2 fluxes recorded showed average values of 12 t.d–1 during the normal sulfataric activity of Vulcano Island, with one exceptional event of strong degassing that occurred between September and December, 2009, when the SO2 emissions reached up to 100 t.d–1.

  6. What can we learn about ammonia fluxes from open-path eddy covariance measurements?

    Science.gov (United States)

    Pan, D.; Zondlo, M. A.; Benedict, K. B.; Schichtel, B. A.; Ham, J. M.; Shonkwiler, K. B.; Collett, J. L., Jr.

    2016-12-01

    Ammonia (NH3) is an important component of bio-atmospheric N cycle with implications of regional air quality, human and ecosystem health degradation, and global climate change. NH3 fluxes have high spatiotemporal variability controlled by several factors, such as atmospheric NH3 concentration, meteorological conditions, and compensation point of underlying surfaces. Quantifying NH3 fluxes is further complicated by severe measurement challenges including adsorption to instrument surfaces, low mole fractions, and gas-particle phase partitioning. To overcome these challenges, we have developed an open-path, eddy covariance NH3 instrument that minimizes these sampling issues. Eddy covariance measurements in 2015 and 2016 in the Rocky Mountain National Park (RMNP), Colorado showed the capabilities of the system to measure fluxes in clean and moderate-polluted regions. Interesting patterns of NH3 fluxes and NH3 concentration variations were observed, such as deposition of NH3 associated plumes from urban and agricultural areas and reemission of a similar magnitude when clean free-tropospheric air passing the site. Observed downward fluxes during midnight and upward fluxes in early morning also indicated NH3 fluxes related to dew formation and evaporation events. More details about these patterns and their relationships with ambient temperature, relative humidity, and other fluxes will be presented. These measurements also provided an opportunity to evaluate our current understanding of transport and deposition of NH3. Micrometeorological method, backward trajectory model, and bidirectional NH3 flux model were used to analyze observed variability of NH3 concentrations and fluxes. Implications of these results and how eddy covariance measurements combined with other measurements may provide insights to better quantify NH3 fluxes will be discussed.

  7. Combined FTIR-micrometeorological techniques for long term measurements of greenhouse gas fluxes from agriculture

    Science.gov (United States)

    Petersen, A. K.; Griffith, D.; Harvey, M.; Naylor, T.; Smith, M.

    2009-04-01

    The exchange of trace gases between the biosphere and the atmosphere affects the atmospheric concentrations of gases such as methane, carbon dioxide, nitrous oxide, carbon monoxide, ammonia, volatile organic compounds, nitrogen dioxide and others. The quantification of the exchange between a biogenic system and the atmosphere is necessary for the evaluation of the impact of these interactions. This is of special interest for agricultural systems which can be sources or sinks of trace gases, and the measurement of the fluxes is necessary when evaluating both the environmental impact of agricultural activities and the impact of atmospheric pollution on agricultural production and sustainability. With the exception of CO2, micrometeorological measurements of the fluxes of greenhouse gases from agricultural activities are still mostly possible only in campaign mode due to the complexity and logistical requirements of the existing measurement techniques. This limitation precludes studies of fluxes which run for longer periods, for example over full seasonal or growing cycles for both animal- and crop-based agriculture. We have developed an instrument system for long-term flux measurements through a combination of micrometeorological flux measurement techniques such as Relaxed Eddy Accumulation (REA) and Flux-Gradient (FG) with the high precision multi-species detection capabilities of FTIR spectroscopy. The combined technique is capable of simultaneous flux measurements of N2O, CH4 and CO2 at paddock to regional scales continuously, over longer terms (months, seasonal cycles, years). The system was tested on a 3 weeks field campaign in NSW, Australia on a flat, homogeneous circular grass paddock with grazing cattle. The flux of the atmospheric trace gas CO2 was measured with three different micrometeorological techniques: Relaxed Eddy Accumulation, Flux-Gradient, and Eddy Correlation. Simultaneously, fluxes of CH4 and N2O were measured by REA and FG technique.

  8. Geoneutrinos at Jinping: Flux prediction and oscillation analysis

    Science.gov (United States)

    Wan, Linyan; Hussain, Ghulam; Wang, Zhe; Chen, Shaomin

    2017-03-01

    Geoneutrinos are electron antineutrinos (ν¯e) generated by the beta decays of radionuclides naturally occurring inside the Earth, in particular U 238 , Th 232 , and K 40 . Measurement of these neutrinos provides powerful constraints on the radiogenic heat of the Earth and tests on the Earth models. Since the prediction of ν¯e's in geoneutrino flux is subject to neutrino oscillation effects, we performed a calculation including detailed oscillation analysis in the propagation of geoneutrinos and reactor neutrinos generated around the Earth. The expected geoneutrino signal, the reactor neutrino background rates, and the systematic error budget are provided for a proposed 3 kt neutrino detector at the Jinping underground lab in Sichuan, China. In addition, we evaluated sensitivities for the geoneutrino flux, Th/U ratio, and power of a possible fission reactor in the interior of the Earth.

  9. Novel dynamic flux chamber for measuring air-surface exchange of Hg(o) from soils.

    Science.gov (United States)

    Lin, Che-Jen; Zhu, Wei; Li, Xianchang; Feng, Xinbin; Sommar, Jonas; Shang, Lihai

    2012-08-21

    Quantifying the air-surface exchange of Hg(o) from soils is critical to understanding the cycling of mercury in different environmental compartments. Dynamic flux chambers (DFCs) have been widely employed for Hg(o) flux measurement over soils. However, DFCs of different sizes, shapes, and sampling flow rates yield distinct measured fluxes for a soil substrate under identical environmental conditions. In this study, we performed an integrated modeling, laboratory and field study to design a DFC capable of producing a steady and uniform air flow over a flat surface. The new DFC was fabricated using polycarbonate sheets. The internal velocity field was experimentally verified against model predictions using both theoretical and computational fluid dynamics techniques, suggesting fully developed flow with velocity profiles in excellent agreement with model results. Laboratory flux measurements demonstrated that the new design improves data reproducibility as compared to a conventional DFC, and reproduces the model-predicted flux trend with increasing sampling flow. A mathematical relationship between the sampling flow rate and surface friction velocity, a variable commonly parametrized in atmospheric models, was developed for field application. For the first time, the internal shear property of a DFC can be precisely controlled using the sampling flow rate, and the flux under atmospheric condition can be inferred from the measured flux and surface shear property. The demonstrated methodology potentially bridges the gap in measured fluxes obtained by the DFC method and the micrometeorological methods.

  10. Evapotranspiration and heat fluxes over a patchy forest - studied using modelling and measurements

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Dellwik, Ebba; Boegh, Eva

    and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest (Klaassen et al. 2002, Theor. Appl. Climatol. 72, 231-243). Because such flux measurements are very often used for calibration of forest parameters or model constants, further...... using these parameters without a proper interpretation in mesoscale or global circulation models can results in serious bias of estimates of modelled evapotranspiration or heat fluxes from given area. Since representative measurements focused on heterogeneous effects are scarce numerical modelling can...... be used to interpret the measurements. Recently, the atmospheric boundary layer (ABL) model SCADIS (Sogachev et al., 2002, Tellus 54B, 784-819) has been successfully applied to analyze the mechanisms of CO2 flux formation near a forest edge for neutrally stratified conditions (Sogachev et al., 2008...

  11. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.

    Science.gov (United States)

    Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard

    2017-05-01

    This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    SNO collaboration; Aharmim, B.; Ahmed, S.N.; Andersen, T.C.; Anthony, A.E.; Barros, N.; Beier, E.W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S.D.; Boudjemline, K.; Boulay, M.G.; Burritt, T.H.; Cai, B.; Chan, Y.D.; Chen, M.; Chon, M.C.; Cleveland, B.T.; Cox-Mobrand, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P.J.; Dosanjh, R.S.; Doucas, G.; Drouin, P.-L.; Duncan, F.A.; Dunford, M.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Gagnon, N.; Goon, J.TM.; Grant, D.R.; Guillian, E.; Habib, S.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hargrove, C.K.; Harvey, P.J.; Harvey, P.J.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hemingway, R.J.; Henning, R.; Hime, A.; Howard, C.; Howe, M.A.; Huang, M.; Jamieson, B.; Jelley, N.A.; Klein, J.R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C.B.; Kutter, T.; Kyba, C.C.M.; Lange, R.; Law, J.; Lawson, I.T.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald, A.B.; McGee, S.; Mifflin, C.; Miller, M.L.; Monreal, B.; Monroe, J.; Noble, A.J.; Oblath, N.S.; Okada, C.E.; O?Keeffe, H.M.; Opachich, Y.; Orebi Gann, G.D.; Oser, S.M.; Ott, R.A.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Rielage, K.; Robertson, B.C.; Robertson, R.G.H.; Rollin, E.; Schwendener, M.H.; Secrest, J.A.; Seibert, S.R.; Simard, O.; Simpson, J.J.; Sinclair, D.; Skensved, P.; Smith, M.W.E.; Sonley, T.J.; Steiger, T.D.; Stonehill, L.C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R.G.; VanDevender, B.A.; Virtue, C.J.; Waller, D.; Waltham, C.E.; Wan Chan Tseung, H.; Wark, D.L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J.F.; Wilson, J.R.; Wouters, J.M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-02-16

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  13. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    Science.gov (United States)

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  14. Evaluating Humidity and Sea Salt Disturbances on CO2 Flux Measurements

    DEFF Research Database (Denmark)

    Nilsson, Erik; Bergström, Hans; Rutgersson, Anna

    2018-01-01

    Global oceans are an important sink of atmospheric carbon dioxide (CO2). Therefore, understanding the air–sea flux of CO2 is a vital part in describing the global carbon balance. Eddy covariance (EC) measurements are often used to study CO2 fluxes from both land and ocean. Values of CO2 are usual...

  15. Measurement of absolute neutron flux in LWSCR based on the nuclear track method

    International Nuclear Information System (INIS)

    Sadeghzadeh, J.; Nassiri Mofakham, N.; Khajehmiri, Z.

    2012-01-01

    Highlights: ► Up to now the spectral parameters of thermal neutrons are measured with activation foils that are not always reliable in low flux systems. ► We applied a solid state nuclear track detector to measure the absolute neutron flux in the light water sub-critical reactor (LWSCR). ► Experiments concerning fission track detecting were performed and were investigated using the Monte Carlo code MCNP. ► The neutron fluxes obtained in experiment are in fairly good agreement with the results obtained by MCNP. - Abstract: In the present paper, a solid state nuclear track detector is applied to measure the absolute neutron flux in the light water sub-critical reactor (LWSCR) in Nuclear Science and Technology Research Institute (NSTRI). Up to now, the spectral parameters of thermal neutrons have been measured with activation foils that are not always reliable in low flux systems. The method investigated here is the irradiation method. Experiments concerning fission track detecting were performed. The experiment including neutron flux calculation method has also been investigated using the Monte Carlo code MCNP. The analysis shows that the values of neutron flux obtained by experiment are in fairly good agreement with the results obtained by MCNP. Thus, this method may be able to predict the absolute value of neutron flux at LWSCR and other similar reactors.

  16. Calibration of a distributed hydrology and land surface model using energy flux measurements

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Refsgaard, Jens Christian; Jensen, Karsten H.

    2016-01-01

    In this study we develop and test a calibration approach on a spatially distributed groundwater-surface water catchment model (MIKE SHE) coupled to a land surface model component with particular focus on the water and energy fluxes. The model is calibrated against time series of eddy flux measure...

  17. Comparison of heat flux measurement techniques during the DIII-D metal ring campaign

    Science.gov (United States)

    Barton, J. L.; Nygren, R. E.; Unterberg, E. A.; Watkins, J. G.; Makowski, M. A.; Moser, A.; Rudakov, D. L.; Buchenauer, D.

    2017-12-01

    The heat fluxes expected in the ITER divertor raise concerns about the damage tolerances of tungsten, especially due to thermal transients caused by edge localized modes (ELMs) as well as frequent temperature cycling from high to low extremes. Therefore we are motivated to understand the heat flux conditions that can cause not only enhanced erosion but also bulk thermo-mechanical damage to a tungsten divertor. For the metal ring campaign in DIII-D, tungsten-coated TZM tile inserts were installed making two toroidal arrays of metal tile inserts in the lower divertor. This study examines the deposited heat flux on these rings with embedded thermocouples (TCs) sampling at 10 kHz and compares them to Langmuir probe (LP) and infrared thermography (IRTV) heat flux measurements. We see agreement of the TC, LP, and IRTV data within 20% of the heat flux averaged over the entire discharge, and that all three diagnostics suggest parallel heat flux at the OSP location increases linearly with input heating power. The TC and LP heat flux time traces during the discharge trend together during large changes to the average heat flux. By subtracting the LP measured inter-ELM heat flux from TC data, using a rectangular ELM energy pulse shape, and taking the relative size and duration of each ELM from {{D}}α measurements, we extract the ELM heat fluxes from TC data. This over-estimates the IRTV measured ELM heat fluxes by a factor of 1.9, and could be due to the simplicity of the TC heat flux model and the assumed ELM energy pulse shape. ELM heat fluxes deposited on the inserts are used to model tungsten erosion in this campaign. These TC ELM heat flux estimates are used in addition to IRTV, especially in cases where the IRTV view to the metal ring is obstructed. We observe that some metal inserts were deformed due to exposed leading edges. The thermal conditions on these inserts are investigated with the thermal modeling code ABAQUS using our heat flux measurements when these edges

  18. Measurements of neutron flux from an inertial-electrostatic confinement device

    International Nuclear Information System (INIS)

    Westenskow, G.A.

    1975-08-01

    A neutron-detection system was built for the purpose of measuring the neutron flux from an Inertial-Electrostatic Confinement Device located at Brigham Young University. A BF 3 proportional counter was used for absolute flux measurements and a pair of scintillation detectors was used to compare neutron output under different operating conditions. The detectors were designed to be compatible with the operating conditions of the device and to be able to measure small changes in neutron output. The detectors were calibrated using a Pu-Be source with corrections made for laboratory conditions. Performance of the counting system was checked and data were collected on the neutron flux from the device

  19. A neutrino (antineutrino)-induced four lepton event

    International Nuclear Information System (INIS)

    Loveless, R.J.; Benada, R.; Camerini, U.; Duffy, M.; Fry, W.; McCabe, P.; Minette, D.; Ngai, M.; Reeder, D.D.; Cence, R.J.; Harris, F.A.; Jones, M.D.; Parker, S.I.; Peters, M.W.; Peterson, V.Z.; Wyatt, N.; Burnett, T.H.; Holmgren, D.; Lubatti, H.J.; Moriyasu, K.; Rudnicka, H.; Swider, G.M.; Wolin, E.; Yuldashev, B.S.

    1978-01-01

    Observation of a neutrino (antineutrino)-induced event with two electrons, one positron, one positively charged muon, a neutral K meson, and seven gammas in an experiment performed in the FNAL 15-ft bubble chamber with a 47% atomic mixture of neon in hydrogen is reported. Estimated experimental electron backgrounds are approximately 10 -4 per track. At present the authors have no plausible interpretation of this event. (Auth.)

  20. SoLid: An innovative anti-neutrino detector for searching oscillations at the SCK• CEN BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Yamiel, E-mail: yamiel.abreu@uantwerpen.be

    2017-02-11

    The SoLid experiment intends to search for active-to-sterile anti-neutrino oscillations at a very short baseline from the SCK• CEN BR2 research reactor (Mol, Belgium). A novel detector approach to measure reactor anti-neutrinos was developed based on an innovative sandwich of composite polyvinyl-toluene and {sup 6}LiF:ZnS(Ag) scintillators. The system is highly segmented and read out by a network of wavelength shifting fibers and SiPM. High experimental sensitivity can be achieved compared to other standard technologies thanks to the combination of high granularity, good neutron–gamma discrimination using {sup 6}LiF:ZnS(Ag) scintillator and precise localisation of the Inverse Beta Decay products. This technology can be considered as a new generation of an anti-neutrino detector. This compact system requires limited passive shielding and relies on spatial topology to determine the different classes of backgrounds. We will describe the principle of detection and the detector design. Particular focus on the neutron discrimination will be made, as well as on the capability to use cosmic muons for channel equalisation and energy calibration. The performance of the first 288 kg SoLid module (SM1), based on the data taken at BR2 from February to September 2015, will be presented. We will conclude with the next phase, which will start in 2016, and the future plans of the experiment.

  1. SoLid: An innovative anti-neutrino detector for searching oscillations at the SCK•CEN BR2 reactor

    Science.gov (United States)

    Abreu, Yamiel; SoLid Collaboration

    2017-02-01

    The SoLid experiment intends to search for active-to-sterile anti-neutrino oscillations at a very short baseline from the SCK•CEN BR2 research reactor (Mol, Belgium). A novel detector approach to measure reactor anti-neutrinos was developed based on an innovative sandwich of composite polyvinyl-toluene and 6LiF:ZnS(Ag) scintillators. The system is highly segmented and read out by a network of wavelength shifting fibers and SiPM. High experimental sensitivity can be achieved compared to other standard technologies thanks to the combination of high granularity, good neutron-gamma discrimination using 6LiF:ZnS(Ag) scintillator and precise localisation of the Inverse Beta Decay products. This technology can be considered as a new generation of an anti-neutrino detector. This compact system requires limited passive shielding and relies on spatial topology to determine the different classes of backgrounds. We will describe the principle of detection and the detector design. Particular focus on the neutron discrimination will be made, as well as on the capability to use cosmic muons for channel equalisation and energy calibration. The performance of the first 288 kg SoLid module (SM1), based on the data taken at BR2 from February to September 2015, will be presented. We will conclude with the next phase, which will start in 2016, and the future plans of the experiment.

  2. Field comparison of disjunct and conventional eddy covariance techniques for trace gas flux measurements

    International Nuclear Information System (INIS)

    Rinne, J.; Douffet, T.; Prigent, Y.; Durand, P.

    2008-01-01

    A field intercomparison experiment of the disjunct eddy covariance (DEC) and the conventional eddy covariance (EC) techniques was conducted over a grass field. The half-hourly water vapor fluxes measured by the DEC were within the estimated uncertainty from the fluxes measured by the EC. On the average there was a slight overestimation (<10%) of the fluxes measured by the DEC during the day and underestimation during the night as compared to the fluxes measured by the EC. As this bias does not appear in the simulated DEC measurements it is likely to be due to instrumental problems. The insensitivity of the quality of the fluxes measured by the DEC method to the deficiencies in the gas analysis shows the robustness of this new approach for measuring the surface-atmosphere exchange of trace gases. - Results from the first field intercomparison between a new state-of-the-art trace gas flux measurement technique and the direct eddy covariance measurements are reported in this paper

  3. Elucidating Carbon Exchange at the Regional Scale Via Airborne Eddy Covariance Flux Measurements

    Science.gov (United States)

    Hannun, R. A.; Wolfe, G. M.; Kawa, S. R.; Newman, P. A.; Hanisco, T. F.; Diskin, G. S.; DiGangi, J. P.; Nowak, J. B.; Barrick, J. D. W.; Thornhill, K. L., II; Noormets, A.; Vargas, R.; Clark, K. L.; Kustas, W. P.

    2017-12-01

    Direct flux observations from aircraft provide a unique tool for probing greenhouse gas (GHG) sources and sinks on a regional scale. Airborne eddy covariance, which relies on high-frequency, simultaneous measurements of fluctuations in concentration and vertical wind speed, is a robust method for quantifying surface-atmosphere exchange. We have assembled and flown an instrument payload onboard the NASA C-23 Sherpa aircraft capable of measuring CO2, CH4, H2O, and heat fluxes. Flights for the Carbon Airborne Flux Experiment (CARAFE) took place during September 2016 and May 2017 based out of Wallops Flight Facility, VA. Flight tracks covered a variety of ecosystems and land-use types in the Mid-Atlantic, including forests, croplands, and wetlands. Carbon fluxes are derived using eddy covariance and wavelet analysis. Our results show a strong drawdown of CO2 and near-zero CH4 emissions from crops and dry-land forest, but seasonally strong CH4 flux from wetland forest. CARAFE flux data will also be compared with observations from several flux towers along the flight path to complement the airborne measurements. We will further assess the effects of land surface type and seasonal variability in carbon exchange. Regional-scale flux observations from CARAFE supply a useful constraint for improving top-down and bottom up estimates of carbon sources and sinks.

  4. Eddy-covariance methane flux measurements over a European beech forest

    Science.gov (United States)

    Gentsch, Lydia; Siebicke, Lukas; Knohl, Alexander

    2015-04-01

    The role of forests in global methane (CH4) turnover is currently not well constrained, partially because of the lack of spatially integrative forest-scale measurements of CH4 fluxes. Soil chamber measurements imply that temperate forests generally act as CH4 sinks. Upscaling of chamber observations to the forest scale is however problematic, if the upscaling is not constrained by concurrent 'top-down' measurements, such as of the eddy-covariance type, which provide sufficient integration of spatial variations and of further potential CH4 flux components within forest ecosystems. Ongoing development of laser absorption-based optical instruments, resulting in enhanced measurement stability, precision and sampling speed, has recently improved the prospects for meaningful eddy-covariance measurements at sites with presumably low CH4 fluxes, hence prone to reach the flux detection limit. At present, we are launching eddy-covariance CH4 measurements at a long-running ICOS flux tower site (Hainich National Park, Germany), located in a semi natural, unmanaged, beech dominated forest. Eddy-covariance measurements will be conducted with a laser spectrometer for parallel CH4, H2Ov and CO2 measurements (FGGA, Los Gatos Research, USA). Independent observations of the CO2 flux by the FGGA and a standard Infrared Gas Analyser (LI-7200, LI-COR, USA) will allow to evaluate data quality of measured CH4 fluxes. Here, we want to present first results with a focus on uncertainties of the calculated CH4 fluxes with regard to instrument precision, data processing and site conditions. In future, we plan to compare eddy-covariance flux estimates to side-by-side turbulent flux observations from a novel eddy accumulation system. Furthermore, soil CH4 fluxes will be measured with four automated chambers situated within the tower footprint. Based on a previous soil chamber study at the same site, we expect the Hainich forest site to act as a CH4 sink. However, we hypothesize that our

  5. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, James Thomas

    2010-12-01

    The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

  6. Carbon dioxide flux measurements from a coastal Douglas-fir forest floor

    International Nuclear Information System (INIS)

    Drewitt, G.B.

    2002-01-01

    This thesis examined the process that affects the exchange of carbon between the soil and the atmosphere with particular attention to the large amounts of carbon stored in soils in the form of decaying organic matter. This forest floor measuring study was conducted in 2000 at a micro-meteorological tower flux site in a coastal temperature Douglas-fir forest. The measuring study involved half hourly measurements of both carbon dioxide and below-ground carbon dioxide storage. Measurements were taken at 6 locations between April and December to include a large portion of the growing season. Eddy covariance (EC) measurements of carbon dioxide flux above the forest floor over a two month period in the summer and the autumn were compared with forest floor measurements. Below-ground carbon dioxide mixing ratios of soil air were measured at 6 depths between 0.02 to 1 m using gas diffusion probes and a syringe sampling method. Maximum carbon dioxide fluxes measured by the soil chambers varied by a factor of 3 and a high spatial variability in soil carbon dioxide flux was noted. Forest floor carbon dioxide fluxes measured by each of the chambers indicated different sensitivities to soil temperature. Hysteresis in the flux temperature relationship over the year was evident. Reliable below-canopy EC measurements of the forest floor carbon dioxide flux were difficult to obtain because of the every low wind speeds below the forest canopy. The amount of carbon dioxde present in the soil increased rapidly with depth near the surface but less rapidly deeper in the soil. It was suggested that approximately half of the carbon dioxide produced below-ground comes from between the soil surface and the first 0.15 m of depth. Carbon dioxide fluxes from the floor of a Douglas-fir forest were found to be large compared to other, less productive ecosystems

  7. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    Directory of Open Access Journals (Sweden)

    A. Fraser

    2013-06-01

    Full Text Available We use an ensemble Kalman filter (EnKF, together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4 fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4 from GOSAT (Greenhouse gases Observing SATellite and/or NOAA ESRL (Earth System Research Laboratory and CSIRO GASLAB (Global Atmospheric Sampling Laboratory CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr−1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr−1. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr−1 occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45% than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2 and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our

  8. On line local measurement of thermal neutron flux on BNCT patient using SPND

    International Nuclear Information System (INIS)

    Miller, M.E.; Sztejnberg Goncalves-Carralves, M.L.; Gonzalez, S.J.

    2006-01-01

    The first on-line neutron flux measurement on a patient using a self-powered neutron detector (SPND) was assessed during the fourth clinical trial of the Boron Neutron Capture Therapy (BNCT) Project carried out at the National Atomic Energy Commission of Argentina (CNEA) and the medical center Angel H. Roffo. The SPND was specially developed and assembled for BNCT by CNEA. Its small size, 1 cm sensible length and 1.9 mm diameter, allowed performing a localized measurement. Since the treated tumors were cutaneous melanomas of nodular type, the SPND was located on the patient's skin. The patient was exposed to three different and consecutive fields and in each of them the SPND was used to measure local thermal neutron fluxes at selected dosimetric reference points. The values of the measured fluxes agreed with the ones estimated by calculation. This trial also demonstrated the usefulness of the SPND for assessing flux on-line. (author)

  9. Study on methodology of LED's luminous flux measurement with integrating sphere

    International Nuclear Information System (INIS)

    Liu Muqing; Zhou Xiaoli; Li Wenyi; Chen Yuyang; Zhang Wanlu

    2008-01-01

    Errors are introduced when using traditional methods for measuring the total luminous flux of LEDs since an LED is quite different from traditional light sources in terms of physical size, flux level, spectrum and spatial distribution. This paper uses commercial lighting simulation software named Tracepro to simulate the self-absorption effect when using traditional integrating sphere methods to measure the total luminous flux of LEDs and then presents a modified method for the measurement. The LED under investigation or a specially designed narrow beam standard lamp is placed on the interior wall of the sphere in our method. The results show that the measurement method presented here can lead to better precision in the evaluation of the total luminous flux of LEDs

  10. Measuring planetary neutron albedo fluxes by remote gamma-ray sensing

    Science.gov (United States)

    Haines, E. L.; Metzger, A. E.

    1984-01-01

    In order to measure the planetary neutron albedo fluxes, a neutron-absorbing shield which emits gamma rays of characteristic energy and serves as a neutron detector, is added to a gamma-ray spectrometer (GRS). The gamma rays representing the neutron flux are observed against interference consisting of cosmic gamma rays, planetary continuum and line emission, and gamma rays arising from the interaction of cosmic rays with the GRS and the spacecraft. The uncertainty and minimum detection limits in neutron albedo fluxes are calculated for two missions, a lunar orbiter and a comet nucleus rendezvous. A GRS on a lunar orbiter at 100 km altitude detects a thermal neutron albedo flux as low as 0.002/sq cm/s and an expected flux of about 0.6/sq cm/s is measured with an uncertainty of 0.001/sq cm/s, for a 100 h observation period. For the comet nucleus, again in a 100 h observing period, a thermal neutron albedo flux is detected at a level of 0.006/sq cm/s and an expected flux of about 0.4/sq cm/s is measured with an uncertainty of 0.004/sq cm/s. The expanded geological capabilities made possible by this technique include improvements in H sensitivity, spatial resolution, and measurement depth; and an improved model of induced gamma-ray emission.

  11. A stochastic model for estimating groundwater and contaminant discharges from fractured rock passive flux meter measurements

    Science.gov (United States)

    Acar, Özlem; Klammler, Harald; Hatfield, Kirk; Newman, Mark A.; Annable, Michael D.; Cho, Jaehyun; Parker, Beth L.; Cherry, John A.; Pehme, Pete; Quinn, Patryk; Kroeker, Ryan

    2013-03-01

    Estimation of water and contaminant discharges is an important hydrological problem. Fractured rock aquifers are recognized as highly complex flow and transport systems, and the fractured rock passive flux meter (FRPFM) is a recently tested device to simultaneously measure cumulative water and contaminant mass fluxes in fractures intersecting an observation well (boring). Furthermore, the FRPFM is capable of indicating orientations and directions of flow in hydraulically active ("flowing") fractures. The present work develops a discharge estimator for when FRPFM measurements of fracture fluxes in the direction perpendicular to a transect (control plane) along one or more observation wells are available. In addition, estimation uncertainty in terms of a coefficient of variation is assessed based on a Monte Carlo approach under normalized conditions. Sources of uncertainty considered are spatially random fracture trace locations, random trace lengths, and orientations as well as variability of trace average fluxes (including smooth spatial trends), variability of local fluxes within traces, and flux measurement errors. Knowledge about the trace length distribution, which is commonly not available from borehole surveys, is not required for discharge estimation. However, it does affect the uncertainty assessment, and equations for upper uncertainty bounds are given as an alternative. In agreement with general statistical inference, it is found that discharge uncertainty decreases proportionally with the number of fluxes measured. Results are validated, and an example problem illustrates practical application and performance.

  12. Direct Heat-Flux Measurement System (MDF) for Solar Central Receiver Evaluation

    International Nuclear Information System (INIS)

    Ballestrin, J.

    2001-01-01

    A direct flux measurement system, MDF, has been designed, constructed and mounted on top of the SSPSCRS tower at the Plataforma Solar de Almeria (PSA) in addition to an indirect flux measurement system based on a CCD camera. It's one of the main future objectives to compare systematically both measurements of the concentrated solar power, increasing in this way the confidence in the estimate of this quantity. Today everything is prepared to perform the direct flux measurement on the aperture of solar receivers: calorimeter array, data acquisition system and software. The geometry of the receiver determines the operation and analysis procedures to obtain the incident power onto the defined area. The study of previous experiences with direct flux measurement systems has been useful to define a new, simpler and more accurate system. A description of each component of the MDF system is included, focusing on the heat-flux sensors or calorimeters, which enables these measurements to be done in a few seconds without water-cooling. The incident solar power and the spatial flux distribution on the aperture of the volumetric receiver Hitrec II are supplied by the above-mentioned MDF system. The first results obtained during the evaluation of this solar receiver are presented including a sunrise-sunset test. AU these measurements have been concentrated in one coefficient that describes the global behavior of the Solar Power Plant. (Author) 18 refs

  13. Fluxes of energetic protons and electrons measured on board the Oersted satellite

    Directory of Open Access Journals (Sweden)

    J. Cabrera

    2005-11-01

    Full Text Available The Charged Particle Detector (CPD on board the Oersted satellite (649 km perigee, 865 km apogee and 96.48° inclination currently measures energetic protons and electrons. The measured peak fluxes of E>1 MeV electrons are found to confirm the predictions of AE8-MAX, though they occur at a geographical position relatively shifted in the SAA. The fluxes of protons are one order of magnitude higher than the predictions of AP8-MAX in the energy range 20-500 MeV. This huge discrepancy between AP8 and recent measurements in LEO was already noticed and modelled in SAMPEX/PSB97 and TPM-1 models. Nevertheless some other LEO measurements such as PROBA and CORONA-F result in flux values in good agreement with AP8 within a factor 2. The anisotropy of the low-altitude proton flux, combined with measurement performed on board three-axis stabilised satellites, has been suspected to be one possible source of the important discrepancies observed by different missions. In this paper, we evaluate the effect of anisotropy on flux measurements conducted using the CPD instruments. On the basis of the available data, we confirm the inaccuracy of AP8 at LEO and suggest methods to improve the analysis of data in future flux measurements of energetic protons at low altitudes.

  14. Direct Heat-Flux Measurement System (MDF) for Solar central Receiver Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin, J.

    2001-07-01

    A direct flux measurement system, MDF, has been designed, constructed and mounted on top of the SSPS-CRS tower at the Plataforma Solar de Almeria (PSA) in addition to an indirect flux measurement system based on a CCD camera. It's one of the main future objectives to compare systematically both measurements of the concentrated solar power, increasing in this way the confidence in the estimate of this quantity. Today everything is prepared to perform the direct flux measurement on the aperture of solar receivers: calorimeter array, data acquisition system and software. the geometry of the receiver determines the operation and analysis procedures to obtain the indecent power onto the defined area. The study of previous experiences with direct flux measurement systems ha been useful to define a new simpler and more accurate system. A description of each component of the MDF system is included, focusing on the heat-flux sensors or calorimeters, which enables these measurements to be done in a few seconds without water-cooling. The incident solar power and the spatial flux distribution on the aperture of the volumetric receiver Hitrec II are supplied by the above-mentioned MDF system. The first results obtained during the evaluation of this solar receiver are presented including a sunrise-sunset test. All these measurements have been concentrated in one coefficient that describes the global behavior of the Solar Power Plant. (Author) 18 refs.

  15. A scintillating fission detector for neutron flux measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stange, Sy [Los Alamos National Laboratory; Esch, Ernst I [Los Alamos National Laboratory; Burgett, Eric A [Los Alamos National Laboratory; May, Iain [Los Alamos National Laboratory; Muenchausen, Ross E [Los Alamos National Laboratory; Taw, Felicia [Los Alamos National Laboratory; Tovesson, Fredrik K [Los Alamos National Laboratory

    2010-01-01

    Neutron flux monitors are commonly used for a variety of nuclear physics applications. A scintillating neutron detector, consisting of a liquid scintillator loaded with fissionable material, has been developed, characterized, and tested in the beam line at the Los Alamos Neutron Science Center, and shows a significant improvement in neutron sensitivity compared with a conventional fission chamber. Recent research on nanocomposite-based scintillators for gamma-ray detection indicates that this approach can be extended to load nanoparticles of fissionable material into a scintillating matrix, with up to three orders of magnitude higher loading than typical fission chambers. This will result in a rugged, cost-efficient detector with high efficiency, a short signal rise time, and the ability to be used in low neutron-flux environments. Initial efforts to utilize the luminescence of uranyl oxide to eliminate the need for wavelength-shifting dyes were unsuccessful. Excitation of uranyl compounds has been reported at wavelengths ranging from 266 nm to 532 nm. However, neither the 300 nm emission of toluene, nor the 350 nm emission of PPO, nor the 410 nm emission of POPOP resulted in significant excitation of and emission by uranyl oxide. As indicated by UV/visible spectroscopy, light emitted at these wavelengths was absorbed by the colored solution. {sup 235}U remains the most attractive candidate for a fissionable scintillator, due to its high fission cross-section and lack of a threshold fission energy, but all solutions containing molecular uranium compounds will be colored, most more highly than the U{sup 6+} compounds used here. Research is therefore continuing toward the fabrication of uranium nanoparticles, in which, due to Rayleigh scattering, the coloration should be less pronounced. The characterization of the thorium-loaded liquid scintillator and the fabrication of the 100 mL detectors for use at LANSCE demonstrated the feasibility of loading fissionable

  16. Nightside electron flux measurements at Mars by the Phobos-2 HARP instrument

    Science.gov (United States)

    Shutte, N.; Gringauz, K.; Kiraly, P.; Kotova, G.; Nagy, A. F.; Rosenbauer, H.; Szego, K.; Verigin, M.

    1995-01-01

    All the available nightside electron data obtained during circular orbits at Mars from the Phobos-2 Hyperbolic Retarded Potential Analyzer (HARP) instrument have been examined in detail and are summarized in this paper. An electron flux component with energies exceeding that of the unperturbed solar wind was observed inside the magnetosheath, indicating the presence of acceleration mechanism(s). The character of the electron fluxes measured in the magnetotail cannot be classified in any simple manner, however, there is a correlation between the electron fluxes measured well inside this region and the unperturbed solar wind ram pressure.

  17. Research on measurement of neutron flux in irradiation channels of research reactor

    International Nuclear Information System (INIS)

    Yin Zhitao; Lv Zheng; Wang Yulin; Zheng Wuqin

    2014-01-01

    Relative distribution of thermal neutron flux in the irradiation channel is measured by classical activation foil method. After that, on a representative point in the irradiation channel, neutron temperature and absolute neutron flux are also measured. Cadmium ratio correction method is used to check the experiment result in the end. Comparative analysis shows that the results from two different methods are agreed pretty well, which adds the credibility of experiment results. (authors)

  18. Direct Measurement of CO2 Fluxes in Marine Whitings

    Energy Technology Data Exchange (ETDEWEB)

    Lisa L. Robbins; Kimberly K. Yates

    2001-07-05

    Clean, affordable energy is a requisite for the United States in the 21st Century Scientists continue to debate over whether increases in CO{sub 2} emissions to the atmosphere from anthropogenic sources, including electricity generation, transportation and building systems may be altering the Earth's climate. While global climate change continues to be debated, it is likely that significant cuts in net CO{sub 2} emissions will be mandated over the next 50-100 years. To this end, a number of viable means of CO{sub 2} sequestration need to be identified and implemented. One potential mechanism for CO{sub 2} sequestration is the use of naturally-occurring biological processes. Biosequestration of CO{sub 2} remains one of the most poorly understood processes, yet environmentally safe means for trapping and storing CO{sub 2}. Our investigation focused on the biogeochemical cycling of carbon in microbial precipitations of CaCO{sub 3}. Specifically, we investigated modern whitings (microbially-induced precipitates of the stable mineral calcium carbonate) as a potential, natural mechanism for CO{sub 2} abatement. This process is driven by photosynthetic metabolism of cyanobacteria and microalgae. We analyzed net air: sea CO{sub 2} fluxes, net calcification and photosynthetic rates in whitings. Both field and laboratory investigations have demonstrated that atmospheric CO{sub 2}decreases during the process of microbial calcification.

  19. Pollutant Flux Estimation in an Estuary Comparison between Model and Field Measurements

    Directory of Open Access Journals (Sweden)

    Yen-Chang Chen

    2014-08-01

    Full Text Available This study proposes a framework for estimating pollutant flux in an estuary. An efficient method is applied to estimate the flux of pollutants in an estuary. A gauging station network in the Danshui River estuary is established to measure the data of water quality and discharge based on the efficient method. A boat mounted with an acoustic Doppler profiler (ADP traverses the river along a preselected path that is normal to the streamflow to measure the velocities, water depths and water quality for calculating pollutant flux. To know the characteristics of the estuary and to provide the basis for the pollutant flux estimation model, data of complete tidal cycles is collected. The discharge estimation model applies the maximum velocity and water level to estimate mean velocity and cross-sectional area, respectively. Thus, the pollutant flux of the estuary can be easily computed as the product of the mean velocity, cross-sectional area and pollutant concentration. The good agreement between the observed and estimated pollutant flux of the Danshui River estuary shows that the pollutant measured by the conventional and the efficient methods are not fundamentally different. The proposed method is cost-effective and reliable. It can be used to estimate pollutant flux in an estuary accurately and efficiently.

  20. Simultaneous coastal measurements of ozone deposition fluxes and iodine-mediated particle emission fluxes with subsequent CCN formation

    Directory of Open Access Journals (Sweden)

    J. D. Whitehead

    2010-01-01

    Full Text Available Here we present the first observations of simultaneous ozone deposition fluxes and ultrafine particle emission fluxes over an extensive infra-littoral zone. Fluxes were measured by the eddy covariance technique at the Station Biologique de Roscoff, on the coast of Brittany, north-west France. This site overlooks a very wide (3 km littoral zone controlled by very deep tides (9.6 m exposing extensive macroalgae beds available for significant iodine mediated photochemical production of ultrafine particles. The aspect at the Station Biologique de Roscoff provides an extensive and relatively flat, uniform fetch within which micrometeorological techniques may be utilized to study links between ozone deposition to macroalgae (and sea water and ultrafine particle production.

    Ozone deposition to seawater at high tide was significantly slower (vd[O3]=0.302±0.095 mm s−1 than low tidal deposition. A statistically significant difference in the deposition velocities to macroalgae at low tide was observed between night time (vd[O3]=1.00±0.10 mm s−1 and daytime (vd[O3]=2.05±0.16 mm s−1 when ultrafine particle formation results in apparent particle emission. Very high emission fluxes of ultrafine particles were observed during daytime periods at low tides ranging from 50 000 particles cm−2 s−1 to greater than 200 000 particles cm−2 s−1 during some of the lowest tides. These emission fluxes exhibited a significant relationship with particle number concentrations comparable with previous observations at another location. Apparent particle growth rates were estimated to be in the range 17–150 nm h−1 for particles in the size range 3–10 nm. Under certain conditions, particle growth may be inferred to continue to greater than 120 nm over tens

  1. The development and validation of an unmanned aerial system (UAS) for the measurement of methane flux

    Science.gov (United States)

    Allen, G.; Shah, A.; Williams, P. I.; Ricketts, H.; Hollingsworth, P.; Kabbabe, K.; Bourn, M.; Pitt, J. R.; Helmore, J.; Lowry, D.; Robinson, R. A.; Finlayson, A.

    2017-12-01

    Emission controls for CH4are a part of the Paris Agreement and other national emissions strategies. This work represents a new method for precise quantification of point-source and facility-level methane emissions flux rates to inform both the climate science community and policymakers. In this paper, we describe the development of an integrated Unmanned Aerial System (UAS) for the measurement of high-precision in-situ CH4 concentrations. We also describe the development of a mass balance flux calculation model tailored to UAS plume sampling downwind; and the validation of this method using a known emission flux from a controlled release facility. A validation field trial was conducted at the UK Met Office site in Cardington, UK, between 31 Oct and 4 Nov 2016 using the UK National Physical Laboratory's Controlled Release Facility (CRF). A modified DJI-S900 hexrotor UAS was tethered via an inlet to a ground-based Los Gatos Ultraportable Greenhouse Gas Analyser to record geospatially-referenced methane (and carbon dioxide) concentrations. Methane fluxes from the CRF were emitted at 5 kg/hr and 10 kg/hr in a series of blind trials (fluxes were not reported to the team prior to the calculation of UAS-derived flux) for a total of 7 UAS flights, which sampled 200 m downwind of source(s), each lasting around 20 minutes. The flux calculation method was adapted for sampling considerations downwind of an emission source that has not had sufficient time to develop a Gaussian morphology. The UAS-measured methane fluxes, and representative flux uncertainty (derived from an error propagation model), were found to compare well with the controlled CH4 emission rate. For the 7 experiments, the standard error between the measured and emitted CH4 flux was found to be +/-6% with a mean bias of +0.4 kg/hr. Limits of flux sensitivity (to within 25% uncertainty) were found to extend to as little as 0.12 kg/h. Further improvements to the accuracy of flux calculation could be made by

  2. Hydrogen sulfide flux measurements from construction and demolition debris (C&D) landfills.

    Science.gov (United States)

    Eun, Sangho; Reinhart, Debra R; Cooper, C David; Townsend, Timothy G; Faour, Ayman

    2007-01-01

    Hydrogen sulfide (H2S) has been identified as a principal odorous component of gaseous emissions from construction and demolition debris (C&D) landfills. Although several studies have reported the ambient concentrations of H2S near C&D landfills, few studies have quantified emission rates of H2S. One of the most widely used techniques for measuring surface gas emission rates from landfills is the flux chamber method. Flux measurements using the flux chamber were performed at five different C&D landfills from April to August, 2003. The flux rates of H2S measured in this research were between 0.192 and 1.76 mg/(m2-d).

  3. Surface Catalysis and Oxidation on Stagnation Point Heat Flux Measurements in High Enthalpy Arc Jets

    Science.gov (United States)

    Nawaz, Anuscheh; Driver, David M.; Terrazas-Salinas

    2013-01-01

    Heat flux sensors are routinely used in arc jet facilities to determine heat transfer rates from plasma plume. The goal of this study is to assess the impact of surface composition changes on these heat flux sensors. Surface compositions can change due to oxidation and material deposition from the arc jet. Systematic surface analyses of the sensors were conducted before and after exposure to plasma. Currently copper is commonly used as surface material. Other surface materials were studied including nickel, constantan gold, platinum and silicon dioxide. The surfaces were exposed to plasma between 0.3 seconds and 3 seconds. Surface changes due to oxidation as well as copper deposition from the arc jets were observed. Results from changes in measured heat flux as a function of surface catalycity is given, along with a first assessment of enthalpy for these measurements. The use of cupric oxide is recommended for future heat flux measurements, due to its consistent surface composition arc jets.

  4. Measurement of momentum flux using two meteor radars in Indonesia

    Directory of Open Access Journals (Sweden)

    N. Matsumoto

    2016-03-01

    Full Text Available Two nearly identical meteor radars were operated at Koto Tabang (0.20° S, 100.32° E, West Sumatra, and Biak (1.17° S, 136.10° E, West Papua, in Indonesia, separated by approximately 4000 km in longitude on the Equator. The zonal and meridional momentum flux, u′w′ and v′w′, where u, v, and w are the eastward, northward, and vertical wind velocity components, respectively, were estimated at 86 to 94 km altitudes using the meteor radar data by applying a method proposed by Hocking (2005. The observed u′w′ at the two sites agreed reasonably well at 86, 90, and 94 km during the observation periods when the data acquisition rate was sufficiently large enough. Variations in v′w′ were consistent between 86, 90, and 94 km altitudes at both sites. The climatological variation in the monthly averaged u′w′ and v′w′ was investigated using the long-term radar data at Koto Tabang from November 2002 to November 2013. The seasonal variations in u′w′ and v′w′ showed a repeatable semiannual and annual cycles, respectively. u′w′ showed eastward values in February–April and July–September and v′w′ was northward in June to August at 90–94 km, both of which were generally anti-phase with the mean zonal and meridional winds, having the same periodicity. Our results suggest the usefulness of the Hocking method.

  5. Measurements of carbon dioxide and heat fluxes during monsoon ...

    Indian Academy of Sciences (India)

    An increase in carbon dioxide (CO2) concentrations in the atmosphere due to anthropogenic activities is responsible for global warming and hence in recent years, CO2 measurement network has expanded globally. In the monsoon season (July–September) of year 2011, we carried out measurements of CO2 and water ...

  6. Energetic ion diagnostics using neutron flux measurements during pellet injection

    Energy Technology Data Exchange (ETDEWEB)

    Heidbrink, W.W.

    1986-01-01

    Neutron measurements during injection of deuterium pellets into deuterium plasmas on the Tokamak Fusion Test Reactor (TFTR) indicate that the fractional increase in neutron emission about 0.5 msec after pellet injection is proportional to the fraction of beam-plasma reactions to total fusion reactions in the unperturbed plasma. These observations suggest three diagnostic applications of neutron measurements during pellet injection: (1) measurement of the beam-plasma reaction rate in deuterium plasmas for use in determining the fusion Q in an equivalent deuterium-tritium plasma, (2) measurement of the radial profile of energetic beam ions by varying the pellet size and velocity, and (3) measurement of the ''temperature'' of ions accelerated during wave heating. 18 refs., 3 figs.

  7. Energetic ion diagnostics using neutron flux measurements during pellet injection

    International Nuclear Information System (INIS)

    Heidbrink, W.W.

    1986-01-01

    Neutron measurements during injection of deuterium pellets into deuterium plasmas on the Tokamak Fusion Test Reactor (TFTR) indicate that the fractional increase in neutron emission about 0.5 msec after pellet injection is proportional to the fraction of beam-plasma reactions to total fusion reactions in the unperturbed plasma. These observations suggest three diagnostic applications of neutron measurements during pellet injection: (1) measurement of the beam-plasma reaction rate in deuterium plasmas for use in determining the fusion Q in an equivalent deuterium-tritium plasma, (2) measurement of the radial profile of energetic beam ions by varying the pellet size and velocity, and (3) measurement of the ''temperature'' of ions accelerated during wave heating. 18 refs., 3 figs

  8. Seasonality of Overstory and Understory Fluxes in a Semi-Arid Oak Savanna: What can be Learned from Comparing Measured and Modeled Fluxes?

    Science.gov (United States)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Chen, J. M.; Verfaillie, J. G.; Ma, S.; Baldocchi, D. D.

    2011-12-01

    Semi-arid climates experience large seasonal and inter-annual variability in radiation and precipitation, creating natural conditions adequate to study how year-to-year changes affect atmosphere-biosphere fluxes. Especially, savanna ecosystems, that combine tree and below-canopy components, create a unique environment in which phenology dramatically changes between seasons. We used a 10-year flux database in order to define seasonal and interannual variability of climatic inputs and fluxes, and evaluate model capability to reproduce observed variability. This is based on the perception that model capability to construct the deviation, and not the average, is important in order to correctly predict ecosystem sensitivity to climate change. Our research site is a low density and low LAI (0.8) semi-arid savanna, located at Tonzi Ranch, Northern California. In this system, trees are active during the warm season (Mar - Oct), and grasses are active during the wet season (Dec - May). Measurements of carbon and water fluxes above and below the tree canopy using eddy covariance and supplementary measurements have been made since 2001. Fluxes were simulated using bio-meteorological process-oriented ecosystem models: BEPS and 3D-CAONAK. Models were partly capable of reproducing fluxes on daily scales (R2=0.66). We then compared model outputs for different ecosystem components and seasons, and found distinct seasons with high correlations while other seasons were purely represented. Comparison was much higher for ET than for GPP. The understory was better simulated than the overstory. CANOAK overestimated spring understory fluxes, probably due to the capability to directly calculated 3D radiative transfer. BEPS underestimated spring understory fluxes, following the pre-description of grass die-off. Both models underestimated peak spring overstory fluxes. During winter tree dormant, modeled fluxes were null, but occasional high fluxes of both ET and GPP were measured following

  9. Leakage Tests of the Stainless Steel Vessels of the Antineutrino Detectors in the Daya Bay Reactor Neutrino Experiment

    OpenAIRE

    Chen, Xiaohui; Luo, Xiaolan; Heng, Yuekun; Wang, Lingshu; Tang, Xiao; Ma, Xiaoyan; Zhuang, Honglin; Band, Henry; Cherwinka, Jeff; Xiao, Qiang; Heeger, Karsten M.

    2012-01-01

    The antineutrino detectors in the Daya Bay reactor neutrino experiment are liquid scintillator detectors designed to detect low energy particles from antineutrino interactions with high efficiency and low backgrounds. Since the antineutrino detector will be installed in a water Cherenkov cosmic ray veto detector and will run for 3 to 5 years, ensuring water tightness is critical to the successful operation of the antineutrino detectors. We choose a special method to seal the detector. Three l...

  10. Measurement of emission fluxes from Technical Area 54, Area G and L. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, B. [Radian Corp., Austin, TX (United States)

    1995-03-15

    The emission flux (mass/time-area) of tritiated water from TA-54 was measured to support the characterization of radioactive air emissions from waste sites for the Radioactive Air Emissions Management (RAEM) program and for the Area G Performance Assessment. Measurements were made at over 180 locations during the summers of 1993 and 1994, including randomly selected locations across Area G, three suspected areas of contamination at Area G, and the property surrounding TA-54. The emission fluxes of radon were measured at six locations and volatile organic compounds (VOCs) at 30 locations. Monitoring was performed at each location over a several-hour period using the U.S. EPA flux chamber approach. Separate samples for tritiated water, radon, and VOCs were collected and analyzed in off-site laboratories. The measured tritiated water emission fluxes varied over several orders of magnitude, from background levels of about 3 pCi/m{sup 2}-min to 9.69 x 10{sup 6} pCi/m{sup 2}-min near a disposal shaft. Low levels of tritiated water were found to have migrated into Pajarito Canyon, directly south of Area G. The tritium flux data were used to generate an estimated annual emission rate of 14 Curies/yr for all of Area G, with the majority of this activity being emitted from relatively small areas adjacent to several disposal shafts. The estimated total annual release is less than 1% of the total tritium release from all LANL in 1992 and results in a negligible off-site dose. Based on the limited data available, the average emission flux of radon from Area G is estimated to be 8.1 pCi/m{sup 2}-min. The measured emission fluxes of VOCs were < 100 {mu}g/m{sup 2}-min, which is small compared with fluxes typically measured at hazardous waste landfills. The air quality impacts of these releases were evaluated in a separate report.

  11. Measurement of emission fluxes from Technical Area 54, Area G and L. Final report

    International Nuclear Information System (INIS)

    Eklund, B.

    1995-01-01

    The emission flux (mass/time-area) of tritiated water from TA-54 was measured to support the characterization of radioactive air emissions from waste sites for the Radioactive Air Emissions Management (RAEM) program and for the Area G Performance Assessment. Measurements were made at over 180 locations during the summers of 1993 and 1994, including randomly selected locations across Area G, three suspected areas of contamination at Area G, and the property surrounding TA-54. The emission fluxes of radon were measured at six locations and volatile organic compounds (VOCs) at 30 locations. Monitoring was performed at each location over a several-hour period using the U.S. EPA flux chamber approach. Separate samples for tritiated water, radon, and VOCs were collected and analyzed in off-site laboratories. The measured tritiated water emission fluxes varied over several orders of magnitude, from background levels of about 3 pCi/m 2 -min to 9.69 x 10 6 pCi/m 2 -min near a disposal shaft. Low levels of tritiated water were found to have migrated into Pajarito Canyon, directly south of Area G. The tritium flux data were used to generate an estimated annual emission rate of 14 Curies/yr for all of Area G, with the majority of this activity being emitted from relatively small areas adjacent to several disposal shafts. The estimated total annual release is less than 1% of the total tritium release from all LANL in 1992 and results in a negligible off-site dose. Based on the limited data available, the average emission flux of radon from Area G is estimated to be 8.1 pCi/m 2 -min. The measured emission fluxes of VOCs were 2 -min, which is small compared with fluxes typically measured at hazardous waste landfills. The air quality impacts of these releases were evaluated in a separate report

  12. Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements

    Science.gov (United States)

    Peltola, O.; Mammarella, I.; Haapanala, S.; Burba, G.; Vesala, T.

    2013-06-01

    Performances of four methane gas analyzers suitable for eddy covariance measurements are assessed. The assessment and comparison was performed by analyzing eddy covariance data obtained during summer 2010 (1 April to 26 October) at a pristine fen, Siikaneva, Southern Finland. High methane fluxes with pronounced seasonality have been measured at this fen. The four participating methane gas analyzers are commercially available closed-path units TGA-100A (Campbell Scientific Inc., USA), RMT-200 (Los Gatos Research, USA), G1301-f (Picarro Inc., USA) and an early prototype open-path unit Prototype-7700 (LI-COR Biosciences, USA). The RMT-200 functioned most reliably throughout the measurement campaign, during low and high flux periods. Methane fluxes from RMT-200 and G1301-f had the smallest random errors and the fluxes agree remarkably well throughout the measurement campaign. Cospectra and power spectra calculated from RMT-200 and G1301-f data agree well with corresponding temperature spectra during a high flux period. None of the gas analyzers showed statistically significant diurnal variation for methane flux. Prototype-7700 functioned only for a short period of time, over one month, in the beginning of the measurement campaign during low flux period, and thus, its overall accuracy and season-long performance were not assessed. The open-path gas analyzer is a practical choice for measurement sites in remote locations due to its low power demand, whereas for G1301-f methane measurements interference from water vapor is straightforward to correct since the instrument measures both gases simultaneously. In any case, if only the performance in this intercomparison is considered, RMT-200 performed the best and is the recommended choice if a new fast response methane gas analyzer is needed.

  13. Pool size measurements facilitate the determination of fluxes at branching points in nonstationary metabolic flux analysis: The case of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Robert eHeise

    2015-06-01

    Full Text Available Pool size measurements are important for the estimation of absolute intracellular fluxes in particular scenarios based on data from heavy carbon isotope experiments. Recently, steady-state fluxes estimates were obtained for central carbon metabolism in an intact illuminated rosette of Arabidopsis thaliana grown photoautotrophically (Szecowka et al., 2013; Heise et al., 2014. Fluxes were estimated therein by integrating mass-spectrometric data of the dynamics of the unlabeled metabolic fraction, data on metabolic pool sizes, partitioning of metabolic pools between cellular compartments and estimates of photosynthetically inactive pools, with a simplified model of plant central carbon metabolism. However, the fluxes were determined by treating the pool sizes as fixed parameters. Here we investigated whether and, if so, to what extent the treatment of pool sizes as parameters to be optimized in three scenarios may affect the flux estimates. The results are discussed in terms of benchmark values for canonical pathways and reactions, including starch and sucrose synthesis as well as the ribulose-1,5-bisphosphate carboxylation and oxygenation reactions. In addition, we discuss pathways emerging from a divergent branch point for which pool sizes are required for flux estimation, irrespective of the computational approach used for the simulation of the observable labelling pattern. Therefore, our findings indicate the necessity for development of techniques for accurate pool size measurements to improve the quality of flux estimates from nonstationary flux estimates in intact plant cells in the absence of alternative flux measurements.

  14. Dual-stage trapped-flux magnet cryostat for measurements at high magnetic fields

    Science.gov (United States)

    Islam, Zahirul; Das, Ritesh K.; Weinstein, Roy

    2015-04-14

    A method and a dual-stage trapped-flux magnet cryostat apparatus are provided for implementing enhanced measurements at high magnetic fields. The dual-stage trapped-flux magnet cryostat system includes a trapped-flux magnet (TFM). A sample, for example, a single crystal, is adjustably positioned proximate to the surface of the TFM, using a translation stage such that the distance between the sample and the surface is selectively adjusted. A cryostat is provided with a first separate thermal stage provided for cooling the TFM and with a second separate thermal stage provided for cooling sample.

  15. Search for the Neutrino Magnetic Moment in the Non-Equilibrium Reactor Antineutrino Energy Spectrum

    OpenAIRE

    Kopeikin, V. I.; Mikaelyan, L. A.; Sinev, V. V.

    1999-01-01

    We study the time evolution of the typical nuclear reactor antineutrino energy spectrum during reactor ON period and the decay of the residual antineutrino spectrum after reactor is stopped. We find that relevant variations of the soft recoil electron spectra produced via weak and magnetic ${\\widetilde {\

  16. Reference detectors for low flux optical radiation measurements

    International Nuclear Information System (INIS)

    Bellouati-Ghazi, Amal

    2003-01-01

    The parametric down conversion of photons generated in a non-linear crystal gives rise to two correlated photons. Associated to a System of counting of coincidences, this phenomenon makes possible the quantum efficiency measurements of detectors working on photon counting levels, without using neither sources nor detectors of references. This new method was developed at BNMINM with the aim to realize new standards detectors in the field of weak flows. It allows the determination of quantum efficiency with a relative uncertainty of 1,1%. A comparison with the IENGF (Italy) bearing on the quantum determination of efficiency of one of BNM-FNM detectors made possible to confront the exactitude of the measuring equipment. This detector was also made the object of a comparison with the French reference of radiometry, the cryogenic radiometer, the results were in agreement with uncertainties of measurements. (author) [fr

  17. Flux measurements in the LEU refueled Slowpoke-2 reactor of Ecole Polytechnique de Montreal

    Energy Technology Data Exchange (ETDEWEB)

    EL Hajjaji, O.; Kennedy, G.; Rozon, D. [Ecole Polytechnique de Montreal, Quebec (Canada). Institut de Genie Nucleaire]. E-mail: elhajj@meca.polymtl.ca

    1998-07-01

    The HEU (93%) SLOWPOKE-2 reactor of Ecole Polytechnique de Montreal was refueled in September 1997 with (20%) LEU fuel after twenty years of operation. Upon completion of refueling the thermal and epithermal neutron fluxes were measured at four radii in the new core by irradiating gold and copper wire at 20 W for 10 minutes. These flux profiles were normalized to the values measured in an irradiation site in the beryllium reflector. We have also used the DRAGON/DONJON chain of codes and a detailed SLOWPOKE reactor model to calculate the flux distribution in the core and in the irradiation site. The calculated flux profiles along the four vertical lines are in agreement with the experimental values. This work also enable us to validate our codes, normally used for power reactors, for a low power research reactor. (author)

  18. Flux measurements in the LEU refueled Slowpoke-2 reactor of Ecole Polytechnique de Montreal

    International Nuclear Information System (INIS)

    EL Hajjaji, O.; Kennedy, G.; Rozon, D.

    1998-01-01

    The HEU (93%) SLOWPOKE-2 reactor of Ecole Polytechnique de Montreal was refueled in September 1997 with (20%) LEU fuel after twenty years of operation. Upon completion of refueling the thermal and epithermal neutron fluxes were measured at four radii in the new core by irradiating gold and copper wire at 20 W for 10 minutes. These flux profiles were normalized to the values measured in an irradiation site in the beryllium reflector. We have also used the DRAGON/DONJON chain of codes and a detailed SLOWPOKE reactor model to calculate the flux distribution in the core and in the irradiation site. The calculated flux profiles along the four vertical lines are in agreement with the experimental values. This work also enable us to validate our codes, normally used for power reactors, for a low power research reactor. (author)

  19. Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer, S; Dietrich, P

    2009-01-01

    information representing observation wells installed along control planes using different well frequencies and configurations. Results of the scenario simulations show that temporally variable flow conditions can lead to significant temporal fluctuations of the concentration and thus are a substantial source...... is present, the concentration variability due to a fluctuating groundwater flow direction varies significantly within the control plane and between the different realizations. Determination of contaminant mass fluxes is also influenced by the temporal variability of the concentration measurement, especially...... periods of groundwater flow fluctuation. For the determination of mass fluxes at heterogeneous sites, however, local fluxes, which may vary considerably along a control plane, have to be accounted for. Here, dosimeter sampling in combination with time integrated local water flux measurements can improve...

  20. Notes on neutron flux measurement; Notas sobre medida de flujos neutronicos

    Energy Technology Data Exchange (ETDEWEB)

    Alcala Ruiz, F.

    1984-07-01

    The main purpose of this work is to get an useful guide to carry out topical neutron flux measurements. Although the foil activation technique is used in the majority of the cases, other techniques, such as those based on fission chambers and self-powered neutron detectors, are also shown. Special interest is given to the description and application of corrections on the measurement of relative and absolute induced activities by several types of detectors (scintillators, G-M and gas proportional counters). The thermal arid epithermal neutron fluxes, as determined in this work, are conventional or effective (West cots fluxes), which are extensively used by the reactor experimentalists; however, we also give some expressions where they are related to the integrated neutron fluxes, which are used in neutron calculations. (Author) 16 refs.

  1. An instrument for measuring the momentum flux from atomic and charged particle jets

    International Nuclear Information System (INIS)

    Cohen, S.A.; Zonca, F.; Timberlake, J.; Bennett, T.; Cuthbertson, J.; Langer, W.; Motley, R.

    1990-07-01

    We have developed an instrument to measure the momentum flux from an intense plasma stream for which the standard techniques used for low pressure gases ( -5 - 10 -3 Newtons with a response time of 10 12 cm -3 ). Such forces are transmitted predominantly by ionic and neutral species, with 10's of eV's of kinetic energy, are accompanied by high heat fluxes, and are pulsed. The momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer, a capacitance-type pressure gauge. This protects the transducer from thermal damage, arcing and sputtering. An absolute force calibration of the PMM to 1% accuracy has been made is described. A flat carbon target has been used in measurements of the momentum flux of He, Ne, Ar, and Kr, plasmas produced in a magnetized linear plasma device. 7 refs., 7 figs

  2. The energy dependence of photon-flux and efficiency in the NRF measurement

    Energy Technology Data Exchange (ETDEWEB)

    Agar, Osman [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Karamanoglu Mehmetbey University, Department of Physics, 70100 Karaman (Turkey); Gayer, Udo; Merter, Laura; Pai, Haridas; Pietralla, Norbert; Ries, Philipp; Romig, Christopher; Werner, Volker; Schillling, Marcel; Zweidinger, Markus [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany)

    2016-07-01

    The calibration of the detector efficiency and the photon-flux distribution play an important role during the analysis of nuclear resonance fluorescence (NRF) measurements. The nucleus {sup 11}B is a frequently used calibration target with well-known photo-excitation cross sections. The product of photon flux and efficiency is determined exploiting γ-ray transitions of the {sup 11}B monitoring target. Photon-flux calibrations from numerous measurements at the superconducting Darmstadt electron linear accelerator (S-DALINAC) are carried out up to the neutron separation threshold, in order to obtain a system check of influences of absorbers on the flux, and to check against different GEANT models as well as parametrizations of the Schiff formula.

  3. The truth is out there: measured, calculated and modelled benthic fluxes.

    Science.gov (United States)

    Pakhomova, Svetlana; Protsenko, Elizaveta

    2016-04-01

    In a modern Earth science there is a great importance of understanding the processes, forming the benthic fluxes as one of element sources or sinks to or from the water body, which affects the elements balance in the water system. There are several ways to assess benthic fluxes and here we try to compare the results obtained by chamber experiments, calculated from porewater distributions and simulated with model. Benthic fluxes of dissolved elements (oxygen, nitrogen species, phosphate, silicate, alkalinity, iron and manganese species) were studied in the Baltic and Black Seas from 2000 to 2005. Fluxes were measured in situ using chamber incubations (Jch) and at the same time sediment cores were collected to assess the porewater distribution at different depths to calculate diffusive fluxes (Jpw). Model study was carried out with benthic-pelagic biogeochemical model BROM (O-N-P-Si-C-S-Mn-Fe redox model). It was applied to simulate biogeochemical structure of the water column and upper sediment and to assess the vertical fluxes (Jmd). By the behaviour at the water-sediment interface all studied elements can be divided into three groups: (1) elements which benthic fluxes are determined by the concentrations gradient only (Si, Mn), (2) elements which fluxes depend on redox conditions in the bottom water (Fe, PO4, NH4), and (3) elements which fluxes are strongly connected with organic matter fate (O2, Alk, NH4). For the first group it was found that measured fluxes are always higher than calculated diffusive fluxes (1.5advantage of a more accurate calculation of diffusive fluxes especially for redox dependent elements. Model results showed that in 50 cm above the sediment vertical fluxes are changing largely while in chamber experiments they are averaged. As a result, each of the methods has its disadvantages and the main facing us question is - which value should be taken for calculation the balance? This research is funded by VISTA - a basic research program and

  4. Flux Measurements in Trees: Methodological Approach and Application to Vineyards

    Directory of Open Access Journals (Sweden)

    Francesca De Lorenzi

    2008-03-01

    Full Text Available In this paper a review of two sap flow methods for measuring the transpiration in vineyards is presented. The objective of this work is to examine the potential of detecting transpiration in trees in response to environmental stresses, particularly the high concentration of ozone (O3 in troposphere. The methods described are the stem heat balance and the thermal dissipation probe; advantages and disadvantages of each method are detailed. Applications of both techniques are shown, in two large commercial vineyards in Southern Italy (Apulia and Sicily, submitted to semi-arid climate. Sap flow techniques allow to measure transpiration at plant scale and an upscaling procedure is necessary to calculate the transpiration at the whole stand level. Here a general technique to link the value of transpiration at plant level to the canopy value is presented, based on experimental relationships between transpiration and biometric characteristics of the trees. In both vineyards transpiration measured by sap flow methods compares well with evapotranspiration measured by micrometeorological techniques at canopy scale. Moreover soil evaporation component has been quantified. In conclusion, comments about the suitability of the sap flow methods for studying the interactions between trees and ozone are given.

  5. On the Discrepancies between CO2 Flux Measurement Methods

    NARCIS (Netherlands)

    Oost, W.A.; Kohsiek, W.; Leeuw, G. de; Kunz, G.J.; Smith, S.D.; Anderson, R.J.; Hertzman, O.

    1995-01-01

    In 1993 the ASGASEX (for Air-Sea GAS Exchange) experiment took place at Meetpost Noordwijk, a research platform off the Dutch coast. One of the aims of the project was to try to find an explanation for the order of magnitude difference between transfer velocities for CO2, measured with the eddy

  6. 3-D density imaging with muon flux measurements from underground galleries

    Science.gov (United States)

    Lesparre, N.; Cabrera, J.; Marteau, J.

    2017-03-01

    Atmospheric muon flux measurements provide information on subsurface density distribution. In this study, muon flux was measured underground, in the Tournemire experimental platform (France). The objective was to image the medium between the galleries and the surface and evaluate the feasibility to detect the presence of discontinuities, for example, produced by secondary subvertical faults or by karstic networks. Measurements were performed from three different sites with a partial overlap of muon trajectories, offering the possibility to seek density variations at different depths. The conversion of the measured muon flux to average density values showed global variations further analysed through a 3-D nonlinear inversion procedure. Main results are the presence of a very low density region at the level of the upper aquifer, compatible with the presence of a karstic network hosting local cavities, and the absence of secondary faults. We discuss the validity of the present results and propose different strategies to improve the accuracy of such measurements and analysis.

  7. Spatially explicit regionalization of airborne flux measurements using environmental response functions

    Directory of Open Access Journals (Sweden)

    S. Metzger

    2013-04-01

    Full Text Available The goal of this study is to characterize the sensible (H and latent (LE heat exchange for different land covers in the heterogeneous steppe landscape of the Xilin River catchment, Inner Mongolia, China. Eddy-covariance flux measurements at 50–100 m above ground were conducted in July 2009 using a weight-shift microlight aircraft. Wavelet decomposition of the turbulence data enables a spatial discretization of 90 m of the flux measurements. For a total of 8446 flux observations during 12 flights, MODIS land surface temperature (LST and enhanced vegetation index (EVI in each flux footprint are determined. Boosted regression trees are then used to infer an environmental response function (ERF between all flux observations (H, LE and biophysical (LST, EVI and meteorological drivers. Numerical tests show that ERF predictions covering the entire Xilin River catchment (≈3670 km2 are accurate to ≤18% (1 σ. The predictions are then summarized for each land cover type, providing individual estimates of source strength (36 W m−2 H −2, 46 W m−2 −2 and spatial variability (11 W m−2 H −2, 14 W m−2 LE −2 to a precision of ≤5%. Lastly, ERF predictions of land cover specific Bowen ratios are compared between subsequent flights at different locations in the Xilin River catchment. Agreement of the land cover specific Bowen ratios to within 12 ± 9% emphasizes the robustness of the presented approach. This study indicates the potential of ERFs for (i extending airborne flux measurements to the catchment scale, (ii assessing the spatial representativeness of long-term tower flux measurements, and (iii designing, constraining and evaluating flux algorithms for remote sensing and numerical modelling applications.

  8. Supernova relic electron neutrinos and anti-neutrinos in future large-scale observatories

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, C.; Welzel, J. [Institut de Physique Nuclueaire, 91 - Orsay (France)

    2007-07-01

    We investigate the signal from supernova relic neutrinos in future large scale observatories, such as MEMPHYS (UNO, Hyper-K), LENA and GLACIER, at present under study. We discuss that complementary information might be gained from the observation of supernova relic electron antineutrinos and neutrinos using the scattering on protons on one hand, and on nuclei such as oxygen, carbon or argon on the other hand. When determining the relic neutrino fluxes we also include, for the first time, the coupling of the neutrino magnetic moment to magnetic fields within the core collapse supernova. We present numerical results on both the relic {nu}{sub e} and {nu}-bar{sub e} fluxes and on the number of events for {nu}{sub e} + C{sup 12}, {nu}{sub e} + O{sup 16}, {nu}{sub e} + Ar{sup 40} and {nu}-bar{sub e} + p for various oscillation scenarios. The observation of supernova relic neutrinos might provide us with unique information on core-collapse supernova explosions, on the star formation history and on neutrino properties, that still remain unknown. (authors)

  9. Measurement of total ion flux in vacuum Arc discharges

    International Nuclear Information System (INIS)

    Anders, Andre; Oks, Efim M.; Yushkov, Georgy Yu.; Brown, Ian G.

    2004-01-01

    A vacuum arc ion source was modified allowing us to collections from arc plasma streaming through an anode mesh. The mesh had a geometric transmittance of 60 percent, which was taken into account as a correction factor. The ion current from twenty-two cathode materials was measured at an arc current of 100 A. The ion current normalized by the arc current was found to depend on the cathode material, with values in the range from 5 percent to 11 percent. The normalized ion current is generally greater for light elements than for heavy elements. The ion erosion rates were determined from values of ion current and ion charge states, which were previously measured in the same experimental system. The ion erosion rates range from 12-94 mu g/C

  10. Probe measurements of hydrogen fluxes during discharge cleaning in JFT-2M

    International Nuclear Information System (INIS)

    Matsuzaki, Y.

    1989-01-01

    Thermal desorption spectroscopy (TDS) has been applied during discharge cleaning in the JFT-2M tokamak to measure hydrogen fluxes. The TDS carbon sample, thickness 0.13 mm, was heated to 1000 0 C by direct current and the temperature distribution of the sample surface measured by infrared thermography. The probe was exposed to three types of plasma: Taylor-type discharge cleaning (TDC), ECR discharge cleaning (ECR-DC), and glow discharge cleaning (GDC). The TDS spectra show peak desorption at around 800 0 C. The hydrogen flux, obtained by integration of the TDS spectrum, decreases exponentially in the radial direction with decay length 7.4 cm and 5.8 cm in TDC and ECR-DC, respectively. The relation between hydrogen fluxes and water vapour production was investigated. In TDC, the amount of water vapour depends more strongly on the electron temperature of the plasma than on the hydrogen flux. In ECR-DC, the production of water vapour increases approximately linearly with the hydrogen-flux. In GDC, hydrogen fluxes were measured by TDS but no water vapour could be detected in the residual gases during the discharge. (orig.)

  11. Field intercomparison of four methane gas analysers suitable for eddy covariance flux measurements

    Science.gov (United States)

    Peltola, O.; Mammarella, I.; Haapanala, S.; Burba, G.; Vesala, T.

    2012-12-01

    Performances of four methane gas analyzers suitable for eddy covariance measurements are assessed. The assessment and comparison was performed by analyzing eddy covariance data obtained during summer 2010 (1 April to 26 October) at a pristine fen, Siikaneva, Southern Finland. High methane fluxes with pronounced seasonality have been measured at this fen. The four participating methane gas analyzers are commercially available closed-path units TGA-100A (Campbell Scientific Inc., USA), RMT-200 (Los Gatos Research, USA), G1301-f (Picarro Inc., USA) and an early prototype open-path unit Prototype-7700 (LI-COR Biosciences, USA). The RMT-200 functioned most reliably throughout the measurement campaign, during low and high flux periods. Methane fluxes from RMT-200 and G1301-f had the smallest random errors and the fluxes agree remarkably well throughout the measurement campaign. Cospectra and power spectra calculated from RMT-200 and G1301-f data agree well with corresponding temperature spectra during a high flux period. None of the gas analysers showed statistically significant diurnal variation for methane flux. Prototype-7700 functioned only for a short period of time, over one month, in the beginning of the measurement campaign during low flux period, and thus, its overall accuracy and long-term performance were not assessed. Prototype-7700 is a practical choice for measurement sites in remote locations due to its low power demand, however if only the performance in this intercomparison is considered, RMT-200 performed the best and is the recommended choice if a new fast response methane gas analyser is needed.

  12. A case study of eddy covariance flux of N2O measured within forest ecosystems: quality control and flux error analysis

    Directory of Open Access Journals (Sweden)

    T. Markkanen

    2010-02-01

    Full Text Available Eddy covariance (EC flux measurements of nitrous oxide (N2O obtained by using a 3-D sonic anemometer and a tunable diode laser gas analyzer for N2O were investigated. Two datasets (Sorø, Denmark and Kalevansuo, Finland from different measurement campaigns including sub-canopy flux measurements of energy and carbon dioxide are discussed with a focus on selected quality control aspects and flux error analysis. Although fast response trace gas analyzers based on spectroscopic techniques are increasingly used in ecosystem research, their suitability for reliable estimates of EC fluxes is still limited, and some assumptions have to be made for filtering and processing data. The N2O concentration signal was frequently dominated by offset drifts (fringe effect, which can give an artificial extra contribution to the fluxes when the resulting concentration fluctuations are correlated with the fluctuations of the vertical wind velocity. Based on Allan variance analysis of the N2O signal, we found that a recursive running mean filter with a time constant equal to 50 s was suitable to damp the influence of the periodic drift. Although the net N2O fluxes over the whole campaign periods were quite small at both sites (~5 μg N m−2 h−1 for Kalevansuo and ~10 μg N m−2 h−1 for Sorø, the calculated sub-canopy EC fluxes were in good agreement with those estimated by automatic soil chambers. However, EC N2O flux measurements show larger random uncertainty than the sensible heat fluxes, and classification according to statistical significance of single flux values indicates that downward N2O fluxes have larger random error.

  13. Muon-flux measurements for SHiP at H4

    CERN Document Server

    van Herwijnen, E

    2017-01-01

    A major concern for the design of the SHiP experiment is the lack of a precise knowledge of the muon flux. This is a proposal to measure the expected muon flux in the SHiP experiment by installing a replica of the SHiP target in a 400 GeV/c proton beam at H4. We intend building a spectrometer using the drift tube prototypes that were constructed for OPERA. A muon tagger will be built using RPCs, which will also serve as a module-0 for SHiP. We propose to do this measurement in early 2018. Accumulating $\\sim 10^{11}$ 400 GeV/c POT will enable us to make a more realistic design of the muon shield. With some modifications, this setup can also be used to measure the charm cross section (including the cascade production). We intend to test this setup after the measurement of the muon flux.

  14. Evaluation of Density Corrections to Methane Fluxes Measured by Open-Path Eddy Covariance over Contrasting Landscapes

    Science.gov (United States)

    Chamberlain, Samuel D.; Verfaillie, Joseph; Eichelmann, Elke; Hemes, Kyle S.; Baldocchi, Dennis D.

    2017-11-01

    Corrections accounting for air density fluctuations due to heat and water vapour fluxes must be applied to the measurement of eddy-covariance fluxes when using open-path sensors. Experimental tests and ecosystem observations have demonstrated the important role density corrections play in accurately quantifying carbon dioxide (CO2) fluxes, but less attention has been paid to evaluating these corrections for methane (CH4) fluxes. We measured CH4 fluxes with open-path sensors over a suite of sites with contrasting CH4 emissions and energy partitioning, including a pavement airfield, two negligible-flux ecosystems (drained alfalfa and pasture), and two high-flux ecosystems (flooded wetland and rice). We found that density corrections successfully re-zeroed fluxes in negligible-flux sites; however, slight overcorrection was observed above pavement. The primary impact of density corrections varied over negligible- and high-flux ecosystems. For negligible-flux sites, corrections led to greater than 100% adjustment in daily budgets, while these adjustments were only 3-10% in high-flux ecosystems. The primary impact to high-flux ecosystems was a change in flux diel patterns, which may affect the evaluation of relationships between biophysical drivers and fluxes if correction bias exists. Additionally, accounting for density effects to high-frequency CH4 fluctuations led to large differences in observed CH4 flux cospectra above negligible-flux sites, demonstrating that similar adjustments should be made before interpreting CH4 cospectra for comparable ecosystems. These results give us confidence in CH4 fluxes measured by open-path sensors, and demonstrate that density corrections play an important role in adjusting flux budgets and diel patterns across a range of ecosystems.

  15. Measurement and evaluation of fast neutron flux of CT and OR5 irradiation hole in HANARO

    International Nuclear Information System (INIS)

    Yang, Seong Woo; Choo, Kee Nam; Lee, Seung-Kyu; Kim, Yong Kyun

    2012-01-01

    The irradiation test has been conducted to evaluate the irradiation performance of many materials by a material capsule at HANARO. Since the fast neutron fluence above 1 MeV is important for the irradiation test of material, it must be measured and evaluated exactly at each irradiation hole. Therefore, a fast neutron flux was measured and evaluated by a 09M-02K capsule irradiated in an OR5 irradiation hole and a 10M-01K capsule irradiated in a CT irradiation hole. Fe, Ni, and Ti wires as the fluence monitor were used for the detection of fast neutron flux. Before the irradiation test, the neutron flux and spectrum was calculated for each irradiation hole using an MCNP code. After the irradiation test, the activity of the fluence monitor was measured by an HPGe detector and the reaction rate was calculated. For the OR5 irradiation hole, the radial difference of the fast neutron flux was observed from a calculated data due to the OR5 irradiation hole being located outside the core. Furthermore, a control absorber rod was withdrawn from the core as the increase of the irradiation time at the same irradiation cycle, so the distribution of neutron flux was changed from the beginning to the end of the cycle. These effects were considered to evaluate the fast neutron flux. Neutron spectrums of the CT and OR5 irradiation hole were adjusted by the measured data. The fluxes of a fast neutron above 1 MeV were compared with calculated and measured value. Although the maximum difference was shown at 18.48%, most of the results showed good agreement. (author)

  16. Measurement of LNAPL flux using single-well intermittent mixing tracer dilution tests.

    Science.gov (United States)

    Smith, Tim; Sale, Tom; Lyverse, Mark

    2012-01-01

    The stability of subsurface Light Nonaqueous Phase Liquids (LNAPLs) is a key factor driving expectations for remedial measures at LNAPL sites. The conventional approach to resolving LNAPL stability has been to apply Darcy's Equation. This paper explores an alternative approach wherein single-well tracer dilution tests with intermittent mixing are used to resolve LNAPL stability. As a first step, an implicit solution for single-well intermittent mixing tracer dilution tests is derived. This includes key assumptions and limits on the allowable time between intermittent mixing events. Second, single-well tracer dilution tests with intermittent mixing are conducted under conditions of known LNAPL flux. This includes a laboratory sand tank study and two field tests at active LNAPL recovery wells. Results from the sand tank studies indicate that LNAPL fluxes in wells can be transformed into formation fluxes using corrections for (1) LNAPL thicknesses in the well and formation and (2) convergence of flow to the well. Using the apparent convergence factor from the sand tank experiment, the average error between the known and measured LNAPL fluxes is 4%. Results from the field studies show nearly identical known and measured LNAPL fluxes at one well. At the second well the measured fluxes appear to exceed the known value by a factor of two. Agreement between the known and measured LNAPL fluxes, within a factor of two, indicates that single-well tracer dilution tests with intermittent mixing can be a viable means of resolving LNAPL stability. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  17. Radon-222 activity flux measurement using activated charcoal canisters: revisiting the methodology.

    Science.gov (United States)

    Alharbi, Sami H; Akber, Riaz A

    2014-03-01

    The measurement of radon ((222)Rn) activity flux using activated charcoal canisters was examined to investigate the distribution of the adsorbed (222)Rn in the charcoal bed and the relationship between (222)Rn activity flux and exposure time. The activity flux of (222)Rn from five sources of varying strengths was measured for exposure times of one, two, three, five, seven, 10, and 14 days. The distribution of the adsorbed (222)Rn in the charcoal bed was obtained by dividing the bed into six layers and counting each layer separately after the exposure. (222)Rn activity decreased in the layers that were away from the exposed surface. Nevertheless, the results demonstrated that only a small correction might be required in the actual application of charcoal canisters for activity flux measurement, where calibration standards were often prepared by the uniform mixing of radium ((226)Ra) in the matrix. This was because the diffusion of (222)Rn in the charcoal bed and the detection efficiency as a function of the charcoal depth tended to counterbalance each other. The influence of exposure time on the measured (222)Rn activity flux was observed in two situations of the canister exposure layout: (a) canister sealed to an open bed of the material and (b) canister sealed over a jar containing the material. The measured (222)Rn activity flux decreased as the exposure time increased. The change in the former situation was significant with an exponential decrease as the exposure time increased. In the latter case, lesser reduction was noticed in the observed activity flux with respect to exposure time. This reduction might have been related to certain factors, such as absorption site saturation or the back diffusion of (222)Rn gas occurring at the canister-soil interface. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. A new frontier in CO2 flux measurements using a highly portable DIAL laser system

    Science.gov (United States)

    Queiβer, Manuel; Granieri, Domenico; Burton, Mike

    2016-01-01

    Volcanic CO2 emissions play a key role in the geological carbon cycle, and monitoring of volcanic CO2 fluxes helps to forecast eruptions. The quantification of CO2 fluxes is challenging due to rapid dilution of magmatic CO2 in CO2-rich ambient air and the diffuse nature of many emissions, leading to large uncertainties in the global magmatic CO2 flux inventory. Here, we report measurements using a new DIAL laser remote sensing system for volcanic CO2 (CO2DIAL). Two sites in the volcanic zone of Campi Flegrei (Italy) were scanned, yielding CO2 path-amount profiles used to compute fluxes. Our results reveal a relatively high CO2 flux from Campi Flegrei, consistent with an increasing trend. Unlike previous methods, the CO2DIAL is able to measure integrated CO2 path-amounts at distances up to 2000 m using virtually any solid surface as a reflector, whilst also being highly portable. This opens a new frontier in quantification of geological and anthropogenic CO2 fluxes. PMID:27652775

  19. A closed-chamber method to measure greenhouse gas fluxes from dry aquatic sediments

    Directory of Open Access Journals (Sweden)

    L. Lesmeister

    2017-06-01

    Full Text Available Recent research indicates that greenhouse gas (GHG emissions from dry aquatic sediments are a relevant process in the freshwater carbon cycle. However, fluxes are difficult to measure because of the often rocky substrate and the dynamic nature of the habitat. Here we tested the performance of different materials to seal a closed chamber to stony ground both in laboratory and field experiments. Using on-site material consistently resulted in elevated fluxes. The artefact was caused both by outgassing of the material and production of gas. The magnitude of the artefact was site dependent – the measured CO2 flux increased between 10 and 208 %. Errors due to incomplete sealing proved to be more severe than errors due to non-inert sealing material.Pottery clay as sealing material provided a tight seal between the chamber and the ground and no production of gases was detected. With this approach it is possible to get reliable gas fluxes from hard-substrate sites without using a permanent collar. Our test experiments confirmed that CO2 fluxes from dry aquatic sediments are similar to CO2 fluxes from terrestrial soils.

  20. Measurements of thermal and fast neutron fluxes at the TRIGA reactor

    International Nuclear Information System (INIS)

    Zerdin, F.; Grabovsek, Z.; Klinc, T.; Solinc, H.

    1966-01-01

    Gold foils were placed at different positions in the TRIGA reactor core and in the experimental devices. Absolute values of the thermal neutron flux at these positions were obtained by coincidence method. Preliminary fast neutron spectrum was measured by threshold detector and by 'Li 6 sandwich' detector. A short description of the applied method and obtained measurements results are included [sl

  1. How well can we measure the vertical wind speed? Implications for fluxes of energy and mass

    Science.gov (United States)

    John Kochendorfer; Tilden P. Meyers; John Frank; William J. Massman; Mark W. Heuer

    2012-01-01

    Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10­50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a nonorthogonal transducer...

  2. Non-invasive continuous core temperature measurement by zero heat flux

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Klewer, J.; Haan, A. de; Koning, J.J. de; Daanen, H.A.M.

    2011-01-01

    Reliable continuous core temperature measurement is of major importance for monitoring patients. The zero heat flux method (ZHF) can potentially fulfil the requirements of non-invasiveness, reliability and short delay time that current measurement methods lack. The purpose of this study was to

  3. Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, James Thomas

    2005-12-01

    The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

  4. 3D Laboratory Measurements of Forces, Flows, and Collimation in Arched Flux Tubes

    Science.gov (United States)

    Haw, Magnus; Bellan, Paul

    2016-10-01

    Fully 3D, vector MHD force measurements from an arched, current carrying flux tube (flux rope) are presented. The experiment consists of two arched plasma-filled flux ropes each powered by a capacitor bank. The two loops are partially overlapped, as in a Venn diagram, and collide and reconnect during their evolution. B-field data is taken on the lower plasma arch using a 54 channel B-dot probe. 3D volumetric data is acquired by placing the probe at 2700 locations and taking 5 plasma shots at each location. The resulting data set gives high resolution (2cm, 10ns) volumetric B-field data with high reproducibility (deviation of 3% between shots). Taking the curl of the measured 3D B-field gives current densities (J) in good agreement with measured capacitor bank current. The JxB forces calculated from the data have a strong axial component at the base of the current channel and are shown to scale linearly with axial gradients in current density. Assuming force balance in the flux tube minor radius direction, we infer near-Alfvenic axial flows from the footpoint regions which are consistent with the measured axial forces. Flux tube collimation is observed in conjunction with these axial flows. These dynamic processes are relevant to the stability and dynamics of coronal loops. Supported provided by NSF, AFOSR.

  5. Ozone flux of an urban orange grove: multiple scaled measurements and model comparisons

    Science.gov (United States)

    Alstad, K. P.; Grulke, N. E.; Jenerette, D. G.; Schilling, S.; Marrett, K.

    2009-12-01

    There is significant uncertainty about the ozone sink properties of the phytosphere due to a complexity of interactions and feedbacks with biotic and abiotic factors. Improved understanding of the controls on ozone fluxes is critical to estimating and regulating the total ozone budget. Ozone exchanges of an orange orchard within the city of Riverside, CA were examined using a multiple-scaled approach. We access the carbon, water, and energy budgets at the stand- to leaf- level to elucidate the mechanisms controlling the variability in ozone fluxes of this agro-ecosystem. The two initial goals of the study were 1. To consider variations and controls on the ozone fluxes within the canopy; and, 2. To examine different modeling and scaling approaches for totaling the ozone fluxes of this orchard. Current understanding of the total ozone flux between the atmosphere near ground and the phytosphere (F-total) include consideration of a fraction which is absorbed by vegetation through stomatal uptake (F-absorb), and fractional components of deposition on external, non-stomatal, surfaces of the vegetation (F-external) and soil (F-soil). Multiplicative stomatal-conductance models have been commonly used to estimate F-absorb, since this flux cannot be measured directly. We approach F-absorb estimates for this orange orchard using chamber measurement of leaf stomatal-conductance, as well as non-chamber sap-conductance collected on branches of varied aspect and sun/shade conditions within the canopy. We use two approaches to measure the F-total of this stand. Gradient flux profiles were measured using slow-response ozone sensors collecting within and above the canopy (4.6 m), and at the top of the tower (8.5 m). In addition, an eddy-covariance system fitted with a high-frequency chemiluminescence ozone system will be deployed (8.5 m). Preliminary ozone gradient flux profiles demonstrate a substantial ozone sink strength of this orchard, with diurnal concentration differentials

  6. Systematic investigation of background sources in neutron flux measurements with a proton-recoil silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    Marini, P., E-mail: marini@cenbg.in2p3.fr [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France); Mathieu, L. [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France); Acosta, L. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D.F. 01000 (Mexico); Aïche, M.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I. [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France)

    2017-01-01

    Proton-recoil detectors (PRDs), based on the well known standard H(n,p) elastic scattering cross section, are the preferred instruments to perform precise quasi-absolute neutron flux measurements above 1 MeV. The limitations of using a single silicon detector as PRD at a continuous neutron beam facility are investigated, with the aim of extending such measurements to neutron energies below 1 MeV. This requires a systematic investigation of the background sources affecting the neutron flux measurement. Experiments have been carried out at the AIFIRA facility to identify these sources. A study on the role of the silicon detector thickness on the background is presented and an energy limit on the use of a single silicon detector to achieve a neutron flux precision better than 1% is given.

  7. A Fast, Portable, Fiber Optic Spectrofluorometer for Eddy Correlation Flux Measurement in the Aquatic Environment

    Science.gov (United States)

    Hu, I. H.; Senft-Grupp, S.; Hemond, H.

    2014-12-01

    The measurement of chemical fluxes between natural waters and their benthic sediments by most existing methods, such as benthic chambers and sediment core incubations, is slow, cumbersome, and often inaccurate. One promising new method for determining benthic fluxes is eddy correlation (EC), a minimally invasive, in situ technique based on high-speed velocity and concentration measurements. Widespread application of EC to a large range of chemicals of interest is currently limited, however, by the availability of rapid, high-resolution chemical sensors capable of precisely measuring concentrations at a point location and at sufficient speed (several Hz). A proof of concept spectrofluorometry instrument has been created that is capable of high-frequency concentration measurements of naturally fluorescent substances. Designed with the EC application in mind, the system utilizes optical fibers to transmit excitation and emission light, enabling in situ measurements at high spatial resolution. Emitted fluorescence light is passed through a tunable monochromator before reaching a photomultiplier tube; photons are quantified by a custom miniaturized, low-power photon counting circuit board. Preliminary results indicate that individual measurements made at 100 Hz of a 10 ppm humic acid solution were precise within 10%, thus yielding a precision of the order of +/- 1% in a second. Used in an EC system, this instrument will enable flux measurements of substances such as naturally occurring fluorescent dissolved organic material (FDOM). Measurement of fluxes of FDOM is significant in its own right, and also will allow the indirect measurement of the numerous other chemical fluxes that are associated with FDOM by using tracer techniques. The use of a tunable monochromator not only allows flexibility in detection wavelength, but also enables full wavelength scans of the emission spectrum, making the spectrofluorometer a dual-function device capable of both characterizing the

  8. Development of Magnetically Insulated Baffled Probe Cluster for Measurement of Energy Flux and Particle Flux in the Texas Helimak

    Science.gov (United States)

    Nogami, S. H.; Koepke, M.; Demidov, V.; Williams, C.; Gentle, K.

    2015-11-01

    Progress is reported in employing magnetically insulated baffled (MIB) probes in the Texas Helimak. Radial scans at the plasma edge of dc and ac space potential are presented. Like the Ball-Pen probe, the MIB probe shares the Langmuir probe simplicity and overcomes its shortcomings in the ability to make real-time measurements of plasma space potential, temperature, and energy/particle fluxes in magnetized plasma. By rotating the probe shaft to change the extent to which the baffle ``masks'' the probe collection area, the ratio between electron and ion probe current, and consequently the relative sensitivity of the floating-probe oscillations to space potential and electron/ion temperature, can be adjusted, thus allowing space potential fluctuations and electron/ion temperature fluctuations to be distinguished when measured at two different rotation angles. At the optimal rotation angle, the contribution of electron temperature and its fluctuations to the floating-potential measurement are eliminated and the space potential fluctuation phase is preserved. Support from DOE is gratefully acknowledged.

  9. Atmospheric dry deposition fluxes of trace elements measured in Bursa, Turkey

    International Nuclear Information System (INIS)

    Tasdemir, Yuecel; Kural, Can

    2005-01-01

    Trace element dry deposition fluxes were measured using a smooth, greased, knife-edge surrogate surface (KSS) holding greased Mylar strips in Bursa, Turkey. Sampling program was conducted between October 2002 and June 2003 and 46 dry deposition samples were collected. The average fluxes of crustal metals (Mg, Ca, and Fe) were one to four orders of magnitude higher than the fluxes of anthropogenic metals. Trace element fluxes ranged from 3 (Cd) to 24 230 (Ca) μg m -2 d -1 . The average trace element dry deposition fluxes measured in this study were similar to those measured in other urban areas. In addition, ambient air samples were also collected simultaneously with flux samples and concentrations of trace elements, collected with a TSP sampler, were between 0.7 and 4900 ng m -3 for Cd and Ca, respectively. The overall trace element dry deposition velocities, calculated by dividing the fluxes to the particle phase concentrations ranged from 2.3±1.7 cm s -1 (Pb) to 11.1±6.4 cm s -1 (Ni). These values are in good agreement with the values calculated using similar techniques. The anthropogenic and crustal contributions were estimated by employing enrichment factors (EFs) calculated relative to the average crustal composition. Low EFs for dry deposition samples were calculated. This is probably due to contamination of local dust and its important contribution to the collected samples. - Mechanical turbulence has an important influence on re-suspension and dry deposition of trace elements in an urban area

  10. Development of a laser remote sensing instrument to measure sub-aerial volcanic CO2 fluxes

    Science.gov (United States)

    Queisser, Manuel; Burton, Mike

    2016-04-01

    A thorough quantification of volcanic CO2 fluxes would lead to an enhanced understanding of the role of volcanoes in the geological carbon cycle. This would enable a more subtle understanding of human impact on that cycle. Furthermore, variations in volcanic CO2 emissions are a key to understanding volcanic processes such as eruption phenomenology. However, measuring fluxes of volcanic CO2 is challenging as volcanic CO2 concentrations are modest compared with the ambient CO2 concentration (~400 ppm) . Volcanic CO2 quickly dilutes with the background air. For Mt. Etna (Italy), for instance, 1000 m downwind from the crater, dispersion modelling yields a signal of ~4 ppm only. It is for this reason that many magmatic CO2 concentration measurements focus on in situ techniques, such as direct sampling Giggenbach bottles, chemical sensors, IR absorption spectrometers or mass spectrometers. However, emission rates are highly variable in time and space. Point measurements fail to account for this variability. Inferring 1-D or 2-D gas concentration profiles, necessary to estimate gas fluxes, from point measurements may thus lead to erroneous flux estimations. Moreover, in situ probing is time consuming and, since many volcanoes emit toxic gases and are dangerous as mountains, may raise safety concerns. In addition, degassing is often diffuse and spatially extended, which makes a measurement approach with spatial coverage desirable. There are techniques that allow to indirectly retrieve CO2 fluxes from correlated SO2 concentrations and fluxes. However, they still rely on point measurements of CO2 and are prone to errors of SO2 fluxes due to light dilution and depend on blue sky conditions. Here, we present a new remote sensing instrument, developed with the ERC project CO2Volc, which measures 1-D column amounts of CO2 in the atmosphere with sufficient sensitivity to reveal the contribution of magmatic CO2. Based on differential absorption LIDAR (DIAL) the instrument measures

  11. A fission ionization detector for neutron flux measurements at a spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Wender, S.A. (Los Alamos National Lab., Los Alamos, NM (United States)); Balestrini, S. (Los Alamos National Lab., Los Alamos, NM (United States)); Brown, A. (Los Alamos National Lab., Los Alamos, NM (United States)); Haight, R.C. (Los Alamos National Lab., Los Alamos, NM (United States)); Laymon, C.M. (Los Alamos National Lab., Los Alamos, NM (United States)); Lee, T.M. (Los Alamos National Lab., Los Alamos, NM (United States)); Lisowski, P.W. (Los Alamos National Lab., Los Alamos, NM (United States)); McCorkle, W. (Los Alamos National Lab., Los Alamos, NM (United States)); Nelson, R.O. (Los Alamos National Lab., Los Alamos, NM (United States)); Parker, W. (Los Alamos National Lab., Los Alamos, NM (United States)); Hill, N.W. (Oak Ridge National Lab., Oak Ridge, TN (United States))

    1993-11-15

    The construction of a neutron flux monitor that can measure absolute neutron intensities in the neutron energy range from below 1 MeV to over 500 MeV is described. The detector consists of an ionization chamber with several thin deposits of fissionable material. The ionization chamber is thin enough that it does not significantly affect the neutron beam and may be left in the neutron flight path during experimental measurements to continuously monitor the beam flux. The use of this monitor at the continuous-energy spallation neutron source at the WNR target area at LAMPF is described. (orig.)

  12. A fission ionization detector for neutron flux measurements at a spallation source

    International Nuclear Information System (INIS)

    Wender, S.A.; Balestrini, S.; Brown, A.; Haight, R.C.; Laymon, C.M.; Lee, T.M.; Lisowski, P.W.; McCorkle, W.; Nelson, R.O.; Parker, W.; Hill, N.W.

    1993-01-01

    The construction of a neutron flux monitor that can measure absolute neutron intensities in the neutron energy range from below 1 MeV to over 500 MeV is described. The detector consists of an ionization chamber with several thin deposits of fissionable material. The ionization chamber is thin enough that it does not significantly affect the neutron beam and may be left in the neutron flight path during experimental measurements to continuously monitor the beam flux. The use of this monitor at the continuous-energy spallation neutron source at the WNR target area at LAMPF is described. (orig.)

  13. Remote Heat Flux Measurement Using a Self Calibration Multiwavelength Pyrometer and a Transparent Material

    Science.gov (United States)

    Ng, Daniel

    1998-01-01

    A self calibrating multiwavelength pyrometer was used to conduct remote heat flux measurements using a transparent sapphire disk by determining the sapphire disk's front and back surface temperatures. Front surface temperature (Tfs) was obtained from detection of surface emitted radiation at long wavelengths (lambda > 6 micrometers). Back surface temperature (Tbs) was obtained from short wavelength (1 to 5 micrometers) radiation transmitted through the sapphire disk. The thermal conductivity k of the sapphire disk and the heat transfer coefficients h(sub 1) and h(sub 2) of its surfaces are determined experimentally. An analysis of the heat flux measurement is presented.

  14. Constraining the Sulfur Dioxide Degassing Flux from Turrialba Volcano, Costa Rica Using Unmanned Aerial System Measurements

    Science.gov (United States)

    Xi, Xin; Johnson, Matthew S.; Jeong, Seongeun; Fladeland, Matthew; Pieri, David; Diaz, Jorge Andres; Bland, Geoffrey L.

    2016-01-01

    Observed sulfur dioxide (SO2)mixing ratios onboard unmanned aerial systems (UAS) duringMarch 11-13, 2013 are used to constrain the three-day averaged SO2 degassing flux fromTurrialba volcanowithin a Bayesian inverse modeling framework. A mesoscale model coupled with Lagrangian stochastic particle backward trajectories is used to quantify the source-receptor relationships at very high spatial resolutions (i.e., b1 km). The model shows better performance in reproducing the near-surface meteorological properties and observed SO2 variations when using a first-order closure non-local planetary boundary layer (PBL) scheme. The optimized SO2 degassing fluxes vary from 0.59 +/- 0.37 to 0.83 +/- 0.33 kt d-1 depending on the PBL scheme used. These fluxes are in good agreement with ground-based gas flux measurements, and correspond to corrective scale factors of 8-12 to the posteruptive SO2 degassing rate in the AeroCom emission inventory. The maximum a posteriori solution for the SO2 flux is highly sensitive to the specification of prior and observational errors, and relatively insensitive to the SO2 loss term and temporal averaging of observations. Our results indicate relatively low degassing activity but sustained sulfur emissions from Turrialba volcano to the troposphere during March 2013. This study demonstrates the utility of low-cost small UAS platforms for volcanic gas composition and flux analysis.

  15. Stochastic Evaluation of Mass Fluxes from Point-Like Concentration Measurements

    Science.gov (United States)

    Cirpka, O. A.; Schwede, R. L.

    2009-12-01

    The contaminant mass flux crossing a control plane is an important metric in the assessment of natural attenuation at contaminated sites. For risk-assessment purpose, the mass flux must be estimated together with a level of uncertainty. We present a conditional Monte Carlo approach that allows estimating the full statistical distribution of mass flux. The approach is based on conditioning multiple realizations of the hydraulic conductivity field on all data available. We jointly determine a first-order decay coefficient in each realization, leading to conditional statistical distribution of all estimated parameters and the total mass flux. The resulting statistical distribution of contaminant mass fluxes can be used in contaminant risk analysis. The method is applied to data of hypothetical test cases, which gives the opportunity to compare estimation results to the true field. As concentration data we account for point-like measurements obtained in multi-level sampling wells. The obtained empirical distribution of mass flux crossing the multi-level sampling fence could be fitted very well by a log-normal distribution.

  16. Lithogenic fluxes to the deep Arabian Sea measurEd. by sediment traps

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Nair, R.R.; Manganini, S.J.; Haake, B.; Ittekkot, V.

    -'~-537. HAAKE B. and V. IrrEKgOT (1990) Die Wind-getreibene "'biologisctre Pumpe" und Kohlenstoffentzug im Ozean. Naturwissenschaflten. 77.75-79. HosJo S. (1980) Material fluxes and modes of sedimentation in the mesopelagic and bathypelagic zones. Journal.... A recommendation. Global Ocean Flux study, National Research Council, Washington, DC. Ho,~Jo S. (1986) Oceanic particles and pelagic sedimentation in the western North Atlantic Ocean. In: The geology of North America. The western North Atlantic...

  17. Measurements of neutron flux distributions in the core of the Ljubljana TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    Rant, J.; Ravnik, M.; Mele, I.; Dimic, V.

    2008-01-01

    Recently the Ljubljana TRIGA Mark II Reactor has been refurbished and upgraded to pulsed operation. To verify the core design calculations using TRIGAP and PULSTR1 codes and to obtain necessary data for future irradiation and neutron beam experiments, an extensive experimental program of neutron flux mapping and neutron field characterization was carried out. Using the existing neutron measuring thimbles complete axial and radial distributions in two radial directions were determined for two different core configurations. For one core configuration the measurements were also carried out in the pulsed mode. For flux distributions thin Cu (relative measurements) and diluted Au wires (absolute values) were used. For each radial position the cadmium ratio was determined in two axial levels. The core configuration was rather uniform, well defined (fresh fuel of a single type, including fuelled followers) and compact (no irradiation channels or gaps), offering unique opportunity to test the computer codes for TRIGA reactor calculations. The neutron flux measuring procedures and techniques are described and the experimental results are presented. The agreement between the predicted and measured power peaking factors are within the error limits of the measurements (<±5%) and calculations (±10%). Power peaking occurs in the B ring, and in the A ring (centre) there is a significant flux depression. (authors)

  18. Neutron flux measurement in the central channel (XC1) of TRIGA 14 MW LEU core

    International Nuclear Information System (INIS)

    Barbos, D.; Busuioc, P.; Paunoiu, C.; Roth, Cs.

    2008-01-01

    The full conversion of the 14 MW TRIGA Research Reactor was completed in May 2006 and each step of the conversion was achieved by removal of HEU fuel and replaced by LEU fuel. The operation was accompanied by a large set of theoretical evaluations and physical measurements intended to confirm the performances of gradual conversion. After the core full conversion, a program of measurements and comparisons with previous results of core physics and measurements is underway, allowing data acquisition for normal operation, demonstration of safety and economics of the converted core. Neutron flux spectrum measurements in the XC-1 water-filled channel were performed using multi-foil activation techniques. The neutron spectra and flux are obtained by unfolding from measured reaction rates using SAND II computer code. The integral flux measured value for LEU core and 14 MW reactor power is 4.66x10 14 n/cm 2 s. For standard core the integral neutron flux for 14 MW reactor power was 4.27x10 14 n/cm 2 s. (authors)

  19. Water Use Patterns of Four Tropical Bamboo Species Assessed with Sap Flux Measurements.

    Science.gov (United States)

    Mei, Tingting; Fang, Dongming; Röll, Alexander; Niu, Furong; Hendrayanto; Hölscher, Dirk

    2015-01-01

    Bamboos are grasses (Poaceae) that are widespread in tropical and subtropical regions. We aimed at exploring water use patterns of four tropical bamboo species (Bambusa vulgaris, Dendrocalamus asper, Gigantochloa atroviolacea, and G. apus) with sap flux measurement techniques. Our approach included three experimental steps: (1) a pot experiment with a comparison of thermal dissipation probes (TDPs), the stem heat balance (SHB) method and gravimetric readings using potted B. vulgaris culms, (2) an in situ calibration of TDPs with the SHB method for the four bamboo species, and (3) field monitoring of sap flux of the four bamboo species along with three tropical tree species (Gmelina arborea, Shorea leprosula, and Hevea brasiliensis) during a dry and a wet period. In the pot experiment, it was confirmed that the SHB method is well suited for bamboos but that TDPs need to be calibrated. In situ, species-specific parameters for such calibration formulas were derived. During field monitoring we found that some bamboo species reached high maximum sap flux densities. Across bamboo species, maximal sap flux density increased with decreasing culm diameter. In the diurnal course, sap flux densities in bamboos peaked much earlier than radiation and vapor pressure deficit (VPD), and also much earlier than sap flux densities in trees. There was a pronounced hysteresis between sap flux density and VPD in bamboos, which was less pronounced in trees. Three of the four bamboo species showed reduced sap flux densities at high VPD values during the dry period, which was associated with a decrease in soil moisture content. Possible roles of internal water storage, root pressure and stomatal sensitivity are discussed.

  20. A relaxed eddy accumulation system for measuring vertical fluxes of nitrous acid

    Directory of Open Access Journals (Sweden)

    X. Ren

    2011-10-01

    Full Text Available A relaxed eddy accumulation (REA system combined with a nitrous acid (HONO analyzer was developed to measure atmospheric HONO vertical fluxes. The system consists of three major components: (1 a fast-response sonic anemometer measuring both vertical wind velocity and air temperature, (2 a fast-response controlling unit separating air motions into updraft and downdraft samplers by the sign of vertical wind velocity, and (3 a highly sensitive HONO analyzer based on aqueous long path absorption photometry that measures HONO concentrations in the updrafts and downdrafts. A dynamic velocity threshold (±0.5σw, where σw is a standard deviation of the vertical wind velocity was used for valve switching determined by the running means and standard deviations of the vertical wind velocity. Using measured temperature as a tracer and the average values from two field deployments, the flux proportionality coefficient, β, was determined to be 0.42 ± 0.02, in good agreement with the theoretical estimation. The REA system was deployed in two ground-based field studies. In the California Research at the Nexus of Air Quality and Climate Change (CalNex study in Bakersfield, California in summer 2010, measured HONO fluxes appeared to be upward during the day and were close to zero at night. The upward HONO flux was highly correlated to the product of NO2 and solar radiation. During the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX 2009 at Blodgett Forest, California in July 2009, the overall HONO fluxes were small in magnitude and were close to zero. Causes for the different HONO fluxes in the two different environments are briefly discussed.

  1. Hadroproduction experiments to constrain accelerator-based neutrino fluxes

    Science.gov (United States)

    Zambelli, Laura

    2017-09-01

    The precise knowledge of (anti-)neutrino fluxes is one of the largest limitation in accelerator-based neutrino experiments. The main limitations arise from the poorly known production properties of neutrino parents in hadron-nucleus interactions. Strategies used by neutrino experiment to constrain their fluxes using external hadroproduction data will be described and illustrated with an example of a tight collaboration between T2K and NA61/SHINE experiments. This enabled a reduction of the T2K neutrino flux uncertainty from ∼25% (without external constraints) down to ∼10%. On-going developments to further constrain the T2K (anti-)neutrino flux are discussed and recent results from NA61/SHINE are reviewed. As the next-generation long baseline experiments aim for a neutrino flux uncertainty at a level of a few percent, the future data-taking plans of NA61/SHINE are discussed.

  2. High-resolution hot-film measurement of surface heat flux to an impinging jet

    Science.gov (United States)

    O'Donovan, T. S.; Persoons, T.; Murray, D. B.

    2011-10-01

    To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to measure the surface heat flux at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface heat flux with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat flux measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat flux to the fluid air flow. The technique is validated experimentally using a more established surface heat flux measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.

  3. Fluxes of biogenic volatile organic compounds measured and modelled above a Norway spruce forest

    Science.gov (United States)

    Juráň, Stanislav; Fares, Silvano; Pallozzi, Emanuele; Guidolotti, Gabriele; Savi, Flavia; Alivernini, Alessandro; Calfapietra, Carlo; Večeřová, Kristýna; Křůmal, Kamil; Večeřa, Zbyněk; Cudlín, Pavel; Urban, Otmar

    2016-04-01

    Fluxes of biogenic volatile organic compounds (BVOCs) were investigated at Norway spruce forest at Bílý Kříž in Beskydy Mountains of the Czech Republic during the summer 2014. A proton-transfer-reaction-time-of-flight mass spectrometer (PTR-TOF-MS, Ionicon Analytik, Austria) has been coupled with eddy-covariance system. Additionally, Inverse Lagrangian Transport Model has been used to derive fluxes from concentration gradient of various monoterpenes previously absorbed into n-heptane by wet effluent diffusion denuder with consequent quantification by gas chromatography with mass spectrometry detection. Modelled data cover each one day of three years with different climatic conditions and previous precipitation patterns. Model MEGAN was run to cover all dataset with monoterpene fluxes and measured basal emission factor. Highest fluxes measured by eddy-covariance were recorded during the noon hours, represented particularly by monoterpenes and isoprene. Inverse Lagrangian Transport Model suggests most abundant monoterpene fluxes being α- and β-pinene. Principal component analysis revealed dependencies of individual monoterpene fluxes on air temperature and particularly global radiation; however, these dependencies were monoterpene specific. Relationships of monoterpene fluxes with CO2 flux and relative air humidity were found to be negative. MEGAN model correlated to eddy-covariance PTR-TOF-MS measurement evince particular differences, which will be shown and discussed. Bi-directional fluxes of oxygenated short-chain volatiles (methanol, formaldehyde, acetone, acetaldehyde, formic acid, acetic acid, methyl vinyl ketone, methacrolein, and methyl ethyl ketone) were recorded by PTR-TOF-MS. Volatiles of anthropogenic origin as benzene and toluene were likely transported from the most benzene polluted region in Europe - Ostrava city and adjacent part of Poland around Katowice, where metallurgical and coal mining industries are located. Those were accumulated during

  4. Measurement of cosmic ray flux in the China JinPing underground laboratory

    Science.gov (United States)

    Wu, Yu-Cheng; Hao, Xi-Qing; Yue, Qian; Li, Yuan-Jing; Cheng, Jian-Ping; Kang, Ke-Jun; Chen, Yun-Hua; Li, Jin; Li, Jian-Min; Li, Yu-Lan; Liu, Shu-Kui; Ma, Hao; Ren, Jin-Bao; Shen, Man-Bin; Wang, Ji-Min; Wu, Shi-Yong; Xue, Tao; Yi, Nan; Zeng, Xiong-Hui; Zeng, Zhi; Zhu, Zhong-Hua

    2013-08-01

    The China JinPing underground Laboratory (CJPL) is the deepest underground laboratory running in the world at present. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare-event experiments. A plastic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic rays on the ground laboratory near the CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in the CJPL, which has an effective live time of 171 days, the cosmic ray muon flux in the CJPL is measured to be (2.0±0.4)×10-10/(cm2·s). The ultra-low cosmic ray background guarantees an ideal environment for dark matter experiments at the CJPL.

  5. Measurement of cosmic ray flux in the China Jinping underground laboratory

    International Nuclear Information System (INIS)

    Wu Yucheng; Hao Xiqing; Yue Qian

    2013-01-01

    The China JinPing underground Laboratory (CJPL) is the deepest underground laboratory running in the world at present. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare-event experiments. A plastic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic rays on the ground laboratory near the CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in the CJPL, which has an effective live time of 171 days, the cosmic ray muon flux in the CJPL is measured to be (2.0±0.4)×10 -10 /(cm 2 ·s). The ultra-low cosmic ray background guarantees an ideal environment for dark matter experiments at the CJPL. (authors)

  6. Muon detector for the measurement of muon flux and lifetime of atmospheric muons

    International Nuclear Information System (INIS)

    Sidhu, Ragandeep Singh; Simrandeep Kaur; Bhatnagar, V.; Singh, J.B.

    2017-01-01

    For the present study, muon detector (consisting of four plastic scintillator paddles well equipped with DAQ) to i) measure the muon flux and ii) measure the lifetime of the atmospheric muons have been used. Measurement of lifetime of muons is a classic experiment to measure the time dilation in muons. The muon detector consisting of four scintillator paddles (forming a cuboidal geometry) is connected to PMT tubes from where we get an electrical signal whenever the muon passes. For the case of flux measurement, the coincidence signal is received from the upper and lower scintillator paddle. In the case of lifetime measurement, the muon of low energy decays into an electron (positron) and an antineutron (neutrino). The coincidence signal in this case is received from the top and the two side paddles. The major components of the muon detector are the part of Quark Net experiments developed by Fermilab which have been installed and setup at Panjab University

  7. Eddy covariance N2O flux measurements at low flux rates: results from the InGOS campaign in a Danish willow field.

    Science.gov (United States)

    Ibrom, Andreas; Brümmer, Christian; Hensen, Arjan; van Asperen, Hella; Carter, Mette S.; Gasche, Rainer; Famulari, Daniela; Kutsch, Werner; Pilegaard, Kim; Ambus, Per

    2014-05-01

    Nitrous oxide (N2O) fluxes from soils are characterised by their high spatial and temporal variability. The fluxes depend on the availability of the substrates for nitrification and denitrification and soil physical and chemical conditions that control the metabolic microbial activity. The sporadic nature of the fluxes and their high sensitivity to alterations of the soil climate put very high demands on measurement approaches. Laser spectroscopy enables accurate and fast response detection of atmospheric N2O concentrations and is used for eddy covariance (EC) flux measurements. Alternatively N2O fluxes can be measured with chambers together with high precision analysers. Differences in the measurement approaches and system designs are expected to have a considerable influence on the accuracy of the flux estimation. This study investigates how three different eddy covariance systems perform in a situation of low N2O fluxes from a flat surface. Chamber flux measurements with differing chamber and analyser designs are used for comparison. In April 2013, the EU research infrastructure project InGOS (http://www.ingos-infrastructure.eu/) organised a campaign of N2O flux measurements in a willow plantation close to the Risø Campus of the Technical University of Denmark. The willow field was harvested in February 2013 and received mineral fertiliser equivalent to 120 kg N ha-1 before the campaign started. Three different eddy covariance systems took part in the campaign: two Aerodyne quantum cascade laser (QCL) based systems and one Los Gatos Research off-axis integrated-cavity-output spectroscopy (ICOS) system for N2O and CO. The sonic anemometers were all installed at 2 m height above the bare ground. Gill R3 type sonic anemometers were used with QCL systems and a Gil HS-50 with the ICOS system. The 10 Hz raw data were analysed with group specific softwares and procedures. The local conditions in the exceptionally cold and dry spring 2013 did not lead to large N2O flux

  8. Messung der Impulsverteilung der Antiquarks im Nukleon aus der inklusiven tiefinelastischen Antineutrino Nukleon Reaktion ueber geladene Stroeme

    CERN Document Server

    Klasen, Hans Peter

    1981-01-01

    In this thesis the antiquark momentum distribution in the nucleus as a function of x and Q2 is determined. This determination is based on the measurement of the differential cross-section at high y for inclusive antineutrino nucleon charged current interactions. The portion of antineutrino scattering off quarks is corrected by the also measured neutrino cross-section. For the measurement of the cross-section 150 000 anti v- und 35 000 v-events, which were produced in the CERN wide band beam, in the energy range from 20 GeV to 160 GeV and 27 000 anti v- and 63 000 v-events measured in the narrow band beam in the energy range from 20 GeV to 200 GeV are used. The measurement was performed with the detector of the CERN-Dortmund-Heidelberg-Saclay collaboration. The detector serves at the same time as target, as hadron energy calorimeter and as muon spectrometer. The measured antiquark momentum distribution shows a strong rise for x<0.1 as a function of Q2. It will be shown that this scaling violation cannot be ...

  9. Regional inversion of CO2 ecosystem fluxes from atmospheric measurements. Reliability of the uncertainty estimates

    Energy Technology Data Exchange (ETDEWEB)

    Broquet, G.; Chevallier, F.; Breon, F.M.; Yver, C.; Ciais, P.; Ramonet, M.; Schmidt, M. [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS-UVSQ, UMR8212, IPSL, Gif-sur-Yvette (France); Alemanno, M. [Servizio Meteorologico dell' Aeronautica Militare Italiana, Centro Aeronautica Militare di Montagna, Monte Cimone/Sestola (Italy); Apadula, F. [Research on Energy Systems, RSE, Environment and Sustainable Development Department, Milano (Italy); Hammer, S. [Universitaet Heidelberg, Institut fuer Umweltphysik, Heidelberg (Germany); Haszpra, L. [Hungarian Meteorological Service, Budapest (Hungary); Meinhardt, F. [Federal Environmental Agency, Kirchzarten (Germany); Necki, J. [AGH University of Science and Technology, Krakow (Poland); Piacentino, S. [ENEA, Laboratory for Earth Observations and Analyses, Palermo (Italy); Thompson, R.L. [Max Planck Institute for Biogeochemistry, Jena (Germany); Vermeulen, A.T. [Energy research Centre of the Netherlands ECN, EEE-EA, Petten (Netherlands)

    2013-07-01

    The Bayesian framework of CO2 flux inversions permits estimates of the retrieved flux uncertainties. Here, the reliability of these theoretical estimates is studied through a comparison against the misfits between the inverted fluxes and independent measurements of the CO2 Net Ecosystem Exchange (NEE) made by the eddy covariance technique at local (few hectares) scale. Regional inversions at 0.5{sup 0} resolution are applied for the western European domain where {approx}50 eddy covariance sites are operated. These inversions are conducted for the period 2002-2007. They use a mesoscale atmospheric transport model, a prior estimate of the NEE from a terrestrial ecosystem model and rely on the variational assimilation of in situ continuous measurements of CO2 atmospheric mole fractions. Averaged over monthly periods and over the whole domain, the misfits are in good agreement with the theoretical uncertainties for prior and inverted NEE, and pass the chi-square test for the variance at the 30% and 5% significance levels respectively, despite the scale mismatch and the independence between the prior (respectively inverted) NEE and the flux measurements. The theoretical uncertainty reduction for the monthly NEE at the measurement sites is 53% while the inversion decreases the standard deviation of the misfits by 38 %. These results build confidence in the NEE estimates at the European/monthly scales and in their theoretical uncertainty from the regional inverse modelling system. However, the uncertainties at the monthly (respectively annual) scale remain larger than the amplitude of the inter-annual variability of monthly (respectively annual) fluxes, so that this study does not engender confidence in the inter-annual variations. The uncertainties at the monthly scale are significantly smaller than the seasonal variations. The seasonal cycle of the inverted fluxes is thus reliable. In particular, the CO2 sink period over the European continent likely ends later than

  10. Design of an automatic sample changer for the measurement of neutron flux by gamma spectrometry

    International Nuclear Information System (INIS)

    Gago, Javier; Bruna, Ruben; Baltuano, Oscar; Montoya, Eduardo; Descreaux, Killian

    2014-01-01

    This paper presents calculus, selection and components design for the construction of an automatic system in order to measure neutron flux in a working nuclear reactor by the gamma spectrometry technique using samples irradiated on the RP-10 nucleus. This system will perform the measurement of interchanging 100 samples in a programed and automatic way, reducing operation time by the user and obtaining more accurate measures. (authors).

  11. Design of an arrangement for the production of a scattered photon field and the flux measurement

    International Nuclear Information System (INIS)

    Legarda, F.; Herranz, M.

    1992-01-01

    The design of an arrangement to create and measure a scattered radiation field is described. The expected flux distribution has been calculated using Monte Carlo techniques (EGS4 system). The proposed measurement system includes a collimator with an opening of 0.2deg and a detector with a ∝2% energy resolution. This system should have a positional uncertainty of millimetre, and a small amount (0.6%) of radiation scattered back from the measurement system to the source. (orig.)

  12. Distributed Temperature Sensing as a tool for measuring soil heat flux

    Science.gov (United States)

    Jansen, J.; Steele-Dunne, S. C.; Van De Giesen, N.; Selker, J. S.

    2011-12-01

    Soil heat flux is an important component of the surface energy balance. It is typically measured at a point using heat flux plates. Spatial patterns as well as temporal variability can be measured using Distributed Temperature Sensing (DTS), in which fiber-optic cable is used as an environmental temperature sensor. Previous research has demonstrated that DTS can be used to monitor soil moisture patterns and soil thermal profiles. By using a custom-built mole-plow, fiber optic cables were installed at three depths within the top 15 centimeters of a grass plot in Delft, The Netherlands. DTS was used to measure temperatures along the cable with a spatial resolution of 1 meter and a temporal resolution 5 minutes along a cable of 84 meters length. In this cable the response of soil temperature to the diurnal cycle of net radiation was measured over three months (Passive DTS). By inverse modeling of the diffusion equation, thermal properties of the soil are determined from which soil heat flux is calculated. During several more intensive campaigns, active heating experiments (Active DTS) were also carried out. In this case, a controlled electrical pulse was applied to the stainless steel armoring on the cable. The thermal response of the cable is measured for pulses of different input power, and this is related to the thermal properties of the surrounding soil. Net radiation, thermal conductivity and sensible heat flux were also measured to quantify the surface energy balance during the intensive campaigns. Results will be presented to illustrate that DTS (Active and/or Passive) is a promising and relatively inexpensive tool to measure large scale spatial patterns in temperature, soil moisture and soil heat flux at high spatial and temporal resolution.

  13. Surprisingly low frequency attenuation effects in long tubes when measuring turbulent fluxes at tall towers

    DEFF Research Database (Denmark)

    Ibrom, Andreas; Brændholt, Andreas; Pilegaard, Kim

    2016-01-01

    that the concentration signal was hardly biased during the ca 10 s travel through the tube. Due to the larger turbulence time scales at large measurement heights the low-pass correction was for the majority of the measurements water vapour the tube attenuation was massive, which had, however, a positive effect...... by reducing both the water vapour dilution correction and the cross sensitivity effects on the N2O and CO flux measurements. Here we present the set-up of the concentration step change experiment and its results and compare them with recently developed theories for the behaviour of gases in turbulent tube......The eddy covariance technique relies on the fast and accurate measurement of gas concentration fluctuations. While for some gasses robust and compact sensors are available, measurement of, e.g., non CO2 greenhouse gas fluxes is often performed with sensitive equipment that cannot be run on a tower...

  14. 3D density imaging with muons flux measurements from underground galleries

    Science.gov (United States)

    Lesparre, Nolwenn; Cabrera, Justo; Marteau, Jacques

    2016-04-01

    Atmospheric muons flux measurements provide information on sub-surface density distribution, giving insights on the medium structure. We measured the muons flux from the underground galleries of the Tournemire experimental platform to image the medium between the galleries and the surface. The experiment aimed at evaluating the capacity of the method to detect the presence of discontinuities produced either by secondary strike-slip faults that present small vertical displacements or by a karstic network may be present at the level of an upper aquifer. Measurements were performed from three different sites so the trajectories of detected muons paths intersect in the medium. Such a configuration provided complementary information on the density distribution, offering the possibility to seek density variations at different depths. A specific calibration method was applied in order to interpolate the data acquired at different times with the same muons sensor. Muons flux measurements variations were then processed through a non-linear inversion, producing a 3D image of the density together with an evaluation of the different distinguished targets reliability. The density distribution showed the presence of a very low density region at the level of the upper aquifer, suggesting the presence of a karstic network hosting locally cavities. The trace of secondary strike-slip faults did not appear clearly on the image as the density contrast they produce might be too low compared to the signal to noise ratio present in the muons flux data. We propose different strategies to improve the density image accuracy.

  15. Measurement uncertainties in quantifying aeolian mass flux: evidence from wind tunnel and field site data

    NARCIS (Netherlands)

    Poortinga, A.; Keijsers, J.G.S.; Maroulis, J.; Visser, S.M.

    2014-01-01

    Aeolian sediment traps are widely used to estimate the total volume of wind-driven sediment transport, but also to study the vertical mass distribution of a saltating sand cloud. The reliability of sediment flux estimations from such measurements are dependent upon the specific configuration of the

  16. MEASUREMENT OF BI-DIRECTIONAL AMMONIA FLUXES OVER SOYBEAN USING MODIFIED BOWEN-RATIO TECHNIQUE

    Science.gov (United States)

    Measurements of bi-directional ammonia exchange over a fertilized soybean canopy are presented for an 8-week period during the summer of 2002. The modified Bowne-ratio approach was used to determine fluxes from vertical NH3 and temperature gradients in combination with eddy covar...

  17. Validation of a minimum microclimate disturbance chamber for net ecosystem flux measurements

    NARCIS (Netherlands)

    Graf, A.; Werner, J.; Langensiepen, M.; Boer, van de A.; Schmidt, M.; Kupisch, M.; Vereecken, H.

    2013-01-01

    A minimum-disturbance chamber for canopy net CO2 and H2O flux measurements is described. The system is a passively (optionally actively) ventilated tunnel with large (similar to 0.14 m2) in- and outlet cross sections covering a surface area of approximately 1.6 m2. A differential, non-drying

  18. Productivity and carbon dioxide exchange of the leguminous crops: Estimates from flux tower measurements

    Science.gov (United States)

    Net CO2 exchange data on legume crops at 17 flux tower sites in North America and 3 sites in Europe representing 29 site-years of measurements were partitioned into gross photosynthesis and ecosystem respiration using a light-response function method, resulting in new estimates of ecosystem-scale ec...

  19. Marine boundary layer and turbulent fluxes over the Baltic Sea: Measurements and modelling

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, E.

    2002-01-01

    Two weeks of measurements of the boundary-layer height over a small island (Christianso) in the Baltic Sea are discussed. The meteorological conditions are characterised by positive heat flux over the sea. The boundary-layer height was simulated with two models, a simple applied high-resolution (...

  20. Determination of the neutron flux in n_TOF-EAR2 by activation and PPAC measurements

    CERN Document Server

    Villacorta Skarbeli, Aris

    2015-01-01

    This report summarizes the work carried out as summer student. The aim is to measure the neutron flux of the new experiment area of n_TOF with the combination of the results obtained with gold activation and a PPAC detector.

  1. Effect of open-path gas analyzer wetness on eddy covariance flux measurements: A poposed solution

    NARCIS (Netherlands)

    Heusinkveld, B.G.; Jacobs, A.F.G.; Holtslag, A.A.M.

    2008-01-01

    Open-path gas analyzers are popular in eddy covariance flux measurements of trace gasses (i.e. CO2). The quality of the data, however, may be influenced by several factors. Exposure in an outdoor environment invariably causes the instrument to become colder or warmer than the air temperature.

  2. Ground level atmospheric gamma ray flux measurements in the 1 to 6 MeV range

    International Nuclear Information System (INIS)

    Sreekumar, P.

    1989-01-01

    The measurement of atmospheric gamma ray flux in the 1 to 6 MeV range at ground level is examined. These measurements were carried out using a Compton gamma ray telescope. It utilizes the Compton scattering principle to detect and image gamma ray sources. The telescope was used to measure ground level atmospheric gamma rays at four locations (Leadville (10200 ft), Boulder (5430 ft), Mt. Washington (6072 ft) and Durham (80 ft)) which ranged in atmospheric depth from 720 to 1033 sq cm and in local cutoff rigidity from 1.4 to 2.9 GV. Data was collected over a two week period at each location during 1987. The results yielded for the first time statistically atmospheric gamma ray flux values at large depths in the atmosphere. The analysis provided differential energy flux at various zenith angles in the 1 to 6 MeV energy range. The zenith angle dependence of the differential energy flux indicated a cos(sup n) theta dependence where n approximately 2.8 at higher altitudes (Leadville and Mt. Washington) and n approximately 2.0 deeper in the atmosphere (Boulder and Durham). The vertical intensity fitted a power law spectrum of index approximately 1.2, with the spectrum softening at large atmospheric depths. The atmospheric depth dependence shows an e-folding depth of 153 g/sq cm. Using this depth dependence, all existing measurements below 700 g/sq cm were normalized to sea level. Good agreement is seen among the normalized sea level flux corresponding to different experiments. Comparing experimental results with existing theoretical and Monte Carlo calculations in the 1 to 10 MeV range, the measurements indicate a softer power law spectrum, indicating the need to further examine the calculations. Combining UNH results with University of California (Riverside) measurements, indicate a weak rigidity dependence in the vertical atmospheric gamma ray intensity

  3. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    Directory of Open Access Journals (Sweden)

    T. Karl

    2009-01-01

    Full Text Available Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC fluxes of Volatile Organic Compounds (VOC using Proton Transfer Reaction Mass Spectrometry (PTR-MS on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1±4.0 mg/m2/h and 4.7±2.3 mg/m2/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m2/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 g/g including the International airport (e.g. 3–5 g/g and a mean flux (concentration ratio of 3.2±0.5 g/g (3.9±0.3 g/g across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX– Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE and the biomass burning marker acetonitrile (CH3CN, we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2–13%.

  4. Long-term CH3Br and CH3Cl flux measurements in temperate salt marshes

    Directory of Open Access Journals (Sweden)

    M. R. Heal

    2010-11-01

    Full Text Available Fluxes of CH3Br and CH3Cl and their relationship with potential drivers such as sunlight, temperature and soil moisture, were monitored at fortnightly to monthly intervals for more than two years at two contrasting temperate salt marsh sites in Scotland. Manipulation experiments were conducted to further investigate possible links between drivers and fluxes. Fluxes followed both seasonal and diurnal trends with highest fluxes during summer days and lowest (negative fluxes during winter nights. Mean (± 1 sd annually and diurnally-weighted net emissions from the two sites were found to be 300 ± 44 ng m−2 h−1 for CH3Br and 662 ± 266 ng m−2 h−1 for CH3Cl. The fluxes from this work are similar to findings from this and other research groups for salt marshes in cooler, higher latitude climates, but lower than values from salt marshes in the Mediterranean climate of southern California. Statistical analysis generally did not demonstrate a strong link between temperature or sunlight levels and methyl halide fluxes, although it is likely that temperatures have a weak direct influence on emissions, and both certainly have indirect influence via the annual and daily cycles of the vegetation. CH3Cl flux magnitudes from different measurement locations depended on the plant species enclosed whereas such dependency was not discernible for CH3Br fluxes. In 14 out of 18 collars with vegetation CH3Br and CH3Cl net fluxes were significantly positively correlated. The CH3Cl/CH3Br net-emission mass ratio was 2.2, a magnitude lower than mass ratios of global methyl halide budgets (~22 or emissions from tropical rainforests (~60. This is likely due to preference for CH3Br production by the relatively high bromine content in the salt marsh plant material. Extrapolation based solely on data from this study yields salt marsh contributions of 0.5–3.2% and 0.05–0.33%, respectively, of currently-estimated total global production of CH3Br and CH3Cl, but actual

  5. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    Science.gov (United States)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  6. Subchannel measurements of the equilibrium quality and mass flux distribution in a rod bundle

    International Nuclear Information System (INIS)

    Lahey, R.T. Jr.

    1986-01-01

    An experiment was performed to measure the equilibrium subchannel void and mass flux distribution in a simulated BWR rod bundle. These new equilibrium subchannel data are unique and represent an excellent basis for subchannel ''void drift'' model development and assessment. Equilibrium subchannel void and mass flux distributions have been determined from the data presented herein. While the form of these correlations agree with the results of previous theoretical investigations, they should be generalized with caution since the current data base has been taken at only one (low) system pressure. Clearly there is a need for equilibrium subchannel data at higher system pressures if mechanistic subchannel models are to be developed

  7. Measuring, Acquiring and recording of the neutron flux intensity at the cairo fourier diffractometer

    CERN Document Server

    Maayouf, R M A; Abdel-Hamid, A S

    2003-01-01

    A simple and low cost, data acquisition system is presented for measuring, acquiring and recording the instant variations of the neutron flux. The system applies especially designed PC acquisition board and software driver to acquire, periodically, the number of digital pulses that arrive from one or more neutron detectors during short sampling time intervals. It has been verified that the data collected from the detectors, using the present system, can be preserved and available for software analysis and statistical operations; such as computing the average and integral neutron flux during any time period.

  8. Fast flux measurements by means of threshold detectors on the reactor 'Melusine'

    International Nuclear Information System (INIS)

    Leger, P.; Sautiez, B.

    1959-01-01

    Using existing data on the (n,p) and (n,α) threshold reactions we have carried out fast flux measurements on the swimming pool type reactor 'Melusine'. Four common elements: P, S, Mg, Al were chosen because from the point of view of fast spectrum analysis they represent a fairly good energy range from 2.4 MeV to 8 MeV. The fission flux value found in the central element at a power of 1 MW is 1.4 x 10 13 n/cm 2 /s ± 0.14. (author) [fr

  9. Chamber and Diffusive Based Carbon Flux Measurements in an Alaskan Arctic Ecosystem

    Science.gov (United States)

    Wilkman, E.; Oechel, W. C.; Zona, D.

    2013-12-01

    Eric Wilkman, Walter Oechel, Donatella Zona Comprising an area of more than 7 x 106 km2 and containing over 11% of the world's organic matter pool, Arctic terrestrial ecosystems are vitally important components of the global carbon cycle, yet their structure and functioning are sensitive to subtle changes in climate and many of these functional changes can have large effects on the atmosphere and future climate regimes (Callaghan & Maxwell 1995, Chapin et al. 2002). Historically these northern ecosystems have acted as strong C sinks, sequestering large stores of atmospheric C due to photosynthetic dominance in the short summer season and low rates of decomposition throughout the rest of the year as a consequence of cold, nutrient poor, and generally water-logged conditions. Currently, much of this previously stored carbon is at risk of loss to the atmosphere due to accelerated soil organic matter decomposition in warmer future climates (Grogan & Chapin 2000). Although there have been numerous studies on Arctic carbon dynamics, much of the previous soil flux work has been done at limited time intervals, due to both the harshness of the environment and labor and time constraints. Therefore, in June of 2013 an Ultraportable Greenhouse Gas Analyzer (UGGA - Los Gatos Research Inc.) was deployed in concert with the LI-8100A Automated Soil Flux System (LI-COR Biosciences) in Barrow, AK to gather high temporal frequency soil CO2 and CH4 fluxes from a wet sedge tundra ecosystem. An additional UGGA in combination with diffusive probes, installed in the same location, provides year-round soil and snow CO2 and CH4 concentrations. When used in combination with the recently purchased AlphaGUARD portable radon monitor (Saphymo GmbH), continuous soil and snow diffusivities and fluxes of CO2 and CH4 can be calculated (Lehmann & Lehmann 2000). Of particular note, measuring soil gas concentration over a diffusive gradient in this way allows one to separate both net production and

  10. Measurement of spectra and neutron fluxes on artificial earth satellites from the Cosmos series

    Science.gov (United States)

    Dudkin, V. Y.; Kovalev, Y. Y.; Novikova, M. R.; Potapov, Y. V.; Skvortsov, S. S.; Smirennyy, L. N.

    1975-01-01

    In 1966-1967 measurements were carried out at the altitudes of 200 to 400 km to determine the spectra and fluxes of fast neutrons inside the hermetically sealed artificial earth satellites of the Cosmos series. The detectors used were nuclear emulsions of the B9 and BR types and an emulsion of the P9 type, filled with Li and P. Spectra and fluxes of neutrons in the range of energies from thermal energies to 10 MeV are presented. Neutron doses are also estimated.

  11. Determination of neutron flux with an arbitrary energy distribution by measurement of irradiated foils activity

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milosevic, M.

    2003-01-01

    A procedure for the neutron flux determination in a neutron field with an arbitrary energy spectrum, based on the using of standard methods for the measurement of irradiated foils activity and on the application of the SCALE-4.4a code system for averaged cross section calculation is described in this paper. Proposed procedure allows to include the energy spectrum of neutron flux reestablished in the location of irradiated foils and the resonance self-shielding effects in the foils also. Example application of this procedure is given for the neutron flux determination inside the neutron filter with boron placed in the centre of heavy water critical assembly RB at the Vinca Institute (author)

  12. Investigation of SOL parameters and divertor particle flux from electric probe measurements in KSTAR

    International Nuclear Information System (INIS)

    Bak, J.G.; Kim, H.S.; Bae, M.K.; Juhn, J.W.; Seo, D.C.; Bang, E.N.; Shim, S.B.; Chung, K.S.; Lee, H.J.; Hong, S.H.

    2015-01-01

    The upstream scrape-off layer (SOL) profiles and downstream particle fluxes are measured with a fast reciprocating Langmuir probe assembly (FRLPA) at the outboard mid-plane and a fixed edge Langmuir probe array (ELPA) at divertor region, respectively in the KSTAR. It is found that the SOL has a two-layer structure in the outboard wall-limited (OWL) ohmic and L-mode: a near SOL (∼5 mm zone) with a narrow feature and a far SOL with a broader profile. The near SOL width evaluated from the SOL profiles in the OWL plasmas is comparable to the scaling for the L-mode divertor plasmas in the JET and AUG. In the SOL profiles and the divertor particle flux profile during the ELMy H-modes, the characteristic e-folding lengths of electron temperature, plasma density and particle flux during an ELM phase are about two times larger than ones at the inter ELM

  13. Measurements of absorbed heat flux and water-side heat transfer coefficient in water wall tubes

    Science.gov (United States)

    Taler, Jan; Taler, Dawid; Kowal, Andrzej

    2011-04-01

    The tubular type instrument (flux tube) was developed to identify boundary conditions in water wall tubes of steam boilers. The meter is constructed from a short length of eccentric tube containing four thermocouples on the fire side below the inner and outer surfaces of the tube. The fifth thermocouple is located at the rear of the tube on the casing side of the water-wall tube. The boundary conditions on the outer and inner surfaces of the water flux-tube are determined based on temperature measurements at the interior locations. Four K-type sheathed thermocouples of 1 mm in diameter, are inserted into holes, which are parallel to the tube axis. The non-linear least squares problem is solved numerically using the Levenberg-Marquardt method. The heat transfer conditions in adjacent boiler tubes have no impact on the temperature distribution in the flux tubes.

  14. Comparison of calculated energy flux of internal tides with microstructure measurements

    Directory of Open Access Journals (Sweden)

    Saeed Falahat

    2014-10-01

    Full Text Available Vertical mixing caused by breaking of internal tides plays a major role in maintaining the deep-ocean stratification. This study compares observations of dissipation from microstructure measurements to calculations of the vertical energy flux from barotropic to internal tides, taking into account the temporal variation due to the spring-neap tidal cycle. The dissipation data originate from two surveys in the Brazil Basin Tracer Release Experiment (BBTRE, and one over the LArval Dispersal along the Deep East Pacific Rise (LADDER3, supplemented with a few stations above the North-Atlantic Ridge (GRAVILUCK and in the western Pacific (IZU. A good correlation is found between logarithmic values of energy flux and local dissipation in BBTRE, suggesting that the theory is able to predict energy fluxes. For the LADDER3, the local dissipation is much smaller than the calculated energy flux, which is very likely due to the different topographic features of BBTRE and LADDER3. The East Pacific Rise consists of a few isolated seamounts, so that most of the internal wave energy can radiate away from the generation site, whereas the Brazil Basin is characterised by extended rough bathymetry, leading to a more local dissipation. The results from all four field surveys support the general conclusion that the fraction of the internal-tide energy flux that is dissipated locally is very different in different regions.

  15. Measurements of energy and flux of neutrals at the wall in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Wampler, W.R.; Kilpatrick, S.J.

    1989-01-01

    The energy and flux of charge-exchange neutral deuterium incident on the wall in the Tokamak Fusion Test Reactor (TFTR) were measured using a carbon resistance probe. This device utilizes the increase in electrical resistance of a thin carbon film produced by the impinging particles. Particle energies and fluxes were determined from the stopping effect of thin layers of silicon over the carbon. Film thicknesses were chosen to give a useful energy range from about 50 to 5000 eV. Time-resolved data were obtained for the first time by using a transient digitizer to record the signals every millisecond during the discharge. The deduced flux and Maxwellian temperature were 0.7 x 10 14 /cm 2 s and kT = 350 eV, respectively, during Ohmic heating. Neutral beam heating (10 MW) increased the temperature by a factor of 4 and increased the flux by a factor of 2. The observed flux of neutrals to the wall is large enough for changes in the recycling of these particles to affect plasma fueling significantly

  16. Measurements of energy and flux of neutrals at the wall in TFTR

    International Nuclear Information System (INIS)

    Wampler, W.R.; Kilpatrick, S.J.

    1988-01-01

    The energy and flux of charge-exchange neutral deuterium incident on the wall in TFTR were measured using a carbon resistance probe. This device utilizes the increase in electrical resistance of a thin carbon film produced by the impinging particles. Particle energies and fluxes were determined from the stopping effect of thin layers of silicon over the carbon. Film thicknesses were chosen to give a useful energy range from about 50 to 5000 eV. Time-resolved data were obtained for the first time by using a transient digitizer to record the signals every millisecond during the discharge. The deduced flux and Maxwellian temperature were 0.7 /times/ 10 14 /cm 2 s and kT = 350 eV, respectively during ohmic heating. Neutral beam heating (10 MW) increased both the temperature and flux by about a factor of two. The observed flux of neutrals to the wall is large enough for changes in the recycling of these particles to affect plasma fueling significantly. 10 refs., 2 figs., 1 tab

  17. Measurement of the 36Cl deposition flux in central Japan: natural background levels and seasonal variability.

    Science.gov (United States)

    Tosaki, Yuki; Tase, Norio; Sasa, Kimikazu; Takahashi, Tsutomu; Nagashima, Yasuo

    2012-04-01

    Essential parameters for the applications of (36)Cl as a tracer in groundwater studies include the initial (36)Cl/Cl ratio, at the time of recharge, and/or the natural background deposition flux of (36)Cl in the recharge area. To facilitate the hydrological use of (36)Cl in central Japan, this study aimed to obtain a precise estimate of the long-term average local (36)Cl flux and to characterize its seasonal variability. The (36)Cl in precipitation was continuously monitored in Tsukuba, central Japan over a period of >5 years. The (36)Cl flux showed a clear seasonal variation with an annual peak during the spring, which was attributed to the seasonal variability of tropopause height. The long-term average (36)Cl flux (32±2atoms m(-2)s(-1)), estimated from the measured data, was consistent with the prediction from the (36)Cl latitudinal fallout model scaled using the global mean production rate of 20atoms m(-2)s(-1). The initial (36)Cl/Cl ratio was estimated to be (41±6)×10(-15), which is similar to that of pre-bomb groundwater in the Tsukuba Upland. An observation period covering an 11-year solar cycle would yield more accurate estimates of the values, given the increased (36)Cl flux during the solar minimum. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. New ground-based lidar enables volcanic CO2 flux measurements.

    Science.gov (United States)

    Aiuppa, Alessandro; Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Nuvoli, Marcello; Chiodini, Giovanni; Minopoli, Carmine; Tamburello, Giancarlo

    2015-09-01

    There have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2-the most reliable gas precursor to an eruption-has remained a challenge. Here we report on the first direct quantitative measurements of the volcanic CO2 flux using a newly designed differential absorption lidar (DIAL), which were performed at the restless Campi Flegrei volcano. We show that DIAL makes it possible to remotely obtain volcanic CO2 flux time series with a high temporal resolution (tens of minutes) and accuracy (volcano monitoring, and will contribute improved volcanic CO2 flux inventories. Our results also demonstrate the unusually strong degassing behavior of Campi Flegrei fumaroles in the current ongoing state of unrest.

  19. Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement

    Science.gov (United States)

    Gao, Nuo; Zhu, S. A.; He, Bin

    2005-06-01

    We have developed a new algorithm for magnetic resonance electrical impedance tomography (MREIT), which uses only one component of the magnetic flux density to reconstruct the electrical conductivity distribution within the body. The radial basis function (RBF) network and simplex method are used in the present approach to estimate the conductivity distribution by minimizing the errors between the 'measured' and model-predicted magnetic flux densities. Computer simulations were conducted in a realistic-geometry head model to test the feasibility of the proposed approach. Single-variable and three-variable simulations were performed to estimate the brain-skull conductivity ratio and the conductivity values of the brain, skull and scalp layers. When SNR = 15 for magnetic flux density measurements with the target skull-to-brain conductivity ratio being 1/15, the relative error (RE) between the target and estimated conductivity was 0.0737 ± 0.0746 in the single-variable simulations. In the three-variable simulations, the RE was 0.1676 ± 0.0317. Effects of electrode position uncertainty were also assessed by computer simulations. The present promising results suggest the feasibility of estimating important conductivity values within the head from noninvasive magnetic flux density measurements.

  20. Combining two complementary micrometeorological methods to measure CH4 and N2O fluxes over pasture

    Science.gov (United States)

    Laubach, Johannes; Barthel, Matti; Fraser, Anitra; Hunt, John E.; Griffith, David W. T.

    2016-03-01

    New Zealand's largest industrial sector is pastoral agriculture, giving rise to a large fraction of the country's emissions of methane (CH4) and nitrous oxide (N2O). We designed a system to continuously measure CH4 and N2O fluxes at the field scale on two adjacent pastures that differed with respect to management. At the core of this system was a closed-cell Fourier transform infrared (FTIR) spectrometer, which measured the mole fractions of CH4, N2O and carbon dioxide (CO2) at two heights at each site. In parallel, CO2 fluxes were measured using eddy-covariance instrumentation. We applied two different micrometeorological ratio methods to infer the CH4 and N2O fluxes from their respective mole fractions and the CO2 fluxes. The first is a variant of the flux-gradient method, where it is assumed that the turbulent diffusivities of CH4 and N2O equal that of CO2. This method was reliable when the CO2 mole-fraction difference between heights was at least 4 times greater than the FTIR's resolution of differences. For the second method, the temporal increases of mole fractions in the stable nocturnal boundary layer, which are correlated for concurrently emitted gases, are used to infer the unknown fluxes of CH4 and N2O from the known flux of CO2. This method was sensitive to "contamination" from trace gas sources other than the pasture of interest and therefore required careful filtering. With both methods combined, estimates of mean daily CH4 and N2O fluxes were obtained for 56 % of days at one site and 73 % at the other. Both methods indicated both sites as net sources of CH4 and N2O. Mean emission rates for 1 year at the unfertilised, winter-grazed site were 8.9 (±0.79) nmol CH4 m-2 s-1 and 0.38 (±0.018) nmol N2O m-2 s-1. During the same year, mean emission rates at the irrigated, fertilised and rotationally grazed site were 8.9 (±0.79) nmol CH4 m-2 s-1 and 0.58 (±0.020) nmol N2O m-2 s-1. At this site, the N2O emissions amounted to 1.21 (±0.15) % of the nitrogen

  1. Measurement and modelling ozone fluxes over a cut and fertilized grassland

    Directory of Open Access Journals (Sweden)

    R. Mészáros

    2009-10-01

    Full Text Available During the GRAMINAE Integrated Experiment between 20 May and 15 June 2000, the ozone flux was measured by the eddy covariance method above intensively managed grassland in Braunschweig, northern Germany. Three different phases of vegetation were covered during the measuring campaign: tall grass canopy before cut (29 May 2000, short grass after cut, and re-growing vegetation after fertilization (5 June 2000. Results show that beside weather conditions, the agricultural activities significantly influenced the O3 fluxes. After the cut the daytime average of the deposition velocity (vd decreased from 0.44 cm s−1 to 0.26 cm s−1 and increased again to 0.32 cm s−1 during the third period. Detailed model calculations were carried out to estimate deposition velocity and ozone flux. The model captures the general diurnal patter of deposition, with vd daytime values of 0.52, 0.24, and 0.35 cm s−1 in the first, second and third period, respectively. Thus the model predicts a stronger response to the cut than the measurements, which is nevertheless smaller than expected on the basis of change in leaf area. The results show that both cut and fertilization have complex impacts on fluxes. Reduction of vegetation by cutting decreased the stomatal flux initially greatly, but the stomatal flux recovered to 80% of its original value within a week. At the same time, the non-stomatal flux appears to have increased directly after the cut, which the model partially explains by an increase in the deposition to the soil. A missing sink after the cut may be the chemical interaction with biogenic volatile organic compounds released after the cut and exposed senescent plant parts, or the increase in soil NO emissions after fertilization. Increased canopy temperatures may also have promoted ozone destruction on leaf surfaces. These results demonstrate the importance of canopy

  2. Condition monitoring of squirrel-cage motors by axial magnetic flux measurements

    OpenAIRE

    Kokko, V. (Voitto)

    2003-01-01

    Abstract The aim of this research work is to develop a tool for condition monitoring of squirrel-cage motors using axial magnetic flux measurements, and to design a diagnostics system for electrical motors. The basic theory of the measurements and systems was found through literature reviews and was further developed from the experimental results of this research work. Fluxgate magnetometers and Hall effect sensors are not reliable enough for condition monitoring purposes, but measurem...

  3. Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector

    Science.gov (United States)

    ANTARES Collaboration; Aguilar, J. A.; Albert, A.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carminati, G.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Flaminio, V.; Fratini, K.; Fritsch, U.; Fuda, J.-L.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Lucarelli, F.; Lyons, K.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Maurin, G.; Mazure, A.; Melissas, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Pillet, R.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Richardt, C.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration

    2010-10-01

    The ANTARES high-energy neutrino telescope is a three-dimensional array of about 900 photomultipliers distributed over 12 mooring lines installed in the Mediterranean Sea. Between February and November 2007 it acquired data in a 5-line configuration. The zenith angular distribution of the atmospheric muon flux and the associated depth-intensity relation are measured and compared with previous measurements and Monte Carlo expectations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is presented.

  4. Modeling of possible localized electron flux in cosmic rays with Alpha Magnetic Spectrometer measurements

    Science.gov (United States)

    Kwang-Hua, Chu Rainer

    2017-10-01

    Discrete quantum Boltzmann model together with the introduction of an external-field-tuned orientation parameter as well as the acoustic analog are adopted to study the possible localization of electron (fermion) flux in cosmic rays considering the precision measurement with the Alpha Magnetic Spectrometer (AMS) on the International Space Station (ISS). Our approximate results match qualitatively with those data measured with the AMS on the ISS.

  5. Forest floor CO2 flux measurements with a dark-light chamber

    OpenAIRE

    Lankreijer, H. J. M.; Lindroth, A.; Strömgren, M.; Kulmala, L.; Pumpanen, J.

    2009-01-01

    An automatic closed chamber system for measuring net carbon flux from the forest floor was equipped with both a transparent and an opaque cover. The system was operated in such way that a measurement session with transparent chamber was followed by a session with dark chamber. This made it possible to estimate besides total daytime respiration and nighttime respiration also the gross assimilation of the vegetation enclosed in the chamber. The chamber was used at two locations, Hyytiäla in Fin...

  6. Flux threshold measurements of He-ion beam induced nanofuzz formation on hot tungsten surfaces

    International Nuclear Information System (INIS)

    Meyer, F W; Hijazi, H; Bannister, M E; Unocic, K A; Garrison, L M; Parish, C M

    2016-01-01

    We report measurements of the energy dependence of flux thresholds and incubation fluences for He-ion induced nano-fuzz formation on hot tungsten surfaces at UHV conditions over a wide energy range using real-time sample imaging of tungsten target emissivity change to monitor the spatial extent of nano-fuzz growth, corroborated by ex situ SEM and FIB/SEM analysis, in conjunction with accurate ion-flux profile measurements. The measurements were carried out at the multicharged ion research facility (MIRF) at energies from 218 eV to 8.5 keV, using a high-flux deceleration module and beam flux monitor for optimizing the decel optics on the low energy MIRF beamline. The measurements suggest that nano-fuzz formation proceeds only if a critical rate of change of trapped He density in the W target is exceeded. To understand the energy dependence of the observed flux thresholds, the energy dependence of three contributing factors: ion reflection, ion range and target damage creation, were determined using the SRIM simulation code. The observed energy dependence can be well reproduced by the combined energy dependences of these three factors. The incubation fluences deduced from first visual appearance of surface emissivity change were (2–4) × 10 23 m −2 at 218 eV, and roughly a factor of 10 less at the higher energies, which were all at or above the displacement energy threshold. The role of trapping at C impurity sites is discussed. (paper)

  7. Photon flux determination for a precision measurement of the neutral pion lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Teymurazyan, Aram [Univ. of Kentucky, Lexington, KY (United States)

    2008-01-01

    The Jefferson Lab Hall B PrimEx Collaboration is using tagged photons to perform a 1.4% level measurement of the absolute cross section for the photo-production of neutral pions in the Coulomb field of a nucleus as a test of Chiral Perturbation Theory. Such a high precision pushes the limits of the photon tagging technique in regards to the determination of the absolute photon flux. A multifaceted approach to this problem has included measuring the absolute tagging ratios with a Total Absorption Counter (TAC) as well as relative tagging ratios with a Pair Spectrometer (PS), and determining the rate of the tagging counters using multi-hit TDC's and a clock trigger. This enables the determination of the absolute tagged photon flux for the PrimEx experiment with uncertainty of ~ 1.0%, which is unprecedented. In view of the stringent constraints on the required precision of the photon flux for this experiment, periodicmeasurements of the pair production cross section were performed throughout the run. In these measurements, both the photon energy and flux were determined by the Jefferson Lab Hall B tagger, and the electron-positron pairs were swept by a magnetic field and detected in the new 1728 channel hybrid calorimeter (HyCal). The pair production crosssection was extracted with an uncertainty of ~ 2%, producing an agreement with theoretical calculations at the level of ~ 2%. This measurement provided a unique opportunity to verify the photon flux determination procedure for the PrimEx experiment.

  8. Neutron flux measurement in the thermal column of the Malaysian TRIGA mark II reactor with MCNP verification

    International Nuclear Information System (INIS)

    Abdel Munem, E.; Shukri, A.; Tajuddin, A.A.

    2006-01-01

    A study of the thermal column of the Malaysian TRIGA Mark II reactor, forming part of a feasibility study for BNCT was proposed in 2001. In the current study, pure metals were used to measure the neutron flux at selected points in the thermal column and the neutron flux determined using SAND-II. Monte Carlo simulation of the thermal column was also carried out. The reactor core was homogenized and calculations of the neutron flux through the graphite stringers performed using MCNP5. The results show good agreement between the measured flux and the MCNP calculated flux. An obvious extension from this is that the MCNP neutron flux output can be utilized as an input spectrum for SAND-II for the flux iteration. (author)

  9. A study of inclusive antineutrino interactions in propane

    International Nuclear Information System (INIS)

    Ramzan, F.A.

    1979-02-01

    Some results obtained using the heavy liquid bubble chamber Gargamelle situated at the CERN Proton Synchrotron neutrino beam facility are presented. The deep inelastic scattering of antineutrinos is analysed and interpreted in the theoretical framework of Bjorken scaling and the Quark Parton model of the nucleon. This model predicts that scaling should occur in regions of high four momentum squared. The effect of not being in that region is investigated. In particular the data suggest that in the region of low four momentum transfer the results can still be interpreted in the scaling framework. A model is presented which enables extraction of the neutron to proton cross section, and the result is interpreted within the quark model. (author)

  10. Combining Eddy Covariance, Leaf Level Measurements and Modelling to Investigate Ecosystem Fluxes in Tropical Grasslands

    Science.gov (United States)

    Wohland, P.; Mantlana, B.; Kattge, J.

    2007-12-01

    Our project determined seasonal and spatial variations in ecosystem fluxes of tropical grassland ecosystems by investigating three prominent grassland types along a hydrological gradient in the Okavango Delta, Botswana.To identify the environmental factors that control CO2 and H2O exchange in tropical grassland ecosystems, we successfully combined eddy covariance measurements, leaf level measurements and remotely sensed data.Grassland ecosystems growing under the same climate showed profound differences in ecosystem fluxes as well as what regulated those fluxes on an ecosystem level. The analysis of the eddy covariance measurements revealed a pronounced seasonal and spatial variation with maximum net ecosystem exchange (NE) varying between -25μ mol -2 s-1 and -1μ mol -2 s-1 across sites and seasons. Without water limitation the main factor for the differences in NE between ecosystems was nutrient content per vegetation unit. This importance of nutrient content was also confirmed by our leaf level measurements. Seasonal differences in NE varied between sites and were driven by phenology or temperature and light limitation.Eddy covariance measurements for this project were predominantly campaign measurements. To determine annual course and sum of NE, we adapted the ecosystem model BETHY (Biosphere-Energy Transfer Hydrology Scheme) by parameter inversion in combination with remotely sensed fraction of absorbed photosynthetically active radiation for each site.

  11. Study of charged current reactions induced by muon antineutrinos

    International Nuclear Information System (INIS)

    Huss, D.

    1979-07-01

    We present in this work a study of antineutrino reactions on light targets. We have used the Gargamelle cloud chamber with a propane-freon mix. In the 2 first chapters we give a brief description of the experimental setting and we present the selection criteria of the events. In the third chapter we analyse the data for the reaction anti-ν + p → μ + + n that preserves strangeness. We have deduced the values of the axial (M A ) and vector (M V ) form factors: M A = (O.92 ± 0.08) GeV and M V = (0.86 ± 0.04) GeV. In the fourth chapter we study reactions in which strange particles appear (ΔS = 1) and we have determined their production cross-sections. The elastic reaction: anti-ν + p → μ + + Λ is studied in a more accurate manner thanks to a 3-constraint adjustment that enables the selection of events occurring on free protons. We have deduced from our data the longitudinal, orthogonal and transverse polarization of Λ, we have got respectively P l = -0.06 ± 0.44; P p = 0.29 ± 0.41; P t 1.05 ± 0.30. We have also deduced the values of the total cross-section as a function of the incident antineutrino energy E: σ (0.27 ± 0.02)*E*10 -38 cm -2 . E has been assessed from the energy deposited in the cloud chamber and we have adjusted the cross-section with a straight line as it is expected under the assumption of scale invariance. (A.C.)

  12. Integral emission factors for methane determined using urban flux measurements and local-scale inverse models

    Science.gov (United States)

    Christen, Andreas; Johnson, Mark; Molodovskaya, Marina; Ketler, Rick; Nesic, Zoran; Crawford, Ben; Giometto, Marco; van der Laan, Mike

    2013-04-01

    The most important long-lived greenhouse gas (LLGHG) emitted during combustion of fuels is carbon dioxide (CO2), however also traces of the LLGHGs methane (CH4) and nitrous oxide (N2O) are released, the quantities of which depend largely on the conditions of the combustion process. Emission factors determine the mass of LLGHGs emitted per energy used (or kilometre driven for cars) and are key inputs for bottom-up emission modelling. Emission factors for CH4 are typically determined in the laboratory or on a test stand for a given combustion system using a small number of samples (vehicles, furnaces), yet associated with larger uncertainties when scaled to entire fleets. We propose an alternative, different approach - Can integrated emission factors be independently determined using direct micrometeorological flux measurements over an urban surface? If so, do emission factors determined from flux measurements (top-down) agree with up-scaled emission factors of relevant combustion systems (heating, vehicles) in the source area of the flux measurement? Direct flux measurements of CH4 were carried out between February and May, 2012 over a relatively densely populated, urban surface in Vancouver, Canada by means of eddy covariance (EC). The EC-system consisted of an ultrasonic anemometer (CSAT-3, Campbell Scientific Inc.) and two open-path infrared gas analyzers (Li7500 and Li7700, Licor Inc.) on a tower at 30m above the surface. The source area of the EC system is characterised by a relative homogeneous morphometry (5.3m average building height), but spatially and temporally varying emission sources, including two major intersecting arterial roads (70.000 cars drive through the 50% source area per day) and seasonal heating in predominantly single-family houses (natural gas). An inverse dispersion model (turbulent source area model), validated against large eddy simulations (LES) of the urban roughness sublayer, allows the determination of the spatial area that

  13. Measurement of Turbulent Fluxes of Swirling Flow in a Scaled Up Multi Inlet Vortex Reactor

    Science.gov (United States)

    Olsen, Michael; Hitimana, Emmanual; Hill, James; Fox, Rodney

    2017-11-01

    The multi-inlet vortex reactor (MIVR) has been developed for use in the FlashNanoprecipitation (FNP) process. The MIVR has four identical square inlets connected to a central cylindrical mixing chamber with one common outlet creating a highly turbulent swirling flow dominated by a strong vortex in the center. Efficient FNP requires rapid mixing within the MIVR. To investigate the mixing, instantaneous velocity and concentration fields were acquired using simultaneous stereoscopic particle image velocimetry and planar laser-induced fluorescence. The simultaneous velocity and concentration data were used to determine turbulent fluxes and spatial cross-correlations of velocity and concentration fluctuations. The measurements were performed for four inlet flow Reynolds numbers (3250, 4875, 6500, and 8125) and at three measurement planes within the reactor. A correlation between turbulent fluxes and vortex strength was found. For all Reynolds numbers, turbulent fluxes are maximum in the vortex dominated central region of the reactor and decay away from the vortex. Increasing Reynolds number increased turbulent fluxes and subsequently enhanced mixing. The mixing performance was confirmed by determining coefficients of concentration variance within the reactor.

  14. Measurement of the Nonlinearity of Heat-Flux Sensors Employing a CO_2 laser

    Science.gov (United States)

    van der Ham, E. W. M.; Beer, C. M.; Ballico, M. J.

    2018-01-01

    Heat-flux sensors are widely used in industry to test building products and designs for resistance to bushfire, to test the flammability of textiles and in numerous applications such as concentrated solar collectors. In Australia, such detectors are currently calibrated by the National Measurement Institute Australia (NMIA) at low flux levels of 20 W \\cdot m^{-2}. Estimates of the uncertainty arising from nonlinearity at industrial levels (e.g. 50 kW \\cdot m^{-2} for bushfire testing) rely on literature information. NMIA has developed a facility to characterize the linearity response of these heat-flux sensors up to 110 kW \\cdot m^{-2} using a low-power CO_2 laser and a chopped quartz tungsten-halogen lamp. The facility was validated by comparison with the conventional flux-addition method, and used to characterize several Schmidt-Boelter-type sensors. A significant nonlinear response was found, ranging from (3.2 ± 0.9)% at 40 kW \\cdot m^{-2} to more than 8 % at 100 kW \\cdot m^{-2}. Additional measurements confirm that this is not attributable to convection effects, but due to the temperature dependence of the sensor's responsivity.

  15. Measuring fluxes of mineral nutrients and toxicants in plants with radioactive tracers.

    Science.gov (United States)

    Coskun, Devrim; Britto, Dev T; Hamam, Ahmed M; Kronzucker, Herbert J

    2014-08-22

    Unidirectional influx and efflux of nutrients and toxicants, and their resultant net fluxes, are central to the nutrition and toxicology of plants. Radioisotope tracing is a major technique used to measure such fluxes, both within plants, and between plants and their environments. Flux data obtained with radiotracer protocols can help elucidate the capacity, mechanism, regulation, and energetics of transport systems for specific mineral nutrients or toxicants, and can provide insight into compartmentation and turnover rates of subcellular mineral and metabolite pools. Here, we describe two major radioisotope protocols used in plant biology: direct influx (DI) and compartmental analysis by tracer efflux (CATE). We focus on flux measurement of potassium (K(+)) as a nutrient, and ammonia/ammonium (NH3/NH4(+)) as a toxicant, in intact seedlings of the model species barley (Hordeum vulgare L.). These protocols can be readily adapted to other experimental systems (e.g., different species, excised plant material, and other nutrients/toxicants). Advantages and limitations of these protocols are discussed.

  16. Measurement of the fluence flux of monoenergetic neutrons on the Van de Graaff accelerator at Cadarache

    International Nuclear Information System (INIS)

    Szabo, Imre.

    1976-12-01

    This report is a compilation of the different fast neutron flux measurements performed by the Section d'Etudes et de Mesures en Neutrons Rapides (S.E.M.N.R.-CADARACHE) in the energy range extending from 10keV to 14.8 MeV. The facilities used and the methods developed are described. The analysis of the calibrations made during the last few years, led to a final set of values for the efficiency of the ''directional counter''. This counter was used as a reference for microscopic data measurements and also for neutron flux measurements carried out in other laboratories. The accuracy obtained in the 10keV-14MeV range varied from 2 to 3.5% (one standard deviation) [fr

  17. Comparative study of elemental mercury flux measurement techniques over a Fennoscandian boreal peatland

    Science.gov (United States)

    Osterwalder, S.; Sommar, J.; Åkerblom, S.; Jocher, G.; Fritsche, J.; Nilsson, M. B.; Bishop, K.; Alewell, C.

    2018-01-01

    Quantitative estimates of the land-atmosphere exchange of gaseous elemental mercury (GEM) are biased by the measurement technique employed, because no standard method or scale in space and time are agreed upon. Here we present concurrent GEM exchange measurements over a boreal peatland using a novel relaxed eddy accumulation (REA) system, a rectangular Teflon® dynamic flux chamber (DFC) and a DFC designed according to aerodynamic considerations (Aero-DFC). During four consecutive days the DFCs were placed alternately on two measurement plots in every cardinal direction around the REA sampling mast. Spatial heterogeneity in peat surface characteristics (0-34 cm) was identified by measuring total mercury in eight peat cores (57 ± 8 ng g-1, average ± SE), vascular plant coverage (32-52%), water table level (4.5-14.1 cm) and dissolved gaseous elemental mercury concentrations (28-51 pg L-1) in the peat water. The GEM fluxes measured by the DFCs showed a distinct diel pattern, but no spatial difference in the average fluxes was detected (ANOVA, α = 0.05). Even though the correlation between the Teflon® DFC and Aero-DFC was significant (r = 0.76, p scale features, such as experimentally manipulated plots or small scale spatial heterogeneity.

  18. Two-dimensional electric field measurements in the ionospheric footprint of a flux transfer event

    Directory of Open Access Journals (Sweden)

    K. A. McWilliams

    2000-12-01

    Full Text Available Line-of-sight Doppler velocities from the SuperDARN CUTLASS HF radar pair have been combined to produce the first two-dimensional vector measurements of the convection pattern throughout the ionospheric footprint of a flux transfer event (a pulsed ionospheric flow, or PIF. Very stable and moderate interplanetary magnetic field conditions, along with a preceding prolonged period of northward interplanetary magnetic field, allow a detailed study of the spatial and the temporal evolution of the ionospheric response to magnetic reconnection. The flux tube footprint is tracked for half an hour across six hours of local time in the auroral zone, from magnetic local noon to dusk. The motion of the footprint of the newly reconnected flux tube is compared with the ionospheric convection velocity. Two primary intervals in the PIF's evolution have been determined. For the first half of its lifetime in the radar field of view the phase speed of the PIF is highly variable and the mean speed is nearly twice the ionospheric convection speed. For the final half of its lifetime the phase velocity becomes much less variable and slows down to the ionospheric convection velocity. The evolution of the flux tube in the magnetosphere has been studied using magnetic field, magnetopause and magnetosheath models. The data are consistent with an interval of azimuthally propagating magnetopause reconnection, in a manner consonant with a peeling of magnetic flux from the magnetopause, followed by an interval of anti-sunward convection of reconnected flux tubes.Key words: Magnetospheric physics (magnetosphere · ionosphere interactions; plasma convection; solar wind · magnetosphere interactions

  19. Two-dimensional electric field measurements in the ionospheric footprint of a flux transfer event

    Directory of Open Access Journals (Sweden)

    K. A. McWilliams

    Full Text Available Line-of-sight Doppler velocities from the SuperDARN CUTLASS HF radar pair have been combined to produce the first two-dimensional vector measurements of the convection pattern throughout the ionospheric footprint of a flux transfer event (a pulsed ionospheric flow, or PIF. Very stable and moderate interplanetary magnetic field conditions, along with a preceding prolonged period of northward interplanetary magnetic field, allow a detailed study of the spatial and the temporal evolution of the ionospheric response to magnetic reconnection. The flux tube footprint is tracked for half an hour across six hours of local time in the auroral zone, from magnetic local noon to dusk. The motion of the footprint of the newly reconnected flux tube is compared with the ionospheric convection velocity. Two primary intervals in the PIF's evolution have been determined. For the first half of its lifetime in the radar field of view the phase speed of the PIF is highly variable and the mean speed is nearly twice the ionospheric convection speed. For the final half of its lifetime the phase velocity becomes much less variable and slows down to the ionospheric convection velocity. The evolution of the flux tube in the magnetosphere has been studied using magnetic field, magnetopause and magnetosheath models. The data are consistent with an interval of azimuthally propagating magnetopause reconnection, in a manner consonant with a peeling of magnetic flux from the magnetopause, followed by an interval of anti-sunward convection of reconnected flux tubes.

    Key words: Magnetospheric physics (magnetosphere · ionosphere interactions; plasma convection; solar wind · magnetosphere interactions

  20. Eddy covariance flux measurements of Glyoxal over the tropical Pacific Ocean

    Science.gov (United States)

    Coburn, S.; Gonzalez, L.; Thalman, R. M.; Volkamer, R. M.; Blomquist, B.; Fairall, C. W.

    2012-12-01

    Direct measurement of turbulent atmosphere-surface exchange fluxes by means of the Eddy Covariance technique (EC) hold great promise to further our understanding of air-sea exchange that is relevant to atmospheric chemistry and climate. Eddy Covariance flux measurements from ships have to date been accomplished only for a limited set of molecules, i.e., CO2, DMS, O3. Here we present the first EC measurements of glyoxal. Glyoxal is a short-lived (atmospheric lifetime of ~2hrs) and very soluble gas (Effective Henry's Law, Heff = 4x10^5 M atm^-1). It's presence over the tropical oceans presents a current mystery, and indicates the oxidation of organic carbon of marine origin at interfaces in the remote marine boundary layer. EC measurements of glyoxal were measured by means of the University of Colorado Fast Cavity Enhanced Differential Optical Absorption Spectroscopy instrument (Fast-CE-DOAS) aboard the NOAA RV Ka'imimoana as part of TORERO 2012 over the Eastern Tropical Pacific Ocean (Hawaii to Costa Rica, Jan. 2012 - Feb. 2012). In addition to eddy covariance flux measurements, the data also yields overall diurnal cycles of glyoxal for the duration of the cruise, which represents a wide spatial scale as well as varying ocean productivity levels. By assessing the diurnal variability of the glyoxal flux for different portions of the Pacific Ocean and combining this with the information contained if the diurnal cycle of glyoxal, we hope to create a better understanding of the sources and sinks of this trace gas over the open ocean.

  1. On-line fast flux measurements in the BR2 reactor

    International Nuclear Information System (INIS)

    Vermeeren, L.

    2009-01-01

    Since 2001, CEA-Cadarache and the Belgian Nuclear Research Centre SCK-CEN are collaborating on the development and in-pile qualification of subminiature fission chambers (diameter of 1.5 mm). Initially, efforts concentrated on fission chambers for the in-pile measurement of thermal fluxes (with 235 U as fissile material). Meanwhile successful long-term tests of the prototypes have been performed in various environments: in low temperature (40-100 degress Celsius) BR2 pool water (up to a thermal neutron fluence of 3 1 0 21 n/cm 2 ) and in the CALLISTO PWR loop (300 degrees Celsius, 155 bars). The long-term qualification of derived industrial detectors (Photonis CFUZ53) in CALLISTO is still ongoing. However, for various types of irradiations in research reactors, the knowledge of the evolution of the fast neutron flux is even of more interest than the thermal flux data. Therefore the collaboration program was extended to the development and the in-pile qualification of subminiature or miniature fission chambers (with 3 mm diameter) for fast neutron detection, for which 242 Pu was selected as the optimal fissile material. In order to achieve the on-line in-pile measurement of fast neutron flux, the fission chambers will be operated in the Campbelling mode (based on the mean square fluctuation of the detector current). In this mode the gamma induced contribution to the signal can be efficiently suppressed. Moreover, a data processing software will take into account the evolution of the fissile deposit in order to assess on-line the fast flux sensitivity and to correct for the low energy neutron contributions. The final objective is to qualify a Fast Neutron Detector System (FNDS) able to provide on-line data for local fast neutron fluxes in Material Testing Reactors. The on-line measurement of the fast neutron flux would contribute significantly to the characterization of the irradiation conditions during test experiments with materials and innovative fuel elements

  2. Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions

    Science.gov (United States)

    Serafimovich, Andrei; Metzger, Stefan; Hartmann, Jörg; Kohnert, Katrin; Zona, Donatella; Sachs, Torsten

    2018-03-01

    The objective of this study was to upscale airborne flux measurements of sensible heat and latent heat and to develop high resolution flux maps. In order to support the evaluation of coupled atmospheric/land-surface models we investigated spatial patterns of energy fluxes in relation to land-surface properties. We used airborne eddy-covariance measurements acquired by the POLAR 5 research aircraft in June-July 2012 to analyze surface fluxes. Footprint-weighted surface properties were then related to 21 529 sensible heat flux observations and 25 608 latent heat flux observations using both remote sensing and modelled data. A boosted regression tree technique was used to estimate environmental response functions between spatially and temporally resolved flux observations and corresponding biophysical and meteorological drivers. In order to improve the spatial coverage and spatial representativeness of energy fluxes we used relationships extracted across heterogeneous Arctic landscapes to infer high-resolution surface energy flux maps, thus directly upscaling the observational data. These maps of projected sensible heat and latent heat fluxes were used to assess energy partitioning in northern ecosystems and to determine the dominant energy exchange processes in permafrost areas. This allowed us to estimate energy fluxes for specific types of land cover, taking into account meteorological conditions. Airborne and modelled fluxes were then compared with measurements from an eddy-covariance tower near Atqasuk. Our results are an important contribution for the advanced, scale-dependent quantification of surface energy fluxes and provide new insights into the processes affecting these fluxes for the main vegetation types in high-latitude permafrost areas.

  3. CrossRef Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Aguilar, M; Alpat, B; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeǧmez-du Pree, S; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M  J; Bourquin, M; Bueno, E  F; Burger, J; Cadoux, F; Cai, X  D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cernuda, I; Cervelli, F; Chae, M  J; Chang, Y  H; Chen, A  I; Chen, G  M; Chen, H  S; Cheng, L; Chou, H  Y; Choumilov, E; Choutko, V; Chung, C  H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y  M; Delgado, C; Della Torre, S; Demirköz, M  B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R  J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D  M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guerri, I; Guo, K  H; Habiby, M; Haino, S; Han, K  C; He, Z  H; Heil, M; Hoffman, J; Hsieh, T  H; Huang, H; Huang, Z  C; Huh, C; Incagli, M; Ionica, M; Jang, W  Y; Jinchi, H; Kang, S  C; Kanishev, K; Kim, G  N; Kim, K  S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M  S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H  T; Lee, S  C; Leluc, C; Li, H  S; Li, J  Q; Li, Q; Li, T  X; Li, W; Li, Z  H; Li, Z  Y; Lim, S; Lin, C  H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lu, S  Q; Lu, Y  S; Luebelsmeyer, K; Luo, F; Luo, J  Z; Lv, S  S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D  C; Morescalchi, L; Mott, P; Nelson, T; Ni, J  Q; Nikonov, N; Nozzoli, F; Nunes, P; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X  M; Qin, X; Qu, Z  Y; Räihä, T; Rancoita, P  G; Rapin, D; Ricol, J  S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S  M; Schulz von Dratzig, A; Schwering, G; Seo, E  S; Shan, B  S; Shi, J  Y; Siedenburg, T; Son, D; Song, J  W; Sun, W  H; Tacconi, M; Tang, X  W; Tang, Z  C; Tao, L; Tescaro, D; Ting, Samuel C  C; Ting, S  M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J  P; Vitale, V; Vitillo, S; Wang, L  Q; Wang, N  H; Wang, Q  L; Wang, X; Wang, X  Q; Wang, Z  X; Wei, C  C; Weng, Z  L; Whitman, K; Wienkenhöver, J; Willenbrock, M; Wu, H; Wu, X; Xia, X; Xiong, R  Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y  J; Yu, Z  Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J  H; Zhang, S  D; Zhang, S  W; Zhang, Z; Zheng, Z  M; Zhu, Z  Q; Zhuang, H  L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P

    2016-01-01

    A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×105 antiproton events and 2.42×109 proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500  GV, the antiproton p¯, proton p, and positron e+ fluxes are found to have nearly identical rigidity dependence and the electron e− flux exhibits a different rigidity dependence. Below 60 GV, the (p¯/p), (p¯/e+), and (p/e+) flux ratios each reaches a maximum. From ∼60 to ∼500  GV, the (p¯/p), (p¯/e+), and (p/e+) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.

  4. Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station.

    Science.gov (United States)

    Aguilar, M; Ali Cavasonza, L; Alpat, B; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeǧmez-du Pree, S; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M J; Bourquin, M; Bueno, E F; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kang, S C; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H S; Li, J Q; Li, J Q; Li, Q; Li, T X; Li, W; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Nelson, T; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Seo, E S; Shan, B S; Shi, J Y; Siedenburg, T; Son, D; Song, J W; Sun, W H; Tacconi, M; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Vitillo, S; Wang, L Q; Wang, N H; Wang, Q L; Wang, X; Wang, X Q; Wang, Z X; Wei, C C; Weng, Z L; Whitman, K; Wienkenhöver, J; Willenbrock, M; Wu, H; Wu, X; Xia, X; Xiong, R Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J H; Zhang, S D; Zhang, S W; Zhang, Z; Zheng, Z M; Zhu, Z Q; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P

    2016-08-26

    A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×10^{5} antiproton events and 2.42×10^{9} proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500  GV, the antiproton p[over ¯], proton p, and positron e^{+} fluxes are found to have nearly identical rigidity dependence and the electron e^{-} flux exhibits a different rigidity dependence. Below 60 GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) flux ratios each reaches a maximum. From ∼60 to ∼500  GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.

  5. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas.

    Science.gov (United States)

    West, Michael D; Charles, Christine; Boswell, Rod W

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  6. Investigating Alaskan methane and carbon dioxide fluxes using measurements from the CARVE tower

    Directory of Open Access Journals (Sweden)

    A. Karion

    2016-04-01

    Full Text Available Northern high-latitude carbon sources and sinks, including those resulting from degrading permafrost, are thought to be sensitive to the rapidly warming climate. Because the near-surface atmosphere integrates surface fluxes over large ( ∼  500–1000 km scales, atmospheric monitoring of carbon dioxide (CO2 and methane (CH4 mole fractions in the daytime mixed layer is a promising method for detecting change in the carbon cycle throughout boreal Alaska. Here we use CO2 and CH4 measurements from a NOAA tower 17 km north of Fairbanks, AK, established as part of NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE, to investigate regional fluxes of CO2 and CH4 for 2012–2014. CARVE was designed to use aircraft and surface observations to better understand and quantify the sensitivity of Alaskan carbon fluxes to climate variability. We use high-resolution meteorological fields from the Polar Weather Research and Forecasting (WRF model coupled with the Stochastic Time-Inverted Lagrangian Transport model (hereafter, WRF-STILT, along with the Polar Vegetation Photosynthesis and Respiration Model (PolarVPRM, to investigate fluxes of CO2 in boreal Alaska using the tower observations, which are sensitive to large areas of central Alaska. We show that simulated PolarVPRM–WRF-STILT CO2 mole fractions show remarkably good agreement with tower observations, suggesting that the WRF-STILT model represents the meteorology of the region quite well, and that the PolarVPRM flux magnitudes and spatial distribution are generally consistent with CO2 mole fractions observed at the CARVE tower. One exception to this good agreement is that during the fall of all 3 years, PolarVPRM cannot reproduce the observed CO2 respiration. Using the WRF-STILT model, we find that average CH4 fluxes in boreal Alaska are somewhat lower than flux estimates by Chang et al. (2014 over all of Alaska for May–September 2012; we also find that enhancements appear

  7. Eddy covariance flux measurements of ammonia by high temperature chemical ionisation mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Sintermann

    2011-03-01

    Full Text Available A system for fast ammonia (NH3 measurements with chemical ionisation mass spectrometry (CIMS based on a commercial Proton Transfer Reaction-Mass Spectrometer (PTR-MS is presented. It uses electron transfer reaction as ionisation pathway and features a drift tube of polyetheretherketone (PEEK and silica-coated steel. Heating the instrumental inlet and the drift tube to 180 °C enabled an effective time resolution of ~1 s and made it possible to apply the instrument for eddy covariance (EC measurements. EC fluxes of NH3 were measured over two agricultural fields in Oensingen, Switzerland, following fertilisations with cattle slurry. Air was aspirated close to a sonic anemometer at a flow of 100 STP L min−1 and was directed through a 23 m long 1/2" PFA tube heated to 150 °C to an air-conditioned trailer where the gas was sub-sampled from the large bypass stream. This setup minimised damping of fast NH3 concentration changes between the sampling point and the actual measurement. High-frequency attenuation loss of the NH3 fluxes of 20 to 40% was quantified and corrected for using an empirical ogive method. The instrumental NH3 background signal showed a minor interference with H2O which was characterised in the laboratory. The resulting correction of the NH3 flux after slurry spreading was less than 1‰. The flux detection limit of the EC system was about 5 ng m−2 s−1 while the accuracy of individual flux measurements was estimated 16% for the high-flux regime during these experiments. The NH3 emissions after broad spreading of the slurry showed an initial maximum of 150 μg m−2 s−1 with a fast decline in the following hours.

  8. Measurement and modeling of atmospheric flux of ammonia from dairy milking cow housing

    Science.gov (United States)

    Rumburg, Brian; Mount, George H.; Filipy, Jenny; Lamb, Brian; Westberg, Hal; Yonge, David; Kincaid, Ron; Johnson, Kristen

    Atmospheric ammonia (NH3) measurements are needed to better understand the impacts of NH3 emissions on aerosol formation and concentrations and anthropogenic changes to the N cycle. This paper describes concentration measurements of NH3 using differential optical absorption spectroscopy (DOAS), tracer ratio flux experiments, and development of a NH3 emissions model from a dairy milking cow free stall house with concrete floors. An area source tracer gas ratio method was used to determine NH3 fluxes which involved releasing SF6 as the tracer gas from the upwind edge of the stalls and measuring the tracer concentration downwind along with the DOAS NH3 measurements. The flux is calculated from the ratio of the NH3 and SF6 concentrations and the SF6 release rate and taking into account the differences in area and dispersion. The measured stall flux for the summers averaged 29±19gNH3cow-1h-1 at an average temperature of 18±5C. The emissions model calculated liquid NH3 concentrations in urine puddles, NH3 volatilization, theoretical and empirical mass transfer to the bulk atmosphere, and NH3 transport. The predicted concentrations were within ±30% using an empirical mass transfer coefficient and within ±41% using a theoretical mass transfer coefficient. Total annual NH3 emissions for the dairy of 185 milking cows was 7400 kg or 40kgNH3cow-1year-1, estimated total N excretions are 180kgcow-1year-1. This agrees with a N mass balance of the dairy. The model was very sensitive to urine puddle pH and also showed that emissions are temperature dependent.

  9. Neutron flux measurement in the central channel (XC-1) of TRIGA 14 MW LEU core

    International Nuclear Information System (INIS)

    BARBOS, D.; BUSUIOC, P.; ROTH, Cs.; PAUNOIU, C.

    2008-01-01

    The TRIGA 14 MW reactor, operated by Institute for Nuclear Research Pitesti, Romania, is a pool type reactor, and has a rectangular shape which holds fuel bundles and is surrounded with beryllium reflectors. Each fuel bundle is composed of 25 nuclear fuel rods. The TRIGA 14 MW reactor was commissioned 28 years ago with HEU fuel rods. The conversion was gradually achieved, starting in February 1992 and completed in March 2006. The full conversion of the 14 MW TRIGA Research Reactor was completed in May 2006 and each step of the conversion was achieved by removal of HEU fuel, replaced by LEU fuel, accompanied by a large set of theoretical evaluation and physical measurements intended to confirm the performances of gradual conversion. After the core full conversion, a program of measurements and comparisons with previous results of core physics and measurements is underway, allowing data acquisition for normal operation, demonstration of safety and economics of the converted core. Neutron flux spectrum measurements in the XC in the XC-1 water 1 water-filled channel were performed using multi multi-foil activation techniques. The neutron spectra and flux are obtained by unfolding from measured reaction rates using SAND II computer code. The integral neutron flux value for LEU core is greater of 13% than for the standard HEU core. Also thermal neutron flux value for converted LEU core is smaller by 0.38% than for the standard HEU core. These differences appear because the foil activation detectors have been irradiated using a pneumatic rabbit having a diameter of 32 mm, whereas foil irradiations in standard HEU core has been performed with a pneumatic rabbit having a diameter of 14 mm, and therefore the neutron spectra in LEU core is less thermalized and the weight of fast neutron is greater

  10. Local Magnetic Measurements of Trapped Flux Through a Permanent Current Path in Graphite

    Science.gov (United States)

    Stiller, Markus; Esquinazi, Pablo D.; Quiquia, José Barzola; Precker, Christian E.

    2018-04-01

    Temperature- and field-dependent measurements of the electrical resistance of different natural graphite samples suggest the existence of superconductivity at room temperature in some regions of the samples. To verify whether dissipationless electrical currents are responsible for the trapped magnetic flux inferred from electrical resistance measurements, we localized them using magnetic force microscopy on a natural graphite sample in remanent state after applying a magnetic field. The obtained evidence indicates that at room temperature a permanent current flows at the border of the trapped flux region. The current path vanishes at the same transition temperature T_c≈ 370 K as the one obtained from electrical resistance measurements on the same sample. This sudden decrease in the phase is different from what is expected for a ferromagnetic material. Time-dependent measurements of the signal show the typical behavior of flux creep of a permanent current flowing in a superconductor. The overall results support the existence of room-temperature superconductivity at certain regions in the graphite structure and indicate that magnetic force microscopy is suitable to localize them. Magnetic coupling is excluded as origin of the observed phase signal.

  11. Local Magnetic Measurements of Trapped Flux Through a Permanent Current Path in Graphite

    Science.gov (United States)

    Stiller, Markus; Esquinazi, Pablo D.; Quiquia, José Barzola; Precker, Christian E.

    2018-02-01

    Temperature- and field-dependent measurements of the electrical resistance of different natural graphite samples suggest the existence of superconductivity at room temperature in some regions of the samples. To verify whether dissipationless electrical currents are responsible for the trapped magnetic flux inferred from electrical resistance measurements, we localized them using magnetic force microscopy on a natural graphite sample in remanent state after applying a magnetic field. The obtained evidence indicates that at room temperature a permanent current flows at the border of the trapped flux region. The current path vanishes at the same transition temperature T_c≈ 370 K as the one obtained from electrical resistance measurements on the same sample. This sudden decrease in the phase is different from what is expected for a ferromagnetic material. Time-dependent measurements of the signal show the typical behavior of flux creep of a permanent current flowing in a superconductor. The overall results support the existence of room-temperature superconductivity at certain regions in the graphite structure and indicate that magnetic force microscopy is suitable to localize them. Magnetic coupling is excluded as origin of the observed phase signal.

  12. Bayesian inferences of the thermal properties of a wall using temperature and heat flux measurements

    KAUST Repository

    Iglesias, Marco

    2017-09-20

    The assessment of the thermal properties of walls is essential for accurate building energy simulations that are needed to make effective energy-saving policies. These properties are usually investigated through in situ measurements of temperature and heat flux over extended time periods. The one-dimensional heat equation with unknown Dirichlet boundary conditions is used to model the heat transfer process through the wall. In Ruggeri et al. (2017), it was assessed the uncertainty about the thermal diffusivity parameter using different synthetic data sets. In this work, we adapt this methodology to an experimental study conducted in an environmental chamber, with measurements recorded every minute from temperature probes and heat flux sensors placed on both sides of a solid brick wall over a five-day period. The observed time series are locally averaged, according to a smoothing procedure determined by the solution of a criterion function optimization problem, to fit the required set of noise model assumptions. Therefore, after preprocessing, we can reasonably assume that the temperature and the heat flux measurements have stationary Gaussian noise and we can avoid working with full covariance matrices. The results show that our technique reduces the bias error of the estimated parameters when compared to other approaches. Finally, we compute the information gain under two experimental setups to recommend how the user can efficiently determine the duration of the measurement campaign and the range of the external temperature oscillation.

  13. In situ methods for measuring thermal properties and heat flux on planetary bodies

    Science.gov (United States)

    Kömle, Norbert I.; Hütter, Erika S.; Macher, Wolfgang; Kaufmann, Erika; Kargl, Günter; Knollenberg, Jörg; Grott, Matthias; Spohn, Tilman; Wawrzaszek, Roman; Banaszkiewicz, Marek; Seweryn, Karoly; Hagermann, Axel

    2011-01-01

    The thermo-mechanical properties of planetary surface and subsurface layers control to a high extent in which way a body interacts with its environment, in particular how it responds to solar irradiation and how it interacts with a potentially existing atmosphere. Furthermore, if the natural temperature profile over a certain depth can be measured in situ, this gives important information about the heat flux from the interior and thus about the thermal evolution of the body. Therefore, in most of the recent and planned planetary lander missions experiment packages for determining thermo-mechanical properties are part of the payload. Examples are the experiment MUPUS on Rosetta's comet lander Philae, the TECP instrument aboard NASA's Mars polar lander Phoenix, and the mole-type instrument HP3 currently developed for use on upcoming lunar and Mars missions. In this review we describe several methods applied for measuring thermal conductivity and heat flux and discuss the particular difficulties faced when these properties have to be measured in a low pressure and low temperature environment. We point out the abilities and disadvantages of the different instruments and outline the evaluation procedures necessary to extract reliable thermal conductivity and heat flux data from in situ measurements. PMID:21760643

  14. Poynting flux measurements on a satellite: A diagnostic tool for space research

    International Nuclear Information System (INIS)

    Kelley, M.C.; Knudsen, D.J.; Vickery, J.F.

    1991-01-01

    The first satellite observations of the total field-aligned component of the quasi-dc Poynting flux are presented for two passes over the polar region, one in the noon sector and one in the afternoon. The energy input due to electron precipitation is also presented. In the noon pass the downward Poynting flux in the auroral oval was comparable to the kinetic energy input rate. The peak electromagnetic energy input rate of 6 ergs/(cm 2 s) equaled the peak particle input while the integrated electromagnetic value along the trajectory was 60% that of the particles. In the afternoon pass the peak electromagnetic energy input was also about 6 ergs/(cm 2 s), but the peak particle energy was 6 times this value. The average electromagnetic input was 10% of the particle input for the pass. In this study, the authors can measure the Poynting flux only over a limited range of scale sizes; thus the contribution to the total energy budget in the polar cap cannot be determined. Both passes show small regions characterized by upward Poynting flux suggesting a neutral wind dynamo. There is also evidence during part of the noontime pass that the external generator acted in opposition to an existing wind field since the Poynting flux was greater than the estimate of Joule heating from the electric field measurement alone (i.e., from Σ p E 2 ). In the course of deriving Poynting's theorem for the geophysical case they also present a proof that ground magnetometer systems respond primarily to the Hall current which does not depend upon geometric cancellation between the field generated by Pedersen and field-aligned currents

  15. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  16. Total cross section measurement of muon neutrinos on isoscalar target. Exact determination of the electroweak mixing parameter

    International Nuclear Information System (INIS)

    Pain, R.

    1987-09-01

    The work presented in this thesis is concerned with high energy muon-neutrino nucleon interactions. The experiment was performed at CERN in 1984 using the CHARM marble target-calorimeter exposed to the 160 GeV narrow band beam. The experimental analysis is based on an event-by-event classification of neutral currents (NC) and charged currents (CC) interactions and on precise measurements of neutrinos and antineutrinos fluxes. This leads to precise measurements of CC total cross-sections of neutrinos and antineutrinos between 10 and 160 GeV and of NC to CC ratios of total cross-sections of events with hadron energy greater than 4 GeV: R n eutrino and R a ntineutrino. From the measurements of R n eutrino and of the ratio of CC total cross-sections of antineutrinos and neutrinos, we obtain a high precision value of the electroweak mixing angle. Comparison of this result with those obtained in proton-antiproton collisions make it possible to derive a measurement of electroweak radiative corrections and a precise determination of ρ [fr

  17. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Aguilar, M; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D’Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pedreschi, E; Pensotti, S; Pereira, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2014-01-01

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ∼30  GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.

  18. Initial assessment of multi-scale measures of C02 and H20 flux in the Siberian taiga

    Science.gov (United States)

    D.Y. Hollinger; F.M. Kelliher; E.-D. Schulze; N.N. Vygodskaya; A. Varlagin; I. Milukova; J.N. Byers; A. Sogachov; J.E. Hunt; T.M. McSeveny; K.I. Kobak; G. Bauer; A. Arneth

    1995-01-01

    We measured CO2 and H2O fluxes between undisturbed Larix gmelinii forest and the atmosphere at a remote Eastern Siberian site in July 1993. Scaled-up leaf-level porometer measurements agreed with those derived from the eddy correlation technique for the canopy fluxes of CO2 and H...

  19. Measured and Predicted Neutron Flux Distributions in a Material Surrounding a Cylindrical Duct

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, J.; Sandlin, R.

    1966-03-15

    The radial fast neutron flux attenuations in the material (iron) surrounding ducts of diameters 7, 9, and 15 cm and total duct length of about 1.5 m have been investigated with and without neutron scattering cans filled with D{sub 2}O in the duct. Experimentally the problem was solved by the use of foil activation techniques. Theoretically it was attacked by, in the first place, a Monte Carlo program specially written for this purpose and utilizing an importance sampling technique. In the second place non- and single-scattering removal flux codes were tried, and also simple hand calculations. The Monte Carlo results accounted well for the fast flux attenuation, while the non- and single-scattering methods overestimated the attenuation generally by a factor of 10 or less. Simple hand calculations using three empirical parameters could be fitted to the measured data within a factor of 1.2 - 1.3 at penetration depths greater than 3 - 4 cm. The distribution of the D{sub 2}O-scattered flux could well be described in terms of single scattering.

  20. A method for measuring element fluxes in an undisturbed soil: nitrogen and carbon from earthworms

    International Nuclear Information System (INIS)

    Bouche, M.B.

    1984-01-01

    Data on chemical cycles, as nitrogen or carbon cycles, are extrapolated to the fields or ecosystems without the possibility for checking conclusions; i.e. from scientific knowledge (para-ecology). A new method, by natural introduction of an earthworm compartment into an undisturbed soil, with earthworms labelled both by isotopes ( 15 N, 14 C) and by staining is described. This method allows us to measure fluxes of chemicals. The first results, gathered during the improvement of the method in partly artificial conditions, are cross-checked with other data given by direct observation in the field. Measured flux (2.2 mg N/g fresh mass empty gut/day/15 0 C) is far more important than para-ecological estimations; animal metabolism plays directly an important role in nitrogen and carbon cycles. (author)

  1. Experimental measurements and theoretical simulations for neutron flux in self-serve facility of Dhruva reactor

    International Nuclear Information System (INIS)

    Rana, Y.S.; Mishra, Abhishek; Singh, Tej

    2016-06-01

    Dhruva is a 100 MW th tank type research reactor with natural metallic uranium as fuel and heavy water as coolant, moderator and reflector. The reactor is utilized for production of a large variety of radioisotopes for fulfilling growing demands of various applications in industrial, agricultural and medicinal sectors, and neutron beam research in condensed matter physics. The core consists of two on-power tray rods for radioisotope production and fifteen experimental beam holes for neutron beam research. Recently, a self-serve facility has also been commissioned in one of the through tubes in the reactor for carrying out short term irradiations. To get accurate information about neutron flux spectrum, measurements have been carried out in self-serve facility of Dhruva reactor. The present report describes measurement method, analysis technique and results. Theoretical estimations for neutron flux were also carried out and a comparison between theoretical and experimental results is made. (author)

  2. Thallium Flux Assay for Measuring the Activity of Monovalent Cation Channels and Transporters.

    Science.gov (United States)

    Weaver, C David

    2018-01-01

    Monovalent cation channels are critically important for physiological processes ranging from the control of neuronal excitability to the maintenance of solute balance. Mutations in these channels are associated with a multiplicity of diseases and monovalent cation channel-modulating drugs are used as therapeutics. Techniques that allow the measurement of the activity of these ion channels are useful for exploring their many biological roles as well as enabling the discovery and characterization of ion channel modulators for the purposes of drug discovery. Although there are numerous techniques for measuring the activity of monovalent cation channels, the thallium flux assay technique is a widely used fluorescence-based approach. Described herein is a method for using the thallium-flux technique for detecting and quantifying the activity of small-molecule potassium channel modulators in 384-well plates.

  3. A procedure for the estimation over time of metabolic fluxes in scenarios where measurements are uncertain and/or insufficient

    Directory of Open Access Journals (Sweden)

    Picó Jesús

    2007-10-01

    Full Text Available Abstract Background An indirect approach is usually used to estimate the metabolic fluxes of an organism: couple the available measurements with known biological constraints (e.g. stoichiometry. Typically this estimation is done under a static point of view. Therefore, the fluxes so obtained are only valid while the environmental conditions and the cell state remain stable. However, estimating the evolution over time of the metabolic fluxes is valuable to investigate the dynamic behaviour of an organism and also to monitor industrial processes. Although Metabolic Flux Analysis can be successively applied with this aim, this approach has two drawbacks: i sometimes it cannot be used because there is a lack of measurable fluxes, and ii the uncertainty of experimental measurements cannot be considered. The Flux Balance Analysis could be used instead, but the assumption of optimal behaviour of the organism brings other difficulties. Results We propose a procedure to estimate the evolution of the metabolic fluxes that is structured as follows: 1 measure the concentrations of extracellular species and biomass, 2 convert this data to measured fluxes and 3 estimate the non-measured fluxes using the Flux Spectrum Approach, a variant of Metabolic Flux Analysis that overcomes the difficulties mentioned above without assuming optimal behaviour. We apply the procedure to a real problem taken from the literature: estimate the metabolic fluxes during a cultivation of CHO cells in batch mode. We show that it provides a reliable and rich estimation of the non-measured fluxes, thanks to considering measurements uncertainty and reversibility constraints. We also demonstrate that this procedure can estimate the non-measured fluxes even when there is a lack of measurable species. In addition, it offers a new method to deal with inconsistency. Conclusion This work introduces a procedure to estimate time-varying metabolic fluxes that copes with the insufficiency of

  4. Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems

    DEFF Research Database (Denmark)

    Ibrom, Andreas; Dellwik, Ebba; Flyvbjerg, Henrik K.

    2007-01-01

    forest in Soro, Zealand, Denmark, amounted on average to 42% of the measured flux, while it was only 4% for the CO2 flux, which was measured with the same EC system. We recommend using the described method to correct water vapour fluxes measured in any closed-path EC system for unintended low......Turbulent water vapour fluxes measured with closed-path eddy correlation (EC) systems are unintentionally low-pass filtered by the system in a manner that varies with environmental conditions. Why and how is described here. So is the practical method that systematically corrects long-term flux...... datasets for this substantial measurement error. In contrast to earlier studies, a large number of spectra and raw data have been used in the analysis to define the low-pass filtering characteristic of the EC system. This revealed that the cut-off frequency of the closed-path EC system for water vapour...

  5. FFTF [Fast Flux Test Facility] performance measurements for safety, productivity and control

    International Nuclear Information System (INIS)

    A useful set of performance measurements for Safety, Productivity and Control has evolved at the Fast Flux Test Facility (FFTF). In response to declining budgets and the resulting need to safely manage a manpower rampdown, an ''Early Warning System'' was developed in 1984. Its purpose was to monitor the effects of the staffing rampdown such that appropriate remedial action could be taken to correct adverse trends before a significant problem occurred. 1 tab

  6. Integration of Flux-Based Methods and Triad Principles for DNAPL Site Management, Part II: Review of Flux Measurement Methods

    Science.gov (United States)

    Managing dense nonaqueous phase liquid (DNAPL) contaminated sites continues to be among the most pressing environmental problems currently faced. One approach that has recently been investigated for use in DNAPL site characterization and remediation is mass flux (mass per unit ar...

  7. Time-resolved measurements of hydrogen and deuterium fluxes in the ASDEX plasma boundary

    International Nuclear Information System (INIS)

    Roth, J.; Varga, P.; Martinelli, A.P.; Scherzer, B.M.U.; Chen, C.K.; Wampler, W.R.; Taglauer, E.

    1982-01-01

    Hydrogen and deuterium fluxes parallel to the toroidal magnetic field were measured in the plasma boundary of ASDEX using graphite collector probes. Time resolution of the order of 100 ms can be obtained by rotating the cylindrical probes behind an aperture during the discharge. The trapped amount of hydrogen was determined by subsequent thermal desorption; in the analyses of deuterium the D( 3 He,p) 4 He nuclear reaction was used. Both methods yield quantitative results. Measurements were done for limiter and divertor discharges in the range of 4 to 20 cm outside the limiter or separatrix. The time distributions show a maximum flux at the beginning and the end of the discharge. The relatively lower flux during the plateau phase of the discharge is in the range 10 15 to 2 x 10 17 cm - 2 sec - 1 , depending on the radial probe position; the maximum values are higher by a factor of 5 to 50. During neutral hydrogen injection, an additional maximum can be observed. The radial l/e-decay length is about 0.9 cm in front and 0.4 cm behind the fixed limiter. The results are compared with independent measurements in ASDEX and other plasma machines

  8. Development of a position-sensitive fission counter and measurement of neutron flux distributions

    International Nuclear Information System (INIS)

    Yamagishi, Hideshi; Soyama, Kazuhiko; Kakuta, Tsunemi

    2001-08-01

    A position-sensitive fission counter (PSFC) that operates in high neutron flux and high gamma-ray background such as at the side of a power reactor vessel has been developed. Neutron detection using the PSFC with a solenoid electrode is based on a delay-line method. The PSFC that has the outer diameter of 25 mm and the sensitive length of 1000 mm was manufactured for investigation of the performances. The PSFC provided output current pulses that were sufficiently higher than the alpha noise, though the PSFC has a solenoid electrode and large electrode-capacitance. The S/N ratio of PSFC outputs proved to be higher than that of ordinary fission counters with 200 mm sensitive length. A performance test to measure neutron flux distributions by a neutron measuring system with the PSFC was carried out by the side of a graphite pile, W2.4 x H1.4 x L1.2 m, with neutron sources, Am-Be 370 GBq x 2. It was confirmed that the neutron flux distribution was well measured with the system. (author)

  9. Standard Test Method for Measuring Heat Flux Using Surface-Mounted One-Dimensional Flat Gages

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method describes the measurement of the net heat flux normal to a surface using flat gages mounted onto the surface. Conduction heat flux is not the focus of this standard. Conduction applications related to insulation materials are covered by Test Method C 518 and Practices C 1041 and C 1046. The sensors covered by this test method all use a measurement of the temperature difference between two parallel planes normal to the surface to determine the heat that is exchanged to or from the surface in keeping with Fourier’s Law. The gages operate by the same principles for heat transfer in either direction. 1.2 This test method is quite broad in its field of application, size and construction. Different sensor types are described in detail in later sections as examples of the general method for measuring heat flux from the temperature gradient normal to a surface (1). Applications include both radiation and convection heat transfer. The gages have broad application from aerospace to biomedical en...

  10. Improved analysis of all-sky meteor radar measurements of gravity wave variances and momentum fluxes

    Directory of Open Access Journals (Sweden)

    V. F. Andrioli

    2013-05-01

    Full Text Available The advantages of using a composite day analysis for all-sky interferometric meteor radars when measuring mean winds and tides are widely known. On the other hand, problems arise if this technique is applied to Hocking's (2005 gravity wave analysis for all-sky meteor radars. In this paper we describe how a simple change in the procedure makes it possible to use a composite day in Hocking's analysis. Also, we explain how a modified composite day can be constructed to test its ability to measure gravity wave momentum fluxes. Test results for specified mean, tidal, and gravity wave fields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the modified composite day allows characterization of monthly mean profiles of the gravity wave momentum fluxes, with good accuracy at least at the altitudes where the meteor counts are large (from 89 to 92.5 km. In the present work we also show that the variances measured with Hocking's method are often contaminated by the tidal fields and suggest a method of empirical correction derived from a simple simulation model. The results presented here greatly increase our confidence because they show that our technique is able to remove the tide-induced false variances from Hocking's analysis.

  11. Search for sub-eV sterile neutrinos in the precision multiple baselines reactor antineutrino oscillation experiments

    Directory of Open Access Journals (Sweden)

    Shu Luo

    2015-10-01

    Full Text Available According to different effects on neutrino oscillations, the unitarity violation in the MNSP matrix can be classified into the direct unitarity violation and the indirect unitarity violation which are induced by the existence of the light and the heavy sterile neutrinos respectively. Of which sub-eV sterile neutrinos are of most interesting. We study in this paper the possibility of searching for sub-eV sterile neutrinos in the precision reactor antineutrino oscillation experiments with three different baselines at around 500 m, 2 km and 60 km. We find that the antineutrino survival probabilities obtained in the reactor experiments are sensitive only to the direct unitarity violation and offer very concentrated sensitivity to the two parameters θ14 and Δm412. If such light sterile neutrinos do exist, the active–sterile mixing angle θ14 could be acquired by the combined rate analysis at all the three baselines and the mass-squared difference Δm412 could be obtained by taking the Fourier transformation to the L/E spectrum. Of course, for such measurements to succeed, both high energy resolution and large statistics are essentially important.

  12. Fluxes of atmospheric methane using novel instruments, field measurements, and inverse modeling

    Science.gov (United States)

    Santoni, Gregory Winn

    The atmospheric concentration of methane (CH4) -- the most significant non-CO2 anthropogenic long-lived greenhouse gas -- stabilized between 1999 and 2006 and then began to rise again. Explanations for this behavior differ but studies agree that more measurements and better modeling are needed to reliably explain the model-data discrepancies and predict future change. This dissertation focuses on measurements of CH4 and inverse modeling of atmospheric CH4 fluxes using field measurements at a variety of spatial scales. We first present a new fast-response instrument to measure the isotopic composition of CH4 in ambient air. The instrument was used to characterize mass fluxes and isofluxes (a isotopically-weighted mass flux) from a well-studied research fen in New Hampshire. Eddycovariance and automatic chamber techniques produced consistent estimates of both the CH4 fluxes and their isotopic composition at sub-hourly resolution. We then characterize fluxes of CH4 from aircraft engines using measurements made with the same instrument during the Alternative Aviation Fuel Experiment (AAFEX), a study that aimed to determine the atmospheric impacts of alternative fuel use in the growing aviation industry. Emissions of CO2, CH4, and N2O from different synthetic fuels were statistically indistinguishable from those of the widely used JP-8 jet fuel. We then present airborne observations of the long-lived greenhouse gas suite -- CO2, CH4, N2O, and CO -- during two aircraft campaigns, HIPPO and CalNex, made using a similar instrument built specifically for the NCAR HIAPER GV aircraft. These measurements are compared to data from other onboard sensors and show excellent agreement. We discuss the details of the end-to-end calibration procedures and the data quality-assurance and qualitycontrol (QA/QC). Lastly, we quantify a top-down estimate of California's CH4 emission inventory using the CalNex CH4 observations. Observed CH4 enhancements above background concentrations are

  13. Ultraviolet actinic flux in clear and cloudy atmospheres: model calculations and aircraft-based measurements

    Directory of Open Access Journals (Sweden)

    G. G. Palancar

    2011-06-01

    Full Text Available Ultraviolet (UV actinic fluxes measured with two Scanning Actinic Flux Spectroradiometers (SAFS aboard the NASA DC-8 aircraft are compared with the Tropospheric Ultraviolet-Visible (TUV model. The observations from 17 days in July-August 2004 (INTEX-NA field campaign span a wide range of latitudes (28° N–53° N, longitudes (45° W–140° W, altitudes (0.1–11.9 km, ozone columns (285–353 DU, and solar zenith angles (2°–85°. Both cloudy and cloud-free conditions were encountered. For cloud-free conditions, the ratio of observed to clear-sky-model actinic flux (integrated from 298 to 422 nm was 1.01±0.04, i.e. in good agreement with observations. The agreement improved to 1.00±0.03 for the down-welling component under clear sky conditions. In the presence of clouds and depending on their position relative to the aircraft, the up-welling component was frequently enhanced (by as much as a factor of 8 relative to cloud-free values while the down-welling component showed both reductions and enhancements of up to a few tens of percent. Including all conditions, the ratio of the observed actinic flux to the cloud-free model value was 1.1±0.3 for the total, or separately 1.0±0.2 for the down-welling and 1.5±0.8 for the up-welling components. The correlations between up-welling and down-welling deviations are well reproduced with sensitivity studies using the TUV model, and are understood qualitatively with a simple conceptual model. This analysis of actinic flux observations illustrates opportunities for future evaluations of photolysis rates in three-dimensional chemistry-transport models.

  14. Dependence of thermospheric zonal winds on solar flux, geomagnetic activity, and hemisphere as measured by CHAMP

    Science.gov (United States)

    Zhang, Xiaofang; Liu, Libo; Liu, Songtao

    2017-08-01

    The thermospheric zonal winds measured by the CHAllenging Minisatellite Payload (CHAMP) satellite are used to statistically determine the climatology under quiet and active geomagnetic conditions. By collectively analyzing the bin-averaged wind trend with F10.7 and the solar-induced difference in wind structures, the solar flux dependence of global thermosphere zonal wind is determined. The increase of solar flux enhances the eastward winds at low latitudes from dusk to midnight. The increased ion drag reduces the nighttime eastward wind in the subauroral latitudes, and the daytime westward winds from 06 to 08 MLT at all latitudes decrease with increasing solar flux. Zonal winds show coupled seasonal/extreme ultraviolet (EUV) dependency. The equatorial zonal winds from 18 to 04 magnetic local time (MLT) indicate weaker eastward winds during the June solstice at high solar flux levels. Quiet time eastward winds at subauroral latitudes from 16 to 20 MLT are further decreased in the winter hemisphere. Influenced by asymmetries in solar illumination and the magnetic field, zonal winds show hemispheric asymmetries. Quiet daytime winds are additionally influenced by solar illumination effects, and the westward winds at the middle and subauroral latitudes are always stronger in the summer. The nighttime eastward winds are higher in the winter hemisphere during the solstices, as in the Southern Hemisphere during equinoxes, with the winter-summer asymmetry lessened or receding at the solar maxima. Storm-induced subauroral westward disturbance winds are higher in the summer hemisphere and in the Northern Hemisphere during equinoxes. At a high level of solar flux, the westward disturbance winds are comparable in the two hemispheres during December solstice. Geomagnetic disturbance wind observations from CHAMP agree well with the empirical geomagnetic disturbance wind model, except for stronger subauroral westward jets. Westward winds during the afternoon may be enhanced in

  15. LOW-POWER SOLUTION FOR EDDY COVARIANCE MEASUREMENTS OF METHANE FLUX

    Science.gov (United States)

    Anderson, T.; Burba, G. G.; Komissarov, A.; McDermitt, D. K.; Xu, L.; Zona, D.; Oechel, W. C.; Schedlbauer, J. L.; Oberbauer, S. F.; Riensche, B.; Allyn, D.

    2009-12-01

    Open-path analyzers offer a number of advantages for measuring methane fluxes, including undisturbed in-situ flux measurements, spatial integration using the Eddy Covariance approach, zero frequency response errors due to tube attenuation, confident water and thermal density terms from co-located fast measurements of water and sonic temperature, and possibility of remote and mobile solar-powered or small-generator-powered deployments due to lower power demands in the absence of a pump. The LI-7700 open-path methane analyzer is a VCSEL (vertical-cavity surface-emitting laser)-based instrument. It employs an open Herriott cell and measures levels of methane with RMS noise below 5 ppb at 10 Hz sampling in controlled laboratory conditions. The power consumption of the stand-alone LI-7700 in steady-state is about 8W, so it can be deployed in any methane-generating location of interest on a portable or mobile solar-powered tower, and it does not have to have grid power or permanent industrial generator. Eddy Covariance measurements of methane flux using the LI-7700 open-path methane analyzer were conducted in 2006-2009 in five ecosystems with contrasting weather and moisture conditions: (1) sawgrass wetland in the Florida Everglades; (2) coastal wetlands in an Arctic tundra; and (3) pacific mangroves in Mexico; (4) maize field and (5) ryegrass field in Nebraska. Methane co-spectra behaved in a manner similar to that of the co-spectra of carbon dioxide, water vapor, and air temperature, demonstrating that the LI-7700 adequately measured fluctuations in methane concentration across the whole spectrum of frequencies contributing to vertical atmospheric turbulent transport at the experimental sites. All co-spectra also closely followed the Kaimal model, and demonstrated good agreement with another methane co-spectrum obtained with a TDLS (Tunable Diode Laser Spectroscope; Unisearch Associates, Inc.) over a peatland. Overall, hourly methane fluxes ranged from near-zero at

  16. Noninvasive ultrasonic measurements of temperature distribution and heat fluxes in nuclear systems

    International Nuclear Information System (INIS)

    Jia, Yunlu; Skliar, Mikhail

    2015-01-01

    Measurements of temperature and heat fluxes through structural materials are important in many nuclear systems. One such example is dry storage casks (DSC) that are built to store highly radioactive materials, such as spent nuclear reactor fuel. The temperature inside casks must be maintained within allowable limits of the fuel assemblies and the DSC components because many degradation mechanisms are thermally controlled. In order to obtain direct, real-time measurements of temperature distribution without insertion of sensing elements into harsh environment of storage casks, we are developing noninvasive ultrasound (US) methods for measuring spatial distribution of temperature inside solid materials, such as concrete overpacks, steel casings, thimbles, and rods. The measured temperature distribution can then be used to obtain heat fluxes that provide calorimetric characterisation of the fuel decay, fuel distribution inside the cask, its integrity, and accounting of nuclear materials. The physical basis of the proposed approach is the temperature dependence of the speed of sound in solids. By measuring the time it takes an ultrasound signal to travel a known distance between a transducer and a receiver, the indication about the temperature distribution along the path of the ultrasound propagation may be obtained. However, when temperature along the path of US propagation is non-uniform, the overall time of flight of an ultrasound signal depends on the temperature distribution in a complex and unknown way. To overcome this difficulty, the central idea of our method is to create an US propagation path inside material of interest which incorporates partial ultrasound reflectors (back scatterers) at known locations and use the train of created multiple echoes to estimate the temperature distribution. In this paper, we discuss experimental validation of this approach, the achievable accuracy and spatial resolution of the measured temperature profile, and stress the

  17. Mixing ratios and eddy covariance flux measurements of volatile organic compounds from an urban canopy (Manchester, UK

    Directory of Open Access Journals (Sweden)

    B. Langford

    2009-03-01

    Full Text Available Mixing ratios and fluxes of six selected volatile organic compounds (VOCs were measured above the city of Manchester (UK during the summer of 2006. A proton transfer reaction-mass spectrometer was used for the measurement of mixing ratios, and fluxes were calculated from these using both the disjunct and the virtual disjunct eddy covariance techniques. The two flux systems, which operated in alternate half hours, showed good agreement, with R2 values ranging between 0.74 and 0.9 for the individual analytes. On average, fluxes measured in the disjunct mode were approximately 20% lower than those measured in the virtual mode. This difference is due to both the dampening of the VOC signal by the disjunct flux sampler and carry over from one sample to the next. Correcting for these effects reduced the difference to less than 7%. Observed fluxes are thought to be largely controlled by anthropogenic sources, with vehicle emissions the major contributor. However, both evaporative and biogenic emissions may account for some of the VOCs present. Concentrations and fluxes of the oxygenated compounds were highest on average, ranging between 0.15 to 1 mg m−2 h−1; the fluxes of aromatic compounds were lower, between 0.12 to 0.28 mg m−2 h−1. The observed fluxes were up-scaled to give city wide emission estimates for each compound and the results compared to estimates made by the National Atmospheric Emission Inventory (NAEI for the same flux footprint. Fluxes of toluene and benzene compared most closely differing by approximately 50%, while in contrast the oxygenated fluxes were found to be between 3.6–6.3 times larger than the annual average predicted by the NAEI.

  18. Measurements of diffusive sublayer thicknesses in the ocean by alabaster dissolution, and their implications for the measurements of benthic fluxes

    Science.gov (United States)

    Santschi, Peter H.; Anderson, Robert F.; Fleisher, Martin Q.; Bowles, Walter

    1991-06-01

    Fluxes of reactive chemical species across the sediment-water interface can profoundly influence the dominant biogeochemical cycles in the worlds ocean. However, reliable in-situ measurements of benthic fluxes of many reactive species cannot be carried out without adjustment of stirring rates inside benthic flux chambers to match boundary layer conditions prevailing outside. A simple method to compare flow levels consists of measurements of gypsum dissolution rates inside benthic chambers and on the seafloor. The measurement of the diffusion-controlled dissolution rate of gypsum allows the estimation of the diffusive sublayer thickness and the time-averaged bottom stress on the seafloor. This method had previously been intercalibrated with the stress sensor method in flumes and inside benthic chambers. We describe here free-vehicle deployments of alabaster plates on the bottom of the ocean which gave results consistent with hydrodynamic theory. Errors in the calculated diffusive sublayer thicknesses were estimated to be about 10-15% for typical deployment conditions in the ocean. Current velocities 5 m off the bottom, which were measured concurrently during two deployments, allowed for comparisons with hydrodynamic predictions of diffusive sublayer thicknesses. The values obtained this way agreed within 15%. The measured mass transfer velocity was found to correlate with the plate dimension L, to the power of ⅓. This confirms the theoretical procedure for extrapolating to infinite plate size when calculating the sublayer impedance of solute fluxes from sediments (where L is large). Typical values of diffusive sublayer thicknesses, corrected to infinite plate size, were 1200 μm for current velocities, U100, of 2 cm s-1, and 500 μm at 8 cm s-1. Furthermore, values of friction velocities calculated from alabaster dissolution were compared with those using stress sensors. Gypsum plate values of u* were 0 and 30% lower than skin friction values of u*, at u* values

  19. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  20. Inter-comparison of Flux-Gradient and Relaxed Eddy Accumulation Methods for Measuring Ammonia Flux Above a Corn Canopy in Central Illinois, USA

    Science.gov (United States)

    Nelson, A. J.; Koloutsou-Vakakis, S.; Rood, M. J.; Lichiheb, N.; Heuer, M.; Myles, L.

    2017-12-01

    Ammonia (NH3) is a precursor to fine particulate matter (PM) in the ambient atmosphere. Agricultural activities represent over 80% of anthropogenic emissions of NH3 in the United States. The use of nitrogen-based fertilizers contribute > 50% of total NH3 emissions in central Illinois. The U.S. EPA Science Advisory Board has called for improved methods to measure, model, and report atmospheric NH3 concentrations and emissions from agriculture. High uncertainties in the temporal and spatial distribution of NH3 emissions contribute to poor performance of air quality models in predicting ambient PM concentrations. This study reports and compares NH­3 flux measurements of differing temporal resolution obtained with two methods: relaxed eddy accumulation (REA) and flux-gradient (FG). REA and FG systems were operated concurrently above a corn canopy at the University of Illinois at Urbana-Champaign (UIUC) Energy Biosciences Institute (EBI) Energy Farm during the 2014 corn-growing season. The REA system operated during daytime, providing average fluxes over four-hour sampling intervals, where time resolution was limited by detection limit of denuders. The FG system employed a cavity ring-down spectrometer, and was operated continuously, reporting 30 min flux averages. A flux-footprint evaluation was used for quality control, resulting in 1,178 qualified FG measurements, 82 of which were coincident with REA measurements. Similar emission trends were observed with both systems, with peak NH3 emission observed one week after fertilization. For all coincident samples, mean NH3 flux was 205 ± 300 ng-N-m2s-1 and 110 ± 256 ng-N-m2s-1 as measured with REA and FG, respectively, where positive flux indicates emission. This is the first reported inter-comparison of REA and FG methods as used for quantifying NH3 fluxes from cropland. Preliminary analysis indicates the improved temporal resolution and continuous sampling enabled by FG allow for the identification of emission pulses

  1. Outlet sampling measurement of mass flux, enthalpy and void fraction in rod bundles

    International Nuclear Information System (INIS)

    Sreepada, S.R.

    1979-01-01

    The thermal-hydraulic performance of nuclear reactor cores is based on semi-empirical correlations and the local thermal-hydraulic conditions of the coolant, inferred analytically (using computer codes such as COBRA) from the rod bundle averaged conditions. The experimental data on local conditions of the coolant, such as mass flux, enthalpy and void fraction are limited and do not cover a wide range of thermodynamic variables. The improvements in the experimental isokinetic sampling technique for the measurement of enthalpy and mass flux are presented. Experiments were carried out on a 16 rod bundle prototypical of a boiling water reactor. Measurements were carried out on two subchannels. The experimental data are presented. Measurements were compared with the predictions of the computer code COBRA. The areas of disagreement between the measurements and the code predictions are presented along with the suggested code improvements. A dissolved radio-active salt technique for the measurement of subchannel void fractions is developed. The details of the technique and experimental void fraction measurements are presented. Future improvements of the method are suggested

  2. Spatial variability of carbon dioxide in the urban canopy layer and implications for flux measurements

    Science.gov (United States)

    Crawford, B.; Christen, A.

    2014-12-01

    This contribution reports CO2 mixing ratios measured in the urban canopy layer (UCL) of a residential neighborhood in Vancouver, BC, Canada and discusses the relevance of UCL CO2 temporal and spatial variability to local-scale eddy covariance (EC) fluxes measured above the UCL. Measurements were conducted from a mobile vehicle-mounted platform over a continuous, 26-h period in the longterm turbulent flux source area of an urban EC tower. Daytime mixing ratios were highest along arterial roads and largely a function of proximity to vehicle traffic CO2 sources. At night, there was a distinct negative correlation between potential air temperature and CO2 mixing ratios. The spatial distribution of CO2 was controlled by topography and micro-scale advective processes (i.e. cold-air pooling). Mobile CO2 measurements were then used to calculate CO2 storage changes (FS) in the UCL volume and compared to single-layer FS estimates calculated from the EC system. In total, five variations of FS were calculated. On average, the choice of FS calculation method affected net measured hourly emissions (FC) by 5.2%. Analysis of FS using a four-year dataset measured at the EC tower show FS was 2.8% of hourly FC for this site on average. At this urban EC location, FS was relatively minor compared to FC and calculation of FS using a single-layer method was adequate, though FS still represents a potentially large uncertainty during individual hours.

  3. Airborne Flux Measurements of Volatile Organic Compounds and NOx over a European megacity

    Science.gov (United States)

    Shaw, Marvin; Lee, James; Davison, Brian; Misztal, Pawel; Karl, Thomas; Hewitt, Nick; Lewis, Alistair

    2014-05-01

    Ground level ozone (O3) and nitrogen dioxide (NO2) are priority pollutants whose concentrations are closely regulated by European Union Air Quality Directive 2008/50/EC. O3 is a secondary pollutant, produced from a complex chemical interplay between oxides of nitrogen (NOx = NO + NO2) and volatile organic compounds (VOCs). Whilst the basic atmospheric chemistry leading to O3 formation is generally well understood, there are substantial uncertainties associated with the magnitude of emissions of both VOCs and NOx. At present our knowledge of O3 precursor emissions in the UK is primarily derived from National Atmospheric Emission inventories (NAEI) that provide spatially disaggregated estimates at 1x1km resolution, and these are not routinely tested at city or regional scales. Uncertainties in emissions propagate through into uncertainties in predictions of air quality in the future, and hence the likely effectiveness of control policies on both background and peak O3 and NO2 concentrations in the UK. The Ozone Precursor Fluxes in the Urban Environment (OPFUE) project aims to quantify emission rates for NOx and selected VOCs in and around the megacity of London using airborne eddy covariance (AEC). The mathematical foundation for AEC has been extensively reviewed and AEC measurements of ozone, dimethyl sulphide, CO2 and VOCs have been previously reported. During the summer of 2013, approximately 30 hours of airborne flux measurements of toluene, benzene, NO and NO2 were obtained from the NERC Airborne Research and Survey Facility's (ARSF) Dornier-228 aircraft. Over SE England, flights involved repeated south west to north east transects of ~50 km each over Greater London and it's surrounding suburbs and rural areas, flying at the aircraft's minimum operating flight altitude and airspeed (~300m, 80m/s). Mixing ratios of benzene and toluene were acquired at 2Hz using a proton transfer reaction mass spectrometer (PTR-MS) and compared to twice hourly whole air canister

  4. Enthalpy Distributions of Arc Jet Flow Based on Measured Laser Induced Fluorescence, Heat Flux and Stagnation Pressure Distributions

    Science.gov (United States)

    Suess, Leonard E.; Milhoan, James D.; Oelke, Lance; Godfrey, Dennis; Larin, Maksim Y.; Scott, Carl D.; Grinstead, Jay H.; DelPapa, Steven

    2011-01-01

    The centerline total enthalpy of arc jet flow is determined using laser induced fluorescence of oxygen and nitrogen atoms. Each component of the energy, kinetic, thermal, and chemical can be determined from LIF measurements. Additionally, enthalpy distributions are inferred from heat flux and pressure probe distribution measurements using an engineering formula. Average enthalpies are determined by integration over the radius of the jet flow, assuming constant mass flux and a mass flux distribution estimated from computational fluid dynamics calculations at similar arc jet conditions. The trends show favorable agreement, but there is an uncertainty that relates to the multiple individual measurements and assumptions inherent in LIF measurements.

  5. A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition and diffusion-derived components

    Science.gov (United States)

    Hoffmann, Mathias; Schulz-Hanke, Maximilian; Garcia Alba, Joana; Jurisch, Nicole; Hagemann, Ulrike; Sachs, Torsten; Sommer, Michael; Augustin, Jürgen

    2016-04-01

    Processes driving methane (CH4) emissions in wetland ecosystems are highly complex. Especially, the separation of CH4 emissions into ebullition and diffusion derived flux components, a perquisite for the mechanistic process understanding and identification of potential environmental driver is rather challenging. We present a simple calculation algorithm, based on an adaptive R-script, which separates open-water, closed chamber CH4 flux measurements into diffusion- and ebullition-derived components. Hence, flux component specific dynamics are revealed and potential environmental driver identified. Flux separation is based on a statistical approach, using ebullition related sudden concentration changes obtained during high resolution CH4 concentration measurements. By applying the lower and upper quartile ± the interquartile range (IQR) as a variable threshold, diffusion dominated periods of the flux measurement are filtered. Subsequently, flux calculation and separation is performed. The algorithm was verified in a laboratory experiment and tested under field conditions, using flux measurement data (July to September 2013) from a flooded, former fen grassland site. Erratic ebullition events contributed 46% to total CH4 emissions, which is comparable to values reported by literature. Additionally, a shift in the diurnal trend of diffusive fluxes throughout the measurement period, driven by the water temperature gradient, was revealed.

  6. Measurement of the epithermal neutron flux of the Argonauta reactor by the Sandwich method

    International Nuclear Information System (INIS)

    Nascimento, H.M.

    1973-01-01

    A common method of obtaining information about the neutron spectrum in the energy range of 1 eV to a few keV is by using resonance sandwich detectors. A sandwich detector is usually made up of three foils placed one on top of the other, each having the same thickness and being made of the same material which has a pronounced absorption resonance. To make an adequate evaluation, the sandwich method was compared with one using an isolated detector. The results obtained from approximate theoretical calculations were checked experimentally, using In, Au and Mn foils, in an isotropic 1/E flux in the Argonaut Reactor at I.E.N. As practical application of this method, the deviation from a 1/E spectrum of the epithermal neutron flux in the core and external graphite reflector of the Argonaut Reactor has been measured with the sandwich foils previously calibrated in a 1/E spectrum. (author)

  7. Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [Department of Physics and Astronomy, University of Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [Department of Physics, University of Naples " Federico II," I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991 Moscow (Russian Federation); Bellotti, R.; Bruno, A. [Department of Physics, University of Bari, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N. [INFN, Sezione di Rome " Tor Vergata," I-00133 Rome (Italy); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); Danilchenko, I. A. [National Research Nuclear University MEPhI, RU-115409 Moscow (Russian Federation); and others

    2014-08-20

    The propagation of cosmic rays inside our galaxy plays a fundamental role in shaping their injection spectra into those observed at Earth. One of the best tools to investigate this issue is the ratio of fluxes for secondary and primary species. The boron-to-carbon (B/C) ratio, in particular, is a sensitive probe to investigate propagation mechanisms. This paper presents new measurements of the absolute fluxes of boron and carbon nuclei as well as the B/C ratio from the PAMELA space experiment. The results span the range 0.44-129 GeV/n in kinetic energy for data taken in the period 2006 July to 2008 March.

  8. TRAPPED PROTON FLUXES AT LOW EARTH ORBITS MEASURED BY THE PAMELA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [Department of Physics and Astronomy, University of Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [Department of Physics, University of Naples " Federico II," I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991 Moscow (Russian Federation); Bellotti, R.; Bruno, A. [Department of Physics, University of Bari, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N.; Felice, V. Di [INFN, Sezione di Rome " Tor Vergata," I-00133 Rome (Italy); Castellini, G., E-mail: alessandro.bruno@ba.infn.it [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); and others

    2015-01-20

    We report an accurate measurement of the geomagnetically trapped proton fluxes for kinetic energy above ∼70 MeV performed by the PAMELA mission at low Earth orbits (350 ÷ 610 km). Data were analyzed in the frame of the adiabatic theory of charged particle motion in the geomagnetic field. Flux properties were investigated in detail, providing a full characterization of the particle radiation in the South Atlantic Anomaly region, including locations, energy spectra, and pitch angle distributions. PAMELA results significantly improve the description of the Earth's radiation environment at low altitudes, placing important constraints on the trapping and interaction processes, and can be used to validate current trapped particle radiation models.

  9. Standard Test Method for Measuring Heat Flux Using a Water-Cooled Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the measurement of a steady heat flux to a given water-cooled surface by means of a system energy balance. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, Lance [Indiana Univ., Bloomington, IN (United States)

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  11. Integrating lysimeter drainage and eddy covariance flux measurements in a groundwater recharge model

    DEFF Research Database (Denmark)

    Vasquez, Vicente; Thomsen, Anton; Iversen, Bo V.

    2015-01-01

    Field scale water balance is difficult to characterize because controls exerted by soils and vegetation are mostly inferred from local scale measurements with relatively small support volumes. Eddy covariance flux and lysimeters have been used to infer and evaluate field scale water balances...... because they have larger footprint areas than local soil moisture measurements.. This study quantifies heterogeneity of soil deep drainage (D) in four 12.5 m2 repacked lysimeters, compares evapotranspiration from eddy covariance (ETEC) and mass balance residuals of lysimeters (ETwbLys), and models D...

  12. Light collection optics for measuring flux and spectrum from light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    McCord, Mark A.; DiRegolo, Joseph A.; Gluszczak, Michael R.

    2016-05-24

    Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.

  13. Passive measurement of flux nucleation in the current-induced resistive state of type I superconductors

    International Nuclear Information System (INIS)

    Selig, K.P.; Chimenti, D.E.; Huebener, R.P.

    1978-01-01

    Flux-tube nucleation rates have been measured in the current-induced resistive state of type I superconducting In films between 1.5 and 2.0 K by a completely passive technique. Indication of periodic nucleation is observed only in narrow regions of sample voltage drop, whose position is a sensitive function of temperature. Frequency bandwidth measurements of the nucleation rate yield a spectral purity of one part in 10 4 within the narrow regions where an experimental signal can be detected. (orig.) [de

  14. Bichromatic Scintillometer Measurements of Sensible and Latent Heat Fluxes over a Boreal Forested Valley

    Science.gov (United States)

    Isabelle, P. E.; Nadeau, D.; Parent, A. C.; Rousseau, A. N.; Jutras, S.; Anctil, F.

    2017-12-01

    Boreal forest covers roughly 10% of the earth emerged surface, making it one of the world most common type of landscape. There is a large number of studies on the land-atmosphere exchanges of water and energy for this type of forested surfaces. However, few were located in complex terrain, and, to the best of our knowledge, none have looked at continuous regional scale fluxes. Scintillometry is a powerful tool that allows such measurements, but is usually used over flat homogeneous terrain due to its dependency on Monin-Obukhov Similarity Theory. However, some recent studies have applied this method over slopes, measuring fluxes comparable to those using the eddy covariance method. Still, more experiments are needed using scintillometry over sloped surfaces. This study presents bichromatic scintillometer measurements of sensible and latent heat fluxes over a boreal-forested valley. The field site is located in the Montmorency Forest, Québec, Canada (47°17'N; 71°10'W). The instrumented valley is surrounded by ridges at 900 m elevation, with the bottom stream at 785 m, and follows a 300-120° azimuth coinciding with the two main wind direction (up and down-valley, respectively). Vegetation mostly includes balsam firs 6-10 m tall, creating a rough but homogeneous surface. Scintillometer transmitters and receivers are installed on top of the ridges enclosing the valley, making the path 1.35 km long and its effective height 70-m tall. The setup includes a large aperture and a micro-wave scintillometer with crossing paths allowing the use of the bichromatic method. Measurement are taken continuously from August to October 2017. Scintillometer fluxes are compared with those measured by a 15-m eddy covariance tower located 100 m west of the measurement path, on the southern slope of the valley. Net radiation is also measured to assess energy budget closure over the valley. The setup allows us to test the limits of applicability of scintillometer measurements, especially

  15. A reference system for the measurement of low-strength magnetic flux density

    International Nuclear Information System (INIS)

    Fiorillo, F.; Durin, G.F.; Rocchino, L.

    2006-01-01

    Magnetic flux density standards traceable to the SI units have been developed at IEN-INRIM, by which dissemination for general measurement and testing activities can be pursued. The reference system covers a range of values extending from μ 0 H∼1T to μ 0 H∼10μT and is centered on the use of NMR magnetometers, calibrated coils, and stable current sources. The relative measuring uncertainty of the system is shown to increases with decreasing the field strength value and it is estimated to range between a few 10 -6 and some 10 -3

  16. Using sonic anemometer temperature to measure sensible heat flux in strong winds

    Directory of Open Access Journals (Sweden)

    S. P. Burns

    2012-09-01

    Full Text Available Sonic anemometers simultaneously measure the turbulent fluctuations of vertical wind (w' and sonic temperature (Ts', and are commonly used to measure sensible heat flux (H. Our study examines 30-min heat fluxes measured with a Campbell Scientific CSAT3 sonic anemometer above a subalpine forest. We compared H calculated with Ts to H calculated with a co-located thermocouple and found that, for horizontal wind speed (U less than 8 m s−1, the agreement was around ±30 W m−2. However, for U ≈ 8 m s−1, the CSAT H had a generally positive deviation from H calculated with the thermocouple, reaching a maximum difference of ≈250 W m−2 at U ≈ 18 m s−1. With version 4 of the CSAT firmware, we found significant underestimation of the speed of sound and thus Ts in high winds (due to a delayed detection of the sonic pulse, which resulted in the large CSAT heat flux errors. Although this Ts error is qualitatively similar to the well-known fundamental correction for the crosswind component, it is quantitatively different and directly related to the firmware estimation of the pulse arrival time. For a CSAT running version 3 of the firmware, there does not appear to be a significant underestimation of Ts; however, a Ts error similar to that of version 4 may occur if the CSAT is sufficiently out of calibration. An empirical correction to the CSAT heat flux that is consistent with our conceptual understanding of the Ts error is presented. Within a broader context, the surface energy balance is used to evaluate the heat flux measurements, and the usefulness of side-by-side instrument comparisons is discussed.

  17. Time series measurements of carbon fluxes from a mangrove-dominated estuary

    Science.gov (United States)

    Volta, C.; Ho, D. T.; Friederich, G.; Del Castillo, C. E.; Engel, V. C.; Bhat, M.

    2017-12-01

    Mangrove ecosystems are among the most important and productive coastal ecosystems globally, and due to their high productivity and rapid carbon cycling, these ecosystems are important modulators of carbon fluxes from the land to the ocean and between the water and the atmosphere. Therefore, they may play a crucial role in the global carbon cycle and climate. Nonetheless, to date, estimates of carbon fluxes in mangrove-dominated estuaries are associated with large uncertainties, because studies have typically focused on limited spatial and temporal scales. For the first time, continuous time series measurements of temperature, salinity, CDOM, pH and pCO2 covering both the dry and the wet seasons were made in Shark River, a tidal estuary in the largest contiguous mangrove forest in North America. The measurements were made at two permanent stations along the estuarine domain, and allowed estimates of net dissolved carbon export from the Shark River to the Gulf of Mexico, as well as the CO2 emissions to the atmosphere to be made at seasonal and annual timescales. Results reveal that, compared to the dry season, the wet season was characterized by higher dissolved carbon export and CO2 emissions, due to meteorological, hydrological, and biogeochemical processes. Additionally, an analysis of relationships between hydrodynamic control factors (i.e. water discharge and water level) in the upstream freshwater marsh and carbon fluxes in the Shark River highlighted the importance of developing good water management strategies in the future. Finally, the study estimated the social cost of carbon fluxes in the Shark River estuary as a contribution to carbon accounting in mangrove ecosystems.

  18. Novel Zero-Heat-Flux Deep Body Temperature Measurement in Lower Extremity Vascular and Cardiac Surgery.

    Science.gov (United States)

    Mäkinen, Marja-Tellervo; Pesonen, Anne; Jousela, Irma; Päivärinta, Janne; Poikajärvi, Satu; Albäck, Anders; Salminen, Ulla-Stina; Pesonen, Eero

    2016-08-01

    The aim of this study was to compare deep body temperature obtained using a novel noninvasive continuous zero-heat-flux temperature measurement system with core temperatures obtained using conventional methods. A prospective, observational study. Operating room of a university hospital. The study comprised 15 patients undergoing vascular surgery of the lower extremities and 15 patients undergoing cardiac surgery with cardiopulmonary bypass. Zero-heat-flux thermometry on the forehead and standard core temperature measurements. Body temperature was measured using a new thermometry system (SpotOn; 3M, St. Paul, MN) on the forehead and with conventional methods in the esophagus during vascular surgery (n = 15), and in the nasopharynx and pulmonary artery during cardiac surgery (n = 15). The agreement between SpotOn and the conventional methods was assessed using the Bland-Altman random-effects approach for repeated measures. The mean difference between SpotOn and the esophageal temperature during vascular surgery was+0.08°C (95% limit of agreement -0.25 to+0.40°C). During cardiac surgery, during off CPB, the mean difference between SpotOn and the pulmonary arterial temperature was -0.05°C (95% limits of agreement -0.56 to+0.47°C). Throughout cardiac surgery (on and off CPB), the mean difference between SpotOn and the nasopharyngeal temperature was -0.12°C (95% limits of agreement -0.94 to+0.71°C). Poor agreement between the SpotOn and nasopharyngeal temperatures was detected in hypothermia below approximately 32°C. According to this preliminary study, the deep body temperature measured using the zero-heat-flux system was in good agreement with standard core temperatures during lower extremity vascular and cardiac surgery. However, agreement was questionable during hypothermia below 32°C. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Comparing Evapotranspiration Rates Estimated from Atmospheric Flux and TDR Soil Moisture Measurements

    DEFF Research Database (Denmark)

    Schelde, Kirsten; Ringgaard, Rasmus; Herbst, Mathias

    2011-01-01

    Measurements of water vapor fluxes using eddy covariance (EC) and measurements of root zone soil moisture depletion using time domain reflectometry (TDR) represent two independent approaches to estimating evapotranspiration. This study investigated the possibility of using TDR to provide a lower...... limit estimate (disregarding dew evaporation) of evapotranspiration on dry days. During a period of 7 wk, the two independent measuring techniques were applied in a barley (Hordeum vulgare L.) field, and six dry periods were identified. Measurements of daily root zone soil moisture depletion were...... compared with daily estimates of water vapor loss. During the first dry periods, agreement between the two approaches was good, with average daily deviation between estimates below 1.0 mm d-1 Toward the end of the measurement period, the estimates of the two techniques tended to deviate due to different...

  20. Thermal and epithermal neutron flux distributions measurement in thermal column of TRR using an experimental-simulation method.

    Science.gov (United States)

    Adeli, Ruhollah; Kasesaz, Yaser; Shirmardi, Seyed Pezhman; Ezaty, Arsalan

    2018-03-01

    For designing an appropriate neutron beam, the determination of neutron flux at any irradiation facility is an important key factor. Due to the importance of determining the thermal and epithermal neutron fluxes in a typical thermal column of a reactor, a simple and accurate technique is introduced in this study. Absolute thermal and epithermal fluxes were measured experimentally at a certain point using the foil activation method by neutron bombardment of bare and cadmium covered Au foils. The relative neutron fluxes were also derived simply by means of Monte Carlo simulation by accurate modelling of the reactor components. Finally, by normalization of the relative distribution flux with regard to information about the absolute neutron flux, the accurate thermal and epithermal neutron distributions were derived, separately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions

    Science.gov (United States)

    Rannik, Ü.; Haapanala, S.; Shurpali, N. J.; Mammarella, I.; Lind, S.; Hyvönen, N.; Peltola, O.; Zahniser, M.; Martikainen, P. J.; Vesala, T.

    2015-01-01

    Four gas analysers capable of measuring nitrous oxide (N2O) concentration at a response time necessary for eddy covariance flux measurements were operated from spring until winter 2011 over a field cultivated with reed canary grass (RCG, Phalaris arundinacea, L.), a perennial bioenergy crop in eastern Finland. The instruments were TGA100A (Campbell Scientific Inc.), CW-TILDAS-CS (Aerodyne Research Inc.), N2O / CO-23d (Los Gatos Research Inc.) and QC-TILDAS-76-CS (Aerodyne Research Inc.). The period with high emissions, lasting for about 2 weeks after fertilization in late May, was characterized by an up to 2 orders of magnitude higher emission, whereas during the rest of the campaign the N2O fluxes were small, from 0.01 to 1 nmol m-2 s-1. Two instruments, CW-TILDAS-CS and N2O / CO-23d, determined the N2O exchange with minor systematic difference throughout the campaign, when operated simultaneously. TGA100A produced the cumulatively highest N2O estimates (with 29% higher values during the period when all instruments were operational). QC-TILDAS-76-CS obtained 36% lower fluxes than CW-TILDAS-CS during the first period, including the emission episode, whereas the correspondence with other instruments during the rest of the campaign was good. The reasons for systematic differences were not identified, suggesting further need for detailed evaluation of instrument performance under field conditions with emphasis on stability, calibration and any other factors that can systematically affect the accuracy of flux measurements. The instrument CW-TILDAS-CS was characterized by the lowest noise level (with a standard deviation of around 0.12 ppb at 10 Hz sampling rate) as compared to N2O / CO-23d and QC-TILDAS-76-CS (around 0.50 ppb) and TGA100A (around 2 ppb). We identified that for all instruments except CW-TILDAS-CS the random error due to instrumental noise was an important source of uncertainty at the 30 min averaging level and the total stochastic error was frequently

  2. Continuous measurements of methane flux in two Japanese temperate forests based on the micrometeorological and chamber methods

    Science.gov (United States)

    Yoshikawa, K.; Ueyama, M.; Takagi, K.; Kominami, Y.

    2015-12-01

    Methane (CH4) budget in forest ecosystems have not been accurately quantified due to limited measurements and considerable spatiotemporal heterogeneity. In order to quantify CH4 fluxes at temperate forest at various spatiotemporal scales, we have continuously measured CH4 fluxes at two upland forests based on the micrometeorological hyperbolic relaxed eddy accumulation (HREA) and automated dynamic closed chamber methods.The measurements have been conducted at Teshio experimental forest (TSE) since September 2013 and Yamashiro forest meteorology research site (YMS) since November 2014. Three automated chambers were installed on each site. Our system can measure CH4 flux by the micrometeorological HREA, vertical concentration profile at four heights, and chamber measurements by a laser-based gas analyzer (FGGA-24r-EP, Los Gatos Research Inc., USA).Seasonal variations of canopy-scale CH4 fluxes were different in each site. CH4 was consumed during the summer, but was emitted during the fall and winter in TSE; consequently, the site acted as a net annual CH4 source. CH4 was steadily consumed during the winter, but CH4 fluxes fluctuated between absorption and emission during the spring and summer in YMS. YMS acted as a net annual CH4 sink. CH4 uptake at the canopy scale generally decreased with rising soil temperature and increased with drying condition for both sites. CH4 flux measured by most of chambers showed the consistent sensitivity examined for the canopy scale to the environmental variables. CH4 fluxes from a few chambers located at a wet condition were independent of variations in soil temperature and moisture at both sites. Magnitude of soil CH4 uptake was higher than the canopy-scale CH4 uptake. Our results showed that the canopy-scale CH4 fluxes were totally different with the plot-scale CH4 fluxes by chambers, suggesting the considerable spatial heterogeneity in CH4 flux at the temperate forests.

  3. Sea spray aerosol fluxes in the Baltic Sea region: Comparison of the WAM model with measurements

    Science.gov (United States)

    Markuszewski, Piotr; Kosecki, Szymon; Petelski, Tomasz

    2017-08-01

    Sea spray aerosol flux is an important element of sub-regional climate modeling. The majority of works related to this topic concentrate on open ocean research rather than on smaller, inland seas, e.g., the Baltic Sea. The Baltic Sea is one of the largest brackish inland seas by area, where major inflows of oceanic waters are rare. Furthermore, surface waves in the Baltic Sea have a relatively shorter lifespan in comparison with oceanic waves. Therefore, emission of sea spray aerosol may differ greatly from what is known from oceanic research and should be investigated. This article presents a comparison of sea spray aerosol measurements carried out on-board the s/y Oceania research ship with data calculated in accordance to the WAM model. The measurements were conducted in the southern region of the Baltic Sea during four scientific cruises. The gradient method was used to determinate aerosol fluxes. The fluxes were calculated for particles of diameter in range of 0.5-47 μm. The correlation between wind speed measured and simulated has a good agreement (correlation in range of 0.8). The comparison encompasses three different sea spray generation models. First, function proposed by Massel (2006) which is based only on wave parameters, such as significant wave height and peak frequency. Second, Callaghan (2013) which is based on Gong (2003) model (wind speed relation), and a thorough experimental analysis of whitecaps. Third, Petelski et al. (2014) which is based on in-situ gradient measurements with the function dependent on wind speed. The two first models which based on whitecaps analysis are insufficient. Moreover, the research shows strong relation between aerosol emission and wind speed history.

  4. Gadolinium-loaded gel scintillators for neutron and antineutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine Lynn; Akers, Douglas William; Demmer, Ricky Lynn; Paviet, Patricia Denise; Drigert, Mark William

    2016-11-29

    A gadolinium (Gd) loaded scintillation gel (Gd-ScintGel) compound allows for neutron and gamma-ray detection. The unique gel scintillator encompasses some of the best features of both liquid and solid scintillators, yet without many of the disadvantages associated therewith. Preferably, the gel scintillator is a water soluble Gd-DTPA compound and water soluble fluorophores such as: CdSe/ZnS (or ZnS) quantum dot (Q-dot) nanoparticles, coumarin derivatives 7-hydroxy-4-methylcoumarin, 7-hydroxy-4-methylcoumarin-3-acetic acid, 7-hydroxycoumarin-3-carboxylic acid, and Alexa Fluor 350 as well as a carbostyril compound, carbostyril 124 in a stable water-based gel, such as methylcellulose or polyacrylamide polymers. The Gd-loaded ScintGel allows for a homogenious distribution of the Gd-DTPA and the fluorophores, and yields clean fluorescent emission peaks. A moderator, such as deuterium or a water-based clear polymer, can be incorporated in the Gd-ScintGel. The gel scintillators can be used in compact detectors, including neutron and antineutrino detectors.

  5. Measurements and modelling of snowmelt and turbulent heat fluxes over shrub tundra

    Directory of Open Access Journals (Sweden)

    D. Bewley

    2010-07-01

    Full Text Available Measurements of snowmelt and turbulent heat fluxes were made during the snowmelt periods of two years at two neighbouring tundra sites in the Yukon, one in a sheltered location with tall shrubs exposed above deep snow and the other in an exposed location with dwarf shrubs covered by shallow snow. The snow was about twice as deep in the valley as on the plateau at the end of each winter and melted out about 10 days later. The site with buried vegetation showed a transition from air-to-surface heat transfers to surface-to-air heat transfers as bare ground became exposed during snowmelt, but there were daytime transfers of heat from the surface to the air at the site with exposed vegetation even while snow remained on the ground. A model calculating separate energy balances for snow and exposed vegetation, driven with meteorological data from the sites, is found to be able to reproduce these behaviours. Averaged over 30-day periods the model gives about 8 Wm−2 more sensible heat flux to the atmosphere for the valley site than for the plateau site. Sensitivity of simulated fluxes to model parameters describing vegetation cover and density is investigated.

  6. New gap-filling and partitioning technique for H2O eddy fluxes measured over forests

    Science.gov (United States)

    Kang, Minseok; Kim, Joon; Malla Thakuri, Bindu; Chun, Junghwa; Cho, Chunho

    2018-01-01

    The continuous measurement of H2O fluxes using the eddy covariance (EC) technique is still challenging for forests because of large amounts of wet canopy evaporation (EWC), which occur during and following rain events when the EC systems rarely work correctly. We propose a new gap-filling and partitioning technique for the H2O fluxes: a model-statistics hybrid (MSH) method. It enables the recovery of the missing EWC in the traditional gap-filling method and the partitioning of the evapotranspiration (ET) into transpiration and (wet canopy) evaporation. We tested and validated the new method using the data sets from two flux towers, which are located at forests in hilly and complex terrains. The MSH reasonably recovered the missing EWC of 16-41 mm yr-1 and separated it from the ET (14-23 % of the annual ET). Additionally, we illustrated certain advantages of the proposed technique which enable us to understand better how ET responds to environmental changes and how the water cycle is connected to the carbon cycle in a forest ecosystem.

  7. New gap-filling and partitioning technique for H2O eddy fluxes measured over forests

    Directory of Open Access Journals (Sweden)

    M. Kang

    2018-01-01

    Full Text Available The continuous measurement of H2O fluxes using the eddy covariance (EC technique is still challenging for forests because of large amounts of wet canopy evaporation (EWC, which occur during and following rain events when the EC systems rarely work correctly. We propose a new gap-filling and partitioning technique for the H2O fluxes: a model–statistics hybrid (MSH method. It enables the recovery of the missing EWC in the traditional gap-filling method and the partitioning of the evapotranspiration (ET into transpiration and (wet canopy evaporation. We tested and validated the new method using the data sets from two flux towers, which are located at forests in hilly and complex terrains. The MSH reasonably recovered the missing EWC of 16–41 mm yr−1 and separated it from the ET (14–23 % of the annual ET. Additionally, we illustrated certain advantages of the proposed technique which enable us to understand better how ET responds to environmental changes and how the water cycle is connected to the carbon cycle in a forest ecosystem.

  8. The Influence of Aircraft Speed Variations on Sensible Heat-Flux Measurements by Different Airborne Systems

    Science.gov (United States)

    Martin, Sabrina; Bange, Jens

    2014-01-01

    Crawford et al. (Boundary-Layer Meteorol 66:237-245, 1993) showed that the time average is inappropriate for airborne eddy-covariance flux calculations. The aircraft's ground speed through a turbulent field is not constant. One reason can be a correlation with vertical air motion, so that some types of structures are sampled more densely than others. To avoid this, the time-sampled data are adjusted for the varying ground speed so that the modified estimates are equivalent to spatially-sampled data. A comparison of sensible heat-flux calculations using temporal and spatial averaging methods is presented and discussed. Data of the airborne measurement systems , Helipod and Dornier 128-6 are used for the analysis. These systems vary in size, weight and aerodynamic characteristics, since the is a small unmanned aerial vehicle (UAV), the Helipod a helicopter-borne turbulence probe and the Dornier 128-6 a manned research aircraft. The systematic bias anticipated in covariance computations due to speed variations was neither found when averaging over Dornier, Helipod nor UAV flight legs. However, the random differences between spatial and temporal averaging fluxes were found to be up to 30 % on the individual flight legs.

  9. Muon flux measurements at the davis campus of the sanford underground research facility with the majorana demonstrator veto system

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y-D.; Christofferson, C. D.; Chu, P. -H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O’Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schmitt, C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.; Zhitnikov, I.

    2017-07-01

    We report the first measurement of the muon flux underground at the Davis Campus of the Sanford Underground Research Facility at the 4850 foot level. Measurements were done with the Majorana Demonstrator veto system arranged in two different configurations. Both results are in agreement within statistical accuracy. The measured flux is (4.08+-0.19) x 10 -9 muons/cm/2. We compare our results with previous calculations.

  10. Concentrations and flux measurements of volatile organic compounds (VOC) in boreal forest soil

    Science.gov (United States)

    Mäki, Mari; Aaltonen, Hermanni; Heinonsalo, Jussi; Hellén, Heidi; Pumpanen, Jukka; Bäck, Jaana

    2017-04-01

    Volatile organic compounds (VOC) impact soil processes as VOCs transmit signals between roots and rhizosphere (Ditengou et al., 2015), VOCs can regulate microbial activity (Asensio et al., 2012), and VOCs can also promote root growth (Hung et al., 2012). Belowground concentrations of VOCs have not been measured in situ and for this reason, knowledge of how different soil organisms such as roots, rhizosphere and decomposers contribute to VOC production is limited. The aim of this study was to determine and quantify VOC fluxes and concentrations of different horizons from boreal forest soil. The VOC concentrations and fluxes were measured from Scots pine (Pinus sylvestris) forest soil at the SMEAR II station in southern Finland from 21th of April to 2nd of December in 2016. VOC fluxes were measured using dynamic (flow-through) chambers from five soil collars placed on five different locations. VOC concentrations were also measured in each location from four different soil horizons with the measurement depth 1-107 cm. VOCs were collected from underground gas collectors into the Tenax-Carbopack-B adsorbent tubes using portable pumps ( 100 ml min-1). The VOC concentrations and fluxes of isoprene, 11 monoterpenes, 13 sesquiterpenes and different oxygenated VOCs were measured. Sample tubes were analyzed using thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). Soil temperature and soil water content were continuously monitored for each soil horizon. Our preliminary results show that the primary source of VOCs is organic soil layer and the contribution of mineral soil to the VOC formation is minor. VOC fluxes and concentrations were dominated by monoterpenes such as α-pinene, camphene, β-pinene, and Δ3-carene. Monoterpene concentration is almost 10-fold in organic soil compared to the deeper soil layers. However, the highest VOC fluxes on the soil surface were measured in October, whereas the monoterpene concentrations in organic soil were highest in July

  11. Unsteady Heat-Flux Measurements of Second-Mode Instability Waves in a Hypersonic Boundary Layer

    Science.gov (United States)

    Kergerise, Michael A.; Rufer, Shann J.

    2016-01-01

    In this paper we report on the application of the atomic layer thermopile (ALTP) heat- flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are in agreement with data previously reported in the literature. Heat flux time series, and the Morlet-wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was developed to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  12. Measuring the Galactic Cosmic Ray flux with the LISA Pathfinder radiation monitor

    Science.gov (United States)

    Armano, M.; Audley, H.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Castelli, E.; Cavalleri, A.; Cesarini, A.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Ferraioli, L.; Ferroni, V.; Finetti, N.; Fitzsimons, E. D.; Freschi, M.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Lobo, J. A.; Lloro, I.; Liu, L.; Lopez-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Meshskar, N.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rivas, F.; Russano, G.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zweifel, P.

    2018-03-01

    Test mass charging caused by cosmic rays will be a significant source of acceleration noise for space-based gravitational wave detectors like LISA. Operating between December 2015 and July 2017, the technology demonstration mission LISA Pathfinder included a bespoke monitor to help characterise the relationship between test mass charging and the local radiation environment. The radiation monitor made in situ measurements of the cosmic ray flux while also providing information about its energy spectrum. We describe the monitor and present measurements which show a gradual 40% increase in count rate coinciding with the declining phase of the solar cycle. Modulations of up to 10% were also observed with periods of 13 and 26 days that are associated with co-rotating interaction regions and heliospheric current sheet crossings. These variations in the flux above the monitor detection threshold ( ≈ 70 MeV) are shown to be coherent with measurements made by the IREM monitor on-board the Earth orbiting INTEGRAL spacecraft. Finally we use the measured deposited energy spectra, in combination with a GEANT4 model, to estimate the galactic cosmic ray differential energy spectrum over the course of the mission.

  13. γ-aminobutyric acid (GABA) mediated transmembrane chloride flux with membrane vesicles from rat brain measured by quench flow technique: kinetic homogeneity of ion flux and receptor desensitization

    International Nuclear Information System (INIS)

    Cash, D.J.; Subbarao, K.

    1987-01-01

    Transmembrane chloride flux mediated by the GABA/sub A/ receptor and the desensitization of the receptor were followed using quench flow technique with 36 Cl - and a membrane preparation from rat cerebral cortex. Measurements in short times allowed these two processes to be resolved. In general the ion-flux activity was desensitized in two phases. A fast phase took place in circa 200 ms (100 μM GABA) followed by a slower phase in several seconds. A minority of the membrane preparations did not display the fast phase. It is desirable to be able to separate these two phases of desensitization to facilitate analysis of the responses of the receptor. A short preincubation with GABA removed the fast phase from a subsequent measurement. In the absence of the fast phase the whole ion-flux equilibrium was seen as a single phase. The measurements presented covering a time range of 0.01 seconds to 10 seconds show a single phase of ion flux which can be described by a first order ion influx process and a single first order desensitization process with a halt time of circa 1 s (100 μM GABA). The results imply a single population of vesicles containing a single population of GABA receptor (remaining active) with a single phase of desensitization. An understanding of this homogeneity, and how to ensure it, gives a basis for quantitatively testing the effects of drugs on these responses. Ion flux measurements with quench flow technique are a suitable tool for investigation of the mechanism of action of neurotransmitter receptors from brain. 37 references, 3 figures

  14. Liner velocity, current, and symmetry measurements on the 32 MA flux compression generator experiment ALT-1

    CERN Document Server

    Clark, D A; Rodríguez, G; Tabaka, L J

    2001-01-01

    Summary form only given, as follows. A flux compression generator based pulse power system, designed, built, and fielded by a Russian team at the All Russian Scientific Research Institute of Experimental Physics (VNIIEF), was used to successfully drive an aluminum liner to velocities greater than 10 km/sec. The experiment objective was to demonstrate performance of a precision liner implosion at Atlas current of 30 MA or greater. Diagnostics to measure liner performance were an essential part of the experiment. An experimental team from Los Alamos National Laboratory (LANL) provided a suite of diagnostics to measure liner performance. Three diagnostics were fielded. 1. a velocity interferometer (VISAR) to continuously measure the liner inner surface velocity from throughout the entire range of travel. 2. Two Faraday rotation devices to measure liner current during the implosion. 3. Sixteen fiber optic impact pins to record liner impact time and provide axial and azimuthal symmetry information. All diagnostics...

  15. Total luminous flux measurement for flexible surface sources with an integrating sphere photometer

    International Nuclear Information System (INIS)

    Yu, Hsueh-Ling; Liu, Wen-Chun

    2014-01-01

    Applying an integrating sphere photometer for total luminous flux measurement is a widely used method. However, the measurement accuracy depends on the spatial uniformity of the integrating sphere, especially when the test sample has a different light distribution from that of the standard source. Therefore, spatial correction is needed to eliminate the effect caused by non-uniformity. To reduce the inconvenience of spatial correction but retain the measurement accuracy, a new type of working standard is designed for flexible and curved surface sources. Applying this new type standard source, the measurement deviation due to different orientations is reduced by an order of magnitude compared with using a naked incandescent lamp as the standard source. (paper)

  16. Motion-Correlated Flow Distortion and Wave-Induced Biases in Air-Sea Flux Measurements From Ships

    Science.gov (United States)

    Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.

    2016-02-01

    Direct measurements of the turbulent air-sea fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform, or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we use eddy covariance momentum flux measurements obtained onboard RRS James Clark Ross as part of the Waves, Aerosol and Gas Exchange Study (WAGES), a programme of near-continuous measurements using the autonomous AutoFlux system (Yelland et al., 2009). Measurements were made in 2013 in locations throughout the North and South Atlantic, the Southern Ocean and the Arctic Ocean, at latitudes ranging from 62°S to 75°N. We show that the measured motion-scale bias has a dependence on the horizontal ship velocity, and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error, and that time-varying motion-dependent flow distortion is the likely source. Yelland, M., Pascal, R., Taylor, P. and Moat, B.: AutoFlux: an autonomous system for the direct measurement of the air-sea fluxes of CO2, heat and momentum. J. Operation. Oceanogr., 15-23, doi:10.1080/1755876X.2009.11020105, 2009.

  17. Eddy-correlation measurements of benthic fluxes under complex flow conditions: Effects of coordinate transformations and averaging time scales

    DEFF Research Database (Denmark)

    Lorke, Andreas; McGinnis, Daniel F.; Maeck, Andreas

    2013-01-01

    hours of continuous eddy-correlation measurements of sediment oxygen fluxes in an impounded river, we demonstrate that rotation of measured current velocities into streamline coordinates can be a crucial and necessary step in data processing under complex flow conditions in non-flat environments......Eddy-correlation measurements of sediment oxygen uptake rates in aquatic systems are increasingly used to obtain areal-averaged fluxes with a high temporal resolution. Here we discuss the effects of coordinate rotation and averaging time scale for Reynolds decomposition on flux estimates. Using 119...... in the context of the theoretical concepts underlying eddy-correlation measurements and a set of recommendations for planning and analyses of flux measurements are derived....

  18. Eddy Covariance flux measurements over an ice/snow covered lake in Finland

    Science.gov (United States)

    Potes, Miguel; Salgado, Rui; Provenzale, Maria; Mammarella, Ivan

    2017-04-01

    The inland water bodies play an important role in the regional heat and mass transfer with the atmosphere. As lakes cover an area of 4.2 million km2, representing an area of more than 3% of Earth continental surface, an increasing concern in estimation of heat and greenhouse gases exchanges between inland water bodies and the atmosphere has been developed in the last years. The eddy covariance (EC) method is the worldwide most common technique used to assess turbulent fluxes over all types of surface. In the framework of two Short Term Scientific Mission of the COST action "A European network for a harmonized monitoring of snow for the benefit of climate change scenarios, hydrology and numerical weather prediction" (ES1404), it was feasible to have parallel EC measurements with two identical equipment over a boreal lake. In this communication the results are related to the period comprised between November 2015 and May 2016, including freezing and ice-free periods. Observed near surface fluxes of momentum, heat and mass (H2O and CO2) were obtained with a new eddy covariance system (EC), Campbell Scientific's IRGASON Integrated Open-Path CO2/H2O Gas Analyzer and 3D Sonic Anemometer, over lake Vanajavesi in Finland. The measurement site is located in a tip of narrow peninsula on the lake (61.133935°N; 24.259119°E), offering very good conditions for eddy covariance flux measurements. The EC system was installed at 2.5m height above the lake surface and was oriented against the prevailing wind direction in the site.

  19. Design and use of a sparged platform for energy flux measurements over lakes

    Science.gov (United States)

    Gijsbers, S.; Wenker, K.; van Emmerik, T.; de Jong, S.; Annor, F.; Van De Giesen, N.

    2012-12-01

    Energy flux measurements over lakes or reservoirs demand relatively stable platforms. Platforms can not be stabilized by fixing them on the bottom of the lake when the water body is too deep or when water levels show significant fluctuations. We present the design and first operational results of a sparged platform. The structure consists of a long PVC pipe, the sparge, which is closed at the bottom. On the PVC pipe rests an aluminum frame platform that carries instrumentation and solar power panel. In turn, the platform rests partially on a large inflated tire. At the bottom of the PVC pipe, lead weights and batteries were placed to ensure a very low point of gravity to minimize wave impact on the platform movement. The tire ensures a large second moment of the water plane. The overall volume of displacement is small in this sparged design. The combination of large second momentum of the water plane and small displacement ensure a high placement of the metacenter. The distance between the point of gravity and the metacenter is relatively long and the weight is large due to the weights and batteries. This ensures that the eigenfrequency of the platform is very low. The instrumentation load consisted of a WindMaster Pro (sonic anemometer for 3D wind speed and air temperature to perform eddy covariance measurements of sensible heat flux), a NR Lite (net radiometer), and air temperature and relative humidity sensors. The platform had a wind vane and the sparge could turn freely around its anchor cable to ensure that the anemometer always faced upwind. A compass in the logger completed this setup. The stability was measured with an accelerometer. In addition to the design and its stability, some first energy flux results will be presented.

  20. The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Folini, Doris; Schwarz, Matthias; Zyta Hakuba, Maria; Sanchez-Lorenzo, Arturo

    2017-08-01

    The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 500 000 monthly mean entries of various surface energy balance components measured at 2500 locations. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from national weather services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, and from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric shortwave absorption, and in the detection of multi-decadal variations in global radiation, known as global dimming and brightening. GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via http://www.geba.ethz.ch. Supplementary data are available at https://doi.org/10.1594/PANGAEA.873078.

  1. Annual Modulation Measurement of the Low Energy Solar Neutrino Flux with the Borexino Detector

    Science.gov (United States)

    Manecki, Szymon Maria

    This work reports a first attempt to measure the solar neutrino annual flux modulation due to Earth's elliptical orbit with the Borexino detector. Borexino is a real-time calorimetric detector for low energy neutrino spectroscopy located in the underground laboratory of Gran Sasso, Italy. The experiment's main focus is the direct measurement of the 7Be solar neutrino flux of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. The original goal of this work was to quantify sensitivity of the Borexino detector to a 7% peak-to-peak signal variation over the course of a year and study background stability. A Monte-Carlo simulated sample of the expected variation was prepared in two phases of data acquisition, Phase I that spans from May-2007 to May-2010 and Phase II from October-2011 to September-2012. The data was then fitted in the time domain with a sinusoidal function and analyzed with the Lomb-Scargle fast Fourier transformation in the search for significant periodicities between periods of 0.5 and 1.5 years. The search was performed in the energy window dominated by 7Be, [210; 760] keV, and 60-day bins in the case of the fit and 10-bins for the Lomb-Scargle scan. This work also contains study of the post-purification data of Phase II beyond September-2012 with a prediction for the future sensitivity and justification of the achieved background levels. Results from an innovative method of signal's periodicity search, the Empirical Mode Decomposition, will be shown in the work of Francesco Lombardi of Laboratori Nazionali del Gran Sasso, and can be found in [1]. [1] F. Lombardi. Measurement of Seasonal Variation of 7Be flux with Borexino Experiment and New Observables Sensitive to Matter Effect from Updated Solar Neutrino Global Fit, Ph.D. thesis, LNGS, 2013.

  2. Volcanic Plume CO2 Flux Measurements at Mount Etna by Mobile Differential Absorption Lidar

    Directory of Open Access Journals (Sweden)

    Simone Santoro

    2017-03-01

    Full Text Available Volcanic eruptions are often preceded by precursory increases in the volcanic carbon dioxide (CO2 flux. Unfortunately, the traditional techniques used to measure volcanic CO2 require near-vent, in situ plume measurements that are potentially hazardous for operators and expose instruments to extreme conditions. To overcome these limitations, the project BRIDGE (BRIDging the gap between Gas Emissions and geophysical observations at active volcanoes received funding from the European Research Council, with the objective to develop a new generation of volcanic gas sensing instruments, including a novel DIAL-Lidar (Differential Absorption Light Detection and Ranging for remote (e.g., distal CO2 observations. Here we report on the results of a field campaign carried out at Mt. Etna from 28 July 2016 to 1 August 2016, during which we used this novel DIAL-Lidar to retrieve spatially and temporally resolved profiles of excess CO2 concentrations inside the volcanic plume. By vertically scanning the volcanic plume at different elevation angles and distances, an excess CO2 concentration of tens of ppm (up to 30% above the atmospheric background of 400 ppm was resolved from up to a 4 km distance from the plume itself. From this, the first remotely sensed volcanic CO2 flux estimation from Etna’s northeast crater was derived at ≈2850–3900 tons/day. This Lidar-based CO2 flux is in fair agreement with that (≈2750 tons/day obtained using conventional techniques requiring the in situ measurement of volcanic gas composition.

  3. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Monique Y. [The University of Georgia Research Foundation, Athens, GA (United States)

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  4. Measure of thermal neutron flux in the IPEN/MB-01 reactor using 197 Au wire activation detectors

    International Nuclear Information System (INIS)

    Marques, Andre Luis Ferreira

    1995-01-01

    This dissertation has aimed at developing a neutron flux measurement technique by means of detectors activation analysis. The main task of this work was the implementation of this thermal neutron flux measurement technique, using gold wires as activation detectors in the IPEN/MB-01 reactor core. The neutron thermal flux spatial distribution was obtained by gold wire activation technique, with wire diameters of 0.125 mm and 0.250 mm in seven selected reactor experimental channels. The values of thermal flux were about 10 9 neutrons/cm 2 .s. This experiment has been the first one conducted with gold wires in the IPEN/MB-01 reactor, being this technique implemented for use by experiments in flux mapping of the core

  5. Direct measurement of galactic cosmic ray fluxed with the orbital detector AMS-02

    Science.gov (United States)

    Casadei, Diego

    2003-03-01

    The Alpha Magnetic Spectrometer (AMS) experiment is a high energy particle detector developed to measure cosmic ray fluxes outside the Earth atmosphere. The first version of the detector, called AMS-01, successfully flew aboard of the shuttle Discovery on June 2-12, 1998 (NASA STS-91 mission), collecting over one hundred million events. The next version of the detector, called AMS-02, will be installed on the International Space Station (ISS) Alpha at the end of 2005, where it will operate for at least three years.

  6. Measurement of moderated neutron fluxes using Au-La-Co-Mn sandwich detectors

    International Nuclear Information System (INIS)

    Costa, L.

    1967-03-01

    In order to measure the energy spectra of moderated neutrons in reactors or in their protections, it is possible to improve resonating detectors by using three of them together: the difference between the activities of the exterior detectors and that of the central detector is proportional to the neutron flux at the resonance energy. The sensitivity obtained is lower but the energy selectivity is better than with simple detectors. The object of this work has been to develop this technique for four substances: gold, lanthanum, cobalt and manganese which have resonance energies at 4.9 - 73.5 - 132 and 337 eV. (author) [fr

  7. In situ measurements of metabolite fluxes: microinjection of radiotracers into insect guts and other small compartments.

    Science.gov (United States)

    Brune, Andreas; Pester, Michael

    2005-01-01

    In microbial ecology, it is of great interest to determine metabolic activities under in situ conditions, i.e., without disturbing the structure of the community and the spatial arrangement of individual populations by experimental manipulation. Microinjection of radiotracers and subsequent analysis using the isotope dilution technique has proven to be a powerful method to measure metabolic fluxes in small biological systems, e.g., the intestinal tract of termites. The large variety of commercially available radiolabeled substrates and the identification and quantitation of radiolabeled products by chromatographic methods allow for investigation of the complete metabolic network in a given system.

  8. Measurement of current density fluctuations and ambipolar particle flux due to magnetic fluctuations in MST

    International Nuclear Information System (INIS)

    Shen, Weimin.

    1992-08-01

    Studies of magnetic fluctuation induced particle transport on Reversed Field Pinch plasmas were done on the Madison Symmetric Torus. Plasma current density and current density fluctuations were measured using a multi-coil magnetic probes. The low frequency (f parallel B r >. The result of zero net charged particle loss was obtained, meaning the flux is ambipolar. The ambipolarity of low frequency global tearing modes is satisfied through the phase relations determined by tearing instabilities. The ambipolarity of high frequency localized modes could be partially explained by the simple model of Waltz based on the radial average of small scale turbulence

  9. Short-term eddy-covariance measurements of CO2 fluxes at Itaipu Lake, Brazil

    Science.gov (United States)

    Dias, N. L.; Crivellaro, B. L.; Armani, F. S.; Chor, T. L.; Gobbi, M. F.; Santos, A. L.; Lemma/UFPR Scientific Team

    2013-05-01

    We describe a 5-day campaign of eddy-covariance measurements at Itaipu Lake, in Southern Brazil and estimates of CO2 fluxes over crops in the same region with a SVAT model. Itaipu Lake was formed from the damming of Paraná River at the border between Brazil and Paraguay close to Foz do Iguaçu (BR) and Ciudad del Leste (PY); Itaipu dam is jointly operated by both countries. The measurements were made on the Brazilian side, at a very small island (Lat: -25o 03'25.72" Long -54o 24'33.67" : Altitude: 220 m ASL) located approximately 420 m away from the left (Brazilian) bank. The fetch to the ragged countour of the lake is rather large in the North-South direction: 2891 m to the North, and 1817 m to the South. Eddy covariance instrumentation mounted on a short tower consisted of a Li-Cor LI7500 open-path gas analyzer measuring CO2 and H2O concentrations; 4 Campbell FW3 fine-wire thermocouples and a Campbell CSAT-3 three-dimensional sonic anemometer, and were made at 3.76 m above the tower base, which remained at 2.8 m above the water level during the campaign. Mean concentrations of CO2 with Vaisala GM343 sensors were made at the tower, at 1.77 and 3.66 m above the tower base. The sensors were intercompared before the field experiment. The measurements reported here took place from 00:00 hrs Local Time of Dec 8th 2012 to 00:00 hrs of Dec 13 8th 2012. During most of the time there was fair weather, and the wind came predominantly from the North or North-East, with very favorable fetches. Standard data processing included coordinate rotation, linear detrending, despiking and density corrections. Peak positive and negative CO2 fluxes were -0.016 and +0.013 mmol/m2/s, respectively, with a mean value over the 5-day period of -0.14 mmol/m2/s. This may be compared to CO2 flux estimates using a SVAT model over soy, which yielded peak daytime values of 0.027 mmol/m2/s. These values should be interpreted as local both in time and space (i.e. neither representative of the whole

  10. Measurements with the high flux lead slowing-down spectrometer at LANL

    International Nuclear Information System (INIS)

    Danon, Y.; Romano, C.; Thompson, J.; Watson, T.; Haight, R.C.; Wender, S.A.; Vieira, D.J.; Bond, E.; Wilhelmy, J.B.; O'Donnell, J.M.; Michaudon, A.; Bredeweg, T.A.; Schurman, T.; Rochman, D.; Granier, T.; Ethvignot, T.; Taieb, J.; Becker, J.A.

    2007-01-01

    A Lead Slowing-Down Spectrometer (LSDS) was recently installed at LANL [D. Rochman, R.C. Haight, J.M. O'Donnell, A. Michaudon, S.A. Wender, D.J. Vieira, E.M. Bond, T.A. Bredeweg, A. Kronenberg, J.B. Wilhelmy, T. Ethvignot, T. Granier, M. Petit, Y. Danon, Characteristics of a lead slowing-down spectrometer coupled to the LANSCE accelerator, Nucl. Instr. and Meth. A 550 (2005) 397]. The LSDS is comprised of a cube of pure lead 1.2 m on the side, with a spallation pulsed neutron source in its center. The LSDS is driven by 800 MeV protons with a time-averaged current of up to 1 μA, pulse widths of 0.05-0.25 μs and a repetition rate of 20-40 Hz. Spallation neutrons are created by directing the proton beam into an air-cooled tungsten target in the center of the lead cube. The neutrons slow down by scattering interactions with the lead and thus enable measurements of neutron-induced reaction rates as a function of the slowing-down time, which correlates to neutron energy. The advantage of an LSDS as a neutron spectrometer is that the neutron flux is 3-4 orders of magnitude higher than a standard time-of-flight experiment at the equivalent flight path, 5.6 m. The effective energy range is 0.1 eV to 100 keV with a typical energy resolution of 30% from 1 eV to 10 keV. The average neutron flux between 1 and 10 keV is about 1.7 x 10 9 n/cm 2 /s/μA. This high flux makes the LSDS an important tool for neutron-induced cross section measurements of ultra-small samples (nanograms) or of samples with very low cross sections. The LSDS at LANL was initially built in order to measure the fission cross section of the short-lived metastable isotope of U-235, however it can also be used to measure (n, α) and (n, p) reactions. Fission cross section measurements were made with samples of 235 U, 236 U, 238 U and 239 Pu. The smallest sample measured was 10 ng of 239 Pu. Measurement of (n, α) cross section with 760 ng of Li-6 was also demonstrated. Possible future cross section

  11. Tall tower landscape scale N2O flux measurements in a Danish agricultural and urban, coastal area

    Science.gov (United States)

    Ibrom, Andreas; Lequy, Émeline; Loubet, Benjamin; Pilegaard, Kim; Ambus, Per

    2015-04-01

    Both technical and natural processes emit the greenhouse gas nitrous oxide (N2O) into the atmosphere. The abundant use of nitrogen (N) as fertiliser increases the concentration of reactive nitrogen (Nr) in the atmosphere, the hydrosphere and in the biosphere, i.e. in terrestrial and aquatic ecosystems. Surplus Nr is distributed across linkages to other spheres until most of it is emitted to the atmosphere as NO, N2O or N2. A complete estimate of the effects from human activities on N2O emissions must therefore include all emissions, the direct emissions and the indirect emissions that happen in interlinked spheres. For this it is necessary to assess the fluxes at least at the landscape scale. The episodic nature and the large spatial variability make it difficult to estimate the direct and indirect emissions in a landscape. Modelling requires not only to include the highly variable microbial processes in the ecosystems that produce N2O but as well the accurate simulation of lateral Nr fluxes and their effects on N2O fluxes in places remote from the primary Nr sources. In this context tall tower N2O flux measurements are particularly useful as they integrate over larger areas and can be run, continuously without disturbing the fluxes. On the other hand these measurements can be difficult to interpret due to difficulties to measure the small concentration fluctuations in the atmosphere at small flux rates and to accurately attribute the measured flux at the tower to the area that generates the flux, i.e. the source area. The Technical University of Denmark (DTU) has established eddy covariance N2O flux measurements on a 125 m tall tower at its Risø Campus as part of the EU research infrastructure project the 'Integrated non-CO2 Greenhouse gas Observing System' (InGOS). The eddy covariance system consisted of a N2O/CO quantum cascade laser, Los Gatos, Mountain View, CA, USA and a 3D sonic anemometer (USA-1), Metek, Elmshorn, Germany. The Risø peninsula lies at the

  12. SIDRA instrument for measurements of particle fluxes at satellite altitudes. Laboratory prototype

    Science.gov (United States)

    Dudnik, O. V.; Prieto, M.; Kurbatov, E. V.; Sanchez, S.; Timakova, T. G.; Spassky, A. V.; Dubina, V. N.; Parra, P.

    2013-01-01

    The design concept and first set of results are presented for electronic modules of a laboratory prototype of the small-size satellite instrument SIDRA intended for measurements of charged particle fluxes in outer space. The working prototype consists of a detector assembly based on high-purity silicon and fast scintillation detectors, modules of analogue and digital processing, and a secondary power supply module. The first results are discussed of a Monte-Carlo simulation of the instrument with the use of the GEANT4 toolkit and of measurements of the main parameters of charge-sensitive pre-amplifiers, shapers, and peak detectors. Results of calibration measurements with the use of radioactive sources and beams of accelerated charged particles are presented.

  13. Measurements and models of CO2 and CH4 Flux in the Baltimore/Washington area.

    Science.gov (United States)

    Dickerson, R. R.; Ren, X.; Salawitch, R. J.; Ahn, D.; Karion, A.; Shepson, P. B.; Whetstone, J. R.; Martin, C.

    2017-12-01

    Direct measurements of concentrations of pollutants such as CO2 and CH4 can be combined with wind fields to determine the flux of these species and to evaluate emissions inventories or models. The mass balance approach, assumng linear flow into and out of a volume set over a city, works best where wind fields are simplest. Over typical American east coast cities, upwind sources and complex circulation (e.g., the sea breeze) complicate such analyses. We will present findings from a coupled measurement and modeling project involving a network of surface-based tower measurements, aircraft observations, and remote sensing that constrain model calculations. Summer and winter scenarios are contrasted, and results help evaluate the emissions of short-lived pollutants. Determinations are compared to several emissions inventories and are being used to help States evaluate evaluate plans for pollution control.

  14. Aircraft measurement of ozone turbulent flux in the atmospheric boundary layer

    Science.gov (United States)

    Affre, Ch.; Carrara, A.; Lefebre, F.; Druilhet, A.; Fontan, J.; Lopez, A.

    In May 1995, the "Chimie-Creil 95" experiment was undertaken in the north of France. The field data are first used to validate the methodology for airborne measurement of ozone flux. A certain number of methodological problems due to the location of the fast ozone sensor inside the airplane are, furthermore discussed. The paper describes the instrumentation of the ARAT (Avion de Recherche Atmosphérique et de Télédétection), an atmospheric research and remote-sensing aircraft used to perform the airborne measurements, the area flown over, the meteorological conditions and boundary layer stability conditions. These aircraft measurements are then used to determine ozone deposition velocity and values are proposed for aerodynamic, bulk transfer coefficients (ozone and momentum). The paper also establishes the relationship between the normalised standard deviation and stability parameters ( z/ L) for ozone, temperature, humidity and vertical velocity. The laws obtained are then presented.

  15. Extending the applicability of the eddy-covariance flux-measurement technique

    Energy Technology Data Exchange (ETDEWEB)

    Nordbo, A.

    2012-07-01

    Surface-atmosphere exchange of momentum, energy and atmospheric constituents affects the atmosphere--from alterations in local microclimates and mesoscale weather to climate modification. These exchange processes can be studied using direct eddy-covariance (EC) measurements of vertical turbulent transport, but the technique has not yet readily been applied in non-prevailing ecosystems. Thus, the aim of this thesis is to extend the applicability of the EC technique in two ways: to non-standard sites and by further developing the technique itself. To reach the aim, EC measurements over a boreal lake and three urban sites in Helsinki were performed. Long-term measurements over a lake revealed that the water below the thermocline was decoupled from the atmosphere and thus not important for atmospheric vertical turbulent fluxes. The energy exchange between the lake and the atmosphere departs from vegetated surfaces especially due to large nocturnal evaporation fuelled by lake-water heat storage. Long-term measurements at a semi-urban site in Helsinki showed that the surface-atmosphere exchange is altered by anthropogenic activity: changes in surface-cover and an additional anthropogenic heat release (13 W m{sup -2}) led to an altered surface energy balance, and anthropogenic CO{sub 2} emissions led to a large positive annual CO{sub 2} balance (1.8 kg C m{sup -2}). Intra-site and intra-city variation in surface-cover led to differences in atmospheric stability and CO{sub 2} emissions. The EC technique evaluation demonstrated that (1) the 'energy imbalance problem' in EC measurements is not primarily surface-cover dependent, and that (2) common calculation errors in EC calculations can be almost 30% of the flux. Water vapour flux measurements with a closed-path analyser were affected by sorption: the signal's arrival is delayed and it is attenuated. A new spectral-correction method based on wavelet analysis was developed to automatically correct for this

  16. Array-based goniospectroradiometer for measurement of spectral radiant intensity and spectral total flux of light sources

    International Nuclear Information System (INIS)

    Shaw, Michael; Goodman, Teresa

    2008-01-01

    We present a description of a new goniospectroradiometric measurement system developed at the National Physical Laboratory (NPL). The instrument incorporates a modified array spectrometer and a series of rotary stages to allow measurement of the spectral radiant intensity distribution of a variety of different types of light source from 350 to 830 nm. Associated source properties such as chromaticity and correlated color temperature distributions and total spectral flux are then calculated from the radiant intensity data. A preliminary comparison with NPL's integrating sphere-based luminous flux scale shows agreement to within 0.4%, well within the combined measurement uncertainty. Measurements of the luminous intensity and color temperature distributions and the spectral total flux of a tungsten filament flux standard, a white LED cluster and a compact fluorescent source made using the goniospectroradiometer, are also presented

  17. Evaluation of ship-based sediment flux measurements by ADCPs in tidal flows

    Science.gov (United States)

    Becker, Marius; Maushake, Christian; Grünler, Steffen; Winter, Christian

    2017-04-01

    In the past decades acoustic backscatter calibration developed into a frequently applied technique to measure fluxes of suspended sediments in rivers and estuaries. Data is mainly acquired using single-frequency profiling devices, such as ADCPs. In this case, variations of acoustic particle properties may have a significant impact on the calibration with respect to suspended sediment concentration, but associated effects are rarely considered. Further challenges regarding flux determination arise from incomplete vertical and lateral coverage of the cross-section, and the small ratio of the residual transport to the tidal transport, depending on the tidal prism. We analyzed four sets of 13h cross-sectional ADCP data, collected at different locations in the range of the turbidity zone of the Weser estuary, North Sea, Germany. Vertical LISST, OBS and CTD measurements were taken very hour. During the calibration sediment absorption was taken into account. First, acoustic properties were estimated using LISST particle size distributions. Due to the tidal excursion and displacement of the turbidity zone, acoustic properties of particles changed during the tidal cycle, at all locations. Applying empirical functions, the lowest backscattering cross-section and highest sediment absorption coefficient were found in the center of the turbidity zone. Outside the tidally averaged location of the turbidity zone, changes of acoustic parameters were caused mainly by advection. In the turbidity zone, these properties were also affected by settling and entrainment, inducing vertical differences and systematic errors in concentration. In general, due to the iterative correction of sediment absorption along the acoustic path, local errors in concentration propagate and amplify exponentially. Based on reference concentration obtained from water samples and OBS data, we quantified these errors and their effect on cross-sectional averaged concentration and sediment flux. We found that

  18. Flux measurements and maintenance energy for carbon dioxide utilization by Methanococcus maripaludis.

    Science.gov (United States)

    Goyal, Nishu; Padhiary, Mrutyunjay; Karimi, Iftekhar A; Zhou, Zhi

    2015-09-16

    The rapidly growing mesophilic methanogen Methanococcus maripaludis S2 has a unique ability to consume both CO2 and N2, the main components of a flue gas, and produce methane with H2 as the electron donor. The existing literature lacks experimental measurements of CO2 and H2 uptake rates and CH4 production rates on M. maripaludis. Furthermore, it lacks estimates of maintenance energies for use with genome-scale models. In this paper, we performed batch culture experiments on M. maripaludis S2 using CO2 as the sole carbon substrate to quantify three key extracellular fluxes (CO2, H2, and CH4) along with specific growth rates. For precise computation of these fluxes from experimental measurements, we developed a systematic process simulation approach. Then, using an existing genome-scale model, we proposed an optimization procedure to estimate maintenance energy parameters: growth associated maintenance (GAM) and non-growth associated maintenance (NGAM). The measured extracellular fluxes for M. maripaludis showed excellent agreement with in silico predictions from a validated genome-scale model (iMM518) for NGAM = 7.836 mmol/gDCW/h and GAM = 27.14 mmol/gDCW. M. maripaludis achieved a CO2 to CH4 conversion yield of 70-95 % and a growth yield of 3.549 ± 0.149 g DCW/mol CH4 during the exponential phase. The ATP gain of 0.35 molATP/molCH4 for M. maripaludis, computed using NGAM, is in the acceptable range of 0.3-0.7 mol ATP/molCH4 reported for methanogens. Interestingly, the uptake distribution of amino acids, quantified using iMM518, confirmed alanine to be the most preferred amino acids for growth and methanogenesis. This is the first study to report experimental gas consumption and production rates for the growth of M. maripaludis on CO2 and H2 in minimal media. A systematic process simulation and optimization procedure was successfully developed to precisely quantify extracellular fluxes along with cell growth and maintenance energy parameters. Our growth yields

  19. Measuring H2O and CO2 fluxes at field scales with scintillometry: Part I – Introduction and validation of four methods

    NARCIS (Netherlands)

    Kesteren, van A.J.H.; Hartogensis, O.K.; Dinther, van D.; Moene, A.F.; Bruin, de H.A.R.

    2013-01-01

    This study introduces four methods for determining turbulent water vapour and carbon dioxide flux densities, the evapotranspiration and CO2 flux respectively. These methods combine scintillometer measurements with point-sampling measurements of scalar quantities and consequently have a faster

  20. Measuring and modeling near-surface reflected and emitted radiation fluxes at the FIFE site

    Science.gov (United States)

    Blad, Blaine L.; Walter-Shea, Elizabeth A.; Starks, Patrick J.; Vining, Roel C.; Hays, Cynthia J.; Mesarch, Mark A.

    1990-01-01

    Information is presented pertaining to the measurement and estimation of reflected and emitted components of the radiation balance. Information is included about reflectance and transmittance of solar radiation from and through the leaves of some grass and forb prairie species, bidirectional reflectance from a prairie canopy is discussed and measured and estimated fluxes are described of incoming and outgoing longwave and shortwave radiation. Results of the study showed only very small differences in reflectances and transmittances for the adaxial and abaxial surfaces of grass species in the visible and infrared wavebands, but some differences in the infrared wavebands were noted for the forbs. Reflectance from the prairie canopy changed as a function of solar and view zenith angles in the solar principal plane with definite asymmetry about nadir. The surface temperature of prairie canopies was found to vary by as much as 5 C depending on view zenith and azimuth position and on the solar azimuth. Aerodynamic temperature calculated from measured sensible heat fluxes ranged from 0 to 3 C higher than nadir-viewed temperatures. Models were developed to estimate incoming and reflected shortwave radiation from data collected with a Barnes Modular Multiband Radiometer. Several algorithms for estimating incoming longwave radiation were evaluated and compared to actual measures of that parameter. Net radiation was calculated using the estimated components of the shortwave radiation streams, determined from the algorithms developed, and from the longwave radiation streams provided by the Brunt, modified Deacon, and the Stefan-Boltzmann models. Estimates of net radiation were compared to measured values and found to be within the measurement error of the net radiometers used in the study.

  1. Scintillation light production, propagation and detection in the Stereo reactor antineutrino experiment

    Science.gov (United States)

    Buck, Christian; Lindner, Manfred; Roca, Christian

    2017-09-01

    The Stereo experiment’s detector has been optimized to observe reactor antineutrinos via inverse beta decay within a 1800 liter volume filled with Gadolinium-doped organic liquid scintillator (LS). The main requirements for the scintillator in Stereo are compatibility with detector materials as the acrylic vessels, transparency, light yield, pulse shape discrimination capabilities as well as chemical and optical stability over several years of data taking. With these conditions in mind, the composition of the LS is mainly a mix of 75% LAB, 20%PXE and 5% DIN combined with the two wavelength-shifters PPO and Bis-MSB. The final admixture after the full scale production lead to an attenuation length of more than 5 meters for optical photons of 430 nm. The scintillation light produced in the Gd-loaded target volume and the Gd-free outer crown is detected by 48 eight inch PMTs on top of the detector. A correct performance of the PMTs has been ensured through several tests. Common characteristics for PMTs as gain, single photoelectron peak, time behaviour, dark rate and afterpulse ratio were measured resulting in a complete agreement with the manufacturer values.

  2. Eddy Covariance Measurements Over a Maize Field: The Contribution of Minor Flux Terms to the Energy Balance Gap

    Science.gov (United States)

    Smidt, J.; Ingwersen, J.; Streck, T.

    2015-12-01

    The lack of energy balance closure is a long-standing problem in eddy covariance (EC) measurements. The energy balance equation is defined as Rn - G = H + λE, where Rn is net radiation, G is the ground heat flux, H is the sensible heat flux and λE is the latent heat flux. In most cases of energy imbalance, either Rn is overestimated or the ground heat and turbulent fluxes are underestimated. Multiple studies have shown that calculations, incorrect instrument installation/calibration and measurement errors alone do not entirely account for this imbalance. Rather, research is now focused on previously neglected sources of heat storage in the soil, biomass and air beneath the EC station. This project examined the potential of five "minor flux terms" - soil heat storage, biomass heat storage, energy consumption by photosynthesis, air heat storage and atmospheric moisture change, to further close the energy balance gap. Eddy covariance measurements were conducted at a maize (Zea mays) field in southwest Germany during summer 2014. Soil heat storage was measured for six weeks at 11 sites around the field footprint. Biomass and air heat storage were measured for six subsequent weeks at seven sites around the field footprint. Energy consumption by photosynthesis was calculated using the CO2 flux data. Evapotranspiration was calculated using the water balance method and then compared to the flux data processed with three post-closure methods: the sensible heat flux, the latent heat flux and the Bowen ratio post-closure methods. An energy balance closure of 66% was achieved by the EC station measurements over the entire investigation period. During the soil heat flux campaign, EC station closure was 74.1%, and the field footprint soil heat storage contributed 3.3% additional closure. During the second minor flux term measurement period, closure with the EC station data was 91%. Biomass heat storage resulted in 1.1% additional closure, the photosynthesis flux closed the gap

  3. Quantification of methane fluxes from hydrocarbon seeps to the ocean and atmosphere: Development of an in situ and online gas flux measuring system

    Science.gov (United States)

    Di, Pengfei; Chen, Qinghua; Chen, Duofu

    2017-06-01

    Natural hydrocarbon seeps in the marine environment are important contributors to greenhouse gases in the atmosphere. Such gases include methane, which plays a significant role in global carbon cycling and climate change. To accurately quantify the methane flux from hydrocarbon seeps on the seafloor, a specialized in situ and online gas flux measuring (GFM) device was designed to obtain high-resolution time course gas fluxes using the process of equal volume exchange. The device consists of a 1.0-m diameter, 0.9-m tall, inverted conical tent and a GFM instrument that contains a solenoid valve, level transducer, and gas collection chamber. Rising gas bubbles from seeps were measured by laboratory-calibrated GFM instruments attached to the top of the tent. According to the experimental data, the optimal anti-shake time interval was 5 s. The measurement range of the device was 0-15 L min-1, and the relative error was ± 1.0%. The device was initially deployed at an active seep site in the Lingtou Promontory seep field in South China Sea. The amount of gas released from a single gas vent was 30.5 m3 during the measurement period, and the gas flow rate ranged from 22 to 72 L h-1, depending on tidal period, and was strongly negatively correlated with water depth. The measurement results strongly suggest that oceanic tides and swells had a significant forcing effect on gas flux. Low flow rates were associated with high tides and vice versa. The changes in gas volume escaping from the seafloor seeps could be attributed to the hydrostatic pressure induced by water depth. Our findings suggest that in the marine environment, especially in the shallow shelf area, sea level variation may play an important role in controlling methane release into the ocean. Such releases probably also affect atmospheric methane levels.

  4. High Time Resolution Measurements of Methane Fluxes From Enteric Fermentation in Cattle Rumen

    Science.gov (United States)

    Floerchinger, C. R.; Herndon, S.; Fortner, E.; Roscioli, J. R.; Kolb, C. E.; Knighton, W. B.; Molina, L. T.; Zavala, M.; Castelán, O.; Ku Vera, J.; Castillo, E.

    2013-12-01

    Methane accounts for roughly 20% of the global radiative climate forcing in the last two and a half centuries. Methane emissions arise from a number of anthropogenic and biogenic sources. In some areas enteric fermentation in livestock produces over 90% of agricultural methane. In the spring of 2013, as a part of the Short Lived Climate Forcer-Mexico field campaign, the Aerodyne Mobile Laboratory in partnership with the Molina Center for the Environment studied methane production associated with enteric fermentation in the rumen of cattle. A variety of different breeds and stocks being raised in two agricultural and veterinary research facilities located in different areas of Mexico were examined. Methane fluxes were quantified using two methods: 1) an atmospherically stable gaseous tracer release was collocated with small herds in a pasture, allowing tracer ratio flux measurements; 2) respiratory CO2 was measured in tandem with methane in the breath of individual animals allowing methane production to be related to metabolism. The use of an extensive suite of very high time response instruments allows for differentiation of individual methane producing rumination events and respiratory CO2 from possible background interferences. The results of these studies will be presented and compared to data from traditional chamber experiments.

  5. Use of higher order signal moments and high speed digital sampling technique for neutron flux measurements

    Science.gov (United States)

    Baers, L. B.; Gutierrez, T. Rivero; Mendoza, R. A. Carrillo; Santana, G. Jimenez

    1993-08-01

    The second (conventional variance or Campbell signal), the third, and the modified fourth order central signal moments associated with the amplified and filtered currents from two electrodes of an ex-core neutron sensitive fission detector were measured versus the reactor power of the 1-MW TRIGA reactor in Mexico City. Two channels of a high-speed (400-MHz) multiplexing data sampler and an analog-to-digital converter with 12-b resolution and 1-Mword buffer memory were used. The data were further retrieved into a PC, and estimates for autocorrelation and cross-correlation moments up to the fifth order, coherence, skewness, excess, etc., quantities were calculated offline. Five-mode operation of the detector was achieved, including conventional counting rates and currents in agreement with theory and the authors' previous results with analog techniques. The signals are proportional to the neutron flux and reactor power in some flux ranges. The suppression of background noise is improved and the lower limit of the measurement range is extended as the order of moment is increased, in agreement with theory.

  6. Tundish Cover Flux Thickness Measurement Method and Instrumentation Based on Computer Vision in Continuous Casting Tundish

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2013-01-01

    Full Text Available Thickness of tundish cover flux (TCF plays an important role in continuous casting (CC steelmaking process. Traditional measurement method of TCF thickness is single/double wire methods, which have several problems such as personal security, easily affected by operators, and poor repeatability. To solve all these problems, in this paper, we specifically designed and built an instrumentation and presented a novel method to measure the TCF thickness. The instrumentation was composed of a measurement bar, a mechanical device, a high-definition industrial camera, a Siemens S7-200 programmable logic controller (PLC, and a computer. Our measurement method was based on the computer vision algorithms, including image denoising method, monocular range measurement method, scale invariant feature transform (SIFT, and image gray gradient detection method. Using the present instrumentation and method, images in the CC tundish can be collected by camera and transferred to computer to do imaging processing. Experiments showed that our instrumentation and method worked well at scene of steel plants, can accurately measure the thickness of TCF, and overcome the disadvantages of traditional measurement methods, or even replace the traditional ones.

  7. Search for Lorentz invariance and CPT violation with muon antineutrinos in the MINOS Near Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); et al.

    2012-02-01

    We have searched for sidereal variations in the rate of antineutrino interactions in the MINOS Near Detector. Using antineutrinos produced by the NuMI beam, we find no statistically significant sidereal modulation in the rate. When this result is placed in the context of the Standard Model Extension theory we are able to place upper limits on the coefficients defining the theory. These limits are used in combination with the results from an earlier analysis of MINOS neutrino data to further constrain the coefficients.

  8. Two particle–hole excitations in charged current quasielastic antineutrino-nucleus scattering

    International Nuclear Information System (INIS)

    Nieves, J.; Ruiz Simo, I.; Vicente Vacas, M.J.

    2013-01-01

    We evaluate the quasielastic and multinucleon contributions to the antineutrino-nucleus scattering cross section and compare our results with the recent MiniBooNE data. We use a local Fermi gas model that includes RPA correlations and gets the multinucleon part from a systematic many body expansion of the W boson selfenergy in the nuclear medium. The same model had been quite successful for the neutrino cross section and contains no new parameters. We have also analyzed the relevance of 2p2h events for the antineutrino energy reconstruction

  9. First test of Lorentz violation with a reactor-based antineutrino experiment

    International Nuclear Information System (INIS)

    Abe, Y.; Ishitsuka, M.; Konno, T.; Kuze, M.; Aberle, C.; Buck, C.; Hartmann, F.X.; Haser, J.; Kaether, F.; Lindner, M.; Reinhold, B.; Schwetz, T.; Wagner, S.; Watanabe, H.; Anjos, J.C. dos; Gama, R.; Lima, H.P.-Jr.; Pepe, I.M.; Bergevin, M.; Felde, J.; Maesano, C.N.; Bernstein, A.; Bowden, N.S.; Dazeley, S.; Erickson, A.; Keefer, G.; Bezerra, T.J.C.; Furuta, H.; Suekane, F.; Bezrukhov, L.; Lubsandorzhiev, B.K.; Yanovitch, E.; Blucher, E.; Conover, E.; Crum, K.; Strait, M.; Worcester, M.; Busenitz, J.; Goon, J.TM.; Habib, S.; Ostrovskiy, I.; Reichenbacher, J.; Stancu, I.; Sun, Y.; Cabrera, A.; Franco, D.; Kryn, D.; Obolensky, M.; Roncin, R.; Tonazzo, A.; Caden, E.; Damon, E.; Lane, C.E.; Maricic, J.; Miletic, T.; Milincic, R.; Perasso, S.; Smith, E.; Camilleri, L.; Carr, R.; Franke, A.J.; Shaevitz, M.H.; Toups, M.; Cerrada, M.; Crespo-Anadon, J.I.; Gil-Botella, I.; Lopez-Castano, J.M.; Novella, P.; Palomares, C.; Santorelli, R.; Chang, P.J.; Horton-Smith, G.A.; McKee, D.; Shrestha, D.; Chimenti, P.; Classen, T.; Collin, A.P.; Cucoanes, A.; Durand, V.; Fechner, M.; Fischer, V.; Hayakawa, T.; Lasserre, T.; Letourneau, A.; Lhuillier, D.; Mention, G.; Mueller, Th.A.; Perrin, P.; Sida, J.L.; Sinev, V.; Veyssiere, C.

    2012-01-01

    We present a search for Lorentz violation with 8249 candidate electron antineutrino events taken by the Double Chooz experiment in 227.9 live days of running. This analysis, featuring a search for a sidereal time dependence of the events, is the first test of Lorentz invariance using a reactor-based antineutrino source. No sidereal variation is present in the data and the disappearance results are consistent with sidereal time independent oscillations. Under the Standard-Model Extension, we set the first limits on 14 Lorentz violating coefficients associated with transitions between electron and tau flavor, and set two competitive limits associated with transitions between electron and muon flavor. (authors)

  10. Monte Carlo Simulation of a Segmented Detector for Low-Energy Electron Antineutrinos

    Science.gov (United States)

    Qomi, H. Akhtari; Safari, M. J.; Davani, F. Abbasi

    2017-11-01

    Detection of low-energy electron antineutrinos is of importance for several purposes, such as ex-vessel reactor monitoring, neutrino oscillation studies, etc. The inverse beta decay (IBD) is the interaction that is responsible for detection mechanism in (organic) plastic scintillation detectors. Here, a detailed study will be presented dealing with the radiation and optical transport simulation of a typical segmented antineutrino detector withMonte Carlo method using MCNPX and FLUKA codes. This study shows different aspects of the detector, benefiting from inherent capabilities of the Monte Carlo simulation codes.

  11. Breadboard model of the SIDRA instrument designed for the measurement of charged particle fluxes in space

    International Nuclear Information System (INIS)

    Prieto, M; Sanchez, S; Dudnik, O V; Kurbatov, E V; Timakova, T G; Tejedor, J I G; Titov, K G

    2013-01-01

    This report delves into the concept of the SIDRA instrument designed for the measurement of energetic fluxes of charged particles in space. It also presents the preliminary laboratory tests results of the breadboard model electronic units. The SIDRA instrument consists of a detector head made of high purity silicon and high performance scintillation detectors, analog and digital signal processing units, and it also includes a secondary power supply module. Preliminary results of Monte Carlo instrument simulation using the CERN GEANT4 tool are presented and the measured key specifications of charge-to-voltage converters, shapers and peak detectors are discussed. Finally, the performance of the digital processing unit with its software and the parameters of the instrument breadboard model, in particular mass, dimensions and power consumption are also presented.

  12. Breadboard model of the SIDRA instrument designed for the measurement of charged particle fluxes in space

    Science.gov (United States)

    Prieto, M.; Dudnik, O. V.; Sanchez, S.; Kurbatov, E. V.; Timakova, T. G.; Tejedor, J. I. G.; Titov, K. G.

    2013-04-01

    This report delves into the concept of the SIDRA instrument designed for the measurement of energetic fluxes of charged particles in space. It also presents the preliminary laboratory tests results of the breadboard model electronic units. The SIDRA instrument consists of a detector head made of high purity silicon and high performance scintillation detectors, analog and digital signal processing units, and it also includes a secondary power supply module. Preliminary results of Monte Carlo instrument simulation using the CERN GEANT4 tool are presented and the measured key specifications of charge-to-voltage converters, shapers and peak detectors are discussed. Finally, the performance of the digital processing unit with its software and the parameters of the instrument breadboard model, in particular mass, dimensions and power consumption are also presented.

  13. Performance of beamline 9.3.1 at the ALS: Flux and resolution measurements

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Y. [Univ. of Nevada, Las Vegas, NV (United States); Fischer, G.; Kring, J.; Perera, R.C.C. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Beamline 9.3.1 at the ALS is a windowless beamline, covering the 1-6 keV photon-energy range. This beamline is the first monochromatic hard x-ray beamline in the ALS, and designed to achieve the goals of high energy resolution, and preservation of the high brightness from the ALS. It consists of a new {open_quotes}Cowan type{close_quotes} double-crystal monochromator and two toroidal mirrors which are positioned before and after the monochromator. The construction of the beamline was completed in December of 1995, with imperfect mirrors. In this report, the authors describe the experimental results of absolute flux measurements and x-ray absorption measurements of gases and solid samples using the present set of mirrors.

  14. End loss analyzer system for measurements of plasma flux at the C-2U divertor electrode

    Energy Technology Data Exchange (ETDEWEB)

    Griswold, M. E., E-mail: mgriswold@trialphaenergy.com; Korepanov, S.; Thompson, M. C. [Tri Alpha Energy, P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    An end loss analyzer system consisting of electrostatic, gridded retarding-potential analyzers and pyroelectric crystal bolometers was developed to characterize the plasma loss along open field lines to the divertors of C-2U. The system measures the current and energy distribution of escaping ions as well as the total power flux to enable calculation of the energy lost per escaping electron/ion pair. Special care was taken in the construction of the analyzer elements so that they can be directly mounted to the divertor electrode. An attenuation plate at the entrance to the gridded retarding-potential analyzer reduces plasma density by a factor of 60 to prevent space charge limitations inside the device, without sacrificing its angular acceptance of ions. In addition, all of the electronics for the measurement are isolated from ground so that they can float to the bias potential of the electrode, 2 kV below ground.

  15. D III-D divertor target heat flux measurements during Ohmic and neutral beam heating

    International Nuclear Information System (INIS)

    Hill, D.N.; Petrie, T.; Mahdavi, M.A.; Lao, L.; Howl, W.

    1988-01-01

    Time resolved power deposition profiles on the D III-D divertor target plates have been measured for Ohmic and neutral beam injection heated plasmas using fast response infrared thermography (τ ≤ 150 μs). Giant Edge Localized Modes have been observed which punctuate quiescent periods of good H-mode confinement and deposit more than 5% of the stored energy of the core plasma on the divertor armour tiles on millisecond time-scales. The heat pulse associated with these events arrives approximately 0.5 ms earlier on the outer leg of the divertor relative to the inner leg. The measured power deposition profiles are displaced relative to the separatrix intercepts on the target plates, and the peak heat fluxes are a function of core plasma density. (author). Letter-to-the-editor. 11 refs, 7 figs

  16. Mapping methane sources and emissions over California from direct airborne flux and VOC source tracer measurements

    Science.gov (United States)

    Guha, A.; Misztal, P. K.; Peischl, J.; Karl, T.; Jonsson, H. H.; Woods, R. K.; Ryerson, T. B.; Goldstein, A. H.

    2013-12-01

    Quantifying the contributions of methane (CH4) emissions from anthropogenic sources in the Central Valley of California is important for validation of the statewide greenhouse gas (GHG) inventory and subsequent AB32 law implementation. The state GHG inventory is largely based on activity data and emission factor based estimates. The 'bottom-up' emission factors for CH4 have large uncertainties and there is a lack of adequate 'top-down' measurements to characterize emission rates. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agricultural and industry intensive region with large concentration of dairies and livestock operations, active oil and gas fields and refining operations, as well as rice cultivation all of which are known CH4 sources. In order to gain a better perspective of the spatial distribution of major CH4 sources in California, airborne measurements were conducted aboard a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of low-altitude and mixed layer airborne CH4 and CO2 measurements alongside coincident VOC measurements. Transects during eight unique flights covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. We report direct quantification of CH4 fluxes using real-time airborne Eddy Covariance measurements. CH4 and CO2 were measured at 1-Hz data rate using an instrument based on Cavity Ring Down Spectroscopy (CRDS) along with specific VOCs (like isoprene, methanol, acetone etc.) measured at 10-Hz using Proton Transfer Reaction Mass Spectrometer - Eddy Covariance (PTRMS-EC) flux system. Spatially resolved eddy covariance

  17. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer

    Science.gov (United States)

    Zimmerman, P. R.; Greenberg, J. P.; Westberg, C. E.

    1988-01-01

    Tropospheric mixing ratios of methane, C2-C10 hydrocarbons, and carbon monoxide were measured over the Amazon tropical forest near Manaus, Amazonas, Brazil, in July and August 1985. The measurements, consisting mostly of altitude profiles of these gases, were all made within the atmospheric boundary layer up to an altitude of 1000 m above ground level. Data characterize the diurnal hydrocarbon composition of the boundary layer. Biogenic emissions of isoprene control hydroxyl radical concentrations over the forest. Biogenic emission fluxes of isoprene and terpenes are estimated to be 25,000 micrograms/sq m per day and 5600 micrograms/sq m per day, respectively. This isoprene emission is equivalent to 2 percent of the net primary productivity of the tropical forest. Atmospheric oxidation of biogenic isoprene and terpenes emissions from the Amazon forest may account for daily increases of 8-13 ppb for carbon monoxide in the planetary boundary layer.

  18. Measured and simulated nitrogen fluxes after field application of food-processing and municipal organic wastes.

    Science.gov (United States)

    Parnaudeau, V; Génermont, S; Hénault, C; Farrugia, A; Robert, P; Nicolardot, B

    2009-01-01

    The aims of this study were to (i) assess N fluxes (mineralization, volatilization, denitrification, leaching) caused by spreading various organic wastes from food-processing industries during a field experiment, and (ii) to identify the main factors affecting N transformation processes after field spreading. Experimental treatments including the spreading of six types of waste and a control soil were set up in August 2000 and studied for 22 mo under bare soil conditions. Ammonia and nitrous oxide emissions, and nitrogen mineralization were measured in experimental devices and extrapolated to field conditions or computed in calculation models. The ammonia emissions varied from 80 to 580 g kg(-1) NH4+-N applied, representing 0 to 90 g N kg(-1) total N applied. Under these meteorologically favorable conditions (dry and warm weather), waste pH was the main factor affecting volatilization rates. Cumulated N2O-N fluxes were estimated at 2 to 5 g kg(-1) total N applied, which was quite low due to the low soil water content during the experimental period; water-filled pore space (WFPS) was confirmed as the main factor affecting N2O fluxes. Nitrogen mineralization from wastes represented 126 to 723 g N kg(-1) organic N added from the incorporation date to 14 May 2001 and was not related to the organic C to organic N ratio of wastes. Nitrogen lost by leaching during the equivalent period ranged from 30 to 890 g kg(-1) total N applied. The highest values were obtained for wastes having the highest inorganic N content and mineralization rates.

  19. Frequency spectra from current vs. magnetic flux density measurements for mobile phones and other electrical appliances.

    Science.gov (United States)

    Straume, Aksel; Johnsson, Anders; Oftedal, Gunnhild; Wilén, Jonna

    2007-10-01

    The frequency spectra of electromagnetic fields have to be determined to evaluate human exposure in accordance to ICNIRP guidelines. In the literature, comparisons with magnetic field guidelines have been performed by using the frequency distribution of the current drawn from the battery. In the present study we compared the frequency spectrum in the range 217 Hz to 2.4 kHz of the magnetic flux density measured near the surface of a mobile phone with the frequency spectrum of the supply current. By using the multiple frequency rule, recommended in the ICNIRP guidelines, we estimated the magnetic field exposure in the two cases. Similar measurements and estimations were done for an electric drill, a hair dryer, and a fluorescent desk lamp. All the devices have a basic frequency of 50 Hz, and the frequency spectra were evaluated up to 550 Hz. We also mapped the magnetic field in 3D around three mobile phones. The frequency distributions obtained from the two measurement methods are not equal. The frequency content of the current leads to an overestimation of the magnetic field exposure by a factor up to 2.2 for the mobile phone. For the drill, the hair dryer, and the fluorescent lamp, the supply current signal underestimated the exposure by a factor up to 2.3. In conclusion, an accurate exposure evaluation requires the magnetic flux density spectrum of the device to be measured directly. There was no indication that the devices studied would exceed the reference levels at the working distances normally used.

  20. Visible imaging measurement of position and displacement of the last closed flux surface in EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.F. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xu, G.S., E-mail: gsxu@ipp.ac.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Y.L.; Yang, J.H.; Yan, N.; Liu, L.; Yuan, S.; Luo, Z.P. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Sang, C.F. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Gu, S.; Xu, J.C.; Hu, G.H.; Wang, Y.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Peng, Y.K.M.; Wan, B.N. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-06-15

    Highlights: • A new method for measuring the position and displacement of the LCFS has been developed in EAST tokamak. • This method is based on the visible imaging diagnostic and shown to be an effective and convenient approach. • This method can be applied to measure displacements of the LCFS during application of resonant magnetic perturbation fields. - Abstract: A new method for measuring the position and displacement of the last closed flux surface (LCFS) with visible imaging diagnostics has been developed in EAST. By measuring the relative intensity profiles of the green visible Li-II emission in the tangential planes of the optical systems, it is possible to infer the positions of certa