WorldWideScience

Sample records for antimony tellurides

  1. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  2. A density-functional study on the electronic and vibrational properties of layered antimony telluride

    Science.gov (United States)

    Stoffel, Ralf P.; Deringer, Volker L.; Simon, Ronnie E.; Hermann, Raphaël P.; Dronskowski, Richard

    2015-03-01

    We present a comprehensive survey of electronic and lattice-dynamical properties of crystalline antimony telluride (Sb2Te3). In a first step, the electronic structure and chemical bonding have been investigated, followed by calculations of the atomic force constants, phonon dispersion relationships and densities of states. Then, (macroscopic) physical properties of Sb2Te3 have been computed, namely, the atomic thermal displacement parameters, the Grüneisen parameter γ, the volume expansion of the lattice, and finally the bulk modulus B. We compare theoretical results from three popular and economic density-functional theory (DFT) approaches: the local density approximation (LDA), the generalized gradient approximation (GGA), and a posteriori dispersion corrections to the latter. Despite its simplicity, the LDA shows excellent performance for all properties investigated—including the Grüneisen parameter, which only the LDA is able to recover with confidence. In the absence of computationally more demanding hybrid DFT methods, the LDA seems to be a good choice for further lattice dynamical studies of Sb2Te3 and related layered telluride materials.

  3. Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SoI substrate

    KAUST Repository

    Aktakka, Ethem Erkan

    2013-10-01

    This letter reports, for the first time, heterogeneous integration of bismuth telluride (Bi2Te3) and antimony telluride (Sb 2Te3) thin-film-based thermoelectric ffect transistors) via a characterized TE-film coevaporationand shadow-mask patterning process using predeposition surface treatment methods for reduced TE-metal contact resistance. As a demonstration vehicle, a 2 × 2 mm2-sized integrated planar thermoelectric generator (TEG) is shown to harvest 0.7 μ W from 21-K temperature gradient. Transistor performance showed no significant change upon post-CMOS TEG integration, indicating, for the first time, the CMOS compatibility of the Bi2Te3 and Sb2Te3 thin films, which could be leveraged for realization of high-performance integrated micro-TE harvesters and coolers. © 2013 IEEE.

  4. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics.

    Science.gov (United States)

    Kovalenko, Maksym V; Spokoyny, Boris; Lee, Jong-Soo; Scheele, Marcus; Weber, Andrew; Perera, Susanthri; Landry, Daniel; Talapin, Dmitri V

    2010-05-19

    The energy efficiency of heat engines could be improved by the partial recovery of waste heat using thermoelectric (TE) generators. We show the possibility of designing nanostructured TE materials using colloidal inorganic nanocrystals functionalized with molecular antimony telluride complexes belonging to the family of Zintl ions. The unique advantage of using Zintl ions as the nanocrystal surface ligands is the possibility to convert them into crystalline metal chalcogenides, thus linking individual nanobuilding blocks into a macroscopic assembly of electronically coupled functional modules. This approach allows preserving the benefits of nanostructuring and quantum confinement while enabling facile charge transport through the interparticle boundaries. A developed methodology was applied for solution-based fabrication of nanostructured n- and p-type Bi(2-x)Sb(x)Te(3) alloys with tunable composition and PbTe-Sb(2)Te(3) nanocomposites with controlled grain size. Characterization of the TE properties of these materials showed that their Seebeck coefficients, electrical and thermal conductivities, and ZT values compared favorably with those of previously reported solution-processed TE materials.

  5. Nanoscale arrays of antimony telluride single crystals by selective chemical vapor deposition

    Science.gov (United States)

    Huang, Ruomeng; Benjamin, Sophie L.; Gurnani, Chitra; Wang, Yudong; Hector, Andrew L.; Levason, William; Reid, Gillian; De Groot, C. H. (Kees)

    2016-01-01

    Arrays of individual single nanocrystals of Sb2Te3 have been formed using selective chemical vapor deposition (CVD) from a single source precursor. Crystals are self-assembled reproducibly in confined spaces of 100 nm diameter with pitch down to 500 nm. The distribution of crystallite sizes across the arrays is very narrow (standard deviation of 15%) and is affected by both the hole diameter and the array pitch. The preferred growth of the crystals in the orientation along the diagonal of the square holes strongly indicates that the diffusion of adatoms results in a near thermodynamic equilibrium growth mechanism of the nuclei. A clear relationship between electrical resistivity and selectivity is established across a range of metal selenides and tellurides, showing that conductive materials result in more selective growth and suggesting that electron donation is of critical importance for selective deposition. PMID:27283116

  6. Thermoelectric transport in surface- and antimony-doped bismuth telluride nanoplates

    Science.gov (United States)

    Pettes, Michael Thompson; Kim, Jaehyun; Wu, Wei; Bustillo, Karen C.; Shi, Li

    2016-10-01

    We report the in-plane thermoelectric properties of suspended (Bi1-xSbx)2Te3 nanoplates with x ranging from 0.07 to 0.95 and thicknesses ranging from 9 to 42 nm. The results presented here reveal a trend of increasing p-type behavior with increasing antimony concentration, and a maximum Seebeck coefficient and thermoelectric figure of merit at x ˜ 0.5. We additionally tuned extrinsic doping of the surface using a tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) coating. The lattice thermal conductivity is found to be below that for undoped ultrathin Bi2Te3 nanoplates of comparable thickness and in the range of 0.2-0.7 W m-1 K-1 at room temperature.

  7. Effects of chemical intermixing on electrical and thermal contact conductances at metallized bismuth and antimony telluride interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Devender,; Mehta, Rutvik J.; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lofgreen, Kelly; Mahajan, Ravi [Intel Corporation, Assembly Test and Technology Development, Chandler, Arizona 85226 (United States); Yamaguchi, Masashi [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Borca-Tasciuc, Theodorian [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-03-15

    Tailoring electrical and thermal contact conductivities (Σ{sub c} and Γ{sub c}) across metallized pnictogen chalcogenide interfaces is key for realizing efficient thermoelectric devices. The authors report that Cu, Ni, Ti, and Ta diffusion and interfacial telluride formation with n-Bi{sub 2}Te{sub 3} and p-Sb{sub 2}Te{sub 3} influence both Σ{sub c} and Γ{sub c}. Cu metallization yields the highest Γ{sub c} and the lowest Σ{sub c}, correlating with maximal metal diffusion and copper telluride formation. Ni diffuses less and yields the highest Σ{sub c} with Sb{sub 2}Te{sub 3} due to p-type nickel telluride formation, which diminishes Σ{sub c} improvement with n-Bi{sub 2}Te{sub 3} interfaces. Ta and Ti contacts yield the lowest properties similar to that in Ni-metallized structures. These correlations between interfacial diffusion and phase formation on electronic and thermal transport properties will be important for devising suitable metallization for thermoelectric devices.

  8. Antimony Toxicity

    Directory of Open Access Journals (Sweden)

    Shyam Sundar

    2010-12-01

    Full Text Available Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The major toxic side-effects of antimonials as a result of therapy are cardiotoxicity (~9% of patients and pancreatitis, which is seen commonly in HIV and visceral leishmaniasis co-infections. Quality control of each batch of drugs produced and regular monitoring for toxicity is required when antimonials are used therapeutically.

  9. Deposition of antimony telluride thin film by ECALE

    Institute of Scientific and Technical Information of China (English)

    GAO; Xianhui; YANG; Junyou; ZHU; Wen; HOU; Jie; BAO; Siqian; FAN; Xi'an; DUAN; Xingkai

    2006-01-01

    The process of Sb2Te3 thin film growth on the Pt substrate by electrochemical atomic layer epitaxy (ECALE) was studied. Cyclic voltammetric scanning was performed to analyze the electrochemical behavior of Te and Sb on the Pt substrate. Sb2Te3 film was formed using an automated flow deposition system by alternately depositing Te and Sb atomic layers for 400 circles. The deposited Sb2Te3 films were characterized by XRD, EDX, FTIR and FESEM observation. Sb2Te3 compound structure was confirmed by XRD pattern and agreed well with the results of EDX quantitative analysis and coulometric analysis. FESEM micrographs showed that the deposit was composed of fine nano particles with size of about 20 nm. FESEM image of the cross section showed that the deposited films were very smooth and dense with thickness of about 190 nm. The optical band gap of the deposited Sb2Te3 film was determined as 0.42 eV by FTIR spectroscopy, and it was blue shifted in comparison with that of the bulk Sb2Te3 single crystal due to its nanocrystalline microstructure.

  10. Lead telluride alloy thermoelectrics

    Directory of Open Access Journals (Sweden)

    Aaron D. LaLonde

    2011-11-01

    Full Text Available The opportunity to use solid-state thermoelectrics for waste heat recovery has reinvigorated the field of thermoelectrics in tackling the challenges of energy sustainability. While thermoelectric generators have decades of proven reliability in space, from the 1960s to the present, terrestrial uses have so far been limited to niche applications on Earth because of a relatively low material efficiency. Lead telluride alloys were some of the first materials investigated and commercialized for generators but their full potential for thermoelectrics has only recently been revealed to be far greater than commonly believed. By reviewing some of the past and present successes of PbTe as a thermoelectric material we identify the issues for achieving maximum performance and successful band structure engineering strategies for further improvements that can be applied to other thermoelectric materials systems.

  11. Cadmium telluride nuclear radiation detectors

    International Nuclear Information System (INIS)

    The characteristics and performance of undoped high resistivity cadmium telluride detectors are compared to chlorine lifted counters. It is shown, in particular, that Undodep CdTe is in fact aluminium doped and that compensation occurs, as an silicon or germanium, by pair and triplet formation between the group III donor and the doubly charged cadmium vacancy acceptor. Furthermore, in chlorine doped samples, the polarization effect results from the unpaired level at Esub(c)-0,6eV

  12. Method of making a thin film cadmium telluride solar cell

    International Nuclear Information System (INIS)

    A method for making a photovoltaic cell is described comprising the steps of: (a) depositing a transparent or semi-transparent conductive window layer onto a substrate; (b) depositing a layer of cadmium telluride including phosphorus onto the window layer; (c) depositing a layer of lead telluride onto the layer of cadmium telluride; and (d) depositing a metallic electrode onto the lead telluride layer

  13. Pentavalent Antimonials: New Perspectives for Old Drugs

    OpenAIRE

    Ribeiro, Raul R.; Cynthia Demicheli; Frédéric Frézard

    2009-01-01

    Pentavalent antimonials, including meglumine antimoniate and sodium stibogluconate, have been used for more than half a century in the therapy of the parasitic disease leishmaniasis. Even though antimonials are still the first-line drugs, they exhibit several limitations, including severe side effects, the need for daily parenteral administration and drug resistance. The molecular structure of antimonials, their metabolism and mechanism of action are still being investigated. Some recent stud...

  14. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L. (University of South Florida, Tampa, FL (United States))

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  15. Pentavalent Antimonials: New Perspectives for Old Drugs

    Directory of Open Access Journals (Sweden)

    Raul R. Ribeiro

    2009-06-01

    Full Text Available Pentavalent antimonials, including meglumine antimoniate and sodium stibogluconate, have been used for more than half a century in the therapy of the parasitic disease leishmaniasis. Even though antimonials are still the first-line drugs, they exhibit several limitations, including severe side effects, the need for daily parenteral administration and drug resistance. The molecular structure of antimonials, their metabolism and mechanism of action are still being investigated. Some recent studies suggest that pentavalent antimony acts as a prodrug that is converted to active and more toxic trivalent antimony. Other works support the direct involvement of pentavalent antimony. Recent data suggest that the biomolecules, thiols and ribonucleosides, may mediate the actions of these drugs. This review will summarize the progress to date on the chemistry and biochemistry of pentavalent antimony. It will also present the most recent works being done to improve antimonial chemotherapy. These works include the development of simple synthetic methods for pentavalent antimonials, liposome-based formulations for targeting the Leishmania parasites responsible for visceral leishmaniasis and cyclodextrin-based formulations to promote the oral delivery of antimony.

  16. Ellipsometric Studies on Silver Telluride Thin Films

    Directory of Open Access Journals (Sweden)

    M. Pandiaraman

    2011-01-01

    Full Text Available Silver telluride thin films of thickness between 45 nm and 145 nm were thermally evaporated on well cleaned glass substrates at high vacuum better than 10 – 5 mbar. Silver telluride thin films are polycrystalline with monoclinic structure was confirmed by X-ray diffractogram studies. AFM and SEM images of these films are also recorded. The phase ratio and amplitude ratio of these films were recorded in the wavelength range between 300 nm and 700 nm using spectroscopic ellipsometry and analysed to determine its optical band gap, refractive index, extinction coefficient, and dielectric functions. High absorption coefficient determined from the analysis of recorded spectra indicates the presence of direct band transition. The optical band gap of silver telluride thin films is thickness dependent and proportional to square of reciprocal of thickness. The dependence of optical band gap of silver telluride thin films on film thickness has been explained through quantum size effect.

  17. Cadmium zinc telluride spectral modeling

    International Nuclear Information System (INIS)

    Cadmium zinc telluride (CZT) detectors are the highest resolution room temperature gamma-ray detectors available for isotopic analysis. As with germanium detectors, accurate isotopic analysis using spectra requires peak deconvolution. The CZT peak shapes are asymmetric, with a long low energy tail. The asymmetry is a result of the physics of the electron/hole transport in the semiconductor. An accurate model of the physics of the electron/hole transport through an electric field will allow the parameterization of the peak shapes as a function of energy. In turn this leads to the ability to perform accurate spectral deconvolution and therefore accurate isotopic analysis. The model and the peak-shape parameterization as a function of energy will be presented

  18. Electrodeposition and Characterization of Bismuth Telluride Nanowires

    Science.gov (United States)

    Frantz, C.; Stein, N.; Gravier, L.; Granville, S.; Boulanger, C.

    2010-09-01

    In this work, we report thermoelectric measurements on electroplated bismuth telluride nanowires. Porous polycarbonate membranes, obtained by ion-track irradiation lithography, were chosen as electroplating templates. Bismuth telluride nanowires were achieved in acidic media under potentiostatic conditions at -100 mV versus saturated silver chloride electrode. The filling ratio of the pores was increased to 80% by adding dimethyl sulfoxide to the electrolyte. Whatever the experimental conditions, the nanowires were polycrystalline in the rhombohedral phase of Bi2Te3. Finally, the power output of arrays of bismuth telluride nanowires was analyzed as a function of load resistance. The results were strongly dependent on the internal resistance, which can be significantly reduced by the presence of dimethyl sulfoxide during electroplating.

  19. Cadmium telluride quantum dots advances and applications

    CERN Document Server

    Donegan, John

    2013-01-01

    Optical Properties of Bulk and Nanocrystalline Cadmium Telluride, Núñez Fernández and M.I. VasilevskiyAqueous Synthesis of Colloidal CdTe Nanocrystals, V. Lesnyak, N. Gaponik, and A. EychmüllerAssemblies of Thiol-Capped CdTe Nanocrystals, N. GaponikFörster Resonant Energy Transfer in CdTe Nanocrystal Quantum Dot Structures, M. Lunz and A.L. BradleyEmission of CdTe Nanocrystals Coupled to Microcavities, Y.P. Rakovich and J.F. DoneganBiological Applications of Cadmium Telluride Semiconductor Quantum Dots, A. Le Cign

  20. Novel superstructure of the rocksalt type and element distribution in germanium tin antimony tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Tobias [Department of Chemistry, Ludwig Maximilian University, Butenandtstraße 5-13, 81377 Munich (Germany); Welzmiller, Simon [Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Scharnhorststraße 20, 04275 Leipzig (Germany); Neudert, Lukas [Department of Chemistry, Ludwig Maximilian University, Butenandtstraße 5-13, 81377 Munich (Germany); Urban, Philipp [Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Scharnhorststraße 20, 04275 Leipzig (Germany); Fitch, Andy [European Synchrotron Radiation Facility, CS40220, 38043 Grenoble Cedex 9 (France); Oeckler, Oliver, E-mail: oliver.oeckler@gmx.de [Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Scharnhorststraße 20, 04275 Leipzig (Germany)

    2014-11-15

    A superstructure of the rocksalt-type observed in quenched CVT-grown single crystals of Ge{sub 3.25(7)}Sn{sub 1.10(3)}Sb{sub 1.10(3)}Te{sub 6} was elucidated by X-ray diffraction using fourfold twinned crystals (space group P3{sup ¯}m1, a=4.280(1) Å, c=20.966(3) Å). The structure is built up of distorted rocksalt-type building blocks typical for long-range ordered GST materials and substitution variants thereof. In contrast to those phases, an exclusive ABC-type cubic stacking sequence of the Te-atom layers is present. High-resolution electron microscopy reveals spheroidal domains with this structure (average diameter 25 nm) whose stacking direction is perpendicular to the 〈1 1 1〉 directions of the basic rocksalt-type structure. Additional slab-like domains with a lateral extension up to 1 µm occasionally result in a hierarchical structure motif. Due to the similar electron counts of the elements involved, resonant diffraction was used in order to elucidate the element distribution in rocksalt-type building blocks of the stable layered compound 39R-Ge{sub 3}SnSb{sub 2}Te{sub 7} (R3{sup ¯}m, a=4.24990(4) Å, c=73.4677(9) Å). Sb tends to occupy the atom site close to the van der Waals gaps while Ge concentrates in the center of the building blocks. - Graphical abstract: High-resolution transmission electron micrograph, SAED pattern and reciprocal lattice section of X-ray single crystal data of Ge{sub 3.25}Sn{sub 1.1}Sb{sub 1.1}Te{sub 6} with an 11P-type superstructure of the rocksalt type. - Highlights: • A novel superstructure of the rocksalt-type in the system Ge–Sn–Sb–Te is elucidated. • It combines the cubic stacking of the HT phase with building blocks of the RT phase. • It indicates the ordering mechanism during the phase transition of GST materials. • A hierarchical structure motif is promising with respect to the reduction of κ{sub L}. • Resonant diffraction reveals the element distribution in 39R-Ge{sub 3}SnSb{sub 2}Te{sub 7}.

  1. Electrodeposition and characterization of nano-crystalline antimony telluride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lensch-Falk, J.L.; Banga, D. [Sandia National Laboratories, Livermore, CA 94550 (United States); Hopkins, P.E. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Robinson, D.B.; Stavila, V. [Sandia National Laboratories, Livermore, CA 94550 (United States); Sharma, P.A. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Medlin, D.L., E-mail: dlmedli@sandia.gov [Sandia National Laboratories, Livermore, CA 94550 (United States)

    2012-07-31

    Electrodeposition is a promising low-cost method to fabricate nanostructured thermoelectric thin films such as Sb{sub 2}Te{sub 3}. However, electrodeposition of crystalline Sb{sub 2}Te{sub 3} without the need for additional processing and with good compositional control has presented a challenge. Here we report on the electrodeposition of crystalline Sb{sub 2}Te{sub 3} thin films at room temperature from a tartaric-nitric acid electrolyte using a pulsed, potentiostatic process. The effects of synthesis conditions on the resulting microstructure and compositional homogeneity are investigated using x-ray diffraction, electron diffraction, electron microscopy, and energy dispersive x-ray spectroscopy. The composition of the Sb-Te films was found to be dependent on the interval between pulses, a result that is likely due to the slow kinetics associated with Sb{sub 2}Te{sub 3} formation at the surface. We also observed a change in texture and microstructure with varied applied pulse duration: for short pulse durations a lamellar microstructure with a {l_brace}000 Script-Small-L {r_brace} texture forms, whereas for longer pulse durations a more equiaxed and randomly oriented microstructure forms. The thermal conductivities of the pulsed electrodeposited films are surprisingly low at less than 2 W/K{center_dot}m and are found to systematically decrease with reduced pulse time. - Highlights: Black-Right-Pointing-Pointer We investigate the growth, microstructure, and thermal conductivity of Sb{sub 2}Te{sub 3} films. Black-Right-Pointing-Pointer Pulsed electrodeposition is used to grow crystalline Sb{sub 2}Te{sub 3} films. Black-Right-Pointing-Pointer Film composition and microstructure depend on the growth conditions. Black-Right-Pointing-Pointer Kinetics and thermodynamics are used to explain these observations. Black-Right-Pointing-Pointer The low thermal conductivities observed are correlated to microstructure and texture.

  2. Reaction Mechanism Underlying Atomic Layer Deposition of Antimony Telluride Thin Films.

    Science.gov (United States)

    Han, Byeol; Kim, Yu-Jin; Park, Jae-Min; Yusup, Luchana L; Ishii, Hana; Lansalot-Matras, Clement; Lee, Won-Jun

    2016-05-01

    The mechanism underlying the deposition of SbTe films by alternating exposures to Sb(NMe2)3 and Te(GeMe3)2 was investigated. Sb(NMe2)3 and Te(GeMe3)2 were selected because they have very high vapor pressure and are free of Si, Cl, and O atoms in the molecules. The mechanism of deposition was proposed by density functional theory (DFT) calculation and was verified by in-situ quartz crystal microbalance (QCM) analysis. DFT calculation expected the ligand-exchange reactions between the Sb and Te precursors to form Me2NGeMe3 as the byproduct. QCM analysis indicated that a single -NMe2 group in Sb(NMe2)3 reacts with -TeGeMe3 on the surface to form an Sb2Te3 film, and that a small fraction of Sb is incorporated into the film by the thermal decomposition of Sb(NMe2)3. The Te(GeMe3)2 molecules were thermally stable up to 120 degrees C, while the Sb(NMe2)3 molecules decomposed at temperatures of 60 degrees C and higher. Sb-rich SbTe films with different Sb contents were prepared by controlling the partial decomposition of Sb(NMe2)3 molecules, which was enhanced by increasing the pulse time of the precursor. PMID:27483847

  3. Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride

    DEFF Research Database (Denmark)

    Han, Li; Hegelund Spangsdorf, Steeven; Van Nong, Ngo;

    2016-01-01

    -rate) using spark plasma sintering (SPS). The effects of SPS conditions on the anisotropic thermoelectric properties and microstructure evolutions were systematically investigated. The change of sintering temperature showed stronger influence than other sintering parameters to the resulting thermoelectric...

  4. FIRST REPORT ON OTOTOXICITY OF MEGLUMINE ANTIMONIATE

    Directory of Open Access Journals (Sweden)

    Cláudia Maria Valete-Rosalino

    2014-09-01

    Full Text Available Introduction: Pentavalent antimonials are the first drug of choice in the treatment of tegumentary leishmaniasis. Data on ototoxicity related with such drugs is scarcely available in literature, leading us to develop a study on cochleovestibular functions. Case Report: A case of a tegumentary leishmaniasis patient, a 78-year-old man who presented a substantial increase in auditory threshold with tinnitus and severe rotatory dizziness during the treatment with meglumine antimoniate, is reported. These symptoms worsened in two weeks after treatment was interrupted. Conclusion: Dizziness and tinnitus had already been related to meglumine antimoniate. However, this is the first well documented case of cochlear-vestibular toxicity related to meglumine antimoniate.

  5. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  6. Electron mobility in mercury cadmium telluride

    Science.gov (United States)

    Patterson, James D.

    1988-01-01

    A previously developed program, which includes all electronic interactions thought to be important, does not correctly predict the value of electron mobility in mercury cadmium telluride particularly near room temperature. Part of the reason for this discrepancy is thought to be the way screening is handled. It seems likely that there are a number of contributors to errors in the calculation. The objective is to survey the calculation, locate reasons for differences between experiment and calculation, and suggest improvements.

  7. Epithermal Gold-Silver Deposits in Western Java, Indonesia: Gold-Silver Selenide-Telluride Mineralization

    Directory of Open Access Journals (Sweden)

    Euis Tintin Yuningsih

    2014-09-01

    Full Text Available DOI: 10.17014/ijog.v1i2.180The gold-silver ores of western Java reflect a major metallogenic event during the Miocene-Pliocene and Pliocene ages. Mineralogically, the deposits can be divided into two types i.e. Se- and Te-type deposits with some different characteristic features. The objective of the present research is to summarize the mineralogical and geochemical characteristics of Se- and Te-type epithermal mineralization in western Java. Ore and alteration mineral assemblage, fluid inclusions, and radiogenic isotope studies were undertaken in some deposits in western Java combined with literature studies from previous authors. Ore mineralogy of some deposits from western Java such as Pongkor, Cibaliung, Cikidang, Cisungsang, Cirotan, Arinem, and Cineam shows slightly different characteristics as those are divided into Se- and Te-types deposits. The ore mineralogy of the westernmost of west Java region such as Pongkor, Cibaliung, Cikidang, Cisungsang, and Cirotan is characterized by the dominance of silver-arsenic-antimony sulfosalt with silver selenides and rarely tellurides over the argentite, while to the eastern part of West Java such as Arinem and Cineam deposits are dominated by silver-gold tellurides. The average formation temperatures measured from fluid inclusions of quartz associated with ore are in the range of 170 – 220°C with average salinity of less than 1 wt% NaClequiv for Se-type and 190 – 270°C with average salinity of ~2 wt% NaClequiv for Te-type.

  8. 21 CFR 862.3110 - Antimony test system.

    Science.gov (United States)

    2010-04-01

    ... antimony, a heavy metal, in urine, blood, vomitus, and stomach contents. Measurements obtained by this device are used in the diagnosis and treatment of antimony poisoning. (b) Classification. Class I....

  9. Perspectives of antimony compounds in oncology

    Institute of Scientific and Technical Information of China (English)

    Pankaj SHARMA; Diego PEREZ; Armando CABRERA; Nee ROSAS; Jose Luis ARIAS

    2008-01-01

    Antimony, a natural element that has been used as a drug for over more than 100 years, has remarkable therapeutic efficacy in patients with acute promyelocytic leukemia. This review focuses on recent advances in developing antimony anti- cancer agents with an emphasis on antimony coordination complexes, Sb (Ⅲ) and Sb (V). These complexes, which include many organometallic complexes, may provide a broader spectrum of antitumoral activity. They were compared with classical platinum anticancer drugs. The review covers the literature data pub- lished up to 2007. A number of antimonials with different antitumoral activities are known and have diverse applications, even though little research has been done on their possibilities. It might be feasible to develop more specific and effective inhibitors for phosphatase-targeted, anticancer therapeutics through the screen- ing of sodium stibogluconate (SSG) and potassium antimonyltartrate-related compounds, which are comprised of antimony conjugated to different organic moieties. For example, SSG appears to be a better inhibitor than suramin which is a compound known for its antineoplastic activity against several types of cancers.

  10. Infrared surface polaritons on antimony.

    Science.gov (United States)

    Cleary, Justin W; Medhi, Gautam; Shahzad, Monas; Rezadad, Imen; Maukonen, Doug; Peale, Robert E; Boreman, Glenn D; Wentzell, Sandy; Buchwald, Walter R

    2012-01-30

    The semimetal antimony, with a plasma frequency ~80 times less than that of gold, is potentially useful as a host for infrared surface polaritons (SPs). Relevant IR SP properties, including the frequency-dependent propagation length and penetration depths for fields into the media on either side of the interface, were determined from optical constants measured on optically-thick thermally-evaporated Sb films over the wavelength range 1 to 40 μm. Plasma and carrier relaxation frequencies were determined from Drude-model fits to these data. The real part of the permittivity is negative for wavelengths beyond 11 μm. Distinct resonant decreases in specular reflected intensity were observed for Sb lamellar gratings in the wavelength range of 6 to 11 μm, where the real part of the permittivity is positive. Both resonance angles and the angular reflectance spectral line shapes are in agreement with theory for excitation of bound surface electromagnetic waves (SPs). Finite element method (FEM) electrodynamic simulations indicate the existence of SP modes under conditions matching the experiments. FEM results also show that such waves depend on having a significant imaginary part of the permittivity, as has been noted earlier for the case of surface exciton polaritons.

  11. Synthesis and application of antimony pent(isooctyl thioglycollate)

    Institute of Scientific and Technical Information of China (English)

    LIU You-nian; LI Hong-bing; SHU Wan-gen; CHEN Qi-yuan

    2005-01-01

    A new type of thermal stabilizer, antimony pent(isooctyl thioglycollate)(Sb(SCH2COOC8H17)5), was synthesized by using antimony trioxide, isooctanol and thioglycolic acid in 2 steps. Firstly, antimony trioxide was oxidized into colloidal antimony peroxide. Then antimony peroxide and isooctyl thioglycollate reacted stoichiometrically for 2 h with the yield of 87%. This compound was used as thermal stabilizer for polyvinyl chloride(PVC). The results show that the thermal stability time is 52 min at 200 ℃ by heat-ageing oven test when adding 2.5% thermal stabilizer to PVC resin. Compared with antimony tris(isooctyl thiolycollate), the initial thermal stability of antimony pent(isooctyl thioglycollate) is better than that of antimony tris(isooctyl thioglycollate), while the long-term thermal stability time is shorter than that of antimony tris(isooctyl thioglycollate). Meanwhile, the synergism of antimony pent(isooctyl thioglycollate) with calcium stearate was studied, indicating that when the mass ratio of antimony pent(isooctyl thioglycollate) to calcium stearate is 2:1, the thermal stability time of PVC is 58 min.

  12. Vacuum Evaporation Technology for Treating Antimony-Rich Anode Slime

    Science.gov (United States)

    Qiu, Keqiang; Lin, Deqiang; Yang, Xuelin

    2012-11-01

    A vacuum evaporation technology for treating antimony-rich anode slime was developed in this work. Experiments were carried out at temperatures from 873 K to 1073 K and residual gas pressures from 50 Pa to 600 Pa. During vacuum evaporation, silver from the antimony-rich anode slime was left behind in the distilland in a silver alloy containing antimony and lead, and antimony trioxide was evaporated. The experimental results showed that 92% by weight of antimony can be removed, and the silver content in the alloy was up to 12.84%. The antimony trioxide content in the distillate was more than 99.7%, and the distillate can be used directly as zero-grade antimony trioxide (China standard).

  13. Microbial antimony biogeochemistry: Enzymes, regulation, and related metabolic pathways

    Science.gov (United States)

    Li, Jingxin; Qian Wang,; Oremland, Ronald S.; Kulp, Thomas R.; Rensing, Christopher; Wang, Gejiao

    2016-01-01

    Antimony (Sb) is a toxic metalloid that occurs widely at trace concentrations in soil, aquatic systems, and the atmosphere. Nowadays, with the development of its new industrial applications and the corresponding expansion of antimony mining activities, the phenomenon of antimony pollution has become an increasingly serious concern. In recent years, research interest in Sb has been growing and reflects a fundamental scientific concern regarding Sb in the environment. In this review, we summarize the recent research on bacterial antimony transformations, especially those regarding antimony uptake, efflux, antimonite oxidation, and antimonate reduction. We conclude that our current understanding of antimony biochemistry and biogeochemistry is roughly equivalent to where that of arsenic was some 20 years ago. This portends the possibility of future discoveries with regard to the ability of microorganisms to conserve energy for their growth from antimony redox reactions and the isolation of new species of “antimonotrophs.”

  14. Thin film cadmium telluride solar cells by two chemical vapor deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L.

    1988-01-15

    Cadmium telluride (CdTe) has long been recognized as a promising thin film photovoltaic material. In this work, polycrystalline p-CdTe films have been deposited by two chemical vapor deposition techniques, namely the combination of vapors of elements (CVE) and close-spaced sublimation (CSS). The CVE technique is more flexible in controlling the composition of deposited films while the CSS technique can provide very high deposition rates. The resistivity of p-CdTe films deposited by the CVE and CSS techniques can be controlled by intrinsic (cadmium vacancies) or extrinsic (arsenic or antimony) doping, and the lowest resistivity obtainable is about 200 ..cap omega.. cm. Both front-wall (CdTe/TCS/glass) and back-wall (TCS/CdTe/substrate) cells have been prepared. The back-wall cells are less efficient because of the high and irreproducible p-CdTe-substrate interface resistance. The CSS technique is superior to the CVE technique because of its simplicity and high deposition rates; however, the cleaning of the substrate in situ is more difficult. The interface cleanliness is an important factor determining the electrical and photovoltaic characteristics of the heterojunction. Heterojunction CdS/CdTe solar cells of area 1 cm/sup 2/ with conversion efficiencies higher than 10% have been prepared and junction properties characterized.

  15. Arsenic and antimony transporters in eukaryotes.

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  16. New Layered Ternary Transition-Metal Tellurides

    Science.gov (United States)

    Mar, Arthur

    Several new ternary transition-metal tellurides, a class of compounds hitherto largely unexplored, have been synthesized and characterized. These are layered materials whose structures have been determined by single -crystal X-ray diffraction methods. The successful preparation of the compound TaPtTe_5 was crucial in developing an understanding of the MM'Te_5 (M = Nb, Ta; M' = Ni, Pd, Pt) series of compounds, which adopt either of two possible closely-related layered structures. Interestingly, the compound TaPdTe _5 remains unknown. Instead, the compound Ta_4Pd_3Te _{16} has been prepared. Its structure is closely related to that of the previously prepared compound Ta_3Pd _3Te_{14}. The physical properties of these compounds have been measured and correlated with the metal substitutions and interlayer separations. A new series of compounds, MM'Te _4 (M = Nb, Ta; M' = Ru, Os, Rh, Ir), has been discovered. The structure of NbIrTe_4 serves as a prototype: it is an ordered variant of the binary telluride WTe_2. Electronic band-structure calculations have been performed in order to rationalize the trends in metal-metal and tellurium -tellurium bonding observed in WTe_2 and the MM'Te_4 phases. Extension of these studies to include main-group metals has resulted in the synthesis of the new layered ternary germanium tellurides TiGeTe_6, ZrGeTe_4 , and HfGeTe_4. Because germanium can behave ambiguously in its role as a metalloid element, it serves as an anion by capping the metal-centered trigonal prisms and also as a cation in being coordinated in turn by other tellurium atoms in a trigonal pyramidal fashion. Structural relationships among these compounds are illustrated through the use of bicapped trigonal prisms and trigonal pyramids as the basic structural building blocks. The electrical and magnetic properties of these compounds have been measured. Insight into the unusual bonding and physical properties of these germanium-containing compounds has been gained through

  17. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

  18. Avalanche multiplication of electrons and holes in cadmium telluride

    CERN Document Server

    Demich, N V

    2001-01-01

    Determination of the ratio of the coefficients of the electrons and holes of the diode structures impact ionization is carried out with the purpose of optimizing the parameters of the avalanche diodes from the cadmium telluride. It is shown experimentally, that the process of the impact ionization in the cadmium telluride is stimulated by holes. The ratio of the coefficients of the holes and electrons impact ionization constitutes approx = 30-40

  19. In vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta Etel Treiger; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Lab. de Biologia Molecular]. E-mail: samanta@usp.br; Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Centro de Radiofarmacia]. E-mail: jaosso@ipen.br; Andrade Junior, Heitor Franco de [Instituto de Medicina Tropical de Sao Paulo (IMT-SP), SP (Brazil). Lab. de Protozoologia]. E-mail:hfandrad@usp.br

    2005-10-15

    Pentavalent antimony, as meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam), is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes {sup 122} Sb and {sup 124} Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology. (author)

  20. In Vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    OpenAIRE

    Samanta Etel Treiger Borborema; Heitor Franco de Andrade Junior; João Alberto Osso Junior; Nanci do Nascimento

    2005-01-01

    Pentavalent antimony, as meglumine antimoniate (Glucantime® ) or sodium stibogluconate (Pentostam® ), is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer...

  1. Spin dynamics of complex oxides, bismuth-antimony alloys, and bismuth chalcogenides

    Science.gov (United States)

    Sahin, Cuneyt

    V, suggesting the potential for doping or voltage tuned spin Hall current. We have also calculated intrinsic spin Hall conductivities of bismuth selenide and bismuth telluride topological insulators from an effective tight-binding Hamiltonian including two nearest-neighbor interactions. We showed that both materials exhibit giant spin Hall conductivities calculated from the Kubo formula in linear response theory and the clean static limit. We conclude that bismuth-antimony alloys and bismuth chalcogenides are primary candidates for efficiently generating spin currents through the spin Hall effect.

  2. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and 125Te NMR measurements in complex tellurides

    Science.gov (United States)

    Levin, E. M.

    2016-06-01

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S , depends on the free (mobile) carrier concentration, n , and effective mass, m*, as S ˜m*/n2 /3 . The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1 /T1 , depends on both n and m* as 1 /T1˜(m*)3/2n (within classical Maxwell-Boltzmann statistics) or as 1 /T1˜(m*)2n2 /3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown that the combination of the Seebeck coefficient and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study A gxS bxG e50-2xT e50 , well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.

  3. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1987-10-01

    Cadmium telluride, with a room-temperature band-gap energy of 1.5 eV, is a promising thin-film photovoltaic material. The major objective of this research has been to demonstrate thin-film CdTe heterojunction solar cells with a total area greater than 1 sq cm and photovoltaic efficiencies of 13 percent or more. Thin-film p-CdTe/CdS/SnO2:F/glass solar cells with an AM1.5 efficiency of 10.5 percent have been reported previously. This report contains results of work done on: (1) the deposition, resistivity control, and characterization of p-CdTe films by the close-spaced sublimation process; (2) the deposition of large-band-gap window materials; (3) the electrical properties of CdS/CdTe heterojunctions; (4) the formation of stable, reproducible, ohmic contacts (such as p-HgTe) to p-CdTe; and (5) the preparation and evaluation of heterojunction solar cells.

  4. Pharmacokinetic of antimony in mice with cutaneous Leishmaniasis

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta E.T.; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Lab. de Biologia Molecular]. E-mails: samanta@usp.br; nnascime@ipen.br; Andrade Junior, Heitor F. de [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Lab. de Biologia Molecular; Instituto de Medicina Tropical de Sao Paulo, Sao Paulo, SP (Brazil); E-mail: hfandrad@usp.br; Osso Junior, Joao A. [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Centro de Radiofarmacia]. E-mail: jaosso@ipen.br

    2007-07-01

    Cutaneous Leishmaniasis (CL) remains a major world health problem, with about 1.5 million new cases each year. Caused by protozoa Leishmania, in South America, this infection can vary from a chronic skin ulcer, to an erosive mucosal disease and severe facial disfigurement. Pentavalent antimony (Sb{sup +5}) as sodium stibogluconate (Pentostam) or meglumine antimoniate (Glucantime) are main drugs for treating most forms of human leishmaniasis. For six decades, despite the recent developments, the effective therapy to cutaneous leishmaniasis has been based on long parenteral courses of such drugs, even though these are fairly costly, toxic and inconvenient to use, without adequate knowledge on their pharmacokinetics or mechanism of action. Pharmacokinetics studies could be based on bioactive traceable drugs, usually with radioactive isotopes, but antimony radioisotopes are unavailable commercially. Neutron irradiation is a powerful tool in the analysis of mineral content of samples, for antimony, there are at least two main isotopes that could be formed after neutron irradiation in nuclear reactor. The aim of the present study was to construct antimony salts with those radioisotopes to obtain tracers to compare the pharmacokinetic and the tissue distribution of neutron irradiated meglumine antimoniate in healthy and cutaneous leishmaniasis experimentally infected mice. Meglumine antimoniate, (Glucantime, Aventis, S.P, Brazil), was neutron irradiated inside the IEA-R1 nuclear reactor (IPEN/CNEN-SP), producing two radioisotopes {sup 122}Sb and {sup 124}Sb. Its biodistribution was verified in BALB/c mice experimentally infected with Leishmania (Leishmania) Amazonensis, which received a single intraperitoneal dose of the drug. At different times after injection, the tissues and blood were excised and activity measured in a NaI (Tl) scintillation counter. Compared with the healthy mice, experimentally infected mice had significantly lower maximum concentration of antimony

  5. Off-stoichiometric silver antimony telluride: An experimental study of transport properties with intrinsic and extrinsic doping

    Directory of Open Access Journals (Sweden)

    Michele D. Nielsen

    2015-05-01

    Full Text Available AgSbTe2 is a thermoelectric semiconductor with an intrinsically low thermal conductivity and a valence band structure that is favorable to obtaining a high thermoelectric figure of merit zT. It also has a very small energy gap Eg ∼ 7.6 ± 3 meV. As this gap is less than the thermal excitation energy at room temperature, near-intrinsic AgSbTe2 is a two carrier system having both holes (concentration p and electrons (n. Good thermoelectric performance requires heavy p-type doping (p > > n. This can be achieved with native defects or with extrinsic doping, e.g. with transition metal element. The use of defect doping is complicated by the fact that many of the ternary Ag-Sb-Te and pseudo-binary Sb2Te3-Ag2Te phase diagrams are contradictory. This paper determines the compositional region most favorable to creating a single phase material. Through a combination of intrinsic and extrinsic doping, values of zT > 1 are achieved, though not on single-phased material. Additionally, we show that thermal conductivity is not affected by defects, further demonstrating that the low lattice thermal conductivity of I-V-VI2 materials is due to an intrinsic mechanism, insensitive to changes in defect structure.

  6. The Archaean gold-telluride-sulphide and gold-telluride mineralisation of a multiple stage hydrothermal vein deposit at the Commoner Mine, Zimbabwe

    International Nuclear Information System (INIS)

    The Commoner Mine is situated on the western edge of the Midlands greenstone belt, 50 km west-southwest of Kadoma, Zimbabwe. Current geological interest in this deposit was initiated by the presence of coarse grained telluride minerals in ore exposed on 21 level in 1978. The deposit is a hydrothermal quartz-calcite vein. It was found that coarse grained gold-silver tellurides fill fractures which transect the telluride breccia. Comparison of the physical and mineralogical characteristics of the Commoner orebody with those of the Tertiary gold-telluride deposits of the Circum Pacific Belt and the Archaean deposits of Canada and Australia indicates that this mineralisation was probably deposited in a near-surface environment. It was found that the gold-telluride ores of the Commoner Mine display features characteristic of both plutonic-hydrothermal and volcanic-hydrothermal styles of telluride mineralisation

  7. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators

    International Nuclear Information System (INIS)

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb1-xCaxTe were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while its thermoelectric properties remain

  8. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    M P Singh; C M Bhandari

    2004-06-01

    Usefulness of a material in thermoelectric devices is temperature specific. The central problem in thermoelectric material research is the selection of materials with high figure-of-merit in the given temperature range of operation. It is of considerable interest to know the utility range of the material, which is decided by the degrading effect of minority carrier conduction. Lead telluride is among the best-known materials for use in the temperature range 400—900 K. This paper presents a detailed theoretical investigation of the role of minority carriers in degrading the thermoelectric properties of lead telluride and outlines the temperature range for optimal performance.

  9. Separation of traffic related antimony compounds

    International Nuclear Information System (INIS)

    Complete text of publication follows. It is known that most of the brake pads contain Sb2S3 as lubricant to achieve better friction stability. Due to braking the brake lining crumbles away and its Sb content gets into the air. As a result of the temperature increase accompanying the braking a part of the antimony may oxidize to oxides, as Sb2O3 or even to the more stable form, Sb2O4. Since Sb2O3 more readily soluble than the others, its absorption from the lung so its environmental impact effect is more harmful. After a systematic investigation involving solubilization of the solid compounds, citric and tartaric acid as well as 6 mol/dm3 HCl were tested for leaching of trace antimony compounds from natural matrix. To prepare reference material related to these species, soil and activated charcoal was spiked in 10 μg/g concentration with all the three material (Sb2S3, Sb2O3,Sb2O4). separately. Recovery of the different forms was checked by graphite furnace atomic absorption spectrometric (GFAAS) analysis of the leachates. The soil was confirmed to oxidize the sulfide content while the activated charcoal was established to enrich antimony from HCl solution as ion association complex. It was concluded, that Sb2S3 is leached only in slight amount in 4 hours by 0.1-0.5 mol/dm3 citric acid, while leaching of Sb2O3 is quantitative. On the other side, it was proved that Sb2O3 as well as Sb2S3 traces are soluble in 6 HCl solution in 60 min, whilst Sb2O4 is not destroyed. So, the Sb2O3 and Sb2S3 content of a flying dust can be determined. The GFAAS temperature program had to be modified in order to be capable to analyze high organic matrix as citric or tartaric acid even in 0.5 mol/dm3 concentration. Concerning their decomposition temperature an additional step was inserted into the temperature program, pyrolysis on 300 and 400 deg C, respectively. The antimony concentration of the highly acidic leachates were determined by hydride generation GFAAS. The reproducibility of

  10. Thin films and solar cells of cadmium telluride and cadmium zinc telluride

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, C.S.

    1991-01-01

    The objectives of this dissertation are to investigate (1) the metalorganic chemical vapor deposition (MOCVD) and properties of cadmium telluride (CdTe) and cadmium zinc telluride (Cd(1-x)Zn(z)Te) films and junctions, and their potential application to solar cells, and (2) the fabrication and characterization of CdTe solar cells by the close spaced sublimation (CSS) technique. CdTe and Cd(1-x)Zn(x)Te films have been deposited by MOCVD on a variety of substrates at 300-400 C.The effect of the deposition parameters and post deposition heat treatments on the electrical, optical, and structural properties have been investigated. Heterojunctions of the configuration CdTe/transparent conducting semiconductor (TCS) and Cd(1-x)Zn(x)Te/TCS have been prepared and characterized. CdTe(MOCVD)/CdS and Cd(1-x)Zn(x)Te(E sub g = 1.65eV)/Cd(1-x)Zn(x)S solar cells with efficiencies of 9.9 percent and 2.4 percent, respectively have been fabricated. The as-deposited CdTe(MOCVD)/CdS junctions exhibited high dark current densities due to deflects at the interface associated with small grain size. No effective post-deposition heat treatment has been developed. CdTe/CdS solar cells have also been fabricated by the close spaced sublimation (CSS). Significant improvements in material and processing have been made, and in collaboration with fellow researchers an AM1.5 conversion efficiency of 13.4 percent has been demonstrated, the highest efficiency ever measured for such devices. The highest conversion efficiency for the CdTe(CSS)/CdS solar cell was achieved by reaching high open-circuit voltages and fill factors, while the short-circuit current densities were moderate. These results indicate that further improvements to increase the short-circuit current densities can result in conversion efficiencies over 15 percent.

  11. Phase transition of bismuth telluride thin films grown by MBE

    DEFF Research Database (Denmark)

    Fülöp, Attila; Song, Yuxin; Charpentier, Sophie;

    2014-01-01

    A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formatio...

  12. Understanding the Meaning of the Entrance Image: The Telluride Process.

    Science.gov (United States)

    Garnham, Harry L.; Garnham, Penny

    1989-01-01

    Describes a project to define the images of Telluride (Colorado) held by its residents and tourists and contributing to sense of place. Discusses the design of the town's entry points and efforts to maintain their visual environments in harmony with the town's defined character during ongoing community development. (SV)

  13. Selective determination of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by atomic-absorption spectrometry with a carbon-tube atomizer.

    Science.gov (United States)

    Kamada, T; Yamamoto, Y

    1977-05-01

    The extraction behaviour of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of frameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of antimony(III) and differential determination of antimony(III) and antimony(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone, when the aqueous phase/solvent volume ratio is 50 ml/10 ml and the injection volume in the carbon tube is 20 mul, the sensitivity for antimony is 0.2 ng/ml for 1% absorption. The relative standard deviations are ca. 2%. Interferences by many metal ions can be prevented by masking with EDTA. The proposed methods have been applied satisfactorily to determination of antimony(III) and antimony(V) in various types of water. PMID:18962096

  14. Structural and electrical characterization of zinc oxide doped with antimony

    Directory of Open Access Journals (Sweden)

    G. Juárez Díaz

    2014-08-01

    Full Text Available In this work we report the results of structural and electrical characterization realized on zinc oxide single crystal samples with (001 orientation, which were doped with antimony. Doping was carried out by antimony thermal diffusion at 1000 °C for periods of 1 and 2 hours under nitrogen environment from a solid source formed by antimony oxide. Electrical characterization by I-V curves and Hall effect shown an increase in acceptor concentration which demonstrates that doping is effective and create holes in zinc oxide samples.

  15. Deposition of rod-shaped antimony sulfide thin films from single-source antimony thiosemicarbazone precursors

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Jasmine B.; Sawant, Narayan V. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai - 400 098 (India); Garje, Shivram S., E-mail: ssgarje@chem.mu.ac.i [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai - 400 098 (India)

    2010-04-02

    Antimony sulfide thin films were deposited on glass substrates by aerosol assisted chemical vapour deposition technique using single source precursors, namely, antimony(III) thiosemicarbazones, SbCl{sub 3}(L) (L = thiosemicarbazones of thiophene-2-carboxaldehyde (1) and cinnamaldehyde (2)). The deposited films were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and UV-visible spectroscopy in order to identify their phases, morphologies, compositions and optical properties respectively. These characterizations revealed that the films were comprised of rod-shaped particles of orthorhombic stibnite (Sb{sub 2}S{sub 3}) with a Sb:S stoichiometry of {approx} 1:1.3. The calculated optical band gap from UV-vis absorption spectrum is found to be 3.48 eV.

  16. Tissue distribution of residual antimony in rats treated with multiple doses of meglumine antimoniate

    Directory of Open Access Journals (Sweden)

    Deise Riba Coelho

    2014-07-01

    Full Text Available Meglumine antimoniate (MA and sodium stibogluconate are pentavalent antimony (SbV drugs used since the mid-1940s. Notwithstanding the fact that they are first-choice drugs for the treatment of leishmaniases, there are gaps in our knowledge of their toxicological profile, mode of action and kinetics. Little is known about the distribution of antimony in tissues after SbV administration. In this study, we evaluated the Sb content of tissues from male rats 24 h and three weeks after a 21-day course of treatment with MA (300 mg SbV/kg body wt/d, subcutaneous. Sb concentrations in the blood and organs were determined by inductively coupled plasma-mass spectrometry. In rats, as with in humans, the Sb blood levels after MA dosing can be described by a two-compartment model with a fast (t1/2 = 0.6 h and a slow (t1/2 >> 24 h elimination phase. The spleen was the organ that accumulated the highest amount of Sb, while bone and thyroid ranked second in descending order of tissues according to Sb levels (spleen >> bone, thyroid, kidneys > liver, epididymis, lungs, adrenals > prostate > thymus, pancreas, heart, small intestines > skeletal muscle, testes, stomach > brain. The pathophysiological consequences of Sb accumulation in the thyroid and Sb speciation in the liver, thyroid, spleen and bone warrant further studies.

  17. How can we adapt to geological scarcity of antimony? Investigation of antimony's substitutability and of other measures to achieve a sustainable use

    NARCIS (Netherlands)

    Henckens, M.L.C.M.; Driessen, P.P.J.; Worrell, E.

    2016-01-01

    Abstract Antimony is an element that is applied in many useful applications for mankind. However, antimony resources are very scarce, when comparing the current extraction rates with the availability of antimony containing ores. From an inter-temporal sustainability perspective, current generations

  18. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials

    International Nuclear Information System (INIS)

    A simple, sensitive method for the speciation of inorganic antimony by cloud point extraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented and evaluated. The method based on the fact that formation of a hydrophobic complex of antimony(III) with ammonium pyrrolidine dithiocarbamate (APDC) at pH 5.0 and subsequently the hydrophobic complex enter into surfactant-rich phase, whereas antimony(V) remained in aqueous solutions. Antimony(III) in surfactant-rich phase was analyzed by ETAAS after dilution by 0.2 mL nitric acid in methanol (0.1 M), and antimony(V) was calculated by subtracting antimony(III) from the total antimony after reducing antimony(V) to antimony(III) by L-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of APDC and Triton X-114, equilibrium temperature and incubation time, sample volume were investigated in detail. Under the optimum conditions, the detection limit (3σ) of the proposed method was 0.02 ng mL-1 for antimony(III), and the relative standard deviation was 7.8% (c = 1.0 ng mL-1, n = 7). The proposed method was successfully applied to speciation of inorganic antimony in the leaching solutions of different food packaging materials with satisfactory results.

  19. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials.

    Science.gov (United States)

    Jiang, Xiuming; Wen, Shengping; Xiang, Guoqiang

    2010-03-15

    A simple, sensitive method for the speciation of inorganic antimony by cloud point extraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented and evaluated. The method based on the fact that formation of a hydrophobic complex of antimony(III) with ammonium pyrrolidine dithiocarbamate (APDC) at pH 5.0 and subsequently the hydrophobic complex enter into surfactant-rich phase, whereas antimony(V) remained in aqueous solutions. Antimony(III) in surfactant-rich phase was analyzed by ETAAS after dilution by 0.2 mL nitric acid in methanol (0.1M), and antimony(V) was calculated by subtracting antimony(III) from the total antimony after reducing antimony(V) to antimony(III) by l-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of APDC and Triton X-114, equilibrium temperature and incubation time, sample volume were investigated in detail. Under the optimum conditions, the detection limit (3 sigma) of the proposed method was 0.02 ng mL(-1) for antimony(III), and the relative standard deviation was 7.8% (c=1.0 ng mL(-1), n=7). The proposed method was successfully applied to speciation of inorganic antimony in the leaching solutions of different food packaging materials with satisfactory results. PMID:19853991

  20. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xiuming; Wen Shengping [School of Chemistry and Chemical Engineering, Henan University of Technology, South Song Shan Road No. 140, Zhengzhou City 450001 (China); Xiang Guoqiang, E-mail: xianggq@haut.edu.cn [School of Chemistry and Chemical Engineering, Henan University of Technology, South Song Shan Road No. 140, Zhengzhou City 450001 (China)

    2010-03-15

    A simple, sensitive method for the speciation of inorganic antimony by cloud point extraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented and evaluated. The method based on the fact that formation of a hydrophobic complex of antimony(III) with ammonium pyrrolidine dithiocarbamate (APDC) at pH 5.0 and subsequently the hydrophobic complex enter into surfactant-rich phase, whereas antimony(V) remained in aqueous solutions. Antimony(III) in surfactant-rich phase was analyzed by ETAAS after dilution by 0.2 mL nitric acid in methanol (0.1 M), and antimony(V) was calculated by subtracting antimony(III) from the total antimony after reducing antimony(V) to antimony(III) by L-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of APDC and Triton X-114, equilibrium temperature and incubation time, sample volume were investigated in detail. Under the optimum conditions, the detection limit (3{sigma}) of the proposed method was 0.02 ng mL{sup -1} for antimony(III), and the relative standard deviation was 7.8% (c = 1.0 ng mL{sup -1}, n = 7). The proposed method was successfully applied to speciation of inorganic antimony in the leaching solutions of different food packaging materials with satisfactory results.

  1. Kelvin Probe Studies of Cesium Telluride Photocathode for AWA Photoinjector

    CERN Document Server

    Wisniewski, Eric; Yusof, Zikri; Spentzouris, Linda; Terry, Jeff; Harkay, Katherine

    2012-01-01

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (~50 nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  2. The Cadmium Zinc Telluride Imager on AstroSat

    CERN Document Server

    Bhalerao, V; Vibhute, A; Pawar, P; Rao, A R; Hingar, M K; Khanna, Rakesh; Kutty, A P K; Malkar, J P; Patil, M H; Arora, Y K; Sinha, S; Priya, P; Samuel, Essy; Sreekumar, S; Vinod, P; Mithun, N P S; Vadawale, S V; Vagshette, N; Navalgund, K H; Sarma, K S; Pandiyan, R; Seetha, S; Subbarao, K

    2016-01-01

    The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZT's namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to > 200 keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17' over a 4.6 deg x 4.6 deg (FWHM) field of view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarisation above ~100 keV, with exciting possibilities for polarisation studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.

  3. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells. Final subcontract report, 1 July 1988--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L. [University of South Florida, Tampa, FL (United States)

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  4. Transient Response of Cadmium Telluride Modules to Light Exposure: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C.; del Cueto, J.; Albin, D. S.; Petersen, C.; Tyler, L.; TamizhMani, G.

    2011-07-01

    Commercial cadmium telluride (CdTe) photovoltaic (PV) modules from three different manufacturers were monitored for performance changes during indoor and outdoor light-exposure. Short-term transients in Voc were recorded on some modules, with characteristic times of ~1.1 hours. Outdoor performance data shows a similar drop in Voc after early morning light exposure. Preliminary analysis of FF changes show light-induced changes on multiple time scales, including a long time scale.

  5. Tunneling behavior of bismuth telluride nanoplates in electrical transport

    OpenAIRE

    Eginligil, Mustafa; Zhang, Weiqing; Kalitsov, Alan; Lu, Xianmao; Yang, Hyunsoo

    2012-01-01

    We study the electrical transport properties of ensembles of bismuth telluride (Bi2Te3) nanoplates grown by solution based chemical synthesis. Devices consisting of Bi2Te3 nanoplates are fabricated by surface treatment after dropping the solution on the structured gold plates and the temperature dependence of resistance shows a nonmetallic behavior. Symmetric tunneling behavior in I-V was observed in both our experimental results and theoretical calculation of surface conductance based on a s...

  6. Heat-treated Saccharomyces cerevisiae for antimony speciation and antimony(III) preconcentration in water samples

    International Nuclear Information System (INIS)

    An analytical method was developed for antimony speciation and antimony(III) preconcentration in water samples. The method is based on the selective retention of Sb(III) by modified Saccharomyces cerevisiae in the presence of Sb(V). Heat, caustic and solvent pretreatments of the biomass were investigated to improve the kinetics and thermodynamics of Sb(III) uptake process at room temperature. Heating for 30 min at 80 deg. C was defined as the optimal treatment. Antimony accumulation by the cells was independent of pH (5-10) and ionic strength (0.01-0.1 mol L-1). 140 mg of yeast and 2 h of contact were necessary to ensure quantitative sequestration of Sb(III) up to 750 μg L-1. In these conditions, Sb(V) was not retained. Sb(V) was quantified in sorption supernatant by inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma optical emission spectrometry (ICP-OES). Sb(III) was determined after elution with 40 mmol L-1 thioglycolic acid at pH 10. A preconcentration factor close to nine was achieved for Sb(III) when 100 mL of sample was processed. After preconcentration, the detection limits for Sb(III) and Sb(V) were 2 and 5 ng L-1, respectively, using ICP-MS, 7 and 0.9 μg L-1 using ICP-OES. The proposed method was successfully applied to the determination of Sb(III) and Sb(V) in spiked river and mineral water samples. The relative standard deviations (n = 3) were in the 2-5% range at the tenth μg L-1 level and less than 10% at the lowest Sb(III) and Sb(V) tested concentration (0.1 μg L-1). Corrected recoveries were in all cases close to 100%

  7. Noninferiority of Miltefosine Versus Meglumine Antimoniate for Cutaneous Leishmaniasis in Children

    OpenAIRE

    Rubiano, Luisa Consuelo; Miranda, María Consuelo; Muvdi Arenas, Sandra; Montero, Luz Mery; Rodríguez-Barraquer, Isabel; Garcerant, Daniel; Prager, Martín; Osorio, Lyda; Rojas, Maria Ximena; Pérez, Mauricio; Nicholls, Ruben Santiago; Gore Saravia, Nancy

    2012-01-01

    Background. Children have a lower response rate to antimonial drugs and higher elimination rate of antimony (Sb) than adults. Oral miltefosine has not been evaluated for pediatric cutaneous leishmaniasis.

  8. Synthesis and characterization of bismuth telluride based nanostructured thermoelectric composite materials

    Science.gov (United States)

    Keshavarz Khorasgani, Mohsen

    Thermoelectric (TE) materials and devices are attractive in solid-state energy conversion applications such as waste heat recovery, air-conditioning, and refrigeration. Since the 1950's lots of unremitting efforts have been made to enhance the efficiency of energy conversion in TE materials (i. e. improving the figure of merit (ZT)), however, most of commercial bulk TE materials still suffer from low efficiency with ZTs around unity. To enhance the performance of bismuth telluride based TE alloys, we have developed composite TE materials, based on the idea that introducing more engineered interfaces in the bulk TE materials may lead to thermal conductivity reduction due to increased phonon scattering by these interfaces. In this approach it is expected that the electronic transport properties of the material are not effectively affected. Consequently, ZT enhancement can be achieved. In this dissertation we will discuss synthesis and characterization of two types of bismuth telluride based bulk composite TE materials. The first type is engineered to contain the presence of coherent interfaces between phases in the material resulting from different mixtures of totally miscible compounds with similar composition. The second type includes the nanocomposites with embedded foreign nano-particles in which the matrix and the particles are delimited by incoherent interfaces. The synthesis procedure, micro- and nano-structures as well as thermoelectric properties of these composites will be presented. In our study on the composites with coherent interfaces, we produced a series of different composites of p-type bismuth antimony telluride alloys and studied their microstructure and thermoelectric properties. Each composite consists of two phases that were obtained in powder form by mechanical alloying. Mixed powders in various proportions of the two different phases were consolidated by hot extrusion to obtain each bulk composite. The minimum grain size of bulk composites as

  9. Solvothermal synthesis and study of nonlinear optical properties of nanocrystalline thallium doped bismuth telluride

    Energy Technology Data Exchange (ETDEWEB)

    Molli, Muralikrishna, E-mail: muralikrishnamolli@sssihl.edu.in [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam-515 134 (India); Parola, Sowmendran; Avinash Chunduri, L.A.; Aditha, Saikiran; Sai Muthukumar, V; Mimani Rattan, Tanu; Kamisetti, Venkataramaniah [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam-515 134 (India)

    2012-05-15

    Nanocrystalline Bismuth telluride and thallium (4 mol %) doped Bismuth telluride were synthesized through hydrothermal method. The as-prepared products were characterized using Powder X-ray Diffraction, High Resolution Transmission Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, UV-Visible spectroscopy and Fourier Transform Infrared Spectroscopy. Powder XRD results revealed the crystalline nature of the obtained phases. HRTEM showed the particle-like morphology of the products. The decrease in the absorption coefficient due to thallium doping was observed in FTIR spectra. The intensity dependent nonlinear optical properties of nanocrystalline bismuth telluride and thallium doped bismuth telluride were studied using the Z-scan technique in open-aperture configuration. Bismuth telluride doped with thallium showed enhanced nonlinear optical response compared to pristine bismuth telluride and hence could be used as a potential candidate for optical power limiting applications. - Graphical Abstract: Nonlinear transmission (Z-scan) curves of nanocrystalline bismuth telluride ({Delta}) and thallium doped bismuth telluride ({open_square}). Thallium doped bismuth telluride showed enhanced nonlinear absorption compared to bismuth telluride. Inset: TEM micrograph of bismuth telluride nanocrystallites. Highlights: Black-Right-Pointing-Pointer Synthesis of Nanocrystalline Bi{sub 2}Te{sub 3} and Thallium doped Bi{sub 2}Te{sub 3} through solvothermal method. Black-Right-Pointing-Pointer Reduced absorption coefficient due to thallium doping found from IR spectroscopy. Black-Right-Pointing-Pointer Open-aperture Z-scan technique for nonlinear optical studies. Black-Right-Pointing-Pointer Two photon absorption based model for theoretical fitting of Z-scan data. Black-Right-Pointing-Pointer Enhanced nonlinear absorption in Thallium doped Bi{sub 2}Te{sub 3} - potential candidate for optical power limiting applications.

  10. The influence of pet containers on antimony concentration in bottled drinking water

    OpenAIRE

    Perić-Grujić Aleksandra A.; Radmanovac Aleksandar R.; Stojanov Aleksander M.; Pocajt Viktor V.; Ristić Mirjana Đ.

    2010-01-01

    Antimony trioxide (Sb2O3) is the most frequently used catalyst in the polyethylene terephthalate (PET) manufacture. As a result, antimony is incorporated into PET bottles at concentration level of 100-300 mg/kg. PET containers are used for drinking water and beverages, as well as food packaging and in the pharmaceutical industry. Thus, it is important to understand the factors that may influence the release of antimony from the catalysts into water and other products, since antimony is potent...

  11. The influence of pet containers on antimony concentration in bottled drinking water

    Directory of Open Access Journals (Sweden)

    Perić-Grujić Aleksandra A.

    2010-01-01

    Full Text Available Antimony trioxide (Sb2O3 is the most frequently used catalyst in the polyethylene terephthalate (PET manufacture. As a result, antimony is incorporated into PET bottles at concentration level of 100-300 mg/kg. PET containers are used for drinking water and beverages, as well as food packaging and in the pharmaceutical industry. Thus, it is important to understand the factors that may influence the release of antimony from the catalysts into water and other products, since antimony is potentially toxic trace element. In this paper, the antimony content in nine brands of bottled mineral and spring water from Serbia, and seven brands of bottled mineral and spring water from EU countries was analyzed. The measurements were conducted using the inductively coupled plasma-mass spectrometry (ICP-MS technique. In the all examined samples the antimony concentration was bellow the maximum contaminant level of 5 μg/L prescribed by the Serbian and EU regulations. Comparison of the content of antimony in PET bottled waters with the content of antimony in water bottled commercially in glass and the natural content of antimony in pristine groundwaters, provides explicit evidence of antimony leaching from PET containers. Since waters bottled in PET have much greater concentration ratio of Sb to Pb than corresponding pristine groundwaters, it can be assumed that bottled waters cannot be used as the relavant source for the study of the natural antimony content in groundwaters. There is a clear relation between the quality of water in bottles (composition, ion strength and antimony leaching rate. Moreover, while the rate of antimony leaching is slow at temperatures below 60 oC, at the temperature range of 60-80 oC antimony release occurs and reaches maximum contaminant level rapidly. As antimony can cause both acute and chronic health problems, factors that promote the increase of antimony concentration should be avoided.

  12. Antimony Doped Tin Oxide Thin Films: Co Gas Sensor

    Directory of Open Access Journals (Sweden)

    P.S. Joshi

    2011-01-01

    Full Text Available Tin dioxide (SnO2 serves as an important base material in a variety of resistive type gas sensors. The widespread applicability of this semicoducting oxide is related both to its range of conductance variability and to the fact that it responds to both oxidising and reducing gases. The antimony doped tin-oxide films were prepared by spray pyrolysis method. The as-deposited films are blackish in colour. Addition of antimony impurity showed little increase in the thickness. The X-ray diffraction pattern shows characteristic tin oxide peaks with tetragonal structure. As the doping concentration of antimony was increased, new peak corresponding to Sb was observed. The intensity of this peak found to be increased when the Sb concentration was increased from 0.01 % to the 1 % which indicates the antimony was incorporated into the tin oxide. For gas sensing studies ohmic contacts were preferred to ensure the changes in resistance of sensor is due to only adsorption of gas molecule. The graph of I-V shows a straight line in nature which indicates the ohmic contact. The sensitivity of the sensor for CO gas was tested. The sensitivity of antimony doped tin oxide found to be increased with increasing Sb concentration. The maximum sensitivity was observed for Sb = 1 % at a working temperature of 250 °C.

  13. Behavior of arsenic impurity at antimony electric precipitation

    International Nuclear Information System (INIS)

    In the paper the arsenic impurity electrochemical behavior and it purification from antimony by electric precipitation out of fluoride solutions was studied. For this the arsenic sample with mass 0.003-0.006 g has been irradiated at the WWR-SM nuclear reactor during 3-5 hour in the thermal neutron flux 1013 n/cm2 s, after 24 h keeping the sample has being dissolved in the concentrated nitric acid, and then it has been evaporated several times with distillation water addition up to wet precipitation state. It is shown, that arsenic impurity behavior character in the antimony electric precipitation out to fluoride electrolyte depends on the electrolyte content, electrolysis conditions, arsenic valency state in arsenic impurity existence in the five-valency state its joint electric reduction with antimony is practically not observing. In the case the arsenic being in three-valency state, it joint electric reduction with antimony is taking place. In this time the electrolytic antimony contents arsenic impurities less in dozen time than initial material

  14. Martensite transformation in antimony implanted stainless steel

    International Nuclear Information System (INIS)

    The authors have used Rutherford backscattering analysis (RBS) and transmission electron microscopy (TEM) and diffraction to investigate austenitic stainless steel crystals implanted at room temperature with 80 keV Sb+ ions to a fluence of 5 x 1020 ions/m2, thus providing implantation with a heavy group V element. RBS channeling spectra from implanted crystals show a damage peak which approaches the height of the random level and therefore indicates a very high degree of disorder in the implanted layers. The distribution of the disorder extends to a depth 3-5 times the depth of the primary radiation damage. The Sb peaks under channeling as well as random conditions are indistinguishable, confirming that substitutionality during implantation is negligible. To establish the nature of the disorder which cannot be assessed from the RBS analysis alone, and in particular to assess whether an amorphous alloy is formed in the implanted layer as indicated from the RBS spectra, samples implanted under similar conditions were investigated in the TEM. Significant extra spots in the patterns can be ascribed to the presence of a radiation induced b.c.c. phase of martensitic origin. The result that a significant amount of martensite can be induced by antimony implantation seems to indicate that the main driving force for the transition is due to damage induced stress concentrations. (Auth.)

  15. Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Lee, Kunik (Inventor)

    2014-01-01

    Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.

  16. Predeposition ultraviolet treatment for adhesion improvement of thin films on mercury cadmium telluride

    International Nuclear Information System (INIS)

    Poor film adhesion to mercury cadmium telluride is a problem of general concern because of the low film deposition temperatures (11 cm-2 and slow interface state densities of 4x1010 cm-2 were obtained at 100 K for aluminum nitiride/mercury cadmium telluride metal-insulator-semiconductor structures which had undergone the treatment

  17. Antimony Resistance in Leishmania, Focusing on Experimental Research

    Directory of Open Access Journals (Sweden)

    Fakhri Jeddi

    2011-01-01

    Full Text Available Leishmaniases are parasitic diseases that spread in many countries with a prevalence of 12 million cases. There are few available treatments and antimonials are still of major importance in the therapeutic strategies used in most endemic regions. However, resistance toward these compounds has recently emerged in areas where the replacement of these drugs is mainly limited by the cost of alternative molecules. In this paper, we reviewed the studies carried out on antimonial resistance in Leishmania. Several common limitations of these works are presented before prevalent approaches to evidence antimonial resistance are related. Afterwards, phenotypic determination of resistance is described, then confronted to clinical outcome. Finally, we detail molecular mechanisms and targets involved in resistance and already identified in vitro within selected mutant strains or in clinical isolates.

  18. Lattice dynamics of femtosecond laser-excited antimony

    Science.gov (United States)

    Abdel-Fattah, Mahmoud Hanafy; Bugayev, Aleksey; Elsayed-Ali, Hani E.

    2016-07-01

    Ultrafast electron diffraction is used to probe the lattice dynamics of femtosecond laser-excited antimony thin film. The temporal hierarchies of the intensity and position of diffraction orders are monitored. The femtosecond laser excitation of antimony film was found to lead to initial compression after the laser pulse, which gives way to tension vibrating at new equilibrium displacement. A damped harmonic oscillator model, in which the hot electron-blast force contributes to the driving force of oscillations in lattice spacing, is used to interpret the data. The electron-phonon energy-exchange rate and the electronic Grüneisen parameter were obtained.

  19. Heat-treated Saccharomyces cerevisiae for antimony speciation and antimony(III) preconcentration in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Marcellino, Sebastien [Universite de Lyon, Lyon1, Laboratoire des Sciences Analytiques, CNRS UMR 5180, bat CPE, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne cedex (France); Attar, Hossein [Universite Louis Pasteur de Strasbourg, Laboratoire de Chimie Analytique et Sciences Separatives, CNRS UMR 7178, ECPM, 25 rue Becquerel 67087 Strasbourg (France); Lievremont, Didier; Lett, Marie-Claire [Universite Louis Pasteur de Strasbourg, Laboratoire de Genetique Moleculaire, Genetique et Microbiologie, CNRS UMR 7156, 28 rue Goethe, 67000 Strasbourg (France); Barbier, Frederique [CNRS USR 59, Service Central d' Analyse, 59 Chemin du Canal BP22 69390 Vernaison (France); Lagarde, Florence [Universite de Lyon, Lyon1, Laboratoire des Sciences Analytiques, CNRS UMR 5180, bat CPE, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne cedex (France); Universite Louis Pasteur de Strasbourg, Laboratoire de Chimie Analytique et Sciences Separatives, CNRS UMR 7178, ECPM, 25 rue Becquerel 67087 Strasbourg (France)], E-mail: florence.lagarde@univ-lyon1.fr

    2008-11-23

    An analytical method was developed for antimony speciation and antimony(III) preconcentration in water samples. The method is based on the selective retention of Sb(III) by modified Saccharomyces cerevisiae in the presence of Sb(V). Heat, caustic and solvent pretreatments of the biomass were investigated to improve the kinetics and thermodynamics of Sb(III) uptake process at room temperature. Heating for 30 min at 80 deg. C was defined as the optimal treatment. Antimony accumulation by the cells was independent of pH (5-10) and ionic strength (0.01-0.1 mol L{sup -1}). 140 mg of yeast and 2 h of contact were necessary to ensure quantitative sequestration of Sb(III) up to 750 {mu}g L{sup -1}. In these conditions, Sb(V) was not retained. Sb(V) was quantified in sorption supernatant by inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma optical emission spectrometry (ICP-OES). Sb(III) was determined after elution with 40 mmol L{sup -1} thioglycolic acid at pH 10. A preconcentration factor close to nine was achieved for Sb(III) when 100 mL of sample was processed. After preconcentration, the detection limits for Sb(III) and Sb(V) were 2 and 5 ng L{sup -1}, respectively, using ICP-MS, 7 and 0.9 {mu}g L{sup -1} using ICP-OES. The proposed method was successfully applied to the determination of Sb(III) and Sb(V) in spiked river and mineral water samples. The relative standard deviations (n = 3) were in the 2-5% range at the tenth {mu}g L{sup -1} level and less than 10% at the lowest Sb(III) and Sb(V) tested concentration (0.1 {mu}g L{sup -1}). Corrected recoveries were in all cases close to 100%.

  20. The photocorrosion of n-cadmium telluride and its suppression

    Science.gov (United States)

    Curran, J. S.

    1980-09-01

    The photoelectrochemical properties of n-type cadmium telluride were studied in water and five other organic solvents, with a view to suppression of the photocorrosion reaction which prevents this and other n-type small bandgap semiconductors from being used in a practical semiconductor-electrolyte junction solar cell. Only the low donicity organic solvents propylene carbonate and methyl nitrate reduce the corrosion rate significantly. A stable photocurrent can be obtained using a solution of ferrocene in these two solvents but analysis of photoelectrolyzed solutions revealed a slow photocorrosion. The dependence of the flatband potential and of the practical significance with respect to solar cell applications considered.

  1. An evaluation of cadmium telluride detectors for computer assisted tomography.

    Science.gov (United States)

    Chu, D; Kaufman, L; Hosier, K; Hoenninger, J

    1978-11-01

    Cadmium telluride (CdTe) presents a set of extremely attractive features as an X-ray detector for computer assisted tomography (CAT). It is stable and easily handled; has a high detection efficiency and very efficient conversion of energy to charge; and permits a high element density in a compact configuration. Unfortunately, effects due to "polarization," "tailing," high and variable leakage currents, and long "memory" are incompatible with the needs of CAT instrumentation. Pulse-processing techniques have allowed us to eliminate these problems in positive-sensitive detectors, thus opening the way for utilization of CdTe in CAT. PMID:711945

  2. Surface Passivation of Mercury-Cadmium-Telluride Infrared Detectors

    Directory of Open Access Journals (Sweden)

    R. Singh

    1991-07-01

    Full Text Available The theoretical considerations and practical aspects of passivating insulator films, in the context of their use on high-performance mercury cadmium telluride (MCT infrared detectors are reviewed. The methods of growth, the interface properties and the applications of both native and deposited passivant films have been discussed. Native films include anodic, chemical, photochemical, and plasma oxides as well as anodic sulphides and fluoro-oxides. Deposited films include ZnS, photo-CVD-grown SiO2, CDTe, and SiN/sub x/. The properties of all these passivant films on MCT have been summarized.

  3. Study of rectification at the metal-cadmium telluride contact

    International Nuclear Information System (INIS)

    The barrier heights at the contact between metals and N or P type cadmium telluride have been determined. Various surface treatments have been used for the semiconductor: lapping, polishing and etching in a bromine in methanol solution. Depending on these preparation differences of about 0.1 eV have been observed for the barrier height which in any case was no more than 0.9 - 1.0 eV. These results can not be explained by only considering the Schottky theory of rectification

  4. Origin of anomalous anharmonic lattice dynamics of lead telluride

    CERN Document Server

    Shiga, Takuma; Hori, Takuma; Delaire, Olivier; Shiomi, Junichiro

    2015-01-01

    The origin of the anomalous anharmonic lattice dynamics of lead telluride is investigated using molecular dynamics simulations with interatomic force constants (IFCs) up to quartic terms obtained from first principles. The calculations reproduce the peak asymmetry of the radial distribution functions and the double peaks of transverse optical phonon previously observed with neutron diffraction and scattering experiments. They are identified to be due to the extremely large nearest-neighbor cubic IFCs in the [100] direction. The outstanding strength of the nearest-neighbor cubic IFCs relative to the longer-range ones explains the reason why the distortion in the radial distribution function is local.

  5. Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B.

    Directory of Open Access Journals (Sweden)

    Gloria Morizot

    2016-01-01

    Full Text Available We report on 4 patients (1 immunocompetent, 3 immunosuppressed in whom visceral leishmaniasis had become unresponsive to (or had relapsed after treatment with appropriate doses of liposomal amphotericin B. Under close follow-up, full courses of pentavalent antimony were administered without life-threatening adverse events and resulted in rapid and sustained clinical and parasitological cure.

  6. Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B.

    Science.gov (United States)

    Morizot, Gloria; Jouffroy, Romain; Faye, Albert; Chabert, Paul; Belhouari, Katia; Calin, Ruxandra; Charlier, Caroline; Miailhes, Patrick; Siriez, Jean-Yves; Mouri, Oussama; Yera, Hélène; Gilquin, Jacques; Tubiana, Roland; Lanternier, Fanny; Mamzer, Marie-France; Legendre, Christophe; Peyramond, Dominique; Caumes, Eric; Lortholary, Olivier; Buffet, Pierre

    2016-01-01

    We report on 4 patients (1 immunocompetent, 3 immunosuppressed) in whom visceral leishmaniasis had become unresponsive to (or had relapsed after) treatment with appropriate doses of liposomal amphotericin B. Under close follow-up, full courses of pentavalent antimony were administered without life-threatening adverse events and resulted in rapid and sustained clinical and parasitological cure.

  7. Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    OpenAIRE

    Kathawa, J.; Fry, C; Thoennessen, M

    2012-01-01

    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  8. Kelvin probe studies of cesium telluride photocathode for AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, Eric E., E-mail: ewisniew@anl.gov [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Velazquez, Daniel [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Yusof, Zikri, E-mail: zyusof@hawk.iit.edu [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Spentzouris, Linda; Terry, Jeff [Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Sarkar, Tapash J. [Rice University, 6100 Main, Houston, TX 77005 (United States); Harkay, Katherine [Accelerator Science Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States)

    2013-05-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (≈50nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating. -- Highlights: ► The correlation between Quantum Efficiency (QE) and work function. ► How QE and work function evolve together. ► Rejuvenation of the photocathode via heating and the effect on work function. ► The effects on the work function due to exposure to UV light.

  9. Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.

    Science.gov (United States)

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2015-12-01

    Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.

  10. Abnormal physics of group-II telluride system:valence contribution of d electrons

    Institute of Scientific and Technical Information of China (English)

    Duan He; Dong You-Zhong; Huang Yan; Chen Xiao-Shuang

    2011-01-01

    The physical trend of group-II tellurides is unexpected and contrary to the conventional wisdom. The present firstprinciples calculations give fundamental insights into the extent to which group-II telluride compounds present special properties upon mixing the d valence character.Our results provide explanations for the unexpected experimental observations based on the abnormal binding ordering of metal d electrons and their strong perturbation to the band edge states. The insights into the binary tellurides are useful for the study and control of the structural and chemical perturbation in their ternary alloys and heterostructures.

  11. Effect of metallic coatings on thermoelectric properties of lead telluride films

    Energy Technology Data Exchange (ETDEWEB)

    Ukhlinov, G.A.; Lakhno, I.G. (Moskovskij Inst. Ehlektronnoj Tekhniki (USSR))

    1984-05-01

    Effect of sprayed coatings of different metals on thermoelectric properties of lead telluride films was investigated. The basic films were prepared by the method of vacuum thermal evaporation of sample of stoichiometric lead telluride at 5x10/sup -4/ Pa residual pressure on mica (muscovite) sublayer at 330-350 deg C and approximately 10 nm/s deposition rate. It was established that fine coatings of copper, silver and gold modify sufficiently electric properties of lead telluride films. The effect is conditioned mainly by decoration and electric shunting of grain boundaries by metal island, which removes the contribution of grain boundaries to film electric conductivity.

  12. The determination of the thermodynamic activity of antimony in alpha-iron

    International Nuclear Information System (INIS)

    In this paper a method is suggested for determining the thermodynamic activity of antimony dissolved in alpha-iron, based on the study of antimony distribution between the two phases: liquid lead and solid iron. By this method, it was found that solid solutions of antimony in alpha-iron can be distinguished by positive divergences from the ideal state. Over a fairly wide range of concentrations, solutions of antimony in iron obey Henry's law. Special experiments on the distribution of antimony between lead and liquid iron showed that in the liquid state also the iron-antimony system is marked by positive divergences from the ideal state when small concentrations of antimony are present. The heat required for the solution of antimony in alpha-iron, and the excess partial molar entropy, were calculated from the activity temperature. The results were used for accurately locating the line showing the solubility limit of antimony in alpha-iron. Since alloys of antimony with iron were obtained by diffusion saturation and not by cooling from the liquid state, there was no liquefaction. Thus the lattice constant of the alloys and its relation to the alloy concentration could be reliably determined. The solubility limit established from X-ray data agrees with that obtained with Sb124. (author)

  13. Megapixel mercury cadmium telluride focal plane arrays for infrared imaging out to 12 microns Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the fabrication of large format, long wave infrared (LWIR) mercury cadmium telluride (HgCdTe or MCT) detector arrays where the cutoff wavelength is...

  14. In Vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Directory of Open Access Journals (Sweden)

    Samanta Etel Treiger Borborema

    2005-10-01

    Full Text Available Pentavalent antimony, as meglumine antimoniate (Glucantime® or sodium stibogluconate (Pentostam® , is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes 122Sb and 124Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology.Os antimoniais pentavalentes, como o antimoniato de meglumina (Glucantime® ou estibogluconato de sódio (Pentostam® , são o principal tratamento para a leishmaniose, um complexo de doenças causadas pelo protozoário parasita Leishmania, uma doença endêmica e negligenciada no Brasil. Apesar do seu uso clínico por mais de meio século, seu mecanismo de ação, toxicidade e dados de farmacocinética permanecem desconhecidos. Os métodos analíticos para determinação de antimônio em sistemas biológicos são complexos e apresentam baixa sensibilidade. Estudos utilizando radiotraçadores têm papel potencial no desenvolvimento farmacológico. O objetivo deste estudo foi desenvolver um radiotraçador de antimônio, com propriedades físicas e biológicas adequadas. O antimoniato de meglumina foi irradiado por nêutrons no reator nuclear IEA-R1, produzindo dois radioisótopos: 122

  15. Antimony and arsenic biogeochemistry in the western Atlantic Ocean

    Science.gov (United States)

    Cutter, Gregory A.; Cutter, Lynda S.; Featherstone, Alison M.; Lohrenz, Steven E.

    The subtropical to equatorial Atlantic Ocean provides a unique regime in which one can examine the biogeochemical cycles of antimony and arsenic. In particular, this region is strongly affected by inputs from the Amazon River and dust from North Africa at the surface, and horizontal transport at depth from high-latitude northern (e.g., North Atlantic Deep Water) and southern waters (e.g., Antarctic Bottom and Intermediate Waters). As a part of the 1996 Intergovernmental Oceanographic Commission's Contaminant Baseline Survey, data for dissolved As(III+V), As(III), mono- and dimethyl arsenic, Sb(III+V), Sb(III), and monomethyl antimony were obtained at six vertical profile stations and 44 sites along the 11,000 km transect from Montevideo, Uruguay, to Bridgetown, Barbados. The arsenic results were similar to those in other oceans, with moderate surface depletion, deep-water enrichment, a predominance of arsenate (>85% As(V)), and methylated arsenic species and As(III) in surface waters that are likely a result of phytoplankton conversions to mitigate arsenate "stress" (toxicity). Perhaps the most significant discovery in the arsenic results was the extremely low concentrations in the Amazon Plume (as low as 9.8 nmol/l) that appear to extend for considerable distances offshore in the equatorial region. The very low concentration of inorganic arsenic in the Amazon River (2.8 nmol/l; about half those in most rivers) is probably the result of intense iron oxyhydroxide scavenging. Dissolved antimony was also primarily in the pentavalent state (>95% antimonate), but Sb(III) and monomethyl antimony were only detected in surface waters and displayed no correlations with biotic tracers such as nutrients and chlorophyll a. Unlike As(III+V)'s nutrient-type vertical profiles, Sb(III+V) displayed surface maxima and decreased into the deep waters, exhibiting the behavior of a scavenged element with a strong atmospheric input. While surface water Sb had a slight correlation with

  16. BioGeochemistry of antimony, Sources, Transfers, Impacts and Assessment

    Science.gov (United States)

    Le Roux, Gael; Pinelli, Eric; Hedde, Mickael; Guiresse, Maritxu; De Vleeschouwer, François; Silvestre, Jérôme; Enrico, Maxime; Gandois, Laure; Monna, Fabrice; Gers, Charles; Probst, Anne

    2013-04-01

    BioGeoSTIB is a project funded by ADEME (French Environmental Protection Agency). Its aim is to provide a better understanding of biogeochemical cycle disturbances of antimony by man. Specifically, it is focused on the atmosphere-soil-organism interfaces. Based on a multi-scale approach, the impact of antimony on organisms and organism communities and the factors of Sb dispersion in the environment aim to better characterized. This report gives the main results of 2 and 1 -2 years of research. Using peat bogs as environmental archives, we show that Sb contamination in soils date back to the beginning of the metallurgy. Atmospheric deposition of Sb largely increased by 100 times during the Industrial Revolution compared to natural levels (~0,001-0,01 mg m-2 an-1) estimated in the deepest peat layers. This disturbance in the antimony geochemical cycle modified its concentrations in soils. One main source of present Sb contamination is automotive traffic due to Sb in braking lines. This emerging contamination was characterized close to a roundabout. This additional source of Sb does not seem to impact soil fauna but Sb concentrations in soil solutions exceed 1 μg L-1. Genotoxicity tests have been performed on the model plant Vicia faba and show that antimony is genotoxic at its lowest concentrations and that there is a synergistic effect lead, a trace metal frequently found in association with antimony in the environment. It is a main issue to determine Sb critical loads in the environment but main identified lacks are thermodynamic data, which are not available yet, to model the behavior of Sb in soil solutions and the fact the antimony is always associated with other anthropogenic trace metals like lead. Critical thresholds of Sb have been determined for the first time based on genotoxicity experiment. Simulations show that these thresholds can be exceeded in the future, whereas present limits for invertebrates (US-EPA) are and will not be reached. However

  17. Optical properties of thermally evaporated cadmium telluride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, U.P.; Bhavsar, D.S.; Vaidya, R.U.; Bhavsar, G.P

    2003-05-26

    Polycrystalline CdTe films have been deposited onto glass substrates at 373 K by vacuum evaporation technique. The transmittance and reflectance have been measured at normal and near normal incidence, respectively, in the spectral range 200-2500 nm. The dependence of absorption coefficient, {alpha} on the photon energy have been determined. Analysis of the result showed that for CdTe films of different thicknesses, direct transition occurs with band gap energies in the range 1.45-1.52 eV. Refractive indices and extinction coefficients have been evaluated in the above spectral range. The XRD analysis confirmed that CdTe films are polycrystalline having hexagonal structure. The lattice parameters of thin films are almost matching with the JCPDS 82-0474 data for cadmium telluride.

  18. Mercury Cadmium Telluride Photoconductive Long Wave Infrared Linear Array Detectors

    Directory of Open Access Journals (Sweden)

    Risal Singh

    2003-07-01

    Full Text Available Mercury cadmium telluride (Hg1-x, CdxTe (MCT photoconductive long wave infrared linear arrays are still in demand due to several advantages. The linear array technology is well established, easier, economical and is quite relevant to thermal imaging even today. The scan thermal imaging systems based on this technology offer wider field of view coverage and capacity for higher resolution in the scan direction relative to staring systems that use expensive and yet to mature focal plane array detector technology. A critical review on photoconductive n-Hg1-x CdxTe linear array detector technology for the long wave infrared range has been presented. The emphasis lies on detector design and processing technology. The critical issues of diffusion and drift effects, Hi-Lo and heterostructure blocking contacts, surface passivation, and other related aspects have been considered from the detector design angle. The device processing technology aspects are of vital importance

  19. Study on thermal annealing of cadmium zinc telluride (CZT) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Bolotnikov, A.E.; Fochuk, P.M.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; Horace, J.; McCall, B.; Gul, R.; Xu, L.; Kopach, O.V.; and James, R.B.

    2010-08-01

    Cadmium Zinc Telluride (CZT) has attracted increasing interest with its promising potential as a room-temperature nuclear-radiation-detector material. However, different defects in CZT crystals, especially Te inclusions and dislocations, can degrade the performance of CZT detectors. Post-growth annealing is a good approach potentially to eliminate the deleterious influence of these defects. At Brookhaven National Laboratory (BNL), we built up different facilities for investigating post-growth annealing of CZT. Here, we report our latest experimental results. Cd-vapor annealing reduces the density of Te inclusions, while large temperature gradient promotes the migration of small-size Te inclusions. Simultaneously, the annealing lowers the density of dislocations. However, only-Cd-vapor annealing decreases the resistivity, possibly reflecting the introduction of extra Cd in the lattice. Subsequent Te-vapor annealing is needed to ensure the recovery of the resistivity after removing the Te inclusions.

  20. Electrochemical Studies of Lead Telluride Behavior in Acidic Nitrate Solutions

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2015-04-01

    Full Text Available Electrochemistry of lead telluride stationary electrode was studied in nitric acid solutions of pH 1.5-3.0. E-pH diagram for Pb-Te-H2O system was calculated. Results of cyclic voltammetry of Pb, Te and PbTe were discussed in correlation with thermodynamic predictions. Anodic dissolution of PbTe electrode at potential approx. -100÷50 mV (SCE resulted in tellurium formation, while above 300 mV TeO2 was mainly produced. The latter could dissolve to HTeO+2 under acidic electrolyte, but it was inhibited by increased pH of the bath.

  1. Tunable split-ring resonators using germanium telluride

    Science.gov (United States)

    Kodama, C. H.; Coutu, R. A.

    2016-06-01

    We demonstrate terahertz (THz) split-ring resonator (SRR) designs with incorporated germanium telluride (GeTe) thin films. GeTe is a chalcogenide that undergoes a nonvolatile phase change from the amorphous to crystalline state at approximately 200 °C, depending on the film thickness and stoichiometry. The phase change also causes a drop in the material's resistivity by six orders of magnitude. In this study, two GeTe-incorporated SRR designs were investigated. The first was an SRR made entirely out of GeTe and the second was a gold SRR structure with a GeTe film incorporated into the gap region of the split ring. These devices were characterized using THz time-domain spectroscopy and were heated in-situ to determine the change in the design operation with varying temperatures.

  2. Study of oxide films on the surface of cadmium telluride

    International Nuclear Information System (INIS)

    Study of oxide films on surfaces of CdTe monocrystals is continued by methods of ellipsometry and by absorption in IR-spectral range. Index values of refruction of oxide films, produced by cadmium telluride oxidation in hydrogen peroxide solutions, in oxigen flow at 673 K and by anode oxidation, as a rule, differ essentially in dependence on method of production, that gives evidence of differences in these films composition. Oxide films, produced in oxygen flow, as opposed to films, produced by two other methods, have intensive absorption, characteristic for tellurite group. Film thickness, produced by oxidation in hydrogen peroxide and in oxygen flow, varies within rather wide limits with observance of externally similar conditions of production. By contrast to it, thickness of anode films is regulated reliably by anode potential

  3. Cadmium Telluride Solar Cells with PEDOT:PSS Back Contact

    Science.gov (United States)

    Mount, Michael; Duarte, Fernanda; Paudel, Naba; Yan, Yanfa; Wang, Weining

    Cadmium Telluride (CdTe) solar cell is one of the most promising thin film solar cells and its highest efficiency has reached 21%. To keep improving the efficiency of CdTe solar cells, a few issues need to be addressed, one of which is the back contact. The back contact of CdTe solar cells are mostly Cu-base, and the problem with Cu-based back contact is that Cu diffuses into the grain boundary and into the CdS/CdTe junction, causing degradation problem at high temperature and under illumination. To continue improving the efficiency of CdTe/CdS solar cells, a good ohmic back contact with high work function and long term stability is needed. In this work, we report our studies on the potential of conducting polymer being used as the back contact of CdTe/CdS solar cells. Conducting polymers are good candidates because they have high work functions and high conductivities, are easy to process, and cost less, meeting all the requirements of a good ohmic back contact for CdTe. In our studies, we used poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with different conductivities and compared them with traditional Cu-based back contact. It was observed that the CdTe solar cell performance improves as the conductivity of the PEDOT:PSS increase, and the efficiency (9.1%) is approaching those with traditional Cu/Au back contact (12.5%). Cadmium Telluride Solar Cells with PEDOT:PSS Back Contact.

  4. States of antimony and tin atoms in lead chalcogenides

    International Nuclear Information System (INIS)

    It is shown by Mössbauer spectroscopy of the 119Sb(119mSn) isotope that impurity antimony atoms in PbS, PbSe, and PbTe lattices are distributed between cation and anion sublattices. In n-type samples, the greatest part of antimony is located in the anion sublattice; in hole ones, in the cation sublattice. The tin atoms formed as a result of radioactive decay of 119Sb (antisite state) are electrically inactive in the anion sub-lattice of PbS and PbSe, while, in the cation sublattice, they form donor U− centers. Electron exchange between the neutral and doubly ionized tin U− centers via the allowed band states is observed. The tin atoms formed after radioactive decay of 119Sb are electrically inactive in the anion and cation sublattices of PbTe.

  5. 无机锑系阻燃剂%Inorganic Antimony Series Fire Retardants

    Institute of Scientific and Technical Information of China (English)

    张亨

    2012-01-01

    无机锑系阻燃剂主要包括三氧化二锑、五氧化二锑溶胶和锑酸钠等。介绍了它们的性质、生产工艺、产品标准、阻燃用途和研发方向等。%Inorganic antimony series fire retardants include antimony trioxide, antimony pentoxide sol and sodium antimonate, etc. The properties, production process, production standard and uses of several inorganic antimony series fire retardants are introduced.

  6. Correlation of CsK{sub 2}Sb photocathode lifetime with antimony thickness

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, M. A., E-mail: mmamu001@odu.edu; Elmustafa, A. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States); The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Hernandez-Garcia, C.; Poelker, M. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2015-06-01

    CsK{sub 2}Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  7. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, M. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, USA; The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Hernandez-Garcia, C. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Poelker, M. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Elmustafa, A. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, USA; The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

    2015-06-01

    CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  8. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    Directory of Open Access Journals (Sweden)

    M. A. Mamun

    2015-06-01

    Full Text Available CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  9. Resistance to Arsenic- and Antimony-Based Drugs

    OpenAIRE

    Milena Salerno; Arlette Garnier-Suillerot

    2003-01-01

    Organic arsenicals were the first antimicrobial agents specifically synthesized for the treatment of infectious diseases such as syphilis and sleeping sickness. For the treatment of diseases caused by trypanosomatid parasites, organic derivatives of arsenic and the related metalloid antimony are still the drugs of choice. Arsenic trioxide, As203, has been used for a long time in traditional Chinese medicines for treatment of various diseases, and it has recently been shown to be clinically ac...

  10. Crystallization of antimony orthotantalate and its physical properties

    International Nuclear Information System (INIS)

    Physicochemical conditions of monophase synthesis of antimony orthoniobate monocrystals in the system SbO3-Ta2O5-KHF2-H2O2-H2O were investigated. In the area of monophase synthesis of SbTaO4 monocrystals kinetic studies of its growth conditions for inoculation, depending on solvent concentration, temperature, pyroelectric properties of the monocrystal grown were studied and conclusion was made on their practical use

  11. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water.

    Science.gov (United States)

    Westerhoff, Paul; Prapaipong, Panjai; Shock, Everett; Hillaireau, Alice

    2008-02-01

    Antimony is a regulated contaminant that poses both acute and chronic health effects in drinking water. Previous reports suggest that polyethylene terephthalate (PET) plastics used for water bottles in Europe and Canada leach antimony, but no studies on bottled water in the United States have previously been conducted. Nine commercially available bottled waters in the southwestern US (Arizona) were purchased and tested for antimony concentrations as well as for potential antimony release by the plastics that compose the bottles. The southwestern US was chosen for the study because of its high consumption of bottled water and elevated temperatures, which could increase antimony leaching from PET plastics. Antimony concentrations in the bottled waters ranged from 0.095 to 0.521 ppb, well below the US Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 6 ppb. The average concentration was 0.195+/-0.116 ppb at the beginning of the study and 0.226+/-0.160 ppb 3 months later, with no statistical differences; samples were stored at 22 degrees C. However, storage at higher temperatures had a significant effect on the time-dependent release of antimony. The rate of antimony (Sb) release could be fit by a power function model (Sb(t)=Sb 0 x[Time, h]k; k=8.7 x 10(-6)x[Temperature ( degrees C)](2.55); Sb 0 is the initial antimony concentration). For exposure temperatures of 60, 65, 70, 75, 80, and 85 degrees C, the exposure durations necessary to exceed the 6 ppb MCL are 176, 38, 12, 4.7, 2.3, and 1.3 days, respectively. Summertime temperatures inside of cars, garages, and enclosed storage areas can exceed 65 degrees C in Arizona, and thus could promote antimony leaching from PET bottled waters. Microwave digestion revealed that the PET plastic used by one brand contained 213+/-35 mgSb/kg plastic; leaching of all the antimony from this plastic into 0.5L of water in a bottle could result in an antimony concentration of 376 ppb. Clearly, only a small

  12. Recent advances on antimony(III/V) compounds with potential activity against tumor cells.

    Science.gov (United States)

    Hadjikakou, S K; Ozturk, I I; Banti, C N; Kourkoumelis, N; Hadjiliadis, N

    2015-12-01

    Antimony one of the heavier pnictogens, has been in medical use against microbes and parasites as well. Antimony-based drugs have been prescribed against leishmaniasis since the parasitic transmission of the tropical disease was understood in the beginning of the 20th century. The activity of arsenic against visceral leishmaniasis led to the synthesis of an array of arsenic-containing parasitic agents, among them the less toxic pentavalent antimonials: Stibosan, Neostibosan, and Ureastibamine. Other antimony drugs followed: sodium stibogluconate (Pentostam) and melglumine antimoniate (Glucantim or Glucantime); both continue to be in use today despite their toxic side effects and increasing loss in potency due to the growing resistance of the parasite against antimony. Antimony compounds and their therapeutic potentials are under consideration from many research groups, while a number of early reviews recording advances of antimony biomedical applications are also available. However, there are only few reports on the screening for antitumor potential of antimony compounds. This review focuses upon results obtained on the anti-proliferative activity of antimony compounds in the past years. This survey shows that antimony(III/V) complexes containing various types of ligands such as thiones, thiosemicarbazones, dithiocarbamates, carboxylic acids, or ketones, nitrogen donor ligands, exhibit selectivity against a variety of cancer cells. The role of the ligand type of the complex is elucidated within this review. The complexes and their biological activity are already reported elsewhere. However quantitative structure-activity relationship (QSAR) modeling studies have been carried out and they are reported for the first time here. PMID:26092367

  13. Heavy weight vehicle traffic and its relationship with antimony content in human blood.

    Science.gov (United States)

    Quiroz, Waldo; De Gregori, Ida; Basilio, Paola; Bravo, Manuel; Pinto, Marcela; Lobos, Maria Gabriela

    2009-05-01

    Brake pads systems are nowadays considered as one of the most important sources of antimony in airborne particulate matter. One way that antimony can enter the body is through the lungs and specially by the interaction of antimony with -SH groups present in erythrocyte membrane cells. In spite of that, there are no studies about antimony enrichment in blood of workers exposed to high vehicle traffic. Port workers are generally exposed to heavy weight vehicle traffic. In Chile the biggest marine port is found in Valparaíso City. In this study antimony in whole blood and its fractions (erythrocytes-plasma and erythrocytes membranes-cytoplasm) of 45 volunteers were determined. The volunteers were port workers from Valparaíso city, and two control groups, one from Valparaíso and another from Quebrada Alvarado, the latter being a rural area located about 100 Km away from Valparaíso. The results demonstrate that port workers are highly impacted by antimony emissions from heavy weight vehicle traffic showing an average concentration of 27 +/- 9 ng Sb kg(-1), 5-10 times higher than the concentration of antimony in the blood of control groups. These are the highest antimony levels in blood ever reported in the literature. The highest antimony percentages (>60%) were always found in the erythrocyte fractions. However, the exposure degree to vehicle traffic is significant over antimony distribution in plasma, erythrocytes and cytoplasm. This results shows that the antimony mass in the erythrocyte membranes, was approximately constant at 1.0 +/- 0.1 ng Sb g(-1) of whole blood in all blood samples analyzed.

  14. Tin dioxide sol-gel derived films doped with platinum and antimony deposited on porous silicon

    NARCIS (Netherlands)

    Savaniu, C.; Arnautu, A.; Cobianu, C.; Craciun, G.; Flueraru, C.; Zaharescu, M.; Parlog, C.; Paszti, F.; Berg, van den A.

    1999-01-01

    SnO2 sol-gel derived thin films doped simultaneously with Pt and Sb are obtained and reported for the first time. The Sn sources were tin(IV) ethoxide or tin(II) ethylhexanoate, while hexachloroplatinic acid (H2PtCl6) and antimony chloride (SbCl3) were used as platinum and antimony sources, respecti

  15. Oxidation and mobilization of metallic antimony in aqueous systems with simulated groundwater

    Science.gov (United States)

    Ilgen, A. G.; Majs, F.; Barker, A. J.; Douglas, T. A.; Trainor, T. P.

    2014-05-01

    Antimony (Sb) is a contaminant of concern that can be present in elevated concentrations in shooting range soils due to mobilization from spent lead/antimony bullets. Antimony in shooting range soils has been observed as either metallic Sb(0) or as Sb(V) immobilized by iron (hydr)oxides. The absence of Sb(III) in soils is indicative of rapid Sb(III) oxidation to Sb(V) under surface soil conditions. However, the major controls on antimony oxidation and mobility are poorly understood. To better understand these controls we performed multiple batch experiments under oxic conditions to quantify the oxidation and dissolution of antimony in systems where Sb(0) is oxidized to Sb(III) and further to Sb(V). We also tested how variations in the aqueous matrix composition and the presence of metallic lead (Pb) affect the dissolution, solid phase speciation, and oxidation of antimony. We monitored changes in the aqueous antimony speciation using liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS). To test which solid phases form as a result of Sb(0) oxidation, and therefore potentially limit the mobility of antimony in our studied systems, we characterized the partially oxidized Sb(0) powders by means of extended X-ray absorption fine structure (EXAFS) spectroscopy and powder X-ray diffraction (XRD).

  16. Leishmania donovani: an in vitro study of antimony-resistant amphotericin B-sensitive isolates

    DEFF Research Database (Denmark)

    Sharief, Abdalla Hassan; Gasim Khalil, Eltahir Awad; Theander, Thor G;

    2006-01-01

    Drug sensitivity of clinically antimony-unresponsive Leishmania donovani isolates from Eastern Sudan was evaluated in an in vitro culture system against sodium stibogluconate (Pentostam) and Amphotericin B. Eight isolates, six from antimony-resistant and two from clinically responsive patients were...

  17. Research on Percolation Network and Physical Properties of Graphite/Antimony Composites

    Institute of Scientific and Technical Information of China (English)

    HU Ya-fei; HE Min; WANG Qi-li

    2006-01-01

    The microstructure, friction and wear behaviour of graphite preform and graphite/antimony composites are analysed based on the percolation theory of hydrodynamics to investigate the relationship between the percolation network and physical properties of graphite/antimony composites. The result shows that there are two important factors to enhance friction and wear behaviour of graphite/antimony composites at high temperature: 1) the formation of the pore network in the preform, which is called the first percolation and 2) the optimization of infiltration method in the process of infiltrating antimony, which is called the second percolation. By adding some pyrolysate and controlling the roasting process, perfect net pores and sub-micron percolation microstructure may be formed in the graphite preform. By controlling the infiltration process, the saturation of molten antimony infiltrating into perfect pores can be optimized.

  18. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    International Nuclear Information System (INIS)

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs

  19. Brief review of cadmium telluride-based photovoltaic technologies

    Science.gov (United States)

    Başol, Bülent M.; McCandless, Brian

    2014-01-01

    Cadmium telluride (CdTe) is the most commercially successful thin-film photovoltaic technology. Development of CdTe as a solar cell material dates back to the early 1980s when ˜10% efficient devices were demonstrated. Implementation of better quality glass, more transparent conductive oxides, introduction of a high-resistivity transparent film under the CdS junction-partner, higher deposition temperatures, and improved Cl-treatment, doping, and contacting approaches yielded >16% efficient cells in the early 2000s. Around the same time period, use of a photoresist plug monolithic integration process facilitated the demonstration of the first 11% efficient module. The most dramatic advancements in CdTe device efficiencies were made during the 2013 to 2014 time frame when small-area cell conversion efficiency was raised to 20% range and a champion module efficiency of 17% was reported. CdTe technology is attractive in terms of its limited life-cycle greenhouse gas and heavy metal emissions, small carbon footprint, and short energy payback times. Limited Te availability is a challenge for the growth of this technology unless Te utilization rates are greatly enhanced along with device efficiencies.

  20. Review of the field performance of one cadmium telluride module

    Energy Technology Data Exchange (ETDEWEB)

    Cueto, J.A. del [National Renewable Energy Lab., Golden, CO (United States)

    1998-12-01

    Performance data gathered in situ from a large-area cadmium telluride (CdTe) thin-film photovoltaic (PV) module that has been deployed outdoors since February 1995 are investigated. It appears that the module's performance has been stable over the last 2 years but it exhibits a semi-cyclical variation whereby the efficiency appears to peak between the autumnal equinox and winter solstice. Analyses are performed that dissect module current-voltage parameters by irradiance and examine their dependence on temperature. The temperature coefficient of the efficiency is quite small and negative from 80% of 1-sun intensity and upwards. Its meager value is the outcome of the sizes and opposite sings of the temperature coefficients of the open-circuit voltage and fill factor. Average module series resistance is quantified and shown to be a determinant in power loss of 11% at 1-sun intensity. It is demonstrated to constrain the fill factor at illumination intensities above 60% of 1-sun, which occurs in the same range of illumination intensities that the temperature coefficients of the fill factor exhibit positive values. Evidence is presented that points to some spectrally-induced variations in the efficiency. (Author)

  1. Thin tungsten telluride layer preparation by thermal annealing

    Science.gov (United States)

    Lu, Wei; Zhang, Yudao; Zhu, Zusong; Lai, Jiawei; Zhao, Chuan; Liu, Xuefeng; Liu, Jing; Sun, Dong

    2016-10-01

    We report a simple method to prepare a thin Tungsten Telluride (WTe2) flake with accurate thickness control, which allows preparing and studying this two dimensional material conveniently. First, the WTe2 flake, which is relatively thick due to its strong interlayer van der Waals forces, is obtained by a conventional mechanical exfoliation method. Then, the exfoliated flake is annealed at 600 °C under a constant Ar protecting flow. Raman and atomic force spectroscopy characterizations demonstrate that thermal annealing can effectively thin down the WTe2 flake and retain its original lattice structure, though its surface smoothness is slightly deteriorated. Additionally, systematical study indicates that the thinning process strongly depends on the initial thickness of the WTe2 flake before annealing: the thinning rate increases from 0.12 nm min-1 to 0.36 nm min-1 as the initial thickness increases from 10 nm to 45 nm, while the roughness of the final product also increases with the increase of its initial thickness. However, the method fails when it is applied to WTe2 flakes thicker than 100 nm, resulting in uneven or burnt surface, which is possibly caused by big cavities formed by a large amount of defects gathered at the top surface.

  2. Preliminary uranium enrichment analysis results using cadmium zinc telluride detectors

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory (LLNL) and EG ampersand G ORTEC have jointly developed a portable ambient-temperature detection system that can be used in a number of application scenarios. The detection system uses a planar cadmium zinc telluride (CZT) detector with custom-designed detector support electronics developed at LLNL and is based on the recently released MicroNOMAD multichannel analyzer (MCA) produced by ORTEC. Spectral analysis is performed using software developed at LLNL that was originally designed for use with high-purity germanium (HPGe) detector systems. In one application, the CZT detection system determines uranium enrichments ranging from less than 3% to over 75% to within accuracies of 20%. The analysis was performed using sample sizes of 200 g or larger and acquisition times of 30 min. The authors have demonstrated the capabilities of this system by analyzing the spectra gathered by the CZT detection system from uranium sources of several enrichments. These experiments demonstrate that current CZT detectors can, in some cases, approach performance criteria that were previously the exclusive domain of larger HPGe detector systems

  3. Thickness-induced structural phase transformation of layered gallium telluride.

    Science.gov (United States)

    Zhao, Q; Wang, T; Miao, Y; Ma, F; Xie, Y; Ma, X; Gu, Y; Li, J; He, J; Chen, B; Xi, S; Xu, L; Zhen, H; Yin, Z; Li, J; Ren, J; Jie, W

    2016-07-28

    The thickness-dependent electronic states and physical properties of two-dimensional materials suggest great potential applications in electronic and optoelectronic devices. However, the enhanced surface effect in ultra-thin materials might significantly influence the structural stability, as well as the device reliability. Here, we report a spontaneous phase transformation of gallium telluride (GaTe) that occurred when the bulk was exfoliated to a few layers. Transmission electron microscopy (TEM) results indicate a structural variation from a monoclinic to a hexagonal structure. Raman spectra suggest a critical thickness for the structural transformation. First-principle calculations and thermodynamic analysis show that the surface energy and the interlayer interaction compete to dominate structural stability in the thinning process. A two-stage transformation process from monoclinic (m) to tetragonal (T) and then from tetragonal to hexagonal (h) is proposed to understand the phase transformation. The results demonstrate the crucial role of interlayer interactions in the structural stability, which provides a phase engineering strategy for device applications.

  4. Using atomistic simulations to model cadmium telluride thin film growth

    Science.gov (United States)

    Yu, Miao; Kenny, Steven D.

    2016-03-01

    Cadmium telluride (CdTe) is an excellent material for low-cost, high efficiency thin film solar cells. It is important to conduct research on how defects are formed during the growth process, since defects lower the efficiency of solar cells. In this work we use computer simulation to predict the growth of a sputter deposited CdTe thin film. On-the-fly kinetic Monte Carlo technique is used to simulate the CdTe thin film growth on the (1 1 1) surfaces. The results show that on the (1 1 1) surfaces the growth mechanisms on surfaces which are terminated by Cd or Te are quite different, regardless of the deposition energy (0.1∼ 10 eV). On the Te-terminated (1 1 1) surface the deposited clusters first form a single mixed species layer, then the Te atoms in the mixed layer moved up to form a new layer. Whilst on the Cd-terminated (1 1 1) surface the new Cd and Te layers are formed at the same time. Such differences are probably caused by stronger bonding between ad-atoms and surface atoms on the Te layer than on the Cd layer.

  5. In-Plane Optical Anisotropy of Layered Gallium Telluride.

    Science.gov (United States)

    Huang, Shengxi; Tatsumi, Yuki; Ling, Xi; Guo, Huaihong; Wang, Ziqiang; Watson, Garrett; Puretzky, Alexander A; Geohegan, David B; Kong, Jing; Li, Ju; Yang, Teng; Saito, Riichiro; Dresselhaus, Mildred S

    2016-09-27

    Layered gallium telluride (GaTe) has attracted much attention recently, due to its extremely high photoresponsivity, short response time, and promising thermoelectric performance. Different from most commonly studied two-dimensional (2D) materials, GaTe has in-plane anisotropy and a low symmetry with the C2h(3) space group. Investigating the in-plane optical anisotropy, including the electron-photon and electron-phonon interactions of GaTe is essential in realizing its applications in optoelectronics and thermoelectrics. In this work, the anisotropic light-matter interactions in the low-symmetry material GaTe are studied using anisotropic optical extinction and Raman spectroscopies as probes. Our polarized optical extinction spectroscopy reveals the weak anisotropy in optical extinction spectra for visible light of multilayer GaTe. Polarized Raman spectroscopy proves to be sensitive to the crystalline orientation of GaTe, and shows the intricate dependences of Raman anisotropy on flake thickness, photon and phonon energies. Such intricate dependences can be explained by theoretical analyses employing first-principles calculations and group theory. These studies are a crucial step toward the applications of GaTe especially in optoelectronics and thermoelectrics, and provide a general methodology for the study of the anisotropy of light-matter interactions in 2D layered materials with in-plane anisotropy.

  6. Magnetic properties of Cr telluride-selenide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mankovsky, Sergey; Polesya, Svetlana; Ebert, Hubert [Dept. Chemie und Biochemie, Universitaet Muenchen, Butenandtstr. 5-13, D-81377 Muenchen (Germany); Huang, Zhong-Le; Bensch, Wolfgang [Institute for Anorganic Chemistry, Olshausenstr. 40, D-24098, Kiel (Germany)

    2007-07-01

    Results of a theoretical study of the magnetic properties of Cr telluride-selenide alloys having trigonal crystal structure are presented in comparison with experimental results. Both ground state and temperature-dependent magnetic properties of Cr{sub 1-{delta}}Te and Cr{sub x}(Te{sub {alpha}}Se{sub {beta}}){sub 2} (with ratio {alpha}:{beta}=7:1,6:2,5:3) have been investigated in a wide region of chromium content. For the alloys Cr{sub x}(Te{sub {alpha}}Se{sub {beta}}){sub 2} a transition to the state with antiferromagnetic order in a fully occupied sub-lattice and with no order in a partially occupied sub-lattice was obtained. For the alloys Li{sub x}Cr{sub 0.5}Ti{sub 0.75}Se{sub 2}, a non-monotonic dependence of structural and magnetic properties have been found upon increase of Li concentration x, that is in agreement with experimental results. The ground state properties have been studied on the basis of electronic structure calculations using the Korringa-Kohn-Rostoker (KKR) band structure method combined with the CPA alloy theory. Using Monte Carlo simulations we obtained the magnetic configuration at T=0 K and studied the magnetic properties at T>0 K as well. The required exchange coupling parameters were obtained from our ab-initio electronic structure calculations.

  7. High efficiency thin film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.; Chu, Shirley S.; Britt, J.; Chen, G.; Ferekides, C.; Schultz, N.; Wang, C.; Wu, C. Q.

    1992-12-01

    Cadmium sulfide (CdS), grown from an aqueous solution, and zinc oxide (ZnO), cadmium zinc sulfide (Cd1-xZnxS), and zinc selenide (ZnSe), deposited by metalorganic chemical vapor deposition (MOCVD), have been used as the window for thin film cadmium telluride (CdTe) solar cells. Thin film solar cells were prepared by the successive deposition of the window and p-CdTe (by MOCVD and close-spaced sublimation, CSS) on SnO2:F/glass substrates. CdS/CdTe(CSS) solar cells show considerably better characteristics than CdS/CdTe(MOCVD) solar cells because of the better microstructure of CSS CdTe films. Total area conversion efficiency of 14.6%, verified by the National Renewable Energy Laboratory, has been achieved for solar cells of about 1 cm2 area. Solar cell prepared by using ZnO, ZnSe, or Cd1-xZnxS as window have significantly lower photovoltage than CdS/CdTe solar cells.

  8. Testing of antimony selective media for treatment of liquid radwaste

    International Nuclear Information System (INIS)

    Nuclear power plants have sought radiation source term reduction and reduced discharge of radioactive constituents for many years. In the case of pressurized water reactors (PWRs), the latter efforts have been directed toward capture and immobilization of recalcitrant (ubiquitous radionuclides with long half-lives) species such as Cs-134 and Cs-137 and Co-58 and Co-60. As these plants resolved, or at least mitigated, the problems with radiocesium and radio-cobalt, antimony radionuclides (Sb-122, Sb-124, and Sb-125) have become a primary concern in liquid liquid radwaste systems Graver Technologies developed a granular composite metal oxide media with good selectivity for radio-antimony. Initial laboratory data were collected using non-radioactive salts of antimony, cesium, and cobalt to judge efficacy of selective removal of antimony. Based on success of those trials, the media, designated Gravex GX187, was tested in partnership with Energy Solutions (nee Duratek) using actual liquid liquid radwaste in two PWR plants. One of these plants performed extensive slip-stream trials comparing the GX187 with strong base anion resins. With more than 2500 bed volumes of throughput, the GX187 outperformed the other competitors by reducing both Sb-124 and Sb-125 radionuclides below minimum detectable activity (MDA) with average decontamination factors (DF's) of 170, even when subjected to high levels of borate. Based on these favorable results, Energy Solutions installed the GX187 in a layered bed in their ALPS liquid radwaste processing system at this plant in August 2005. After one year of intermittent, batchwise operation including an outage, the GX187 processed more than 2.25 million liters (>600,000 gallons) of liquid liquid radwaste while reducing the Sb-125 activity to 2.9 E-08 Bq/L (DF=111) on average. This evaluation is ongoing and will continue at least until the fall 2006 outage at this plant. Concurrently, Graver developed a second generation antimony selective

  9. Behavior of ruthenium, cesium and antimony during simulated HLLW vitrification

    International Nuclear Information System (INIS)

    The behavior of ruthenium, cesium, and antimony during the vitrification of simulated high-level radioactive liquid wastes (HLLW) in a liquid fed melter was studied on a laboratory scale and on a semi-pilot scale. In the laboratory melter of a 2.5 kg capacity, a series of tests with the simulate traced with 103Ru, 134Cs and 124Sb, has shown that the Ru and Cs losses to the melter effluent are generally higher than 10% whereas the antimony losses remain lower than 0.4%. A wet purification system comprising in series, a dust scrubber, a condenser, an ejector venturi and an NOx washing column retains most of the activity present in the off-gas so that the release fractions for Ru at the absolute filter inlet ranges between 5.10-3 to 5.10-5% of the Ru fed, for Cs the corresponding release fraction ranges between 3.10-3 to 10-4% and for Sb the release fraction ranges between 1.7 10-4 to 1.7 10-5%. The same experiments were performed at a throughput of 1 to 2 1 h-1 of simulated solution in the semi-pilot scale unit RUFUS. The RUFUS unit comprises a glass melter with a 50 kg molten glass capacity and the wet purification train comprises in series a dust scrubber, a condenser, an ejector venturi and an NOx washing column. The tracer tests were restricted to 103Ru and 134Cs since the laboratory tests had shown that the antimony losses were very low. The results of the tests are presented

  10. The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver

    Energy Technology Data Exchange (ETDEWEB)

    Bessinger, Brad; Apps, John A.

    2003-03-23

    A comprehensive thermodynamic database based on the Helgeson-Kirkham-Flowers (HKF) equation of state was developed for metal complexes in hydrothermal systems. Because this equation of state has been shown to accurately predict standard partial molal thermodynamic properties of aqueous species at elevated temperatures and pressures, this study provides the necessary foundation for future exploration into transport and depositional processes in polymetallic ore deposits. The HKF equation of state parameters for gold, arsenic, antimony, mercury, and silver sulfide and hydroxide complexes were derived from experimental equilibrium constants using nonlinear regression calculations. In order to ensure that the resulting parameters were internally consistent, those experiments utilizing incompatible thermodynamic data were re-speciated prior to regression. Because new experimental studies were used to revise the HKF parameters for H2S0 and HS-1, those metal complexes for which HKF parameters had been previously derived were also updated. It was found that predicted thermodynamic properties of metal complexes are consistent with linear correlations between standard partial molal thermodynamic properties. This result allowed assessment of several complexes for which experimental data necessary to perform regression calculations was limited. Oxygen fugacity-temperature diagrams were calculated to illustrate how thermodynamic data improves our understanding of depositional processes. Predicted thermodynamic properties were used to investigate metal transport in Carlin-type gold deposits. Assuming a linear relationship between temperature and pressure, metals are predicted to predominantly be transported as sulfide complexes at a total aqueous sulfur concentration of 0.05 m. Also, the presence of arsenic and antimony mineral phases in the deposits are shown to restrict mineralization within a limited range of chemical conditions. Finally, at a lesser aqueous sulfur

  11. Electrostatically defined silicon quantum dots with counted antimony donor implants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87175 (United States); Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Bielejec, E.; Carroll, M. S. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  12. Antimony implanted strained Si for nMOSFET applications

    OpenAIRE

    Zamani, Atieh

    2009-01-01

    Incorporation of implanted antimony (Sb) in strained-silicon (s-Si) formed on relaxed-SiGe virtual substrates (10 and 30% Ge) has been studied. The implantation doses were 5×1013- 5×1014 cm-2 with an energy of 20 keV. The activation of dopant was performed by an rapid thermal annealing (RTA) treatment at 700 and 800 °C for 30 sec. Projected range of this implantation is about 20 nm which was also confirmed by different techniques. The layers were analyzed in terms of strain relaxation, sheet ...

  13. Solubility behaviour of antimony(III) and antimony(V) solids in basic aqueous solutions at 300{sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Lemire, R.J.; Tosello, N.B.; Halliday, J.D

    1999-12-01

    The major contributions of the isotopes {sup 122}Sb and {sup 124}Sb to activity transport in a CANDU reactor primary heat transport system (HTS), have been associated with oxygen ingress during reactor shutdown. As part of a program to minimize the release and redeposition of these isotopes, the solubilities of antimony(III) and (V) oxides and salts have been measured in basic solutions at temperatures from 25 to 300{sup o}C. The results provide information on the charge and the stability as a function of temperature of antimony solution species and, hence, a guide to the trends in the temperature dependence of the solubilities of antimony solids. In solutions in which oxidation of antimony(III) to antimony(V) is minimized, the solubility of Sb{sub 2}O{sub 3} increases by about two orders of magnitude between 25 and 200{sup o}C, and then levels out or decreases slightly. At 250{sup o}C, in oxidizing solutions, Sb{sub 2}O{sub 5}{center_dot}xH{sub 2}O and simple sodium antimonate(V) were found to be unstable in sodium hydroxide solutions with respect to the solid, Na{sub 2{alpha}}[H(H{sub 2}O)]{sub 2-2{alpha}}Sb{sub 2}O{sub 6}, which has a pyrochlore structure. The solubility of this partially protonated sodium antimonate increases from 25 to 200{sup o}C and decreases at temperatures above 250{sup o}C. These solubility changes for the antimony (V) solids reflect changes in the stability of the anionic antimony solution species (SbO{sub 3}{sup -} or Sb(OH){sub 6}{sup -}), even though the compositions of antimony-containing solids in basic oxidizing solutions are strongly dependent on the cations and their aqueous phase concentrations. All solids used in the present experiments would be expected to generate total solution antimony concentrations {>=} 0.00005 mol{center_dot}dm{sup -3} in any neutral or basic aqueous solutions (assuming no added sodium salts). Therefore, under HTS conditions, precipitation of any antimony oxides or mixed oxides is unlikely. It cannot be

  14. X-ray computed tomography system utilizing a cadmium telluride detector

    OpenAIRE

    佐藤, 英一; 野宮, 聖一郎; 人見, 啓太朗; 尾鍋, 秀明; 河合, 敏明; 小川, 彰; 佐藤, 成大; 市丸, 俊夫; サトウ, エイイチ; ノミヤ, セイイチロウ; ヒトミ, ケイタロウ; オナベ, ヒデアキ; カワイ, トシアキ; オガワ, アキラ; サトウ, シゲヒロ

    2007-01-01

    A simple x-ray computed tomography(CT) system utilizing a cadmium telluride detector is described. The CT system is of the first generation type and consists of an x-ray generator, a turn table, a translation table, a motor drive unit, a cadmium telluride detector, an interface unit for the detector, and a personal computer(PC). Tomography was performed by the repetition of the translation and rotation of an object. The maximum values of the tube voltage and the tube current were 110kV and 2....

  15. Antimony removal from the polyethylene terephthalate manufacture wastewater

    Directory of Open Access Journals (Sweden)

    Tomas Vengris

    2010-04-01

    Full Text Available In this study, antimony removal by coagulation from polyethylene terephthalate resin production wastewater of „Orion Global PET“ factory in Klaipėda city was investigated, with regard to the dependence of coagulant type and dosage, pH and presence of organics. FeCl3 ∙6H2O, FeSO4 ∙7H2O, AlCl3∙6H2O and TiCl4 salts were used as coagulants. Ti(IV and Fe(III revealed oneself to be the most effective coagulants. Antimony removal effectiveness is moderate and low using FeSO4 ∙7H2O and AlCl3∙6H2O coagulants, respectively. The addition of 10 mg dm-3 Ti(IV and 30 mg dm-3 Fe(III reduces by ~98% of the Sb, when the initial amount of Sb in wastewater is about 1200 mkg/l. The action of Fe(III is practically independent in the pH range 4-9, and that of Ti(IV slightly decreases in the same pH interval. The Sb amount in wastewater can be reduced to 13-20 mkg dm-3, while the initial Sb concentration is 1200 mkg dm-3. The presence of organic compounds in wastewater determines the reduction of Sb removal by coagulation.

  16. Alkali oxide-tantalum, niobium and antimony oxide ionic conductors

    Science.gov (United States)

    Roth, R. S.; Brower, W. S.; Parker, H. S.; Minor, D. B.; Waring, J. L.

    1975-01-01

    The phase equilibrium relations of four systems were investigated in detail. These consisted of sodium and potassium antimonates with antimony oxide and tantalum and niobium oxide with rubidium oxide as far as the ratio 4Rb2O:llB2O5 (B=Nb, Ta). The ternary system NaSbO3-Sb2O4-NaF was investigated extensively to determine the actual composition of the body centered cubic sodium antimonate. Various other binary and ternary oxide systems involving alkali oxides were examined in lesser detail. The phases synthesized were screened by ion exchange methods to determine mobility of the mobility of the alkali ion within the niobium, tantalum or antimony oxide (fluoride) structural framework. Five structure types warranted further investigation; these structure types are (1) hexagonal tungsten bronze (HTB), (2) pyrochlore, (3) the hybrid HTB-pyrochlore hexagonal ordered phases, (4) body centered cubic antimonates and (5) 2K2O:3Nb2O5. Although all of these phases exhibit good ion exchange properties only the pyrochlore was prepared with Na(+) ions as an equilibrium phase and as a low porosity ceramic. Sb(+3) in the channel interferes with ionic conductivity in this case, although relatively good ionic conductivity was found for the metastable Na(+) ion exchanged analogs of RbTa2O5F and KTaWO6 pyrochlore phases.

  17. Antimony contamination and its effect on Trifolium plants

    Science.gov (United States)

    Corrales, Isabel; Barceló, Juan; Bech, Jaume; Poschenrieder, Charlotte

    2014-05-01

    Antimony is not an essential element and soil Sb contents usually are low.However, soil contamination by Sb has increased in the last years due to the human activities (combustion of fossil fuels, mining, waste incineration, smelting, shooting and road traffic). The main objective of this work was to study the effect of different concentrations of antimony (KSb(OH)6) in order to evaluate the effect on growth and Sb uptake on Trifolium pratense cv. Milvus and Trifolium repens. Our results show that Sb accumulated both in roots and shoots of clover without any negative effect on root growth, cellular viability and lipid peroxidation. This absence of toxicity sympthoms in clover plants could be very dangerous because Sb can be inadvertedly incorporated into the trophic chain causing toxic effects both in animals and humans. The absence of toxic effects on plants does not seem to be due to detoxification by phytochelatins because the use of the gamma-glutamylcysteine synthetase inhibitor, L-buthionine-[S,R]-sulphoximine (BSO) did not enhance Sb toxicity to plants. (Supported by the Spanish MICINN project BFU2010-14873)

  18. Thermal decomposition kinetics of antimony oxychloride in air

    Institute of Scientific and Technical Information of China (English)

    阳卫军; 唐谟堂; 金胜明

    2002-01-01

    The DTA and XRD techniques were employed to study thermal decomposition mechanism of antimony oxychloride SbOCl in the air. The thermal decomposition reaction occurs in four steps, and the former three steps as: SbOCl(s)→Sb4O5Cl2(s)+SbCl3(g)→Sb8O11Cl2(s)+SbCl3(g)→Sb2O3(s)+SbCl3(g). The forth step is the oxidation of Sb2O3 by air, Sb2O3(s)+O2→Sb2O4(s). The activation energy and the order of the thermal decomposition reaction of antimony oxychloride in three steps presented in DTA curves were calculated according to Kinssinger methods from DTA curves. The values of activation energy and the order are respectively 91.97kJ/mol, 0.73 in the first step, 131.14kJ/mol, 0.63 in the second step and 146.94kJ/mol, 1.58 in the third step.

  19. BSA activated CdTe quantum dot nanosensor for antimony ion detection.

    Science.gov (United States)

    Ge, Shenguang; Zhang, Congcong; Zhu, Yuanna; Yu, Jinghua; Zhang, Shuangshuang

    2010-01-01

    A novel fluorescent nanosensor for Sb(3+) determination was reported based on thioglycolic acid (TGA)-capped CdTe quantum dot (QD) nanoparticles. It was the first antimony ion sensor using QD nanoparticles in a receptor-fluorophore system. The water-soluable TGA-capped CdTe QDs were prepared through a hydrothermal route, NaHTe was used as the Te precursor for CdTe QDs synthesis. Bovine serum albumin (BSA) conjugated to TGA-capped CdTe via an amide link interacting with carboxyl of the TGA-capped CdTe. When antimony ion enters the BSA, the lone pair electrons of the nitrogen and oxygen atom become involved in the coordination, switching off the QD emission and a dramatic quenching of the fluorescence intensity results, allowing the detection of low concentrations of antimony ions. Using the operating principle, the antimony ion sensor based on QD nanoparticles showed a very good linearity in the range 0.10-22.0 microg L(-1), with the detection limit lower than 2.94 x 10(-8) g L(-1) and the relative standard deviation (RSD) 2.54% (n = 6). In a study of interferences, the antimony-sensitive TGA-QD-BSA sensor showed good selectivity. Therefore, a simple, fast, sensitive, and highly selective assay for antimony has been built. The presented method has been applied successfully to the determination of antimony in real water samples (n = 6) with satisfactory results.

  20. Removal of cobalt from zinc sulphate solution using rude antimony trioxide as additive

    Institute of Scientific and Technical Information of China (English)

    戴军; 王德全; 姜澜; 金曼

    2002-01-01

    The process of cobalt removal from zinc sulphate solution using rude antimony trioxide as an additive was investigated. The rude antimony trioxide was produced in treatment of copper and lead anode mud and its main components are antimony trioxide, antimony arsenate and lead antimonate. Using the rude antimony trioxide as the additive of cobalt removal can not only decrease operation cost of purification but also find out a new way for utilization of the rude antimony trioxide. The effects of temperature, dosage of zinc dust, the rude antimony trioxide, copper ion and solution pH on removal of cobalt were studied. And experimental data using the rude Sb2O3 as additive were compared with those using Sb2O3. The results indicate that using rude Sb2O3 as additive, cobalt concentration in solution could be decreased from 24mg/L to below 1mg/L under about the same conditions as using Sb2O3.

  1. Leaching Mechanism of Complicated Antimony-Lead Concentrate and Sulfur Formation in Slurry Electrolysis

    Institute of Scientific and Technical Information of China (English)

    WangChengyan; QiuDingfan; JiangPeihai

    2004-01-01

    Anodic reaction mechanism of complicated antimony-lead concentrate in slurry electrolysis was investigated by the anodic polarization curves determined under various conditions. The main reactions on the anode are the oxidations of FeCln(2-n) . Though the oxidation of jamesonite particle on the anode can occur during the whole process, it is less. With the help of mineralogy studies and relevant tests, the leaching reaction mechanism of jameson[to and gudmundite during slurry electrolysis was ascertained. Because of the oxidation reaction of FeCl3 produced by antimony-lead concentrate itself, the non-oxidation complex acid dissolution of jameson[re, the oxidation complex acid dissolution of gudmundite, and the oxidation of air carried by stirring, the leaching ratio of antimony reaches about 35% when HCl-NH4Cl solution is used to leach antimony-lead concentrate directly. So when the theoretical electric quantity is given to oxidation of antimony in slurry electrolysis, all of antimony, lead and iron containing in antimony-lead concentrate, are leached. The formation of sulfur is through the directly redox reaction of Fe3+ and jameson[re. The S2- in jamesonite is oxidized into S0 , and forms the crystals of sulfur again on the spot. The redox reaction of Fe3+ and H2S formed by non-oxidative acid dissolution of jamesonite is less.

  2. In Vitro Antiparasitic and Apoptotic Effects of Antimony Sulfide Nanoparticles on Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Saied Soflaei

    2012-01-01

    Full Text Available Visceral leishmaniasis is one of the most important sever diseases in tropical and subtropical countries. In the present study the effects of antimony sulfide nanoparticles on Leishmania infantum in vitro were evaluated. Antimony sulfide NPs (Sb2S5 were synthesized by biological method from Serratia marcescens bacteria. Then the cytotoxicity effects of different concentrations (5, 10, 25, 50, and 100 μg/mL of this nanoparticle were assessed on promastigote and amastigote stages of L. infantum. MTT method was used for verification results of promastigote assay. Finally, the percentages of apoptotic, necrotic, and viable cells were determined by flow cytometry. The results indicated the positive effectiveness of antimony sulfide NPs on proliferation of promastigote form. The IC50 (50% inhibitory concentration of antimony sulfide NPs on promastigotes was calculated 50 μg/mL. The cytotoxicity effect was dose-dependent means by increasing the concentration of antimony sulfide NPs, the cytotoxicity curve was raised and the viability curve of the parasite dropped simultaneously. Moreover, the IC50 of antimony sulfide NPs on amastigote stage was calculated 25 μg/mL. On the other hand, however, antimony sulfide NPs have a low cytotoxicity effect on uninfected macrophages but it can induce apoptosis in promastigote stage at 3 of 4 concentrations.

  3. Current transport mechanisms in mercury cadmium telluride diode

    Science.gov (United States)

    Gopal, Vishnu; Li, Qing; He, Jiale; He, Kai; Lin, Chun; Hu, Weida

    2016-08-01

    This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I-V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I-V characteristics have been modelled over a range of gate voltages from -9 V to -2 V. This range of gate voltages includes accumulation, flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I-V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from -3 V to -5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.

  4. Directional Solidification of Mercury Cadmium Telluride in Microgravity

    Science.gov (United States)

    Lechoczhy, Sandor L.; Gillies, Donald C.; Szofran, Frank R.; Watring, Dale A.

    1998-01-01

    Mercury cadmium telluride (MCT) has been directionally solidified for ten days in the Advanced Automated Directional Solidification Furnace (AADSF) on the second United States Microgravity Payload Mission (USMP-2). A second growth experiment is planned for the USMP-4 mission in November 1997. Results from USMP-2 demonstrated significant changes between microgravity and ground-based experiments, particularly in the compositional homogeneity. Changes were also observed during the microgravity mission which were dependent on the attitude of the space shuttle and the relative magnitudes of axial and transverse residual accelerations with respect to the growth axis of the crystal. Issues of shuttle operation, especially those concerned with safety and navigation, and the science needs of other payloads dictated the need for changes in attitude. One consequence for solidification of MCT in the USMP4 mission is the desire for a shorter growth time to complete the experiment without subjecting the sample to shuttle maneuvers. By using a seeded technique and a pre-processed boule of MCT with an established diffusion layer quenched into the solid, equilibrium steady state growth can be established within 24 hours, rather than the three days needed in USMP-2. The growth of MCT in AADSF during the USMP-4 mission has been planned to take less than 72 hours with 48 hours of actual growth time. A review of the USMP-2 results will be presented, and the rationale for the USMP-4 explained. Pre-mission ground based tests for the USN4P-4 mission will be presented, as will any available preliminary flight results from the mission.

  5. Telluride films and waveguides for IR integrated optics

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, Eleonore; Vigreux, Caroline; Pradel, Annie [Institut Charles Gerhardt Montpellier, UMR CNRS 5253, Universite Montpellier II, CC1503, 34095 Montpellier Cedex 5 (France); Parent, Gilles [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, Universite de Nancy-Lorraine, BP239, 54506 Vandoeuvre Les Nancy Cedex (France); Barillot, Marc [Thales Alenia Space, 100 Bld. du midi, BP99, 06156 Cannes La Bocca Cedex (France)

    2011-09-15

    The fabrication of micro-components for far infrared applications such as spatial interferometry requires the realization of single-mode channel waveguides being able to work in the infrared region. One of the key issues in case of channel waveguides is the selection of materials for the core layer. Amorphous telluride films are particularly attractive for their transparency in a large spectral domain in the infrared region. A second key issue is the selection of an appropriate method for film deposition. Indeed, waveguides for far infrared applications are characterized by a thick core layer (10-15 {mu}m, typically). The challenge is thus to select a deposition method which ensures the deposition of thick films of optical quality. In this paper, it is shown that thermal co-evaporation meets this challenge. In particular, it allows varying the composition of the films very easily and thus adjusting their optical properties (refractive index, optical band gap). The example of thermally co-evaporated Te-Ge films is given. Films with typical thickness of 7-15 {mu}m were elaborated. Their morphological, structural, thermal and optical properties were measured. A particular attention was paid to the checking of the film homogeneity. The realized waveguiding structures and their optical testing are then described. In particular, the first transmission measurements at 10.6 {mu}m are presented. In conclusion, the feasibility of micro-components based on the stacking and etching of chalcogenide films is demonstrated, opening the door to applications related to detection in the mid- and thermal infrared spectral domains (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Segregation of antimony in InP in MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Weeke, Stefan

    2008-07-01

    In this work the segregation of antimony in indium phosphide in metal organic vapour phase epitaxy (MOVPE)was systematically investigated. Therefore phosphine stabilized InP surfaces were treated with tri-methyl-antimony (TMSb) in MOVPE. An antimony rich Sb/InP surface was established, showing a typical spectra for the antimonides observed in reflectance anisotropy spectroscopy (RAS).Adsorption and desorption of antimony are investigated, as well as the incorporation of Sb during overgrowth of the Sb/InP surface with InP. Therefore the growth parameters temperature, TMSb partial pressure and treatment time are varied and their influence investigated. The experiments are monitored in-situ with RAS, the achieved data is correlated with ex-situ characterisation such as X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS). It is shown that under treatment with TMSb a stable Sb/InP surface is formed within seconds, which does not change under further TMSb treatment. This process is rarely influenced by the TMSb partial pressure. On the contrary, the desorption of Sb is a very slow process. Two main processes can be distinguished: The desorption of excess Sb from the surface and the formation of the MOVPE prepared InP (2 x 1) surface. The reaction velocity of adsorption and desorption increases with temperature. Above a critical value the increase of TMSb partial pressure has no influence on the time for desorption. During overgrowth of the Sb/InP surface the opposite temperature dependence is observed: with increasing growth temperature the typical spectra for antimonides is observed longer. An analysis of the grown samples with XRD and SIMS showed the formation of an InPSb double quantum well. One layer is formed at the interface, the second one 50 nm-120 nm deep in the InP. The location of the 2nd InPSb layer can be correlated with the vanishing of the Sb signature in RAS. The distance between the quantum wells increases with growth temperature, until it

  7. Varicella zoster virus reactivation during or immediately following treatment of tegumentary leishmaniasis with antimony compounds

    Directory of Open Access Journals (Sweden)

    Andrea Barbieri Barros

    2014-07-01

    Full Text Available Antimony compounds are the cornerstone treatments for tegumentary leishmaniasis. The reactivation of herpes virus is a side effect described in few reports. We conducted an observational study to describe the incidence of herpes zoster reactivation during treatment with antimony compounds. The global incidence of herpes zoster is approximately 2.5 cases per 1,000 persons per month (or 30 cases per 1,000 persons per year. The estimated incidence of herpes zoster in patients undergoing antimony therapy is higher than previously reported.

  8. Structural and optical characterization of thermally evaporated bismuth and antimony films for photovoltaic applications

    Science.gov (United States)

    Srimathy, N.; Ruban Kumar, A.

    2016-05-01

    In this present study, the thin film of bismuth and antimony is coated by thermal evaporation system equipped with the inbuilt ultra high vacuum system. XRD analysis confirmed the rhombohedral structure of Bismuth and Antimony on the prepared film. The surface roughness and physical appearance is analyzed by Atomic force microscopy. The results of Raman Spectroscopy show the wave functions and the spectrum of electrons. The preparation technique and conditions strongly influence the crystalline structure and the phase composition of bismuth and antimony thin films. The electrical and optical properties for the prepared film are analyzed. The results show a great interest and promising applications in Photovoltaic devices.

  9. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.

    Science.gov (United States)

    Jones, J Stuart; Gabbaï, François P

    2016-05-17

    Stimulated by applications in catalysis, the chemistry of ambiphilic ligands featuring both donor and acceptor functionalities has experienced substantial growth in the past several years. The unique opportunities in catalysis offered by ambiphilic ligands stem from the ability of their acceptor functionalities to play key roles via metal-ligand cooperation or modulation of the reactivity of the metal center. Ligands featuring group 13 centers, most notably boranes, as their acceptor functionalities have undoubtedly spearheaded these developments, with remarkable results having been achieved in catalytic hydrogenation and hydrosilylation. Motivated by these developments as well as by our fundamental interest in the chemistry of heavy group 15 elements, we became fascinated by the possibility of employing antimony centers as Lewis acids within ambiphilic ligands. The chemistry of antimony-based ligands, most often encountered as trivalent stibines, has historically been considered to mirror that of their lighter phosphorus-based congeners. There is growing evidence, however, that antimony-based ligands may display unique coordination behavior and reactivity. Additionally, despite the diverse Lewis acid and redox chemistry that antimony exhibits, there have been only limited efforts to explore this chemistry within the coordination sphere of a transition metal. By incorporation of antimony into the framework of polydentate ligands in order to enforce the main group metal-transition metal interaction, the effect of redox and coordination events at the antimony center on the structure, electronics, and reactivity of the metal complex may be investigated. This Account describes our group's continuing efforts to probe the coordination behavior, reactivity, and application of ambiphilic ligands incorporating antimony centers. Structural and theoretical studies have established that both Sb(III) and Sb(V) centers in polydentate ligands may act as Z-type ligands toward late

  10. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.

    Science.gov (United States)

    Jones, J Stuart; Gabbaï, François P

    2016-05-17

    Stimulated by applications in catalysis, the chemistry of ambiphilic ligands featuring both donor and acceptor functionalities has experienced substantial growth in the past several years. The unique opportunities in catalysis offered by ambiphilic ligands stem from the ability of their acceptor functionalities to play key roles via metal-ligand cooperation or modulation of the reactivity of the metal center. Ligands featuring group 13 centers, most notably boranes, as their acceptor functionalities have undoubtedly spearheaded these developments, with remarkable results having been achieved in catalytic hydrogenation and hydrosilylation. Motivated by these developments as well as by our fundamental interest in the chemistry of heavy group 15 elements, we became fascinated by the possibility of employing antimony centers as Lewis acids within ambiphilic ligands. The chemistry of antimony-based ligands, most often encountered as trivalent stibines, has historically been considered to mirror that of their lighter phosphorus-based congeners. There is growing evidence, however, that antimony-based ligands may display unique coordination behavior and reactivity. Additionally, despite the diverse Lewis acid and redox chemistry that antimony exhibits, there have been only limited efforts to explore this chemistry within the coordination sphere of a transition metal. By incorporation of antimony into the framework of polydentate ligands in order to enforce the main group metal-transition metal interaction, the effect of redox and coordination events at the antimony center on the structure, electronics, and reactivity of the metal complex may be investigated. This Account describes our group's continuing efforts to probe the coordination behavior, reactivity, and application of ambiphilic ligands incorporating antimony centers. Structural and theoretical studies have established that both Sb(III) and Sb(V) centers in polydentate ligands may act as Z-type ligands toward late

  11. Synthesis and characterisation of nano-pore antimony imprinted polymer and its use in the extraction and determination of antimony in water and fruit juice samples.

    Science.gov (United States)

    Shakerian, Farid; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Nili Ahmad Abadi, Maryam

    2014-02-15

    A solid phase extraction method using antimony ion imprinted polymer (IIP) sorbent combined with electrothermal atomic absorption spectrometry (ETAAS) was developed for the extraction and speciation of antimony. The sorbent has been synthesised in the presence of Sb(III) and ammonium pyrrolidine dithiocarbamate (APDC) using styrene as the monomer and ethylene glycol dimethacrylate (EGDMA) as the cross linker. The imprinted Sb(III) ions were removed by leaching with HCl (50%v/v) and the polymer was characterised by FT-IR and scanning electron microscopy. The maximum sorption capacity of the IIP for Sb(III) ions was found to be 6.7 mg g(-1). With preconcentration of 60 mL of sample, an enhancement factor of 232 and detection limit of 3.9 ng L(-1) was obtained. Total antimony was determined after the reduction of Sb(V) to Sb(III). The method was successfully applied to the determination of antimony species in water samples and total antimony in fruit juices.

  12. Thin-film cadmium telluride photovoltaics: ES and H issues, solutions, and perspectives

    International Nuclear Information System (INIS)

    Photovoltaics (PV) is a growing business worldwide, with new technologies evolving towards potentially large-volume production. PV use produces no emissions, thus offsetting many potential environmental problems. However, the new PV technologies also bring unfamiliar environment, safety, and health (ES and H) challenges that require innovative solutions. This is a summary of the issues, solutions, and perspectives associated with the use of cadmium in one of the new and important PV technologies: thin-film, cadmium telluride (CdTe) PV, which is being developed and commercialized by several companies including Solar Cells Inc. (Toledo, Ohio), BP Solar (Fairfield, California), and Matsushita (Japan). The principal ES and H issue for thin-film cadmium telluride PV is the potential introduction of cadmium--a toxic heavy metal--into the air or water. The amount of cadmium in thin-film PV, however, is quite small--one nickel cadmium flashlight battery has about as much cadmium (7 g) as a square meter of PV module using current technology--and a typical cordless power tool will have 5--10 batteries. CdTe modules are also very well sealed, limiting the chance of release. Nonetheless, minimizing the amount of cadmium in cadmium telluride modules and preventing the introduction of that cadmium into the environment is a top priority for National Renewable Energy Laboratory researchers and cadmium telluride PV manufacturers

  13. Stable, high efficiency thin film solar cells produced by electrodeposition of cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Turner, A.K.; Woodcock, J.M.; Ozsan, M.E.; Summers, J.G.; Barker, J.; Binns, S.; Buchanan, K.; Chai, C.; Dennison, S.; Hart, R.; Johnson, D.; Marshall, R.; Oktik, S.; Patterson, M.; Perks, R.; Roberts, S.; Sadeghi, M.; Sherborne, J.; Szubert, J.; Webster, S. (BP Solar, Solar House, Leatherhead (United Kingdom))

    1991-12-01

    The highest known efficiency of 9.5% for a 300x300 mm series interconnected cadmium telluride solar cell is reported. In addition, efficiencies of up to 13% have been measured for small cells based on electrodeposited CdTe. The stability of modules in outdoor tests is discussed and an outline is given of the device fabrication procedure. (orig.).

  14. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Science.gov (United States)

    Termentzidis, K.; Pokropivny, A.; Xiong, S.-Y.; Chumakov, Y.; Cortona, P.; Volz, S.

    2012-10-01

    Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  15. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Directory of Open Access Journals (Sweden)

    Chumakov Y.

    2012-10-01

    Full Text Available Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  16. Electrodeposition of bismuth telluride thermoelectric films from a nonaqueous electrolyte using ethylene glycol

    NARCIS (Netherlands)

    Nguyen, H.P.; Wu, M.; Su, J.; Vullers, R.J.M.; Vereecken, P.M.; Fransaer, J.

    2012-01-01

    Ethylene glycol was studied as an electrolyte for the electrodeposition of thermoelectric bismuth telluride films by cyclic voltammetry, rotating ring disk electrode and electrochemical quartz crystal microbalance (EQCM). The reduction of both Bi3+ and Te4+ ions proceeds in one step without the form

  17. Anthropogenic impacts on the biogeochemistry and cycling of antimony.

    Science.gov (United States)

    Shotyk, William; Krachler, Michael; Chen, Bin

    2005-01-01

    Antimony is a potentially toxic trace element with no known biological function. Antimony is commonly enriched in coals, and fossil fuel combustion appears to be the largest single source of anthropogenic Sb to the global atmosphere. Abundant in sulfide minerals, its emission to the atmosphere from anthropogenic activities is linked to the mining and metallurgy of non-ferrous metals, especially Pb, Cu, and Zn. In particular, the geochemical and mineralogical association of Sb with Pb minerals implies that, like Pb, Sb has been emitted to the environment for thousands of years because of Pb mining, smelting, and refining. In the US alone, there are more than 400 former secondary lead smelting operations and worldwide there are 133 Pb-Zn smelters in operation today. Antimony is used in creating and improving dozens of industrial and commercial materials including various alloys, ceramics, glasses, plastics, and synthetic fabrics, making waste incineration another important source of Sb to the environment. Enrichments of Sb in atmospheric aerosols, plants, soils, sediments, as well as alpine and polar snow and ice suggest that Sb contamination is extensive, but there are very few quantitative studies of the geographic extent, intensity, and chronology of this contamination. There is an urgent need to quantify the extent of human impacts and how these have changed with time. The decreasing inventories of anthropogenic Sb with time in peat cores from Switzerland and Scotland suggest that the atmospheric Sb flux may be declining, but there have been too few studies to make any general conclusions. In fact, some studies of sediments and biomonitors in central Europe show little decline in Sb concentrations during the past decades. There is an obvious need for reliable data from well dated archives such as polar snow and ice, peat bogs, and sediments. The air concentrations, extent of enrichment, particle size distribution, and rate of deposition of Sb in urban areas is

  18. Biogeochemistry of Antimony(V) in Microcosms under Sulfidogenic Conditions

    Science.gov (United States)

    O'Loughlin, E. J.; Johnson, C. R.; Antonopoulos, D. A.; Boyanov, M.; Flynn, T. M.; Koval, J. C.; Kemner, K. M.

    2015-12-01

    As the mining and use of antimony continues to increase, environmental concerns involving the element have grown. Antimony(V) and (III) are the two most environmentally-relevant oxidation states, but little is known about the redox transitions between the two in natural systems. To better understand the behavior of antimony in anoxic environments, we examined the transformations of Sb(V) under Fe(III)- and sulfate-reducing conditions in aqueous suspensions that contained 2 mM KSb(OH)6, 50 mM Fe(III) (as ferrihydrite), 10 mM sulfate, and 10 mM lactate, and were inoculated with sediment from a wetland on the campus of Argonne National Laboratory in Argonne, Illinois. Samples were collected over time to track changes in the concentrations of Sb, Fe(II), sulfate, and lactate, as well as the composition of the microbial community as determined by 16S rRNA gene inventories. We also examined the interaction of Sb(V) with pure Fe(II) mineral phases in aqueous suspensions containing 2 mM KSb(OH)6 and 50 mM Fe(II) as either magnetite, sideritre, vivianite, green rust, or mackinawite. X-ray absorption fine-structure spectroscopy was used to determine the valence state of Sb and its chemical speciation. Lactate was rapidly fermented to acetate and propionate concomittant with a bloom of Veillonellaceae. Utilization of propionate for dissimilatory sulfate reduction (DSR) was accompanied by an increase in Desulfobulbaceae. Sb K-edge X-Ray absorption near edge structure (XANES) analysis showed reduction of Sb(V) to Sb(III) within 4 weeks, concurrent with DSR and the formation of FeS. We observed variable responses in the ability of specific Fe(II) minerals to reduce Sb(V). No reduction was observed with magnetite, siderite, vivianite, or green rust. In the presence of mackinawite (FeS), however, Sb(V) was reduced to Sb(III) sulfide. These results suggest that the reduction of Sb(V) to Sb(III) is not likely under solely Fe(III)-reducing conditions, but is expected in sulfidogenic

  19. Geochemical Studies on Dachang Antimony Ore Deposit in Qinglong,Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    张启厚

    1999-01-01

    The Dachang antimony deposit in Qinglong,Guizhou Province,is strictly controlled by the “Dachang Layer” which is a complex altered rock occurring at unconformity between the Permian Emeishan basalt and the Maokou limestone.Based on the studies of the hanging-and foot-wall rocks,the trace elements and REE contents of the rocks and ores and heavy placer minerals in the basalt,this paper is focused on the relations between these data and the “Dachang Layer”and its hanging- and oot-wall rocks.The author pointed out that the “Dachang Layer” and basalt are the source-beds of antimony;ilmenite and magnetite are the major mineral carriers of antimony.In the processes of halmyrosis and burial metamorphism of the “Dachang Layer” an basalt,antimony was mobilized along with the mobilization of iron and was preliminarily concentrated in the“ Dachang Layer”.

  20. Effect of filler on the self-lubrication performance of graphite antimony composites

    Institute of Scientific and Technical Information of China (English)

    WANG Qi-li; HU Ya-fei; HE Min

    2008-01-01

    Graphite antimony composites were prepared using a mechanical pressure infiltration method to force molten antimony into graphite preforms having a percolation micro-structure and a hop-pocket power filler. The micro-structural and macroscopic properties of the graphite antimony composites were analysed. Observations included metallographic analysis, physical properties and friction and wear behaviour. The results show that the wear loss is decreased by 12.24% and that the friction coefficient is re-duced by 32.61% after hop-pocket power was used. The research indicates that the hop-pocket power method gives a useful way to reduce friction coefficients and wear loss, and to increase service life and self-lubrication properties, of the graphite antimony seal-ing material as compared to carbon black.

  1. Geochemistries of arsenic, antimony, mercury, and related elements in sediments of puget sound

    Science.gov (United States)

    Crecelius, E.A.; Bothner, Michael H.; Carpenter, R.

    1975-01-01

    The natural distributions of arsenic, antimony mercury, chromium, cobalt, iron, aluminum, and carbon in the surface sediments of Puget Sound are perturbed by two major anthropogenic sources of trace metals: a copper smelter near Tacoma, Wash., that discharges large amounts of arsenic and antimony, and a chlor-alkali plant in Bellingham, Wash., which, in the recent past, discharged significant amounts of mercury. Arsenic and antimony inputs from the smelter over the past 80 years are evident in sediment cores whose accumulation rates have been determined by the lead-210 technique. An arsenic budget for Puget Sound reveals the importance of atmospheric input resulting from smokestack emissions of the smelter. Chemical extraction studies of sediments showed that more than 82% of the mercury was associated with easily oxidizable organic matter, whereas about 50% of both arsenic and antimony was associated with extractable iron and aluminum compounds.

  2. NEW THIO S2- ADDUCTS WITH ANTIMONY (III AND V HALIDE: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    HASSAN ALLOUCH

    2013-12-01

    Full Text Available Five new S2- adducts with SbIII and SbV halides have been synthesized and studied by infrared. Discrete structures have been suggested, the environment around the antimony being tetrahedral, trigonal bipyramidal or octahedral.

  3. Crystal structure and thermodynamic properties of potassium antimony tungsten oxide

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, Aleksandr V., E-mail: knav@uic.nnov.ru [Nizhny Novgorod State University, Gagarin Prospekt 23/2, Nizhny Novgorod, 603950 (Russian Federation); Tananaev, Ivan G. [Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky prospect, Moscow GSP-1, 119991 (Russian Federation); Kuznetsova, Nataliya Yu.; Smirnova, Nataliya N.; Letyanina, Irene A.; Ladenkov, Igor V. [Nizhny Novgorod State University, Gagarin Prospekt 23/2, Nizhny Novgorod, 603950 (Russian Federation)

    2010-02-20

    In the present work potassium antimony tungsten oxide with pyrochlore structure is refined by the Rietveld method (space group Fd3m, Z = 8). The temperature dependences of heat capacity have been measured for the first time in the range from 7 to 370 K for this compound. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity C{sub p}{sup o}(T), enthalpy H{sup o}(T) - H{sup o}(0), entropy S{sup o}(T) - S{sup o}(0) and Gibbs function G{sup o}(T) - H{sup o}(0), for the range from T {yields} 0 to 370 K. The differential scanning calorimetry was applied to measure the incongruent melting temperature of compound under study. The high-temperature X-ray diffraction was used for the determining thermal expansion coefficients.

  4. Coherent and Incoherent Structural Dynamics in Laser-Excited Antimony

    CERN Document Server

    Waldecker, Lutz; Bertoni, Roman; Vasileiadis, Thomas; Garcia, Martin E; Zijlstra, Eeuwe S; Ernstorfer, Ralph

    2016-01-01

    We investigate the excitation of phonons in photoexcited antimony and demonstrate that the entire electron-lattice interactions, in particular coherent and incoherent electron-phonon coupling, can be probed simultaneously. Using femtosecond electron diffraction (FED) with high temporal resolution, we observe the coherent excitation of the fully symmetric \\Ag\\ optical phonon mode via the shift of the minimum of the atomic potential energy surface. Molecular dynamics simulations are performed to quantify the change in lattice potential and the associated real-space amplitude of the coherent atomic oscillations. In addition, our experimental configuration allows observing the energy transfer from electrons to phonons via incoherent electron-lattice scattering events. Applying a modified two-temperature model, the electron-phonon coupling is determined from the data as a function of electronic temperature.

  5. Atomistic mechanisms governing structural stability change of zinc antimony thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaolong [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); Lin, Jianping, E-mail: jaredlin@163.com [School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Qiao, Guanjun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Zhao, E-mail: zwangzhao@gmail.com [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-01-05

    The structural stability of thermoelectric materials is a subject of growing importance for their energy harvesting applications. Here, we study the microscopic mechanisms governing the structural stability change of zinc antimony at its working temperature, using molecular dynamics combined with experimental measurements of the electrical and thermal conductivity. Our results show that the temperature-dependence of the thermal and electrical transport coefficients is strongly correlated with a structural transition. This is found to be associated with a relaxation process, in which a group of Zn atoms migrates between interstitial sites. This atom migration gradually leads to a stabilizing structural transition of the entire crystal framework, and then results in a more stable crystal structure of β–Zn{sub 4}Sb{sub 3} at high temperature.

  6. Antimonial drugs entrapped into phosphatidylserine liposomes: physicochemical evaluation and antileishmanial activity

    OpenAIRE

    Samanta Etel Treiger Borborema; João Alberto Osso Junior; Heitor Franco de Andrade Junior; Nanci do Nascimento

    2016-01-01

    Abstract: INTRODUCTION: Leishmaniasis is a disease caused by the protozoan Leishmania that resides mainly in mononuclear phagocytic system tissues. Pentavalent antimonials are the main treatment option, although these drugs have toxic side effects and high resistance rates. A potentially alternative and more effective therapeutic strategy is to use liposomes as carriers of the antileishmanial agents. The aims of this study were to develop antimonial drugs entrapped into phosphatidylserine l...

  7. New low-antimony alloy for straps and cycling service in lead-acid batteries

    Science.gov (United States)

    Prengaman, R. David

    Lead-antimony alloys used for the positive grids in lead-acid batteries for cycling service have generally used antimony contents of 4.5 wt.% and above. Tubular batteries for cycling service that impart high compression of the active material to the grid surface via gauntlet use alloys with antimony contents as low as 1.5 wt.%. These batteries are generally employed in less-severe cycling service. Value-regulated lead-acid (VRLA) batteries can give good cycling service without lead-antimony in the positive grid, but require a high tin content and high compression. The change in automotive battery positive grid alloys to lead-calcium-tin and the tin contents of VRLA positive grids and straps have dramatically increased the tin content of the recycled grid and strap lead in the USA, Europe, and Australia. The higher tin contents can contaminate the lead used for lead-antimony battery grids and generally must be removed to low levels to meet the specifications. This study describes a low-antimony alloy that contains a substantial amount of tin. The high tin content reduces the rate of corrosion of low-antimony positive grid alloys, improves conductivity, increases the bond between the grid and the active material, and cycles as well as the traditional 5-6 wt.% antimony alloys employed in conventional flat-plate batteries. The alloy is also used as a corrosion-resistant cast-on strap alloy for automotive batteries for high temperature service, as well as for posts, bushings, and connectors for all wet batteries.

  8. Effect of Antimony, Phosphorous and Salinity on Growth, Root Membrane Permeability and Root Antimony, Iron and Zinc Concentration of Corn in Hydroponic Media

    OpenAIRE

    H. Barangizi; M. Afyuni; B. Rezaee

    2010-01-01

    Antimony (Sb) pollution has increased in recent years because of human activities and extensive usage of antimony compounds. To date, only a few researches have been conducted in this field in Iran. The purpose of this research is to determine fresh and dry weight, root permeability percentage and root concentration of Sb, Fe and Zn in the corn. This greenhouse research was performed in hydroponics. A factorial experiment (3 × 2 × 3) with three Sb concentrations (0, 6, 18 mgL-1), with and wit...

  9. Effects of antimony on aquatic organisms (Larva and embryo of Oryzias latipes, Moina macrocopa, Simocephalus mixtus, and Pseudokirchneriella subcapitata).

    Science.gov (United States)

    Nam, Sun-Hwa; Yang, Chang-Yong; An, Youn-Joo

    2009-05-01

    Antimony is widespread in aquatic environment. Trivalent forms of antimony are known to be more toxic than other chemical species of antimony. In the present study, antimony potassium tartrate (APT), the trivalent inorganic forms of antimony, was selected as a test antimony compound due to its high water solubility. The effects of antimony on Japanese medaka (Oryzias latipes), planktonic crustacea (Moina macrocopa and Simocephalus mixtus), and green algae (Pseudokirchneriella subcapitata) were evaluated. Larval survival and the embryonic development were measured for fish assay. APT was less toxic to larval medaka (24-h LC50, 261; 48-h LC50, 238 mg L(-1)). Simocephalus mixtus was killed by very low concentrations of APT (24-h LC50, 4.92 mg L(-1)), and antimony was also toxic to Moina macrocopa (24-h LC50, 12.83 mg L(-1)). Toxicities of APT to S. mixtus and Moina macrocopa were about 50 and 20 times more toxic to Oryzias latipes larvae, respectively, in terms of 24-h LC50 value. Growth inhibition of Pseudokirchneriella subcapitata was observed in the presence of APT (72-h EC50, 206 mg L(-1)). This study demonstrated that APT is more toxic to planktonic crustacea than fish and green algae, and planktonic crustacea appears a better indicator of antimony pollution in aquatic environment. PMID:19264343

  10. Arsenic and Antimony Content in Soil and Plants from Baia Mare Area, Romania

    Directory of Open Access Journals (Sweden)

    Gabriela Oprea

    2010-01-01

    Full Text Available Problem statement: The objective of this research was to evaluate the degree of soil contamination with arsenic and antimony in Baia Mare, a nonferrous mining and metallurgical center located in the North West region of Romania. The soil in the area is affected by the emissions of powders containing metals from metallurgical factories. Previous studies indicated the soil contamination with copper, zinc, cadmium and lead, but there is few data about the actual level of soil pollution with arsenic and antimony. Approach: The soil samples were collected from 2 districts of Baia Mare: Ferneziu, which is located in the proximity of a lead smelter and Săsar district which is located along the Sasar River in the preferential direction of the wind over a metallurgical factory producing lead. As reference was considered Dura area located in a less polluted hilly area, in the west part of the town. Samples of soil and plants from the residential area of Ferneziu, Săsar and Dura districts were collected. The arsenic determination was carried out by inductively coupled plasma atomic emission spectrometry and the antimony determination by inductively coupled plasma mass spectrometry. Results: In Ferneziu area, the concentration of arsenic in soil ranged between 0.25 and 255 mg kg-1. In Săsar district the arsenic concentration in the soil ranged between 5.5 and 295 mg kg-1. Regarding antimony, in Ferneziu area the concentration ranged between 5.3 and 40.6 mg kg-1; while in Săsar, antimony soils concentrations vary in the range: 0.9-18.4. Arsenic and antimony concentrations in plants were low for almost of the samples, both in Ferneziu and Săsar area indicating a low mobility of these elements in the studied soils. Conclusion: This study indicated the soil pollution with arsenic both in Ferneziu district and in Săsar district. The soil pollution with antimony was found especially in Ferneziu district.

  11. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain)

    International Nuclear Information System (INIS)

    A study about topsoil antimony distribution and mobility from the soils to the biomass has been afforded in three abandoned Sb mining areas located at Extremadura. Physico-chemical characteristics of the soils and total antimony levels were measured in soils and autochthonous plant species (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa). Comparison with corresponding values in reference areas isolated from the mining activities is discussed. Antimony mobility in the soils was estimated by measuring the water extractable fraction; low results were obtained for the three soil areas, with no statistical differences. Plant ability to accumulate antimony was estimated by use of plant accumulation coefficients (PAC). Seasonal (spring vs. autumn) effects on the antimony content in the plant species. Cytisus striatus from Mari Rosa mine presented antimony excluder characteristics, whereas Dittrichia viscosa specimens growing in San Antonio mine showed a significant antimony bioaccumulation. - Bioaccumulation of antimony in vegetal species growing in mining areas

  12. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Murciego, A. Murciego [Area de Cristalografia y Mineralogia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Sanchez, A. Garcia [IRNA-CSIC, Departamento de Geoquimica Ambiental, Aptdo. 257, Salamanca (Spain); Gonzalez, M.A. Rodriguez [Area de Cristalografia y Mineralogia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Gil, E. Pinilla [Departamento de Quimica Analitica y Electroquimica, Facultad de Ciencias, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain)]. E-mail: epinilla@unex.es; Gordillo, C. Toro [Departamento de Quimica Analitica y Electroquimica, Facultad de Ciencias, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Fernandez, J. Cabezas [Area de Ecologia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Triguero, T. Buyolo [Area de Ecologia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain)

    2007-01-15

    A study about topsoil antimony distribution and mobility from the soils to the biomass has been afforded in three abandoned Sb mining areas located at Extremadura. Physico-chemical characteristics of the soils and total antimony levels were measured in soils and autochthonous plant species (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa). Comparison with corresponding values in reference areas isolated from the mining activities is discussed. Antimony mobility in the soils was estimated by measuring the water extractable fraction; low results were obtained for the three soil areas, with no statistical differences. Plant ability to accumulate antimony was estimated by use of plant accumulation coefficients (PAC). Seasonal (spring vs. autumn) effects on the antimony content in the plant species. Cytisus striatus from Mari Rosa mine presented antimony excluder characteristics, whereas Dittrichia viscosa specimens growing in San Antonio mine showed a significant antimony bioaccumulation. - Bioaccumulation of antimony in vegetal species growing in mining areas.

  13. The MRP1-mediated effluxes of arsenic and antimony do not require arsenic-glutathione and antimony-glutathione complex formation.

    Science.gov (United States)

    Salerno, Milena; Petroutsa, Maria; Garnier-Suillerot, Arlette

    2002-04-01

    Arsenic trioxide is an effective treatment for acute promyelocytic leukemia, but resistance to metalloid salts is found in humans. Using atomic absorption spectroscopy, we have measured the rate of uptake of arsenic trioxide and of antimony tartrate in GLC4 and GLC4/ADR cells overexpressing MRP1 and the rate of their MRP1-mediated effluxes as a function of the intracellular GSH concentration. In sensitive cells, after 1 h, a pseudosteady state is reached where intra- and extracellular concentrations of metalloid are the same. This precludes the formation, at short term, of complexes between arsenic or antimony with GSH. In resistant cells reduced intracellular accumulation of arsenic (or antimony), reflecting an increased rate of arsenic (or antimony) efflux from the cells, is observed. No efflux of the metalloid is observed in GSH depleted cells. The two metalloids and GSH are pumped out by MRP1 with the same efficiency. Moreover for the three compounds 50% of the efflux is inhibited by 2 microM MK571. This led us to suggest that As- and Sb-containing species could be cotransported with GSH. PMID:12018890

  14. Levels and risk factors of antimony contamination in human hair from an electronic waste recycling area, Guiyu, China.

    Science.gov (United States)

    Huang, Yue; Ni, Wenqing; Chen, Yaowen; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng

    2015-05-01

    The primitive electronic waste (e-waste) recycling has brought a series of environmental pollutants in Guiyu, China. Antimony is one of the important metal contaminants and has aroused the global concerns recently. We aimed to investigate concentrations of antimony in human hair from Guiyu and compared them with those from a control area where no e-waste recycling exists, and assessed the potential risk factors. A total of 205 human hair samples from Guiyu and 80 samples from Jinping were collected for analysis. All volunteers were asked to complete a questionnaire including socio-demographic characteristics and other possible factors related to hair antimony exposure. The concentrations of hair antimony were analyzed using atomic absorption spectrophotometer. Our results indicated that the level of hair antimony in volunteers from Guiyu (median, 160.78; range, 6.99-4412.59 ng/g) was significantly higher than those from Jinping (median, 61.74; range, 2.98-628.43 ng/g). The residents who engaged in e-waste recycling activities in Guiyu had higher hair antimony concentrations than others (P < 0.001). There was no significant difference of hair antimony concentrations among different occupation types in e-waste recycling. Multiple stepwise regression analysis indicated that hair antimony concentrations were associated with education level (β = -0.064), the time of residence in Guiyu (β = 0.112), living house also served as e-waste workshop (β = 0.099), the work related to e-waste (β = 0.169), and smoking (β = 0.018). The elevated hair antimony concentrations implied that the residents in Guiyu might be at high risk of antimony contamination, especially the e-waste recycling workers. Work related to e-waste recycling activities and long-time residence in Guiyu contributed to the high hair antimony exposure. PMID:25501644

  15. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3)

    Science.gov (United States)

    Zurhelle, Alexander F.; Deringer, Volker L.; Stoffel, Ralf P.; Dronskowski, Richard

    2016-03-01

    We present density-functional theory calculations of the lattice dynamics of bismuth telluride, yielding force constants, mean-square displacements and partial densities of phonon states which corroborate and complement previous nuclear inelastic scattering experiments. From these data, we derive an element- and energy-resolved view of the vibrational anharmonicity, quantified by the macroscopic Grüneisen parameter γ which results in 1.56. Finally, we calculate thermochemical properties in the quasiharmonic approximation, especially the heat capacity at constant pressure and the enthalpy of formation for bismuth telluride; the latter arrives at ▵H f (Bi2Te3)  =  -102 kJ mol-1 at 298 K.

  16. Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor

    Indian Academy of Sciences (India)

    Sandeep Arya; Saleem Khan; Suresh Kumar; Rajnikant Verma; Parveen Lehana

    2013-08-01

    Copper telluride (CuTe) nanowires were synthesized electrochemically from aqueous acidic solution of copper (II) sulphate (CuSO4.5H2O) and tellurium oxide (TeO2) on a copper substrate by template-assisted electrodeposition method. The electrodeposition was conducted at 30 °C and the length of nanowires was controlled by adjusting deposition time. Structural characteristics were examined using X-ray diffraction and scanning electron microscope which confirm the formation of CuTe nanowires. Investigation for chemical sensing was carried out using air and chloroform, acetone, ethanol, glycerol, distilled water as liquids having dielectric constants 1, 4.81, 8.93, 21, 24.55, 42.5 and 80.1, respectively. The results unequivocally prove that copper telluride nanowires can be fabricated as chemical sensors with enhanced sensitivity and reliability.

  17. Kelvin probe studies of cesium telluride photocathode for the AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, D.; Wisniewski, E. E.; Yusof, Z.; Harkay, K.; Spentzouris, L.; Terry, J. [Physics Department at Illinois Institute of Technology, Chicago, IL 60616 and High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Accelerator Science Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Physics Department at Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2012-12-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (> 1%), is robust in a photoinjector, and long lifetime. This photocathode is fabricated in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch ({approx}50 nC) in a long bunch train. We present some results from a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV light exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  18. GEOLOGY OF THE FLORENCIA GOLD – TELLURIDE DEPOSIT (CAMAGÜEY, CUBA AND SOME METALLURGICAL CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    López K Jesús M.

    2006-12-01

    Full Text Available This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after beneficiation and flotation of samples from these sectors.
    It is shown that gold deposits of the Cretaceous Volcanic Arc of Cuba largely consist of native gold, telluride and pyrite, where arsenopyrite is almost absent. Traces of lead, zinc and cadmium are present in the periphery of the main ore zones.

  19. Characterization of large cadmium zinc telluride crystals grown by traveling heater method

    DEFF Research Database (Denmark)

    Chen, H.; Awadalla, S.A.; Iniewski, K.;

    2008-01-01

    The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions/precipitates of these c......The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions...

  20. Optical property of amorphous semiconductor mercury cadmium telluride from first-principles study

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The structural and optical properties of amorphous semiconductor mercury cadmium telluride (a-MCT) are obtained by the first principles calculations. The total pair distribution functions and the density of states show that the a-MCT has the semiconductor characteristic. The calculated results of dielectric function show that E2 peak of the imaginary of dielectric function for the crystal mercury cadmium telluride abruptly disappears in the amorphous case due to the long-range disorders. And the imaginary of dielectric function of a-MCT shows a large broad peak, which is in agreement with the available results of other amorphous semiconductors. From the linear extrapolation of the curve ωε 2(ω)1/2 versus ω, it can be obtained that the optical energy gap of amorphous semiconductor Hg0.5Cd0.5Te is 0.51±0.05 eV.

  1. Optical property of amorphous semiconductor mercury cadmium telluride from first-principles study

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; CHEN XiaoShuang; LU Wei; HUANG Yan; WANG XiaoFang; ZHAO JiJun

    2009-01-01

    The structural and optical properties of amorphous semiconductor mercury cadmium telluride(a-MCT) are obtained by the first principles calculations. The total pair distribution functions and the density of states show that the a-MCT has the semiconductor characteristic. The calculated results of dielectric function show that E2 peak of the imaginary of dielectric function for the crystal mercury cadmium telluride abruptly disappears in the amorphous case due to the long-range disorders. And the imaginary of dielectric function of a-MCT shows a large broad peak, which is in agreement with the available results of other amorphous semiconductors. From the linear extrapolation of the curve (n)ωε2(ω)1/2 versus (n)ω,it can be obtained that the optical energy gap of amorphous semiconductor Hg0.5Cd0.5Te is 0.51±0.05 eV.

  2. Mitochondrial Toxicity of Cadmium Telluride Quantum Dot Nanoparticles in Mammalian Hepatocytes

    OpenAIRE

    Nguyen, Kathy C; Rippstein, Peter; Tayabali, Azam F.; Willmore, William G.

    2015-01-01

    There are an increasing number of studies indicating that mitochondria are relevant targets in nanomaterial-induced toxicity. However, the underlying mechanisms by which nanoparticles (NPs) interact with these organelles and affect their functions are unknown. The aim of this study was to investigate the effects of cadmium telluride quantum dot (CdTe-QD) NPs on mitochondria in human hepatocellular carcinoma HepG2 cells. CdTe-QD treatment resulted in the enlargement of mitochondria as examined...

  3. Aqueous-solution route to zinc telluride films for application to CO₂ reduction.

    Science.gov (United States)

    Jang, Ji-Wook; Cho, Seungho; Magesh, Ganesan; Jang, Youn Jeong; Kim, Jae Young; Kim, Won Yong; Seo, Jeong Kon; Kim, Sungjee; Lee, Kun-Hong; Lee, Jae Sung

    2014-06-01

    As a photocathode for CO2 reduction, zinc-blende zinc telluride (ZnTe) was directly formed on a Zn/ZnO nanowire substrate by a simple dissolution-recrystallization mechanism without any surfactant. With the most negative conduction-band edge among p-type semiconductors, this new photocatalyst showed efficient and stable CO formation in photoelectrochemical CO2 reduction at -0.2--0.7 V versus RHE without a sacrificial reagent.

  4. The first trialkylphosphane telluride complexes of Ag(I): molecular, ionic and supramolecular structural alternatives.

    Science.gov (United States)

    Daniliuc, Constantin; Druckenbrodt, Christian; Hrib, Cristian G; Ruthe, Frank; Blaschette, Armand; Jones, Peter G; du Mont, Wolf-W

    2007-05-28

    The structures of the first phosphane telluride complexes of silver(I), obtained from i-Pr3PTe (1) with AgNMs2 [Ms = SO2CH3] and with AgSbF6, reveal the superior coordinating ability of 1, particularly as a bridging ligand, compared with related i-Pr3PS and i-Pr3PSe ligands. PMID:17713078

  5. Predictors of an unsatisfactory response to pentavalent antimony in the treatment of American visceral leishmaniasis

    Directory of Open Access Journals (Sweden)

    Santos Mácia A.

    2002-01-01

    Full Text Available Although treatment of visceral leishmaniasis with pentavalent antimony is usually successful, some patients require second-line drug therapy, most commonly with amphotericin B. To identify the clinical characteristics that predict an inadequate response to pentavalent antimony, a case-control study was undertaken in Teresina, Piaui, Brazil. Over a two-year period, there were 19 cases of VL in which the staff physicians of a hospital prescribed second-line therapy with amphotericin B after determining that treatment with pentavalent antimony had failed. The control group consisted of 97 patients that were successfully treated with pentavalent antimony. A chart review using univariate and multivariate analysis was performed. The cure rate was 90% with amphotericin B. The odds ratio for the prescription of amphotericin B was 10.2 for children less than one year old, compared with individuals aged over 10 years. Patients who presented coinfection had an OR of 7.1 while those on antibiotics had an OR of 2.8. These data support either undertaking a longer course of therapy with pentavalent antimony for children or using amphotericin B as a first-line agent for children and individuals with coinfections. It also suggests that chemoprophylaxis directed toward bacterial coinfection in small children with VL may be indicated.

  6. Arsenic and antimony removal from drinking water by adsorption on granular ferric oxide.

    Science.gov (United States)

    Sazakli, Eleni; Zouvelou, Stavroula V; Kalavrouziotis, Ioannis; Leotsinidis, Michalis

    2015-01-01

    Arsenic and antimony occur in drinking water due to natural weathering or anthropogenic activities. There has been growing concern about their impact on health. The aim of this study was to assess the efficiency of a granular ferric oxide adsorbent medium to remove arsenic and antimony from drinking water via rapid small-scale column tests (RSSCTs). Three different water matrices - deionized, raw water treated with a reverse osmosis domestic device and raw water - were spiked with arsenic and/or antimony to a concentration of 100 μg L⁻¹. Both elements were successfully adsorbed onto the medium. The loadings until the guideline value was exceeded in the effluent were found to be 0.35-1.63 mg g⁻¹ for arsenic and 0.12-2.11 mg g⁻¹ for antimony, depending on the water matrix. Adsorption of one element was not substantially affected by the presence of the other. Aeration did not affect significantly the adsorption capacity. Granular ferric oxide could be employed for the simultaneous removal of arsenic and antimony from drinking water, whereas full-scale systems should be assessed via laboratory tests before their implementation.

  7. Determination of traces of uranium and thorium in antimony(III) oxide by ICP-MS

    International Nuclear Information System (INIS)

    Traces of uranium and thorium in antimony(III) oxide were determined by inductively coupled plasma mass spectrometry (ICP-MS). A method of vaporization as the halide was applied to the separation of the analytes from the antimony matrix. Because the above separation method is so simple, reduced of external contamination was expected. In the case of vaporization using hydrochloric acid, however, it was found that antimony trichloride ions overlapped thorium ion of 232 (m/z). To find the most suitable conditions for matrix separation, vaporization behaviors were studied by using different acidic solutions such as HBr, HBr-HClO4 and HBr-H2SO4. Neither HBr+HClO4 nor HBr+H2SO4 was able to reduce the antimony matrix down to an unaffected level on ICP-MS measurement. On the other hand, in the case of the vaporization using hydrobromic acid, almost all the antimony matrix was removed. Determination limits obtained by this method were 0.02 and 0.03 ng g-1 for uranium and thorium, respectively. (author)

  8. Antimony bioavailability: knowledge and research perspectives for sustainable agricultures.

    Science.gov (United States)

    Pierart, Antoine; Shahid, Muhammad; Séjalon-Delmas, Nathalie; Dumat, Camille

    2015-05-30

    The increasing interest in urban agriculture highlights the crucial question of crop quality. The main objectives for environmental sustainability are a decrease in chemical inputs, a reduction in the level of pollutants, and an improvement in the soil's biological activity. Among inorganic pollutants emitted by vehicle traffic and some industrial processes in urban areas, antimony (Sb) is observed on a global scale. While this metalloid is known to be potentially toxic, it can transfer from the soil or the atmosphere to plants, and accumulate in their edible parts. Urban agriculture is developing worldwide, and could therefore increasingly expose populations to Sb. The objective of this review was in consequences to gather and interpret actual knowledge of Sb uptake and bioaccumulation by crops, to reveal investigative fields on which to focus. While there is still no legal maximal value for Sb in plants and soils, light has to be shed on its accumulation and the factors affecting it. A relative absence of data exists about the role of soil flora and fauna in the transfer, speciation and compartmentation of Sb in vegetables. Moreover, little information exists on Sb ecotoxicity for terrestrial ecosystems. A human risk assessment has finally been reviewed, with particular focus on Sb bioaccessibility.

  9. Electronic characterization of defects in narrow gap semiconductors: Comparison of electronic energy levels and formation energies in mercury cadmium telluride, mercury zinc telluride, and mercury zinc selenide

    Science.gov (United States)

    Patterson, James D.; Li, Wei-Gang

    1995-01-01

    The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.

  10. SESPE-FRAZIER, DIABLO, MATILIJA, DRY LAKES, SAWMILL-BADLANDS, CUYAMA, ANTIMONY, AND QUATAL ROADLESS AREAS, CALIFORNIA.

    Science.gov (United States)

    Frizzell, Virgil A.; Hale, William N.

    1984-01-01

    The study area, consisting of the Sespe-Frazier, Diablo, Matilija, Dry Lakes, Sawmill-Badlands, Cuyama, Antimony, and Quatal Roadless Areas, occupies about 872 sq mi in the Los Padres National Forest, California. Studies indicate that the Sespe-Frazier Roadless Area contains demonstrated resources of gold, gypsum, phosphate and bentonite; deposits in the Cuyama Roadless Area have demonstrated resources of gypsum; mines in the Antimony Roadless Area have demonstrated resources of antimony, gold, silver, and marble; and the Quatal Roadless Area has demonstrated resources of bentonite. The Sespe-Frazier Roadless Area has substantiated potential for geothermal resources suitable for direct-heat purposes, probable and substantiated potential for oil and gas resources, and probable potential for gold resources. Small areas of probable resource potential for antimony and gold were identified in Antimony Roadless Area.

  11. Mixed Antimony(V Complexes with Different Sugars to Modulate the Oral Bioavailability of Pentavalent Antimonial Drugs

    Directory of Open Access Journals (Sweden)

    Weverson A. Ferreira

    2014-04-01

    Full Text Available Previous studies have shown that the association of the drug meglumine antimoniate (MA with β-cyclodextrin can improve its bioavailability by the oral route. In this work, ribose and maltose were investigated for their ability to form mixed or association complexes with MA, release MA and modulate the serum levels of Sb after oral administration in mice. Analysis of the MA/ribose composition by high performance liquid chromatography coupled to mass spectrometry (LCMS-IT-TOF revealed the presence of mixed meglumine-Sb-ribose and Sb-ribose complexes. Analysis of the MA/maltose composition suggested the formation of MA-maltose association compounds. Circular dichroism characterization of these compositions following dilution in water at 37 °C suggested a partial and slow dissociation of the association compounds. When the MA/ribose composition was administered orally and compared to MA, the serum concentration of Sb was significantly lower after 1 h and greater after 3 h. On the other hand, the MA/maltose composition showed similar serum Sb concentration after 1 h and higher level of Sb after 3 h, when compared to MA. In conclusion, the present study has demonstrated the formation of mixed or association complexes of MA with sugars, such as maltose and ribose, which promoted sustained serum level of Sb after oral administration.

  12. Anodic stripping voltammetry of antimony using gold nanoparticle-modified carbon screen-printed electrodes

    International Nuclear Information System (INIS)

    Carbon screen-printed electrodes (CSPE) modified with gold nanoparticles present an interesting alternative in the determination of antimony using differential pulse anodic stripping voltammetry. Metallic gold nanoparticles deposits have been obtained by direct electrochemical deposition. Scanning electron microscopy measurements show that the electrochemically synthesized gold nanoparticles are deposited in aggregated form. Any undue effects caused by the presence of foreign ions in the solution were also analyzed to ensure that common interferents in the determination of antimony by ASV. The detection limit for Sb(III) obtained was 9.44 x 10-10 M. In terms of reproducibility, the precision of the above mentioned method in %R.S.D. values was calculated at 2.69% (n = 10). The method was applied to determine levels of antimony in seawater samples and pharmaceutical preparations

  13. Synthesis of barium mercaptides and application of antimony/barium mercaptides

    Institute of Scientific and Technical Information of China (English)

    瞿龙; 张露露; 舒万艮

    2001-01-01

    Mercaptoacetic acid, isooctyl thioglycolate and barium hydroxide used as start materials, barium bis (2-ethylhexyl thioglycolate) (Ba(2EHTG)2), barium thioglycolate (Ba(TG)) and barium bisthioglycolate (Ba(TG)2) were synthesized. Their optimum synthetic techniques were discussed, and some physicochemical data were reported. Infrared spectroscopy and elemental analysis methods were used to identify the structures. They were put into PVC plastic products together with antimony tris (2-ethylhexyl thioglycolate) (Sb(2EHTG)3) under the suitable compounding, and their heat stability to PVC was studied. It is shown that these barium mercaptides have remarkable synergisms with antimony mercaptides and the long-term stabilizing effect of organoantimony stabilizer can be effectively improved, reducing the amount of antimony compounds so as to avoid the decrease of its stabilizing effect.

  14. Response of cutaneous leishmaniasis (chiclero's ulcer) to treatment with meglumine antimoniate in Southeast Mexico.

    Science.gov (United States)

    Vargas-Gonzalez, A; Canto-Lara, S B; Damian-Centeno, A G; Andrade-Narvaez, F J

    1999-12-01

    Cutaneous leishmaniasis, known as chiclero's ulcer in southeastern Mexico, is characterized by a predominantly single, painless, ulcerated lesion, without lymphangitis or adenopathy. When located on the ear, it tends to become chronic, causing destruction of the pinna and disfigurement. It is caused predominantly by Leishmania (L.) mexicana. Although pentavalent antimonials (Sb5+) are the mainstay of leishmanial therapy and have been used for more than 50 years, dosage regimens have been repeatedly modified and the best one has not been fully identified. The main purpose of the present study was to investigate the response of chiclero's ulcer to treatment with meglumine antimoniate. One hundred five patients were treated with meglumine antimoniate at a daily dose of 1 ampule per day (425 mg of Sb5+) until healing. The lesions healed after a mean of 25 days (range = 5-60 days). PMID:10674678

  15. Geothermal and fluid flowing simulation of ore-forming antimony deposits in Xikuangshan

    Institute of Scientific and Technical Information of China (English)

    YANG Ruiyan; MA Dongsheng; BAO Zhengyu; PAN Jiayong; CAO Shuanglin; XIA Fei

    2006-01-01

    The Xikuangshan Antimony Deposit located in the Mid-Hunan Basin, China, is the largest antimony deposit in the world. Based on the hydrogeological and geochemical data collected from four sections, Xikuangshan-Dajienao (AO), Xikuangshan-Dashengshan (BO), Xikuangshan-Longshan (CO) and Dafengshan (DO) in the Basin, an advanced metallogenic model related to deep-cyclic meteoric water of Xikuangshan Antimony Deposit is put forward in this paper using a model of heat-gravity-driving fluid flow transportation. The simulation results show that the ore-forming fluid of the deposit mainly comes from the Dashengshan and Longshan areas where BO and CO sections are located if the overall basin keeps a constant atmospheric precipitation and infiltration rate during mineralization, and that the average transportation speed of the ore-forming fluids is about 0.2-0.4 m/a.

  16. On-line lab-in-syringe cloud point extraction for the spectrophotometric determination of antimony.

    Science.gov (United States)

    Frizzarin, Rejane M; Portugal, Lindomar A; Estela, José M; Rocha, Fábio R P; Cerdà, Victor

    2016-02-01

    Most of the procedures for antimony determination require time-consuming sample preparation (e.g. liquid-liquid extraction with organic solvents), which are harmful to the environment. Because of the high antimony toxicity, a rapid, sensitive and greener procedure for its determination becomes necessary. The goal of this work was to develop an analytical procedure exploiting for the first time the cloud point extraction on a lab-in-syringe flow system aiming at the spectrophotometric determination of antimony. The procedure was based on formation of an ion-pair between the antimony-iodide complex and H(+) followed by extraction with Triton X-114. The factorial design showed that the concentrations of ascorbic acid, H2SO4 and Triton X-114, as well as second and third order interactions were significant at the 95% confidence level. A Box-Behnken design was applied to obtain the response surfaces and to identify the critical values. System is robust at the 95% confidence level. A linear response was observed from 5 to 50 µg L(-1), described by the equation A=0.137+0.050C(Sb) (r=0.998). The detection limit (99.7% confidence level), the coefficient of variation (n=5; 15 µg L(-1)) and the sampling rate was estimated at 1.8 µg L(-1), 1.6% and 16 h(-1), respectively. The procedure allows quantification of antimony in the concentrations established by environmental legislation (6 µg L(-1)) and it was successfully applied to the determination of antimony in freshwater samples and antileishmanial drugs, yielding results in agreement with those obtained by HGFAAS at the 95% confidence level.

  17. Future trends of global atmospheric antimony emissions from anthropogenic activities until 2050

    Science.gov (United States)

    Zhou, Junrui; Tian, Hezhong; Zhu, Chuanyong; Hao, Jiming; Gao, Jiajia; Wang, Yong; Xue, Yifeng; Hua, Shenbin; Wang, Kun

    2015-11-01

    This paper presents the scenario forecast of global atmospheric antimony (Sb) emissions from anthropogenic activities till 2050. The projection scenarios are built based on the comprehensive global antimony emission inventory for the period 1995-2010 which is reported in our previous study. Three scenarios are set up to investigate the future changes of global antimony emissions as well as their source and region contribution characteristics. Trends of activity levels specified as 5 primary source categories are projected by combining the historical trend extrapolation with EIA International energy outlook 2013, while the source-specific dynamic emission factors are determined by applying transformed normal distribution functions. If no major changes in the efficiency of emission control are introduced and keep current air quality legislations (Current Legislation scenario), global antimony emissions will increase by a factor of 2 between 2010 and 2050. The largest increase in Sb emissions is projected from Asia due to large volume of nonferrous metals production and waste incineration. In case of enforcing the pollutant emission standards (Strengthened Control scenario), global antimony emissions in 2050 will stabilize with that of 2010. Moreover, we can anticipate further declines in Sb emissions for all continents with the best emission control performances (Maximum Feasible Technological Reduction scenario). Future antimony emissions from the top 10 largest emitting countries have also been calculated and source category contributions of increasing emissions of these countries present significant diversity. Furthermore, global emission projections in 2050 are distributed within a 1° × 1°latitude/longitude grid. East Asia, Western Europe and North America present remarkable differences in emission intensity under the three scenarios, which implies that source-and-country specific control measures are necessary to be implemented for abating Sb emissions from

  18. Studies on Thin Films of Antimony Vacuum Evaporated from a Knudsen-Type Source

    Directory of Open Access Journals (Sweden)

    K.L. Chaudhary

    2000-10-01

    Full Text Available A Knudsen-type evaporation source was used for the deposition of thin films of antimony to study their growth and microstructure under different rates of evaporation and substrate temperatures when vacuum evaporated onto air-cleaved KC1, mica, amorphous carbon and doped KCl substrates. The crystallisation of these films on exposure to an electron beam of moderate intensity inside the electron microscope was studied, and the orientations of the crystallised films wrt the substrate were established. It has been concluded that antimony films prepared by this source compare well with those prepared by other sources of vacuum evaporation.

  19. Co-doping with antimony to control phosphorous diffusion in germanium

    KAUST Repository

    Tahini, H. A.

    2013-02-15

    In germanium, phosphorous and antimony diffuse quickly and as such their transport must be controlled in order to design efficient n-typed doped regions. Here, density functional theory based calculations are used to predict the influence of double donor co-doping on the migration activation energies of vacancy-mediated diffusion processes. The migration energy barriers for phosphorous and antimony were found to be increased significantly when larger clusters involving two donor atoms and a vacancy were formed. These clusters are energetically stable and can lead to the formation of even larger clusters involving a number of donor atoms around a vacancy, thereby affecting the properties of devices.

  20. Influence of cooling rate and antimony addition content on graphite morphology and mechanical properties of a ductile iron

    Directory of Open Access Journals (Sweden)

    Liu Zhe

    2012-05-01

    Full Text Available Cooling rate and inoculation practice can greatly affect the graphite morphology of ductile irons. In the present research, the effects of the cooling rate and antimony addition on the graphite morphology and mechanical properties of ductile irons have been studied. Three ductile iron castings were prepared through solidification under cooling conditions S (slow, M (medium and F (fast. The cooling rates around the equilibrium eutectic temperature (1,150 ℃ for these cooling conditions (S, M and F were set at 0.21 ℃·min-1, 0.32 ℃·min-1 and 0.37 ℃·min-1, respectively. In addition, four ductile iron castings were prepared by adding 0.01%, 0.02%, 0.03% and 0.04% (by weight antimony, respectively under the slow cooling condition. The results show that the nodularity index, tensile strength and hardness of the ductile iron castings without antimony addition are all improved with the increase of cooling rate, while the ductile iron casting solidified under the medium cooling rate possesses the largest number of graphite nodules. Furthermore, for the four antimony containing castings, the graphite morphology and tensile strength are also improved by the antimony additions, and the effect of antimony addition is intensified when the addition increases from 0.01% to 0.03%. Moreover, the rare earth elements (REE/antimony ratio of 2 appears to be the most effective for fine nodular graphite formation in ductile iron.

  1. Formation of Semimetallic Cobalt Telluride Nanotube Film via Anion Exchange Tellurization Strategy in Aqueous Solution for Electrocatalytic Applications.

    Science.gov (United States)

    Patil, Supriya A; Kim, Eun-Kyung; Shrestha, Nabeen K; Chang, Jinho; Lee, Joong Kee; Han, Sung-Hwan

    2015-11-25

    Metal telluride nanostructures have demonstrated several potential applications particularly in harvesting and storing green energy. Metal tellurides are synthesized by tellurization process performed basically at high temperature in reducing gas atmosphere, which makes the process expensive and complicated. The development of a facile and economical process for desirable metal telluride nanostructures without complicated manipulation is still a challenge. In an effort to develop an alternative strategy of tellurization, herein we report a thin film formation of self-standing cobalt telluride nanotubes on various conducting and nonconducting substrates using a simple binder-free synthetic strategy based on anion exchange transformation from a thin film of cobalt hydroxycarbonate nanostructures in aqueous solution at room temperature. The nanostructured films before and after ion exchange transformation reaction are characterized using field emission scanning electron microscope, energy dispersive X-ray analyzer, X-ray photoelectron spectroscopy, thin film X-ray diffraction technique, high resolution transmission electron microscope, and selected area electron diffraction analysis technique. After the ion exchange transformation of nanostructures, the film shows conversion from insulator to highly electrical conductive semimetallic characteristic. When used as a counter electrode in I3(-)/I(-) redox electrolyte based dye-sensitized solar cells, the telluride film exhibits an electrocatalytic reduction activity for I3(-) with a demonstration of solar-light to electrical power conversion efficiency of 8.10%, which is highly competitive to the efficiency of 8.20% exhibited by a benchmarked Pt-film counter electrode. On the other hand, the telluride film electrode also demonstrates electrocatalytic activity for oxygen evolution reaction from oxidation of water.

  2. Electronic Characterization of Defects in Narrow Gap Semiconductors-Comparison of Electronic Energy Levels and Formation Energies in Mercury Cadmium Telluride, Mercury Zinc Telluride, and Mercury Zinc Selenide

    Science.gov (United States)

    Patterson, James D.

    1996-01-01

    We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.

  3. Feasibility of preparing patterned molybdenum coatings on bismuth telluride thermoelectric modules.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Hall, Aaron Christopher; Miller, Stephen Samuel; Knight, Marlene E.; LePage, William S.; Sobczak, Catherine Elizabeth.; Wesolowski, Daniel Edward

    2013-09-01

    Molybdenum electrical interconnects for thermoelectric modules were produced by air plasma spraying a 30%CE%BCm size molybdenum powder through a laser-cut Kapton tape mask. Initial feasibility demonstrations showed that the molybdenum coating exhibited excellent feature and spacing retention (~170%CE%BCm), adhered to bismuth-telluride, and exhibited electrical conductivity appropriate for use as a thermoelectric module interconnect. A design of experiments approach was used to optimize air plasma spray process conditions to produce a molybdenum coating with low electrical resistivity. Finally, a molybdenum coating was successfully produced on a fullscale thermoelectric module. After the addition of a final titanium/gold layer deposited on top of the molybdenum coating, the full scale module exhibited an electrical resistivity of 128%CE%A9, approaching the theoretical resistivity value for the 6mm module leg of 112%CE%A9. Importantly, air plasma sprayed molybdenum did not show significant chemical reaction with bismuth-telluride substrate at the coating/substrate interface. The molybdenum coating microstructure consisted of lamellar splats containing columnar grains. Air plasma sprayed molybdenum embedded deeply (several microns) into the bismuth-telluride substrate, leading to good adhesion between the coating and the substrate. Clusters of round pores (and cracks radiating from the pores) were found immediately beneath the molybdenum coating. These pores are believed to result from tellurium vaporization during the spray process where the molten molybdenum droplets (2623%C2%B0C) transferred their heat of solidification to the substrate at the moment of impact. Substrate cooling during the molybdenum deposition process was recommended to mitigate tellurium vaporization in future studies.

  4. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while

  5. Spatial mapping of cadmium zinc telluride materials properties and electrical response to improve device yield and performance

    CERN Document Server

    Van Scyoc, J M; Yoon, H; Gilbert, T S; Hilton, N R; Lund, J C; James, R B

    1999-01-01

    Cadmium zinc telluride has experienced tremendous growth in its application to various radiation sensing problems over the last five years. However, there are still issues with yield, particularly of the large volume devices needed for imaging and sensitivity-critical applications. Inhomogeneities of various types and on various length scales currently prevent the fabrication of large devices of high spectral performance. This paper discusses the development of a set of characterization tools for quantifying these inhomogeneities, in order to develop improvement strategies to achieve the desired cadmium zinc telluride crystals for detector fabrication.

  6. Commerce Ministry Announced the Export Quotas for Zinc,Antimony,Tungsten,Tin and Silver

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> The Ministry of Commerce recently announcedits decision on the export quotas for zinc,anti-mony,tungsten,tin and silver in 2004.Accord-ing to the data released,all the export quotasare reduced except for silver.Relevant peoplesay that the raw materials shortage is a majorissue for the production of antimony and tin,

  7. Determination of barium and antimony in gun shot residues by neutron activation analysis

    International Nuclear Information System (INIS)

    The antimony contents on both hands of 7 persons before and after firing an automatic pistol were determined by instrumental neutron activation analysis. The gun shot residues were removed from hands by a 4% solution of cellulose acetate in acetone. The average content of antimony on both hands before firing obtained from 70 measurements (35 from each hand) was 0.040 ± 0.010 micro gram, whereas the average contents on the right and the left hands after 1 firing were 0.385 ± 0.036 and 0.144 ± 0.029 micro gram respectively. The ration of the antimony contents after 1 firing to the normal level (before firing) was 9.9 for the right and 3.6 for the left. No significant difference was observed between male and female, smoker and non-smoker. The antimony content after several firings was not much different from that of 1 firing and it reduced to the normal level within 2 days after firing. The barium contents before and after firing were studied from one person. Barium was precipitated as Ba SO4 before counting. An average contents of 0.936 ± 0.551 micro gram for both hands before firing, 4.092 ± 2.687 micro gram for the right hand and 1.363 ± 0.879 micro gram for the left hand after 1 firing were found

  8. Investigation on the thermal radiation properties of antimony doped tin oxide particles

    Institute of Scientific and Technical Information of China (English)

    Fu Cheng-Wu; Zhang Shuan-Qin; Chen Ming-Qing

    2008-01-01

    This paper reports the preparation of antimony doped tin oxide crystalline powders by chemical coprecipitation method. The influence of sintering temperature and the sintering retention time on the thermal infrared emissivity is analysed. The thermal infrared reflectivity is measured and the optimum doping concentration is proposed.

  9. Thermodynamics for arsenic and antimony in copper matte converting—computer simulation

    Science.gov (United States)

    Chaubal, P. C.; Nagamori, M.

    1988-08-01

    Thermodynamic data for arsenic and antimony and their sulfide and oxide gases have been critically reviewed and compiled. The entropy values for AsS(g), SbS(g), and BiS(g) have been recalculated based on a statistical thermodynamic method. The standard heat of formation and entropy of As2O3(g) have been newly assessed to be △H{298/0} = -81,500 cal/mole and S{298/0} = 81.5 cal/deg/mole. Copper matte converting has been mathematically described using the stepwise equilibrium simulation technique together with quadratic approximations of oxygen and magnetite solubilities in molten mattes. A differential equation for the volatilization of arsenic and antimony has been derived and solved for successive reaction microsteps, whereby the volatilization, slagging, and alloying of the minor elements in copper matte converting have been examined as functions of reaction time and other process variables. Only the first (slag-making) stage of converting is responsible for the elimination of arsenic and antimony by volatilization. Arsenic volatilizes mainly as AsS(g) and AsO(g), with As2(g) also contributing when initial mattes are unusually rich in arsenic (above 0.5 pct arsenic). Antimony volatilizes chiefly as SbS(g), and the contributions of other gases such as SbO(g) and Sb(g) always remain negligibly low. The results of the stepwise equilibrium simulation compare favorably with the industrial operating data.

  10. Synthesis of antimony tris(mercaptoethyl carboxylates) as thermal stabilizer for polyvinyl chloride

    Institute of Scientific and Technical Information of China (English)

    舒万艮; 刘又年; 陈启元

    2002-01-01

    A novel type of thermal stabilizers-antimony tris(mercaptoethyl carboxylates) (Sb(SCH2CH2OOCR) 3), was synthesized from carboxylic acid, antimony trioxide and 2-mercaptoethanol in two steps. The experimental results show that the molar ratio of carboxylic acid to antimony tris(2-hydroxyethyl mercaptide) is 1.2, when adding 0.6% tetra-n-butyl titanate as catalyst and xylene as isotropic solvent, heating and refluxing for about 2~4h. The thermal stability was measured by heat-aging oven test. The thermal stability time is about 8~40min(at 200℃) when adding 2% tetra-n-butyl titanate in polyvinyl chloride(PVC). Among these stabilizers, antimony tris(mercaptoethyl stearate) has best thermal stability. Its thermal stability is better than that of Ca-Zn complex and basic lead stabilizers, and equal to that of organotin. In addition, the stabilization mechanism of this kind of stabilizers for PVC was discussed briefly.

  11. Antimony production by carbothermic reduction of stibnite in the presence of lime

    Directory of Open Access Journals (Sweden)

    Padilla R.

    2014-01-01

    Full Text Available Experimental work on the carbothermic reduction of Sb2S3 in the presence of lime was carried out in the temperature range of 973 to 1123 K to produce antimony in an environmentally friendly manner. The results demonstrated the technical feasibility of producing antimony by this method without producing SO2 gas. Complete conversion of Sb2S3 was obtained at 1023 K in about 1000 seconds and at 1123 K in less than 250 seconds using stibnite-carbon-lime mixtures with molar ratios Sb2S3:CaO:C = 1:3:3. It was found that the reduction proceeds through the formation of an intermediate oxide SbO2, which is subsequently reduced by CO(g to yield antimony metal and CaS. The kinetics of the Sb2S3 reduction was analyzed by using the equation ln(1-X = -kt. The activation energy was 233 kJ mol-1 in the temperature range of 973 to 1123 K. This value would correspond to an antimony catalyzed carbon oxidation by CO2.

  12. Specific features of the photoconductivity of semi-insulating cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Golubyatnikov, V. A.; Grigor’ev, F. I.; Lysenko, A. P., E-mail: aplysenko@hse.ru; Strogankova, N. I.; Shadov, M. B. [National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics (Russian Federation); Belov, A. G. [OAO GIREDMET State Research and Design Institute of the Rare-Metal Industry (Russian Federation)

    2014-12-15

    The effect of local illumination providing a high level of free-carrier injection on the conductivity of a sample of semi-insulating cadmium telluride and on the properties of ohmic contacts to the sample is studied. It is found that, irrespective of the illumination region, the contact resistance of ohmic contacts decreases and the concentration of majority carriers in the sample grows in proportion to the illumination intensity. It is shown that inherent heterogeneities in crystals of semi-insulating semiconductors can be studied by scanning with a light probe.

  13. Polarity and structure peculiarities of trialkylphosphine oxides, sulfides, selenides and tellurides

    International Nuclear Information System (INIS)

    Using the quantum-chemical calculations structural characteristics of trialkylphosphine oxides, sulfates, selenides and tellurides (Alk3P=X; X O, S, Se, Te) are obtained, which are in good agreement with literature X-ray structural analysis and gas-phase electron diffraction data. The P=X bonds polarity is determined in the framework of vector-additive scheme on the base of experimental data on components dipole moments and using different base series of molecules geometry parameters. It is shown that increasing of bond moment P=X in the X = O, S, Se, Te series takes place through dipole length increasing

  14. Soft x-ray magnetic circular dichroism study of Cr tellurides

    OpenAIRE

    Yaji, Koichiro; Kimura, Akio; Koyama, Michie; Hirai, Chiyuki; Sato, Hitoshi; Shimada, Kenya; Tanaka, Arata; Taniguchi, Masaki

    2005-01-01

    Ferromagnetic chromium tellurides Cr5 Te6 (δ=0.17) and Cr2 Te3 (δ=0.33) have been investigated by Cr 2p x-ray absorption spectroscopy and x-ray magnetic circular dichroism (XMCD). The observed XMCD spectra have been analyzed by means of a configuration-interaction cluster model calculation. From calculated results, we suggest that the doped holes created by the Cr deficiency exist mainly in the Te 5p orbital of Cr1-δ Te.

  15. Antimonial drugs entrapped into phosphatidylserine liposomes: physicochemical evaluation and antileishmanial activity

    Directory of Open Access Journals (Sweden)

    Samanta Etel Treiger Borborema

    2016-04-01

    Full Text Available Abstract: INTRODUCTION: Leishmaniasis is a disease caused by the protozoan Leishmania that resides mainly in mononuclear phagocytic system tissues. Pentavalent antimonials are the main treatment option, although these drugs have toxic side effects and high resistance rates. A potentially alternative and more effective therapeutic strategy is to use liposomes as carriers of the antileishmanial agents. The aims of this study were to develop antimonial drugs entrapped into phosphatidylserine liposomes and to analyze their biological and physicochemical characteristics. METHODS: Liposomes containing meglumine antimoniate (MA or pentavalent antimony salt (Sb were obtained through filter extrusion (FEL and characterized by transmission electron microscopy. Promastigotes of Leishmania infantum were incubated with the drugs and the viability was determined with a tetrazolium dye (MTT assay. The effects of these drugs against intracellular amastigotes were also evaluated by optical microscopy, and mammalian cytotoxicity was determined by an MTT assay. RESULTS: Liposomes had an average diameter of 162nm. MA-FEL showed inhibitory activity against intracellular L. infantum amastigotes, with a 50% inhibitory concentration (IC50 of 0.9μg/mL, whereas that of MA was 60μg/mL. Sb-FEL showed an IC50 value of 0.2μg/mL, whereas that of free Sb was 9μg/mL. MA-FEL and Sb-FEL had strong in vitro activity that was 63-fold and 39-fold more effective than their respective free drugs. MA-FEL tested at a ten-times higher concentration than Sb-FEL did not show cytotoxicity to mammalian cells, resulting in a higher selectivity index. CONCLUSIONS: Antimonial drug-containing liposomes are more effective against Leishmania-infected macrophages than the non-liposomal drugs.

  16. Thermoelectric properties and micro-structure characteristics of annealed N-type bismuth telluride thin film

    International Nuclear Information System (INIS)

    N-type bismuth telluride (Bi2Te3) thermoelectric thin films were deposited by co-sputtering simple substance Te and Bi targets. The deposited films were annealed under various temperatures. The composition ratio, micro-structure and thermoelectric properties of the prepared films were systematically investigated by energy dispersive spectrometer, X-ray diffraction, four-probe method and Seebeck coefficient measurement system. When the annealing temperature is 400 °C, the stoichiometric N-type Bi2Te3 film is achieved, which has a maximum thermoelectric power factor of 0.821 × 10−3 W m−1 K−2. Furthermore, the dependence of Seebeck coefficient, electrical conductivity and power factor of the stoichiometric N-type Bi2Te3 film annealed at film 400 °C on the applied temperature ranging from 25 °C to 315 °C was investigated. The results show that a highest power factor of 3.288 × 10−3 W m−1 K−2 is obtained at the applied temperature of 275 °C. The structural and thermoelectric properties of the deposited bismuth telluride thin films are greatly improved by annealing and the Seebeck coefficient, electrical conductivity and power factor increase with the applied temperature rising, which are helpful and could be guidance for preparing the high-performance thin film thermoelectric materials for thermoelectric application.

  17. Facile production of thermoelectric bismuth telluride thick films in the presence of polyvinyl alcohol.

    Science.gov (United States)

    Lei, C; Burton, M R; Nandhakumar, I S

    2016-06-01

    Bismuth telluride is currently the best performing thermoelectric material for room temperature operations in commercial thermoelectric devices. We report the reproducible and facile production of 600 micron thick bismuth telluride (Bi2Te3) layers by low cost and room temperature pulsed and potentiostatic electrodeposition from a solution containing bismuth and tellurium dioxide in 2 M nitric acid onto nickel in the presence of polyvinyl alcohol (PVA). This was added to the electrolyte to promote thick layer formation and its effect on the structure, morphology and composition of the electrodeposits was investigated by SEM and EDX. Well adherent, uniform, compact and stoichiometric n-type Bi2Te3 films with a high Seebeck coefficient of up to -200 μV K(-1) and a high electrical conductivity of up to 400 S cm(-1) resulting in a power factor of 1.6 × 10(-3) W m(-1) K(-2) at film growth rates of 100 μm h(-1) for potentiostatic electrodeposition were obtained. The films also exhibited a well defined hexagonal structure as determined by XRD.

  18. Telluride buried channel waveguides operating from 6 to 20 μm for photonic applications

    Science.gov (United States)

    Vigreux, C.; Escalier, R.; Pradel, A.; Bastard, L.; Broquin, J.-E.; Zhang, X.; Billeton, T.; Parent, G.; Barillot, M.; Kirschner, V.

    2015-11-01

    One of the technological challenges of direct observation of extra-solar planets by nulling interferometry is the development of a modal filter operating from 6 to 20 μm. In the present paper a candidate technology for the fabrication of such modal filters is presented: Integrated Optics. A solution based on all-telluride buried channel waveguides is considered. In the proposed waveguides, vertical guiding of light is achieved by a 15 μm-thick Te83Ge17 core film deposited onto a lower-index Te75Ge15Ga10 substrate, and covered by a 15 μm-thick Te76Ge24 superstrate. Horizontal guiding of light is obtained by modifying the geometry of the core layer by ion beam etching. As this stage, all-telluride buried channel waveguide prototypes demonstrate light guiding and transmission from 2 to 20 μm. The validity of the technology and the good quality of the fabrication process, in particular the input and output facets surface finish are thus confirmed. These results consolidate the potential of Te-based integrated optics components for nulling interferometry.

  19. Electrodes modified with bismuth, antimony and tin precursor compounds for electrochemical stripping analysis of trace metals (a short review)

    OpenAIRE

    Lezi, Nikolitsa; Economou, Anastasios; Barek, Jiří

    2014-01-01

    Over the last decade, intensive research is being carried out towards the development of “green” electrochemical sensors. Bismuth, antimony and tin electrodes have been proposed as potential substitutes of mercury electrodes in electrochemical stripping analysis of trace metals. The main advantage of these metals as electrode materials is their lower toxicity compared to mercury. Among the different configuration of bismuth, antimony and tin electrodes, one of the most attractive inv...

  20. Investigation into properties of the mixture of perfluoro-2-methyl-bicyclo(4,4,0) decane with antimony fluoride

    International Nuclear Information System (INIS)

    State diagram was constructed for a binary system formed by antimony fluoride and perfluoro-2-methyl-bicyclo-(4,4,0)decane in the temperature range of -58 deg to +56 deg C. Temperature dependence of solubility and the differential molar heat of solubility of solid Sb F5 were determined. Above the melting point of antimony fluoride these components were found to form a system of two sparingly miscible liquids with upper critical dissolution temperature

  1. Electrodeposition of SnSbCu Alloy on Copper from an Electrolyte with Varied Content of Antimony Chloride

    Science.gov (United States)

    Valeeva, A. Kh.; Valeev, I. Sh.

    2015-10-01

    The microstructure and chemical composition of electrodeposited alloys of the SnSbCu system with varied concentration of antimony chloride in the electrolyte have been investigated. It is shown that during electrodeposition mechanical-mixture alloys are not formed, but rather intermetallic compounds. It is found that increasing the concentration of antimony chloride in the electrolyte leads to a decrease in the tin content and cracking of the coating.

  2. The Ministry of Land and Resources Continued to Impose Total Exploitation Control on Tungsten, Antimony and Rare Earth

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>The General Office of the Ministry of Land and Resources distributed "Notice on Issuing Total Exploitation Control Quota of Tungsten Mine, Antimony Mine and Rare Earth Mine (First Batch) for 2013" (the "Notice") on January 5, it issued total exploitation control quota of tungsten mine, antimony mine and rare earth mine (first batch) for 2013. According to the Notice, the first batch of national

  3. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.

    Science.gov (United States)

    Li, Yongchao; Hu, Xiaoxian; Ren, Bozhi

    2016-01-01

    The present article summarizes antimony mine distribution, antimony mine drainage generation and environmental impacts, and critically analyses the remediation approach with special emphasis on iron oxidizing bacteria and sulfate reducing bacteria. Most recent research focuses on readily available low-cost adsorbents, such as minerals, wastes, and biosorbents. It is found that iron oxides prepared by chemical methods present superior adsorption ability for Sb(III) and Sb(V). However, this process is more costly and iron oxide activity can be inhibited by plenty of sulfate in antimony mine drainage. In the presence of sulfate reducing bacteria, sulfate can be reduced to sulfide and form Sb(2)S(3) precipitates. However, dissolved oxygen and lack of nutrient source in antimony mine drainage inhibit sulfate reducing bacteria activity. Biogenetic iron oxide minerals from iron corrosion by iron-oxidizing bacteria may prove promising for antimony adsorption, while the micro-environment generated from iron corrosion by iron oxidizing bacteria may provide better growth conditions for symbiotic sulfate reducing bacteria. Finally, based on biogenetic iron oxide adsorption and sulfate reducing bacteria followed by precipitation, the paper suggests an alternative treatment for antimony mine drainage that deserves exploration.

  4. [Physico-chemical characteristics of meglumine antimoniate in different storage conditions].

    Science.gov (United States)

    Romero, G A; de Oliveira, M R; Correia, D; Marsden, P D

    1996-01-01

    During the period October 1992 to July 1995 we measured the osmolarity and pH of ampoules of meglumine antimoniate (glucantime) from lot 9206L-004 (manufactured by Rhodia Farma Ltd, of São Paulo, SP, Brazil) maintained in three temperature conditions namely 4 degrees C, 37 degrees C and ambiental. Although we observed statistically significant differences in osmolarity between samples, the limited number of measurements and the variation of this property in ampoules maintained at the same temperature were obstacles to obtain definitive conclusions. Such a variation was not found with pH. Assuming these parameters could reflect structural changes in the pentavalent antimony molecule, clearly further better controlled experiments are indicated.

  5. Antimony segregation in stressed SiGe heterostructures grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    The effects of the growth temperature, composition, and elastic strains in separate layers on the segregation of antimony are studied experimentally for stressed SiGe structures grown by molecular beam epitaxy. It is established that the growth conditions and parameters of the structures exert an interrelated influence on the segregation of Sb: the degree of the influence of the composition and elastic stresses in the SiGe layers on Sb segregation depends on the growth temperature. It is shown that usage of a method previously proposed by us for the selective doping of silicon structures with consideration for the obtained dependences of Sb segregation on the growth conditions and parameters of the SiGe layers makes it possible to form SiGe structures selectively doped with antimony

  6. Deciphering lead and cadmium stripping peaks for porous antimony deposited electrodes

    Directory of Open Access Journals (Sweden)

    Taimoor Aqeel Ahmad

    2016-06-01

    Full Text Available Cadmium and lead are generally taken as model heavy metal ions in water to scale the detection limit of various electrode sensors, using electrochemical sensing techniques. These ions interact with the electrochemically deposited antimony electrodes depending on the diffusion limitations. The phenomenon acts differently for the in-situ and ex-situ deposition as well as for porous and non-porous electrodes. A method has been adopted in this study to discourage the stripping and deposition of the working ions (antimony to understand the principle of heavy metal ion detection. X-ray photoelectron spectroscopy (XPS technique was used to establish the interaction between the working and dissolved ions. In addition to the distinct peaks for each analyte, researchers also observed a shoulder peak. A possible reason for the presence of this peak was provided. Different electrochemical tests were performed to ascertain the theory on the basis of the experimental observations.

  7. A facile and fast route to prepare antimony (Sb) nanostructures without additives

    KAUST Repository

    Shah, M.A.

    2011-12-01

    Herein, we report a safe, low cost and reproducible approach for the synthesis of antimony (Sb) nanostructures with most of them having prism like morphology and having well defined faces in the range of ∼70210 nm. The organics free approach is based on a reaction of antimony powder and pure water at ∼210 °C without using any harmful additives and amines. The XRD pattern confirmed the composition and crystallinity of the grown nanostructures. The reported method besides being organics free is economical, fast and free of pollution, which will make it suitable for large scale production. Furthermore, it is well expected that such a technique could be extended to prepare many other important metal and metal oxide nanostructures. The prospects of the process are bright and promising. © 2012 Sharif University of Technology. Production and hosting by Elsevier B.V. All rights reserved.

  8. Synthesis of cadmium telluride quantum wires and the similarity of their band gaps to those of equidiameter cadmium telluride quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin-Wang; Sun, Jianwei; Wang, Lin-Wang; Buhro, William E.

    2008-07-11

    High-quality colloidal CdTe quantum wires having purposefully controlled diameters in the range of 5-11 nm are grown by the solution-liquid-solid (SLS) method, using Bi-nanoparticle catalysts, cadmium octadecylphosphonate and trioctylphosphine telluride as precursors, and a TOPO solvent. The wires adopt the wurtzite structure, and grow along the [002] direction (parallel to the c axis). The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to the experimental results for high-quality CdTe quantum dots. In contrast to the predictions of an effective-mass approximation, particle-in-a-box model, and previous experimental results from CdSe and InP dot-wire comparisons, the band gaps of CdTe dots and wires of like diameter are found to be experimentally indistinguishable. The present results are analyzed using density functional theory under the local-density approximation by implementing a charge-patching method. The higher-level theoretical analysis finds the general existence of a threshold diameter, above which dot and wire band gaps converge. The origin and magnitude of this threshold diameter is discussed.

  9. Controlled cadmium telluride thin films for solar cell applications (emerging materials systems for solar cell applications). Quarterly progress report No. 1, April 9-July 8, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Vedam, K.

    1979-08-01

    Preparation and properties of cadmium telluride thin films for use in solar cells are studied. CdTe sputter deposition, crystal doping, and carrier typing are discussed. Future experimental plans are described. (WHK)

  10. Bi-antimony capped Keggin polyoxometalate modified with Cu-ligand fragment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jiao [College of Chemistry and Material Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024 (China); Han, Zhangang, E-mail: hanzg116@yahoo.com.cn [College of Chemistry and Material Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024 (China); Zhang, Heng; Yu, Haitao [College of Chemistry and Material Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024 (China); Zhai, Xueliang, E-mail: xlzhai253@mail.hebtu.edu.cn [College of Chemistry and Material Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024 (China)

    2012-10-15

    Three polyoxometalates consisting of bi-antimony capped Keggin-type clusters: [Cu(mbpy){sub 2}]{sub 2}[PMo{sub 12}O{sub 40}Sb{sub 2}]{center_dot}4H{sub 2}O (1), [Cu(mbpy){sub 2}][PMo{sub 12}O{sub 40}Sb{sub 2}] (2) and {l_brace}Cu(mbpy)[Cu(mbpy){sub 2}]{sub 2}{r_brace}[VMo{sub 8}V{sub 4}O{sub 40}Sb{sub 2}]{center_dot}2H{sub 2}O (3) (mbpy=4,4 Prime -dimethyl-2,2 Prime - dipyridyl in 1 and 2; 5,5 Prime -dimethyl-2,2 Prime -dipyridyl in 3) have been synthesized and characterized by IR, X-ray powder diffraction, TG analysis and electrochemical property. Single-crystal analysis revealed that all of three compounds are built upon bi-antimony capped Keggin-type polyoxoanions and Cu-mbpy cations. In 1-3, two Sb{sup III} centers located at the two opposite of anionic surface adopt fundamentally tetragonal pyramidal coordination geometry. Both compounds 1 and 2 consist of P-centered Keggin structure, while compound 3 presents a V-centered Keggin anion. The Keggin-type anions present different structural features: isolated cluster in 1 and Cu-ligand-supported cluster in 2 and 3. - Graphical abstract: Three hybrid compounds consisting of bi-antimony capped Keggin-type clusters modified with Cu-ligand cations have been synthesized and characterized. Highlights: Black-Right-Pointing-Pointer Three hybrid compounds consisting of bi-antimony capped Keggin-type clusters have been synthesized. Black-Right-Pointing-Pointer Two Sb{sup III} centers located at the two opposite of anionic surface adopt tetragonal pyramidal coordination geometry. Black-Right-Pointing-Pointer The anions present different structural features: isolated and Cu-ligand-supported cluster.

  11. Metal corrosion studies with the fluorosulphonic acid-antimony pentafluoride superacid system

    International Nuclear Information System (INIS)

    Because of their rapid dissolution of many actinide metals and refractory oxides, superacids such as HSO3F/SbF5 have potential applications in actinide processing. However, material compatibility must first be addressed because of the highly corrosive nature of superacids. This paper describes the qualitative rates of attack of fluorosulphonic acid-antimony pentafluoride superacid on a variety of metal substrates relevant to nuclear processing

  12. Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium

    OpenAIRE

    Rajmund Michalski; Sebastian Szopa; Magdalena Jabłońska; Aleksandra Łyko

    2012-01-01

    Due to the fact that metals and metalloids have a strong impact on the environment, the methods of their determination and speciation have received special attention in recent years. Arsenic, antimony, and thallium are important examples of such toxic elements. Their speciation is especially important in the environmental and biomedical fields because of their toxicity, bioavailability, and reactivity. Recently, speciation analytics has been playing a unique role in the studies of biogeochemi...

  13. Electrodeposition Mechanism of Trivalent Antimony%三价锑的电沉积机理

    Institute of Scientific and Technical Information of China (English)

    林艳; 谢刚; 杨大锦

    2011-01-01

    The reduction mechanism of Sb3+ in H2SO4-NH4F-SbF3 electrolyte system was studied by means of electrochemical methods, including chronopotentiometry and alternating current impedance.Analysis of potential-time transients clearly shows that antimony (Ⅲ) could be reduced to antimony metal via two-steps irreversible electron transfer process in H2SO4-NH4F-SbF3 system.The relationship between iτ1/2 and i calculated by chronopotentiometry indicates that the trivalent antimony complex undergoes chemical transformation reaction before its reduction in the cathode.The impedance results confirm the above conclusion and indicate that the adsorption states which are the middle product of trivalent antimony have different influences on two electron transfer steps.%采用恒电流阶跃法及交流阻抗法等电化学方法,研究了H2SO4-NH4F-SbF3体系中三价锑的阴极还原机理.电势~时间暂态曲线出现二步反应特征,表明Sb"还原分两步进行.由恒电流阶跃曲线中iτ1/2~i关系可知Sb3+阴极还原存在前置化学转化.Sb3+阴极还原的交流阻抗测定结果进一步验证Sb3+还原是存在化学前置转化步骤的二步反应,且电活性中间产物吸附在电极表面,吸附反应对两步电子转移步骤的影响不同.

  14. Polycrystalline thin films of antimony selenide via chemical bath deposition and post deposition treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Lazcano, Y. [Department of Solar Energy Materials, Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos-62580 (Mexico); Pena, Yolanda [Department of Solar Energy Materials, Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos-62580 (Mexico); Nair, M.T.S. [Department of Solar Energy Materials, Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos-62580 (Mexico)]. E-mail: mtsn@cie.unam.mx; Nair, P.K. [Department of Solar Energy Materials, Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos-62580 (Mexico)

    2005-12-22

    We report a method for obtaining thin films of polycrystalline antimony selenide via chemical bath deposition followed by heating the thin films at 573 K in selenium vapor. The thin films deposited from chemical baths containing one or more soluble complexes of antimony, and selenosulfate initially did not show X-ray diffraction (XRD) patterns corresponding to crystalline antimony selenide. Composition of the films, studied by energy dispersive X-ray analyses indicated selenium deficiency. Heating these films in presence of selenium vapor at 573 K under nitrogen (2000 mTorr) resulted in an enrichment of Se in the films. XRD peaks of such films matched Sb{sub 2}Se{sub 3}. Evaluation of band gap from optical spectra of such films shows absorption due to indirect transition occurring in the range of 1-1.2 eV. The films are photosensitive, with dark conductivity of about 2 x 10{sup -8} ({omega} cm){sup -1} and photoconductivity, about 10{sup -6} ({omega} cm){sup -1} under tungsten halogen lamp illumination with intensity of 700 W m{sup -2}. An estimate for the mobility life time product for the film is 4 x 10{sup -9} cm{sup 2} V{sup -1}.

  15. Studies in atomic-fluorescence spectroscopy-V The fluorescence characteristics and determination of antimony.

    Science.gov (United States)

    Dagnall, R M; Thompson, K C; West, T S

    1967-10-01

    Atomic-fluorescence of antimony may be generated in an air-propane flame by nebulizing aqueous solutions of antimony salts whilst irradiating the flame by means of a microwave-excited electrode-less discharge tube operating at 30 W. The strongest fluorescence is exhibited by the (4)S(11 2 ) --> (4)P(1 3 ) 2311 A resonance line and weaker signals are observed at the 2068 and 2176 A resonance lines and at four intercombination lines, at 2598, 2671, 2770 and 2878 A. A process of thermally assisted direct-line fluorescence is postulated to account for the otherwise inexplicable intensity of the 2598 A line emission. Atomic-fluorescence spectroscopy at 2176 A permits the determination of antimony in the range 0.1-120 ppm with a detection limit of 0.05 ppm. With the same equipment and source, the range of measurement for atomic-absorption was 6-120 ppm and the detection limit was 1 ppm. No interferences were observed from 100-fold molar amounts of Cd, Co, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, NH(4), Pb and Zn or from arsenate, chloride, nitrate, phosphate and sulphate. PMID:18960212

  16. Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings

    International Nuclear Information System (INIS)

    Spangles produced by batch hot-dip galvanizing process have a rougher surface and a greater surface segregation of alloying element compared with those in continuous hot-dip galvanizing line (CGL), owing to the cooling rate of the former is much smaller than that of the later. Therefore, typical spangles on a batch hot-dipped Zn-0.05Al-0.2Sb alloy coating were investigated. The chemical, morphological characterization and identification of the phases on the spangles were examined by scanning electron microscopy (SEM), backscattered electron imaging (BSE), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The results showed that the coating surface usually exhibited three kinds of spangles: shiny, feathery and dull spangle, of which extensively antimony surface segregation was detected. The nature of precipitate on the coating surface was identified as β-Sb3Zn4, The precipitated β-Sb3Zn4 particles distributed randomly on the shiny spangle surface, both β-Sb3Zn4 particles and dentritic segregation of antimony dispersed in the dendritic secondary arm spacings of the feathery spangle and on the whole dull spangle surface. The dentritic segregation of antimony and precipitation of Sb3Zn4 compound are discussed by a proposed model.

  17. Antimony in the Contaminated Site of El Triunfo, Baja California Sur, Mexico

    Directory of Open Access Journals (Sweden)

    Marmolejo-Rodríguez A. J.

    2013-04-01

    Full Text Available Antimony has properties similar to arsenic with some of its compounds toxic to humans. Therefore it is necessary to control the wastes accumulated by anthropogenic activities, such as mining, where it is in tailings to be released to the environment. According to the Environment Protection Agency, the maximum value in sediments is 11.2 mg Sb kg–1 and the Earth’s crust average is 0.2 mg Sb kg–1. In this semiarid area, the drainage basin El Carrizal is impacted with wastes of an abandoned gold mine at the Mining District El Triunfo (MD – ET which have tailings with 17,600 mg kg–1 of antimony. In the main dry river (arroyo, the Sb content is between 0.6 and 122 mg kg–1. This element is transported from the source throughout the fluvial basin to discharge into the Pacific Ocean. In the arroyo mouth we collected one sedimentary core and the sediment from dunes (28.6 – 45.7 and 6.43 – 7.74 mg Sb kg–1. This research concluded the antimony is enriched in this semiarid system, with Normalized Enrichment Factors severely enriched mainly in arroyo sediments close to the MD-ET

  18. Preparation of bismuth telluride thin film by electrochemical atomic layer epitaxy(ECALE)

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen; YANG Junyou; GAO Xianhui; HOU Jie; BAO Siqian; FAN Xian

    2007-01-01

    Thin-layer electrochemical studies of the underpotential deposition(UPD)of Bi and Te on cold rolled silver substrate have been performed.The voltammetric analysis of underpotential shift demonstrates that the initial Te UPD on Bi-covered Ag and Bi UPD on Te-covered Ag fitted UPD dynamics mechanism.A thin film of bismuth telluride was formed by alternately depositing Te and Bi via an automated flow deposition system.X-ray diffraction indicated the deposits of Bi2Te3.Energy Dispersive X-ray Detector quantitative analysis gave a 2:3 stoichiornetric ratio of Bi to Te,which was consistent with X-ray Diffraction results.Electron probe microanalysis of the deposits showed a network structure that results from the surface defects of the cold rolled Ag substrate and the lattice mismatch between substrate and deposit.

  19. Study of transport properties co - evaporated lead telluride (PbTe) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, U.P.; Bhavsar, G.P. [Thin film laboratory, Physics Department Pratap College, Amalner (India); Pawar, P.H. [Department of Electronics, Jai-Hind College, Dhule (India)

    2002-07-01

    Thin films of lead telluride (PbTe) of thicknesses ranging from 1000 A to 2500 A have been prepared by co-evaporation (three temperature) technique, onto precleaned amorphous glass substrates at various temperatures. The deposited samples were annealed and annealed samples were used for characterization. Resistivity of these samples was measured by four-probe technique as a function of thickness and temperature. Activation energy for charge transport have been evaluated and found in the range of 0.09 to 0.106 eV. Thermoelectric power has been measured and found to be positive indicating that the samples are p-type semiconducting material. Mobility variation with temperature has been estimated (evaluated) and correlated with scattering mechanism in the entire range of temperature studied. The X-ray diffraction analysis confirmed that films are polycrystalline having cubic structure cell and lattice parameters are reported. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  20. The use of cadmium telluride detectors for the qualitative analysis of diagnostic x-ray spectra.

    Science.gov (United States)

    Di Castro, E; Pani, R; Pellegrini, R; Bacci, C

    1984-09-01

    A method is introduced for the evaluation of x-ray spectra from x-ray machines operating in the range 50-100 kVp using a cadmium telluride (CdTe) detector with low detection efficiency. The pulse height distribution obtained with this kind of detector does not represent the true photon spectra owing to the presence of K-escape, Compton scattering, etc.; these effects were evaluated using a Monte Carlo method. A stripping procedure is described for implementation on a Univac 1100/82 computer. The validity of our method was finally tested by comparison with experimental results obtained with a Ge detector and with data from the literature; the results are in good agreement with published data. PMID:6483976

  1. Ion Beam Induced Charge Collection (IBICC) Studies of Cadmium Zinc Telluride (CZT) Radiation Detectors

    International Nuclear Information System (INIS)

    Cadmium Zinc Telluride is an emerging material for room temperature radiation detectors. In order to optimize the performance of these detectors, it is important to determine how the electronic properties of CZT are related to the presence of impurities and defects that are introduced during the crystal growth and detector fabrication. At the Sandia microbeam facility IBICC and Time Resolved IBICC (TRIBICC) were used to image electronic properties of various CZT detectors. Two-dimensional areal maps of charge collection efficiency were deduced from the measurements. In order to determine radiation damage to the detectors, we measured the deterioration of the IBICC signal as the function of dose. A model to explain quantitatively the pattern observed in the charge collection efficiency maps of the damaged detectors has been developed and will be discussed in the paper

  2. Electronic properties of chlorine doped cadmium telluride used as high energy photoconductive detector

    International Nuclear Information System (INIS)

    A new high energy X-ray chlorine doped Cadmium Telluride (CdTe:Cl) photoconductor is described. We discuss different deposition techniques (Sputtering, Evaporation, Electroless) to realize ohmic contacts which have low leakage current and which allow high applied electric field. The temperature dependence of the dark current give an activation energy of 0.6 eV for standard CdTe:Cl. The transient response of photoconductors under high X-ray energy beams has been characterized using three different pulse duration 150 ps, 30 ns and 4 μs. Sensitivity and speed of response are studied as a function of neutron pre-irradiated doses (0, 1014, 1015, 1016 n/cm2): neutron irradiations reduce the carrier lifetime at the expense of a lower sensitivity

  3. Internal Electric Field Behavior of Cadmium Zinc Telluride Radiation Detectors Under High Carrier Injection

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.H.; Gul, R.; and James, R.B.

    2010-10-26

    The behavior of the internal electric-field of nuclear-radiation detectors substantially affects the detector's performance. We investigated the distribution of the internal field in cadmium zinc telluride (CZT) detectors under high carrier injection. We noted the build-up of a space charge region near the cathode that produces a built-in field opposing the applied field. Its presence entails the collapse of the electric field in the rest of detector, other than the portion near the cathode. Such a space-charge region originates from serious hole-trapping in CZT. The device's operating temperature greatly affects the width of the space-charge region. With increasing temperature from 5 C to 35 C, its width expanded from about 1/6 to 1/2 of the total depth of the detector.

  4. An optically-interrogated microwave-Poynting-vector sensor using cadmium manganese telluride.

    Science.gov (United States)

    Chen, Chia-Chu; Whitaker, John F

    2010-06-01

    A single cadmium-manganese-telluride crystal that exhibits both the Pockels and Faraday effects is used to produce a Poynting-vector sensor for signals in the microwave regime. This multi-birefringent crystal can independently measure either electric or magnetic fields through control of the polarization of the optical probe beam. After obtaining all the relevant electric and magnetic field components, a map of the Poynting vector along a 50-Omega microstrip was experimentally determined without the need for any further transformational calculations. The results demonstrate that this sensor can be used for near-field mapping of the Poynting vector. Utilizing both amplitude and phase information from the fields in the microwave signal, it was confirmed for the case of an open-terminated microstrip that no energy flowed to the load, while for a microstrip with a matched termination, the energy flowed consistently along the transmission line. PMID:20588348

  5. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yunqing; Ye Chao; Zhu Zhenghui [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China); Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Hu Yuzhu [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China) and Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China)], E-mail: njhuyuzu@126.com

    2008-03-03

    The pH-sensitive cadmium telluride (CdTe) quantum dots (QDs) were used as proton probes for tiopronin determination. Based on the fluorescence quenching of CdTe QDs caused by tiopronin, a simple, rapid and specific quantitative method was proposed. Under the optimal conditions, the calibration plot of ln(F{sub 0}/F) with concentration of tiopronin was linear in the range of 0.15-20 {mu}g mL{sup -1}(0.92-122.5 {mu}mol L{sup -1}) with correlation coefficient of 0.998. The limit of detection (LOD) (3{sigma}/k) was 0.15 {mu}g mL{sup -1}(0.92 {mu}mol mL{sup -1}). The content of tiopronin in pharmaceutical tablet was determined by the proposed method and the result agreed with that obtained from the oxidation-reduction titration method and the claimed value.

  6. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination

    International Nuclear Information System (INIS)

    The pH-sensitive cadmium telluride (CdTe) quantum dots (QDs) were used as proton probes for tiopronin determination. Based on the fluorescence quenching of CdTe QDs caused by tiopronin, a simple, rapid and specific quantitative method was proposed. Under the optimal conditions, the calibration plot of ln(F0/F) with concentration of tiopronin was linear in the range of 0.15-20 μg mL-1(0.92-122.5 μmol L-1) with correlation coefficient of 0.998. The limit of detection (LOD) (3σ/k) was 0.15 μg mL-1(0.92 μmol mL-1). The content of tiopronin in pharmaceutical tablet was determined by the proposed method and the result agreed with that obtained from the oxidation-reduction titration method and the claimed value

  7. Evaluation of DAST and zinc telluride nonlinear crystals for efficient terahertz generation

    International Nuclear Information System (INIS)

    Terahertz (THz) signal is generated from 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate (i.e. DAST Crystal) and Zinc telluride (ZnTe) nonlinear crystals by employing 140 fs laser pulses at 800 nm with 80 MHz repetition rate. The semi insulating gallium arsenide photoconductive stripline antennas (gap =5 µm, length = 20 µm) is used as a Terahertz detector. The detected temporal profile of Terahertz radiation generated from DAST crystal is high as compared to ZnTe crystal in terms of amplitude. THz effective bandwidths of these crystals are extended up to 1.1 THz range. The potential of THz generation of DAST and ZnTe crystals are evaluated with respect to incident laser power

  8. Synthesis of the titanium phosphide telluride Ti 2PTe 2: A thermochemical approach

    Science.gov (United States)

    Philipp, Frauke; Schmidt, Peer; Milke, Edgar; Binnewies, Michael; Hoffmann, Stefan

    2008-04-01

    The phosphide telluride Ti 2PTe 2 can be synthesised from the elements or from oxides in a thermite type reaction. Both ways have been optimised by consideration of the thermodynamic behaviour of the compound. Hence, the investigation of phase equilibria in the ternary system Ti/P/Te and of the thermal decomposition of Ti 2PTe 2 was necessary. This investigation was performed by using different experimental approaches as total pressure measurements, thermal analysis and mass spectrometry. The results were supported and further analysed by thermodynamic modelling of the ternary system. It was shown that Ti 2PTe 2(s) decomposes to Ti 2P (s) and Te 2(g) in six consecutive steps. The growth of single crystals of Ti 2PTe 2 is thermodynamically described as a chemical vapour transport with TiCl 4(g) acting as the transport agent.

  9. Simple routes to synthesis and characterization of nanosized tin telluride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box. 87317-51167 (Iran, Islamic Republic of); Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box. 87317-51167 (Iran, Islamic Republic of); Bazarganipour, Mehdi [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box. 87317-51167 (Iran, Islamic Republic of); Davar, Fatemeh [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box. 87317-51167 (Iran, Islamic Republic of); Fazl, Alireza Amini [Institute for Colorants, Paint and Coatings (ICPC), Tehran, P.O. Box. 16765/654 (Iran, Islamic Republic of)

    2010-11-15

    Nanosized tin telluride compounds were prepared by chemical reduction process and hydrothermal methods. The nanosized SnTe compounds were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SnTe nanoalloy prepared by chemical reduction process presented quasi-spherical morphology with aggregation. The sizes of particle were 40-50 nm. The powder prepared by hydrothermal process was nearly nanospheres, and the particle sizes were 30-40 nm with narrow distribution. The effect of capping agent, reductant sort, and reaction temperature on the morphology, the particle sizes and the phase of SnTe alloys have been investigated. Experimental results indicated that N{sub 2}H{sub 4}.H{sub 2}O plays a crucial role in the formation of nanosized rode-like SnTe compounds.

  10. Nucleation and growth of noble metals on transition-metal di-tellurides

    Science.gov (United States)

    Hla, S. W.; Marinković, V.; Prodan, A.

    1997-04-01

    Transition-metal di-tellurides (α- and β-MoTe 2 and WTe 2) were used as substrates for nucleation and growth studies of noble metals. They represent a group of chemically closely related compounds with different surface topographies. Nucleation and growth of Ag and Au at room temperature were studied by means of UHV-STM, AFM and TEM. The results revealed that the growth and orientation of these metals are influenced by the topography of the substrate surfaces. Contrary to the growth on atomically flat α-MoTe 2, there is an enhanced diffusion and nucleation along the periodic surface troughs on β-MoTe 2 and WTe 2. The topography of their (001) surfaces is responsible for the orientation of metal (112) planes being parallel to the substrate surface.)

  11. Experiments and Monte Carlo modeling of a higher resolution Cadmium Zinc Telluride detector for safeguards applications

    Science.gov (United States)

    Borella, Alessandro

    2016-09-01

    The Belgian Nuclear Research Centre is engaged in R&D activity in the field of Non Destructive Analysis on nuclear materials, with focus on spent fuel characterization. A 500 mm3 Cadmium Zinc Telluride (CZT) with enhanced resolution was recently purchased. With a full width at half maximum of 1.3% at 662 keV, the detector is very promising in view of its use for applications such as determination of uranium enrichment and plutonium isotopic composition, as well as measurement on spent fuel. In this paper, I report about the work done with such a detector in terms of its characterization. The detector energy calibration, peak shape and efficiency were determined from experimental data. The data included measurements with calibrated sources, both in a bare and in a shielded environment. In addition, Monte Carlo calculations with the MCNPX code were carried out and benchmarked with experiments.

  12. Parto prematuro após uso de antimonial pentavalente: relato de um caso Premature birth after the use of pentavalent antimonial: case report

    Directory of Open Access Journals (Sweden)

    Bruna Pinheiro Silveira

    2003-07-01

    Full Text Available Relata-se o caso de uma mulher de 19 anos, na 24ª semana de gravidez e com leishmaniose visceral. Tratada com antimonial pentavalente na posologia de 850mg/dia por 20 dias, ocorreu parto prematuro no quinto dia de tratamento e óbito da criança um dia após nascimento. Considerando a importância da protozoose no nosso meio e a raridade da associação com a gestação, julgamos de interesse a publicação do caso.A case is reported of a 19-year-old woman, at week 24 of gestation, with visceral leishmaniosis. She was treated with meglumine antimoniate at a dose of 850mg/day for 20 days. There occurred premature birth on day five of treatment and the neonate died one day after birth. Considering the importance of protozoiasis in our population and the rarity of the association with pregnancy, we resolved to publish the case.

  13. Comparison of oral itraconazole and intramuscular meglumine antimoniate in the treatment of cutaneous leishmaniasis

    International Nuclear Information System (INIS)

    To compare the efficacy and tolerability of oral itraconazole against intramuscular meglumine antimoniate in the treatment of Cutaneous Leishmaniasis (CL). Two hundred eligible and consenting patients of Cutaneous Leishmaniasis (CL) were divided in two groups with 100 patients in each. The number and location of the lesions were documented and clinical types of cutaneous leishmaniasis were noted. The diagnosis was confirmed by skin slit smear and histopathology of the lesional skin. Culture on Nicolle Novy MacNeal (NNN) medium and Leishmanin test was done in all patients. All the patients in both groups were subjected to complete blood picture, urine examination, serum urea and creatinine levels and ECG examination. One group was given itraconazole 100 mg twice daily orally for a duration of 6-8 weeks. The other group was given meglumine antimoniate 10 cc in the form of deep intramuscular injections for 15-30 days. The efficacy of the treatment was judged by clinical and parasitological response. Side effects of the agents were also noted during treatment. Out of 200 patients studied, 185 were males and 15 were females. The mean age of presentation was 30 + 6.6 years. Single lesion was seen in 132 (66%) subjects whereas 68 (34%) subjects had multiple lesions. Slit skin smears were positive in 50 (25%) of the patients. Skin biopsy yielded the presence of LT bodies in 150 (75%) subjects. The culture was positive in 102 (51%) cases. Leishmanin test was positive in 94% subjects. Seventy-five (75%) patients on itraconazole therapy showed complete clinical and parasitological cure in 4-8 weeks duration. A rise in ALT was seen in 12% subjects. Five (5%) subjects did not show any improvement till the end of therapy. Sixty-five (65%) subjects on meglumine antimoniate showed complete healing in 15-30 days. In 35 (35%) of the patients, the treatment had to be stopped due to intolerable side-effects. Four cases of lupoid leishmaniasis and 4 cases of sporotrichoid leishmaniasis

  14. Development of an analytical method for antimony speciation in vegetables by HPLC-hydride generation-atomic fluorescence spectrometry.

    Science.gov (United States)

    Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea; Neaman, Alexander; Quiroz, Waldo

    2012-01-01

    A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts. PMID:22970588

  15. Development of an analytical method for antimony speciation in vegetables by HPLC-hydride generation-atomic fluorescence spectrometry.

    Science.gov (United States)

    Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea; Neaman, Alexander; Quiroz, Waldo

    2012-01-01

    A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts.

  16. Geology of the florencia gold – telluride deposit (camagüey, cuba) and some metallurgical considerations

    OpenAIRE

    López K Jesús M.; Moreira Jesús; Gandarillas José

    2011-01-01

    This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after b...

  17. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    International Nuclear Information System (INIS)

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N2 atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H2 (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K2) that of the thin films treated with EB irradiation alone

  18. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    Energy Technology Data Exchange (ETDEWEB)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp; Kurita, Kensuke [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Hagino, Harutoshi; Miyazaki, Koji [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Tanaka, Saburo [Department of Mechanical Engineering, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 (Japan)

    2015-08-14

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N{sub 2} atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H{sub 2} (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K{sup 2}) that of the thin films treated with EB irradiation alone.

  19. Leachability of antimony from energy ashes. Total contents, leachability and remedial suggestions; Lakning av antimon fraan energiaskor. Totalhalter, lakbarhet samt foerslag till aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Baeckstroem, Mattias [Oerebro Univ. (Sweden)

    2006-01-15

    In the current project total concentrations for antimony in 31 energy ashes have been compiled. The average concentration of antimony in boiler fly ash and grate boiler fly ash is 192 and 1,140 mg/kg, respectively. The corresponding antimony concentrations for boiler ashes and grate bottom ashes are 86,5 and 61,8 mg/kg, respectively. Multivariate calculations clearly pointed out waste as the major source for antimony in ashes. The difference between total antimony concentration in fly ash and bottom ash is greatest for grate boilers, in average 18 times higher in the fly ash. The difference for CFB/BFB-boilers is only slightly more than 2. However, based on amount, 75% of the total antimony inventory is recovered in the fly ashes for both CFB/BFB and grate boilers. Eleven (eight of which were bottom ashes) out of the 31 samples exceeded the guidelines for inert waste. It is clear that the higher ionic strength in the solutions from the fly ashes contribute to decrease the solubility for critical minerals retaining antimony. In addition, the fly ashes have considerably larger effective surface able to sorb trace elements. A clear and positive covariance was discovered between aluminium and antimony. Furthermore, it was noted that antimony showed no typical anionic behaviour despite the fact that it according to the geochemical calculations should be present as SbO{sub 3}{sup -}. At L/S 10, a maximum of 1% of the total antimony concentration is leached. This should be compared to chloride that had 94% of the total concentration leached at L/S 10. There was no correlation between the leached antimony concentrations and the total antimony concentrations. The sequential extractions also suggest a low leachability for antimony from the ashes. In average only 9,6% is released at pH 7, 7,3% at pH 5, 3,6% during reducing conditions and 3,2% during oxidising conditions. In total, only 24% of the total antimony concentrations is released during the four extraction steps. The

  20. Synthesis, characterization and single crystal X-ray analysis of chlorobis(N,N-dimethyldithiocarbamato-S,S′antimony(III

    Directory of Open Access Journals (Sweden)

    H.P.S. Chauhan

    2015-07-01

    Full Text Available The title compound chlorobis(N,N-dimethyldithiocarbamato-S,S′antimony(III has been prepared in distilled acetonitrile and characterized by physicochemical [melting point and molecular weight determination, elemental analysis (C, H, N, S & Sb], spectral [FT–IR, far IR, NMR (1H & 13C] studies. The crystal and molecular structure was further confirmed using single crystal X-ray diffraction analysis which features a five-coordinate geometry for antimony(III within a ClS4 donor set. The distortion in the co-planarity of ClSbS3 evidences the stereochemical influence exerts by the lone pair of electrons on antimony(III. Two centrosymmetrically related molecule held together via C–H···Cl secondary interaction result in molecular aggregation of the compound.

  1. Selective liquid-liquid extraction of antimony(III from hydrochloric acid media by N-n-octylaniline in xylene

    Directory of Open Access Journals (Sweden)

    M. A. ANUSE

    2004-04-01

    Full Text Available N-n-Octylaniline in xylene was used for the extraction separation of antimony(III from hydrochloric acid media. Antimony(III was extracted quantitatively with 10 mL 4 % N-n-octylaniline in xylene. It was stripped from the organic phase with 0.5 M ammonia and estimated photometrically by the iodide method. The effect of metal ion, acid, reagent concentration and various foreign ions was investigated. The method affords binary and ternary separation of antimony(III from tellurium(IV, selenium(IV, lead(II, bismuth(III, tin(IV, germanium(IV, copper(II, gold(III, iron(III and zinc(II. The method is applicable for the analysis of synthetic mixtures, alloys and semiconductor thin films. It is fast, accurate and precise.

  2. Development and pharmacokinetic of antimony encapsulated in liposomes of phosphatidylserine using radioisotopes in experimental leishmaniasis

    International Nuclear Information System (INIS)

    Leishmaniasis are a complex of parasitic diseases caused by intra macrophage protozoa of the genus Leishmania, and is fatal if left untreated. Pentavalent antimonials, though toxic and their mechanism of action being unclear, remain the first-line drugs for treatment. Effective therapy could be achieved by delivering antileishmanial drugs to these sites of infection. Liposomes are phospholipid vesicles that promote improvement in the efficacy and action of drugs in target cell. Liposomes are taken up by the cells of mononuclear phagocytic system (MPS). The purpose of this study was to develop a preparation of meglumine antimonate encapsulated in liposomes of phosphatidylserine and to study its pharmacokinetic in healthy mice to establish its metabolism and distribution. Quantitative analysis of antimony from liposomes demonstrated that Neutron Activation Analysis was the most sensitive technique with almost 100 % of accuracy. All liposome formulations presented a mean diameter size of 150 nm. The determination of IC50 in infected macrophage showed that liposome formulations were between 10 - 63 fold more effective than the free drug, indicating higher selectivity index. By fluorescence microscopy, an increased uptake of fluorescent-liposomes was seen in infected macrophages during short times of incubation compared with non-infected macrophages. Biodistribution studies showed that meglumine antimonate irradiated encapsulated in liposomes of phosphatidylserine promoted a targeting of antimony for MPS tissues and maintained high doses in organs for a prolonged period. In conclusion, these data suggest that meglumine antimonate encapsulated in liposomes showed higher effectiveness than the non-liposomal drug against Leishmania infection. The development of liposome formulations should be a new alternative for the chemotherapy of infection diseases, especially Leishmaniasis, as they are used to sustain and target pharmaceuticals to the local of infection. (author)

  3. Lithium-antimony-lead liquid metal battery for grid-level energy storage

    Science.gov (United States)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J.; Boysen, Dane A.; Bradwell, David J.; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R.

    2014-10-01

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this finding

  4. The LABCG2 Transporter from the Protozoan Parasite Leishmania Is Involved in Antimony Resistance.

    Science.gov (United States)

    Perea, Ana; Manzano, José Ignacio; Castanys, Santiago; Gamarro, Francisco

    2016-06-01

    Treatment for leishmaniasis, which is caused by Leishmania protozoan parasites, currently relies on a reduced arsenal of drugs. However, the significant increase in the incidence of drug therapeutic failure and the growing resistance to first-line drugs like antimonials in some areas of Northern India and Nepal limit the control of this parasitic disease. Understanding the molecular mechanisms of resistance in Leishmania is now a matter of urgency to optimize drugs used and to identify novel drug targets to block or reverse resistant mechanisms. Some members of the family of ATP-binding cassette (ABC) transporters in Leishmania have been associated with drug resistance. In this study, we have focused our interest to characterize LABCG2's involvement in drug resistance in Leishmania. Leishmania major parasites overexpressing the ABC protein transporter LABCG2 were generated in order to assess how LABCG2 is involved in drug resistance. Assays of susceptibility to different leishmanicidal agents were carried out. Analysis of the drug resistance profile revealed that Leishmania parasites overexpressing LABCG2 were resistant to antimony, as they demonstrated a reduced accumulation of Sb(III) due to an increase in drug efflux. Additionally, LABCG2 was able to transport thiols in the presence of Sb(III) Biotinylation assays using parasites expressing LABCG2 fused with an N-terminal green fluorescent protein tag revealed that LABCG2 is partially localized in the plasma membrane; this supports data from previous studies which suggested that LABCG2 is localized in intracellular vesicles that fuse with the plasma membrane during exocytosis. In conclusion, Leishmania LABCG2 probably confers antimony resistance by sequestering metal-thiol conjugates within vesicles and through further exocytosis by means of the parasite's flagellar pocket. PMID:27021316

  5. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Airul Azha Abd [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Technology Park Malaysia, Malaysia Institute of Microelectronics and System, Kuala Lumpur (Malaysia); Umar, Akrajas Ali; Salleh, Muhamad Mat [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Chen, Xiaomei [Jimei University, College of Food and Biological Engineering, Jimei, Xiamen (China); Oyama, Munetaka [Kyoto University, Graduate School of Engineering, Nishikyoku, Kyoto (Japan)

    2016-02-15

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m{sup -1} K{sup -2}) and 10 μV/K (and 19.5 μW m{sup -1} K{sup -2}), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output

  6. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    International Nuclear Information System (INIS)

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m-1 K-2) and 10 μV/K (and 19.5 μW m-1 K-2), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output load as high as 50

  7. Highly active and stable Pt electrocatalysts promoted by antimony-doped SnO2 supports for oxygen reduction reactions

    DEFF Research Database (Denmark)

    Yin, Min; Xu, Junyuan; Li, Qingfeng;

    2014-01-01

    Alternative composite supports for platinum catalysts were synthesized from antimony doped tin dioxide (ATO) nanoparticles. In the range of the antimony content from 0 to 11mol%, the highest electrical conductivity of 1.1Scm-1 at 130°C was obtained for the 5mol% Sb ATO, from which composite...... supports composed of oxides and carbon and supported platinum catalysts were prepared. Using the pure oxide support, the Pt/ATO catalyst displayed superior specific activity and stability for the oxygen reduction reactions (ORRs). Low surface area of ATO caused poor dispersion of Pt particles compared...

  8. Separation of antimony from synthetic cloth. Application in forensic science using neutron activation analysis

    International Nuclear Information System (INIS)

    A simple ion-exchange separation procedure was developed for selective removal of antimony from synthetic cloth to facilitate determination of several trace elements frequently used to identify gunshot residues by neutron activation analysis. Radiotracers of Sb, Ba, Cu, Co, As, Zn, Hg and Ag were employed to optimize the developed procedure. The method involves the quantitative retention of the above elements, except of Sb, from 0.2M ammonium carbonate solution using Chelex 100 resin and subsequent quantitative elution of the elements of interest with 2M nitric acid for gamma-ray spectrometry. The procedure was tested by simulated gunshot residues. (author)

  9. Influence of arsenic,antimony and cobalt impurities on the cathodic process in zinc electrowinning

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By means of an electrochemical study,the influence of arsenic,antimony and cobalt on cathodic polarization in the zinc electrowinning process,the associated kinetic equations and parameters,and the polarization mechanism have been studied.The results show that the experimental values of the kinetic parameters are in accord with the theoretical values in the ZnSO4/H2SO4 solution with a single impurity is added.In contrast,the charge transfer coefficient α is smaller than the theoretical value in the ZnSO4/H2SO4 solution when the three impurities are added together.

  10. Polymorphism and properties of Bi{sub 2}WO{sub 6} doped with pentavalent antimony

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonova, E.P.; Belov, D.A. [M.V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Gagor, A.B.; Pietraszko, A.P. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-950 Wrocław (Poland); Alekseeva, O.A. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 119333 Moscow (Russian Federation); Voronkova, V.I., E-mail: voronk@polly.phys.msu.ru [M.V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation)

    2014-04-05

    Highlights: • The limit of Bi{sub 2}W{sub 1−x}Sb{sub x}O{sub 6−y} solid solutions is at x = 0.05. • Bi{sub 2}W{sub 1−x}Sb{sub x}O{sub 6−y} does not fully transform into high-temperature monoclinic phase. • Sb{sup 5+} has a weak effect on the temperatures of the ferroelectric transitions. • γ→γ{sup ‴} transition near 650 °C was observed as strong permittivity peak at 0.01–8 Hz. • The conductivity of Bi{sub 2}W{sub 0.96}Sb{sub 0.04}O{sub 6−y} at 800 °C reaches 0.02 S/cm. -- Abstract: Antimony-containing solid solutions isostructural with bismuth tungstate, Bi{sub 2}WO{sub 6}, have been prepared in air as polycrystalline samples by solid-state reactions and as single crystals by unseeded flux growth. The antimony in the solid solutions is in a pentavalent state and substitutes for tungsten in the structure of Bi{sub 2}WO{sub 6}. The Bi{sub 2}W{sub 1−x}Sb{sub x}O{sub 6−y} solid solutions have been shown to exist in the composition range 0 ⩽ x ⩽ 0.05. We have examined the effect of Sb{sup 5+} doping on the polymorphism and properties of Bi{sub 2}WO{sub 6}. In contrast to undoped Bi{sub 2}WO{sub 6}, antimony-substituted bismuth tungstate does not completely transform into its high-temperature, monoclinic phase at 960 °C and remains two-phase up to temperatures approaching its melting point. Antimony substitution for tungsten has a weak effect on the temperatures of the ferroelectric phase transitions. Heterovalent substitution of Sb{sup 5+} for W{sup 6+} is accompanied by the formation of extra oxygen vacancies and an increase in the electrical conductivity of the solid solutions by one to two orders of magnitude relative to undoped Bi{sub 2}WO{sub 6}.

  11. Electromagnetic absorption and shielding behavior of polyaniline-antimony oxide composites

    Science.gov (United States)

    Faisal, Muhammad; Khasim, Syed

    2013-02-01

    This work highlights the microwave absorption and electromagnetic interference (EMI) shielding properties of synthesized polyaniline (PAni)-antimony oxide (Sb2O3) composites in the 8-12 GHz (X-band) range. These composites showed absorption dominated EMI shielding effectiveness (EMI SEA) of -34 to -40 dB (> 99 % attenuation), indicating their shielding potential throughout the X-band. Our analyses reveal that the Sb2O3 particles in PAni matrix have key impact in determining the microwave absorption properties of the composites.

  12. Determination of arsenic, selenium and antimony by neutron activation analysis. Application to hair samples

    International Nuclear Information System (INIS)

    A fast rabbit system for instrumental activation analysis with reactor neutrons is described. Its use in the determination of selenium in hair is discussed. A survey is given of the correction factors which are inherent to the use of short-lived radionuclides. An alternative to INAA is NAA based on the separation of arsenic, selenium and antimony by hydride evaporation and adsorption to active carbon. Data for some Standard Reference Materials are given. This work was done under research contract 2440/RI/RB with the IAEA

  13. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs

    International Nuclear Information System (INIS)

    The goal of this project was to utilize a novel device design to build a compact, high resolution, room temperature operated semiconductor gamma ray sensor. This sensor was constructed from a cadmium zinc telluride (CZT) crystal. It was able to both detect total radiation intensity and perform spectroscopy on the detected radiation. CZT detectors produced today have excellent electron charge carrier collection, but suffer from poor hole collection. For conventional gamma-ray spectrometers, both the electrons and holes must be collected with high efficiency to preserve energy resolution. The requirement to collect the hole carriers, which have relatively low lifetimes, limits the efficiency and performance of existing experimental devices. By implementing novel device designs such that the devices rely only on the electron signal for energy information, the sensitivity of the sensors for detecting radiation can be increased substantially. In this report the authors describe a project to develop a new type of electron-only CZT detector. They report on their successful efforts to design, implement and test these new radiation detectors. In addition to the design and construction of the sensors the authors also report, in considerable detail, on the electrical characteristics of the CZT crystals used to make their detectors

  14. Novel Cadmium Zinc Telluride Devices for Myocardial Perfusion Imaging-Technological Aspects and Clinical Applications.

    Science.gov (United States)

    Ben-Haim, Simona; Kennedy, John; Keidar, Zohar

    2016-07-01

    Myocardial perfusion imaging plays an important role in the assessment of patients with known or suspected coronary artery disease and is well established for diagnosis and for prognostic evaluation in these patients. The dedicated cardiac SPECT cameras with solid-state cadmium zinc telluride (CZT) detectors were first introduced a decade ago. A large body of evidence is building up, showing the superiority of the new technology compared with conventional gamma cameras. Not only the CZT detectors, but also new collimator geometries, the ability to perform focused imaging optimized for the heart and advances in data processing algorithms all contribute to the significantly improved sensitivity up to 8-10 times, as well as improved energy resolution and improved reconstructed spatial resolution compared with conventional technology. In this article, we provide an overview of the physical characteristics of the CZT cameras, as well as a review of the literature published so far, including validation studies in comparison with conventional myocardial perfusion imaging and with invasive coronary angiography, significant reduction in radiation dose, and new imaging protocols enabled by the new technology.

  15. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs

    Energy Technology Data Exchange (ETDEWEB)

    B. A. Brunett; J. C. Lund; J. M. Van Scyoc; N. R. Hilton; E. Y. Lee; R. B. James

    1999-01-01

    The goal of this project was to utilize a novel device design to build a compact, high resolution, room temperature operated semiconductor gamma ray sensor. This sensor was constructed from a cadmium zinc telluride (CZT) crystal. It was able to both detect total radiation intensity and perform spectroscopy on the detected radiation. CZT detectors produced today have excellent electron charge carrier collection, but suffer from poor hole collection. For conventional gamma-ray spectrometers, both the electrons and holes must be collected with high efficiency to preserve energy resolution. The requirement to collect the hole carriers, which have relatively low lifetimes, limits the efficiency and performance of existing experimental devices. By implementing novel device designs such that the devices rely only on the electron signal for energy information, the sensitivity of the sensors for detecting radiation can be increased substantially. In this report the authors describe a project to develop a new type of electron-only CZT detector. They report on their successful efforts to design, implement and test these new radiation detectors. In addition to the design and construction of the sensors the authors also report, in considerable detail, on the electrical characteristics of the CZT crystals used to make their detectors.

  16. Varying cadmium telluride growth temperature during deposition to increase solar cell reliability

    Energy Technology Data Exchange (ETDEWEB)

    Albin, David S.; Johnson, James Neil; Zhao, Yu; Korevaar, Bastiaan Arie

    2016-04-26

    A method for forming thin films or layers of cadmium telluride (CdTe) for use in photovoltaic modules or solar cells. The method includes varying the substrate temperature during the growth of the CdTe layer by preheating a substrate (e.g., a substrate with a cadmium sulfide (CdS) heterojunction or layer) suspended over a CdTe source to remove moisture to a relatively low preheat temperature. Then, the method includes directly heating only the CdTe source, which in turn indirectly heats the substrate upon which the CdTe is deposited. The method improves the resulting CdTe solar cell reliability. The resulting microstructure exhibits a distinct grain size distribution such that the initial region is composed of smaller grains than the bulk region portion of the deposited CdTe. Resulting devices exhibit a behavior suggesting a more n-like CdTe material near the CdS heterojunction than devices grown with substrate temperatures held constant during CdTe deposition.

  17. Directional Solidification of Mercury Cadmium Telluride During the Second United States Microgravity Payload Mission (USMP-2)

    Science.gov (United States)

    Gillies, D. C.; Lehoczky, S. L.; Szofran, F. R.; Watring, D. A.; Alexander, H. A.; Jerman, G. A.

    1996-01-01

    As a solid solution semiconductor having, a large separation between liquidus and solidus, mercury cadmium telluride (MCT) presents a formidable challenge to crystal growers desiring an alloy of high compositional uniformity. To avoid constitutional supercooling during Bridgman crystal growth it is necessary to solidify slowly in a high temperature gradient region. The necessary translation rate of less than 1 mm/hr results in a situation where fluid flow induced by gravity on earth is a significant factor in material transport. The Advanced Automated Directional Solidification Furnace (AADSF) is equipped to provide the stable thermal environment with a high gradient, and the required slow translation rate needed. Ground based experiments in AADSF show clearly the dominance of flow driven transport. The first flight of AADSF in low gravity on USMP-2 provided an opportunity to test theories of fluid flow in MCT and showed several solidification regimes which are very different from those observed on earth. Residual acceleration vectors in the orbiter during the mission were measured by the Orbital Acceleration Research Experiment (OARE), and correlated well with observed compositional differences in the samples.

  18. Heart imaging by cadmium telluride gamma camera European Program 'BIOMED' consortium

    CERN Document Server

    Scheiber, C; Chambron, J; Prat, V; Kazandjan, A; Jahnke, A; Matz, R; Thomas, S; Warren, S; Hage-Hali, M; Regal, R; Siffert, P; Karman, M

    1999-01-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3x3 mm, field of view: 15 cmx15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15 deg. tilt of the collimator with respect to the detector grid. A 16x16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16...

  19. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals

    CERN Document Server

    Tu, Renyong; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; De Trizio, Luca; Manna, Liberato

    2016-01-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e. with coordination number 4), such as Cd2+ or Hg2+, yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd2+ and Hg2+ ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2- xTe particles could be more easily deformed to match the anion framework of t...

  20. Heart imaging by cadmium telluride gamma cameraEuropean Program ``BIOMED'' consortium

    Science.gov (United States)

    Scheiber, Ch.; Eclancher, B.; Chambron, J.; Prat, V.; Kazandjan, A.; Jahnke, A.; Matz, R.; Thomas, S.; Warren, S.; Hage-Hali, M.; Regal, R.; Siffert, P.; Karman, M.

    1999-06-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3×3 mm, field of view: 15 cm×15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parrallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15° tilt of the collimator with respect to the detector grid. A 16×16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16±0.6 keV (mean ± standard deviation, n=30). Uniformity was ±10%, improving to ±1% when using a correction table. Test objects (emission data: letters 1.8 mm in width) and cold rods in scatter medium have been acquired. The CdTe images have been compared to those acquired with a conventionnal gamma camera.

  1. Investigation of the Electronic Properties of Cadmium Zinc Telluride (CZT) Detectors using a Nuclear Microprobe

    International Nuclear Information System (INIS)

    The electronic transport properties of Cadmium Zinc Telluride (CZT) determine the charge collection efficiency (i.e. the signal quality) of CZT detectors. These properties vary on both macroscopic and microscopic scale and depend on the presence of impurities and defects introduced during the crystal growth. Ion Beam Induced Charge Collection (IBICC) is a proven method to measure the charge collection efficiency. Using an ion microbeam, the charge collection efficiency can be mapped with submicron resolution, and the map of electronic properties (such as drift length) can be calculated from the measurement. A more sophisticated version of IBICC, the Time Resolved IBICC (TRIBICC) allows them to determine the mobility and the life time of the charge carriers by recording and analyzing the transient waveform of the detector signal. Furthermore, lateral IBICC and TRIBICC can provide information how the charge collection efficiency depends on the depth where the charge carriers are generated. This allows one to deduce information on the distribution of the electric field and transport properties of the charge carriers along the detector axis. IBICC and TRIBICC were used at the Sandia microbeam facility to image electronic properties of several CZT detectors. From the lateral TRIBICC measurement the electron and hole drift length profiles were calculated

  2. Inhibition of autophagy contributes to the toxicity of cadmium telluride quantum dots in Saccharomyces cerevisiae.

    Science.gov (United States)

    Fan, Junpeng; Shao, Ming; Lai, Lu; Liu, Yi; Xie, Zhixiong

    2016-01-01

    Cadmium telluride quantum dots (CdTe QDs) are used as near-infrared probes in biologic and medical applications, but their cytological effects and mechanism of potential toxicity are still unclear. In this study, we evaluated the toxicity of CdTe QDs of different sizes and investigated their mechanism of toxicity in the yeast Saccharomyces cerevisiae. A growth inhibition assay revealed that orange-emitting CdTe (O-CdTe) QDs (half inhibitory concentration [IC50] =59.44±12.02 nmol/L) were more toxic than green-emitting CdTe QDs (IC50 =186.61±19.74 nmol/L) to S. cerevisiae. Further studies on toxicity mechanisms using a transmission electron microscope and green fluorescent protein tagged Atg8 processing assay revealed that O-CdTe QDs could partially inhibit autophagy at a late stage, which differs from the results reported in mammalian cells. Moreover, autophagy inhibited at a late stage by O-CdTe QDs could be partially recovered by enhancing autophagy with rapamycin (an autophagy activator), combined with an increased number of living cells. These results indicate that inhibition of autophagy acts as a toxicity mechanism of CdTe QDs in S. cerevisiae. This work reports a novel toxicity mechanism of CdTe QDs in yeast and provides valuable information on the effect of CdTe QDs on the processes of living cells. PMID:27524895

  3. Influence of germanium nano-inclusions on the thermoelectric power factor of bulk bismuth telluride alloy

    Energy Technology Data Exchange (ETDEWEB)

    Satyala, Nikhil; Zamanipour, Zahra; Norouzzadeh, Payam; Krasinski, Jerzy S.; Vashaee, Daryoosh, E-mail: daryoosh.vashaee@okstate.edu [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, Oklahoma 74106 (United States); Tahmasbi Rad, Armin [School of Material Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, Oklahoma 74106 (United States); Tayebi, Lobat, E-mail: daryoosh.vashaee@okstate.edu [School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)

    2014-05-28

    Nanocomposite thermoelectric compound of bismuth telluride (Bi{sub 2}Te{sub 3}) with 5 at. % germanium nano-inclusions was prepared via mechanically alloying and sintering techniques. The influence of Ge nano-inclusions and long duration annealing on the thermoelectric properties of nanostructured Bi{sub 2}Te{sub 3} were investigated. It was found that annealing has significant effect on the carrier concentration, Seebeck coefficient, and the power factor of the thermoelectric compound. The systematic heat treatment also reduced the density of donor type defects thereby decreasing the electron concentration. While the as-pressed nanocomposite materials showed n-type properties, it was observed that with the increase of annealing time, the nanocomposite gradually transformed to an abundantly hole-dominated (p-type) sample. The long duration annealing (∼500 h) resulted in a significantly enhanced electrical conductivity pertaining to the augmentation in the density and the structural properties of the sample. Therefore, a simultaneous enhancement in both electrical and Seebeck coefficient characteristics resulted in a remarkable increase in the thermoelectric power factor.

  4. Investigation of the electrochemical deposition of thick layers of cadmium telluride

    International Nuclear Information System (INIS)

    This research thesis deals with the problem of electrochemical deposition of thick layers of cadmium telluride (CdTe) meeting the requirements of high energy radiation detection. The author first recalls the physicochemical properties of CdTe and the basic principles of radiology. He details the different criteria which define a material for X ray detection. He describes the experimental conditions, the nature and preparation of substrates, and the different electrochemical systems used in this research. He studies the impact of the applied potential on the material properties, and compares previously obtained results available in the literature with those obtained in the chosen pool conditions. He discusses the synthesis of CdTe thick layers for which different methods are tested: static in potential, static in intensity, pulsed. The coatings obtained with a given potential and then with a given current are investigated. Finally, the influence of a thermal treatment in presence or absence of a sintering agent on the morphology, the chemical composition, and the crystalline and electric properties of the deposited material is discussed, and the results of the behaviour under X rays of a electrodeposited layer are presented

  5. 3D Particle Track Reconstrution in a Single Layer Cadmium-Telluride Hybrid Active Pixel Detector

    CERN Document Server

    Filipenko, Mykhaylo; Anton, Gisela; Michel, Thilo

    2014-01-01

    In the past 20 years the search for neutrinoless double beta decay has driven many developements in all kind of detector technology. A new branch in this field are highly-pixelated semiconductor detectors - such as the CdTe-Timepix detectors. It compromises a cadmium-telluride sensor of 14 mm x 14 mm x 1 mm size with an ASIC which has 256 x 256 pixel of 55 \\textmu m pixel pitch and can be used to obtain either spectroscopic or timing information in every pixel. In regular operation it can provide a 2D projection of particle trajectories; however, three dimensional trajectories are desirable for neutrinoless double beta decay and other applications. In this paper we present a method to obtain such trajectories. The method was developed and tested with simulations that assume some minor modifications to the Timepix ASIC. Also, we were able to test the method experimentally and in the best case achieved a position resolution of about 90 \\textmu m with electrons of 4.4 GeV.

  6. Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow

    Science.gov (United States)

    Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.

    2012-05-01

    Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.

  7. Two-color detector: Mercury-cadmium-telluride as a terahertz and infrared detector

    Energy Technology Data Exchange (ETDEWEB)

    Sizov, F.; Zabudsky, V.; Petryakov, V.; Golenkov, A.; Andreyeva, K.; Tsybrii, Z. [Institute of Semiconductor Physics, 03028 Kiev (Ukraine); Dvoretskii, S. [Institute of Semiconductor Physics of SB RAS, 630090 Novosibirsk (Russian Federation)

    2015-02-23

    In this paper, issues associated with the development of infrared (IR) and terahertz (THz) radiation detectors based on HgCdTe are discussed. Two-color un-cooled and cooled to 78 K narrow-gap mercury-cadmium-telluride semiconductor thin layers with antennas were considered both as sub-THz (sub-THz) direct detection bolometers and 3–10 μm IR photoconductors. The noise equivalent power (NEP) for one of the detectors studied at ν ≈ 140 GHz reaches NEP{sub 300 K} ≈ 4.5 × 10{sup −10} W/Hz{sup 1/2} and NEP{sub 78 K} ≈ 5 × 10{sup −9} W/Hz{sup 1/2}. The same detector used as an IR photoconductor showed the responsivity at temperatures T = 78 K and 300 K with signal-to-noise ratio S/N ≈ 750 and 50, respectively, under illumination by using IR monochromator and globar as a thermal source.

  8. Synthesis of the titanium phosphide telluride Ti2PTe2: A thermochemical approach

    International Nuclear Information System (INIS)

    The phosphide telluride Ti2PTe2 can be synthesised from the elements or from oxides in a thermite type reaction. Both ways have been optimised by consideration of the thermodynamic behaviour of the compound. Hence, the investigation of phase equilibria in the ternary system Ti/P/Te and of the thermal decomposition of Ti2PTe2 was necessary. This investigation was performed by using different experimental approaches as total pressure measurements, thermal analysis and mass spectrometry. The results were supported and further analysed by thermodynamic modelling of the ternary system. It was shown that Ti2PTe2(s) decomposes to Ti2P(s) and Te2(g) in six consecutive steps. The growth of single crystals of Ti2PTe2 is thermodynamically described as a chemical vapour transport with TiCl4(g) acting as the transport agent. - Graphical abstract: Oxygen partial pressure and electrochemical potential above the oxides of titanium, tellurium and phosphorus calculated at 1000 K, marked: level of equalisation of oxygen partial pressure

  9. Macro-loading Effects in Inductively Coupled Plasma Etched Mercury Cadmium Telluride

    Science.gov (United States)

    Apte, Palash; Rybnicek, Kimon; Stoltz, Andrew

    2016-09-01

    This paper reports the effect of macro-loading on mercury cadmium telluride (Hg1- x Cd x Te) and Photoresist (PR) etched in an inductively coupled plasma (ICP). A significant macro-loading effect is observed, which affects the etch rates of both PR and Hg1- x Cd x Te. It is observed that the exposed silicon area has a significant effect on the PR etch rate, but not on the Hg1- x Cd x Te etch rate. It is also observed that the exposed Hg1- x Cd x Te area has a significant effect on the etch rate of the PR, but the exposed PR area does not seem to have an effect on the Hg1- x Cd x Te etch rate. Further, the exposed Hg1- x Cd x Te area is shown to affect the etch rate of the Hg1- x Cd x Te, but there does not seem to be a similar effect for the exposed PR area on the etch rate of the PR. Since the macro-loading affects the selectivity significantly, this effect can cause significant problems in the etching of deep trenches. A few techniques to reduce the effect of macro-loading on the etch rates of the PR and Hg1- x Cd x Te are listed, herein.

  10. Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Patrick R. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2010-01-07

    Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current or leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.

  11. Reproductive toxicity and gender differences induced by cadmium telluride quantum dots in an invertebrate model organism

    Science.gov (United States)

    Yan, Si-Qi; Xing, Rui; Zhou, Yan-Feng; Li, Kai-Le; Su, Yuan-Yuan; Qiu, Jian-Feng; Zhang, Yun-Hu; Zhang, Ke-Qin; He, Yao; Lu, Xiao-Ping; Xu, Shi-Qing

    2016-01-01

    Sexual glands are key sites affected by nanotoxicity, but there is no sensitive assay for measuring reproductive toxicity in animals. The aim of this study was to investigate the toxic effects of cadmium telluride quantum dots (CdTe-QDs) on gonads in a model organism, Bombyx mori. After dorsal vein injection of 0.32 nmol of CdTe-QDs per individual, the QDs passed through the outer membranes of gonads via the generation of ROS in the membranes of spermatocysts and ovarioles, as well as internal germ cells, thereby inducing early germ cell death or malformations via complex mechanisms related to apoptosis and autophagy through mitochondrial and lysosomal pathways. Histological observations of the gonads and quantitative analyses of germ cell development showed that the reproductive toxicity was characterized by obvious male sensitivity. Exposure to QDs in the early stage of males had severe adverse effects on the quantity and quality of sperm, which was the main reason for the occurrence of unfertilized eggs. Ala- or Gly-conjugated QDs could reduce the nanotoxicity of CdTe-QDs during germ cell development and fertilization of their offspring. The results demonstrate that males are preferable models for evaluating the reproductive toxicity of QDs in combined in vivo/in vitro investigations. PMID:27669995

  12. High levels of antimony in dust from e-waste recycling in southeastern China

    International Nuclear Information System (INIS)

    Environmental contamination due to uncontrolled e-waste recycling is an emerging global issue. Antimony (Sb) is a toxic element used in semiconductor components and flame retardants for circuit board within electronic equipment. When e-waste is recycled, Sb is released and contaminates the surrounding environment; however, few studies have characterized the extent of this problem. In this study, we investigated Sb and arsenic (As) distributions in indoor dust from 13 e-waste recycling villages in Guiyu, Guangdong Province, southeastern China. Results revealed significantly elevated concentrations of Sb (6.1-232 mg/kg) in dust within all villages, which were 3.9-147 times higher than those from the non e-waste sites, indicating e-waste recycling was an important source of Sb pollution. On the contrary, As concentrations (5.4-17.7 mg/kg) in e-waste dusts were similar to reference values from the control sites. Therefore, dusts emitted from e-waste recycling may be characterized by high Sb/As ratios, which may help identify the contamination due to the e-waste recycling activities. - Highlights: → Antimony and arsenic concentrations in dust from e-waste recycling were investigated. → E-waste recycling is an important emerging source of Sb pollution. → Sb/As ratios may help identify the e-waste contamination.

  13. Canine visceral leishmaniasis: comparison of in vitro leishmanicidal activity of marbofloxacin, meglumine antimoniate and sodium stibogluconate.

    Science.gov (United States)

    Vouldoukis, Ioannis; Rougier, Sandrine; Dugas, Bernard; Pino, Paco; Mazier, Dominique; Woehrlé, Frédérique

    2006-01-30

    The control of canine leishmaniasis largely depends on the success of treatment. Drugs currently available to treat this disease are toxic and partially effective. The curative effect of marbofloxacin, a third-generation fluoroquinolone developed for veterinarian individual treatment, was evaluated in vitro in the presence of Leishmania infantum promastigotes and dog-monocyte-derived macrophages; meglumine antimoniate and sodium stibogluconate were used as comparative treatments. We observed that the killing of Leishmania promastigotes and intracellular amastigotes by marbofloxacin was dose-dependent. We demonstrated that successful treatment of canine infected macrophages for 48 h was possible with 500 microg/ml of marbofloxacin. Leishmanicidal activity acted through a TNF-alpha and nitric oxide pathway and correlated with the generation of nitric oxide (NO(2)) production by monocytes derived macrophages from infected (23+/-5 microM) or healthy (21+/-6 microM) dogs, in comparison with NO(2) concentration in infected/non-treated macrophages (Marbofloxacin was shown to be non-toxic at 500 microg/ml in vitro and no cell apoptosis was observed. The molecule was able to induce a parasitic process after significant elimination of amastigotes in leishmania-infected dog macrophages. We propose that marbofloxacin, compared to standard chemotherapeutic agents (meglumine antimoniate and sodium stibogluconate), could be an effective and pragmatic oral route alternative to treat canine leishmaniasis.

  14. Evaluation of antimony microparticles supported on biochar for application in the voltammetric determination of paraquat.

    Science.gov (United States)

    Gevaerd, Ava; de Oliveira, Paulo R; Mangrich, Antonio S; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2016-05-01

    This work describes the construction and application of carbon paste electrodes modified with biochar and antimony microparticles (SbBCPE) for voltammetric determination of paraquat using a simple and sensitive procedure based on voltammetric stripping analysis. Some parameters such as amount of biochar and antimony used in the composition of the carbon paste and instrumental parameters were examined in detail. Under optimized conditions, an analytical curve was obtained for paraquat determination employing SbBCPE, which showed a linear response ranging from 0.2 to 2.9 μmol L(-1), with limit of detection and quantification of 34 nmol L(-1) and 113 nmol L(-1), respectively, after paraquat pre-concentration of 120 s. The repeatability study presented a RSD=2.0% for 10 consecutive measurements using the same electrode surface and the reproducibility study showed a RSD=2.7% for measurements with 10 different electrode surfaces. The proposed sensor was successfully applied for paraquat determination in tap water and citric fruit juice spiked samples and good recoveries were obtained without any sample pre-treatment, showing its promising analytical performance.

  15. Antimony retention and release from drained and waterlogged shooting range soil under field conditions.

    Science.gov (United States)

    Hockmann, Kerstin; Tandy, Susan; Lenz, Markus; Reiser, René; Conesa, Héctor M; Keller, Martin; Studer, Björn; Schulin, Rainer

    2015-09-01

    Many soils polluted by antimony (Sb) are subject to fluctuating waterlogging conditions; yet, little is known about how these affect the mobility of this toxic element under field conditions. Here, we compared Sb leaching from a calcareous shooting range soil under drained and waterlogged conditions using four large outdoor lysimeters. After monitoring the leachate samples taken at bi-weekly intervals for >1.5 years under drained conditions, two of the lysimeters were subjected to waterlogging with a water table fluctuating according to natural rainfall water infiltration. Antimony leachate concentrations under drained conditions showed a strong seasonal fluctuation between 110 μg L(-1) in summer and soil solution indicated that this decrease in Sb(V) concentrations was attributable to the reduction of Sb(V) to Sb(III) and the stronger sorption affinity of the latter to iron (Fe) (hydr)oxide phases. Our results demonstrate the importance of considering seasonal and waterlogging effects in the assessment of the risks from Sb-contaminated sites. PMID:25592464

  16. A Black Phosphate Conversion Coating on Steel Surface Using Antimony(III)-Tartrate as an Additive

    Science.gov (United States)

    Li, Feng; Wang, Guiping

    2016-05-01

    A novel black phosphate conversion coating was formed on steel surface through a Zn-Mn phosphating bath containing mainly ZnO, H3PO4, Mn(H2PO4)2, and Ca(NO3)2, where antimony(III)-tartrate was used as the blackening agent of phosphatization. The surface morphology and composition of the coating were characterized by scanning electron microscopy, energy dispersion spectroscopy, and x-ray photoelectron spectroscopy. Corrosion resistance of the coating was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy. The pH value of the solution had significant influence on the formation and corrosion resistance of the coating. The experimental results indicated that the Sb plays a vital role in the blackening of phosphate conversion coating. The optimal concentration of antimony(III)-tartrate in the phosphating bath used in this experiment was 1.0 g L-1, as higher values reduced the corrosion resistance of the coating. In addition, by saponification and oil seals, the corrosion duration of the black phosphate coating in a copper sulfate spot test can be as long as 20 min.

  17. Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium

    Directory of Open Access Journals (Sweden)

    Rajmund Michalski

    2012-01-01

    Full Text Available Due to the fact that metals and metalloids have a strong impact on the environment, the methods of their determination and speciation have received special attention in recent years. Arsenic, antimony, and thallium are important examples of such toxic elements. Their speciation is especially important in the environmental and biomedical fields because of their toxicity, bioavailability, and reactivity. Recently, speciation analytics has been playing a unique role in the studies of biogeochemical cycles of chemical compounds, determination of toxicity and ecotoxicity of selected elements, quality control of food products, control of medicines and pharmaceutical products, technological process control, research on the impact of technological installation on the environment, examination of occupational exposure, and clinical analysis. Conventional methods are usually labor intensive, time consuming, and susceptible to interferences. The hyphenated techniques, in which separation method is coupled with multidimensional detectors, have become useful alternatives. The main advantages of those techniques consist in extremely low detection and quantification limits, insignificant interference, influence as well as high precision and repeatability of the determinations. In view of their importance, the present work overviews and discusses different hyphenated techniques used for arsenic, antimony, and thallium species analysis, in different clinical, environmental and food matrices.

  18. Determination of Trace Antimony (III by Adsorption Voltammetry at Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    Nongyue He

    2005-05-01

    Full Text Available This work presents a sensitive method for the determination of trace antimonybased on the antimony-pyrogallol red (PGR adsorption at a carbon paste electrode (CPE.The optimal conditions were to use an electrode containing 25% paraffin oil and 75%high purity graphite powder as working electrode, a 0.10 mol/L HCl solution containing3.0×10-5 mol/L PGR as accumulation medium and a 0.20 mol/L HCl solution aselectrolyte with an accumulation time of 150 s and a reduction time of 60 s at -0.50 Vfollowed with a sweep from -0.50 V to 0.20 V. The mechanism of the electrode reactionwas discussed. Interferences of other metal ions were studied as well. The detection limitwas 1×10-9 mol/L. The linear range was from 2.0×10-9 mol/L to 5.0×10-7 mol/L.Application of the proposed method to the determination of antimony in water andhuman hair samples gave good results.

  19. Organically complexed iron enhances bioavailability of antimony to maize (Zea mays) seedlings in organic soils.

    Science.gov (United States)

    Ptak, Corey; McBride, Murray

    2015-12-01

    Antimony (Sb) is a metalloid belonging to group 15 of the periodic table. Chemical similarities between arsenic (As) and Sb produce concerns about potential health effects of Sb and enrichment in the environment. Antimony is found in oxic environments predominately as an oxyanionic species, antimonite (Sb[OH](6-)). As a result of its net negative charge, Sb[OH](6-) was not initially predicted to have strong interactions with natural organic matter. Oxyanionic species could bind the negatively charged organic matter via a ternary complexation mechanism, in which cationic metals mediate the strong association between organic matter functional groups and oxyanions. However, these interactions are poorly understood in how they influence the bioavailability of oxyanionic contaminants to plants. Iron (Fe) additions to organic soils have been found to increase the number of organically complexed Fe sites suitable for Sb exchange, resulting in a reduced bioavailable fraction of Sb. The bioavailability of Sb to maize seedlings as a function of organically complexed Fe was examined using a greenhouse study. A significant increase in plant tissue Sb was observed as organically complexed Fe increased, which was not predicted by methods commonly used to assess bioavailable Sb. Extraction of soils with organic acids common to the maize rhizosphere suggested that organic acid exudation can readily mobilize Sb bound by organic Fe complexes. PMID:26076768

  20. Morphology-controlled growth of crystalline antimony sulfide via a refluxing polyol process

    Science.gov (United States)

    Zhang, Rui; Chen, Xiangying; Mo, Maosong; Wang, Zhenghua; Zhang, Meng; Liu, Xinyuan; Qian, Yitai

    2004-02-01

    By refluxing antimony trichloride (SbCl 3) and thiourea in various solvents at suitable reaction conditions, antimony sulfide (Sb 2S 3) crystallites with a diversity of well-defined morphologies were synthesized. Sb 2S 3 rods with the average diameter of 800 nm and the length of 7 μm, as well as microtubes with the average outer diameter of 1.2 μm, the average inner diameter of 800 nm and the length of 8 μm, were obtained in 1,2-propanediol at 180°C for 10 min. In contrast, a series of experiments under different conditions were carried out to investigate the influencing factors on the reaction. The as-synthesized products were characterized by powder X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscope and X-ray photoelectron spectra. The results indicate Sb 2S 3 crystals with different morphologies, including rod-like, tube-like, bowknot-like, flower-like, straw-bundled-like, taken under different experimental conditions. It is found that the reaction temperature, time, solvent and poly(vinyl pyrrolidone) (as a polymer capping reagent) play important roles in the formation of the final Sb 2S 3 crystallites with different morphologies. Also, the possible growth mechanism is discussed.

  1. Organically complexed iron enhances bioavailability of antimony to maize (Zea mays) seedlings in organic soils.

    Science.gov (United States)

    Ptak, Corey; McBride, Murray

    2015-12-01

    Antimony (Sb) is a metalloid belonging to group 15 of the periodic table. Chemical similarities between arsenic (As) and Sb produce concerns about potential health effects of Sb and enrichment in the environment. Antimony is found in oxic environments predominately as an oxyanionic species, antimonite (Sb[OH](6-)). As a result of its net negative charge, Sb[OH](6-) was not initially predicted to have strong interactions with natural organic matter. Oxyanionic species could bind the negatively charged organic matter via a ternary complexation mechanism, in which cationic metals mediate the strong association between organic matter functional groups and oxyanions. However, these interactions are poorly understood in how they influence the bioavailability of oxyanionic contaminants to plants. Iron (Fe) additions to organic soils have been found to increase the number of organically complexed Fe sites suitable for Sb exchange, resulting in a reduced bioavailable fraction of Sb. The bioavailability of Sb to maize seedlings as a function of organically complexed Fe was examined using a greenhouse study. A significant increase in plant tissue Sb was observed as organically complexed Fe increased, which was not predicted by methods commonly used to assess bioavailable Sb. Extraction of soils with organic acids common to the maize rhizosphere suggested that organic acid exudation can readily mobilize Sb bound by organic Fe complexes.

  2. Effect of antimony incorporation on structural properties of CuInS{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabeh, M., E-mail: mohamedbenrabeh@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Chaglabou, N., E-mail: nadia_chaglabou@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Kanzari, M., E-mail: Mounir.Kanzari@ipeit.rnu.t [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia)

    2010-02-15

    CuInS{sub 2} (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS{sub 2} phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  3. Food crop accumulation and bioavailability assessment for antimony (Sb) compared with arsenic (As) in contaminated soils.

    Science.gov (United States)

    Wilson, Susan C; Tighe, Matthew; Paterson, Ewan; Ashley, Paul M

    2014-10-01

    Field samples and a 9-week glasshouse growth trial were used to investigate the accumulation of mining derived arsenic (As) and antimony (Sb) in vegetable crops growing on the Macleay River Floodplain in Northern New South Wales, Australia. The soils were also extracted using EDTA to assess the potential for this extractant to be used as a predictor of As and Sb uptake in vegetables, and a simplified bioaccessibility extraction test (SBET) to understand potential for uptake in the human gut with soil ingestion. Metalloids were not detected in any field vegetables sampled. Antimony was not detected in the growth trial vegetable crops over the 9-week greenhouse trial. Arsenic accumulation in edible vegetable parts was risk of exposure through short-term vegetable crops is low. The data also demonstrate that uptake pathways for Sb and As in the vegetables were different with uptake strongly impacted by soil properties. A fraction of soil-borne metalloid was soluble in the different soils resulting in Sb soil solution concentration (10.75 ± 0.52 μg L(-1)) that could present concern for contamination of water resources. EDTA proved a poor predictor of As and Sb phytoavailability. Oral bioaccessibility, as measured by SBET, was risk from soil borne As and Sb in the floodplain environment.

  4. Determination of antimony in nail and hair by thermal neutron activation analysis

    International Nuclear Information System (INIS)

    The concentration of antimony in nail and hair was determined by thermal neutron activation analysis. Samples were collected from the workers of an antimony refinery, inhabitants near the refinery, and residents in control area. They were irradiated by Kyoto University 5000 kW Reactor for 1 h, and cooled for 30 to 100 days. After cooling, the concentration of Sb in nail and hair was estimated by measuring the intensity of γ-ray from 124Sb of the samples, then the samples were washed by 0.1 % aqueous solution of nonionic surface active agent in an ultrasonic cleaner. The γ-ray spectrometry was done again (after washing). The concentration of Sb in nail before washing was 730 ppm for the workers, 2.46 ppm for habitants near the refinery, and 0.19 ppm for the control; after washing, it became 230 ppm for the workers, 0.63 ppm for habitants, and 0.09 ppm for the control. The concentration of Sb in hair before and after washing was 222 ppm and 196 ppm for the workers, and 0.21 ppm and 0.15 ppm for the control, respectively. (author)

  5. One-step synthesis of antimony-doped tin dioxide nanocrystallites and their property

    Institute of Scientific and Technical Information of China (English)

    ZHENG Min; WANG Bao

    2009-01-01

    Antimony-doped tin dioxide(ATO) nanoparticles with primary diameter in the range of 9-10 nm were rapidly synthesized via a novel combustion technique, starting with antimony trichloride and tin tetrachloride as metal sources and self-assembly compounds as fuels. The combustion phenomena and characteristics of products were controlled by assembling components in fuel compounds according to appropriate molar ratio. The as-synthesized products were characterized by XRD, SEM, TEM and XPS, respectively. The electrical conductivity was evaluated through measuring the antistatic property of polyester fiber treated by the as-synthesized products. The results show that a mild combustion phenomena without release of smoke can be taken on and perfect azury rutile ATO crystal with complete substitution can be formed rapidly under the appropriate synthetic conditions. The antistatic property of the polyester fiber treated by the as-synthesized ATO products is enhanced remarkably. The triboelectricity voltage below 1.0 kV, half life below 1.0 s and surface resistance below 1.0×106 Ω can be attained.

  6. Growth of antimony doped P-type zinc oxide nanowires for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong Lin; Pradel, Ken

    2016-09-27

    In a method of growing p-type nanowires, a nanowire growth solution of zinc nitrate (Zn(NO.sub.3).sub.2), hexamethylenetetramine (HMTA) and polyethylenemine (800 M.sub.w PEI) is prepared. A dopant solution to the growth solution, the dopant solution including an equal molar ration of sodium hydroxide (NaOH), glycolic acid (C.sub.2H.sub.4O.sub.3) and antimony acetate (Sb(CH.sub.3COO).sub.3) in water is prepared. The dopant solution and the growth solution combine to generate a resulting solution that includes antimony to zinc in a ratio of between 0.2% molar to 2.0% molar, the resulting solution having a top surface. An ammonia solution is added to the resulting solution. A ZnO seed layer is applied to a substrate and the substrate is placed into the top surface of the resulting solution with the ZnO seed layer facing downwardly for a predetermined time until Sb-doped ZnO nanowires having a length of at least 5 .mu.m have grown from the ZnO seed layer.

  7. Progress of Antimony-containing Wastewater Treatment%含锑废水处理技术研究进展

    Institute of Scientific and Technical Information of China (English)

    尹鑫; 周广柱; 王翠珍; 王世豪; 彭刚; 何双

    2014-01-01

    在锑矿的开采及冶炼加工过程中,排出了大量含锑废水,这种重金属废水对环境和人体健康构成严重威胁。本文总结了重金属锑元素的物理化学性质、毒性特点,归纳了含锑废水的处理方法,分析了含锑废水处理技术的优势和缺点,提出了工艺联合应用等高效处理含锑废水的相关建议。%A large amount of wastewater containing antimony discharged in the process of antimony ore mining,smelting and processing,which pose a serious threat to the environment and human health. In this paper we summarized the characteristics of physical and chemical properties, toxicity of antimony, and the antimony wastewater treatment. Advantages and disadvantages of these treatment crafts were compared in a table,the recommendations given out for more efficiently processing via crafts combination.

  8. Electrochemical, structural and surface characterization of nickel/zirconia solid oxide fuel cell anodes in coal gas containing antimony

    Science.gov (United States)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Nachimuthu, Ponnusamy; Edwards, Danny J.

    The interactions of antimony with the nickel-zirconia anode in solid oxide fuel cells (SOFCs) have been investigated. Tests with both anode-supported and electrolyte-supported button cells were performed at 700 and 800 °C in synthetic coal gas containing 100 ppb to 9 ppm antimony. Minor performance loss was observed immediately after Sb introduction to coal gas resulting in ca. 5% power output drop. While no further degradation was observed during the following several hundred hours of testing, cells abruptly and irreversibly failed after 800-1600 h depending on Sb concentration and test temperature. Antimony was found to interact strongly with nickel resulting in extensive alteration phase formation, consistent with expectations based on thermodynamic properties. Nickel antimonide phases, NiSb and Ni 5Sb 2, were partially coalesced into large grains and eventually affected electronic percolation through the anode support. Initial degradation was attributed to diffusion of antimony to the active anode/electrolyte interface to form an adsorption layer, while the late stage degradation was due the Ni-Sb phase formation. Assuming an average Sb concentration in coal gas of 0.07 ppmv, a 500 μm thick Ni/zirconia anode-supported cell is not expected to fail within 7 years when operated at a power output of 0.5 W cm -2 and fuel utilization above 50%.

  9. Ambulatory oesophageal pH monitoring : a comparison between antimony, ISFET, and glass pH electrodes

    NARCIS (Netherlands)

    Hemmink, Gerrit J. M.; Weusten, Bas L. A. M.; Oors, Jac; Bredenoord, Albert J.; Timmer, Robin; Smout, Andre J. P. M.

    2010-01-01

    Background and aim Ambulatory oesophageal pH-impedance monitoring is a widely used test to evaluate patients with reflux symptoms. Several types of pH electrodes are available: antimony, ion sensitive field effect transistor (ISFET), and glass electrodes. These pH electrodes have not been compared d

  10. POLICY China’s Ministry of Commerce Set the Rules for Antimony and Tungsten Export in 2005

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> China’s ministry of commerce recently re-leased the rules and application procedures forthe export of antimony and tungsten productsin 2005 by the domestic producers.Based on the rules set by the ministry,China’santimony and tungsten producers providingtheir products for export must be those enter-prises authorized by the related State authori-ties.

  11. Comparative phytotoxicity of methylated and inorganic arsenic- and antimony species to Lemna minor, Wolffia arrhiza and Selenastrum capricornutum

    NARCIS (Netherlands)

    L. Duester; H.G. van der Geest; S. Moelleken; A.V. Hirner; K. Kueppers

    2011-01-01

    The alkylation of metalloids through the transfer of methyl groups is an important factor in the biogeochemical cycling of elements like arsenic and antimony. In the environment, many different organic and inorganic forms of these elements can therefore be found in soils, sediments or organisms. Stu

  12. American cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis resistant to meglumine antimoniate, but with good response to pentamidine: a case report.

    Science.gov (United States)

    Pimentel, Maria Inês Fernandes; Baptista, Cibele; Rubin, Evelyn Figueiredo; Vasconcellos, Erica de Camargo Ferreira e; Lyra, Marcelo Rosandiski; Salgueiro, Mariza de Matos; Saheki, Maurício Naoto; Rosalino, Cláudia Maria Valete; Madeira, Maria de Fátima; Silva, Aline Fagundes da; Confort, Eliame Mouta; Schubach, Armando de Oliveira

    2011-01-01

    This is a case report of a Brazilian soldier with cutaneous leishmaniasis. The lesion relapsed following two systemic treatments with meglumine antimoniate. The patient was treated with amphotericin B, which was interrupted due to poor tolerance. Following isolation of Leishmania sp., six intralesional infiltrations of meglumine antimoniate resulted in no response. Leishmania sp promastigotes were again isolated. The patient was submitted to intramuscular 4 mg/kg pentamidine. Parasites from the first and second biopsies were identified as Leishmania (Viannia) braziliensis; those isolated from the first biopsy were more sensitive to meglumine antimoniate in vitro than those isolated from the second biopsy. No relapse was observed. PMID:21552747

  13. American cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis resistant to meglumine antimoniate, but with good response to pentamidine: a case report.

    Science.gov (United States)

    Pimentel, Maria Inês Fernandes; Baptista, Cibele; Rubin, Evelyn Figueiredo; Vasconcellos, Erica de Camargo Ferreira e; Lyra, Marcelo Rosandiski; Salgueiro, Mariza de Matos; Saheki, Maurício Naoto; Rosalino, Cláudia Maria Valete; Madeira, Maria de Fátima; Silva, Aline Fagundes da; Confort, Eliame Mouta; Schubach, Armando de Oliveira

    2011-01-01

    This is a case report of a Brazilian soldier with cutaneous leishmaniasis. The lesion relapsed following two systemic treatments with meglumine antimoniate. The patient was treated with amphotericin B, which was interrupted due to poor tolerance. Following isolation of Leishmania sp., six intralesional infiltrations of meglumine antimoniate resulted in no response. Leishmania sp promastigotes were again isolated. The patient was submitted to intramuscular 4 mg/kg pentamidine. Parasites from the first and second biopsies were identified as Leishmania (Viannia) braziliensis; those isolated from the first biopsy were more sensitive to meglumine antimoniate in vitro than those isolated from the second biopsy. No relapse was observed.

  14. Field and photo-emission in a short-pulse, high-charge Cesium telluride RF photoinjector

    Science.gov (United States)

    Wisniewski, Eric E.

    A new high-charge RF gun is now operating at the Argonne Wakefield Accelerator (AWA) facility at Argonne National Laboratory (ANL). The 1.5 cell 1.3 GHz gun uses a Cesium telluride photocathode driven with a 248 nm laser to provide short-pulse, high charge electron beams for the new 75 MeV drive beamline. The high-gradient RF gun (peak field on the cathode > 80MV/m) is a key piece of the facility upgrade. The large Cs2Te photocathode (diameter > 30 mm) was fabricated in-house. The photo-injector will be used to generate high-charge, short pulse, single bunches (Q > 100 nC) and bunch-trains (Q > 1000 nC) for wakefield experiments, typically involving dielectric-loaded accelerating structures. Details of the photocathode fabrication process and the results of associated diagnostic measurements are presented, including QE measurements and work function measurements performed with a Kelvin probe. Fieldemitted dark current from the Cs2Te cathode was measured during RF conditioning and characterized. Fowler-Nordheim plots of the data are presented and compared to similar measurements made using a copper cathode in the initial phase of conditioning. The results for cesium telluride exhibited non-linear regions within the Fowler-Nordheim plots similar to previous experimental results for other p-type semiconductors. Results of quantum efficiency (QE) studies are presented with the cathode operating in both single and bunch-train modes. QE uniformity and lifetime studies are presented. During commissioning, the cesium telluride photocathode produced bunch-charge of 100 nC, breaking the previous record. No evidence of bunch-train position-dependence of QE was found when generating four-bunch trains with total charge up to 200 nC.

  15. The Lattice Compatibility Theory: Arguments for Recorded I-III-O2 Ternary Oxide Ceramics Instability at Low Temperatures beside Ternary Telluride and Sulphide Ceramics

    Directory of Open Access Journals (Sweden)

    K. Boubaker

    2013-01-01

    Full Text Available Some recorded behaviours differences between chalcopyrite ternary oxide ceramics and telluride and sulphides are investigated in the framework of the recently proposed Lattice Compatibility Theory (LCT. Alterations have been evaluated in terms of Urbach tailing and atomic valence shell electrons orbital eigenvalues, which were calculated through several approximations. The aim of the study was mainly an attempt to explain the intriguing problem of difficulties of elaborating chalcopyrite ternary oxide ceramics (I-III-O2 at relatively low temperatures under conditions which allowed crystallization of ternary telluride and sulphides.

  16. The effects of nanoparticle inclusions upon the microstructure and thermoelectric transport properties of bismuth telluride-based composites

    Science.gov (United States)

    Gothard, Nicholas Wesley

    Research into materials that have high efficiencies of thermoelectric heat-energy conversion has been at a plateau since the middle of the last century. During this time, efficiencies have been engineered high enough for several interesting niche applications but not high enough for widespread adaptation into traditional power generation or refrigeration technologies. The past decade has seen considerable advancement, as a number of theoretical works have suggested that lower dimensional structures could hold the key for enhanced efficiency, and several experiments have provided the proof of principle needed to inspire just such a research direction. The benefit of low dimensional structures for thermoelectric efficiency comes from both the potential enhancement of the electronic properties due to quantum confinement effects as well as from the potential for increased scattering of heat-carrying phonons. Widespread application of these principles for technological application requires the creation of composites of nanostructures that can be manufactured easily with dimensions on the bulk materials scale. A good starting point for such materials research is to manufacture composites of materials that are currently known to have high thermoelectric efficiencies by incorporating nanostructures into a bulk matrix. The goal of this project is to create nanocomposites using bismuth telluride, a compound known to have one of the highest thermoelectric efficiencies at room temperature, as a matrix material. Various methods of synthesizing sufficient quantities of bismuth telluride nanostructures were attempted, including pulsed laser vaporization, chemical vapor deposition, and solvothermal synthesis. The method of solvothermal synthesis was found to be the simplest approach for producing high yields of bismuth telluride nanostructures. In the initial stages of the project, cold pressing was tested as a means of compaction, but in the end a uniaxial hot pressing technique

  17. Characterization of cadmium manganese telluride (Cd1-xMnxTe) crystals grown by floating zone method

    Science.gov (United States)

    Hossain, A.; Gu, G. D.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Gul, R.; Roy, U. N.; Yang, G.; Liu, T.; Zhong, R.; Schneeloch, J.; James, R. B.

    2014-09-01

    Recently, Cadmium Manganese Telluride (CMT) emerged as a promising material for roomtemperature X- and gamma-ray detectors. However, our studies revealed several material defects primarily related to growth processes that are impeding the production of large single crystals with high resistivity and high mobility-lifetime product. In this work, we characterized various defects in materials grown by the floating zone method, including twins, Te inclusions, and dislocations, using our unique facilities. We also fabricated detectors from selected CMT crystals and tested their performance. This paper discusses our detailed findings on the material's properties and the performance of fabricated CMT detectors.

  18. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2

    Science.gov (United States)

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M.; Wu, Jerry J.

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes.

  19. On the possible role played by tunnel recombination in the loss processes of excess current carriers in cadmium telluride

    Science.gov (United States)

    Novikov, G. F.; Marinin, A. A.; Gapanovich, M. V.; Rabenok, E. V.

    2010-05-01

    The microwave photoconductivity method was used to study the kinetics of the decay of current carriers generated by nitrogen laser pulses in n- and p-type cadmium telluride. The dependences of the shape and amplitude of photoresponse decays on temperature and light intensity were studied. Photoresponse decays contained "fast" (at t 50 ns) components. At long times, the dependence of photoresponse on the logarithm of time was linear. The shape of slow component decays was almost independent of temperature. The slow component of photoresponse decay could correspond to the loss process of entrapped charges in tunnel recombination.

  20. NaBH{sub 4}/[bmim]BF{sub 4}: a new reducing system to access vinyl selenides and tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Lenardao, Eder J.; Goncalves, Loren C.C.; Mendes, Samuel R.; Saraiva, Maiara T.; Alves, Diego; Jacob, Raquel G.; Perin, Gelson, E-mail: lenardao@ufpel.edu.b [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Quimica e Geociencias. Lab. de Sintese Organica Limpa (LASOL)

    2010-07-01

    A general and simple method for the synthesis of vinyl selenides and tellurides starting from terminal alkynes and diorganyl chalcogenides using NaBH{sub 4} and [bmim]BF{sub 4} as a recyclable solvent was developed. This efficient and improved method furnishes the corresponding vinyl chalcogenides preferentially with Z configuration. We also observed that when the same protocol was applied to phenyl acetylene, (E)-bis-phenylchalcogeno styrenes were obtained in good yields and high selectivity. The ionic liquid was reused up three times without lost of efficiency. (author)

  1. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2.

    Science.gov (United States)

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M; Wu, Jerry J

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes. PMID:27131144

  2. Cadmium zinc telluride based infrared interferometry for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Lohstroh, A., E-mail: A.Lohstroh@surrey.ac.uk; Della Rocca, I. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Parsons, S. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); AWE Aldermaston, Reading RG7 4PR (United Kingdom); Langley, A.; Shenton-Taylor, C.; Blackie, D. [AWE Aldermaston, Reading RG7 4PR (United Kingdom)

    2015-02-09

    Cadmium Zinc Telluride (CZT) is a wide band gap semiconductor for room temperature radiation detection. The electro-optic Pockels effect of the material has been exploited in the past to study electric field non-uniformities and their consequence on conventional detector signals in CZT, by imaging the intensity distribution of infrared (IR) light transmitted through a device placed between crossed polarizers. Recently, quantitative monitoring of extremely high intensity neutron pulses through the change of transmitted IR intensity was demonstrated, offering the advantage to place sensitive electronics outside the measured radiation field. In this work, we demonstrate that X-ray intensity can be deduced directly from measuring the change in phase of 1550 nm laser light transmitted through a 7 × 7 × 2 mm{sup 3} CZT based Pockels cell in a simple Mach Zehnder interferometer. X-rays produced by a 50 kVp Mo X-ray tube incident on the CZT cathode surface placed at 7 mm distance cause a linearly increasing phase shift above 0.3 mA tube current, with 1.58 ± 0.02 rad per mA for an applied bias of 500 V across the 2 mm thick device. Pockels images confirm that the sample properties are in agreement with the literature, exhibiting electric field enhancement near the cathode under irradiation, which may cause the non-linearity at low X-ray tube anode current settings. The laser used to probe the X-ray intensity causes itself some space charge, whose spatial distribution does not seem to be exclusively determined by the incident laser position, i.e., charge carrier generation location, with respect to the electrodes.

  3. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  4. Spectroscopic, microscopic, and internal stress analysis in cadmium telluride grown by close-space sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Manciu, Felicia S., E-mail: fsmanciu@utep.edu [Department of Physics, The University of Texas at El Paso, El Paso, TX 79968 (United States); Salazar, Jessica G. [Department of Physics, The University of Texas at El Paso, El Paso, TX 79968 (United States); Diaz, Aryzbe; Quinones, Stella A. [Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX 79968 (United States)

    2015-08-31

    High quality materials with excellent ordered structure are needed for developing photovoltaic and infrared devices. With this end in mind, the results of our research prove the importance of a detailed, comprehensive spectroscopic and microscopic analysis in assessing cadmium telluride (CdTe) characteristics. The goal of this work is to examine not only material crystallinity and morphology, but also induced stress in the deposit material. A uniform, selective growth of polycrystalline CdTe by close-space sublimation on patterned Si(111) and Si(211) substrates is demonstrated by scanning electron microscopy images. Besides good crystallinity of the samples, as revealed by both Raman scattering and Fourier transform infrared absorption investigations, the far-infrared transmission data also show the presence of surface optical phonon modes, which is direct evidence of confinement in such a material. The qualitative identification of the induced stress was achieved by performing confocal Raman mapping microscopy on sample surfaces and by monitoring the existence of the rock-salt and zinc-blende structural phases of CdTe, which were associated with strained and unstrained morphologies, respectively. Although the induced stress in the material is still largely due to the high lattice mismatch between CdTe and the Si substrate, the current results provide a direct visualization of its partial release through the relaxation effect at crystallite boundaries and of preferential growth directions of less strain. Our study, thus offers significant value for improvement of material properties, by targeting the needed adjustments in the growth processes. - Highlights: • Assessing the characteristics of CdTe deposited on patterned Si substrates • Proving the utility of confocal Raman microscopy in monitoring the induced stress • Confirming the partial stress release through the grain boundary relaxation effect • Demonstrating the phonon confinement effect in low

  5. Cadmium zinc telluride based infrared interferometry for X-ray detection

    International Nuclear Information System (INIS)

    Cadmium Zinc Telluride (CZT) is a wide band gap semiconductor for room temperature radiation detection. The electro-optic Pockels effect of the material has been exploited in the past to study electric field non-uniformities and their consequence on conventional detector signals in CZT, by imaging the intensity distribution of infrared (IR) light transmitted through a device placed between crossed polarizers. Recently, quantitative monitoring of extremely high intensity neutron pulses through the change of transmitted IR intensity was demonstrated, offering the advantage to place sensitive electronics outside the measured radiation field. In this work, we demonstrate that X-ray intensity can be deduced directly from measuring the change in phase of 1550 nm laser light transmitted through a 7 × 7 × 2 mm3 CZT based Pockels cell in a simple Mach Zehnder interferometer. X-rays produced by a 50 kVp Mo X-ray tube incident on the CZT cathode surface placed at 7 mm distance cause a linearly increasing phase shift above 0.3 mA tube current, with 1.58 ± 0.02 rad per mA for an applied bias of 500 V across the 2 mm thick device. Pockels images confirm that the sample properties are in agreement with the literature, exhibiting electric field enhancement near the cathode under irradiation, which may cause the non-linearity at low X-ray tube anode current settings. The laser used to probe the X-ray intensity causes itself some space charge, whose spatial distribution does not seem to be exclusively determined by the incident laser position, i.e., charge carrier generation location, with respect to the electrodes

  6. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    Science.gov (United States)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  7. Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy

    Science.gov (United States)

    Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.

    2016-02-01

    For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation

  8. Investigations of portable cadmium telluride (CdTe(Cl)) detectors for clinical studies with radioactive indicators

    International Nuclear Information System (INIS)

    The combination of small, portable γ-radiation-sensitive Cadmium Telluride (CdTE(Cl)) crystal detectors and portable solid state data storage memories makes it feasible to extend the measuring period in a number of clinical investigations based on the use of various radioisotopes and external detection. Blood sampling can be avoided in some cases. Continuous ambulatory monitoring of relevant physiological parameters is practicable, e.g. kidney function (GFR), left ventricular ejection fraction, subcutaneous blood flow, muscle blood flow and insulin absorption in diabetic patients. In the present methodological study the applicability of the 133-Xe washout technique to subcutaneous (s.c.) adipose tissue blood flow (SBF) has been investigated and adapted to the use of CdTe(Cl) detectors attached to the skin surface for the measurement of local 133-Xe-disappearance rate constants (k). Physical characterization of CdTe(Cl) detectors as γ-sensitive devices has been performed, and adequate counting sensitivities were found without detector energy-resolution properties. The CdTe(Cl) detectors are therefore suitable for single indicator studies. The measuring geometry of CdTe(Cl) detectors was studied and compared with that of stationary Sodium Iodide (NaI(Tl)) detectors in both phantom and in vivo investigations. The spatial properties of CdTe(Cl) detectors could to some extent be adjusted by pulse height discrimination and lead collimation. When long-term measurements were complicated by for instance physical activity of the patients, the small CdTe(Cl) detectors in general showed equal or better performance than the heavy and voluminous NaI(Tl) detectors. The free movement of the ambulatory patient and the avoidance of cable connections to stationary data-collecting systems gave improved possibilities for measurements of the relevant parameters. From this point of view, portable CdTe(Cl) detectors must be considered an important advance for radioactivity studies in

  9. Electronic control of germanium telluride (GeTe) phase transition for electronic memory applications

    Science.gov (United States)

    Gwin, Alex H.; Coutu, Ronald A.

    2014-03-01

    Germanium telluride (GeTe) is a phase change material (PCM) that undergoes an exponential decrease in resistance from room temperature to its transition temperature at approximately 200 °C. Its resistivity decreases by as much as six orders of magnitude between amorphous and crystalline phases as it is heated. Chalcogenides such as GeTe have been utilized typically in nonvolatile optical memories such as CDs, DVDs, and Blu-ray discs, where the change in reflectivity between phases gives enough contrast for ON and OFF bits. Research over the past several years has begun to characterize the electronic control of PCM thin films for advanced electronic memory applications. By applying a voltage to control its resistance and crystallinity, GeTe has become a candidate for ultra-fast switching electronic memory, perhaps as an alternative to Flash memory. In this research, micro-scale PCM cells were fabricated using RF sputtering of a GeTe target and electron-beam evaporation on c-Si, SiO2/Si, Si3N4/Si, and Al2O3. Characterizations of the crystallization process were completed with spectroscopic ellipsometry (SE), varied voltage, and varied temperature in order to draw a comparison of the switching mechanism between thermally and electronically induced transition. The results show an optical contrast of Δn + iΔk = -0.858 + i1.056. Heat conduction experiments prove a growthdominated crystallization and fracturing of conductive crystallites when deposited on Al2O3. PCM cells exhibit memory-like I-V curves for smaller cell dimensions according to the trap-limited conduction model in chalcogenides. RF structures show the capability of being utilized as improved RF switches.

  10. Friction Consolidation Processing of n-Type Bismuth-Telluride Thermoelectric Material

    Science.gov (United States)

    Whalen, Scott; Jana, Saumyadeep; Catalini, David; Overman, Nicole; Sharp, Jeffrey

    2016-07-01

    Refined grain sizes and texture alignment have been shown to improve transport properties in bismuth-telluride (Bi2Te3) based thermoelectric materials. In this work we demonstrate a new approach, called friction consolidation processing (FCP), for consolidating Bi2Te3 thermoelectric powders into bulk form with a high degree of grain refinement and texture alignment. FCP is a solid-state process wherein a rotating tool is used to generate severe plastic deformation within the Bi2Te3 powder, resulting in a recrystallizing flow of material. Upon cooling, the far-from-equilibrium microstructure within the flow can be retained in the material. FCP was demonstrated on n-type Bi2Te3 feedstock powder having a -325 mesh size to form pucks with a diameter of 25.4 mm and thickness of 4.2 mm. Microstructural analysis confirmed that FCP can achieve highly textured bulk materials, with sub-micrometer grain size, directly from coarse feedstock powders in a single process. An average grain size of 0.8 μm was determined for regions of one sample and a multiple of uniform distribution (MUD) value of 15.49 was calculated for the (0001) pole figure of another sample. These results indicate that FCP can yield ultra-fine grains and textural alignment of the (0001) basal planes in Bi2Te3. ZT = 0.37 at 336 K was achieved for undoped stoichiometric Bi2Te3, which approximates literature values of ZT = 0.4-0.5. These results point toward the ability to fabricate bulk thermoelectric materials with refined microstructure and desirable texture using far-from-equilibrium FCP solid-state processing.

  11. Selenide and telluride glasses for mid-infrared bio-sensing

    Science.gov (United States)

    Cui, Shuo; Chahal, Radwan; Shpotyuk, Yaroslav; Boussard, Catherine; Lucas, Jacques; Charpentier, Frederic; Tariel, Hugues; Loréal, Olivier; Nazabal, Virginie; Sire, Olivier; Monbet, Valérie; Yang, Zhiyong; Lucas, Pierre; Bureau, Bruno

    2014-02-01

    Fiber Evanescent Wave Spectroscopy (FEWS) is an efficient way to collect optical spectra in situ, in real time and even, hopefully, in vivo. Thanks to selenide glass fibers, it is possible to get such spectra over the whole mid-infrared range from 2 to 12 μm. This working window gives access to the fundamental vibration band of most of biological molecules. Moreover selenide glasses are stable and easy to handle, and it is possible to shape the fiber and create a tapered sensing head to drastically increase the sensitivity. Within the past decades, numerous multi-disciplinary studies have been conducted in collaboration with the City Hospital of Rennes. Clinical trials have provided very promising results in biology and medicine which have led to the creation in 2011 of the DIAFIR Company dedicated to the commercialization of fiber-based infrared biosensors. In addition, new glasses based on tellurium only have been recently developed, initially in the framework of the Darwin mission led by the European Space Agency (ESA). These glasses transmit light further into the far-infrared and could also be very useful for medical applications in the near future. Indeed, they permit to reach the vibrational bands of biomolecules laying from 12 to 16 μm where selenide glasses do not transmit light anymore. However, while Se is a very good glass former, telluride glasses tend to crystallize easily due to the metallic nature of Te bonds. Hence, further work is under way to stabilize the glass composition for fibers drawing and to lower the optical losses for improving their sensitivity as bio-sensors.

  12. Determination of natural isotopic variation in antimony using inductively coupled plasma mass spectrometry for an uncertainty estimation of the standard atomic weight of antimony

    International Nuclear Information System (INIS)

    The isotopic variation of industrially produced antimony was estimated using multiple-collector inductively coupled plasma mass spectrometry. A reproducible 123Sb/121Sb ratio of ±0.004% (2 standard deviations) was routinely obtained using a Sn doping mass discrimination correction technique. Only a small isotopic variation of about 0.05% was observed among industrially important Sb materials (five commercially available reagents and two ore minerals). The degree of Sb isotopic variation to determine the uncertainty in Sb atomic weight can be reduced by this new analytical technique to 0.00025 compared to the currently accepted IUPAC isotopic variation determined by conventional mass spectrometry of ±0.001. Heavy isotope enrichment of Sb in a drainage water sample from a stibnite mining area was found. This heavy isotope enrichment tendency in an aqueous environment may be useful in detecting anthropogenic Sb input from industrial emission by the smelting process via air because Sb of anthropogenic origin will have lighter isotope enrichment features. (author)

  13. Low Temperature Calorimetric Investigation of the Spin Glasses: MERCURY(1-X)MANGANESE(X)TELLURIDE and COBALT(X)GALLIUM(1-X); and of the Compounds: Mercury-Telluride Alpha - Mercury Sulfide, Beta - Mercury Sulfide, THALLIUM(3)ARSENIC SELENIDE(3), THALLIUM(3)ANTIMONY SULFIDE(3), Silver-Thallium - and Silver-Thallium

    Science.gov (United States)

    Akbarzadeh, Hadi

    A systematic study of the low-dc-field magnetic susceptibility and the specific heat has been carried out on mixes Hg(,1-x)Mn(,x)Te crystals, in the composition range 0 (LESSTHEQ) x (LESSTHEQ) 0.35. The alloy with x = 0.35 showed spin-glass behavior below T = 10.9 K. The observed spin-glass phase is ascribed to the frustration of the antiferromagnetic interactions. For x (LESSTHEQ) 0.25, the Hg(,1-x)Mn(,x)Te samples remain paramagnetic down to 1 K. Experimental results for the specific heat and the susceptibility for x 0.52 it also has contributions by the cobalt nuclei, proportional to T('-2), and a spin wave contribution proportional to T('3/2). This last term indicates the coexistence of spin glass and ferromagnetic properties. A simple two level system model fits the spin glass specific heat very well. The agreement between experimental and calculated specific heat shows that individual AS defects are responsible for the thermal properties. To explain hysteresis and remanence objects containing thousands of AS defects have been proposed. On increasing the temperature some objects become unfrozen. We speculate that the individual AS defects in the unfrozen objects can adjust themselves over their own two levels and so contribute to the thermal properties. Specific heats of mercury chalcogenides (HgTe, HgSe, (alpha)-HgS, (beta)-HgS) and red HgI(,2) have been measured in the temperature range of 0.4 - 50 K. All materials display well defined maxima in CT('-3) which indicate the presence of low-lying modes described by Einstein oscillators. The specific heats of Tl(,3)AsSe, Tl(,3)SbS(,3), AgTlS, and AgTlSe have been measured between 1 and 50 K. The Debye temperatures are, respectively: 140, 145, 160, 140 K. Above 2.5 K an additional contribution is noticed which indicates low-lying optical modes.

  14. First-Principles Study of Antimony Doping Effects on the Iron-Based Superconductor CaFe(SbxAs1-x)2

    Science.gov (United States)

    Nagai, Yuki; Nakamura, Hiroki; Machida, Masahiko; Kuroki, Kazuhiko

    2015-09-01

    We study antimony doping effects on the iron-based superconductor CaFe(SbxAs1-x)2 by using the first-principles calculation. The calculations reveal that the substitution of a doped antimony atom into As of the chainlike As layers is more stable than that into FeAs layers. This prediction can be checked by experiments. Our results suggest that doping homologous elements into the chainlike As layers, which only exist in the novel 112 system, is responsible for rising up the critical temperature. We discuss antimony doping effects on the electronic structure. It is found that the calculated band structures with and without the antimony doping are similar to each other within our framework.

  15. Phytoavailability of antimony and heavy metals in arid regions: the case of the Wadley Sb district (San Luis, Potosí, Mexico).

    Science.gov (United States)

    Levresse, G; Lopez, G; Tritlla, J; López, E Cardellach; Chavez, A Carrillo; Salvador, E Mascuñano; Soler, A; Corbella, M; Sandoval, L G Hernández; Corona-Esquivel, R

    2012-06-15

    This paper presents original results on the Sb and heavy metals contents in sediments and waste tailings, plants and water from the giant Wadley antimony mine district (San Luis Potosí State, Mexico). The dominant antimony phases in mining wastes are stibiconite, montroydite and minor hermimorphite. The waste tailings contain high concentrations of metals and metalloids (antimony, iron, zinc, arsenic, copper, and mercury). Manganese, copper, zinc, and antimony contents exceed the quality guidelines values for groundwater, plants and for waste tailings. Results indicate that peak accumulation is seasonal due to the concentration by high metabolism plants as Solanaceae Nicotiana. The metal phytoavailability in waste tailings is highly dependant on the metal speciation, its capability to be transported in water and, more particularly, the plant metabolism efficiency.

  16. Nuclear quadrupole resonance of iodine pentafluoride and its complexes with antimony pentafluoride

    International Nuclear Information System (INIS)

    The spectra of nuclear quadrupole resonance (NQR) have been obtained at 77 deg K for I127 and Sbsup(121,128) in the IF5, IF5xSbF5, IF5x2SbF5, CsIF6, and RbIF6 compounds. An agreement between quadrupole spectra and structural data have been observed. The results of studying IF5 by NQR, gamma resonance and microwave spectroscopy have been compared. It has been established that unshared electron pair of an iodine atom is stereochemically active which leads to a considerable distortion of octahedral symmetry of coordination polyhedron of the iodine atoms. The structure of complexes of iodine pentafluoride with antimony pentafluoride is given

  17. A novel composite material based on antimony(III) oxide and amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Zemnukhova, Ludmila A. [Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok (Russian Federation); Panasenko, Alexander E., E-mail: panasenko@ich.dvo.ru [Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok (Russian Federation)

    2013-05-01

    The composite material nSb₂O₃·mSiO₂·xH₂O was prepared by hydrolysis of SbCl₃ and Na₂SiO₃ in an aqueous medium. It has been shown that the composition of the material is influenced by the ratio of the initial components and the acidity of the reaction medium. The morphology of the material particles and its specific surface area have been determined. The thermal and optic properties were also investigated. - Graphical abstract: Novel composite material containing amorphous silica and crystal antimony(III) oxide has been synthesized by hydrolysis of SbCl₃ and Na₂SiO₃ in an aqueous medium. Highlights: • The composite material nSb₂O₃·mSiO₂·xH₂O was prepared in an aqueous medium. • The composition of the material is controllable by a synthesis conditions. • The morphology of the material and its optic properties have been determined.

  18. Preparation and characterization of conductive antimony-doped tin oxide (ATO) nanoparticles

    Institute of Scientific and Technical Information of China (English)

    LIN; Feng; DUAN; Xue-chen; REN; Xian-jing

    2005-01-01

    In this paper, conductive antimony-doped tin oxide (ATO) composite particles is prepared by hydroxylation method of metal alcoxides. This method has many advantages such as little pollution, low cost, simple sheet and equipment. The synthesis processing and the ATO nanoparticles are characterized by means of transmission electron microscope (TEM), X-ray diffraction (XRD), thermal gravimetric and differential thermal analysis, and BET. The results show that the ATO nanoparticles is tetragonal rutile crystal structure. TEM show that the particles are monodispersed with weak aggromation. The size of the particles calcinated at 700 is about 8nm. The specific areas are 153 m2 · g-1. In addition to, ATO nanop articles have good electric properties

  19. Sequential solvent extraction for forms of antimony in five selected coals

    Science.gov (United States)

    Qi, C.; Liu, Gaisheng; Kong, Y.; Chou, C.-L.; Wang, R.

    2008-01-01

    Abundance of antimony in bulk samples has been determined in five selected coals, three coals from Huaibei Coalfield, Anhui, China, and two from the Illinois Basin in the United States. The Sb abundance in these samples is in the range of 0.11-0.43 ??g/g. The forms of Sb in coals were studied by sequential solvent extraction. The six forms of Sb are water soluble, ion changeable, organic matter bound, carbonate bound, silicate bound, and sulfide bound. Results of sequential extraction show that silicate-bound Sb is the most abundant form in these coals. Silicate- plus sulfide-bound Sb accounts for more than half of the total Sb in all coals. Bituminous coals are higher in organic matterbound Sb than anthracite and natural coke, indicating that the Sb in the organic matter may be incorporated into silicate and sulfide minerals during metamorphism. ?? 2008 by The University of Chicago. All rights reserved.

  20. Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries.

    Science.gov (United States)

    Ji, Liwen; Zhou, Weidong; Chabot, Victor; Yu, Aiping; Xiao, Xingcheng

    2015-11-11

    Reduced graphene oxides loaded with tin-antimony alloy (RGO-SnSb) nanocomposites were synthesized through a hydrothermal reaction and the subsequent thermal reduction treatments. Transmission electron microscope images confirm that SnSb nanoparticles with an average size of about 20-30 nm are uniformly dispersed on the RGO surfaces. When they were used as anodes for rechargeable sodium (Na)-ion batteries, these as-synthesized RGO-SnSb nanocomposite anodes delivered a high initial reversible capacity of 407 mAh g(-1), stable cyclic retention for more than 80 cycles and excellent cycle stability at ultra high charge/discharge rates up to 30C. The significantly improved performance of the synthesized RGO-SnSb nanocomposites as Na-ion battery anodes can be attributed to the synergetic effects of RGO-based flexible framework and the nanoscale dimension of the SnSb alloy particles (batteries.

  1. Novel antimony doped tin oxide/carbon aerogel as efficient electrocatalytic filtration membrane

    Directory of Open Access Journals (Sweden)

    Zhimeng Liu

    2016-05-01

    Full Text Available A facile method was developed to prepare antimony doped tin oxide (Sb-SnO2/carbon aerogel (CA for use as an electrocatalytic filtration membrane. The preparation process included synthesis of a precursor sol, impregnation, and thermal decomposition. The Sb-SnO2, which was tetragonal in phase with an average crystallite size of 10.8 nm, was uniformly distributed on the CA surface and firmly attached via carbon-oxygen-tin chemical bonds. Preliminary filtration tests indicated that the Sb-SnO2/CA membrane had a high rate of total organic carbon removal for aqueous tetracycline owing to its high current efficiency and electrode stability.

  2. Novel fabrication of an electrochromic antimony-doped tin oxide film using a nanoparticle deposition system

    Science.gov (United States)

    Kim, Hyungsub; Park, Yunchan; Choi, Dahyun; Ahn, Sung-Hoon; Lee, Caroline Sunyong

    2016-07-01

    Novel deposition method of Antimony-doped tin oxide (ATO) thin films was introduced using a nanoparticle deposition system (NPDS) to fabricate an electrochromic (EC) device. NPDS is a dry deposition method that simplifies the ATO deposition process by eliminating the need for solvents or binders. In this study, an ATO EC layer was deposited using NPDS. The surface morphology and electrochemical and optical transmittance properties were characterized. The optical transmittance change in the ATO EC device was ∼35% over the wavelength range of 350-800 nm, and the cyclic transmittance was stable. The ATO film deposited using NPDS, exhibited a coloration efficiency of 15.5 cm2 C-1. Therefore, our results suggest that ATO EC devices can be fabricated using a simple, cost-effective NPDS, which allows nanoparticles to be deposited directly without pre- or post-processing.

  3. Microbial diversity and community structure in an antimony-rich tailings dump.

    Science.gov (United States)

    Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Xiao, Qingxiang; Sun, Weimin

    2016-09-01

    To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus, Limnobacter, Nocardioides, Lysobacter, Phormidium, and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter, are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities. PMID:27188777

  4. Properties of antimony doped ZnO thin films deposited by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Sadananda Kumar, N., E-mail: sadanthara@gmail.com; Bangera, Kasturi V.; Shivakumar, G. K. [National Institute of Technology Karnataka, Surathkal, Thin Films Laboratory, Department of Physics (India)

    2015-07-15

    Antimony (Sb) doped zinc oxide (ZnO) thin films were deposited on the glass substrate at 450°C using spray pyrolysis technique. Effect of Sb doping on surface morphology structural, optical and electrical properties were studied. X-ray diffraction (XRD) analysis showed that both the undoped and doped ZnO thin films are polycrystalline in nature with (101) preferred orientation. SEM analysis showed a change in surface morphology of Sb doped ZnO thin films. Doping results in a marked increase in conductivity without affecting the transmittance of the films. ZnO films prepared with 3 at % Sb shows the lowest resistivity of 0.185 Ohm cm with a Hall mobility of 54.05 cm{sup 2} V{sup –1} s{sup –1}, and a hole concentration of 6.25 × 10{sup 17} cm{sup –3}.

  5. Renal function evaluation in patients with American Cutaneous Leishmaniasis after specific treatment with pentavalent antimonial

    Directory of Open Access Journals (Sweden)

    Oliveira Rodrigo A

    2012-06-01

    Full Text Available Abstract Background Renal evaluation studies are rare in American Cutaneous Leishmaniasis (ACL. The aim of this study is to investigate whether specific treatment reverts ACL-associated renal dysfunction. Methods A prospective study was conducted with 37 patients with ACL. Urinary concentrating and acidification ability was assessed before and after treatment with pentavalent antimonial. Results The patients mean age was 35.6 ± 12 years and 19 were male. Before treatment, urinary concentrating defect (U/Posm Conclusion As previously described, urinary concentrating and acidification defects were found in an important number of patients with ACL. Present results demonstrate that only some patients recover urinary acidification capacity, while no one returned to normal urinary concentration capacity.

  6. Supermolecular template route to fabrication of well crystallized hollow antimony microspheres

    Institute of Scientific and Technical Information of China (English)

    GU Li; CHEN Shu-da; WEI Xiao-yan

    2006-01-01

    Hollow spheres of elemental antimony (Sb) with good crystallinity, high contrast and thin wall were prepared in the solutions of poly(ethylene glycol) (PEG) and oleic acid(OA) associations at the refluxed temperature. The complexes of Sb3+ with tartaric acid were used as precursors, which can avoid the hydrolysis of SbCl3 and the resulting impurity of products. The average diameter and thickness of the as-prepared hollow sphere are about 300 nm and less than 20 nm, respectively. The formation of hollow spheres depends on the template function of PEG and OA associations, which can be confirmed through the theoretical analysis and results of control experiments. The specific surface area reaches 34.669 m2/g.

  7. 锑环境健康效应的研究进展%Environmental Health Effect of Antimony: a Review of Recent Researches

    Institute of Scientific and Technical Information of China (English)

    戈兆凤; 韦朝阳

    2011-01-01

    随着锑的开采及含锑产品的广泛应用,锑所带来的污染问题已越来越严重,锑对环境与健康的危害也受到了更多的关注.该文总结了锑环境健康效应的研究进展,从医学、环境毒理学和生态毒理学的角度分别分析了锑对人、动物以及植物与土壤生物的健康效应.提示今后还需加强锑的致癌性及基因毒性研究,并需从微观与宏观尺度揭示锑的毒性效应,以期为锑的环境健康风险评估提供科学依据.%The antimony mining and widely use of antimony products have resulted in serious antimony contamination,causing hazards to both the environment and human health. The present paper summarized the research progresses on the environmental health effect of antimony. The health effects of antimony on human, animals, and plants as well as soil organisms are introduced and discussed in the view of medical science, environmental toxicology and ecological toxicology, respectively. It is suggested that more researches should be conducted on antimony earcinogenieity and genotoxicity, and the toxic effects of antimony should be explored from micro and macroscopic scales in order to provide the scientific basis for risk assessment of antimony.

  8. Successful treatment of feline leishmaniosis using a combination of allopurinol and N-methyl-glucamine antimoniate

    Directory of Open Access Journals (Sweden)

    Maria Alexandra Basso

    2016-02-01

    Full Text Available Case summary This work describes the diagnosis and successful treatment of a 2-year-old domestic cat infected with Leishmania species and presenting fever, and ulcerative and nodular skin lesions after being treated for pyodermatitis for 1 year without clinical improvement. After anamnesis the cat was submitted to a complete clinical examination. Blood was collected for determination of haematological and biochemical parameters, detection of feline leukaemia virus (FeLV, feline immunodeficiency virus (FIV, feline coronavirus (FCoV and Leishmania amastigotes. Fine-needle aspiration puncture from the skin nodules was also performed. After definitive diagnosis the animal was treated and followed up over a 2 year period. The animal tested negative for FIV-specific antibodies, FeLV antigen and feline coronavirus RNA. Leishmania amastigotes in the skin nodules were confirmed by cytology and molecular diagnosis. Treatment was initiated with allopurinol, resulting in a slight clinical improvement. Thus, N-methyl-glucamine antimoniate was added and administered for 30 days, with complete closure of the ulcerative lesions in the hindlimbs requiring a surgical approach. Close monitoring of the patient in the following 24 months indicated that combined therapy was safe and clinical cure was achieved without further relapses or side effects. Relevance and novel information Considering the increasing number of feline leishmaniosis cases and the inconsistent results of most therapeutic protocols described in the literature, the use of new approaches, especially in refractory cases, is essential. Although the use of allopurinol and N-methyl-glucamine antimoniate is off-label in cats, in this case the combination treatment was followed by an extensive analytical monitoring, supporting their safety and effectiveness.

  9. Infrared-to-red upconversion luminescence in samarium-doped antimony glasses

    International Nuclear Information System (INIS)

    A new antimony-based glass system (K2O-B2O3-Sb2O3) having low phonon energy (about 600 cm-1) doped with Sm3+ ions has been developed. Infrared reflection spectroscopic (IRRS) studies have been employed to establish its low phonon energy. Ultraviolet-Visible-near infrared (UV-Vis-NIR) absorption and photoluminescence upconversion properties with the spectrochemistry of the 15K2O-15B2O3-70Sb2O3 (mol%) glasses have been studied doping with different concentrations (0.1-1.0 wt%) of Sm2O3. UV-Vis-NIR absorption band positions have been justified with quantitative calculation of nephelauxetic parameter and covalent bonding characteristics of the host. NIR to visible upconversion has been investigated by exciting at 949 nm at room temperature. Three upconverted bands originating from the 4G5/2→6H5/2, 4G5/2→6H7/2 and 4G5/2→6H9/2 transitions are found to be centered at 566 (green, weak), 602 (orange, weak) and 636 (red, remarkably strong) nm, respectively. These bands have been explained from the evaluation of the absorption, normal (downconversion) fluorescence and excitation spectra. The upconversion processes have been explained by the excited state absorption (ESA), energy transfer (ET) and cross-relaxation (CR) mechanisms involving population of the metastable (storage) energy level (4G5/2) by multiphonon deexcitation effect. It is evident from the IRRS study that the upconversion phenomena are expedited by the low multiphonon relaxation rate in antimony glasses owing to their low phonon energy (602 cm-1, the main and highest intensity Sb-O-Sb stretching band) which is very close to that of fluoride glasses (500-600 cm-1)

  10. Optical properties of Eu3+-doped antimony-oxide-based low phonon disordered matrices

    Science.gov (United States)

    Som, Tirtha; Karmakar, Basudeb

    2010-01-01

    A new series of monolithic Eu2O3-doped high antimony oxide (40-80 mol%) content disordered matrices (glasses) of low phonon energy (about 600 cm-1) in the K2O-B2O3-Sb2O3 (KBS) system was prepared by the melt-quench technique. Infrared reflection spectroscopy was used to establish the low phonon energy of the glasses. Amorphicity and devitrification of the glasses were confirmed by x-ray diffraction analysis. UV-vis absorption spectra of Eu3+ have been measured and the band positions have been justified with quantitative calculation of the nephelauxetic parameter and covalent bonding characteristics of the host. These Eu2O3-doped glasses upon excitation at 393 nm radiation exhibit six emission bands in the range 500-750 nm due to their low phonon energy. Of these, the magnetic dipole ^{5}\\mathrm {D}_{0} \\to {}^{7} \\mathrm {F_{1}} transition shows small Stark splitting while the electric dipole ^{5}\\mathrm {D}_{0} \\to {}^{7}\\mathrm {F}_{2} transition undergoes remarkable Stark splitting into two components. They have been explained by the crystal field effect. The Judd-Ofelt parameters, Ωt = 2,4,6, were also evaluated and the change of Ωt with the glass composition was correlated with the asymmetric effect at Eu3+ ion sites and the fundamental properties like covalent character and optical basicity. We are the first to report the spectroscopic properties of the Eu3+ ion in KBS low phonon antimony glasses.

  11. Optical characterization of antimony-based bismuth-doped thin films with different annealing temperatures

    Institute of Scientific and Technical Information of China (English)

    Xinmiao Lu; Yiqun Wu; Yang Wang; Jinsong Wei

    2011-01-01

    Antimony-b ased bismuth-doped thin film,a new kind of super-resolution mask layer,is prepared by magnetron sputtering.The structures and optical constants of the thin films before and after annealing are examined in detail.The as-deposited film is mainly in an amorphous state.After annealing at 170-370℃,it is converted to the rhombohedral-type of structure.The extent of crystallization increased with the annealing temperature.When the thin film is annealed,its refractive index decreased in the most visible region,whereas the extinction coefficient and reflectivity are markedly increased.The results indicate that the optical parameters of the film strongly depend on its microstructure and the bonding of the atoms.As demand for ultrahigh-density information storage continues to grow the recording mark size in optical memory is reduced to the nanometer scale [1- 4].Exceeding the optical diffraction limit with traditional optical storage technology has become a challenge[5-6].%Antimony-based bismuth-doped thin film, a new kind of super-resolution mask layer, is prepared by magnetron sputtering. The structures and optical constants of the thin films before and after annealing are examined in detail. The as-deposited film is mainly in an amorphous state. After annealing at 170-370℃, it is converted to the rhombohedral-type of structure. The extent of crystallization increased with the annealing temperature. When the thin film is annealed, its refractive index decreased in the most visible region, whereas the extinction coefficient and reflectivity are markedly increased. The results indicate that the optical parameters of the film strongly depend on its microstructure and the bonding of the atoms.

  12. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing.

    Science.gov (United States)

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-19

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson-Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm(-1) K(-2)), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance. PMID:27389820

  13. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing

    Science.gov (United States)

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-01

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson–Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm‑1 K‑2), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance.

  14. Decreased antimony uptake and overexpression of genes of thiol metabolism are associated with drug resistance in a canine isolate of Leishmania infantum.

    Science.gov (United States)

    Gómez Pérez, Verónica; García-Hernandez, Raquel; Corpas-López, Victoriano; Tomás, Ana M; Martín-Sanchez, Joaquina; Castanys, Santiago; Gamarro, Francisco

    2016-08-01

    Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania infantum, is one of the most important zoonotic diseases affecting dogs and humans in the Mediterranean area. The presence of infected dogs as the main reservoir host of L. infantum is regarded as the most significant risk for potential human infection. We have studied the susceptibility profile to antimony and other anti-leishmania drugs (amphotericin B, miltefosine, paromomycin) in Leishmania infantum isolates extracted from a dog before and after two therapeutic interventions with meglumine antimoniate (subcutaneous Glucantime(®), 100 mg/kg/day for 28 days). After the therapeutic intervention, these parasites were significantly less susceptible to antimony than pretreatment isolate, presenting a resistance index of 6-fold to Sb(III) for promastigotes and >3-fold to Sb(III) and 3-fold to Sb(V) for intracellular amastigotes. The susceptibility profile of this resistant L. infantum line is related to a decreased antimony uptake due to lower aquaglyceroporin-1 expression levels. Additionally, other mechanisms including an increase in thiols and overexpression of enzymes involved in thiol metabolism, such as ornithine decarboxylase, trypanothione reductase, mitochondrial tryparedoxin and mitochondrial tryparedoxin peroxidase, could contribute to the resistance as antimony detoxification mechanisms. A major contribution of this study in a canine L. infantum isolate is to find an antimony-resistant mechanism similar to that previously described in other human clinical isolates. PMID:27317865

  15. Sodium Antimony Gluconate Induces Generation of Reactive Oxygen Species and Nitric Oxide via Phosphoinositide 3-Kinase and Mitogen-Activated Protein Kinase Activation in Leishmania donovani-Infected Macrophages

    OpenAIRE

    Mookerjee Basu, Jayati; Mookerjee, Ananda; Sen, Prosenjit; Bhaumik, Suniti; Sen, Pradip; Banerjee, Subha; Naskar, Ksudiram; Choudhuri, Soumitra K.; Saha, Bhaskar; Raha, Sanghamitra; Roy, Syamal

    2006-01-01

    Pentavalent antimony complexes, such as sodium stibogluconate and sodium antimony gluconate (SAG), are still the first choice for chemotherapy against various forms of leishmaniasis, including visceral leishmaniasis, or kala-azar. Although the requirement of a somewhat functional immune system for the antileishmanial action of antimony was reported previously, the cellular and molecular mechanism of action of SAG was not clear. Herein, we show that SAG induces extracellular signal-regulated k...

  16. Remediation of antimony-rich mine waters: Assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor.

    Science.gov (United States)

    Sun, Weimin; Xiao, Enzong; Kalin, Margarete; Krumins, Valdis; Dong, Yiran; Ning, Zengping; Liu, Tong; Sun, Min; Zhao, Yanlong; Wu, Shiliang; Mao, Jianzhong; Xiao, Tangfu

    2016-08-01

    An on-site field-scale bioreactor for passive treatment of antimony (Sb) contamination was installed downstream of an active Sb mine in Southwest China, and operated for one year (including a six month monitoring period). This bioreactor consisted of five treatment units, including one pre-aerobic cell, two aerobic cells, and two microaerobic cells. With the aerobic cells inoculated with indigenous mine water microflora, the bioreactor removed more than 90% of total soluble Sb and 80% of soluble antimonite (Sb(III)). An increase in pH and decrease of oxidation-reduction potential (Eh) was also observed along the flow direction. High-throughput sequencing of the small subunit ribosomal RNA (SSU rRNA) gene variable (V4) region revealed that taxonomically diverse microbial communities developed in the bioreactor. Metal (loid)-oxidizing bacteria including Ferrovum, Thiomonas, Gallionella, and Leptospirillum, were highly enriched in the bioreactor cells where the highest total Sb and Sb(III) removal occurred. Canonical correspondence analysis (CCA) indicated that a suite of in situ physicochemical parameters including pH and Eh were substantially correlated with the overall microbial communities. Based on an UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree and PCoA (Principal Coordinates Analysis), the microbial composition of each cell was distinct, indicating these in situ physicochemical parameters had an effect in shaping the indigenous microbial communities. Overall, this study was the first to employ a field-scale bioreactor to treat Sb-rich mine water onsite and, moreover, the findings suggest the feasibility of the bioreactor in removing elevated Sb from mine waters. PMID:27208755

  17. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals.

    Science.gov (United States)

    Tu, Renyong; Xie, Yi; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; Trizio, Luca De; Manna, Liberato

    2016-06-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e., with coordination number 4), such as Cd(2+) or Hg(2+), yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd(2+) and Hg(2+) ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2-xTe particles could be more easily deformed to match the anion framework of the metastable wurtzite structures. As hexagonal HgTe had never been reported to date, this represents another case of metastable new phases that can only be accessed by cation exchange. On the other hand, the exchanges involving octahedrally coordinated ions (i.e., with coordination number 6), such as Pb(2+) or Sn(2+), yielded rock-salt polycrystalline PbTe or SnTe nanocrystals with Cu2-xTe@PbTe or Cu2-xTe@SnTe core@shell architectures at the early stages of the exchange process. In this case, the octahedrally coordinated ions are probably too large to diffuse easily through the Cu2-xTe structure: their limited diffusion rate restricts their initial reaction to the surface of the nanocrystals, where cation exchange is initiated unselectively, leading to core@shell architectures. Interestingly, these heterostructures were found to be metastable as they evolved to stable Janus-like architectures if annealed at 200 °C under vacuum.

  18. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals.

    Science.gov (United States)

    Tu, Renyong; Xie, Yi; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; Trizio, Luca De; Manna, Liberato

    2016-06-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e., with coordination number 4), such as Cd(2+) or Hg(2+), yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd(2+) and Hg(2+) ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2-xTe particles could be more easily deformed to match the anion framework of the metastable wurtzite structures. As hexagonal HgTe had never been reported to date, this represents another case of metastable new phases that can only be accessed by cation exchange. On the other hand, the exchanges involving octahedrally coordinated ions (i.e., with coordination number 6), such as Pb(2+) or Sn(2+), yielded rock-salt polycrystalline PbTe or SnTe nanocrystals with Cu2-xTe@PbTe or Cu2-xTe@SnTe core@shell architectures at the early stages of the exchange process. In this case, the octahedrally coordinated ions are probably too large to diffuse easily through the Cu2-xTe structure: their limited diffusion rate restricts their initial reaction to the surface of the nanocrystals, where cation exchange is initiated unselectively, leading to core@shell architectures. Interestingly, these heterostructures were found to be metastable as they evolved to stable Janus-like architectures if annealed at 200 °C under vacuum. PMID:27177274

  19. Inhibition of autophagy contributes to the toxicity of cadmium telluride quantum dots in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fan J

    2016-07-01

    Full Text Available Junpeng Fan,1–4 Ming Shao,1–4 Lu Lai,3–5 Yi Liu,3–5 Zhixiong Xie1–4,6 1College of Life Sciences, Wuhan University, 2Hubei Provincial Cooperative Innovation Center of Industrial Fermentation,3State Key Laboratory of Virology, 4Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE, 5College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 6School of Life Science and Technology, Hubei Engineering University, Xiaogan, People’s Republic of China Abstract: Cadmium telluride quantum dots (CdTe QDs are used as near-infrared probes in biologic and medical applications, but their cytological effects and mechanism of potential toxicity are still unclear. In this study, we evaluated the toxicity of CdTe QDs of different sizes and investigated their mechanism of toxicity in the yeast Saccharomyces cerevisiae. A growth inhibition assay revealed that orange-emitting CdTe (O-CdTe QDs (half inhibitory concentration [IC50] =59.44±12.02 nmol/L were more toxic than green-emitting CdTe QDs (IC50 =186.61±19.74 nmol/L to S. cerevisiae. Further studies on toxicity mechanisms using a transmission electron microscope and green fluorescent protein tagged Atg8 processing assay revealed that O-CdTe QDs could partially inhibit autophagy at a late stage, which differs from the results reported in mammalian cells. Moreover, autophagy inhibited at a late stage by O-CdTe QDs could be partially recovered by enhancing autophagy with rapamycin (an autophagy activator, combined with an increased number of living cells. These results indicate that inhibition of autophagy acts as a toxicity mechanism of CdTe QDs in S. cerevisiae. This work reports a novel toxicity mechanism of CdTe QDs in yeast and provides valuable information on the effect of CdTe QDs on the processes of living cells. Keywords: CdTe quantum dots, Saccharomyces cerevisiae, toxicity, autophagy

  20. Cyanide and antimony thermodynamic database for the aqueous species and solids for the EPA-MINTEQ geochemical code

    Energy Technology Data Exchange (ETDEWEB)

    Sehmel, G.A.

    1989-05-01

    Thermodynamic data for aqueous species and solids that contain cyanide and antimony were tabulated from several commonly accepted, published sources of thermodynamic data and recent journal article. The review does not include gases or organic complexes of either antimony or cyanide, nor does the review include the sulfur compounds of cyanide. The basic thermodynamic data, ..delta..G/sub f,298//sup o/, ..delta..H/sub f,298//sup o/, and S/sub f//sup o/ values, were chosen to represent each solid phase and aqueous species for which data were available in the appropriate standard state. From these data the equilibrium constants (log K/sub r,298//sup o/) and enthalpies of reaction (..delta..H/sub r,298//sup o/) at 298 K (25/degree/C) were calculated for reactions involving the formation of these aqueous species and solids from the basic components. 34 refs., 14 tabs.

  1. Antimony incorporation in InAs quantum dots grown on GaAs substrate by molecular beam epitaxy

    Science.gov (United States)

    Rihani, J.; Sallet, V.; Christophe, H. J.; Oueslati, M.; Chtourou, R.

    2008-01-01

    We have grown InAs(Sb) quantum dots (QDs) on GaAs (0 0 1) substrates by molecular beam epitaxy (MBE) using two different antimony exposures ( ΦSb). Atomic force microscopy (AFM) and photoluminescence (PL) spectroscopy were carried out to investigate the dot size evolution as function of the incorporated antimony content in InAs/GaAs QDs material. Anomalous asymmetric-band feature was observed in room temperature photoluminescence (RTPL) spectra of the investigated QD samples grown at relatively high temperature (490 °C). From the temperature-dependent PL measurements, it was found that the asymmetric-band feature is associated with the ground-states transitions from QDs with bimodal size distribution. The analysis of the pump power dependent PL spectra allows us to suggest a type II band lineup for the InAsSb/GaAs QDs materials system.

  2. Interest of lymphoscintigraphy with 99sup(m)Tc-labelled antimony sulfide in the arms after breast carcinoma treatment

    International Nuclear Information System (INIS)

    2 mCi of antimony sulfide colloid labelled with sup(99m)Tc were injected subcutaneously between the digits in 25 patients with postoperative lymphoedema of the arm for breast carcinoma. The two arms are examined successively, the normal one being used as control. The lymphoscintigraphy is realised with a gamma camera during an hour. The information obtained is threefoled; on the peripheral block's importance, the place where the lymphatic flow is stopped, and the presence in 40% of patients of axillary lymph nodes. The diminution of the lymphatic flow is not in correlation with the lymphoedema's importance. Lymphoscintigraphy with sup(99m)Tc antimony sulfide colloid is a simple examination but some side effects may occur. In 7 patients, post-injection lymphangitis was observed, with favorable evolution under antibiotic treatment. The lymphoscintigraphy can give some interesting information on the evolution of treated lymphoedema

  3. Co-administration of glycyrrhizic acid with the antileishmanial drug sodium antimony gluconate (SAG) cures SAG-resistant visceral leishmaniasis.

    Science.gov (United States)

    Bhattacharjee, Amrita; Majumder, Saikat; Majumdar, Suchandra Bhattacharyya; Choudhuri, Soumitra Kumar; Roy, Syamal; Majumdar, Subrata

    2015-03-01

    Since there are very few affordable antileishmanial drugs available, antimonial resistance has crippled antileishmanial therapy, thereby emphasising the need for development of novel therapeutic strategies. This study aimed to evaluate the antileishmanial role of combined therapy with sodium antimony gluconate (SAG) and the triterpenoid glycyrrhizic acid (GA) against infection with SAG-resistant Leishmania (GE1F8R). Combination therapy with GA and SAG successfully limited infection with SAG-resistant Leishmania in a synergistic manner (fractional inhibitory concentration index resistant Leishmania and co-treated with GA and SAG exhibited a significant reduction in hepatic and splenic parasite burden. In probing the mechanism, it was observed that GA treatment suppressed the expression and efflux activity of P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1), two host ABC transporters responsible for antimony efflux from host cells infected with SAG-resistant parasites. This suppression correlated with greater intracellular antimony retention during SAG therapy both in vitro and in vivo, which was reflected in the reduced parasite load. Furthermore, co-administration of GA and SAG induced a shift in the cytokine balance towards a Th1 phenotype by augmenting pro-inflammatory cytokines (such as IL-12, IFNγ and TNFα) and inducing nitric oxide generation in GE1F8R-infected macrophages as well as GE1F8R-infected mice. This study aims to provide an affordable leishmanicidal alternative to expensive antileishmanial drugs such as miltefosine and amphotericin B. Furthermore, this report explores the role of GA as a resistance modulator in MRP1- and P-gp-overexpressing conditions. PMID:25600891

  4. Exploring screen printing technology on thermoelectric energy harvesting with printing copper-nickel and bismuth-antimony thermocouples

    OpenAIRE

    Cao, Zhuo; Koukharenko, Elena; Torah, R; Beeby, SP

    2013-01-01

    This paper reports the fabrication and testing of copper (Cu) - nickel (Ni) and bismuth (Bi) - antimony (Sb) based thermocouples fabricated using screen printing technology. The transport properties of the printed thermoelectric material were measured in room temperature while the Seebeck voltage and power output of the printed thermocouples were tested under a variety temperature gradient. Initial thermoelectric materials have been integrated in inks and then deposited on substrate by the si...

  5. The Potential Impact of Biofield Energy Treatment on the Atomic and Physical Properties of Antimony Tin Oxide Nanopowder

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Antimony tin oxide (ATO) is known for its high thermal conductivity, optical transmittance, and wide energy band gap, which makes it a promising material for the display devices, solar cells, and chemical sensor industries. The present study was undertaken to evaluate the effect of biofield energy treatment on the atomic and physical properties of ATO nanopowder. The ATO nanopowder was divided into two parts: control and treated. The treated part was subjected to Mr. Trivedi’s biofield ...

  6. The influence of remelting on the properties of AlSi6Cu4 alloy modified by antimony

    OpenAIRE

    D. Medlen; D. Bolibruchova

    2012-01-01

    The paper deals with the problem of multiple remelting influence on AlSi6Cu4 alloy modified by antimony on chosen mechanical characteristics, microstructure and gas content. This foundry alloy is used mostly in automotive industry. Foundry Aluminum-Silicon alloys are also used in number of industrial weight sensitive applications because of their low weight and very good castability and good mechanical properties. Modifiers are usually added to molten aluminum-silicon alloys to refine the eut...

  7. EFFECT OF GRAIN BOUNDARY SEGREGATION OF ANTIMONY ON RELAXATION AT GRAIN BOUNDARIES IN SILICON-IRON ALLOYS

    OpenAIRE

    Iwasaki, Y.; Fujimoto, K

    1981-01-01

    A sharp grain boundary peak appears in both 2 and 3% silicon-iron alloys due to a substitutional solute of silicon. This peak is highly sensitive to the segregation of the third element of antimony and, contrary to orthodox solute peaks in binary and ternary alloys, largely decreases in magnitude on heating after a segregation treatment. The subsequent measurement on cooling returns the peak to the ordinary magnitude. As a function of annealing time at a temperature of segregation, the height...

  8. Evaluation of potential dietary toxicity of heavy metals in some common Nigerian beverages: A look at antimony, tin and mercury

    Directory of Open Access Journals (Sweden)

    I.I. Roberts

    2011-11-01

    Full Text Available There is currently little information on the composition of heavy metals in beverages imported and locally produced in Nigeria. The study quantitatively determined the composition of antimony (Sb, tin (Sn and mercury (Hg in 50 different beverage samples and evaluated the extent of violation of guideline values. Analysis of the beverage samples for the presence of Sb, Sn, and Hg was carried out using an atomic absorption spectrophotometer (AAS 929. The mean values detected for mercury, tin and antimony (±SE in fruit juices and soft drinks were 2.39±0.25, 3.66±0.22 and 0.49±0.048 μg/l; 2.93±0.34, 3.60±0.46 and 0.49±0.10 μg/l in dairy drinks and 0.94±0.02, 4.34±0.48 and 0.48±0.05 μg/l in bottled water samples respectively. While antimony detected in all products was below guideline values, mercury and tin were above the acceptable levels established by the World Health Organization, United States Environmental Protection Agency and European Union in most samples tested.

  9. Precipitation of antimony from the solution of sodium thioantimonite by air oxidation in the presence of catalytic agents

    Institute of Scientific and Technical Information of China (English)

    杨天足; 赖琼琳; 唐建军; 楚广

    2002-01-01

    The behavior of antimony oxidation in the solution of sodium thioantimonite was studied in the presence of catalytic agents. The catalytic effects of the respective addition of cupric sulfate, sodium tartrate, potassium permanganate, phenol, 1,2-dihydroxybenzene and their combination on the oxidation of sodium thioantimonite were investigated. A pilot test was carried out. The results show that the respective use of sodium tartrate, cupric sulfate, potassium permanganate, phenol and 1,2-dihydroxybenzene have little catalytic effect on the oxidation of sodium thioantimonite. However there exists obvious catalytic oxidation by the combination of 0.25 g/L 1,2-dihydroxybenzene, 0.5 g/L potassium permanganate and 1.0 g/L phenol. Moreover, high blast intensity, the increase of temperature and NaOH concentration favor the oxidation of antimony. The oxidation process of antimony has such advantages as quick reaction and low operation costs. The results of the pilot test are consistent with those of laboratory experiments.

  10. Separation of Lead from Crude Antimony by Pyro-Refining Process with NaPO3 Addition

    Science.gov (United States)

    Ye, Longgang; Hu, Yuejie; Xia, Zhimei; Chen, Yongming

    2016-06-01

    The main purpose of this study was to separate lead from crude antimony through an oxidation pyro-refining process and by using sodium metaphosphate as a lead elimination reagent. The process parameters that will affect the refining results were optimized experimentally under controlled conditions, such as the sodium metaphosphate charging dosage, the refining temperature and duration, and the air flow rate, to determine their effect on the lead content in refined antimony and the lead removal rate. A minimum lead content of 0.0522 wt.% and a 98.6% lead removal rate were obtained under the following optimal conditions: W_{{{NaPO}_{{3}} }} = 15% W Sb (where W represents weight), a refining temperature of 800°C, a refining time of 30 min, and an air flow rate of 3 L/min. X-ray diffractometry and scanning electron microscopy showed that high-purity antimony was obtained. The smelting operation is free from smoke or ammonia pollution when using monobasic sodium phosphate or ammonium dihydrogen phosphate as the lead elimination reagent. However, this refining process can also remove a certain amount of sulfur, cobalt, and silicon simultaneously, and smelting results also suggest that sodium metaphosphate can be used as a potential lead elimination reagent for bismuth and copper refining.

  11. PANCREATIC TOXICITY AS AN ADVERSE EFFECT INDUCED BY MEGLUMINE ANTIMONIATE THERAPY IN A CLINICAL TRIAL FOR CUTANEOUS LEISHMANIASIS

    Science.gov (United States)

    LYRA, Marcelo Rosandiski; PASSOS, Sonia Regina Lambert; PIMENTEL, Maria Inês Fernandes; BEDOYA-PACHECO, Sandro Javier; VALETE-ROSALINO, Cláudia Maria; VASCONCELLOS, Erica Camargo Ferreira; ANTONIO, Liliane Fatima; SAHEKI, Mauricio Naoto; SALGUEIRO, Mariza Mattos; SANTOS, Ginelza Peres Lima; RIBEIRO, Madelon Noato; CONCEIÇÃO-SILVA, Fatima; MADEIRA, Maria Fatima; SILVA, Jorge Luiz Nunes; FAGUNDES, Aline; SCHUBACH, Armando Oliveria

    2016-01-01

    SUMMARY American tegumentary leishmaniasis is an infectious disease caused by a protozoan of the genus Leishmania. Pentavalent antimonials are the first choice drugs for cutaneous leishmaniasis (CL), although doses are controversial. In a clinical trial for CL we investigated the occurrence of pancreatic toxicity with different schedules of treatment with meglumine antimoniate (MA). Seventy-two patients were allocated in two different therapeutic groups: 20 or 5 mg of pentavalent antimony (Sb5+)/kg/day for 20 or 30 days, respectively. Looking for adverse effects, patients were asked about abdominal pain, nausea, vomiting or anorexia in each medical visit. We performed physical examinations and collected blood to evaluate serum amylase and lipase in the pre-treatment period, and every 10 days during treatment and one month post-treatment. Hyperlipasemia occurred in 54.8% and hyperamylasemia in 19.4% patients. Patients treated with MA 20 mg Sb5+ presented a higher risk of hyperlipasemia (p = 0.023). Besides, higher MA doses were associated with a 2.05 higher risk ratio (p = 0.003) of developing more serious (moderate to severe) hyperlipasemia. The attributable fraction was 51% in this group. Thirty-six patients presented abdominal pain, nausea, vomiting or anorexia but only 47.2% of those had hyperlipasemia and/ or hyperamylasemia. These findings suggest the importance of the search for less toxic therapeutic regimens for the treatment of CL. PMID:27680173

  12. A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films

    International Nuclear Information System (INIS)

    Thin films of undoped, fluorine- and antimony-doped tin oxide on glass at 400 deg. C was prepared by spray pyrolysis technique. Tin chloride (SnCl2), ammonium fluoride (NH4F), and antimony trichloride (SbCl3) were used as source for tin (Sn), fluorine (F), and antimony (Sb), respectively. To ensure the control of solution concentration on growth rate, fluorine-doped tin oxide (SnO2:F) thin films were first prepared with different amount of tin precursor, in the range of 5-12g, which has resulted in deposition of films with different thickness values. The optimum amount of tin precursor found from this study (11g) was fixed constant for preparing SnO2 films with different doping levels of F and Sb. From the X-ray diffraction analyses, it is understood that the preferred orientation of SnO2:F films is dependent on their thickness and the solution concentration. The variation in the solution concentration and orientation of the films was reflected in their morphology as examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM studies showed that the variation in the solution concentration lead to different grain shapes for different orientations. The AFM study showed that the RMS roughness of undoped films reduced considerably from 86 to 24nm due to fluorine doping (15wt.%), whereas the antimony doping (2wt.%) has no significance effect on RMS roughness (93nm). The electrical properties of the films were examined by a Hall measurements setup in van der Pauw configuration. A minimum sheet resistance of 1.75 and 2.17Ω/ were obtained for F and Sb doped films, respectively. From the optical studies, it is found that the transmittance of undoped films increased from 42% to a maximum 85% on 30wt.% fluorine doping, whereas that has been decreased to a minimum of 12% on 4wt.% antimony doping (800nm). A discussion on the effect of type of dopants and their concentration on the structural, electrical and optical properties of the SnO2 film have

  13. Preparation of antimony sulfide semiconductor nanoparticles by pulsed laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ren-De, E-mail: son003@sekisui.com [Research & Development Institute, High Performance Plastics Company, Sekisui Chemical Co., Ltd. 2-1 Hyakuyama, Shimamoto-Cho, Mishima-Gun, Osaka, 618-0021 (Japan); Tsuji, Takeshi [Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu-Cho, Matsue, 690-8504 (Japan)

    2015-09-01

    Highlights: • Pulsed laser ablation in liquid (LAL) was applied to prepare antimony sulfide nanoparticles (Sb{sub 2}S{sub 3} NPs). • Sb{sub 2}S{sub 3} NPs with a stoichiometric composition were successfully prepared by LAL in water without using any surfactants or capping agents. • Thus-prepared Sb{sub 2}S{sub 3} NPs showed low-temperature crystallization and melting at a temperature low as 200 °C. • The NPs-coated Sb{sub 2}S{sub 3} thin film showed comparable semiconductor properties (carrier mobility and carrier density) to the vacuum deposited one. • Byproducts such as CS{sub 2}, CH{sub 4} and CO were detected by GC-MS analysis when LAL was performed in organic solvent. • The LAL-induced decomposition mechanism of Sb{sub 2}S{sub 3} and organic solvents was discussed based on the GC-MS results. - Abstract: In this paper, we report on the synthesis of antimony sulfide (Sb{sub 2}S{sub 3}) semiconductor nanoparticles by pulsed laser ablation in liquid without using any surfactants or capping agents. Different results were obtained in water and organic solvents. In the case of water, Sb{sub 2}S{sub 3} nanoparticles with chemical compositions of stoichiometry were successfully prepared when laser irradiation was performed under the condition with the dissolved oxygen removed by argon gas bubbling. It was shown that thus-obtained Sb{sub 2}S{sub 3} nanoparticles exhibit features of not only low-temperature crystallization but also low-temperature melting at a temperature as low as 200 °C. Nanoparticle-coated Sb{sub 2}S{sub 3} thin films were found to show good visible light absorption and satisfying semiconductor properties (i.e., carrier mobility and density), which are essential for photovoltaic application. On the other hand, in the case of organic solvents (e.g., acetone, ethanol), such unexpected byproducts as CS{sub 2}, CO and CH{sub 4} were detected from the reaction system by GC-MS analysis, which suggests that both Sb{sub 2}S{sub 3} and organic

  14. Infrared-to-red upconversion luminescence in samarium-doped antimony glasses

    Energy Technology Data Exchange (ETDEWEB)

    Som, Tirtha [Glass Technology Laboratory, Glass Division, Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700 032 (India); Karmakar, Basudeb [Glass Technology Laboratory, Glass Division, Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700 032 (India)], E-mail: basudebk@cgcri.res.in

    2008-12-15

    A new antimony-based glass system (K{sub 2}O-B{sub 2}O{sub 3}-Sb{sub 2}O{sub 3}) having low phonon energy (about 600 cm{sup -1}) doped with Sm{sup 3+} ions has been developed. Infrared reflection spectroscopic (IRRS) studies have been employed to establish its low phonon energy. Ultraviolet-Visible-near infrared (UV-Vis-NIR) absorption and photoluminescence upconversion properties with the spectrochemistry of the 15K{sub 2}O-15B{sub 2}O{sub 3}-70Sb{sub 2}O{sub 3} (mol%) glasses have been studied doping with different concentrations (0.1-1.0 wt%) of Sm{sub 2}O{sub 3}. UV-Vis-NIR absorption band positions have been justified with quantitative calculation of nephelauxetic parameter and covalent bonding characteristics of the host. NIR to visible upconversion has been investigated by exciting at 949 nm at room temperature. Three upconverted bands originating from the {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 5/2}, {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 7/2} and {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 9/2} transitions are found to be centered at 566 (green, weak), 602 (orange, weak) and 636 (red, remarkably strong) nm, respectively. These bands have been explained from the evaluation of the absorption, normal (downconversion) fluorescence and excitation spectra. The upconversion processes have been explained by the excited state absorption (ESA), energy transfer (ET) and cross-relaxation (CR) mechanisms involving population of the metastable (storage) energy level ({sup 4}G{sub 5/2}) by multiphonon deexcitation effect. It is evident from the IRRS study that the upconversion phenomena are expedited by the low multiphonon relaxation rate in antimony glasses owing to their low phonon energy (602 cm{sup -1}, the main and highest intensity Sb-O-Sb stretching band) which is very close to that of fluoride glasses (500-600 cm{sup -1})

  15. Thin-film cadmium telluride solar cells: Final subcontract report, 1 May 1985--31 May 1988

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L.

    1988-06-01

    This report describes results of research performed to demonstrate thin-film cadmium telluride heterojunction solar cells with a total area greater than 1 cm/sup 2/ and efficiencies of 13% or higher. Efforts were directed to (1) the deposition, resistivity control, and characterization of p-CdTe films by combining the vapor of the elements (CVE) and close-spaced sublimation (CSS) techniques; (2) the deposition and characterization of transparent conducting semiconductors; (3) the deposition of p-HgTe as a low-resistance ohmic contact to p-CdTe; (4) the electrical properties of CdS/CdTe heterojunctions; and (5) the preparation and evaluation of heterojunction solar cells. CdS/CdTe solar cells showed the best photovoltaic characteristics, and the best cell had a conversion efficiency of about 10.6%. 20 refs., 30 figs., 1 tab.

  16. A rapid and sensitive assay for determination of doxycycline using thioglycolic acid-capped cadmium telluride quantum dots

    Science.gov (United States)

    Tashkhourian, Javad; Absalan, Ghodratollah; Jafari, Marzieh; Zare, Saber

    2016-01-01

    A rapid, simple and inexpensive spectrofluorimetric sensor for determination of doxycycline based on its interaction with thioglycolic acid-capped cadmium telluride quantum dots (TGA/CdTe QDs) has been developed. Under the optimum experimental conditions, the sensor exhibited a fast response time of doxycycline could quench the fluorescence of TGA/CdTe QDs via electron transfer from the QDs to doxycycline through a dynamic quenching mechanism. The sensor permitted determination of doxycycline in a concentration range of 1.9 × 10-6-6.1 × 10-5 mol L-1 with a detection limit of 1.1 × 10-7 mol L-1. The sensor was applied for determination of doxycycline in honey and human serum samples.

  17. Cuprous Iodide Catalyzed Synthesis of Diaryl Selenide and Telluride from Organoboronic Acids with Diphenyl Diselenide and Ditelluride

    Institute of Scientific and Technical Information of China (English)

    WANG,Lei; WANG,Min; YAN,Jin-Can; LI,Pin-Hua

    2004-01-01

    @@ Organoselenium and tellurium compounds have received much attention not only as synthetic reagents or intermediates in organic synthesis but also as promising donor molecules for conductive materials.[1] A number of synthetic methods have been reported to prepare organoselenium and tellurium derivatives. A convenient and general method to introduce a selenium or tellurium moiety into organic molecules is the reaction of a metal selenolate or tellurolate with appropriate electrophiles such as organic halides, acyl chlorides, epoxides, and α, β-enones.[2] However, it is difficult to synthesize the unsymmetrical diarylselenides and tellurides through the reaction of selenide anion with organic halides because of the less reactivity of aryl halides. To accomplish this purpose, the reaction (iodobenzene with phenylselenol)was generally carried out in the presence of catalysts, ligands and strong bases. But, the reaction needs longer time to accomplish and form the products in moderate yields.

  18. Thin-film cadmium telluride photovoltaic cells. Final subcontract report, 1 November 1992--1 January 1994

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.D.; Bohn, R.G. [Toledo Univ., OH (United States)

    1994-09-01

    This report describes work to develop and optimize radio-frequency (rf) sputtering for the deposition of thin films of cadmium telluride (CdTe) and related semiconductors for thin-film solar cells. Pulsed laser physical vapor deposition was also used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. The sputtering work utilized a 2-in diameter planar magnetron sputter gun. The film growth rate by rf sputtering was studied as a function of substrate temperature, gas pressure, and rf power. Complete solar cells were fabricated on tin-oxide-coated soda-lime glass substrates. Currently, work is being done to improve the open-circuit voltage by varying the CdTe-based absorber layer, and to improve the short-circuit current by modifying the CdS window layer.

  19. Baseline Evaluation of Thin-Film Amorphous Silicon, Copper Indium Diselenide, and Cadmium Telluride for the 21st Century: Preprint

    International Nuclear Information System (INIS)

    This paper examines three thin-film PV technologies: amorphous silicon, cadmium telluride, and copper indium selenide. The purpose is to: (1) assess their status and potential; (2) provide an improved set of criteria for comparing these existing thin films against any new PV technological alternatives, and examining the longer-term (c. 2050) potential of thin films to meet cost goals that would be competitive with conventional sources of energy without any added value from the substantial environmental advantages of PV. Among the conclusions are: (1) today's thin films have substantial economic potential, (2) any new approach to PV should be examined against the substantial achievements and potential of today's thin films, (3) the science and technology base of today's thin films needs substantial strengthening, (4) some need for alternative technologies exists, especially as the future PV marketplace expands beyond about 30 GW of annual production

  20. Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors

    Science.gov (United States)

    Krishna, Ramesh M.

    In today's world, nuclear radiation is seeing more and more use by humanity as time goes on. Nuclear power plants are being built to supply humanity's energy needs, nuclear medical imaging is becoming more popular for diagnosing cancer and other diseases, and control of weapons-grade nuclear materials is becoming more and more important for national security. All of these needs require high-performance nuclear radiation detectors which can accurately measure the type and amount of radiation being used. However, most current radiation detection materials available commercially require extensive cooling, or simply do not function adequately for high-energy gamma-ray emitting nuclear materials such as uranium and plutonium. One of the most promising semiconductor materials being considered to create a convenient, field-deployable nuclear detector is cadmium zinc telluride (CdZnTe, or CZT). CZT is a ternary semiconductor compound which can detect high-energy gamma-rays at room temperature. It offers high resistivity (≥ 1010 O-cm), a high band gap (1.55 eV), and good electron transport properties, all of which are required for a nuclear radiation detector. However, one significant issue with CZT is that there is considerable difficulty in growing large, homogeneous, defect-free single crystals of CZT. This significantly increases the cost of producing CZT detectors, making CZT less than ideal for mass-production. Furthermore, CZT suffers from poor hole transport properties, which creates significant problems when using it as a high-energy gamma-ray detector. In this dissertation, a comprehensive investigation is undertaken using a successful growth method for CZT developed at the University of South Carolina. This method, called the solvent-growth technique, reduces the complexity required to grow detector-grade CZT single crystals. It utilizes a lower growth temperature than traditional growth methods by using Te as a solvent, while maintaining the advantages of

  1. Inhibition of Leishmania donovani promastigote DNA topoisomerase I and human monocyte DNA topoisomerases I and II by antimonial drugs and classical antitopoisomerase agents.

    Science.gov (United States)

    Walker, John; Saravia, Nancy G

    2004-10-01

    We have compared the inhibitor sensitivities of DNA topoisomerase I (TOPI) from Leishmania donovani promastigotes and TOPs I and II of human monocytes using pentavalent and trivalent antimonials (SbV, SbIII) and classical TOP inhibitors. Bis-benzimidazoles (Hoechst-33258 and -33342) were potent inhibitors of both parasite and human TOPI, but Hoechst-33342 was markedly less cytotoxic to promastigotes than to monocytes in vitro. Leishmania donovani was also considerably less sensitive than monocytes to camptothecin, both at enzyme and cellular levels. Sodium stibogluconate (SSG) was the only antimonial to inhibit TOPI, exhibiting a significant (P donovani enzyme but showed low cytotoxicities against intact promastigotes. The SbV meglumine antimoniate failed to inhibit TOPI and showed negligible cytotoxicities, whereas SbIII drugs were lethal to parasites and monocytes yet poor inhibitors of TOPI. Monocyte TOPII was inhibited by bis-benzimidazoles and insensitive to antimonials and camptothecin. The disparity between the high leishmanicidal activity and low anti-TOPI potency of SbIII indicates that in vivo targeting of L. donovani TOPI by the reductive pathway of antimonial activation is improbable. Nevertheless, the potent direct inhibition of TOPI by SSG and the differential interactions of camptothecin with L. donovani and human TOPI support the possibility of developing parasite-specific derivatives. PMID:15562618

  2. Chronic exposure to arsenic in drinking water can lead to resistance to antimonial drugs in a mouse model of visceral leishmaniasis

    Science.gov (United States)

    Perry, Meghan R.; Wyllie, Susan; Raab, Andrea; Feldmann, Joerg; Fairlamb, Alan H.

    2013-01-01

    The Indian subcontinent is the only region where arsenic contamination of drinking water coexists with widespread resistance to antimonial drugs that are used to treat the parasitic disease visceral leishmaniasis. We have previously proposed that selection for parasite resistance within visceral leishmaniasis patients who have been exposed to trivalent arsenic results in cross-resistance to the related metalloid antimony, present in the pentavalent state as a complex in drugs such as sodium stibogluconate (Pentostam) and meglumine antimonate (Glucantime). To test this hypothesis, Leishmania donovani was serially passaged in mice exposed to arsenic in drinking water at environmentally relevant levels (10 or 100 ppm). Arsenic accumulation in organs and other tissues was proportional to the level of exposure and similar to that previously reported in human liver biopsies. After five monthly passages in mice exposed to arsenic, isolated parasites were found to be completely refractory to 500 μg⋅mL−1 Pentostam compared with the control passage group (38.5 μg⋅mL−1) cultured in vitro in mouse peritoneal macrophages. Reassessment of resistant parasites following further passage for 4 mo in mice without arsenic exposure showed that resistance was stable. Treatment of infected mice with Pentostam confirmed that resistance observed in vitro also occurred in vivo. We conclude that arsenic contamination may have played a significant role in the development of Leishmania antimonial resistance in Bihar because inadequate treatment with antimonial drugs is not exclusive to India, whereas widespread antimonial resistance is. PMID:24167266

  3. Chronic exposure to arsenic in drinking water can lead to resistance to antimonial drugs in a mouse model of visceral leishmaniasis.

    Science.gov (United States)

    Perry, Meghan R; Wyllie, Susan; Raab, Andrea; Feldmann, Joerg; Fairlamb, Alan H

    2013-12-01

    The Indian subcontinent is the only region where arsenic contamination of drinking water coexists with widespread resistance to antimonial drugs that are used to treat the parasitic disease visceral leishmaniasis. We have previously proposed that selection for parasite resistance within visceral leishmaniasis patients who have been exposed to trivalent arsenic results in cross-resistance to the related metalloid antimony, present in the pentavalent state as a complex in drugs such as sodium stibogluconate (Pentostam) and meglumine antimonate (Glucantime). To test this hypothesis, Leishmania donovani was serially passaged in mice exposed to arsenic in drinking water at environmentally relevant levels (10 or 100 ppm). Arsenic accumulation in organs and other tissues was proportional to the level of exposure and similar to that previously reported in human liver biopsies. After five monthly passages in mice exposed to arsenic, isolated parasites were found to be completely refractory to 500 μg · mL(-1) Pentostam compared with the control passage group (38.5 μg · mL(-1)) cultured in vitro in mouse peritoneal macrophages. Reassessment of resistant parasites following further passage for 4 mo in mice without arsenic exposure showed that resistance was stable. Treatment of infected mice with Pentostam confirmed that resistance observed in vitro also occurred in vivo. We conclude that arsenic contamination may have played a significant role in the development of Leishmania antimonial resistance in Bihar because inadequate treatment with antimonial drugs is not exclusive to India, whereas widespread antimonial resistance is.

  4. Leaching of Antimony (Sb)from Municipal Solid Waste Incineration (MSWI) Residues

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Inga

    2004-07-01

    The mobility of antimony (Sb) in municipal solid waste incineration (MSWI) residues often exceeds the limit values stipulated by the European Union. As an ash treatment by washing is conceivable, this work investigated the Sb release from Swedish bottom ash and fly ash when mixed with water. The leaching experiments revealed the factors significantly (a = 0.05) affecting Sb release from the ashes. The following factors were investigated: Liquid to solid ratio (L/S), time, pH, carbonation (treatment with CO{sub 2}), ultrasonics and temperature. The data were evaluated using multiple linear regression (MLR). The impact of the factors could be quantified. The maximum Sb release calculated was 13 mg/kg DM for bottom ash and 51 mg/kg DM for fly ash. The derived models explained the observed data well. Nevertheless, the calculated values were subject to a high uncertainty. For bottom ash, a lowering of the Sb total content of approximately 22% could be achieved. If this also involves a sufficient lowering of the Sb mobility to meet EU limit values could not yet be assessed. Chemical equilibrium calculations were performed to explain the empirical results. However, no solid phases controlling Sb release from the ashes could be identified.

  5. Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.

    Science.gov (United States)

    Suehiro, Satoshi; Horita, Keisuke; Yuasa, Masayoshi; Tanaka, Tooru; Fujita, Katsuhiko; Ishiwata, Yoichi; Shimanoe, Kengo; Kida, Tetsuya

    2015-08-17

    The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy. The morphology, crystal phase, and electronic structure were significantly dependent on the chemical composition in the CAS system. Devices were fabricated using particulate films consisting of CAS NCs prepared by spin coating without a high-temperature treatment. The CAS NC-based devices exhibited a diode-like current-voltage characteristic when coupled with an n-type CdS layer. In particular, the CuSbS2 NC devices exhibited photovoltaic responses under simulated sunlight, demonstrating its applicability for use in solution-processed solar cells. PMID:26237216

  6. Direct Band Gap Gallium Antimony Phosphide (GaSbxP(1-x)) Alloys.

    Science.gov (United States)

    Russell, H B; Andriotis, A N; Menon, M; Jasinski, J B; Martinez-Garcia, A; Sunkara, M K

    2016-01-01

    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1-2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP(1-x) alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP(1-x). Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP(1-x) nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields. PMID:26860470

  7. Direct Band Gap Gallium Antimony Phosphide (GaSbxP1-x) Alloys

    Science.gov (United States)

    Russell, H. B.; Andriotis, A. N.; Menon, M.; Jasinski, J. B.; Martinez-Garcia, A.; Sunkara, M. K.

    2016-02-01

    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1-2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP1-x alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP1-x. Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP1-x nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields.

  8. Adsorption behavior of antimony(III) oxyanions on magnetite surface in aqueous organic acid environment

    Science.gov (United States)

    Mittal, Vinit K.; Bera, Santanu; Narasimhan, S. V.; Velmurugan, S.

    2013-02-01

    Antimony(III) adsorption is observed on magnetite (Fe3O4) surface under acidic and reducing condition through surface hydroxyl (SOH) groups bonding on Fe3O4 surface. Desorption of adsorbed Sb(III) is observed from Fe3O4 surface along with iron release in organic acid at 85 °C after 5 h of experiment. Tartaric acid (TA) shows minimum Sb(III) adsorption on Fe3O4 among the organic acid studied. The reason is TA having two sets of adjacent functional groups viz. Odbnd Csbnd OH and Csbnd OH which are responsible for the formation of five-membered bidendate chelate with Sb(III). Other oxyanions, cations or complexing agents along with TA influences the Sb(III) adsorption on Fe3O4. The surface of magnetite is modified by the addition of fatty acids viz. Lauric acid, benzoic acid to bind the Ssbnd OH groups present on the surface. This results in delaying the process of adsorption without changing the quantity of saturation adsorption of Sb(III) on Fe3O4 surface.

  9. Large anharmonic effect and thermal expansion anisotropy of metal chalcogenides: The case of antimony sulfide

    Science.gov (United States)

    Gan, Chee Kwan; Soh, Jian Rui; Liu, Yun

    2015-12-01

    We derive a compact matrix expression for the linear thermal expansion coefficients (TECs) for a general orthorhombic system which relates elastic properties and integrated quantities based on deformation and mode dependent Grüneisen parameters and mode dependent heat capacities. The density of Grüneisen parameters Γ (ν ) as a function of frequency ν , weighted by the number of phonon modes, is introduced and found to be illuminating in interpreting the TEC results. Using density functional perturbation theory and Grüneisen formalism for thermal expansion, we illustrate the general usefulness of this method by calculating the linear and volumetric TECs of a low-symmetry orthorhombic compound antimony sulfide (Sb2S3 ), which belongs to a large class of technologically and fundamentally important materials. Even though negative Grüneisen parameters are found for deformations in all three crystal directions, the Γ (ν ) data rule out the occurrences of negative TECs at all temperatures. Sb2S3 exhibits a large thermal expansion anisotropy where the TEC in the b direction can reach as high as 13 ×10-6 K-1 at high temperatures, about two and seven times larger than the TECs in the c and a direction, respectively. Our work suggests a general and practical first-principles approach to calculate the thermal properties of other complicated low-symmetry systems.

  10. Controlled n-doping in chemical vapour deposition grown graphene by antimony

    International Nuclear Information System (INIS)

    We have studied the effects of antimony (Sb) doping on graphene grown by chemical vapour deposition without any significant change in its electrical properties. By increasing the metal thickness from 1 to 5 nm, we found a shift in the wave numbers of Raman G and two-dimensional (2D) peaks consistent with n-doping and a change in the Fermi level of the graphene into the conduction band. The relative intensity of the D peak to the G peak did not show a significant change and that of the 2D peak to the G peak remained at a large enough number as a function of metal thickness, implying little degradation by the metal dopants. Transport measurements also confirm the n-doping of graphene through a shift of Dirac point in the transfer characteristics and the quality preservation with little changes in mobility. We also report on the formation of a p–n junction by metal doping on selected areas of the graphene and their electrical properties with transfer characteristics and Hall measurements. (paper)

  11. Evaluation of atmospheric inputs as possible sources of antimony in pregnant women from urban areas.

    Science.gov (United States)

    Fort, Marta; Grimalt, Joan O; Querol, Xavier; Casas, Maribel; Sunyer, Jordi

    2016-02-15

    Antimony and copper are common components of brake linings. The occurrence of these two metals in urban atmospheric aerosols has been related to vehicular use. Urine samples (n=466) taken during the 32nd week of pregnancy were analyzed for Sb and Cu in pregnant women from an urban area (Sabadell, Catalonia, Spain). The geometric mean levels were 0.28 and 13 μg/g creatinine, respectively. Positive significant associations between urine concentrations of Sb and seasonality, intensity of physical exercise, working activities and traffic intensity at their home streets were observed. Cu showed the same trends but without statistical significance. In both cases, the estimated dietary ingestion of these two metals was larger than the inhalation inputs but the difference was much higher for Cu than for Sb. While Sb has no dietary role, Cu is an essential element which is also incorporated into humans through diet. The results suggest that inhalation of atmospheric particles may also constitute a source of Sb in pregnant women and general population of urban areas. PMID:26657384

  12. Partitioning geochemistry of arsenic and antimony, El Tatio Geyser Field, Chile

    Energy Technology Data Exchange (ETDEWEB)

    Landrum, J.T. [Department of Geological Sciences, The University of Texas, Austin, TX 78759 (United States); Bennett, P.C., E-mail: pbennett@mail.utexas.edu [Department of Geological Sciences, University of Texas, Austin, TX 78759 (United States); Engel, A.S. [Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803 (United States); Alsina, M.A.; Pasten, P.A. [Departamento de Ingenieria Hidraulica y Ambiental, Pontificia Universidad Catolica de Chile, Santiago (Chile); Milliken, K. [Department of Geological Sciences, University of Texas, Austin, TX 78759 (United States)

    2009-04-15

    The abundance of As and Sb in aqueous, mineral and biological reservoirs was examined at El Tatio Geyser Field, a unique hydrothermal basin located in the Atacama Desert region of Chile. Here the concentration of total As and Sb in hydrothermal springs and discharge streams are the highest reported for a natural surface water, and the geyser basin represents a significant source of toxic elements for downstream users across Region II, Chile. The geyser waters are near neutral Na:Cl type with {approx}0.45 and 0.021 mmol L{sup -1} total As and Sb, respectively, primarily in the reduced (III) redox state at the discharge with progressive oxidation downstream. The ferric oxyhydroxides associated with the microbial mats and some mineral precipitates accumulate substantial As that was identified as arsenate by XAS analysis (>10 wt% in the mats). This As is easily mobilized by anion exchange or mild dissolution of the HFO, and the ubiquitous microbial mats represent a significant reservoir of As in this system. Antimony, in contrast, is not associated with the mineral ferric oxides or the biomats, but is substantially enriched in the silica matrix of the geyserite precipitates, up to 2 wt% as Sb{sub 2}O{sub 3}. Understanding the mobility and partitioning behavior of these metalloids is critical for understanding their eventual impact on regional water management.

  13. Spark Plasma Sintering and Densification Mechanisms of Antimony-Doped Tin Oxide Nanoceramics

    Directory of Open Access Journals (Sweden)

    Junyan Wu

    2013-01-01

    Full Text Available Densification of antimony-doped tin oxide (ATO ceramics without sintering aids is very difficult, due to the volatilization of SnO2, formation of deleterious phases above 1000°C, and poor sintering ability of ATO particles. In this paper, monodispersed ATO nanoparticles were synthesized via sol-gel method, and then ATO nanoceramics with high density were prepared by spark plasma sintering (SPS technology using the as-synthesized ATO nanoparticles without the addition of sintering aids. The effect of Sb doping content on the densification was investigated, and the densification mechanisms were explored. The results suggest that ATO nanoparticles derived from sol-gel method show good crystallinity with a crystal size of 5–20 nm and Sb is incorporated into the SnO2 crystal structure. When the SPS sintering temperature is 1000°C and the Sb doping content is 5 at.%, the density of ATO nanoceramics reaches a maximum value of 99.2%. Densification mechanisms are explored in detail.

  14. A new method for antimony speciation in plant biomass and nutrient media using anion exchange cartridge.

    Science.gov (United States)

    Tisarum, Rujira; Ren, Jing-Hua; Dong, Xiaoling; Chen, Hao; Lessl, Jason T; Ma, Lena Q

    2015-11-01

    A selective separation method based on anion exchange cartridge was developed to determine antimony (Sb) speciation in biological matrices by graphite furnace atomic absorption spectrophotometry (GFAAS). The selectivity of the cartridge towards antimonite [Sb(III)] and antimonate [Sb(V)] reversed in the presence of deionized (DI) water and 2mM citric acid. While Sb(V) was retained by the cartridge in DI water, Sb(III) was retained in citric acid media. At pH 6, Sb(III) and Sb(V) formed Sb(III)- and Sb(V)-citrate complexes, but the cartridge had higher affinity towards the Sb(III)-citrate complex. Separation of Sb(III) was tested at various concentrations in fresh and spent growth media and plant tissues. Our results showed that cartridge-based Sb speciation was successful in plant tissues, which was confirmed by HPLC-ICP-MS. The cartridge retained Sb(III) and showed 92-104% Sb(V) recovery from arsenic hyperaccumulator Pteris vittata roots treated with Sb(III) and Sb(V). The cartridge procedure is an effective alternative for Sb speciation, offering low cost, reproducible results, and simple Sb analysis using GFAAS.

  15. Antimony release from contaminated mine soils and its migration in four typical soils using lysimeter experiments.

    Science.gov (United States)

    Shangguan, Yu-Xian; Zhao, Long; Qin, Yusheng; Hou, Hong; Zhang, Naiming

    2016-11-01

    Antimony (Sb) can pose great risks to the environment in mining and smelting areas. The migration of Sb in contaminated mine soil was studied using lysimeter experiments. The exchangeable concentration of soil Sb decreased with artificial leaching. The concentrations of Sb retained in the subsoil layers (5-25cm deep) were the highest for Isohumosol and Ferrosol and the lowest for Sandy soil. The Sb concentrations in soil solutions decreased with soil depth, and were adequately simulated using a logarithmic function. The Sb migration pattern in Sandy soil was markedly different from the patterns in the other soils which suggested that Sb may be transported in soil colloids. Environmental factors such as water content, soil temperature, and oxidation-reduction potential of the soil had different effects on Sb migration in Sandy soil and Primosol. The high Fe and Mn contents in Ferrosol and Isohumosol significantly decreased the mobility of Sb in these soils. The Na and Sb concentrations in soils used in the experiments positively correlated with each other (Psoil solutions, the Sb chemical fraction patterns, and the Sb/Na ratios decreased in the order Sandy soil>Primosol>Isohumosol>Ferrosol, and we concluded that the Sb mobility in the soils also decreased in that order. PMID:27395817

  16. Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.

    Science.gov (United States)

    Suehiro, Satoshi; Horita, Keisuke; Yuasa, Masayoshi; Tanaka, Tooru; Fujita, Katsuhiko; Ishiwata, Yoichi; Shimanoe, Kengo; Kida, Tetsuya

    2015-08-17

    The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy. The morphology, crystal phase, and electronic structure were significantly dependent on the chemical composition in the CAS system. Devices were fabricated using particulate films consisting of CAS NCs prepared by spin coating without a high-temperature treatment. The CAS NC-based devices exhibited a diode-like current-voltage characteristic when coupled with an n-type CdS layer. In particular, the CuSbS2 NC devices exhibited photovoltaic responses under simulated sunlight, demonstrating its applicability for use in solution-processed solar cells.

  17. Assessment and distribution of antimony in soils around three coal mines, Anhui, China

    Science.gov (United States)

    Qi, C.; Liu, Gaisheng; Kang, Y.; Lam, P.K.S.; Chou, C.

    2011-01-01

    Thirty-three soil samples were collected from the Luling, Liuer, and Zhangji coal mines in the Huaibei and Huainan areas of Anhui Province, China. The samples were analyzed for antimony (Sb) by inductively coupled plasmaoptical emission spectrometry (ICP-OES) method. The average Sb content in the 33 samples was 4 mg kg-1, which is lower than in coals from this region (6.2 mg kg-1). More than 75% of the soils sampled showed a significant degree of Sb pollution (enrichment factors [EFs] 5-20). The soils collected near the gob pile and coal preparation plant were higher in Sb content than those collected from residential areas near the mines. The gob pile and tailings from the preparation plant were high in mineral matter content and high in Sb. They are the sources of Sb pollution in surface soils in the vicinity of coal mines. The spatial dispersion of Sb in surface soil in the mine region shows that Sb pollution could reach out as far as 350 m into the local environment conditions. Crops in rice paddies may adsorb some Sb and reduce the Sb content in soils from paddyfields. Vertical distribution of Sb in two soil profiles indicates that Sb is normally relatively immobile in soils. ?? 2011 Air & Waste Management Association.

  18. DFT Study on the Carrier Concentration and Temperature-Dependent Thermoelectric Properties of Antimony Selenide

    Directory of Open Access Journals (Sweden)

    Aditya Jayaraman

    2016-01-01

    Full Text Available We present the thermoelectric properties of Antimony Selenide (Sb2Se3 obtained using first principles calculations. We investigated the electronic band structure using the FP-LAPW method within the sphere of the density functional theory. Thermoelectric properties were calculated using BoltzTrap code using the constant relaxation time (τ approximation at three different temperatures 300 K, 600 K, and 800 K. Seebeck coefficient (S was found to decrease with increasing temperature, electrical conductivity (σ/τ was almost constant in the entire temperature range, and electronic thermal conductivity (κ/τ increased with increasing temperature. With increase in temperature S decreased from 1870 μV/K (at 300 K to 719 μV/K (at 800 K, electronic thermal conductivity increased from 1.56 × 1015 W/m K s (at 300 K to 3.92 × 1015 W/m K s (at 800 K, and electrical conductivity decreased from 22 × 1019/Ω m s (at 300 K to 20 × 1019/Ω m s (at 800 K. The thermoelectric properties were also calculated for different hole concentrations and the optimum concentration for a good thermoelectric performance over a large range of temperatures (from 300 K to 1000 K was found for hole concentration around 1019 cm−3.

  19. Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China.

    Science.gov (United States)

    Fu, Zhiyou; Wu, Fengchang; Mo, Changli; Deng, Qiujing; Meng, Wei; Giesy, John P

    2016-01-01

    Although similar geochemical behaviors of arsenic (As) and antimony (Sb) in the environment has been assumed and widely reported, growing evidence suggests the two elements cannot, under some conditions, be assumed to behave similarly. In this four-year study (samples collected in each year), comparative investigation of the biogeochemistry of As and Sb in water/fish, soil/vegetable, tailings/plant samples were carried out at the world's largest active Sb mine area (Xikuangshan, China). Depending on duration the tailings had been stacked, significant differences in spatial distributions between As and Sb were found, and these were associated with change in pH over time. Bio-accumulation factors (BAFs) of As were approximately 10-fold greater than those of Sb in fish/water, plant/tailing, and vegetable/soil systems. Sb had higher BAF in non-fatty tissues such as gills of fishes and shells of crabs. BAFs of Sb in vegetable/soil exhibited insignificantly, but different from As, positive correlation with pH in soil. PMID:26356182

  20. Validation of methodology and uncertainty assessment of antimony determination in environmental materials using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Antimony is an element found in low concentrations in the environment. However, its determination has attracted great interest because of the knowledge of its toxicity and increasing application. Neutron activation analysis (NAA) is a suitable method for the determination of several elements in different types, but in case of Sb, the analysis presents some difficulties due to spectral interferences. The objective of this research was to validate the method of NAA and uncertainty assessment for Sb determination in environmental samples. The experimental procedure consisted of irradiating twelve certified reference samples of different kind of matrices. The samples were irradiated in the nuclear research reactor IEA R1 IPEN/CNEN/SP followed by measurement of induced radioactivity, using a hyperpure germanium detector coupled to a gamma ray spectrometry. The radioisotopes 122Sb and 124Sb were measured and the Sb concentrations with their respective uncertainties were obtained by the comparative method. Relative errors and values of Z scores were calculated to evaluate the accuracy of the results for Sb determination in certified reference materials. The evaluation of the components that contribute to uncertainty measurement of the Sb concentration, showed that the major uncertainty contribution is due to statistical counting. The results also indicated that the uncertainty value of the combined standard uncertainty depends on the radioisotope measured and the decay time used for counting. (author)

  1. Antimony-Doped Tin Oxide Thin Films Grown by Home Made Spray Pyrolysis Technique

    Science.gov (United States)

    Yusuf, Gbadebo; Babatola, Babatunde Keji; Ishola, Abdulahi Dimeji; Awodugba, Ayodeji O.; Solar cell Collaboration

    2016-03-01

    Transparent conducting antimony-doped tin oxide (ATO) films have been deposited on glass substrates by home made spray pyrolysis technique. The structural, electrical and optical properties of the ATO films have been investigated as a function of Sb-doping level and annealing temperature. The optimum target composition for high conductivity and low resistivity was found to be 20 wt. % SnSb2 + 90 wt. ATO. Under optimized deposition conditions of 450oC annealing temperature, electrical resistivity of 5.2×10-4 Ω -cm, sheet resistance of 16.4 Ω/sq, average optical transmittance of 86% in the visible range, and average optical band-gap of 3.34eV were obtained. The film deposited at lower annealing temperature shows a relatively rough, loosely bound slightly porous surface morphology while the film deposited at higher annealing temperature shows uniformly distributed grains of greater size. Keywords: Annealing, Doping, Homemade spray pyrolysis, Tin oxide, Resistivity

  2. Gold and Antimony Mixed Flotation on a Micrite Gold Antimony ore in Guizhou%贵州某泥晶灰岩型含锑金矿金锑混浮试验

    Institute of Scientific and Technical Information of China (English)

    石贵明; 周意超

    2015-01-01

    贵州某泥晶灰岩型含锑金矿石为块状构造,金属矿物主要为黄铁矿、针铁矿,含量小于1%,非金属矿物以方解石为主,另有少量石英、有机质等;金含量为6.04 g/t,显微镜下未见自然金粒,74.34%的金赋存在硫化矿中,游离金仅占总金的7.14%;硅酸盐、碳酸盐包裹金分别占11.96%和6.56%;锑主要以辉锑矿的形式存在。为高效、低成本回收矿石中的金、锑,对混合浮选工艺进行了试验研究。结果表明,在一段磨矿细度为-0.074 mm占71%的情况下1粗2扫混浮、尾矿再磨细度为-0.074 mm占92.7%的情况下再1粗2扫混浮、两粗精矿合并后3次精选、中矿顺序返回流程处理,最终获得了金品位为47.60 g/t、锑品位为9.81%、金回收率为76.68%、锑回收率为85.22%的金锑混合精矿,金锑混浮效果较理想。尾矿中金的回收及金锑分离工艺研究将另文介绍。%The micrite type antimony-containing gold ore in Guizhou is in blocky construction. Its metallic minerals are mainly pyrite and goethite,with content of less than 1%. Non-metallic minerals are calcite,and few of quartz,organic matter, etc. It contains gold of 6. 04 g/t,and natural gold grains were not seen in microscope,74. 34% of the gold occurred in sulfide ore,free gold accounted for only 7. 14%,wrapped gold in silicate and carbonate accounted for 11. 96% and 6. 56% respective-ly. Antimony mainly existed in the form of stibnite. Bulk flotation process was studied to make high efficient recovery of gold and antimony at low costs. The results indicated that,at the grinding fineness of 71% passing 0. 074 mm,through one roughing and two scavenging bulk flotation,one roughing and two scavenging bulk flotation after regrinding the tailings to 92. 7% passing 0. 074 mm,three cleaning flotation for the two mixed rough concentrate,and then middles back to the flow-sheet in turn,rough gold-antimony concentrate with gold grade of 47. 60 g

  3. Quantitative HPLC-ICP-MS analysis of antimony redox speciation in complex sample matrices: new insights into the Sb-chemistry causing poor chromatographic recoveries

    DEFF Research Database (Denmark)

    Hansen, Claus; Schmidt, Bjørn; Larsen, Erik Huusfeldt;

    2011-01-01

    In solution antimony exists either in the pentavalent or trivalent oxidation state. As Sb(III) is more toxic than Sb(V), it is important to be able to perform a quantitative speciation analysis of Sb’s oxidation state. The most commonly applied chromatographic methods used for this redox speciation...... analysis do, however, often show a low chromatographic Sb recovery when samples of environmental or biological origin are analysed. In this study we explored basal chemistry of antimony and found that formation of macromolecules, presumably oligomeric and polymeric Sb(V) species, is the primary cause...... of low chromatographic recoveries. A combination of HPLC-ICP-MS, AFFF-ICP-MS and spinfiltration was applied for analysis of model compounds and biological samples. Quantitative chromatographic Sb redox speciation analysis was possible by acidic hydrolysis of the antimony polymers prior to analysis...

  4. Minerogenetic Mechanism of the Songxi Silver—Antimony Deposit of Northeastern Guangdong—Ore—Controlling Role of Organic Matter

    Institute of Scientific and Technical Information of China (English)

    胡凯; 肖振宇; 等

    1999-01-01

    Organic geochemistry and comparisons of characteristics of the organic matter in wall rocks of the ore-controlling strata and ores of the Lower Jurassic Songling black shale formation and the related Songxi silver-antimony deposit of northeastern Guangdong have been studied in this paper.The results show that the Lower Jurassic Songling shale formation is a suite of biologic-rich and organic-rich ore-bearing marine sedimentary rocks.Micro-components of the organic matter in the Songling black shale formation consists primarily of algae,amorphous marine kerogen,solid bitument,and pyrobitument.The thermal evolution of organic matter is at the over-maturity stage.There is a general positive correlation between total organic carbon(CO)and metallogenetic elements such as Ag and Sb in the black shale formation.Organic matter in the host rocks in the Songxi ore deposit played a role in controlling the silver-antimony depositing environment during the forming process of the black shale ore-bearing formation.In the absence of vitrinite,the relative level of thermal maturity calculated by solid bitument reflectance indicates that the ore-forming temperatute of the Songxi silver-antimony deposit was about 150-170℃,which was considered as an epithermally reworked ore deposit.The roles of organic matter in the formation of the Sonxi ore deposit are a primitive accumulation of the metallogenetic elements(Ag,Sb) in the sea-water cycle system for ore source and a concentration of metals by ion exchange of chelation as well as reductionn of the oxidzed metals.

  5. Clinical and Parasitological Features of Patients with American Cutaneous Leishmaniasis that Did Not Respond to Treatment with Meglumine Antimoniate

    Science.gov (United States)

    Robayo, Marta L.; Lopez, Myriam C.; Daza, Carlos D.; Bedoya, Angela; Mariño, Maria L.; Saavedra, Carlos H.

    2016-01-01

    Background American cutaneous leishmaniasis (ACL) is a complicated disease producing about 67.000 new cases per year. The severity of the disease depends on the parasite species; however in the vast majority of cases species confirmation is not feasible. WHO suggestion for ACL produced by Leishmania braziliensis, as first line treatment, are pentavalent antimonial derivatives (Glucantime or Sodium Stibogluconate) under systemic administration. According to different authors, pentavalent antimonial derivatives as treatment for ACL show a healing rate of about 75% and reasons for treatment failure are not well known. Methods In order to characterise the clinical and parasitological features of patients with ACL that did not respond to Glucantime, a cross-sectional observational study was carried out in a cohort of 43 patients recruited in three of the Colombian Army National reference centers for complicated ACL. Clinical and paraclinical examination, and epidemiological and geographic information were recorded for each patient. Parasitological, histopathological and PCR infection confirmation were performed. Glucantime IC50 and in vitro infectivity for the isolated parasites were estimated. Results Predominant infecting Leishmania species corresponds to L. braziliensis (95.4%) and 35% of the parasites isolated showed a significant decrease in in vitro Glucanatime susceptibility associated with previous administration of the medicament. Lesion size and in vitro infectivity of the parasite are negatively correlated with decline in Glucantime susceptibility (Spearman: r = (-)0,548 and r = (-)0,726; respectively). Conclusion A negative correlation between lesion size and parasite resistance is documented. L. braziliensis was found as the main parasite species associated to lesion of patients that underwent treatment failure or relapse. The indication of a second round of treatment in therapeutic failure of ACL, produced by L. braziliensis, with pentavalent antimonial

  6. Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Jamal, Aslam [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Rahman, Mohammed M. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Khan, Sher Bahadar, E-mail: drkhanmarwat@gmail.com [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Faisal, Mohd. [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Akhtar, Kalsoom [Division of Nano Sciences and Department of Chemistry, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Rub, Malik Abdul; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2012-11-15

    Graphical abstract: A dichloromethane chemical sensor using cobalt antimony oxides has been fabricated. This sensor showed high sensitivity and will be a useful candidate for environmental and health monitoring. Also it showed high photo-catalytic activity and can be a good candidate as a photo-catalyst for organic hazardous materials. Highlights: Black-Right-Pointing-Pointer Reusable chemical sensor. Black-Right-Pointing-Pointer Green environmental and eco-friendly chemi-sensor. Black-Right-Pointing-Pointer High sensitivity. Black-Right-Pointing-Pointer Good candidate for environmental and health monitoring. - Abstract: Cobalt doped antimony oxide nano-particles (NPs) have been synthesized by hydrothermal process and structurally characterized by utilizing X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transforms infrared spectrophotometer (FT-IR) which revealed that the synthesized cobalt antimony oxides (CoSb{sub 2}O{sub 6}) are well crystalline nano-particles with an average particles size of 26 {+-} 10 nm. UV-visible absorption spectra ({approx}286 nm) were used to investigate the optical properties of CoSb{sub 2}O{sub 6}. The chemical sensing of CoSb{sub 2}O{sub 6} NPs have been primarily investigated by I-V technique, where dichloromethane is used as a model compound. The analytical performance of dichloromethane chemical sensor exhibits high sensitivity (1.2432 {mu}A cm{sup -2} mM{sup -1}) and a large linear dynamic range (1.0 {mu}M-0.01 M) in short response time (10 s). The photo catalytic activity of the synthesized CoSb{sub 2}O{sub 6} nano-particles was evaluated by degradation of acridine orange (AO), which degraded 58.37% in 200 min. These results indicate that CoSb{sub 2}O{sub 6} nano-particles can play an excellent research impact in the environmental field.

  7. Comparative Efficacies of Two Antimony Regimens To Treat Leishmania braziliensis-Induced Cutaneous Leishmaniasis in Rhesus Macaques (Macaca mulatta)▿

    Science.gov (United States)

    Grimaldi, G.; Porrozzi, R.; Friedrich, K.; Teva, A.; Marchevsky, R. S.; Vieira, F.; Miekeley, N.; Paumgartten, F. J. R.

    2010-01-01

    This study compared the efficacies of two N-methylglucomine antimoniate (MA) dose regimens for treating macaques with Leishmania braziliensis-induced chronic skin disease. Whereas all animals treated with the full dose (20 mg MA/kg/day) were cured, 50% of the monkeys receiving a low-dose regimen (5 mg MA/kg/day) relapsed. The antimony concentrations in macaque plasma and tissue samples were greater in the full-dose group than in that receiving a subtherapeutic MA regimen. Our data also suggest the presence of drug-induced hepatic pathology. PMID:19822700

  8. Influence of antimony on the mechanical properties and gas content of alloy AlSi6Cu4

    OpenAIRE

    D. Medlen; D. Bolibruchova

    2011-01-01

    Aluminium alloys based on Al-Si are used in automotive and aerospace industries. AlSi6Cu4 alloy is used the complicated castings, whichmust comply high strength requirements. Strength characteristics can also be affected by the modifiers: Na, Sr, Sb. In the li terature ismentioned, that AlSi6Cu4 modified by sodium and strontium has negative effect - increases of the gas absorption. Modification of AlSi6Cu4 alloy by antimony, is still not mentioned in the literature. The article gives the effe...

  9. The influence of remelting on the properties of AlSi6Cu4 alloy modified by antimony

    Directory of Open Access Journals (Sweden)

    D. Medlen

    2012-01-01

    Full Text Available The paper deals with the problem of multiple remelting influence on AlSi6Cu4 alloy modified by antimony on chosen mechanical characteristics, microstructure and gas content. This foundry alloy is used mostly in automotive industry. Foundry Aluminum-Silicon alloys are also used in number of industrial weight sensitive applications because of their low weight and very good castability and good mechanical properties. Modifiers are usually added to molten aluminum-silicon alloys to refine the eutectic phase particle shape and improve the mechanical properties of the final cast products and Al-Si alloys cast properties.

  10. Flow analysis-hydride generation-gas phase derivative molecular absorption spectrophotometric determination of antimony in antileishmanial drugs

    Directory of Open Access Journals (Sweden)

    Máximo Gallignani

    2009-01-01

    Full Text Available In the present work, the development of a method based on the coupling of flow analysis (FA, hydride generation (HG, and derivative molecular absorption spectrophotometry (D-EAM in gas phase (GP, is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm of the absorption spectrum (190 - 300 nm is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.

  11. Effect of external energy on atomic, crystalline and powder characteristics of antimony and bismuth powders

    Indian Academy of Sciences (India)

    Vikram V Dabhade; Rama Mohan R Tallapragada; Mahendra Kumar Trivedi

    2009-10-01

    Next to atoms and molecules the powders are the smallest state of matter available in high purities and large quantities. The effect of any external energy on the shape, morphology and structure can thus be studied with relative ease. The present investigation deals with the effect of a non-contact external energy on the powders of antimony and bismuth. The characteristics of powders treated by external energy are compared with the as received powders (control). The average particle sizes, 50 and 99, the sizes below which 99% of the particles are present showed significant increase and decrease indicating that the energy had caused deformation and fracture as if the powders have been subjected to high energy milling. To be able to understand the reasons for these changes the powders are characterized by techniques such as X-ray diffraction (XRD), surface area determination (BET), thermal analytical techniques such as DTA–DTG, DSC–TGA and SDTA and scanning electron microscopy (SEM). The treated powder samples exhibited remarkable changes in the powder characteristics at all structural levels starting from polycrystalline particles, through single crystal to atoms. The external energy had changed the lattice parameters of the unit cell which in turn changed the crystallite size and density. The lattice parameters are then used to compute the weight and effective nuclear charge of the atom which showed significant variation. It is speculated that the external energy is acting on the nucleus through some reversible weak interaction of larger cross section causing changes in the proton to neutron ratios. Thus the effect is felt by all the atoms, and hence the unit cell, single crystal grain and grain boundaries. The stresses generated in turn may have caused deformation or fracture of the weak interfaces such as the crystallite and grain boundaries.

  12. Contamination of bottled waters with antimony leaching from polyethylene terephthalate (PET) increases upon storage.

    Science.gov (United States)

    Shotyk, William; Krachler, Michael

    2007-03-01

    Antimony concentrations were determined in 132 brands of bottled water from 28 countries. Two of the brands were at or above the maximum allowable Sb concentration for drinking water in Japan (2 microg/L). Elevated concentrations of Sb in bottled waters are due mainly to the Sb2O3 used as the catalyst in the manufacture of polyethylene terephthalate (PET(E)). The leaching of Sb from PET(E) bottles shows variable reactivity. In 14 brands of bottled water from Canada, Sb concentrations increased on average 19% during 6 months storage at room temperature, but 48 brands of water from 11 European countries increased on average 90% under identical conditions. A mineral water from France in PET(E), purchased in Germany, yielded 725 ng/L when first tested, but 1510 ng/L when it was stored for 6 months at room temperature; the same brand of water, purchased in Hong Kong, yielded 1990 ng/L Sb. Pristine groundwater containing 1.7+/-0.4 ng/L Sb (n = 6) yielded 26.6+/-2.3 ng/L Sb (n = 3) after storage in PET(E) bottles from Canada for 6 months versus 281+/-38 ng/L Sb (n = 3) in PET(E) bottles from Germany. Tap water bottled commercially in PET(E) in December 2005 contained 450+/-56 ng/L Sb (n = 3) versus 70.3+/-0.3 ng/L Sb (n = 3) when sampled from a household faucet in the same village (Bammental, Germany), and 25.7+/-1.5 ng/L Sb (n = 3) from a local artesian flow. PMID:17396641

  13. Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings.

    Science.gov (United States)

    Cai, Fei; Ren, Jinghua; Tao, Shu; Wang, Xilong

    2016-02-01

    Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10-26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration.

  14. Association of drinking-water source and use characteristics with urinary antimony concentrations.

    Science.gov (United States)

    Makris, Konstantinos C; Andra, Syam S; Herrick, Lisa; Christophi, Costas A; Snyder, Shane A; Hauser, Russ

    2013-03-01

    Environmental factors, such as storage time, frequency of bottle reuse and temperature, have been shown to facilitate antimony (Sb) leaching from water- and food-packaging materials. The globally escalating consumption of water packaged in Sb-containing bottles, such as that of polyethylene terephthalate (PET), could increase human daily Sb doses. This study set out to investigate the relationship between drinking-water source, use characteristics, and urinary Sb concentrations (U-Sb) accompanied with survey responses of a healthy (n=35) Cypriot participant pool. One spot urine sample was collected during administration of questionnaire, while a second spot urine sample was collected from the same individual about 7 days later. Urinary and water Sb concentrations were measured with an inductively coupled plasma mass spectrometer. Survey responses showed that bottled water summed over various volumes and plastic types, such as polycarbonate and PET contributed to an average 61% of daily water consumption. Water sources such as tap, mobile stations (explained in a following section), and well water contributed to 24%, 14%, and 2% of an individual's daily water consumption pattern, respectively. Average daily potable water use of both bottled and tap water by individuals consisted of 65% drinking-water, while the remaining 35% was water used for preparing cold and hot beverages, such as, tea, coffee, and juices. A significant (P=0.02) association between per capita water consumption from PET bottles and urinary creatinine-unadjusted concentrations was observed, but this relationship did not remain after inclusion of covariates in a multivariate regression model. In the creatinine-adjusted regression model, only gender (female) was a significant (P<0.01) predictor of U-Sb, after adjusting for several covariates. It is proposed that consumption data collection on various water uses and sources among individuals could perhaps decrease the uncertainty associated with

  15. Effects of Residual Elements Arsenic, Antimony, and Tin on Surface Hot Shortness

    Science.gov (United States)

    Yin, Lan; Sridhar, Seetharaman

    2011-10-01

    Scrap-based electric arc furnace (EAF) steelmaking is limited by a surface cracking problem in the recycled steel products, which is known as surface hot shortness. This problem originates from the excessive amount of copper (Cu) in the steel scrap, which enriches during the oxidation of iron (Fe) and consequently melts and penetrates into the austenite grain boundaries. In this article, the effects of arsenic (As), antimony (Sb), and tin (Sn) on surface hot shortness were investigated. A series of Fe-0.3 wt pct Cu- x wt pct (As, Sb, or Sn) alloys with x content ranging from 0.06 to 0.10 wt pct was oxidized in air at 1423 K (1150 °C) for 60, 300, and 600 seconds inside the chamber of a thermogravimety analyzer (TGA) where heat is supplied through infrared radiation. Scanning electron microscopy (SEM) investigations show that (1) the presence of Sb and Sn results in severe grain boundary cracking, whereas the presence of As does not, (2) open cracks with Fe oxides were found beneath the oxide/metal interface in the Sb and Sn alloys, and (3) the oxide/metal interfaces for all As, Sb, and Sn alloys are planar. Penetration experiments of pure Cu and Cu-30 wt pct Sn liquid were also conducted in the chamber of a hot-stage confocal laser scanning microscopy (CLSM) in nonoxidizing atmosphere: (1) on the Fe-35 wt pct manganese (Mn) alloys to study the correlation between cracking and grain boundary characters, and (2) on the pure Fe substrates to exclude the bulk segregation effects of Sn on grain boundary cracking. It was found that grain boundary cracking rarely took place on low-energy grain boundaries. The results also suggest that the bulk segregation of Sn in the substrate is not necessary to promote significant grain boundary cracking, and as long as the liquid phase contains Sn, it will be highly embrittling.

  16. Green and red fluorescence upconversion in neodymium-doped low phonon antimony glasses

    International Nuclear Information System (INIS)

    A new K2O-B2O3-Sb2O3 (KBS) glass system having low phonon energy (about 600 cm-1) doped with Nd3+ ions has been developed. Infrared reflection spectroscopic (IRRS) studies have been employed to establish its low phonon energy. Ultraviolet-visible-near infrared (UV-vis-NIR) absorption and photoluminescence upconversion properties with special emphasis on the spectrochemistry of the 15K2O-15B2O3-70Sb2O3 (mol%) glass have been studied doping with different concentrations (0.1-1.0 wt%) of Nd2O3. UV-vis-NIR absorption band positions have been justified with quantitative calculation of nephelauxetic parameter and covalent bonding characteristics of the host. NIR to visible upconversion has been investigated by exciting at 805 nm at room temperature. Two upconverted bands originating from the 4G7/2 → 4I9/2 and 4G7/2 → 4I13/2 transitions are found to be centered at 540 nm (green, medium) and 650 nm (red, strong), respectively. These bands have been explained from the evaluation of the absorption and excitation spectra. The upconversion processes have been explained by the excited state absorption (ESA), energy transfer (ET), cooperative energy transfer (CET) and cross-relaxation (CR) mechanisms involving population of the metastable (storage) energy level (4G7/2) by effects of multiphonon deexcitation and thermal population. It is evident from the IRRS study that the upconversion phenomena are expedited by the low multiphonon relaxation rate in antimony glasses owing to their low phonon energy (602 cm-1, the main and highest intensity Sb-O-Sb stretching band) which is very close to that of fluoride glasses (500-600 cm-1).

  17. EPR, optical absorption and luminescence studies of Cr3+-doped antimony phosphate glasses

    Science.gov (United States)

    De Vicente, F. S.; Santos, F. A.; Simões, B. S.; Dias, S. T.; Siu Li, M.

    2014-12-01

    Antimony phosphate glasses (SbPO) doped with 3 and 6 mol% of Cr3+ were studied by Electron Paramagnetic Resonance (EPR), UV-VIS optical absorption and luminescence spectroscopy. The EPR spectra of Cr3+-doped glasses showed two principal resonance signals with effective g values at g = 5.11 and g = 1.97. UV-VIS optical absorption spectra of SbPO:Cr3+ presented four characteristics bands at 457, 641, 675, and 705 nm related to the transitions from 4A2(F) to 4T1(F), 4T2(F), 2T1(G), and 2E(G), respectively, of Cr3+ ions in octahedral symmetry. Optical absorption spectra of SbPO:Cr3+ allowed evaluating the crystalline field Dq, Racah parameters (B and C) and Dq/B. The calculated value of Dq/B = 2.48 indicates that Cr3+ ions in SbPO glasses are in strong ligand field sites. The optical band gap for SbPO and SbPO:Cr3+ were evaluated from the UV optical absorption edges. Luminescence measurements of pure and Cr3+-doped glasses excited with 350 nm revealed weak emission bands from 400 to 600 nm due to the 3P1 → 1S0 electronic transition from Sb3+ ions. Cr3+-doped glasses excited with 415 nm presented Cr3+ characteristic luminescence spectra composed by two broad bands, one band centered at 645 nm (2E → 4A2) and another intense band from 700 to 850 nm (4T2 → 4A2).

  18. Metagenomic approach reveals variation of microbes with arsenic and antimony metabolism genes from highly contaminated soil.

    Directory of Open Access Journals (Sweden)

    Jinming Luo

    Full Text Available Microbes have great potential for arsenic (As and antimony (Sb bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb in a high As (range from 34.11 to 821.23 mg kg-1 and Sb (range from 226.67 to 3923.07 mg kg-1 contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3 were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871 and aioA-like (R2 = 0.675 gene abundance and As concentration, and indicated that intracellular As(V reduction and As(III oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment.

  19. Nutritional status in patients with cutaneous leishmaniasis and a study of the effects of zinc supplementation together with antimony treatment

    Directory of Open Access Journals (Sweden)

    Miguel Guzman-Rivero

    2014-11-01

    Full Text Available Background: The role of micronutrient status for the incidence and clinical course of cutaneous leishmaniasis is not much studied. Still zinc supplementation in leishmaniasis has shown some effect on the clinical recovery, but the evidence in humans is limited. Objective: To compare biochemical nutritional status in cutaneous leishmaniasis patients with that in controls and to study the effects of zinc supplementation for 60 days. Design: Twenty-nine patients with cutaneous leishmaniasis were treated with antimony for 20 days. Fourteen of them got 45 mg zinc daily and 15 of them got placebo. Biomarkers of nutritional and inflammatory status and changes in size and characteristics of skin lesions were measured. Results: The level of transferrin receptor was higher in patients than in controls but otherwise no differences in nutritional status were found between patients and controls. No significant effects of zinc supplementation on the clinical recovery were observed as assessed by lesion area reduction and characteristics or on biochemical parameters. Conclusions: It is concluded that nutritional status was essentially unaffected in cutaneous leishmaniasis and that oral zinc supplementation administered together with intramuscular injection of antimony had no additional clinical benefit.

  20. Detection of pathogenic bacteria in skin lesions of patients with chiclero's ulcer: reluctant response to antimonial treatment

    Directory of Open Access Journals (Sweden)

    Isaac-Márquez Angélica Patricia

    2003-01-01

    Full Text Available We investigated the bacterial flora present in skin lesions of patients with chiclero's ulcer from the Yucatan peninsula of Mexico using conventional culture methods (11 patients, and an immunocolorimetric detection of pathogenic Streptococcus pyogenes (15 patients. Prevalence of bacteria isolated by culture methods was 90.9% (10/11. We cultured, from chiclero's ulcers (60%, pathogenic bacterial such as Staphylococcus aureus (20%, S. pyogenes (1.6%, Pseudomonas aeruginosa (1.6%, Morganella morganii (1.6%, and opportunist pathogenic bacteria such as Klebsiella spp. (20.0%, Enterobacter spp. (20%, and Enterococcus spp. (20%. We also cultured coagulase-negative staphylococci in 40% (4/10 of the remaining patients. Micrococcus spp. and coagulase-negative staphylococci constituted the bacterial genuses more frequently isolated in the normal skin of patients with chiclero's ulcer and healthy individuals used as controls. We also undertook another study to find out the presence of S. pyogenes by an immunocolorimetric assay. This study indicated that 60% (9/15 of the ulcerated lesions, but not normal controls, were contaminated with S. pyogenes. Importantly, individuals with purulent secretion and holding concomitant infections with S. pyogenes, S. aureus, P. aeruginosa, M. morganii, and E. durans took longer to heal Leishmania (L. mexicana infections treated with antimonial drugs. Our results suggest the need to eliminate bacterial purulent infections, by antibiotic treatment, before starting antimonial administration to patients with chiclero's ulcer.

  1. Complement activation-related pseudoallergy in dogs following intravenous administration of a liposomal formulation of meglumine antimoniate

    Directory of Open Access Journals (Sweden)

    Raul R. Ribeiro

    2013-08-01

    Full Text Available The increasing use of nanotechnologies in advanced therapies has allowed the observation of specific adverse reactions related to nanostructures. The toxicity of a novel liposome formulation of meglumine antimoniate in dogs with visceral leishmaniasis after single dose has been investigated. Groups of 12 animals received by the intravenous route a single dose of liposomal meglumine antimoniate (group I [GI], 6.5 mg Sb/kg, empty liposomes (GII or isotonic saline (GIII. Evaluation of hematological and biochemical parameters showed no significant changes 4 days after administration. No undesired effects were registered in the GIII. However, adverse reactions were observed in 67.7% of dogs from both groups that received liposomal formulations. The side effects began moments after bolus administration and disappeared during the first 15 minutes after treatment. Prostation, sialorrhea and defecation were the most frequent clinical signs, registered in 33.3% and 41.6 % of animals from the groups GI and GII, respectively. Tachypnea, mydriasis, miosis, vomiting and cyanosis were also registered in both groups. The adverse reactions observed in this study were attributed to the activation of the complement system by lipid vesicles in a phenomenon known as Complement Activation-Related Pseudoallergy (CARPA. The influence of the physical-chemical characteristics of liposomal formulation in the triggering of CARPA is discussed.

  2. Determination of Antimony (III in Real Samples by Anodic Stripping Voltammetry Using a Mercury Film Screen-Printed Electrode

    Directory of Open Access Journals (Sweden)

    Olga Domínguez-Renedo

    2009-01-01

    Full Text Available This paper describes a procedure for the determination of antimony (III by differential pulse anodic stripping voltammetry using a mercury film screen-printed electrode as the working electrode. The procedure has been optimized using experimental design methodology. Under these conditions, in terms of Residual Standard Deviation (RSD, the repeatability (3.81 % and the reproducibility (5.07 % of the constructed electrodes were both analyzed. The detection limit for Sb (III was calculated at a value of 1.27×10–8 M. The linear range obtained was between 0.99 × 10–8 – 8.26 × 10–8 M. An analysis of possible effects due to the presence of foreign ions in the solution was performed and the procedure was successfully applied to the determination of antimony levels in pharmaceutical preparations and sea water samples.

  3. Thermoelectrically-cooled Cadmium Zinc Telluride detectors (CZT) for X-ray and gamma-ray detection

    International Nuclear Information System (INIS)

    Recently, Cadmium Zinc Telluride (CZT) became one of the most promising room temperature semiconductor detectors. Although significant progress has been made in the growth and characterization of CZT crystals, the energy resolution of CZT detectors at room temperature is still limited by leakage current and the charge transport effects. To optimize the performance of the room temperature CZT detectors a compromise should be made when selecting the shaping time constant of the spectroscopy amplifier. A short shaping time constant reduces leakage current fluctuations. However, the short pulse shapes are more sensitive to ballistic deficit and charge collection fluctuations. In addition, when short shaping time constants are used, the charge sensitive preamplifier noise limits the energy resolution, especially when low energy X-rays are detected. It is therefore important to reduce the leakage current of the detector and to keep the preamplifier noise as low as possible. One way to do this is to cool the detector, the front stage, and the feedback components of the preamplifier. This paper describes a compact, thermoelectrically-cooled radiation detector using a CZT crystal, designated the XR-100T-CZT. (J.P.N.)

  4. Effect of oxygen on structural stability of nitrogen-doped germanium telluride films with and without silicon nitride layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hong [AE group, Corporate Technology Operations SAIT, Samsung Electronics Co. Ltd. Yongin, 446-712 (Korea, Republic of); Choi, Sang-Jun, E-mail: sangjun5545.choi@samsung.com [System LSI, Samsung Electronics Co. Ltd., Yong-In, 446-712 (Korea, Republic of); Kyoung, Yong-Koo; Lee, Jun-Ho [AE group, Corporate Technology Operations SAIT, Samsung Electronics Co. Ltd. Yongin, 446-712 (Korea, Republic of)

    2012-03-30

    Nitrogen-doped germanium telluride (N-GeTe) films with and without silicon nitride (SiN) layer were thermally annealed in an air atmosphere. The SiN layer prevented the oxidation of GeTe films despite the massive in-diffusion of oxygen atoms. The phase transition from cubic to rhombohedral phase occurred only in the air-annealed samples, not in the samples annealed at 2.0 mPa. The in-diffused oxygen is probably the leading cause of this phase transition. N-GeTe films without SiN layer showed an increase in sheet resistance after 1000 min of air annealing; this could be attributable to a phase transition from the cubic GeTe phase to the amorphous germanium oxide and metallic tellurium phases. - Highlights: Black-Right-Pointing-Pointer SiN layer prevented oxidation of GeTe despite the massive in-diffusion of oxygen. Black-Right-Pointing-Pointer The in-diffused oxygen have a critical role in the changes of crystal structure. Black-Right-Pointing-Pointer N-GeTe exhibited phase transition into amorphous Ge oxide and metallic Te phase.

  5. Controlled cadmium telluride thin films for solar-cell applications. Final technical report, June 1, 1980-May 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Das, M.B.; Krishnaswamy, S.V.

    1981-06-01

    The objectives of this contract were to carry out a systematic study on the preparation and characterization of rf-sputtered CdTe thin films in order to establish reproducibility of the films with good electrical characteristics and to demonstrate the feasibility of fabricating various types of junctions and ohmic contacts with reproducible characteristics and finally to optimize the most promising solar cell structure in order to achieve an efficiency of 6% or higher. Efforts have been directed to the control of various sputtering parameters in order to obtain good quality films. The structure, crystallographic, compositional and electrical properties of cadmium telluride films sputtered over a wide range of conditions have been evaluated. A series of doping experiments have been carried out using primarily Cd, Te, In, as the n-type dopants and Cu as the p-type dopant. Of these dopants, indium doping provided films with which S.B. junctions can be obtained for further electrical characterization. Use of cadmium overpressure during CdTe:In sputtering has improved the film characteristics. Ion Beam Sputtering was attempted as an alternative technique for film preparation. For lack of time and due to a number of mechanical failures, no significant results could be obtained.

  6. Improved Sensitization of Zinc Oxide Nanorods by Cadmium Telluride Quantum Dots through Charge Induced Hydrophilic Surface Generation

    Directory of Open Access Journals (Sweden)

    Karthik Laxman

    2014-01-01

    Full Text Available This paper reports on UV-mediated enhancement in the sensitization of semiconductor quantum dots (QDs on zinc oxide (ZnO nanorods, improving the charge transfer efficiency across the QD-ZnO interface. The improvement was primarily due to the reduction in the interfacial resistance achieved via the incorporation of UV light induced surface defects on zinc oxide nanorods. The photoinduced defects were characterized by XPS, FTIR, and water contact angle measurements, which demonstrated an increase in the surface defects (oxygen vacancies in the ZnO crystal, leading to an increase in the active sites available for the QD attachment. As a proof of concept, a model cadmium telluride (CdTe QD solar cell was fabricated using the defect engineered ZnO photoelectrodes, which showed ∼10% increase in photovoltage and ∼66% improvement in the photocurrent compared to the defect-free photoelectrodes. The improvement in the photocurrent was mainly attributed to the enhancement in the charge transfer efficiency across the defect rich QD-ZnO interface, which was indicated by the higher quenching of the CdTe QD photoluminescence upon sensitization.

  7. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  8. Measurement of the electrical properties of a polycrystalline cadmium telluride for direct conversion flat panel x-ray detector

    International Nuclear Information System (INIS)

    Cadmium telluride (CdTe) is one of the best candidate direct conversion material for medical X-ray application because it satisfies the requirements of direct conversion x-ray material such as high atomic absorption, density, bandgap energy, work fuction, and resistivity. With such properties, single crystal CdTe exhibits high quantum efficiency and charge collection efficiency. However, for the development of low-cost large area detector, the study of the improvement of polycrystalline CdTe property is desirable. In this study, in order to improve the properties of polycrystalline CdTe, we produced polycrystalline CdTe with different kinds of raw materials, high purity Cd and Te powder compounds and bulk CdTe compound synthesized from single crystal CdTe. The electric properties including resistivity, x-ray sensitivity, and charge transport properties were investigated. As a result, polycrystalline CdTe exhibited simular level of resistivity and x-ray sensitivity to single crystal CdTe. The carrier transport properties of polycrystalline CdTe showed poorer properties than those of single crystal CdTe due to significant charge trapping. However, the polycrystalline CdTe fabricated with bulk CdTe compound synthesized from single crystal CdTe showed better charge transport properties than the polycrystalline CdTe fabricated with CdTe powder compounds. This is suitable for diagnostic x-ray detectors, especially for digital fluoroscopy

  9. Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle

    International Nuclear Information System (INIS)

    Market projections for cadmium-telluride (CdTe) thin-film photovoltaics (PV) are tempered by global environmental policies based on the precautionary principle which restrict electronic products containing cadmium, a known human carcinogen. An alternative to the precautionary principle is life cycle management, which involves manufacturers assuming product stewardship from beginning to end of product life. Both approaches have the aim of minimizing environmental contamination, but attempt to do so in different ways. Restrictions on electronic products containing cadmium by the precautionary principle-based restriction of hazardous substances (RoHS) directive in the European Union and a similar policy in China are presented, relative to their potential impact on CdTe PV. Life cycle environmental risks with respect to potential release of cadmium to the environment are also presented for routine operation of CdTe PV panels, potential catastrophic release of cadmium from a residential fire, and at the end of the product life. There is negligible risk of environmental cadmium contamination during routine operation and insignificant risk during catastrophic exposure events such as fire. At the end of the product life, risks of contamination are minimized by take-back programs that may be paid for by insurance premiums incorporated into the cost of the product. Therefore, policies based on the precautionary principle that could potentially ban the product based on its cadmium content may not be warranted

  10. Liver Toxicity of Cadmium Telluride Quantum Dots (CdTe QDs Due to Oxidative Stress in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2015-09-01

    Full Text Available With the applications of quantum dots (QDs expanding, many studies have described the potential adverse effects of QDs, yet little attention has been paid to potential toxicity of QDs in the liver. The aim of this study was to investigate the effects of cadmium telluride (CdTe QDs in mice and murine hepatoma cells alpha mouse liver 12 (AML 12. CdTe QDs administration significantly increased the level of lipid peroxides marker malondialdehyde (MDA in the livers of treated mice. Furthermore, CdTe QDs caused cytotoxicity in AML 12 cells in a dose- and time-dependent manner, which was likely mediated through the generation of reactive oxygen species (ROS and the induction of apoptosis. An increase in ROS generation with a concomitant increase in the gene expression of the tumor suppressor gene p53, the pro-apoptotic gene Bcl-2 and a decrease in the anti-apoptosis gene Bax, suggested that a mitochondria mediated pathway was involved in CdTe QDs’ induced apoptosis. Finally, we showed that NF-E2-related factor 2 (Nrf2 deficiency blocked induced oxidative stress to protect cells from injury induced by CdTe QDs. These findings provide insights into the regulatory mechanisms involved in the activation of Nrf2 signaling that confers protection against CdTe QDs-induced apoptosis in hepatocytes.

  11. Synthesis, characterization and enhanced thermoelectric performance of structurally ordered cable-like novel polyaniline-bismuth telluride nanocomposite

    Science.gov (United States)

    Chatterjee, Krishanu; Mitra, Mousumi; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2013-05-01

    Bismuth telluride (Bi2Te3) nanorods and polyaniline (PANI) nanoparticles have been synthesized by employing solvothermal and chemical oxidative processes, respectively. Nanocomposites, comprising structurally ordered PANI preferentially grown along the surface of a Bi2Te3 nanorods template, are synthesized using in situ polymerization. X-ray powder diffraction, UV-vis and Raman spectral analysis confirm the highly ordered chain structure of PANI on Bi2Te3 nanorods, leading to a higher extent of doping, higher chain mobility and enhancement of the thermoelectric performance. Above 380 K, the PANI-Bi2Te3 nanocomposite with a core-shell/cable-like structure exhibits a higher thermoelectric power factor than either pure PANI or Bi2Te3. At room temperature the thermal conductivity of the composite is lower than that of its pure constituents, due to selective phonon scattering by the nanointerfaces designed in the PANI-Bi2Te3 nanocable structures. The figure of merit of the nanocomposite at room temperature is comparable to the values reported in the literature for bulk polymer-based composite thermoelectric materials.

  12. A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors

    Science.gov (United States)

    Zhang, Zhenyu; Wang, Bo; Zhou, Ping; Guo, Dongming; Kang, Renke; Zhang, Bi

    2016-03-01

    A novel approach of chemical mechanical polishing (CMP) is developed for mercury cadmium telluride (HgCdTe or MCT) semiconductors. Firstly, fixed-abrasive lapping is used to machine the MCT wafers, and the lapping solution is deionized water. Secondly, the MCT wafers are polished using the developed CMP slurry. The CMP slurry consists of mainly SiO2 nanospheres, H2O2, and malic and citric acids, which are different from previous CMP slurries, in which corrosive and toxic chemical reagents are usually employed. Finally, the polished MCT wafers are cleaned and dried by deionized water and compressed air, respectively. The novel approach of CMP is environment-friendly. Surface roughness Ra, and peak-to-valley (PV) values of 0.45, and 4.74 nm are achieved, respectively on MCT wafers after CMP. The first and second passivating processes are observed in electrochemical measurements on MCT wafers. The fundamental mechanisms of CMP are proposed according to the X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. Malic and citric acids dominate the first passivating process, and the CMP slurry governs the second process. Te4+3d peaks are absent after CMP induced by the developed CMP slurry, indicating the removing of oxidized films on MCT wafers, which is difficult to achieve using single H2O2 and malic and citric acids solutions.

  13. Antimony doped tin oxides and their composites with tin pyrophosphates as catalyst supports for oxygen evolution reaction in proton exchange membrane water electrolysis

    DEFF Research Database (Denmark)

    Xu, Junyuan; Li, Qingfeng; Hansen, Martin Kalmar;

    2012-01-01

    Proton exchange membrane water electrolysers operating at typically 80 °C or at further elevated temperatures suffer from insufficient catalyst activity and durability. In this work, antimony doped tin oxide nanoparticles were synthesized and further doped with an inorganic proton conducting phase...

  14. Real-world emission factors for antimony and other brake wear related trace elements: size-segregated values for light and heavy duty vehicles.

    Science.gov (United States)

    Bukowiecki, Nicolas; Lienemann, Peter; Hill, Matthias; Figi, Renato; Richard, Agnes; Furger, Markus; Rickers, Karen; Falkenberg, Gerald; Zhao, Yongjing; Cliff, Steven S; Prevot, Andre S H; Baltensperger, Urs; Buchmann, Brigitte; Gehrig, Robert

    2009-11-01

    Hourly trace element measurements were performed in an urban street canyon and next to an interurban freeway in Switzerland during more than one month each, deploying a rotating drum impactor (RDI) and subsequent sample analysis by synchrotron radiation X-ray fluorescence spectrometry (SR-XRF). Antimony and other brake wear associated elements were detected in three particle size ranges (2.5-10, 1-2.5, and 0.1-1 microm). The hourly measurements revealed that the effect of resuspended road dust has to be taken into account for the calculation of vehicle emission factors. Individual values for light and heavy duty vehicles were obtained for stop-and-go traffic in the urban street canyon. Mass based brake wear emissions were predominantly found in the coarse particle fraction. For antimony, determined emission factors were 11 +/- 7 and 86 +/- 42 microg km(-1) vehicle(-1) for light and heavy duty vehicles, respectively. Antimony emissions along the interurban freeway with free-flowing traffic were significantly lower. Relative patterns for brake wear related elements were very similar for both considered locations. Beside vehicle type specific brake wear emissions, road dust resuspension was found to be a dominant contributor of antimony in the street canyon. PMID:19924925

  15. Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile.

    Science.gov (United States)

    De Gregori, Ida; Fuentes, Edwar; Rojas, Mariela; Pinochet, Hugo; Potin-Gautier, Martine

    2003-04-01

    This paper reports a comparative study of the concentration of three important environmental elements that are often found together in mineral deposits and then associated with mining activities; copper, arsenic and antimony. These elements were determined in 26 different agricultural soils from regions I, II and V in Chile, zones where the most important and biggest copper industries of this country are located. As background levels of these elements in soils have not been well established, in this study, both, impacted and non-impacted agricultural soils from different regions were considered. The relationships between the concentrations of these elements in soils were also examined. The concentration ranges for copper, arsenic and antimony were 11-530; 2.7-202 and 0.42-11 mg kg(-1) respectively. The copper concentrations in non-polluted soils from the north and central zone of Chile were similar. However, three sites from the north region have copper concentration as higher as 100 mg kg(-1), values that exceed the critical concentration for copper in soils. The concentration of arsenic and antimony in the north soils were higher than in non-impacted ones and, in the case of arsenic, greatly exceeded the world average concentration reported for this element in soils. The highest arsenic and antimony concentrations were found in Calama and Quillagua soils, two different sites in the Loa valley. The arsenic/antimony concentration ratio was higher in Quillagua soil. The high concentrations of three elements determined in impacted soils from region V (Puchuncaví and Catemu valleys) clearly shows the impact produced in this zone by the industrial and mining activities developed in their proximities. At Puchuncaví valley a clear decrease was observed in copper, arsenic and antimony concentrations in soils on the function of the distance from the industrial complex "Las Ventanas", and all concentrations exceeded the reported critical values for this matrix. Instead at

  16. Correlation models between environmental factors and bacterial resistance to antimony and copper.

    Directory of Open Access Journals (Sweden)

    Zunji Shi

    Full Text Available Antimony (Sb and copper (Cu are toxic heavy metals that are associated with a wide variety of minerals. Sb(III-oxidizing bacteria that convert the toxic Sb(III to the less toxic Sb(V are potentially useful for environmental Sb bioremediation. A total of 125 culturable Sb(III/Cu(II-resistant bacteria from 11 different types of mining soils were isolated. Four strains identified as Arthrobacter, Acinetobacter and Janibacter exhibited notably high minimum inhibitory concentrations (MICs for Sb(III (>10 mM,making them the most highly Sb(III-resistant bacteria to date. Thirty-six strains were able to oxidize Sb(III, including Pseudomonas-, Comamonas-, Acinetobacter-, Sphingopyxis-, Paracoccus- Aminobacter-, Arthrobacter-, Bacillus-, Janibacter- and Variovorax-like isolates. Canonical correspondence analysis (CCA revealed that the soil concentrations of Sb and Cu were the most obvious environmental factors affecting the culturable bacterial population structures. Stepwise linear regression was used to create two predictive models for the correlation between soil characteristics and the bacterial Sb(III or Cu(II resistance. The concentrations of Sb and Cu in the soil was the significant factors affecting the bacterial Sb(III resistance, whereas the concentrations of S and P in the soil greatly affected the bacterial Cu(II resistance. The two stepwise linear regression models that we derived are as follows: MIC(Sb(III=606.605+0.14533 x C(Sb+0.4128 x C(Cu and MIC((Cu(II=58.3844+0.02119 x C(S+0.00199 x CP [where the MIC(Sb(III and MIC(Cu(II represent the average bacterial MIC for the metal of each soil (μM, and the C(Sb, C(Cu, C(S and C(P represent concentrations for Sb, Cu, S and P (mg/kg in soil, respectively, p<0.01]. The stepwise linear regression models we developed suggest that metals as well as other soil physicochemical parameters can contribute to bacterial resistance to metals.

  17. Green and red fluorescence upconversion in neodymium-doped low phonon antimony glasses

    Energy Technology Data Exchange (ETDEWEB)

    Som, Tirtha [Glass Technology Laboratory, Central Glass and Ceramic Research Institute (Council of Scientific and Industrial Research), 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Karmakar, Basudeb [Glass Technology Laboratory, Central Glass and Ceramic Research Institute (Council of Scientific and Industrial Research), 196 Raja S.C. Mullick Road, Kolkata 700032 (India)], E-mail: basudebk@cgcri.res.in

    2009-05-12

    A new K{sub 2}O-B{sub 2}O{sub 3}-Sb{sub 2}O{sub 3} (KBS) glass system having low phonon energy (about 600 cm{sup -1}) doped with Nd{sup 3+} ions has been developed. Infrared reflection spectroscopic (IRRS) studies have been employed to establish its low phonon energy. Ultraviolet-visible-near infrared (UV-vis-NIR) absorption and photoluminescence upconversion properties with special emphasis on the spectrochemistry of the 15K{sub 2}O-15B{sub 2}O{sub 3}-70Sb{sub 2}O{sub 3} (mol%) glass have been studied doping with different concentrations (0.1-1.0 wt%) of Nd{sub 2}O{sub 3}. UV-vis-NIR absorption band positions have been justified with quantitative calculation of nephelauxetic parameter and covalent bonding characteristics of the host. NIR to visible upconversion has been investigated by exciting at 805 nm at room temperature. Two upconverted bands originating from the {sup 4}G{sub 7/2} {yields} {sup 4}I{sub 9/2} and {sup 4}G{sub 7/2} {yields} {sup 4}I{sub 13/2} transitions are found to be centered at 540 nm (green, medium) and 650 nm (red, strong), respectively. These bands have been explained from the evaluation of the absorption and excitation spectra. The upconversion processes have been explained by the excited state absorption (ESA), energy transfer (ET), cooperative energy transfer (CET) and cross-relaxation (CR) mechanisms involving population of the metastable (storage) energy level ({sup 4}G{sub 7/2}) by effects of multiphonon deexcitation and thermal population. It is evident from the IRRS study that the upconversion phenomena are expedited by the low multiphonon relaxation rate in antimony glasses owing to their low phonon energy (602 cm{sup -1}, the main and highest intensity Sb-O-Sb stretching band) which is very close to that of fluoride glasses (500-600 cm{sup -1})

  18. Novel organo-colloidal synthesis, optical properties, and structural analysis of antimony sesquioxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Validzic, Ivana Lj., E-mail: validzic@vinca.rs; Abazovic, Nadica D.; Mitric, Miodrag [University of Belgrade, ' Vinca' Institute of Nuclear Sciences (Serbia); Lalic, Milan V. [Universidade Federal de Sergipe, Departamento de Fisica (Brazil); Popovic, Zoran S. [University of Belgrade, ' Vinca' Institute of Nuclear Sciences (Serbia); Vukajlovic, Filip R. [' Vinca' Institute of Nuclear Sciences (Serbia)

    2013-01-15

    We report the novel colloidal syntheses in organic media of antimony sesquioxide ( Sb{sub 2}O{sub 3} ) spherical nanoparticles (30-250 nm) and octahedron micro- and nanocrystals (100nm - 4{mu}) depending on the synthetic method conditions. It is observed that small differences in the synthetic procedure cause large differences in the very changeable morphology. The structure of Sb{sub 2}O{sub 3} powders was refined down to the R-factors of 9.57, 7.44, 9.19, 9.78, and 8.30 %. The refinement showed that Sb{sub 2}O{sub 3} powder belongs to the cubic crystal type with space group Fd 3-bar m (No. 227). The values of estimated standard deviations, as well as reliability factors, confirmed that the structure of Sb{sub 2}O{sub 3} was well refined. Ultraviolet and visible (UV-Vis) absorption spectroscopy and diffuse reflectance measurements (DRS) reveal that the optical band gap energies found for the Sb{sub 2}O{sub 3} octahedrons and nanoparticles, micro- and nanocrystals, respectively, are quite independent of the synthetic method conditions and synthesized morphology and is found to be between 4.1-4.4 eV. No peaks in both photoluminescence (PL) emission and excitation spectra have been observed for a broad spectral range, typical for this material. In order to discriminate between conflicting experimental results concerning the band gap energy of this compound, we investigated theoretically the electronic structure and optical properties of one of the cubic sesquioxide Sb{sub 2}O{sub 3} samples synthesized here. This has been done on the basis of density functional theory (DFT) with the generalized gradient approximation (GGA) and improved version of exchange potential suggested recently by Tran and Blaha (TB-mBJ). The main characteristic of the calculated TB-mBJ electronic structure is the significant improvement of the band gap value, which is in perfect agreement with our experimental measurements. The real and imaginary parts of the dielectric tensor are also

  19. The presence and leachability of antimony in different wastes and waste handling facilities in Norway.

    Science.gov (United States)

    Okkenhaug, G; Almås, Å R; Morin, N; Hale, S E; Arp, H P H

    2015-11-01

    The environmental behaviour of antimony (Sb) is gathering attention due to its increasingly extensive use in various products, particularly in plastics. Because of this it may be expected that plastic waste is an emission source for Sb in the environment. This study presents a comprehensive field investigation of Sb concentrations in diverse types of waste from waste handling facilities in Norway. The wastes included waste electrical and electronic equipment (WEEE), glass, vehicle fluff, combustibles, bottom ash, fly ash and digested sludge. The highest solid Sb concentrations were found in WEEE and vehicle plastic (from 1238 to 1715 mg kg(-1)) and vehicle fluff (from 34 to 4565 mg kg(-1)). The type of acid used to digest the diverse solid waste materials was also tested. It was found that HNO3:HCl extraction gave substantially lower, non-quantitative yields compared to HNO3:HF. The highest water-leachable concentration for wastes when mixed with water at a 1 : 10 ratio were observed for plastic (from 0.6 to 2.0 mg kg(-1)) and bottom ash (from 0.4 to 0.8 mg kg(-1)). For all of the considered waste fractions, Sb(v) was the dominant species in the leachates, even though Sb(iii) as Sb2O3 is mainly used in plastics and other products, indicating rapid oxidation in water. This study also presents for the first time a comparison of Sb concentrations in leachate at waste handling facilities using both active grab samples and DGT passive samples. Grab samples target the total suspended Sb, whereas DGT targets the sum of free- and other chemically labile species. The grab sample concentrations (from 0.5 to 50 μg L(-1)) were lower than the predicted no-effect concentration (PNEC) of 113 μg L(-1). The DGT concentrations were substantially lower (from 0.05 to 9.93 μg L(-1)) than the grab samples, indicating much of the Sb is present in a non-available colloidal form. In addition, air samples were taken from the chimney and areas within combustible waste incinerators, as

  20. Growth, photosynthesis, and defense mechanism of antimony (Sb)-contaminated Boehmeria nivea L.

    Science.gov (United States)

    Chai, Li-Yuan; Mubarak, Hussani; Yang, Zhi-Hui; Yong, Wang; Tang, Chong-Jian; Mirza, Nosheen

    2016-04-01

    Ramie (Boehmeria nivea L.) is the oldest cash fiber crop in China and is widely grown in antimony (Sb) mining areas. To evaluate the extent of Sb resistance and tolerance, the growth, tolerance index (TI), Sb content in plant parts and in Hoagland solution, bioaccumulation factor (BF), photosynthesis, and physiological changes in Sb-contaminated B. nivea (20, 40, 80, and 200 mg L(-1) Sb) grown hydroponically were investigated. The Sb tolerance and resistance of ramie were clearly revealed by growth inhibition, a TI between 13 and 99 %, non-significant changes in the maximum quantum efficiency of photosystem (F v /F m ), energy-harvesting efficiency (photosystem II (PSII)) and single-photon avalanche diode (SPAD) value, a significant increase in Sb in plant parts, BF >1, and an increase in catalase (CAT) and malondialdehyde (MDA) at 200 mg L(-1) Sb. Under increasing Sb stress, nearly the same non-significant decline in the maximum quantum efficiency of photosystem (F v /F m ), energy-harvesting efficiency (PSII), relative quantum yield of photosystem II (φPSII), and photochemical quenching (qP), except for F v /F m at 20 mg L(-1) Sb, were recorded. SPAD values for chlorophyll under Sb stress showed an increasing trend, except for a slight decrease, i.e., continuous increase in MDA, superoxide dismutase (SOD), peroxidase (POD), and CAT activities were suppressed under Sb addition up to 40 mg L(-1) Sb and the addition of Sb enhanced enzyme production at 80 and 200 mg L(-1) Sb. A continuous decrease in SOD, POD, and CAT up to 40 mg L(-1) Sb and enhancements at ≥80 mg L(-1), along with the continuous enhancement of MDA activity and inhibited biomass production, clearly reveal the roles of these enzymes in detoxifying Sb stress and the defense mechanism of ramie at 80 mg L(-1) Sb. Thus, B. nivea constitutes a promising candidate for Sb phytoremediation at mining sites. PMID:26711292

  1. Synthesis and Properties of Light-tolerant Organic Antimony%耐光型有机锑的合成及其性能研究

    Institute of Scientific and Technical Information of China (English)

    高勇; 韩永和; 李建丰; 袁余斌; 王爱红

    2014-01-01

    硫醇锑稳定剂由于其耐紫外光性能很差,在存储、运输和使用方面受到很大的限制。为解决这一问题,试探性以三氯化锑和巯基酯为原料,引入抗紫外线活性基团TBP-1(2,4-二羟基二苯甲酮),合成了“晒不黑”的有机锑热稳定剂。用红外光谱对产品结构进行了确认,光敏性实验表明其7周内不变色;静态热稳定性实验结果表明其与硫醇锑热稳定剂相当。%Because of its poor ultraviolet resistance , the storage , transportation and use of antimony mercaptide stabilizer was greatly limited.In order to solve this problem , a kind of synthesized organic antimony thermal stabilizer was prepared, which was light -tolerant with antimony trichloride , isooctyl thioglycollat as raw materials and TBP -1(2,4-dihydroxybenzophenone ) , with an anti-ultraviolet agent added in.The light-tolerant performance and thermal stability of product tested showed that the color of organic antimony as -synthesized was unchangeable when under the impact of direct sunlight for 7 weeks by infrared spectroscopy spectrum that was confirmed for structure of product , and the static experimental results showed that the thermal stability was nearly equivalent to antimony mercaptide.

  2. SemiSPECT: A small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays

    OpenAIRE

    Kim, Hyunki; Furenlid, Lars R.; Crawford, Michael J.; Wilson, Donald W.; Barber, H. Bradford; Todd E. Peterson; Hunter, William C. J.; Liu, Zhonglin; Woolfenden, James M.; Barrett, Harrison H.

    2006-01-01

    The first full single-photon emission computed tomography (SPECT) imager to exploit eight compact high-intrinsic-resolution cadmium zinc telluride (CZT) detectors, called SemiSPECT, has been completed. Each detector consists of a CZT crystal and a customized application-specific integrated circuit (ASIC). The CZT crystal is a 2.7 cm × 2.7 cm × ~ 0.2 cm slab with a continuous top electrode and a bottom electrode patterned into a 64 × 64 pixel array by photolithography. The ASIC is attached to ...

  3. Acetic acid-confined synthesis of uniform three-dimensional (3D) bismuth telluride nanocrystals consisting of few-quintuple-layer nanoplatelets

    KAUST Repository

    Yuan, Qiang

    2011-01-01

    High-selectivity, uniform three-dimensional (3D) flower-like bismuth telluride (Bi2Te3) nanocrystals consisting of few-quintuple-layer nanoplatelets with a thickness down to 4.5 nm were synthesized for the first time by a facile, one-pot polyol method with acetic acid as the structure-director. Micrometre-sized 2D films and honeycomb-like spheres can be obtained using the uniform 3D Bi2Te3 nanocrystals as building blocks. © The Royal Society of Chemistry 2011.

  4. Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols

    Energy Technology Data Exchange (ETDEWEB)

    Verger, Antoine; Karcher, Gilles [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); INSERM U947, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Djaballah, Wassila [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); INSERM U947, Nancy (France); Fourquet, Nicolas [Clinique Pasteur, Toulouse (France); Rouzet, Francois; Le Guludec, Dominique [AP-HP, Hopital Bichat, Department of Nuclear Medicine, Paris (France); INSERM U 773 Inserm and Denis Diderot University, Paris (France); Koehl, Gregoire; Roch, Veronique [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Imbert, Laetitia [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Centre Alexis Vautrin, Department of Radiotherapy, Vandoeuvre (France); Poussier, Sylvain [INSERM U947, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Fay, Renaud [INSERM, Centre d' Investigation Clinique CIC-P 9501, Nancy (France); Marie, Pierre-Yves [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); INSERM U961, Nancy (France); Hopital de Brabois, CHU-Nancy, Medecine Nucleaire, Vandoeuvre-les-Nancy (France)

    2013-03-15

    The results of stress myocardial perfusion SPECT could be enhanced by new cadmium-zinc-telluride (CZT) cameras, although differences compared to the results with conventional Anger cameras remain poorly known for most study protocols. This study was aimed at comparing the results of CZT and Anger SPECT according to various study protocols while taking into account the influence of obesity. The study population, which was from three different institutions equipped with identical CZT cameras, comprised 276 patients referred for study using protocols involving {sup 201}Tl (n = 120) or {sup 99m}Tc-sestamibi injected at low dose at stress ({sup 99m}Tc-Low; stress/rest 1-day protocol; n = 110) or at high dose at stress ({sup 99m}Tc-High; rest/stress 1-day or 2-day protocol; n = 46). Each Anger SPECT scan was followed by a high-speed CZT SPECT scan (2 to 4 min). Agreement rates between CZT and Anger SPECT were good irrespective of the study protocol (for abnormal SPECT, {sup 201}Tl 92 %, {sup 99m}Tc-Low 86 %, {sup 99m}Tc-High 98 %), although quality scores were much higher for CZT SPECT with all study protocols. Overall correlations were high for the extent of myocardial infarction (r = 0.80) and a little lower for ischaemic areas (r = 0.72), the latter being larger on Anger SPECT (p < 0.001). This larger extent was mainly observed in 50 obese patients who were in the {sup 201}Tl or {sup 99m}Tc-Low group and in whom stress myocardial counts were particularly low with Anger SPECT (228 {+-} 101 kcounts) and dramatically enhanced with CZT SPECT (+279 {+-} 251 %). Concordance between the results of CZT and Anger SPECT is good regardless of study protocol and especially when excluding obese patients who have low-count Anger SPECT and for whom myocardial counts are dramatically enhanced on CZT SPECT. (orig.)

  5. Downstream resource utilization following hybrid cardiac imaging with an integrated cadmium-zinc-telluride/64-slice CT device

    International Nuclear Information System (INIS)

    Low yield of invasive coronary angiography and unnecessary coronary interventions have been identified as key cost drivers in cardiology for evaluation of coronary artery disease (CAD). This has fuelled the search for noninvasive techniques providing comprehensive functional and anatomical information on coronary lesions. We have evaluated the impact of implementation of a novel hybrid cadmium-zinc-telluride (CZT)/64-slice CT camera into the daily clinical routine on downstream resource utilization. Sixty-two patients with known or suspected CAD were referred for same-day single-session hybrid evaluation with CZT myocardial perfusion imaging (MPI) and coronary CT angiography (CCTA). Hybrid MPI/CCTA images from the integrated CZT/CT camera served for decision-making towards conservative versus invasive management. Based on the hybrid images patients were classified into those with and those without matched findings. Matched findings were defined as the combination of MPI defect with a stenosis by CCTA in the coronary artery subtending the respective territory. All patients with normal MPI and CCTA as well as those with isolated MPI or CCTA finding or combined but unmatched findings were categorized as ''no match''. All 23 patients with a matched finding underwent invasive coronary angiography and 21 (91%) were revascularized. Of the 39 patients with no match, 5 (13%, p < 0.001 vs matched) underwent catheterization and 3 (8%, p < 0.001 vs matched) were revascularized. Cardiac hybrid imaging in CAD evaluation has a profound impact on patient management and may contribute to optimal downstream resource utilization. (orig.)

  6. Myocardial perfusion imaging with a cadmium zinc telluride-based gamma camera versus invasive fractional flow reserve

    Energy Technology Data Exchange (ETDEWEB)

    Mouden, Mohamed [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Ottervanger, Jan Paul; Timmer, Jorik R. [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Knollema, Siert; Reiffers, Stoffer; Oostdijk, Ad H.J.; Jager, Pieter L. [Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Boer, Menko-Jan de [University Medical Centre Nijmegen, Department of Cardiology, Nijmegen (Netherlands)

    2014-05-15

    Recently introduced ultrafast cardiac SPECT cameras with cadmium zinc telluride-based (CZT) detectors may provide superior image quality allowing faster acquisition with reduced radiation doses. Although the level of concordance between conventional SPECT and invasive fractional flow reserve (FFR) measurement has been studied, that between FFR and CZT-based SPECT is not yet known. Therefore, we aimed to assess the level of concordance between CZT SPECT and FFR in a large patient group with stable coronary artery disease. Both invasive FFR and myocardial perfusion imaging with a CZT-based SPECT camera, using Tc-tetrofosmin as tracer, were performed in 100 patients with stable angina and intermediate grade stenosis on invasive coronary angiography. A cut-off value of <0.75 was used to define abnormal FFR. The mean age of the patients was 64 ± 11 years, and 64 % were men. SPECT demonstrated ischaemia in 31 % of the patients, and 20 % had FFR <0.75. The concordance between CZT SPECT and FFR was 73 % on a per-patient basis and 79 % on a per-vessel basis. Discordant findings were more often seen in older patients and were mainly (19 %) the result of ischaemic SPECT findings in patients with FFR ≥0.75, whereas only 8 % had an abnormal FFR without ischaemia as demonstrated by CZT SPECT. Only 20 - 30 % of patients with intermediate coronary stenoses had significant ischaemia as assessed by CZT SPECT or invasive FFR. CZT SPECT showed a modest degree of concordance with FFR, which is comparable with previous results with conventional SPECT. Further investigations are particularly necessary in patients with normal SPECT and abnormal FFR, especially to determine whether these patients should undergo revascularization. (orig.)

  7. The energetic impact of small Cd{sub x}Te{sub y} clusters on Cadmium Telluride

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao, E-mail: M.Yu2@lboro.ac.uk; Kenny, Steven D., E-mail: S.D.Kenny@lboro.ac.uk

    2015-06-01

    Cadmium Telluride (CdTe) is an excellent material for low-cost, high efficiency thin film solar cells. It is important to do research on how these defects are formed during the growth process, since defects lower the efficiency of solar cells. In this work we use computer simulation to predict the growth of a sputter deposited CdTe thin film. Single deposition tests have been performed, to study the behaviour of deposited clusters under different conditions. We deposit a Cd{sub x}Te{sub y} (x,y = 0,1) cluster onto the (100) and (111) Cd and Te terminated surfaces with energies ranging from 1 to 40 eV. More than 1000 simulations have been performed for each of these cases so as to sample the possible deposition positions and to collect sufficient statistics. The results show that Cd atoms are more readily sputtered from the surface than Te atoms and the sticking probability is higher on Te terminated surfaces than Cd terminated surfaces. They also show that increasing the deposition energy typically leads to an increase in the number of atoms sputtered from the system and tends to decrease the number of atoms that sit on or in the surface layer, whilst increasing the number of interstitials observed. - Highlights: • Deposition of Cd, Te and CdTe particles on (100) and (111) Cd and Te surfaces • Cd atoms are more readily sputtered from the surface than Te atoms. • The Te terminated surfaces have a higher sticking probability than the Cd ones. • Higher impact energies imply more sputtered atoms from the surface.

  8. Modelling of illuminated current–voltage characteristics to evaluate leakage currents in long wavelength infrared mercury cadmium telluride photovoltaic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn [Institute of Defence Scientists and Technologists, CFEES Complex, Brig. S. K. Majumdar Marg, Delhi 110054 (India); Qiu, WeiCheng; Hu, Weida, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China)

    2014-11-14

    The current–voltage characteristics of long wavelength mercury cadmium telluride infrared detectors have been studied using a recently suggested method for modelling of illuminated photovoltaic detectors. Diodes fabricated on in-house grown arsenic and vacancy doped epitaxial layers were evaluated for their leakage currents. The thermal diffusion, generation–recombination (g-r), and ohmic currents were found as principal components of diode current besides a component of photocurrent due to illumination. In addition, both types of diodes exhibited an excess current component whose growth with the applied bias voltage did not match the expected growth of trap-assisted-tunnelling current. Instead, it was found to be the best described by an exponential function of the type, I{sub excess} = I{sub r0} + K{sub 1} exp (K{sub 2} V), where I{sub r0}, K{sub 1}, and K{sub 2} are fitting parameters and V is the applied bias voltage. A study of the temperature dependence of the diode current components and the excess current provided the useful clues about the source of origin of excess current. It was found that the excess current in diodes fabricated on arsenic doped epitaxial layers has its origin in the source of ohmic shunt currents. Whereas, the source of excess current in diodes fabricated on vacancy doped epitaxial layers appeared to be the avalanche multiplication of photocurrent. The difference in the behaviour of two types of diodes has been attributed to the difference in the quality of epitaxial layers.

  9. Research advances in microbial mechanism of antimony%微生物对锑的代谢机制研究进展

    Institute of Scientific and Technical Information of China (English)

    李明顺; 李洁; 王革娇

    2013-01-01

    锑(Sb)是一种自然界普遍存在的剧毒重金属,随着工业生产的日趋发展,我国部分地区土壤、水体及农产品受到严重的锑污染.作为环境污染物,锑中毒会导致人类心肌衰竭,肝坏死等疾病.自然界中的某些生物,特别是微生物却可以在极高锑浓度下生长,甚至可以利用这种元素作为能源物质,因此,微生物在锑的地球物质循环中起着重要的作用.研究生物对锑的代谢机制,对于保护环境与人体健康具有重要的现实意义.本文对锑在环境中的分布、污染状况、微生物对锑的代谢以及生物修复等方面的研究现状进行了综述.同时建议今后应加强以下三方面的研究:(1)筛选更多抗锑微生物或氧化锑的微生物;(2)发掘更多锑抗性基因或氧化基因;(3)开发锑污染土壤及水体的微生物修复技术.%Antimony (Sb) is a highly toxic heavy metal which widespreadly exists in nature.With the increasing development of industry,the soil,water and agricultural products are severely polluted by antimony in some regions of our country.As an environmental pollutant,antimony poisoning can lead to heart failure,human diseases such as liver necrosis.Some organisms in nature,especially the microorganisms can grow in the high concentration of antimony,and can even use the element as an energy material,so the microorganisms play an important role in the cycle of earth's materials.Study on metabolic mechanism of antimony has important practical significance to protect environment and human health.This study reviewed the researches of Sb distribution in the environment,the pollution status,microbial metabolism of antimony and bioremediation.At the same time it suggests that future researches should strengthen the following three aspects:(1) isolating more antimony resistance or antimony oxidizing microorganisms; (2) identifying more antimony resistant or oxidizing genes; (3) exploring microbial techniques to remediate

  10. Enhanced Removal of Arsenic and Antimony in the Mining Site by Calcined γ-Fe2O3/Layered Double Hydroxide Nanocomposite

    Science.gov (United States)

    Lee, Sang-Ho; Choi, Heechul; Kim, Kyoung-Woong

    2016-04-01

    Arsenic (As) and Antimony (Sb) have been recognized as harmful contaminants in aquatic environment due to its high toxicity and carcinogenicity. Especially, the contamination of arsenic in the mining areas is considered as a serious emerging environmental issue in Korea. Due to the hazardous effect of arsenic, the United States Environmental Protection Agency (US EPA) regulated maximum contamination level of arsenic to 10 μg/L in drinking water. The harmful effect on human health by excessive intake of antimony was also reported by previous studies, and severe contamination level (100 - 7,000 μg/L) of antimony reported in surface and groundwater of abandoned mining area in China and Slovakia. Therefore, US EPA regulated maximum contaminants level of antimony in drinking water to 6 μg/L. In order to remove anionic contaminants in drinking water, various type of nanomaterials have been developed. Layered double hydroxide (LDH) is the artificial anionic clay that is based on the layered structure of positively charged brucite-like layers with interlayers of anions. The LDH is one of the promising nanomaterials for the removal of anionic contaminants because it has high selectivity for arsenic, phosphate, chromium and antimony. However, the biggest problem of LDH for wastewater treatment is that the particles cannot be easily separated after the removal of contaminants. In this study, magnetic nanoparticles (γ-Fe2O3) supported LDH nanocomposite (γ-Fe2O3/LDH) was investigated to enhance magnetic particle recovery and removal efficiency for arsenic and antimony. The calcined γ-Fe2O3/LDH nanocomposites synthesized by co-precipitation method, and the crystallographic properties of maghemite (γ-Fe2O3) and layered structure of LDH were confirmed by X-ray diffraction. The nano-sized γ-Fe2O3 (30 to 50 nm) was stably attached on the surface of LDH (100 to 150 nm) and O1s spectrum by X-ray photoelectron spectroscopy (XPS) explained that there are both physical and

  11. Synthesis and characterization of nanostructured Mn(II) doped antimony-tin oxide (ATO) films on glass

    International Nuclear Information System (INIS)

    Sol–gel Mn(II) doped antimony tin oxide films were developed with precursor of atomic ratio range, Sn:Sb:Mn = 68–72:23–25:9–3. The X-ray diffraction patterns depict tetragonal cassiterite phase of SnO2. Transmission electron microscopy images suggest the nanostructured form of the doped materials. The increase in crystallite size with Mn(II) concentration is reflected by the larger band gap values (4.61–4.73 eV) arising from the excitonic transitions which also respond to PL emissions. Hall effect measurements show that the carrier concentration increases but mobility decreases for Mn(II) doping. Room temperature ferromagnetism with different saturation magnetic moments (Ms) has been observed for all dopant concentrations, 3–9 at%.

  12. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Susan C., E-mail: swilso24@une.edu.a [School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 (Australia); Lockwood, Peter V., E-mail: peter.lockwood@une.edu.a [School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 (Australia); Ashley, Paul M., E-mail: pashley@une.edu.a [School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 (Australia); Tighe, Matthew, E-mail: mtighe2@une.edu.a [School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 (Australia)

    2010-05-15

    This article provides a critical review of the environmental chemistry of inorganic antimony (Sb) in soils, comparing and contrasting findings with those of arsenic (As). Characteristics of the Sb soil system are reviewed, with an emphasis on speciation, sorption and phase associations, identifying differences between Sb and As behaviour. Knowledge gaps in environmentally relevant Sb data for soils are identified and discussed in terms of the limitations this imposes on understanding the fate, behaviour and risks associated with Sb in environmental soil systems, with particular reference to mobility and bioavailability. - A critical and comparative review of Sb and As chemistry and associations in soil systems identifies research directions needed for better understanding of risks.

  13. Antimony (SbIII) reduces growth, declines photosynthesis, and modifies leaf tissue anatomy in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Vaculík, Marek; Mrázová, Anna; Lux, Alexander

    2015-12-01

    The role of antimony (Sb)--a non-essential trace metalloid--in physiological processes running in crops is still poorly understood. Present paper describes the effect of Sb tartrate (SbIII) on growth, Sb uptake, photosynthesis, photosynthetic pigments, and leaf tissue organization in young sunflower plants grown in hydroponics. We found that growth of below- and aboveground part was reduced with increasing concentration of Sb in the medium. Although Sb was mostly taken up by sunflower roots and only small part (1-2%) was translocated to the shoots, decline in photosynthesis, transpiration, and decreased content of photosynthetic pigments were observed. This indicates that despite relatively low mobility of Sb in root-shoot system, Sb in shoot noticeably modifies physiological status and reduced plant growth. Additionally, leaf anatomical changes indicated that Sb reduced the size of intercellular spaces and made leaf tissue more compact. PMID:26194244

  14. Conjugative plasmid in Corynebacterium flaccumfaciens subsp. oortii that confers resistance to arsenite, arsenate, and antimony(III)

    Energy Technology Data Exchange (ETDEWEB)

    Hendrick, C.A.; Haskins, W.P.; Vidaver, A.K.

    1984-07-01

    Gene transfer systems for phytopathogenic corynebacteria have not been reported previously. In this paper a conjugative 46-megadalton plasmid (pDG101) found in Corynebacterium flaccumfaciens subsp. oorii CO101 is described that mediates resistance to arsenite, arsenate, and antimony(III). Transfer of the plasmid from CO101 to four other strains from the C. flaccumfaciens group occurred between cells immobilized on nitrocellulose filters or on agar surfaces. Transconjugant strains expressed the same levels of metal resistance as the donor strain and were able to act as donor strains in subsequent matings. The physical presence of the plasmid was detected by agarose gel electrophoresis. Arsenite-sensitive derivatives of the donor and transconjugant strains were obtained after heat treatment; these were cured of pDG101.

  15. Construction of spongy antimony-doped tin oxide/graphene nanocomposites using commercially available products and its excellent electrochemical performance

    Science.gov (United States)

    Zhao, Xiaowei; Zhang, Jingwei; Zhang, Jiwei; Gong, Chunhong; Gu, Xiufang; Ma, Zhihua; Zhou, Jingfang; Yu, Laigui; Zhang, Zhijun

    2015-10-01

    We construct successfully a porous antimony-doped tin oxide (ATO)/nitrogen-doped graphene 3-dimensional (3D) frameworks (denoted as ATO/NG/TEPA; TEPA refers to tetraethylenepentamine) by a one-pot hydrothermal process, with which TEPA aqueous solution is adopted to easily re-disperse commercial ATO precursor forming a transparent hydrosol. The results show that TEPA plays a key role in the construction of ATO/NG/TEPA, not only acting as a peptization reagent to re-disperse ATO precursor nanoparticles, and as a linker to combine ATO with graphene sheets. The as-fabricated ATO/NG/TEPA hybrid as the negative electrode of lithium ion batteries exhibits excellent lithium storage capacity and cycling stability. With the advantage of easily re-dispersing commercial ATO, the present synthetic route may be put into use for the large-scale production of the titled nanocomposites as the anode material of lithium ion batteries.

  16. Fabrication of superhydrophobic and heat-insulating antimony doped tin oxide/polyurethane films by cast replica micromolding.

    Science.gov (United States)

    Feng, Jie; Huang, Baoyuan; Zhong, Mingqiang

    2009-08-01

    A novel process for fabricating superhydrophobic and heat-insulating polymeric nanocomposite films was developed. Briefly, antimony doped tin oxide (ATO) nanoparticles that commonly endow coats heat-insulating and transparent functions were mixed into commercial waterborne polyurethane (WPU) suspensions to obtain ATO/WPU suspensions, which were then cast onto poly(dimethylsiloxane) (PDMS) stamps replicated from fresh lotus leaves. After being dried and peeled off from stamps, ATO/PU films with superhydrophobic surface and heat-insulating property were created, while PU films without ATO only showed high hydrophobicity. Scanning electron microscopy (SEM) imaging showed the surface of ATO/PU superhydrophobic films had unique micro- and nano-structures similar with those on the lotus leaf. On the contrary, no obvious nano-structures were found on the surface of pure PU films, demonstrating mixing functional nanoparticles into polymers is a necessary and feasible step in creating superhydrophobic and functional films by replica molding method. PMID:19394955

  17. lVIICROSTRUCTURE AND EUTECTIC MORPHOLOGY OF AL-12.5°/o Si ALLOY REFINED WITH ANTIMONY

    Directory of Open Access Journals (Sweden)

    Funda Kahraman

    2007-01-01

    Full Text Available Modification of Al-Si cast alloys can be achieved in two different ways, namely by additions of certain eleınents orwith rapid cooling rate. Modifications of the Al-Si al1oys are carried out extensivcly in industry to improve themechanical properties, particularly ductility. In this study, the effects of antiınony addition.s and growth rate on theınicrostructure and eutectic morphology on the directionally solidified Al- 1 2.5°/o Si cutectic all oy has beeninvestigated. The results showed that antimony can be identified as a grain refıner. Over modification occurs in Al-12.5 °/oSi alloy when modifier is present in the amount of 1 %Sb results in AISb compound.

  18. Antimony (SbIII) reduces growth, declines photosynthesis, and modifies leaf tissue anatomy in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Vaculík, Marek; Mrázová, Anna; Lux, Alexander

    2015-12-01

    The role of antimony (Sb)--a non-essential trace metalloid--in physiological processes running in crops is still poorly understood. Present paper describes the effect of Sb tartrate (SbIII) on growth, Sb uptake, photosynthesis, photosynthetic pigments, and leaf tissue organization in young sunflower plants grown in hydroponics. We found that growth of below- and aboveground part was reduced with increasing concentration of Sb in the medium. Although Sb was mostly taken up by sunflower roots and only small part (1-2%) was translocated to the shoots, decline in photosynthesis, transpiration, and decreased content of photosynthetic pigments were observed. This indicates that despite relatively low mobility of Sb in root-shoot system, Sb in shoot noticeably modifies physiological status and reduced plant growth. Additionally, leaf anatomical changes indicated that Sb reduced the size of intercellular spaces and made leaf tissue more compact.

  19. Growth rates and interface shapes in germanium and lead tin telluride observed in-situ, real-time in vertical Bridgman furnaces

    Science.gov (United States)

    Barber, P. G.; Berry, R. F.; Debnam, W. J.; Fripp, A. L.; Woodell, G.; Simchick, R. T.

    1995-01-01

    Using the advanced technology developed to visualize the melt-solid interface in low Prandtl number materials, crystal growth rates and interface shapes have been measured in germanium and lead tin telluride semiconductors grown in vertical Bridgman furnaces. The experimental importance of using in-situ, real time observations to determine interface shapes, to measure crystal growth rates, and to improve furnace and ampoule designs is demonstrated. The interface shapes observed in-situ, in real-time were verified by quenching and mechanically induced interface demarcation, and they were also confirmed using machined models to ascertain the absence of geometric distortions. Interface shapes depended upon the interface position in the furnace insulation zone, varied with the nature of the crystal being grown, and were dependent on the extent of transition zones at the ends of the ampoule. Actual growth rates varied significantly from the constant translation rate in response to the thermophysical properties of the crystal and its melt and the thermal conditions existing in the furnace at the interface. In the elemental semiconductor germanium the observed rates of crystal growth exceeded the imposed translation rate, but in the compound semiconductor lead tin telluride the observed rates of growth were less than the translation rate. Finally, the extent of ampoule thermal loading influenced the interface positions, the shapes, and the growth rates.

  20. Diaroyl Tellurides: Synthesis, Structure and NBO Analysis of (2-MeOC6H4CO2Te – Comparison with Its Sulfur and Selenium Isologues. The First Observation of [MgBr][R(C=TeO] Salts

    Directory of Open Access Journals (Sweden)

    Fumio Ando

    2009-07-01

    Full Text Available A series of aromatic diacyl tellurides were prepared in moderate to good yields by the reactions of sodium orpotassium arenecarbotelluroates with acyl chlorides in acetonitrile. X-ray structure analyses and theoretical calculations of 2-methoxybenzoic anhydride and bis(2-methoxybenzoyl sulfide, selenide and telluride were carried out. The two 2-MeOC6H4CO moieties of bis(2-methoxybenzoyl telluride are nearly planar and the two methoxy oxygen atoms intramolecularly coordinate to the central tellurium atom from both side of C(11-Te(11-C(22 plane. In contrast, the oxygen and sulfur isologues (2-MeOC6H4CO2E (E = O, S, show that one of the two methoxy oxygen atoms contacts with the oxygen atom of the carbonyl group connected to the same benzene ring. The structure of di(2-methoxybenzoyl selenide which was obtained by MO calculation resembles that of tellurium isologues rather than the corresponding oxygen and sulfur isologues. The reactions of di(aroyl tellurides with Grignard reagents lead to the formation of tellurocarboxylato magnesium complexes [MgBr][R(C=TeO].

  1. Super-resolution readout property of bismuth-doped antimony-based thin film as a functional mask for read-only memory

    Science.gov (United States)

    Lu, Xinmiao; Wu, Yiqun; Wang, Yang; Wei, Jingsong

    2012-09-01

    Bismuth-doped antimony-based (Sb100- x Bi x , x=2.46) thin films were presented as a functional mask for super-resolution readout of read-only memory (ROM). The pit size of the ROM was 390 nm, and super-resolution readout was realized on a dynamic tester with laser wavelength of 780 nm and the numerical aperture of the focusing objective lens of 0.45. The carrier-to-noise ratio (CNR) of 22 dB, readout threshold power of 0.8 mW and super-resolution readout cycles of 2×104 was achieved. The influence of film thickness and readout power on CNR was investigated. The reflectivity and transmittance of the film with different temperature at wavelength of 780 nm were detected, and the super-resolution mechanism of the bismuth-doped antimony-based thin films as the functional mask layer was discussed.

  2. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons

    Science.gov (United States)

    Hong, Seung Sae; Cha, Judy J.; Kong, Desheng; Cui, Yi

    2012-03-01

    A topological insulator is the state of quantum matter possessing gapless spin-locking surface states across the bulk band gap, which has created new opportunities from novel electronics to energy conversion. However, the large concentration of bulk residual carriers has been a major challenge for revealing the property of the topological surface state by electron transport measurements. Here we report the surface-state-dominant transport in antimony-doped, zinc oxide-encapsulated Bi2Se3 nanoribbons with suppressed bulk electron concentration. In the nanoribbon with sub-10-nm thickness protected by a zinc oxide layer, we position the Fermi levels of the top and bottom surfaces near the Dirac point by electrostatic gating, achieving extremely low two-dimensional carrier concentration of 2×1011 cm-2. The zinc oxide-capped, antimony-doped Bi2Se3 nanostructures provide an attractive materials platform to study fundamental physics in topological insulators, as well as future applications.

  3. Antimoniais empregados no tratamento da leishmaniose: estado da arte Antimonials employed in the treatment of leishmaniaisis: the state of the art

    OpenAIRE

    Susanne Rath; Luciano Augusto Trivelin; Talitha Rebecca Imbrunito; Daniela Maria Tomazela; Marcelo Nunes de Jesús; Percy Calvo Marzal; Heitor Franco de Andrade Junior; André Gustavo Tempone

    2003-01-01

    Antimony preparations are the drugs of choice for the treatment of leishmaniasis over 90 years, a disease that currently affects 12 million people worldwide. Its introduction was based on 19th century concepts of therapeutic effects of metal salts as arsenicals and other metals, most of them abandoned due to toxic effects or better drugs. In the last three decades, there was a great improvement in the knowledge of cell biology and immunology of those infections, but chemotherapy has not been ...

  4. Decreased antimony uptake and overexpression of genes of thiol metabolism are associated with drug resistance in a canine isolate of Leishmania infantum

    OpenAIRE

    Verónica Gómez Pérez; Raquel García-Hernandez; Victoriano Corpas-López; Tomás, Ana M.; Joaquina Martín-Sanchez; Santiago Castanys; Francisco Gamarro

    2016-01-01

    Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania infantum, is one of the most important zoonotic diseases affecting dogs and humans in the Mediterranean area. The presence of infected dogs as the main reservoir host of L. infantum is regarded as the most significant risk for potential human infection. We have studied the susceptibility profile to antimony and other anti-leishmania drugs (amphotericin B, miltefosine, paromomycin) in Leishmania infantum isolates extracted...

  5. Arsenic and antimony determination in refined and unrefined table salts by means of hydride generation atomic absorption spectrometry--comparison of sample decomposition and determination methods

    OpenAIRE

    AKSUNER, Nur; TİRTOM, Vedia Nüket; HENDEN, Emür

    2011-01-01

    An evaluation was made of different digestion methods for the determination of arsenic and antimony in table salt samples prior to hydride generation atomic absorption spectrometric analysis. Microwave acid digestion, classical wet digestion, dry ashing, and fusion were applied to the decomposition of salt samples and optimum conditions were investigated. Samples were decomposed by changing heating time, digestion techniques, and the amount and composition of acid, and then the concen...

  6. Size and temperature dependence of the photoluminescence properties of NIR emitting ternary alloyed mercury cadmium telluride quantum dots

    Science.gov (United States)

    Jagtap, Amardeep M.; Chatterjee, Abhijit; Banerjee, Arup; Babu Pendyala, Naresh; Koteswara Rao, K. S. R.

    2016-04-01

    Exciton-phonon coupling and nonradiative relaxation processes have been investigated in near-infrared (NIR) emitting ternary alloyed mercury cadmium telluride (CdHgTe) quantum dots. Organically capped CdHgTe nanocrystals of sizes varying from 2.5-4.2 nm have been synthesized where emission is in the NIR region of 650-855 nm. Temperature-dependent (15-300 K) photoluminescence (PL) and the decay dynamics of PL at 300 K have been studied to understand the photophysical properties. The PL decay kinetics shows the transition from triexponential to biexponential on increasing the size of the quantom dots (QDs), informing the change in the distribution of the emitting states. The energy gap is found to be following the Varshni relation with a temperature coefficient of 2.1-2.8  ×  10-4 eV K-1. The strength of the electron-phonon coupling, which is reflected in the Huang and Rhys factor S, is found in the range of 1.17-1.68 for QDs with a size of 2.5-4.2 nm. The integrated PL intensity is nearly constant until 50 K, and slowly decreases up to 140 K, beyond which it decreases at a faster rate. The mechanism for PL quenching with temperature is attributed to the presence of nonradiative relaxation channels, where the excited carriers are thermally stimulated to the surface defect/trap states. At temperatures of different region (<140 K and 140-300 K), traps of low (13-25 meV) and high (65-140 meV) activation energies seem to be controlling the quenching of the PL emission. The broadening of emission linewidth is found to due to exciton-acoustic phonon scattering and exciton-longitudinal optical (LO) phonon coupling. The exciton-acoustic phonon scattering coefficient is found to be enhanced up to 55 μeV K-1 due to a stronger confinement effect. These findings give insight into understanding the photophysical properties of CdHgTe QDs and pave the way for their possible applications in the fields of NIR photodetectors and other optoelectronic devices.

  7. Antimony determination in seawater and pore water of marine sediments by means of coprecipitation with Mg(OH)2 and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The study of biogeochemical cycling of trace elements in inshore marine environment is of basic importance in order to understand the long-term distribution of both conventional and radioactive pollutants among the ecosystem components. Antimony is of radio- ecological interest, and its determination in some environmental matrices (seawater, pore water, biota) is always difficult from the analytical point of view. A quick method for antimony determination in seawater and interstitial water of marine sediments, by coprecipitation with Mg(OH)2 and subsequent atomic absorption measurement, is reported. Coprecipitation recovery (about 80% in optimal conditions) was evaluated using both radiotracers and the addition of known amounts of stable element, and turned out to depend on several parameters (percentage of precipitated Mg as compared to the natural content in seawater, ageing of Mg(OH)2, concomitant Fe and Mn concentrations, etc.). The total standard deviation of the proposed method is about 10%. The variance analysis showed that about 90% of total variance is due to the preconcentration procedure (sample handling and random contaminations) and only about 10% is due to the instrumental measurement. The results of antimony determinations in seawater and pore water of marine sediments collected at Montalto di Castro (Central Mediterranean Sea) are presented and discussed

  8. 原子荧光光谱法测定环境空气中锑%Antimony Determination by Atomic Fluorescence Spectrometry

    Institute of Scientific and Technical Information of China (English)

    顾志勇

    2014-01-01

    采用过氯乙烯滤膜采集环境空气中锑,盐酸-氢氟酸混酸体系微波消解滤膜,原子荧光光谱法测定锑。方法前处理操作过程简单、省时、酸用量少、环境污染小,方法的灵敏度和准确度都有很大的提高。采样体积为300L时,空气中锑的最低检出质量浓度为0.002mg/m3。%Antimony in air was sampled using perchloroethylene filter.The filter was dipped into hydrochloric acid and hydrofluoric acid system and digested by microwave.Atomic fluorescence spectrometry was used to detect anti-mony after.This process is simple and time-saving with easy pretreatment,less amount of acid,and less negative impacts on environment.In addition,the accuracy and precision of the process is better than previous methods. The detection limit of antimony in air is 0.002mg/m3 when the volume of air sample is 300 liters when this process was applied.

  9. Analysis of arsenic and antimony distribution within plants growing at an old mine site in Ouche (Cantal, France) and identification of species suitable for site revegetation.

    Science.gov (United States)

    Jana, Ulrike; Chassany, Vincent; Bertrand, Georges; Castrec-Rouelle, Maryse; Aubry, Emmanuel; Boudsocq, Simon; Laffray, Daniel; Repellin, Anne

    2012-11-15

    One of the objectives of this study was to assess the contamination levels in the tailings of an old antimony mine site located in Ouche (Cantal, France). Throughout the 1.3 ha site, homogenous concentrations of antimony and arsenic, a by-product of the operation, were found along 0-0.5 m-deep profiles. Maximum concentrations for antimony and arsenic were 5780 mg kg(-1) dry tailings and 852 mg kg(-1) dry tailings, respectively. Despite the presence of the contaminants and the low pH and organic matter contents of the tailings, several patches of vegetation were found. Botanical identification determined 12 different genera/species. The largest and most abundant plants were adult pines (Pinus sylvestris), birches (Betula pendula) and the bulrush (Juncus effusus). The distribution of the metalloids within specimens of each genera/species was analysed in order to deduce their concentration and translocation capacities. This was the second goal of this work. All plant specimens were highly contaminated with both metalloids. Most were root accumulators with root to shoot translocation factors Plantago major, and Deschampsia flexuosa. PMID:22789654

  10. High frequency of skin reactions in patients with leishmaniasis treated with meglumine antimoniate contaminated with heavy metals: a comparative approach using historical controls

    Directory of Open Access Journals (Sweden)

    Romero Gustavo Adolfo Sierra

    2003-01-01

    Full Text Available We analyzed data from historical controls treated with meglumine antimoniate to compare the frequency of adverse events observed in patients with cutaneous leishmaniasis treated with the same dose of meglumine antimoniate contaminated with heavy metals in an endemic area of the State of Bahia, Brazil. Group A patients were treated in 2000 with the drug produced by Eurofarma Laboratórios Ltda., São Paulo, Brazil (lot A and group B patients were treated in 1996 with the reference drug produced by Rhodia Farma Ltda., São Paulo, Brazil (lot B. We observed an unusual higher frequency of skin reactions in group A patients. However, all type of adverse events observed in group A were also observed in group B. The physico-chemical analysis of these lots revealed that lot A had lower pH and higher concentration of total and trivalent antimony, lead, cadmium, and arsenic. Our findings suggest that the skin reactions could be attributed to heavy metal contamination of lot A.

  11. High frequency of skin reactions in patients with leishmaniasis treated with meglumine antimoniate contaminated with heavy metals: a comparative approach using historical controls.

    Science.gov (United States)

    Romero, Gustavo Adolfo Sierra; Flores M, Rico Marlon de Moraes; Noronha, Elza Ferreira; Macêdo, Vanize de Oliveira

    2003-01-01

    We analyzed data from historical controls treated with meglumine antimoniate to compare the frequency of adverse events observed in patients with cutaneous leishmaniasis treated with the same dose of meglumine antimoniate contaminated with heavy metals in an endemic area of the State of Bahia, Brazil. Group A patients were treated in 2000 with the drug produced by Eurofarma Laborat rios Ltda., S o Paulo, Brazil (lot A) and group B patients were treated in 1996 with the reference drug produced by Rhodia Farma Ltda., S o Paulo, Brazil (lot B). We observed an unusual higher frequency of skin reactions in group A patients. However, all type of adverse events observed in group A were also observed in group B. The physico-chemical analysis of these lots revealed that lot A had lower pH and higher concentration of total and trivalent antimony, lead, cadmium, and arsenic. Our findings suggest that the skin reactions could be attributed to heavy metal contamination of lot A.

  12. A green analytical procedure for sensitive and selective determination of antimony in environmental and biological samples by ligandless cloud point extraction

    Science.gov (United States)

    Rezaei, Vida; Samadi-Maybodi, Abdolraouf

    2012-09-01

    A very simple, environmental friendly and sensitive method based on the cloud point extraction (CPE) separation and spectrophotometric detection has been developed for the determination of antimony. The method is founded on the color reaction of Sb (III) with iodide in acidic medium and subsequent micelle-mediated extraction of the product using the non-ionic surfactant, Triton X-114, in the absence of any chelating agent. The Effects of reaction and extraction parameters were studied and optimum conditions were established. The calibration graph was linear in the range of 0.80-95 ng mL-1 of antimony in the initial solution with r = 0.9994 (n = 9). Detection limit based on three times the standard deviation of the blank (3Sb) was 0.23 ng mL-1 and the relative standard deviation (R.S.D.) for 10 and 70 ng mL-1 of antimony were 3.32 and 1.85% (n = 8), respectively. The proposed method was compared with other methods and favorably applied to evaluate this metal in some real samples, including seawater, antileishmanial drug (glucantime) and human serum.

  13. A new cloud point extraction procedure for determination of inorganic antimony species in beverages and biological samples by flame atomic absorption spectrometry.

    Science.gov (United States)

    Altunay, Nail; Gürkan, Ramazan

    2015-05-15

    A new cloud-point extraction (CPE) for the determination of antimony species in biological and beverages samples has been established with flame atomic absorption spectrometry (FAAS). The method is based on the fact that formation of the competitive ion-pairing complex of Sb(III) and Sb(V) with Victoria Pure Blue BO (VPB(+)) at pH 10. The antimony species were individually detected by FAAS. Under the optimized conditions, the calibration range for Sb(V) is 1-250 μg L(-1) with a detection limit of 0.25 μg L(-1) and sensitive enhancement factor of 76.3 while the calibration range for Sb(III) is 10-400 μg L(-1) with a detection limit of 5.15 μg L(-1) and sensitive enhancement factor of 48.3. The precision as a relative standard deviation is in range of 0.24-2.35%. The method was successfully applied to the speciative determination of antimony species in the samples. The validation was verified by analysis of certified reference materials (CRMs).

  14. Flame-retardancy of a Cellulosic Fabric by the Application of Synergistic Effect between Ammonium Bromide and Antimony (Ⅲ)Oxide

    Institute of Scientific and Technical Information of China (English)

    MOSTASHARI Seyed Morteza; MOAFI Hadi Fallah

    2009-01-01

    The synergistic effect between ammonium bromide and antimony(Ⅲ) oxide as a nondurable finish on the flammability of 100% woven plain cotton fabric(with a density of 144 g/m2,the number of yarns 21 per 10 mm),has been investigated in this study. The laundered totally-dried, weighed specimens were impregnated with suitable concentration individual aqueous ammonium bromide and/or antimony (Ⅲ)oxide suspension solutions and some sets weIle impregnated with appropriate admixed solutions of the both chemicals.A vertical flame spread test Was then carried-out to characterize the flammability of the samples.An acceptable synergistic effect was then experi.enced by using an admixed bath containing 0.1 molar ammonium bromide and O.05 unit formal antimony trioxide solutions for impartation of flame.retardancy to a cotton fabric.The optimum mass of the mixture required to lm.Dart flame-retardancy was about 3.64 g of anhydrous additives per 100 g of fabric.The results obtained are in favor 0f Wall Effect Theory.Moreover synergistic eflfect indicating dehydration of the treated substrate by using this combination via thermogravimetry could be deduced.

  15. Material and detector properties of cadmium manganese telluride (Cd1-xMnxTe) crystals grown by the modified floating-zone method

    Science.gov (United States)

    Hossain, A.; Gu, G. D.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Roy, U. N.; Yang, G.; Liu, T.; Zhong, R.; Schneeloch, J.; James, R. B.

    2015-06-01

    We demonstrated the material- and radiation-detection properties of cadmium manganese telluride (Cd1-xMnxTe; x=0.06), a wide-band-gap semiconductor crystal grown by the modified floating-zone method. We investigated the presence of various bulk defects, such as Te inclusions, twins, and dislocations of several as-grown indium-doped Cd1-xMnxTe crystals using different techniques, viz., IR transmission microscopy, and chemical etching. We then fabricated four planar detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Our experimental results show that CMT crystals grown by the modified floating zone method apparently are free from Te inclusions. However, we still need to optimize our growth parameters to attain high-resistivity, large-volume single-crystal CdMnTe.

  16. Efficient charge transfer and field-induced tunneling transport in hybrid composite device of organic semiconductor and cadmium telluride quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Varade, Vaibhav, E-mail: vaibhav.tvarade@gmail.com; Jagtap, Amardeep M.; Koteswara Rao, K. S. R.; Ramesh, K. P.; Menon, R. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Anjaneyulu, P. [Department of Physics, Gitam University, Hyderabad 502329 (India)

    2015-06-07

    Temperature and photo-dependent current–voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT:PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler–Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (∼ 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Φ{sub B} ≈ 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed.

  17. Investigation of the Internal Electric Field in Cadmium Zinc Telluride Detectors Using the Pockels Effect and the Analysis of Charge Transients

    Science.gov (United States)

    Groza, Michael; Krawczynski, Henic; Garson, Alfred, III; Martin, Jerrad W.; Lee, Kuen; Li, Qiang; Beilicke, Matthias; Cui, Yunlong; Buliga, Vladimir; Guo, Mingsheng; Coca, Constantine; Burger, Arnold

    2010-01-01

    The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is of critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.

  18. Efficient charge transfer and field-induced tunneling transport in hybrid composite device of organic semiconductor and cadmium telluride quantum dots

    International Nuclear Information System (INIS)

    Temperature and photo-dependent current–voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT:PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler–Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (∼ 400%), which is attributed to the charge transfer phenomena. The effective barrier height (ΦB ≈ 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed

  19. Quantitative study of the effect of deposition temperature on antimony incorporation in InAs/InAsSb superlattices

    Science.gov (United States)

    Haugan, H. J.; Mahalingam, K.; Szmulowicz, F.; Brown, G. J.

    2016-02-01

    InAs/InAsSb superlattices (SLs) are being actively explored for infrared detector applications owing to their superior carrier lifetimes. However, antimony (Sb) segregation during growth can alter the properties of the grown material. In this study, using X-ray energy dispersive spectrometry, authors quantify the compositional profile of individual layers and establish epitaxial parameters for high-quality InAs/InAsSb SL materials. Epitaxial conditions are determined for a nominal 7.7 nm InAs/3.5 nm InAs0.7Sb0.3 SL structure tailored for an approximately 6 μm response at 150 K. Since the growth of mixed anion alloys is complicated by the potential reaction of As2 with Sb surfaces, authors varied the deposition temperature (Tg) in order to control As2 surface reactions on Sb surfaces. Authors find that Sb incorporation is suppressed by 21%, with the increase of Tg from 395 to 440 °C. This incorporation likely stems from Sb surface segregation during InAsSb layer growth that is driven by the As-Sb exchange mechanism, which can lead to significant compositional and dimensional deviations from the intended design.

  20. Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide.

    Science.gov (United States)

    Sekhar, Vini C; Nampoothiri, K Madhavan; Mohan, Arya J; Nair, Nimisha R; Bhaskar, Thallada; Pandey, Ashok

    2016-11-15

    Accumulation of electronic waste has increased catastrophically and out of that various plastic resins constitute one of the leading thrown out materials in the electronic machinery. Enrichment medium, containing high impact polystyrene (HIPS) with decabromodiphenyl oxide and antimony trioxide as sole carbon source, was used to isolate microbial cultures. The viability of these cultures in the e-plastic containing mineral medium was further confirmed by triphenyl tetrazolium chloride (TTC) reduction test. Four cultures were identified by 16S rRNA sequencing as Enterobacter sp., Citrobacter sedlakii, Alcaligenes sp. and Brevundimonas diminuta. Biodegradation experiments were carried out in flask level and gelatin supplementation (0.1% w/v) along with HIPS had increased the degradation rate to a maximum of 12.4% (w/w) within 30days. This is the first report for this kind of material. The comparison of FTIR, NMR, and TGA analysis of original and degraded e-plastic films revealed structural changes under microbial treatment. Polystyrene degradation intermediates in the culture supernatant were also detected using HPLC analysis. The gravity of biodegradation was validated by morphological changes under scanning electron microscope. All isolates displayed depolymerase activity to substantiate enzymatic degradation of e-plastic.

  1. Lithium intercalation in sputter deposited antimony-doped tin oxide thin films: Evidence from electrochemical and optical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Montero, J., E-mail: jose.montero@angstrom.uu.se; Granqvist, C. G.; Niklasson, G. A. [Department of Engineering Sciences, The A°ngström Laboratory, Uppsala University, P.O. Box 534, SE-751 21 Uppsala (Sweden); Guillén, C.; Herrero, J. [Department of Energy, Ciemat, Avda. Complutense 40, Ed. 42, E-28040 Madrid (Spain)

    2014-04-21

    Transparent conducting oxides are used as transparent electrical contacts in a variety of applications, including in electrochromic smart windows. In the present work, we performed a study of transparent conducting antimony-doped tin oxide (ATO) thin films by chronopotentiometry in a Li{sup +}-containing electrolyte. The open circuit potential vs. Li was used to investigate ATO band lineups, such as those of the Fermi level and the ionization potential, as well as the dependence of these lineups on the preparation conditions for ATO. Evidence was found for Li{sup +} intercalation when a current pulse was set in a way so as to drive ions from the electrolyte into the ATO lattice. Galvanostatic intermittent titration was then applied to determine the lithium diffusion coefficient within the ATO lattice. The electrochemical density of states of the conducting oxide was studied by means of the transient voltage recorded during the chronopotentiometry experiments. These measurements were possible because, as Li{sup +} intercalation took place, charge compensating electrons filled the lowest part of the conduction band in ATO. Furthermore, the charge insertion modified the optical properties of ATO according to the Drude model.

  2. Antimony segregation in Ge and formation of n-type selectively doped Ge films in molecular beam epitaxy

    International Nuclear Information System (INIS)

    Antimony segregation in Ge(001) films grown by molecular beam epitaxy was studied. A quantitative dependence of the Sb segregation ratio in Ge on growth temperature was revealed experimentally and modeled theoretically taking into account both the terrace-mediated and step-edge-mediated segregation mechanisms. A nearly 5-orders-of-magnitude increase in the Sb segregation ratio in a relatively small temperature range of 180–350 °C was obtained, which allowed to form Ge:Sb doped layers with abrupt boundaries and high crystalline quality using the temperature switching method that was proposed earlier for Si-based structures. This technique was employed for fabrication of different kinds of n-type Ge structures which can be useful for practical applications like heavily doped n+-Ge films or δ-doped layers. Estimation of the doping profiles sharpness yielded the values of 2–5 nm per decade for the concentration gradient at the leading edge and 2–3 nm for the full-width-half-maximum of the Ge:Sb δ-layers. Electrical characterization of grown Ge:Sb structures revealed nearly full electrical activation of Sb atoms and the two-dimensional nature of charge carrier transport in δ-layers

  3. Photocurrent Generation by Photosynthetic Purple Bacterial Reaction Centers Interfaced with a Porous Antimony-Doped Tin Oxide (ATO) Electrode.

    Science.gov (United States)

    Carey, Anne-Marie; Zhang, HaoJie; Mieritz, Daniel; Volosin, Alex; Gardiner, Alastair T; Cogdell, Richard J; Yan, Hao; Seo, Dong-Kyun; Lin, Su; Woodbury, Neal W

    2016-09-28

    The ability to exchange energy and information between biological and electronic materials is critical in the development of hybrid electronic systems in biomedicine, environmental sensing, and energy applications. While sensor technology has been extensively developed to collect detailed molecular information, less work has been done on systems that can specifically modulate the chemistry of the environment with temporal and spatial control. The bacterial photosynthetic reaction center represents an ideal photonic component of such a system in that it is capable of modifying local chemistry via light-driven redox reactions with quantitative control over reaction rates and has inherent spectroscopic probes for monitoring function. Here a well-characterized model system is presented, consisting of a transparent, porous electrode (antimony-doped tin oxide) which is electrochemically coupled to the reaction center via a cytochrome c molecule. Upon illumination, the reaction center performs the 2-step, 2-electron reduction of a ubiquinone derivative which exchanges with oxidized quinone in solution. Electrons from the electrode then move through the cytochrome to reoxidize the reaction center electron donor. The result is a facile platform for performing redox chemistry that can be optically and electronically controlled in time and space.

  4. A novel voltammetric sensor based on carbon nanotubes and nanoparticles of antimony tin oxide for the determination of ractopamine.

    Science.gov (United States)

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet

    2016-02-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with carbon nanotubes (CNTs) and nanoparticles of antimony tin oxide (ATO). The surface layer was characterized by scanning electronmicroscopy (SEM), energy dispersive X-ray diffraction method (EDX) and ATR FT-IR spectroscopy. The proposed electrode was assessed in respect to the electro-oxidation of ractopamine. Compared with a bare GCE and a GCE electrode modified with CNTs, the ATONPs/CNTs/GCE exhibited a great catalytic activity towards the oxidation of ractopamine with a well-defined anodic peak at 600 mV. The current response was linear with the concentration of ractopamine over the range from 10 to 240 nM with a detection limit of 3.3 nM. The proposed electrode enabled the selective determination of ractopamine in the presence of high concentrations of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The proposed electrode was successfully applied for the determination of ractopamine in feed and urine samples. The sensitive and selective determination of ractopamine makes the developed method of great interest for monitoring its therapeutic use and doping control purposes. PMID:26652385

  5. A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield.

    Science.gov (United States)

    Chen, Keqiang; Zhou, Jing; Chen, Wen; Chen, Qiao; Zhou, Peng; Liu, Yueli

    2016-03-01

    Until now, it is a great challenge for the controllable synthesis of copper antimony sulfide (CAS) nanocrystals (NCs), as the reactivity of precursors is quite difficult to be controlled during the synthesis process. In the present work, a novel solution-based method is proposed to synthesize CAS NCs by choosing N,N'-diphenylthiourea as the sulfide precursor, which is favorable for balancing the relative reactivity of Cu and Sb ions. It is found that three phases (CuSbS2, Cu12Sb4S13 and Cu3SbS4) of CAS NCs with size tunability were successfully synthesized for the first time. To the best of our knowledge, the lowest reaction temperature of 110 °C and the highest yield over 90% for CAS NCs were also achieved for the first time, which may be considered to be a green synthesis route compared with other conventional methods. Optical properties indicate that the as-prepared CAS NCs have strong optical absorption in the visible light region of the solar spectrum, and we also observed the band gap tunability of CuSbS2 and Cu3SbS4 materials for the first time. PMID:26875832

  6. FACTORS ASSOCIATED TO ADHERENCE TO DIFFERENT TREATMENT SCHEMES WITH MEGLUMINE ANTIMONIATE IN A CLINICAL TRIAL FOR CUTANEOUS LEISHMANIASIS

    Directory of Open Access Journals (Sweden)

    Madelon Novato Ribeiro

    2014-07-01

    Full Text Available The favorable outcome of the treatment of a disease is influenced by the adherence to therapy. Our objective was to assess factors associated with adherence to treatment of patients included in a clinical trial of equivalence between the standard and alternative treatment schemes with meglumine antimoniate (MA in the treatment of cutaneous leishmaniasis (CL, in the state of Rio de Janeiro. Between 2008 and 2011, 57 patients with CL were interviewed using a questionnaire to collect socioeconomic data. The following methods were used for adherence monitoring: counting of vial surplus, monitoring card, Morisky test and modified Morisky test (without the question regarding the schedule; we observed 82.1% (vial return, 86.0% (monitoring card, 66.7% (Morisky test and 86.0% (modified Morisky test adherence. There was a strong correlation between the method of vial counting and the monitoring card and modified Morisky test. A significant association was observed between greater adherence to treatment and low dose of MA, as well as with a lower number of people sleeping in the same room. We recommend the use of the modified Morisky test to assess adherence to treatment of CL with MA, because it is a simple method and with a good performance, when compared to other methods.

  7. Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption.

    Science.gov (United States)

    Ungureanu, Gabriela; Santos, Sílvia; Boaventura, Rui; Botelho, Cidália

    2015-03-15

    Arsenic and antimony are metalloids, naturally present in the environment but also introduced by human activities. Both elements are toxic and carcinogenic, and their removal from water is of unquestionable importance. The present article begins with an overview of As and Sb chemistry, distribution and toxicity, which are relevant aspects to understand and develop remediation techniques. A brief review of the recent results in analytical methods for speciation and quantification was also provided. The most common As and Sb removal techniques (coagulation/flocculation, oxidation, membrane processes, electrochemical methods and phyto and bioremediation) are presented with discussion of their advantages, drawbacks and the main recent achievements. Literature review on adsorption and biosorption were focused in detail. Considering especially the case of developing countries or rural communities, but also the finite energy resources that over the world are still dependent, recent research have focused especially readily available low-cost adsorbents, as minerals, wastes and biosorbents. Many of these alternative sorbents have been presenting promising results and can be even superior when compared to the commercial ones. Sorption capacities were accurately compiled for As(III,V) and Sb(III,V) species in order to provide to the reader an easy but detailed comparison. Some aspects related to experimental conditions, comparison criteria, lack of research studies, economic aspects and adsorption mechanisms were critically discussed. PMID:25585146

  8. Quadrupole coupling constants and isomeric Moessbauer shifts for halogen-containing gold, platinum, niobium, tantalum and antimony compounds

    International Nuclear Information System (INIS)

    We have analyzed by means of Density functional theory calculations the nuclear quadrupole coupling constants of a range of gold, antimony, platinum, niobium and tantalum compounds. The geometrical parameters and halogen nuclear quadrupole coupling constants obtained by these calculations substantially corresponded to the data of microwave and nuclear quadrupole resonance spectroscopy. An analysis of the quality of the calculations that employ pseudo-potentials and all-electron basis sets for the halogen compounds was carried out. The zero order regular approximation (ZORA) method is shown to be a viable alternative for the calculation of halogen coupling constants in molecules. In addition, the ZORA model, in contrast to the pseudo-potential model, leads to realistic values of all metal nuclear quadrupole coupling constants. From Klopman's approach, it follows that the relationship between the electrostatic bonding and covalent depends on the nature of the central atom. The results on Moessbauer chemical shifts are also in a good agreement with the coordination number of the central atom.

  9. Use of cloud-point preconcentration for spectrophotometric determination of trace amounts of antimony in biological and environmental samples.

    Science.gov (United States)

    El-Sharjawy, Abdel-Azeem M; Amin, Alaa S

    2016-01-01

    This work presents a cloud-point extraction process using the micelle-mediated extraction method for simultaneous preconcentration and determination of Sb(III) and Sb(V) species in biological and environmental samples as a prior preconcentration step to their spectrophotometric determination. The analytical system is based on the selective reaction between Sb(III) and 3-dichloro-6-(3-carboxy-2-hydroxy-1-naphthylazo)quinoxaline (DCHNAQ) in the presence of cetyltrimethylammonium bromide (CTAB) and potassium iodide at pH 4.5. Total Sb concentration was determined after reduction of Sb(V) to Sb(III) in the presence of potassium iodide and ascorbic acid. The optimal reaction conditions and extraction were studied, and the analytical characteristics of the method (e.g., limits of detection and quantification, linear range, preconcentration, improvement factors) were obtained. Linearity for Sb(III) was obeyed in the range of 0.2-20 ng ml(-1). The detection and quantification limits for the determination of Sb(III) were 0.055 and 0.185 ng ml(-1), respectively. The method has a lower detection limit and wider linear range, inexpensive instrument, and low cost, and is more sensitive compared with most other methods. The interference effect of some anions and cations was also studied. The method was applied to the determination of Sb(III) in the presence of Sb(V) and total antimony in blood plasma, urine, biological, and water samples.

  10. Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China.

    Science.gov (United States)

    Sun, Weimin; Xiao, Enzong; Dong, Yiran; Tang, Song; Krumins, Valdis; Ning, Zengping; Sun, Min; Zhao, Yanlong; Wu, Shiliang; Xiao, Tangfu

    2016-04-15

    Located in Southwest China, the Chahe watershed has been severely contaminated by upstream active antimony (Sb) mines. The extremely high concentrations of Sb make the Chahe watershed an excellent model to elucidate the response of indigenous microbial activities within a severe Sb-contaminated environment. In this study, water and surface sediments from six locations in the Chahe watershed with different levels of Sb contamination were analyzed. Illumina sequencing of 16S rRNA amplicons revealed more than 40 phyla from the domain Bacteria and 2 phyla from the domain Archaea. Sequences assigned to the genera Flavobacterium, Sulfuricurvum, Halomonas, Shewanella, Lactobacillus, Acinetobacter, and Geobacter demonstrated high relative abundances in all sequencing libraries. Spearman's rank correlations indicated that a number of microbial phylotypes were positively correlated with different speciation of Sb, suggesting potential roles of these phylotypes in microbial Sb cycling. Canonical correspondence analysis further demonstrated that geochemical parameters, including water temperature, pH, total Fe, sulfate, aqueous Sb, and Eh, significantly structured the overall microbial community in Chahe watershed samples. Our findings offer a direct and reliable reference to the diversity of microbial communities in the presence of extremely high Sb concentrations, and may have potential implications for in situ bioremediation strategies of Sb contaminated sites. PMID:26820933

  11. Cadmium telluride module development

    Energy Technology Data Exchange (ETDEWEB)

    Albrigth, S.P.; Chamberlin, R.R.; Jordan, J.F. (Photon Energy, Inc., El Paso, TX (USA))

    1991-05-01

    Efficiencies of up to 12.3% have been achieved on small devices. It is expected that 14% efficiency will be exceeded on small devices by improving the fill factors on the present devices in the reasonably near future. Efficiencies in the range 16%-18% are expected to be achieved in the longer term. Modules of 6 W, approximately 929 cm{sup 2} in area with an active area efficiency of over 8% (aperture efficiency of 7.3%) have been achieved. The feasibility of producing 4 ft{sup 2} modules of CdS/CdTe has been shown and requires further efforts in order to realize the overall potentials. The structural integrity of the encapsulation design has been studied by thermal cycling and outdoor life testing. Submodules have been life tested for over 270 days with no observable degradation by the SERI Outdoor Reliability and Life Testing Laboratory. In addition to further optimization of materials and device structure, module output in the future will be increased by an improvement in the uniformity of the deposition process, and by minimizing the loss of active area due to cell division interconnections. Module output is expected to attain 135 W m{sup -2} in the mid 1990s and over 150 W m{sup -2} in the long term. (orig.).

  12. STUDY ON THE REMOVAL OF ANTIMONY FOR PRODUCING SODIUM STANNATE BY TIN SLAG%锡渣生产锡酸钠中除锑的研究

    Institute of Scientific and Technical Information of China (English)

    卢丹艳

    2012-01-01

    利用生产硫酸亚锡、氯化亚锡、锡:扮的含锡废料生产锡酸钠,生产成本低,但在这过程中需要除去的杂质也相对比较多。文章对除锑的工艺参数和条件进行了研究,重点探讨了除锑温度、除锑时间、除锑后溶液静置沉降时间等因素对锑效果的影响。结果表明,采用该工艺,Sb的脱除率为95.3%,产品质量符合Sn-42等级标准。%waste material that contains tin and can be used for producing Stannous sulfate, Stannous chloride and Tin powder is use for producing Sodium stannate. The cost of production may stay at a relative low level. But It needs to get rid of More impurities, Relatively speaking .In this paper, the process parameters and conditions of the removal of Antimony are studied. The factors such as the temperature and time of the removal of Antimony and time of sedimentation time of the Solution are discussed, which have an influence on the removal of Antimony. It is shown that, using this technology, removal rate of Sb is 95.3%, and the Product quality is In accordance with the grading standard of Sn 42.

  13. Development of a non-chromatographic method for the speciation analysis of inorganic antimony in mushroom samples by hydride generation atomic fluorescence spectrometry

    Science.gov (United States)

    Sousa Ferreira, Hadla; Costa Ferreira, Sergio Luis; Cervera, M. Luisa; de la Guardia, Miguel

    2009-06-01

    A simple and sensitive method has been developed for the direct determination of toxic species of antimony in mushroom samples by hydride generation atomic fluorescence spectrometry (HG AFS). The determination of Sb(III) and Sb(V) was based on the efficiency of hydride generation employing NaBH 4, with and without a previous KI reduction, using proportional equations corresponding to the two different measurement conditions. The extraction efficiency of total antimony and the stability of Sb(III) and Sb(V) in different extraction media (nitric, sulfuric, hydrochloric, acetic acid, methanol and ethanol) were evaluated. Results demonstrated that, based on the extraction yield and the stability of extracts, 0.5 mol L - 1 H 2SO 4 proved to be the best extracting solution for the speciation analysis of antimony in mushroom samples. The limits of detection of the developed methodology were 0.6 and 1.1 ng g - 1 for Sb(III) and Sb(V), respectively. The relative standard derivation was 3.8% (14.7 ng g - 1 ) for Sb(V) and 5.1% (4.6 ng g - 1 ) for Sb(III). The recovery values obtained for Sb(III) and Sb(V) varied from 94 to 106% and from 98 to 105%, respectively. The method has been applied to determine Sb(III), Sb(V) and total Sb in five different mushroom samples; the Sb(III) content varied from 4.6 to 11.4 ng g - 1 and Sb(V) from 14.7 to 21.2 ng g - 1 . The accuracy of the method was confirmed by the analysis of a certified reference material of tomato leaves.

  14. Preparation of Highly Dispersed Antimony-doped Tin Oxide Nano-powder via Ion-exchange Hydrolysis of SnCl4 and SbCl3 and Azeotropic Drying

    Institute of Scientific and Technical Information of China (English)

    YANG Fen; ZHANG Xue-jun; TIAN Fang; WU Xu; GAN Fu-xing

    2007-01-01

    Antimony-doped tin hydroxide colloid precipitates have been synthesized by hydrolysis of SnCl4 and SbCl3 using: (1) an ion-exchange hydrolysis to remove chlorine ions, and (2) isoamyl acetate as an azeotropic solvent to obviate water. The obtained dried powder is of high dispersivity without any need for further grinding. The size and dispersivity of the final particles are investigated with the aid of TG-DTA, BET, XRD and TEM. After having calcined, the antimony-doped tin oxide nanopowder possesses a tetragonal rutile structure with high dispersivity, uniform particles and low hard agglomeration.

  15. Facilitated extracellular electron transfer of Shewanella loihica PV-4 by antimony-doped tin oxide nanoparticles as active microelectrodes

    Science.gov (United States)

    Zhang, Xiaojian; Liu, Huan; Wang, Jinrong; Ren, Guangyuan; Xie, Beizhen; Liu, Hong; Zhu, Ying; Jiang, Lei

    2015-11-01

    Dissimilatory metal reducing bacteria are capable of extracellular electron transfer (EET) to insoluble metal oxides as external electron acceptors for their anaerobic respiration, which is recognized as an important energy-conversion process in natural and engineered environments, such as in mineral cycling, bioremediation, and microbial fuel/electrolysis cells. However, the low EET efficiency remains one of the major bottlenecks for its practical application. We report firstly that the microbial current generated by Shewanella loihica PV-4 (S. loihica PV-4) could be greatly improved that is up to ca. 115 fold, by adding antimony-doped tin oxide (ATO) nanoparticles in the electrochemical reactor. The results demonstrate that the biocompatible, electrically conductive ATO nanoparticles acted as active microelectrodes could facilitate the formation of a cells/ATO composite biofilm and the reduction of the outer membrane c-type cytochromes (OM c-Cyts) that are beneficial for the electron transfer from cells to electrode. Meanwhile, a synergistic effect between the participation of OM c-Cyts and the accelerated EET mediated by cell-secreted flavins may play an important role for the enhanced current generation in the presence of ATO nanoparticles. Moreover, it is worth noting that the TCA cycle in S. loihica PV-4 cells is activated by adding ATO nanoparticles, even if the potential is poised at +0.2 V, thereby also improving the EET process. The results presented here may provide a simple and effective strategy to boost the EET of S. loihica PV-4 cells, which is conducive to providing potential applications in bioelectrochemical systems.Dissimilatory metal reducing bacteria are capable of extracellular electron transfer (EET) to insoluble metal oxides as external electron acceptors for their anaerobic respiration, which is recognized as an important energy-conversion process in natural and engineered environments, such as in mineral cycling, bioremediation, and

  16. Effect of the antimony thin-film deposition sequence on copper-silicon interdiffusion: Vpliv zaporedja nanosa tankih plasti antimona na interdifuzijo baker-silicij:

    OpenAIRE

    Chaouki, Benazzouz; Fouzia, Zekkar; Mahfoud, Benkerri; Mokhtar, Boudissa; Mounir, Reffas; Nasser, Menni

    2012-01-01

    In this work we present a study of the effect of an antimony layer on the interdiffusion and formation of copper silicides while inverting the sequence of Cu and Sb deposition on Si(111) substrates. Thermal evaporation was used to deposit Cu/Sb and Sb/Cu bilayers on a Si(111) substrate heated at 100 °C, without breaking the vacuum. XRD and RBS analysis showed, for samples heat treated at 200 °C and 400 °C, a segregation of the three elements (i.e., Cu, Sb and Si) to the surface and diffusion ...

  17. Comparative study on the corrosion behavior of the cold rolled and hot rolled low-alloy steels containing copper and antimony in flue gas desulfurization environment

    Science.gov (United States)

    Park, S. A.; Kim, J. G.; He, Y. S.; Shin, K. S.; Yoon, J. B.

    2014-12-01

    The correlation between the corrosion and microstructual characteristics of cold rolled and hot rolled low-alloy steels containing copper and antimony was established. The corrosion behavior of the specimens used in flue gas desulfurization systems was examined by electrochemical and weight loss measurements in an aggressive solution of 16.9 vol % H2SO4 + 0.35 vol % HCl at 60°C, pH 0.3. It has been shown that the corrosion rate of hot rolled steel is lower than that of cold rolled steel. The corrosion rate of cold rolled steel was increased by grain refinement, inclusion formation, and preferred grain orientation.

  18. New and rapid access to synthesis of novel polysubstituted imidazoles using antimony trichloride and stannous chloride dihydrate as effective and reusable catalysts

    Indian Academy of Sciences (India)

    Leyla Poorali; Bahador Karami; Khalil Eskandari; Mahboobeh Azizi

    2013-05-01

    In this work, new, efficient and environmentally adapted synthesis of polysubstituted imidazoles in one-pot is repoted. The multicomponent reaction of various aldehydes, benzil, aliphatic and aromatic primary amines and ammonium acetate under solvent-free condition is explained. The highly efficient role of antimony trichloride and stannous chloride dihydrate as catalyst in this synthesis was shown and their effects on the reaction process were studied. By this advantage, several polysubstituted imidazoles as pharmaceutical important molecules can be prepared in high yield and high purity. This method is a very easy and rapid for the synthesis of imidazole derivatives.

  19. Double blind, randomized controlled trial, to evaluate the effectiveness of a controlled nitric oxide releasing patch versus meglumine antimoniate in the treatment of cutaneous leishmaniasis [NCT00317629

    Directory of Open Access Journals (Sweden)

    Silva Federico A

    2006-05-01

    Full Text Available Abstract Background Cutaneous Leishmaniasis is a worldwide disease, endemic in 88 countries, that has shown an increasing incidence over the last two decades. So far, pentavalent antimony compounds have been considered the treatment of choice, with a percentage of cure of about 85%. However, the high efficacy of these drugs is counteracted by their many disadvantages and adverse events. Previous studies have shown nitric oxide to be a potential alternative treatment when administered topically with no serious adverse events. However, due to the unstable nitric oxide release, the topical donors needed to be applied frequently, making the adherence to the treatment difficult. The electrospinning technique has allowed the production of a multilayer transdermal patch that produces a continuous and stable nitric oxide release. The main objective of this study is to evaluate this novel nitric oxide topical donor for the treatment of cutaneous leishmaniasis. Methods and design A double-blind, randomized, double-masked, placebo-controlled clinical trial, including 620 patients from endemic areas for Leishmaniasis in Colombia was designed to investigate whether this patch is as effective as meglumine antimoniate for the treatment of cutaneous leishmaniasis but with less adverse events. Subjects with ulcers characteristic of cutaneous leishmaniasis will be medically evaluated and laboratory tests and parasitological confirmation performed. After checking the inclusion/exclusion criteria, the patients will be randomly assigned to one of two groups. During 20 days Group 1 will receive simultaneously meglumine antimoniate and placebo of nitric oxide patches while Group 2 will receive placebo of meglumine antimoniate and active nitric oxide patches. During the treatment visits, the medications will be daily administered and the presence of adverse events assessed. During the follow-up, the research group will visit the patients at days 21, 45, 90 and 180. The

  20. Preparation and Characterization of Antimony Doped Tin Oxide Thin Films Synthesized by Co-Evaporation of Sn and Sb using Plasma Assisted Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    C. Jariwala

    2013-05-01

    Full Text Available Tin oxide (SnO2 thin films are having promising properties such as high visible transmittance and low electric resistivity, makes them very important transparent conductor in a variety of optoelectronics devices. Further, doping with pentavalent impurity such as Antimony (Sb enhances its conductivity considerably. In order to study the effect of Antimony doping, Antimony doped tin oxide (SnO2 : Sb thin films have been prepared by the co-evaporation of Sn and Sb using Plasma Assisted Thermal Evaporation (PATE in oxygen (O2 partial pressure at various doping level from 4% to 25%. The influence of various Sb doping levels on the compositional, electrical, optical and structural properties have been investigated using Energy Dispersive X-ray (EDX spectroscopy, Ultraviolet-Visible (UV-VIS transmission spectroscopy, four-probe resistivity measurement and X-ray Diffraction (XRD, respectively. EDX studies confirmed the different Sb doping levels in the grown films from 4 % to 25 %, while electrical resistivity is obtained in range of 0.36 to 9.5 Ohmcm using four-probe setup for 4 % to 25 % Sb doping levels. Transmittance spectra measured in UV-VIS range for Sb doped films show reduction in an average transmittance in respect to increase in Sb doping levels in the grown films. Whereas, XRD analysis reveals that higher Sb doping of 25 % induce the precipitation of antimony oxide (Sb2O3 phase and its precipitation suppressed the growth of SnO2 peaks as well as responsible for reduction in conductivity and transparency. The best electrical resistivity of optimized SnO2 : Sb (5 % is 0.36 Ohmcm without deteriorating the high (~ 80 % average transmittance in the wavelength region 300-800 nm in comparison to undoped SnO2 film (6.57 Ohmcm , confirm the usefulness of SnO2 : Sb (5 % films for device applications.