WorldWideScience

Sample records for antimony hydrides

  1. Nanometric Antimony Powder Synthesis by Activated Alkaline Hydride Reduction of Antimony Pentachloride

    International Nuclear Information System (INIS)

    A novel chemical reduction method using an activated alkaline hydride (LiH or NaH-t-BuONa) in tetrahydrofuran solvent has been applied to antimony salt reduction. X-ray diffraction and transmission electron microscopy studies have been carried out to characterize the morphology and structure of the materials. Alkali hydride nature influence has been proved. In both cases the process allows to prepare antimony particles in nanometer range from few nanometers to about 20nm which could be used as anodic materials for lithium-ion batteries. With lithium hydride well-crystallized particles inclined to agglomeration were observed whereas finely dispersed amorphous particles were pointing out after activated sodium hydride reduction

  2. Determination of antimony in environment samples by gas phase chemiluminescence detection following flow injection hydride generation and cryotrapping.

    Science.gov (United States)

    Ye, Yousheng; Sang, Jianchi; Ma, Hongbing; Tao, Guanhong

    2010-06-15

    A novel method for the determination of antimony in environmental samples was developed with gas phase chemiluminescence detection following flow injection hydride generation and cryotrapping. The stibine, generated from samples by borohydride reduction of antimony using flow injection technique, was separated by using a new gas-liquid separator, dried with an ice-salt cryogenic bath and concentrated in a glass U-tube immersed in liquid nitrogen. Re-vaporization of stibine based on its boiling point was achieved by allowing the tube to warm at room temperature. A gas phase chemiluminescence signal was produced during the ozonation of the hydride in a reflective chamber. Under optimal conditions, the proposed method was characterized by a wide linear calibration range from 1.0microgL(-1) to 10.0mgL(-1) with a detection limit of 0.18microgL(-1) (n=11). The relative standard deviation for 10.0microgL(-1) antimony was 3.56% (n=11) and the sampling rate was 15 samples h(-1). Blank signal was reduced by the purification of reagents and the interference from transition metal ions was eliminated by the addition of L-cysteine into samples. The method was applied to the determination of antimony in environmental samples with satisfactory results. PMID:20441930

  3. Development of an analytical method for antimony speciation in vegetables by HPLC-hydride generation-atomic fluorescence spectrometry.

    Science.gov (United States)

    Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea; Neaman, Alexander; Quiroz, Waldo

    2012-01-01

    A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts. PMID:22970588

  4. Flow analysis-hydride generation-gas phase derivative molecular absorption spectrophotometric determination of antimony in antileishmanial drugs

    Directory of Open Access Journals (Sweden)

    Máximo Gallignani

    2009-01-01

    Full Text Available In the present work, the development of a method based on the coupling of flow analysis (FA, hydride generation (HG, and derivative molecular absorption spectrophotometry (D-EAM in gas phase (GP, is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm of the absorption spectrum (190 - 300 nm is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.

  5. Development of a MSFIA system for sequential determination of antimony, arsenic and selenium using hydride generation atomic fluorescence spectrometry.

    Science.gov (United States)

    de Santana, Fernanda A; Portugal, Lindomar A; Serra, Antonio M; Ferrer, Laura; Cerdà, Víctor; Ferreira, Sergio L C

    2016-08-15

    This paper proposed a multisyringe flow injection analysis (MSFIA) system for antimony, arsenic and selenium determination in peanut samples by hydride generation atomic fluorescence spectrometry (HG-AFS). The optimization step of the hydride generation was performed using a two-level full factorial design involving the parameters: hydrochloric acid, sodium tetrahydroborate and potassium iodide concentrations. So, using the chemical conditions optimized, this method allows the determination of these elements employing the external calibration technique using aqueous standards with limits of detection and quantification of 0.04 and 0.14µgL(-1) for antimony, 0.04 and 0.14µgL(-1) for arsenic and 0.14 and 0.37µgL(-1) for selenium, respectively. Additionally, the effect of vanadium, chromium, cobalt, nickel, zinc, copper, iron and molybdenum on the generation of chemical vapour was also studied. The precision expressed as relative standard deviation varied from 1.2 to 3.6% for antimony, 1.8-3.9% for arsenic and 1.8-2% for selenium. The accuracy for arsenic and selenium was confirmed using the certified peach leaves reference material SRM 1547 produced by National Institute of Standard and Technology. The proposed method showed 45 injection throughput (h(-1)) using 1.6mL sample volume for each element, 0.8mL NaBH4 0.5% (w/v) containing NaOH 0.05% (w/v), 0.8mL HCl 5M and 0.4mL KI 14% (w/v) containing L-ascorbic acid 2.5% (w/v). The method was applied to the determination of antimony, arsenic and selenium in peanut samples, which were firstly lyophilized and afterward digested using microwave assisted radiation. Six samples were analyzed and the contents of the elements found were: 28.7-41.3µgkg(-1) for arsenic, 86.4-480.1µgkg(-1) for selenium and 32.6-52.4µgkg(-1) for antimony. Addition/recovery tests were also performed to confirm the method accuracy for the three elements. PMID:27260431

  6. Arsenic and antimony determination in refined and unrefined table salts by means of hydride generation atomic absorption spectrometry--comparison of sample decomposition and determination methods

    OpenAIRE

    AKSUNER, Nur; TİRTOM, Vedia Nüket; HENDEN, Emür

    2011-01-01

    An evaluation was made of different digestion methods for the determination of arsenic and antimony in table salt samples prior to hydride generation atomic absorption spectrometric analysis. Microwave acid digestion, classical wet digestion, dry ashing, and fusion were applied to the decomposition of salt samples and optimum conditions were investigated. Samples were decomposed by changing heating time, digestion techniques, and the amount and composition of acid, and then the concen...

  7. The determination of arsenic, selenium, antimony, and tin in complex environmental samples by hydride generation AAS

    International Nuclear Information System (INIS)

    Hydride generation techniques are used routinely for the determination of As, Se, Sb and Sn in water samples. Advantages include high sensitivity, simplicity, and relative freedom from interferences. Continuous-flow designs greatly reduce analysis time as well as improve precision and allow for automation. However the accurate analysis of more complex environmental samples such as industrial sludges, soil samples, river sediments, and fly ash remains difficult. Numerous contributing factors influence the accuracy of the hydride technique. Sample digestion methods and sample preparation procedures are of critical importance. The digestion must adequately solubilize the elements of interest without loss by volatilization. Sample preparation procedures that guarantee the proper analyte oxidation state and eliminate the nitric acid and inter-element interferences are needed. In this study, difficult environmental samples were analyzed for As, Se, Sb, and Sn by continuous flow hydride generation. Sample preparation methods were optimized to eliminate interferences. The results of spike recovery studies will be presented. Data from the analysis of the same samples by graphite furnace AAS will be presented for comparison of accuracy, precision, and analysis time

  8. Separation of trace antimony and arsenic prior to hydride generation atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    A separation method utilizing a synthetic zeolite (mordenite) was developed in order to eliminate the gas phase interference of Sb(III) on As(III) during quartz furnace hydride generation atomic absorption spectrometric (HGAAS) determination. The efficiency of the proposed separation method in the reduction of suppression effects of transition metal ions on As(III) signal was also investigated. Among the volatile hydride-forming elements and their different oxidation states tested (Sb(III), Sb(V), Se(IV), Se(VI), Te(IV), and Te(VI)), only Sb(III) was found to have a signal depression effect even at low (μg l-1) concentrations under the experimental conditions employed. It has been shown that mordenite adsorbs Sb(III) quantitatively, even at a concentration of 1000 μg l-1, at pHs greater than two, and also, it reduces the initial concentrations of the transition metal ions to lower levels which can be tolerated in many studies. The adsorption of Sb(III) on mordenite follows the Freundlich isotherm and is endothermic in nature

  9. Development of a non-chromatographic method for the speciation analysis of inorganic antimony in mushroom samples by hydride generation atomic fluorescence spectrometry

    Science.gov (United States)

    Sousa Ferreira, Hadla; Costa Ferreira, Sergio Luis; Cervera, M. Luisa; de la Guardia, Miguel

    2009-06-01

    A simple and sensitive method has been developed for the direct determination of toxic species of antimony in mushroom samples by hydride generation atomic fluorescence spectrometry (HG AFS). The determination of Sb(III) and Sb(V) was based on the efficiency of hydride generation employing NaBH 4, with and without a previous KI reduction, using proportional equations corresponding to the two different measurement conditions. The extraction efficiency of total antimony and the stability of Sb(III) and Sb(V) in different extraction media (nitric, sulfuric, hydrochloric, acetic acid, methanol and ethanol) were evaluated. Results demonstrated that, based on the extraction yield and the stability of extracts, 0.5 mol L - 1 H 2SO 4 proved to be the best extracting solution for the speciation analysis of antimony in mushroom samples. The limits of detection of the developed methodology were 0.6 and 1.1 ng g - 1 for Sb(III) and Sb(V), respectively. The relative standard derivation was 3.8% (14.7 ng g - 1 ) for Sb(V) and 5.1% (4.6 ng g - 1 ) for Sb(III). The recovery values obtained for Sb(III) and Sb(V) varied from 94 to 106% and from 98 to 105%, respectively. The method has been applied to determine Sb(III), Sb(V) and total Sb in five different mushroom samples; the Sb(III) content varied from 4.6 to 11.4 ng g - 1 and Sb(V) from 14.7 to 21.2 ng g - 1 . The accuracy of the method was confirmed by the analysis of a certified reference material of tomato leaves.

  10. Trapping interference effects of arsenic, antimony and bismuth hydrides in collection of selenium hydride within iridium-modified transversally-heated graphite tube atomizer

    Czech Academy of Sciences Publication Activity Database

    Furdíková, Zuzana; Dočekal, Bohumil

    2009-01-01

    Roč. 64, č. 4 (2009), s. 323-328. ISSN 0584-8547 R&D Projects: GA ČR GA203/06/1441 Institutional research plan: CEZ:AV0Z40310501 Keywords : selenium hydride trapping * arsine * stibine Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.719, year: 2009

  11. Antimony Toxicity

    Directory of Open Access Journals (Sweden)

    Shyam Sundar

    2010-12-01

    Full Text Available Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The major toxic side-effects of antimonials as a result of therapy are cardiotoxicity (~9% of patients and pancreatitis, which is seen commonly in HIV and visceral leishmaniasis co-infections. Quality control of each batch of drugs produced and regular monitoring for toxicity is required when antimonials are used therapeutically.

  12. 氢化物发生原子荧光法测定稻田土中的锑形态%Determination of antimony species in rice paddy soils by hydride generation atomic fluorescence spetrometry

    Institute of Scientific and Technical Information of China (English)

    郎春燕; 周英; 赖晨焕

    2012-01-01

    Antimony species in rice paddy soils in east suburb of Chengdu were determined by hydride generation-atomic fluorescence spectrometry using aqua regia as a digestant and sequential extraction method. The detection limit of Sb was 0. 108 μg/L,and the recoveries of Sb were 96. 9% ~ 104. 8%. The results showed that the interferences from Cu2+ 、Co2+ 、Se4+ 、Sn2 +、Zn2+、Pb2+、As3+ 、As5+ 、Hg2+ which possibly existed in soils could be efficiently eliminated by using the mixture of thiourea and ascorbic acid. The concentrations of antimony were in the range from 0. 92 mg/kg to 2. 52 mg/kg in samples. The average concentration was 1. 76 mg/kg. The results were not much higher than the standard concentrations of Sb in soils in SiChuan( ≈1. 70 mg/kg, 1991). In the horizontal direction, the distribution of antimony species was different due to different soil conditions of rice paddy. The concentration of antimony species in the studied rice paddy soils generally followed the direction of residual phase > organic/sulphidic phase > Fe/Mn hydrous oxides > carbonate fraction > cation exchangeable. There was a very small proportion of cation exchangeable which could be easily absorbed by plants. In the vertical direction, the concentrations of antimony species had a decreasing tendency with the increased depth of soil.%采用王水消解及逐级浸提技术,以氢化物发生-原子荧光法对成都东郊稻田土中的Sb形态进行了分析,方法检出限为0.108 μg/L,回收率为96.9%~104.8%.加入硫脲-抗坏血酸溶液后,土壤样品中可能存在的金属离子Cu2+、Co2+、Se4、Sn2+、Zn2+、pb2+、As3+、As5+、Hg2+对Sb的干扰可以有效地消除;样品Sb含量在0.92 ~2.52 mg/kg之间波动,平均值为1.76 mg/kg,与四川省土壤Sb背景浓度(≈1.70 mg/kg,1991)相比相差不大.水平方向上,各形态Sb的浓度因所处稻田条件的不同而分布各异,大体呈以下规律:残渣态>有机/硫化物结合态>铁/锰

  13. 流动注射在线离子交换分离富集-氢化物发生原子荧光光谱法测定铜合金中痕量锑%Determination of trace antimony in copper alloys by flow injection on-line ion-exchange separation and enrichment-hydride generation atomic fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    吴良俊; 邱海鸥; 郝志红; 袁红战; 郑洪涛

    2009-01-01

    A method for the determination of trace antimony in copper by flow injection on-line ion-exchange separation and enrichment-hydride generation atomic fluorescence spectrometry is suggested. The manifolds and operating program for ftlow injection on-line ion-exchange were designed and chemical conditions were optimized. Antimony complex was absorbed on strongly basic anion exchange resin 717 with 1. 4 mol/L HC1 as absorbent medium and 2. 0 mol/L HNO_3 for elution. The interference of co-existent elements (i-ron, nickel, lead, etc) was eliminated while antimony was enriched and was determined by hydride generation-atomic fluorescence spectrometry. The method is easy to operate and fast, and has lesser pollution to environment. The linear range is 0. 2-120μg/L and the RSD is 3%~5% with detection limit of 0. 05 μg/L. The results for determination of antimony in standard samples of copper alloys are satisfactory.%提出了流动注射离子交换在线分离富集-氢化物发生原子荧光光谱法测定铜合金中痕量锑的分析方法.设计了流动注射在线离子交换的流路和操作程序,优化了各项化学条件.采用717强碱性阴离子交换树脂吸附锑,并能有效消除铁、镍、铅等元素的干扰,也使大量基体元素铜与待测元素分离,锑在1.4 mol/L的HCl介质中上柱,选用2.0 mol/L的HNO_3作为洗脱剂.实现了氢化物发生原子荧光光谱法对铜合金中痕量锑的在线测定.方法操作简便、快速,环境污染小,线性范围为0.15~120 μg/L,相对标准偏差在3%~5%之间,检出限为0.05μg/L.方法应用于铜合金标准样品,结果与推荐值吻合.

  14. Investigation into antimony mobility in sewage sludge fermentation.

    Science.gov (United States)

    Wehmeier, Silvia; Feldmann, Jörg

    2005-12-01

    Antimony is distributed in the environment in inorganic and organic species with different solubility and mobility characters. Here we investigate the transformation of antimony in view of biomethylation during sewage sludge fermentation as a case study for an anaerobic environment. Our approach was to identify if antimony methylation follows the Challenger pathway by using isotopically enriched antimonite (123Sb(v)). The antimony source was subjected to methylation in sewage sludge, an anaerobic dominant methanogenic Archaea community. The antimony species were determined in the gas phase using cryotrapping (CT)-GC-ICP-MS, and in the medium (sewage slude) by hydride generation (HG) prior CT-GC-ICP-MS. The determined 123/121Sb isotope ratios in the volatile trimethylstibine and non-volatile methylantimony species indicated that the methylation follows the proposed methylation pathway. With this approach we were able to quantify 123Sb incorporation into monomethyl-, dimethyl- and trimethylantimony, respectively. The incorporation decreased with further methylation from 91% to 82% and 73%. Volatilisation as trimethystibine was generally lower than 0.1%, however, up to 0.8% of added antimony was found methylated to methylantimony species and mainly accumulated in the cell. Moreover, antimony biomethylation was enhanced by stimulation of the anaerobic communities of methanogenic Archaea and sulfate reducing bacteria (SRB), with the methanogens showing a higher activity. PMID:16307071

  15. Interstellar Hydrides

    CERN Document Server

    Gerin, Maryvonne; Goicoechea, Javier R

    2016-01-01

    Interstellar hydrides -- that is, molecules containing a single heavy element atom with one or more hydrogen atoms -- were among the first molecules detected outside the solar system. They lie at the root of interstellar chemistry, being among the first species to form in initially-atomic gas, along with molecular hydrogen and its associated ions. Because the chemical pathways leading to the formation of interstellar hydrides are relatively simple, the analysis of the observed abundances is relatively straightforward and provides key information about the environments where hydrides are found. Recent years have seen rapid progress in our understanding of interstellar hydrides, thanks largely to far-IR and submillimeter observations performed with the Herschel Space Observatory. In this review, we will discuss observations of interstellar hydrides, along with the advanced modeling approaches that have been used to interpret them, and the unique information that has thereby been obtained.

  16. Separation of traffic related antimony compounds

    International Nuclear Information System (INIS)

    Complete text of publication follows. It is known that most of the brake pads contain Sb2S3 as lubricant to achieve better friction stability. Due to braking the brake lining crumbles away and its Sb content gets into the air. As a result of the temperature increase accompanying the braking a part of the antimony may oxidize to oxides, as Sb2O3 or even to the more stable form, Sb2O4. Since Sb2O3 more readily soluble than the others, its absorption from the lung so its environmental impact effect is more harmful. After a systematic investigation involving solubilization of the solid compounds, citric and tartaric acid as well as 6 mol/dm3 HCl were tested for leaching of trace antimony compounds from natural matrix. To prepare reference material related to these species, soil and activated charcoal was spiked in 10 μg/g concentration with all the three material (Sb2S3, Sb2O3,Sb2O4). separately. Recovery of the different forms was checked by graphite furnace atomic absorption spectrometric (GFAAS) analysis of the leachates. The soil was confirmed to oxidize the sulfide content while the activated charcoal was established to enrich antimony from HCl solution as ion association complex. It was concluded, that Sb2S3 is leached only in slight amount in 4 hours by 0.1-0.5 mol/dm3 citric acid, while leaching of Sb2O3 is quantitative. On the other side, it was proved that Sb2O3 as well as Sb2S3 traces are soluble in 6 HCl solution in 60 min, whilst Sb2O4 is not destroyed. So, the Sb2O3 and Sb2S3 content of a flying dust can be determined. The GFAAS temperature program had to be modified in order to be capable to analyze high organic matrix as citric or tartaric acid even in 0.5 mol/dm3 concentration. Concerning their decomposition temperature an additional step was inserted into the temperature program, pyrolysis on 300 and 400 deg C, respectively. The antimony concentration of the highly acidic leachates were determined by hydride generation GFAAS. The reproducibility of

  17. Antimony and arsenic biogeochemistry in the East China Sea

    Science.gov (United States)

    Ren, Jing-Ling; Zhang, Xu-Zhou; Sun, You-Xu; Liu, Su-Mei; Huang, Daji; Zhang, Jing

    2016-02-01

    The biogeochemical cycles of the metalloid elements arsenic and antimony in the East China Sea (ECS), one of the most important marginal seas for western Pacific, were examined in May 2011. Dissolved inorganic arsenic (As(V) and As(III)) and antimony (Sb(V) and Sb(III)) species were determined by selective hydride generation-atomic fluorescence spectrometry (HG-AFS). Results show that total dissolved inorganic arsenic (TDIAs; [TDIAs]=[As(V)]+[As(III)]) were moderately depleted in the surface water and enriched in the deep water. Arsenite (As(III)) showed different vertical profiles with that of TDIAs, with significant surface enrichment in the middle shelf region where the concentrations of phosphate were extremely low. Speciation of dissolved arsenic was subtly controlled by the stoichiometric molar ratio of arsenate (As(V)) to phosphate. The average As(V)/P ratio for the ECS in spring 2011 was 10.8×10-3, which is higher than previous results and indicates the arsenate stress. The concentrations of total dissolved inorganic antimony (TDISb; [TDISb]=[Sb(V)]+[Sb(III)]) were high near the Changjiang Estuary and the coastal area of Hangzhou Bay and decreased moderately off the coast. TDISb displayed moderate conservative behavior in the ECS that confirms by the correlations with salinity and dissolved aluminum. Different with that of As(III), antimonite (Sb(III)) concentrations were extremely lower in the ECS, with relative higher concentration appeared at the bottom layer which indicates the contribution from sediment-water interface. A preliminary box model was established to estimate the water-mass balance and antimony budgets for the ECS. Compared with other areas in the world, the concentrations of dissolved inorganic arsenic and antimony in the ECS remain at natural levels.

  18. Hydride compressor

    Science.gov (United States)

    Powell, James R.; Salzano, Francis J.

    1978-01-01

    Method of producing high energy pressurized gas working fluid power from a low energy, low temperature heat source, wherein the compression energy is gained by using the low energy heat source to desorb hydrogen gas from a metal hydride bed and the desorbed hydrogen for producing power is recycled to the bed, where it is re-adsorbed, with the recycling being powered by the low energy heat source. In one embodiment, the adsorption-desorption cycle provides a chemical compressor that is powered by the low energy heat source, and the compressor is connected to a regenerative gas turbine having a high energy, high temperature heat source with the recycling being powered by the low energy heat source.

  19. Exploring preconcentration of volatile hydrides in quartz trap for ICP-MS

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Tomáš; Kašpar, M.; Kratzer, Jan; Musil, Stanislav; Dědina, Jiří

    2014. s. 236-236. [Rio Symposium on Atomic Spectrometry /13./. 19.10.2014-24.10.2014, Merida, Yucatan] R&D Projects: GA ČR GA14-23532S; GA ČR(CZ) GPP206/11/P002 Institutional support: RVO:68081715 Keywords : Arsenic * antimony * hydride generation Subject RIV: CB - Analytical Chemistry, Separation

  20. Pentavalent Antimonials: New Perspectives for Old Drugs

    OpenAIRE

    Ribeiro, Raul R.; Cynthia Demicheli; Frédéric Frézard

    2009-01-01

    Pentavalent antimonials, including meglumine antimoniate and sodium stibogluconate, have been used for more than half a century in the therapy of the parasitic disease leishmaniasis. Even though antimonials are still the first-line drugs, they exhibit several limitations, including severe side effects, the need for daily parenteral administration and drug resistance. The molecular structure of antimonials, their metabolism and mechanism of action are still being investigated. Some recent stud...

  1. Synthesis of ruthenium hydride

    Science.gov (United States)

    Kuzovnikov, M. A.; Tkacz, M.

    2016-02-01

    Ruthenium hydride was synthesized at a hydrogen pressure of about 14 GPa in a diamond-anvil cell. Energy-dispersive x-ray diffraction was used to monitor the ruthenium crystal structure as a function of hydrogen pressure up to 30 GPa. The hydride formation was accompanied by phase transition from the original hcp structure of the pristine metal to the fcc structure. Our results confirmed the theoretical prediction of ruthenium hydride formation under hydrogen pressure. The standard Gibbs free energy of the ruthenium hydride formation reaction was calculated assuming the pressure of decomposition as the equilibrium pressure.

  2. Pentavalent Antimonials: New Perspectives for Old Drugs

    Directory of Open Access Journals (Sweden)

    Raul R. Ribeiro

    2009-06-01

    Full Text Available Pentavalent antimonials, including meglumine antimoniate and sodium stibogluconate, have been used for more than half a century in the therapy of the parasitic disease leishmaniasis. Even though antimonials are still the first-line drugs, they exhibit several limitations, including severe side effects, the need for daily parenteral administration and drug resistance. The molecular structure of antimonials, their metabolism and mechanism of action are still being investigated. Some recent studies suggest that pentavalent antimony acts as a prodrug that is converted to active and more toxic trivalent antimony. Other works support the direct involvement of pentavalent antimony. Recent data suggest that the biomolecules, thiols and ribonucleosides, may mediate the actions of these drugs. This review will summarize the progress to date on the chemistry and biochemistry of pentavalent antimony. It will also present the most recent works being done to improve antimonial chemotherapy. These works include the development of simple synthetic methods for pentavalent antimonials, liposome-based formulations for targeting the Leishmania parasites responsible for visceral leishmaniasis and cyclodextrin-based formulations to promote the oral delivery of antimony.

  3. Determination of arsenic, selenium and antimony by neutron activation analysis. Application to hair samples

    International Nuclear Information System (INIS)

    A fast rabbit system for instrumental activation analysis with reactor neutrons is described. Its use in the determination of selenium in hair is discussed. A survey is given of the correction factors which are inherent to the use of short-lived radionuclides. An alternative to INAA is NAA based on the separation of arsenic, selenium and antimony by hydride evaporation and adsorption to active carbon. Data for some Standard Reference Materials are given. This work was done under research contract 2440/RI/RB with the IAEA

  4. Hydrolysis of lithium hydride

    International Nuclear Information System (INIS)

    Due to its high hydrogen density and unique nuclear chemistry, lithium hydride, in all its isotopic forms, has an unsurpassed place in modem nuclear weapons. The hydrolysis of the material, and the outgassing of hydrogen from the bulk, are crucial to the performance of the material in service. This thesis describes research conducted at AWE Aldermaston, UK, to examine the hydrolysis and hydrogen outgassing from the bulk material, with the aim of ultimately developing the kinetics 8c mechanisms responsible. The basic chemistry is of great interest, especially the reaction with water. This reaction, whilst being fairly extensively studied in the past, has not been conclusively described with an accepted mechanism and associated kinetics. The last significant UK work on the topic was by Imperial College, London, under contract to AW(R)E in the late 1960s. This thesis describes the development of: (i) a solid state NMR spectroscopy technique to examine semi-quantitatively the surface of bulk lithium hydride for its chemical composition, and (ii) a dedicated lithium hydride inert atmosphere gravimetric analysis glove box to study the hydride/water reaction. Solid State NMR Spectroscopy has been utilised for the first time to probe the hydride/hydroxide ratio of partially hydrolysed lithium hydride. 6Li chemical shifts have been established for species of interest and extremely long, up to 17 hours, T1 relaxation times have been measured for 6Li hydride and hydroxide. A method for semi-quantitatively determining the hydroxide/hydride composition of a partially reacted sample has been developed, based on a 'dual-scan' technique using one short and one long pulse sequence. Gravimetric analysis has been developed for lithium hydride/humidity studies. This facility fully contains gravimetric analysis within an argon glove box, with the ability to control the sample atmosphere from room temperature to 60 deg C and from 0.5 to 40 percent relative humidity. The hydrolysis of

  5. Lightweight hydride storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W. [Sandia National Labs., Livermore, CA (United States)

    1995-09-01

    The need for lightweight hydrides in vehicular applications has prompted considerable research into the use of magnesium and its alloys. Although this earlier work has provided some improved performance in operating temperature and pressure, substantial improvements are needed before these materials will significantly enhance the performance of an engineered system on a vehicle. We are extending the work of previous investigators on Mg alloys to reduce the operating temperature and hydride heat of formation in light weight materials. Two important results will be discussed in this paper: (1) a promising new alloy hydride was found which has better pressure-temperature characteristics than any previous Mg alloy and, (2) a new fabrication process for existing Mg alloys was developed and demonstrated. The new alloy hydride is composed of magnesium, aluminum and nickel. It has an equilibrium hydrogen overpressure of 1.3 atm. at 200{degrees}C and a storage capacity between 3 and 4 wt.% hydrogen. A hydrogen release rate of approximately 5 x 10{sup -4} moles-H{sub 2}/gm-min was measured at 200{degrees}C. The hydride heat of formation was found to be 13.5 - 14 kcal/mole-H{sub 2}, somewhat lower than Mg{sub 2}Ni. The new fabrication method takes advantage of the high vapor transport of magnesium. It was found that Mg{sub 2}Ni produced by our low temperature process was better than conventional materials because it was single phase (no Mg phase) and could be fabricated with very small particle sizes. Hydride measurements on this material showed faster kinetic response than conventional material. The technique could potentially be applied to in-situ hydride bed fabrication with improved packing density, release kinetics, thermal properties and mechanical stability.

  6. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  7. FIRST REPORT ON OTOTOXICITY OF MEGLUMINE ANTIMONIATE

    Directory of Open Access Journals (Sweden)

    Cláudia Maria Valete-Rosalino

    2014-09-01

    Full Text Available Introduction: Pentavalent antimonials are the first drug of choice in the treatment of tegumentary leishmaniasis. Data on ototoxicity related with such drugs is scarcely available in literature, leading us to develop a study on cochleovestibular functions. Case Report: A case of a tegumentary leishmaniasis patient, a 78-year-old man who presented a substantial increase in auditory threshold with tinnitus and severe rotatory dizziness during the treatment with meglumine antimoniate, is reported. These symptoms worsened in two weeks after treatment was interrupted. Conclusion: Dizziness and tinnitus had already been related to meglumine antimoniate. However, this is the first well documented case of cochlear-vestibular toxicity related to meglumine antimoniate.

  8. Determination of antimony by using tungsten trap atomic absorption spectrometry

    International Nuclear Information System (INIS)

    An electrically heated tungsten coil was used as a trap in the determination of antimony. The technique consists of three steps. Initially, SbH3 is formed by hydride generation procedure; then the analyte species in vapor form are transported to W-coil trap heated at 370 deg. C. Following the preconcentration step, the trap is heated to 895 deg. C; analyte species are revolatilized and transported to the flame-heated quartz atom cell where atomization and the formation of signal take place. The experimental parameters were optimized both for trap and no-trap studies. The most important experimental parameters are concentrations of HCl and NaBH4 solutions, H2 and Ar gas flow rates, and collection and revolatilization temperatures of W-coil. Accuracy was tested using a certified reference material, waste water EU-L-1. Limit of detection for the system is 16 ng l-1 using a sample of 36 ml collected in 4.0 min. Enhancement factor in sensitivity was 17

  9. Metal hydride actuation device

    International Nuclear Information System (INIS)

    A self-recocking actuation device is disclosed. One possible use for it is in conjunction with a pneumatic fire protection system. This invention employs the process known as occlusion to store large amounts of gas in a small volume. Metal hydrides in a chamber are used to store hydrogen in the disclosed preferred embodiment. Upon the application of heat-from a heat source like a resistance heater-the charged metal hydride releases its hydrogen (H2) in a chamber having only one exit opening which empties into a sealed bellows. This bellows contacts a piston located in another chamber wherein a biased resetting spring is provided to normally maintain the piston in contact with the bellows. As the pressure from the H2 gas builds up, it overcomes the biased spring to move it and the piston along with an associated pin or other actuator. If used to actuate a pneumatic fire protection system, the pin or actuator at the downward side of its stroke in turn, may puncture a shearable diaphragm or in some other way releases the contents of a container containing a second gas, like nitrogen (N2), which is then released from a second exit port in a different chamber to charge the fire protection system. Recocking of the piston begins as the heating of the metal hydride ceases. As cooling takes place the hydrogen is absorbed to reenter the hydride to decrease the gas pressure supplied. The piston's biased resetting spring then recocks the piston to its original position

  10. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  11. Materials engineering of metal hydrides

    International Nuclear Information System (INIS)

    Intermetallic hydrides of the AB5 type have enthalpies in the range valid for chemical heat pumps. A scheme for manufacturing hydrides with optimal properties for a chemical heat pump is described, using LaNi/sub 5-x/Al/sub x/ and ZrV/sub 2x/Cr/sub x as examples. The Laves-phase ternary hydrides appear to be good candidates for gettering hydrogen in the Tokamak Fusion Test Reactor

  12. Antimony bioavailability in mine soils

    International Nuclear Information System (INIS)

    Antimony has low bioavailability in mining and smelting contaminated soils and bacterial biosensors are not suitable for its detection. - Five British former mining and smelting sites were investigated and found to have levels of total Sb of up to 700 mg kg-1, indicating high levels of contamination which could be potentially harmful. However, this level of Sb was found to be biologically unavailable over a wide range of pH values, indicating that Sb is relatively unreactive and immobile in the surface layers of the soil, remaining where it is deposited rather than leaching into lower horizons and contaminating ground water. Sb, sparingly soluble in water, was unavailable to the bacterial biosensors tested. The bioluminescence responses were correlated to levels of co-contaminants such as arsenic and copper, rather than to Sb concentrations. This suggests that soil contamination by Sb due to mining and smelting operations is not a severe risk to the environment or human health provided that it is present as immobile species and contaminated sites are not used for purposes which increase the threat of exposure to identified receptors. Co-contaminants such as arsenic and copper are more bioavailable and may therefore be seen as a more significant risk

  13. Perspectives of antimony compounds in oncology

    Institute of Scientific and Technical Information of China (English)

    Pankaj SHARMA; Diego PEREZ; Armando CABRERA; Nee ROSAS; Jose Luis ARIAS

    2008-01-01

    Antimony, a natural element that has been used as a drug for over more than 100 years, has remarkable therapeutic efficacy in patients with acute promyelocytic leukemia. This review focuses on recent advances in developing antimony anti- cancer agents with an emphasis on antimony coordination complexes, Sb (Ⅲ) and Sb (V). These complexes, which include many organometallic complexes, may provide a broader spectrum of antitumoral activity. They were compared with classical platinum anticancer drugs. The review covers the literature data pub- lished up to 2007. A number of antimonials with different antitumoral activities are known and have diverse applications, even though little research has been done on their possibilities. It might be feasible to develop more specific and effective inhibitors for phosphatase-targeted, anticancer therapeutics through the screen- ing of sodium stibogluconate (SSG) and potassium antimonyltartrate-related compounds, which are comprised of antimony conjugated to different organic moieties. For example, SSG appears to be a better inhibitor than suramin which is a compound known for its antineoplastic activity against several types of cancers.

  14. Preparation of nanosized antimony by mechanochemical reduction of antimony sulphide Sb2S3

    International Nuclear Information System (INIS)

    The preparation of nanosized antimony (grain size 19 nm) by high-energy milling of antimony sulphide Sb2S3 with elemental Fe as reducing element is reported. The mechanochemical reduction was performed in a planetary ball mill for 10-180 min. The process is rather straightforward with elemental antimony and iron sulphide (pyrrhotite-4H) being the only solid-state products. The process kinetics as described by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) magnetometry shows that most of the reduction is complete after 60 min of milling

  15. Effects of microwave irradiation on metal hydrides and complex hydrides

    International Nuclear Information System (INIS)

    Effects of single-mode microwave irradiation on metal hydrides, MHn (LiH, MgH2, CaH2, TiH2, VH0.81, ZrH2, and LaH2.48) and complex hydrides MBH4 (LiBH4, NaBH4, and KBH4) were systematically investigated. Among the metal hydrides, TiH2, VH0.81, ZrH2, and LaH2.48 exhibit a rapid heating by microwave irradiation, where small amount of hydrogen (less than 0.5 mass%) are desorbed. On the other hand, LiBH4 is heated above 380 K by microwave irradiation, where 13.7 mass% of hydrogen is desorbed. The rapid heating of metal hydrides such as TiH2, VH0.81, ZrH2, and LaH2.48 are mainly due to the conductive loss. Meanwhile the microwave heating in LiBH4 is attributed to the conductive loss which is caused by a structural transition. The difference in the amount of desorbed hydrogen between metal hydrides and complex hydrides might be caused by the different microwave penetration depth and/or the temperature saturation in the microwave irradiation process. Microwave heating might be applied to hydrogen storage system, though further development of hydrides themselves and engineering techniques are required

  16. The Membrane Electrowinning Separation of Antimony from a Stibnite Concentrate

    Science.gov (United States)

    Yang, Jian-Guang; Yang, Sheng-Hai; Tang, Chao-Bo

    2010-06-01

    The main purpose of this study was to characterize and to extract antimony from a stibnite concentrate through electrowinning. This article reports an account of a study conducted on the optimization of the process parameters for antimony pentachloride circular leaching, purification, and electrowinning of antimony from antimony trichloride solution. The effect of electrowinning parameters, such as antimony and sodium chloride concentration in the catholyte, temperature, current density, polar distance, etc., on the voltage requirement and the current efficiency (CE) of antimony electrodeposition was explored. A maximum CE of more than 97 pct was attained with a catholyte composition of 70-g/L antimony, 25-g/L NaCl, 4.5-mol/L hydrogen ion concentration, with an anolyte composition of 40-g/L antimony trichloride at a temperature of 328 K (55 °C), a 4-cm polar distance, and a cathode current density of 200 A/m2. Under the optimized conditions, the CE was more than 97 pct, and a 99.98 pct antimony plate was obtained on the cathode. The chemical content analysis of the resulting anolyte was indicated to be 97 pct antimony pentachloride and 3 pct antimony trichloride, which could be recycled to leaching tank as the leaching agent.

  17. Synthesis and application of antimony pent(isooctyl thioglycollate)

    Institute of Scientific and Technical Information of China (English)

    LIU You-nian; LI Hong-bing; SHU Wan-gen; CHEN Qi-yuan

    2005-01-01

    A new type of thermal stabilizer, antimony pent(isooctyl thioglycollate)(Sb(SCH2COOC8H17)5), was synthesized by using antimony trioxide, isooctanol and thioglycolic acid in 2 steps. Firstly, antimony trioxide was oxidized into colloidal antimony peroxide. Then antimony peroxide and isooctyl thioglycollate reacted stoichiometrically for 2 h with the yield of 87%. This compound was used as thermal stabilizer for polyvinyl chloride(PVC). The results show that the thermal stability time is 52 min at 200 ℃ by heat-ageing oven test when adding 2.5% thermal stabilizer to PVC resin. Compared with antimony tris(isooctyl thiolycollate), the initial thermal stability of antimony pent(isooctyl thioglycollate) is better than that of antimony tris(isooctyl thioglycollate), while the long-term thermal stability time is shorter than that of antimony tris(isooctyl thioglycollate). Meanwhile, the synergism of antimony pent(isooctyl thioglycollate) with calcium stearate was studied, indicating that when the mass ratio of antimony pent(isooctyl thioglycollate) to calcium stearate is 2:1, the thermal stability time of PVC is 58 min.

  18. Novel methods for the encapsulation of meglumine antimoniate into liposomes

    Directory of Open Access Journals (Sweden)

    F. Frézard

    2000-07-01

    Full Text Available The antimonial drug, meglumine antimoniate, was successfully encapsulated in dehydration-rehydration vesicles and in freeze-dried empty liposomes (FDELs. High encapsulation efficiencies (from 28 to 58% and low weight ratios of lipids to encapsulated antimony (from 1:0.15 to 1:0.3 were achieved. These formulations, contrary to those obtained by conventional methods, can be stored as intermediate lyophilized forms and reconstituted just before use. The efficacy of FDEL-encapsulated meglumine antimoniate was evaluated in hamsters experimentally infected with Leishmania chagasi. A significant reduction of liver parasite burdens was observed in animals treated with this preparation, when compared to control animals treated with empty liposomes. In contrast, free meglumine antimoniate was found to be inefficient when administered at a comparable dose of antimony. This novel liposome-based meglumine antimoniate formulation appears to be promising as a pharmaceutical product for the treatment of visceral leishmaniasis.

  19. Microbial antimony biogeochemistry: Enzymes, regulation, and related metabolic pathways

    Science.gov (United States)

    Li, Jingxin; Qian Wang; Oremland, Ronald S.; Kulp, Thomas R.; Rensing, Christopher; Wang, Gejiao

    2016-01-01

    Antimony (Sb) is a toxic metalloid that occurs widely at trace concentrations in soil, aquatic systems, and the atmosphere. Nowadays, with the development of its new industrial applications and the corresponding expansion of antimony mining activities, the phenomenon of antimony pollution has become an increasingly serious concern. In recent years, research interest in Sb has been growing and reflects a fundamental scientific concern regarding Sb in the environment. In this review, we summarize the recent research on bacterial antimony transformations, especially those regarding antimony uptake, efflux, antimonite oxidation, and antimonate reduction. We conclude that our current understanding of antimony biochemistry and biogeochemistry is roughly equivalent to where that of arsenic was some 20 years ago. This portends the possibility of future discoveries with regard to the ability of microorganisms to conserve energy for their growth from antimony redox reactions and the isolation of new species of “antimonotrophs.”

  20. Vacuum Evaporation Technology for Treating Antimony-Rich Anode Slime

    Science.gov (United States)

    Qiu, Keqiang; Lin, Deqiang; Yang, Xuelin

    2012-11-01

    A vacuum evaporation technology for treating antimony-rich anode slime was developed in this work. Experiments were carried out at temperatures from 873 K to 1073 K and residual gas pressures from 50 Pa to 600 Pa. During vacuum evaporation, silver from the antimony-rich anode slime was left behind in the distilland in a silver alloy containing antimony and lead, and antimony trioxide was evaporated. The experimental results showed that 92% by weight of antimony can be removed, and the silver content in the alloy was up to 12.84%. The antimony trioxide content in the distillate was more than 99.7%, and the distillate can be used directly as zero-grade antimony trioxide (China standard).

  1. Preparation of metallic terbium and terbium hydride

    International Nuclear Information System (INIS)

    A method of metallic terbium preparation is described. The method consists in vacuum thermolysis of terbium hydride prepared as a result of terbium chloride interaction with lithium hydride. The prepared modification of terbium hydride demonstrates a high stability in the air. It is pointed out that problems arising from direct hydridation of the metal are responsible for certain advantages of the terbium hydride preparation method described

  2. Antimony isotopic composition in river waters affected by ancient mining activity.

    Science.gov (United States)

    Resongles, Eléonore; Freydier, Rémi; Casiot, Corinne; Viers, Jérôme; Chmeleff, Jérôme; Elbaz-Poulichet, Françoise

    2015-11-01

    In this study, antimony (Sb) isotopic composition was determined in natural water samples collected along two hydrosystems impacted by historical mining activities: the upper Orb River and the Gardon River watershed (SE, France). Antimony isotope ratio was measured by HG-MC-ICP-MS (Hydride Generation Multi-Collector Inductively Coupled Plasma Mass Spectrometer) after a preconcentration and purification step using a new thiol-cellulose powder (TCP) procedure. The external reproducibility obtained for δ(123)Sb measurements of our in-house Sb isotopic standard solution and a certified reference freshwater was 0.06‰ (2σ). Significant isotopic variations were evident in surface waters from the upper Orb River (-0.06‰≤δ(123)Sb≤+0.11‰) and from the Gardon River watershed (+0.27‰≤δ(123)Sb≤+0.83‰). In particular, streams that drained different former mining sites exploited for Sb or Pb-Zn exhibited contrasted Sb isotopic signature, that may be related to various biogeochemical processes occurring during Sb transfer from rocks, mine wastes and sediments to the water compartment. Nevertheless, Sb isotopic composition appeared to be stable along the Gardon River, which might be attributed to the conservative transport of Sb at distance from mine-impacted streams, due to the relative mobile behavior of Sb(V) in natural oxic waters. This study suggests that Sb isotopic composition could be a useful tool to track pollution sources and/or biogeochemical processes in hydrologic systems. PMID:26452900

  3. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  4. Metal hydride air conditioner

    Institute of Scientific and Technical Information of China (English)

    YANG; Ke; DU; Ping; LU; Man-qi

    2005-01-01

    The relationship among the hydrogen storage properties, cycling characteristics and thermal parameters of the metal hydride air conditioning systems was investigated. Based on a new alloy selection model, three pairs of hydrogen storage alloys, LaNi4.4 Mn0.26 Al0.34 / La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1, LaNi4.61Mn0. 26 Al0.13/La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1 and LaNi4.61 Mn0.26 Al0.13/La0.6 Y0.4 Ni4.8 Mn0. 2, were selected as the working materials for the metal hydride air conditioning system. Studies on the factors affecting the COP of the system showed that higher COP and available hydrogen content need the proper operating temperature and cycling time,large hydrogen storage capacity, flat plateau and small hysterisis of hydrogen alloys, proper original input hydrogen content and mass ratio of the pair of alloys. It also needs small conditioning system was established by using LaNi4.61 Mn0.26 Al0. 13/La0.6 Y0.4 Ni4.8 Mn0.2 alloys as the working materials, which showed that under the operating temperature of 180℃/40℃, a low temperature of 13℃ was reached, with COP =0.38 and Wnet =0.09 kW/kg.

  5. Hydride development for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.; Yang, N.Y.C. [Sandia National Lab., Livermore, CA (United States); Sandrock, G. [SunaTech, Inc., Ringwood, NJ (United States)

    1996-10-01

    The purpose of this project is to develop and demonstrate improved hydride materials for hydrogen storage. The work currently is organized into four tasks: hydride development, bed fabrication, materials support for engineering systems, and IEA Annex 12 activities. At the present time, hydride development is focused on Mg alloys. These materials generally have higher weight densities for storing hydrogen than rare earth or transition metal alloys, but suffer from high operating temperatures, slow kinetic behavior and material stability. The authors approach is to study bulk alloy additions which increase equilibrium overpressure, in combination with stable surface alloy modification and particle size control to improve kinetic properties. This work attempts to build on the considerable previous research in this area, but examines specific alloy systems in greater detail, with attention to known phase properties and structures. The authors have found that specific phases can be produced which have significantly improved hydride properties compared to previous studies.

  6. Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  7. Low density metal hydride foams

    International Nuclear Information System (INIS)

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam. 6 figures

  8. Geoneutrino and Hydridic Earth model

    CERN Document Server

    Bezrukov, Leonid

    2013-01-01

    Uranium, Thorium and Potassium-40 abundances in the Earth were calculated in the frame of Hydridic Earth model. Terrestrial heat producton from U, Th and K40 decays was calculated also. We must admit the existance of Earth expansion process to understand the obtained large value of terrestrial heat producton. The geoneutrino detector with volume more than 5 kT (LENA type) must be constructed to definitely separate between Bulk Silicat Earth model and Hydridic Earth model.

  9. Atomic absorption determination, in metal sulphide concentrates, of the elements that form gaseous hydrides

    International Nuclear Information System (INIS)

    An account is given of the investigational work on the determination of trace amounts of arsenic, antimony, bismuth, germanium, selenium, and tellurium by the technique using hydride generation and atomic-absorption spectrophotometry. The gaseous hydride is generated by reduction with sodium borohydride, and is subsequently swept by a flow of nitrogen into an air-entrained hydrogen-nitrogen flame. The generation equipment used is simple and inexpensive, and can be readily assembled in most laboratories. The optimum parameters were determined for each element. The effects of 31 probable interfering elements were investigated, and it was found that, although the majority did not interfere, severe interference was encountered when copper, nickel, and the noble metals were present. Methods for the elimination of copper and nickel were developed to allow the determination of arsenic, antimony, bismuth, selenium, and tellurium at the lower parts-per-million level in metal sulphide concentrates with an acceptable accuracy and precision. The determination of microgram amounts of germanium was found to be unsatisfactory

  10. In vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    International Nuclear Information System (INIS)

    Pentavalent antimony, as meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam), is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes 122 Sb and 124 Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology. (author)

  11. In vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta Etel Treiger; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Lab. de Biologia Molecular]. E-mail: samanta@usp.br; Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Centro de Radiofarmacia]. E-mail: jaosso@ipen.br; Andrade Junior, Heitor Franco de [Instituto de Medicina Tropical de Sao Paulo (IMT-SP), SP (Brazil). Lab. de Protozoologia]. E-mail:hfandrad@usp.br

    2005-10-15

    Pentavalent antimony, as meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam), is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes {sup 122} Sb and {sup 124} Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology. (author)

  12. In Vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    OpenAIRE

    Samanta Etel Treiger Borborema; Heitor Franco de Andrade Junior; João Alberto Osso Junior; Nanci do Nascimento

    2005-01-01

    Pentavalent antimony, as meglumine antimoniate (Glucantime® ) or sodium stibogluconate (Pentostam® ), is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer...

  13. Mechanical properties and fracture of titanium hydrides

    International Nuclear Information System (INIS)

    Titanium hydrides tend to suffer fracture when their thicknesses reach a critical thickness. Morphology and mechanical property of the hydrides are, however, not well known. The study aims to reveal the hydride morphology and fracture types of the hydrides. Chevron shaped plate hydrides were found to be produced on the surface of pure titanium (Grade 1) and Grade 7 titanium absorbing hydrogen. There were tree types of fracture of the hydrides, i.e., crack in hydride layer, exfoliation of the layer and shear-type fracture of the hydride plates, during the growth of the hydrides and deformation. We next estimated the true stress-strain curves of the hydrides on Grade 1 and 7 titanium using the dual Vickers indentation method, and the critical strain causing the Mode-I fine crack by indentation. Fracture strength and strain of the hydrides in Grade 1 titanium were estimated as 566 MPa and 4.5%, respectively. Those of the hydride in Grade 7 titanium were 498 MPa and 16%. Though the fracture strains estimated from the plastic instability of true stress-strain curves were approximately the half of those estimated by finite element method, the titanium hydrides were estimated to possess some extent of toughness or plastic deformation capability. (author)

  14. Hydrogen storage in magnesium-based hydrides and hydride composites

    International Nuclear Information System (INIS)

    Mg and Mg-based hydrides have attracted much attention because of their high gravimetric hydrogen storage densities and favourable kinetic properties. Due to novel preparation methods and the development of suitable catalysts, hydrogen uptake and desorption is now possible within less than 2 min. However, the hydrogen reaction enthalpy of pure Mg is too high for many applications, for example, for the zero emission car. Therefore, different routes are explored to tailor the hydrogen reaction enthalpy to potential applications. This article summarizes the recent developments concerning sorption properties and thermodynamics of Mg-based hydrides for hydrogen storage applications. In particular, promising strategies to decrease the hydrogen reaction enthalpy by alloying and the use of reactive hydride composites are discussed

  15. A New Reducing Regent: Dichloroindium Hydride

    Institute of Scientific and Technical Information of China (English)

    A. BABA; I. SHIBATA; N. HAYASHI

    2005-01-01

    @@ 1Introduction Among the hydride derivatives of group 13 elements, various types of aluminum hydrides and boron hydrides have been employed as powerful reduction tools. Indium hydrides have not received much attention,whereas the synthesis of indium trihydride (InH3) was reported several decades ago[1]. There have been no precedents for monometallic indium hydrides having practical reactivity, while activated hydrides such as an ate complex LiPhn InH4-n (n = 0- 2) and phosphine-coordinated indium hydrides readily reduce carbonyl compounds. In view of this background, we focused on the development of dichloroindium hydrides (Cl2InH) as novel reducing agents that bear characteristic features in both ionic and radical reactions.

  16. Luminescent properties of aluminum hydride

    International Nuclear Information System (INIS)

    We studied cathodoluminescence and photoluminescence of α-AlH3– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH3 and α-AlH3 irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH3 and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers

  17. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  18. Hydrogen, lithium, and lithium hydride production

    Science.gov (United States)

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  19. Thermomechanical properties of hafnium hydride

    International Nuclear Information System (INIS)

    Fine bulk samples of delta-phase Hf hydride with various hydrogen contents (CH) ranging from 1.62 to 1.72 in the atomic ratio (H/Hf) were prepared, and their thermomechanical properties were characterized. At room temperature, the sound velocity and Vickers hardness were measured. The elastic modulus was calculated from the measured sound velocity. In the temperature range from room temperature to 673 K, the thermal expansion was measured by using a dilatometer, and the linear thermal expansion coefficient was calculated. Empirical equations describing the thermomechanical properties of Hf hydride as a function of CH were proposed. (author)

  20. The exposure to and health effects of antimony

    DEFF Research Database (Denmark)

    Cooper, Ross G.; Harrison, Adrian Paul

    2009-01-01

    . Antimony toxicity is dependent on the exposure dose, duration, route (breathing, eating, drinking, or skin contact), other chemical exposures, age, sex, nutritional status, family traits, life style, and state of health. Chronic exposure to antimony in the air at levels of 9 mg/m3 may exacerbate irritation...

  1. The presence of antimony in various dental filling materials

    International Nuclear Information System (INIS)

    Antimony was determined in a number of non-metallic dental materials currently used for tooth restoration. The method applied was instrumental neutron activation analysis. The concentration of antimony in some of the brands tested was found to be as high as 900 fold that in the normal hard dental tissues. (author)

  2. Pharmacokinetic of antimony in mice with cutaneous Leishmaniasis

    International Nuclear Information System (INIS)

    Cutaneous Leishmaniasis (CL) remains a major world health problem, with about 1.5 million new cases each year. Caused by protozoa Leishmania, in South America, this infection can vary from a chronic skin ulcer, to an erosive mucosal disease and severe facial disfigurement. Pentavalent antimony (Sb+5) as sodium stibogluconate (Pentostam) or meglumine antimoniate (Glucantime) are main drugs for treating most forms of human leishmaniasis. For six decades, despite the recent developments, the effective therapy to cutaneous leishmaniasis has been based on long parenteral courses of such drugs, even though these are fairly costly, toxic and inconvenient to use, without adequate knowledge on their pharmacokinetics or mechanism of action. Pharmacokinetics studies could be based on bioactive traceable drugs, usually with radioactive isotopes, but antimony radioisotopes are unavailable commercially. Neutron irradiation is a powerful tool in the analysis of mineral content of samples, for antimony, there are at least two main isotopes that could be formed after neutron irradiation in nuclear reactor. The aim of the present study was to construct antimony salts with those radioisotopes to obtain tracers to compare the pharmacokinetic and the tissue distribution of neutron irradiated meglumine antimoniate in healthy and cutaneous leishmaniasis experimentally infected mice. Meglumine antimoniate, (Glucantime, Aventis, S.P, Brazil), was neutron irradiated inside the IEA-R1 nuclear reactor (IPEN/CNEN-SP), producing two radioisotopes 122Sb and 124Sb. Its biodistribution was verified in BALB/c mice experimentally infected with Leishmania (Leishmania) Amazonensis, which received a single intraperitoneal dose of the drug. At different times after injection, the tissues and blood were excised and activity measured in a NaI (Tl) scintillation counter. Compared with the healthy mice, experimentally infected mice had significantly lower maximum concentration of antimony and high uptake in

  3. Pharmacokinetic of antimony in mice with cutaneous Leishmaniasis

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta E.T.; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Lab. de Biologia Molecular]. E-mails: samanta@usp.br; nnascime@ipen.br; Andrade Junior, Heitor F. de [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Lab. de Biologia Molecular; Instituto de Medicina Tropical de Sao Paulo, Sao Paulo, SP (Brazil); E-mail: hfandrad@usp.br; Osso Junior, Joao A. [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Centro de Radiofarmacia]. E-mail: jaosso@ipen.br

    2007-07-01

    Cutaneous Leishmaniasis (CL) remains a major world health problem, with about 1.5 million new cases each year. Caused by protozoa Leishmania, in South America, this infection can vary from a chronic skin ulcer, to an erosive mucosal disease and severe facial disfigurement. Pentavalent antimony (Sb{sup +5}) as sodium stibogluconate (Pentostam) or meglumine antimoniate (Glucantime) are main drugs for treating most forms of human leishmaniasis. For six decades, despite the recent developments, the effective therapy to cutaneous leishmaniasis has been based on long parenteral courses of such drugs, even though these are fairly costly, toxic and inconvenient to use, without adequate knowledge on their pharmacokinetics or mechanism of action. Pharmacokinetics studies could be based on bioactive traceable drugs, usually with radioactive isotopes, but antimony radioisotopes are unavailable commercially. Neutron irradiation is a powerful tool in the analysis of mineral content of samples, for antimony, there are at least two main isotopes that could be formed after neutron irradiation in nuclear reactor. The aim of the present study was to construct antimony salts with those radioisotopes to obtain tracers to compare the pharmacokinetic and the tissue distribution of neutron irradiated meglumine antimoniate in healthy and cutaneous leishmaniasis experimentally infected mice. Meglumine antimoniate, (Glucantime, Aventis, S.P, Brazil), was neutron irradiated inside the IEA-R1 nuclear reactor (IPEN/CNEN-SP), producing two radioisotopes {sup 122}Sb and {sup 124}Sb. Its biodistribution was verified in BALB/c mice experimentally infected with Leishmania (Leishmania) Amazonensis, which received a single intraperitoneal dose of the drug. At different times after injection, the tissues and blood were excised and activity measured in a NaI (Tl) scintillation counter. Compared with the healthy mice, experimentally infected mice had significantly lower maximum concentration of antimony

  4. Properties of nanoscale metal hydrides

    International Nuclear Information System (INIS)

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption.

  5. Reducing NOx emissions with antimony additive

    International Nuclear Information System (INIS)

    This paper describes improvement in a process for the catalytic cracking of a heavy hydrocarbon feed containing Ni and nitrogen compounds by contact with a circulating inventory of catalytic cracking catalyst to produce catalytically cracked products and spent catalyst. It comprises: Ni or Ni compounds and coke comprising nitrogen compounds, and wherein the spent catalyst is regenerated by contact with oxygen or an oxygen-containing gas in a catalyst regeneration zone operating at catalyst regeneration conditions to produce hot regenerated catalyst comprising Ni or Ni compounds which is recycled to catalytically crack the heavy feed and the catalyst regeneration zone produces a flue gas comprising CO, CO2 and oxides of nitrogen, NOx. The improvement comprises: adding to the circulating catalyst inventory CO combustion promoter in an amount equivalent to 0.01 to 50 wt ppm Pt to reduce the CO content of the flue gas and reducing the NOx content of the flue gas by adding to the circulating catalyst inventory a separate particle additive comprising antimony. The additive being added in an amount sufficient to reduce the production of NOx relative to operation without the additive, and wherein the additive comprises a compound of antimony which does not substantially passivate the Ni or Ni compounds present on the cracking catalyst, nor deactivate the CO combustion promoter

  6. Structural and electrical characterization of zinc oxide doped with antimony

    Directory of Open Access Journals (Sweden)

    G. Juárez Díaz

    2014-08-01

    Full Text Available In this work we report the results of structural and electrical characterization realized on zinc oxide single crystal samples with (001 orientation, which were doped with antimony. Doping was carried out by antimony thermal diffusion at 1000 °C for periods of 1 and 2 hours under nitrogen environment from a solid source formed by antimony oxide. Electrical characterization by I-V curves and Hall effect shown an increase in acceptor concentration which demonstrates that doping is effective and create holes in zinc oxide samples.

  7. Deposition of rod-shaped antimony sulfide thin films from single-source antimony thiosemicarbazone precursors

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Jasmine B.; Sawant, Narayan V. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai - 400 098 (India); Garje, Shivram S., E-mail: ssgarje@chem.mu.ac.i [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai - 400 098 (India)

    2010-04-02

    Antimony sulfide thin films were deposited on glass substrates by aerosol assisted chemical vapour deposition technique using single source precursors, namely, antimony(III) thiosemicarbazones, SbCl{sub 3}(L) (L = thiosemicarbazones of thiophene-2-carboxaldehyde (1) and cinnamaldehyde (2)). The deposited films were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and UV-visible spectroscopy in order to identify their phases, morphologies, compositions and optical properties respectively. These characterizations revealed that the films were comprised of rod-shaped particles of orthorhombic stibnite (Sb{sub 2}S{sub 3}) with a Sb:S stoichiometry of {approx} 1:1.3. The calculated optical band gap from UV-vis absorption spectrum is found to be 3.48 eV.

  8. Antimony mobility in Japanese agricultural soils and the factors affecting antimony sorption behavior

    International Nuclear Information System (INIS)

    The mobility of antimony (Sb) in Japanese agricultural soils was studied by radiotracer experiments using 124Sb tracer. The soil-solution distribution coefficients (K d) of Sb were measured for 110 soil samples. These K ds ranged from 1 to 2065 L kg-1; the geometric mean was 62 L kg-1 excluding one extremely high value, 2065 L kg-1. Experimental measurement of K d showed a decrease with both increasing pH and increasing phosphate concentration. The latter suggested that one aspect of the Sb sorption phenomena in Japanese soil was influenced by specific adsorption of anions such as phosphate. However, other aspects could not be explained by this specific adsorption mechanism, because only 20-40% of soil-sorbed Sb could be extracted by phosphate solution. - Antimony mobility in tested Japanese agricultural soils was generally low and was affected by pH and phosphate concentration

  9. Selective determination of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by atomic-absorption spectrometry with a carbon-tube atomizer.

    Science.gov (United States)

    Kamada, T; Yamamoto, Y

    1977-05-01

    The extraction behaviour of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of frameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of antimony(III) and differential determination of antimony(III) and antimony(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone, when the aqueous phase/solvent volume ratio is 50 ml/10 ml and the injection volume in the carbon tube is 20 mul, the sensitivity for antimony is 0.2 ng/ml for 1% absorption. The relative standard deviations are ca. 2%. Interferences by many metal ions can be prevented by masking with EDTA. The proposed methods have been applied satisfactorily to determination of antimony(III) and antimony(V) in various types of water. PMID:18962096

  10. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand

    International Nuclear Information System (INIS)

    A historic antimony smelter site at Endeavour Inlet, New Zealand has smelter residues with up to 17 wt.% antimony. Residues include coarse tailings (cm scale particles, poorly sorted), sand tailings (well sorted) and smelter slag (blocks up to 30 cm across). All of this material has oxidised to some degree over the ca. 100 years since the site was abandoned. Oxidation has resulted in acidification of the residues down to pH 2-5. Smelter slag contains pyrrhotite (FeS) and metallic antimony, and oxidation is restricted to surfaces only. The coarse tailings are the most oxidised, and few sulfide grains persist. Unoxidised sand tailings contain 10-20 vol.% stibnite (Sb2S3) containing up to 5% As, with subordinate arsenopyrite (FeAsS), and minor pyrite (FeS2). The sand tailings are variably oxidised on a scale of 2-10 cm, but original depositional layering is preserved during oxidation and formation of senarmontite (Sb2O3). Oxidation of sand tailings has resulted in localised mobility of both Sb and As on the cm scale, resulting in redistribution of these metalloids with iron oxyhydroxide around sand grain boundaries. Experiments demonstrate that Sb mobility decreases with time on a scale of days. Attenuation of both As and Sb occurs due to adsorption on to iron oxyhydroxides which are formed during oxidation of the smelter residues. There is no detectable loss of Sb or As from the smelter site into the adjacent river, <50 m away, which has elevated Sb (ca. 20 μg/l) and As (ca. 7 μg /l) from mineralised rocks upstream. Despite the high concentrations of Sb and As in the smelter residues, these metalloids are not being released into the environment. - High levels of antimony in primitive smelter soils remain largely immobile on the metre scale

  11. Tissue distribution of residual antimony in rats treated with multiple doses of meglumine antimoniate

    Directory of Open Access Journals (Sweden)

    Deise Riba Coelho

    2014-07-01

    Full Text Available Meglumine antimoniate (MA and sodium stibogluconate are pentavalent antimony (SbV drugs used since the mid-1940s. Notwithstanding the fact that they are first-choice drugs for the treatment of leishmaniases, there are gaps in our knowledge of their toxicological profile, mode of action and kinetics. Little is known about the distribution of antimony in tissues after SbV administration. In this study, we evaluated the Sb content of tissues from male rats 24 h and three weeks after a 21-day course of treatment with MA (300 mg SbV/kg body wt/d, subcutaneous. Sb concentrations in the blood and organs were determined by inductively coupled plasma-mass spectrometry. In rats, as with in humans, the Sb blood levels after MA dosing can be described by a two-compartment model with a fast (t1/2 = 0.6 h and a slow (t1/2 >> 24 h elimination phase. The spleen was the organ that accumulated the highest amount of Sb, while bone and thyroid ranked second in descending order of tissues according to Sb levels (spleen >> bone, thyroid, kidneys > liver, epididymis, lungs, adrenals > prostate > thymus, pancreas, heart, small intestines > skeletal muscle, testes, stomach > brain. The pathophysiological consequences of Sb accumulation in the thyroid and Sb speciation in the liver, thyroid, spleen and bone warrant further studies.

  12. Deformation of vanadium and niobium on hydridation

    International Nuclear Information System (INIS)

    Deformation of wire samples made of polycrystalline vanadium and niobium on hydridation is studied. It is shown that sample allowance under loading after deformation below the yield strength doesn't cause considerable creep. Cathode saturation of samples with hydrogen sharply accelerates vanadium microdeformation velocity, that is connected with the beginning of intensive vanadium hydride precipitation (β-phase) from α-solid vanadium-hydrogen solution. Niobium hydridation at the first stage doesn't hydridation at the first stage doesn't cause negative deformation, then change in deformation direction takes place at the moment of intensive growth of the hydride phase. The conclusion is made that in both metals microdeformation is determined by contribution of two components: deformation caused by changing a shift module of metal-hydrogen system, and deformation caused by the oriented growth of the hydride phase in the field of apphed stresses

  13. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today...... was developed. The parameters milling time, milling intensity, number of balls and form of the alloying metals were investigated. Based on this a final alloying technique for the subsequent preparation of electrode materials was established. The technique comprises milling for 4 hours twice possibly...... followed by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was...

  14. Tritium processing using metal hydrides

    International Nuclear Information System (INIS)

    E.I. duPont de Nemours and Company is commissioned by the US Department of Energy to operate the Savannah River Plant and Laboratory. The primary purpose of the plant is to produce radioactive materials for national defense. In keeping with current technology, new processes for the production of tritium are being developed. Three main objectives of this new technology are to ease the processing of, ease the storage of, and to reduce the operating costs of the tritium production facility. Research has indicated that the use of metal hydrides offers a viable solution towards satisfying these objectives. The Hydrogen and Fuels Technology Division has the responsibility to conduct research in support of the tritium production process. Metal hydride technology and its use in the storage and transportation of hydrogen will be reviewed

  15. Drying dichloromethane over calcium hydride

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Lucas Kinard, Kurtis Kasper & Antonios Mikos ### Abstract This protocol describes the drying of dichloromethane by a simple 10 step procedure. One can implement this protocol using common lab glass and lab equipment. First, dichloromethane is refluxed with calcium hydride to remove water. Then, dichloromethane is distilled to separate it from the byproducts of the reflux reaction. This procedure can be implemented in 1 day. ### Introduction In many instances i...

  16. Complex hydrides for hydrogen storage

    Science.gov (United States)

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  17. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  18. Crystal structure of gold hydride

    International Nuclear Information System (INIS)

    Highlights: • Volume expansion of metal hydrides is due to the increase in the s-band filling. • AuH structure is similar to that of Hg having one more s electron compared to Au. • Structure stability of both Hg and AuH is governed by the Hume-Rothery rule. - Abstract: A number of transition metal hydrides with close-packed metal sublattices of fcc or hcp structures with hydrogen in octahedral interstitial positions were obtained by the high-pressure-hydrogen technique described by Ponyatovskii et al. (1982). In this paper we consider volume increase of metals by hydrogenation and possible crystal structure of gold hydride in relation with the structure of mercury, the nearest neighbor of Au in the Periodic table. Suggested structure of AuH has a basic tetragonal body-centered cell that is very similar to the mercury structure Hg-t I 2. The reasons of stability for this structure are discussed within the model of Fermi sphere–Brillouin zone interactions

  19. NMR study of hydride systems

    International Nuclear Information System (INIS)

    The hydrides of thorium (ThH2, Th4H15 and Th4D15) and the intermetallic compound system (Zr(Vsub(1-x)Cosub(x))2 and its hydrides were investigated using the nuclear magnetic resonance (NMR) technique. From the results for the thorium hydride samples it was concluded that the density of states at the Fermi level n(Esub(f)) is higher in Th4H15 than in ThH2; there is an indirect reaction between the protons and the d electrons belonging to the Th atoms in Th4H15; n(E) has a sharp structure near Esub(f). It was also found that the hydrogen diffusion mechanism changes with temperature. From the results for the intermetallic compound system conclusions were drawn concerning variations in the electronic structure, which explain the behavior of the system. In hydrogen diffusion studies in several samples it was found that Co atoms slow the diffusion rate. Quadrupole spectra obtained at low temperatures show that the H atoms preferably occupy tetrahedral sites formed by three V atoms and one Z atom. (H.K.)

  20. Crystal structure of gold hydride

    Energy Technology Data Exchange (ETDEWEB)

    Degtyareva, Valentina F., E-mail: degtyar@issp.ac.ru

    2015-10-05

    Highlights: • Volume expansion of metal hydrides is due to the increase in the s-band filling. • AuH structure is similar to that of Hg having one more s electron compared to Au. • Structure stability of both Hg and AuH is governed by the Hume-Rothery rule. - Abstract: A number of transition metal hydrides with close-packed metal sublattices of fcc or hcp structures with hydrogen in octahedral interstitial positions were obtained by the high-pressure-hydrogen technique described by Ponyatovskii et al. (1982). In this paper we consider volume increase of metals by hydrogenation and possible crystal structure of gold hydride in relation with the structure of mercury, the nearest neighbor of Au in the Periodic table. Suggested structure of AuH has a basic tetragonal body-centered cell that is very similar to the mercury structure Hg-t I 2. The reasons of stability for this structure are discussed within the model of Fermi sphere–Brillouin zone interactions.

  1. How can we adapt to geological scarcity of antimony? Investigation of antimony's substitutability and of other measures to achieve a sustainable use

    NARCIS (Netherlands)

    Henckens, M.L.C.M.; Driessen, P.P.J.; Worrell, E.

    2016-01-01

    Abstract Antimony is an element that is applied in many useful applications for mankind. However, antimony resources are very scarce, when comparing the current extraction rates with the availability of antimony containing ores. From an inter-temporal sustainability perspective, current generations

  2. Delayed hydride cracking in Zr-2.5 % Nb: effect of hydride blisters

    International Nuclear Information System (INIS)

    In the zirconium base alloys subjected to a local thermal gradient, in presence of hydrogen, fully hydride region (frequently called blisters) can be formed. Due to the brittle character of the zirconium hydride, cracks are usually found inside the blisters. These cracks are prone to growing, under stress and temperature, by successive hydride precipitation at the crack tip. This process is called hydride induced delayed cracking (HIDC). In a previous work, hydride platelets were observed in the radial direction of the blister. In the present one, blisters were grown on Zr-2.5 wt % Nb pressure tubes. Then, tensile specimens were submitted to HIDC tests. During the test, the radial hydrides length increase due to stress concentrator effect of the blister. If a crack, that was initiated into the blister, reaches the Zr matrix therefore can propagate through the radial hydrides. (author)

  3. Kinetics of hydride front in Zircaloy-2 and H release from a fractional hydrided surface

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, M.; Gonzalez-Gonzalez, A.; Moya, J. S.; Remartinez, B.; Perez, S.; Sacedon, J. L. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Iberdrola, Tomas Redondo 3, 28033 Madrid (Spain); Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain)

    2009-07-15

    The authors study the hydriding process on commercial nuclear fuel claddings from their inner surface using an ultrahigh vacuum method. The method allows determining the incubation and failure times of the fuel claddings, as well as the dissipated energy and the partial pressure of the desorbed H{sub 2} from the outer surface of fuel claddings during the hydriding process. The correlation between the hydriding dissipated energy and the amount of zirconium hydride (formed at different stages of the hydriding process) leads to a near t{sup 1/2} potential law corresponding to the time scaling of the reaction for the majority of the tested samples. The calibrated relation between energy and hydride thickness allows one to calculate the enthalpy of the {delta}-ZrH{sub 1.5} phase. The measured H{sub 2} desorption from the external surface is in agreement with a proposed kinetic desorption model from the hydrides precipitated at the surface.

  4. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials

    International Nuclear Information System (INIS)

    A simple, sensitive method for the speciation of inorganic antimony by cloud point extraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented and evaluated. The method based on the fact that formation of a hydrophobic complex of antimony(III) with ammonium pyrrolidine dithiocarbamate (APDC) at pH 5.0 and subsequently the hydrophobic complex enter into surfactant-rich phase, whereas antimony(V) remained in aqueous solutions. Antimony(III) in surfactant-rich phase was analyzed by ETAAS after dilution by 0.2 mL nitric acid in methanol (0.1 M), and antimony(V) was calculated by subtracting antimony(III) from the total antimony after reducing antimony(V) to antimony(III) by L-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of APDC and Triton X-114, equilibrium temperature and incubation time, sample volume were investigated in detail. Under the optimum conditions, the detection limit (3σ) of the proposed method was 0.02 ng mL-1 for antimony(III), and the relative standard deviation was 7.8% (c = 1.0 ng mL-1, n = 7). The proposed method was successfully applied to speciation of inorganic antimony in the leaching solutions of different food packaging materials with satisfactory results.

  5. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials.

    Science.gov (United States)

    Jiang, Xiuming; Wen, Shengping; Xiang, Guoqiang

    2010-03-15

    A simple, sensitive method for the speciation of inorganic antimony by cloud point extraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented and evaluated. The method based on the fact that formation of a hydrophobic complex of antimony(III) with ammonium pyrrolidine dithiocarbamate (APDC) at pH 5.0 and subsequently the hydrophobic complex enter into surfactant-rich phase, whereas antimony(V) remained in aqueous solutions. Antimony(III) in surfactant-rich phase was analyzed by ETAAS after dilution by 0.2 mL nitric acid in methanol (0.1M), and antimony(V) was calculated by subtracting antimony(III) from the total antimony after reducing antimony(V) to antimony(III) by l-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of APDC and Triton X-114, equilibrium temperature and incubation time, sample volume were investigated in detail. Under the optimum conditions, the detection limit (3 sigma) of the proposed method was 0.02 ng mL(-1) for antimony(III), and the relative standard deviation was 7.8% (c=1.0 ng mL(-1), n=7). The proposed method was successfully applied to speciation of inorganic antimony in the leaching solutions of different food packaging materials with satisfactory results. PMID:19853991

  6. Predicting formation enthalpies of metal hydrides

    DEFF Research Database (Denmark)

    Andreasen, A.

    2004-01-01

    In order for the hydrogen based society viz. a society in which hydrogen is the primary energy carrier to become realizable an efficient way of storing hydrogen is required. For this purpose metal hydrides are serious candidates. Metal hydrides are formedby chemical reaction between hydrogen and ...

  7. Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry

    Science.gov (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.

    2003-01-01

    Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using

  8. Submillimeter Spectroscopy of Hydride Molecules

    Science.gov (United States)

    Phillips, T. G.

    1998-05-01

    Simple hydride molecules are of great importance in astrophysics and astrochemistry. Physically they dominate the cooling of dense, warm phases of the ISM, such as the cores and disks of YSOs. Chemically they are often stable end points of chemical reactions, or may represent important intermediate stages of the reaction chains, which can be used to test the validity of the process. Through the efforts of astronomers, physicists, chemists, and laboratory spectroscopists we have an approximate knowledge of the abundance of some of the important species, but a great deal of new effort will be required to achieve the comprehensive and accurate data set needed to determine the energy balance and firmly establish the chemical pathways. Due to the low moment of inertia, the hydrides rotate rapidly and so have their fundamental spectral lines in the submillimeter. Depending on the cloud geometry and temperature profile they may be observed in emission or absorption. Species such as HCl, HF, OH, CH, CH(+) , NH_2, NH_3, H_2O, H_2S, H_3O(+) and even H_3(+) have been detected, but this is just a fraction of the available set. Also, most deduced abundances are not nearly sufficiently well known to draw definitive conclusions about the chemical processes. For example, the most important coolant for many regions, H_2O, has a possible range of deduced abundance of a factor of 1000. The very low submillimeter opacity at the South Pole site will be a significant factor in providing a new capabilty for interstellar hydride spectroscopy. The new species and lines made available in this way will be discussed.

  9. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand.

    Science.gov (United States)

    Wilson, N J; Craw, D; Hunter, K

    2004-05-01

    A historic antimony smelter site at Endeavour Inlet, New Zealand has smelter residues with up to 17 wt.% antimony. Residues include coarse tailings (cm scale particles, poorly sorted), sand tailings (well sorted) and smelter slag (blocks up to 30 cm across). All of this material has oxidised to some degree over the ca. 100 years since the site was abandoned. Oxidation has resulted in acidification of the residues down to pH 2-5. Smelter slag contains pyrrhotite (FeS) and metallic antimony, and oxidation is restricted to surfaces only. The coarse tailings are the most oxidised, and few sulfide grains persist. Unoxidised sand tailings contain 10-20 vol.% stibnite (Sb2S3) containing up to 5% As, with subordinate arsenopyrite (FeAsS), and minor pyrite (FeS2). The sand tailings are variably oxidised on a scale of 2-10 cm, but original depositional layering is preserved during oxidation and formation of senarmontite (Sb2O3). Oxidation of sand tailings has resulted in localised mobility of both Sb and As on the cm scale, resulting in redistribution of these metalloids with iron oxyhydroxide around sand grain boundaries. Experiments demonstrate that Sb mobility decreases with time on a scale of days. Attenuation of both As and Sb occurs due to adsorption on to iron oxyhydroxides which are formed during oxidation of the smelter residues. There is no detectable loss of Sb or As from the smelter site into the adjacent river, <50 m away, which has elevated Sb (ca. 20 microg/l) and As (ca. 7 microg/l) from mineralised rocks upstream. Despite the high concentrations of Sb and As in the smelter residues, these metalloids are not being released into the environment. PMID:14987811

  10. Heat-treated Saccharomyces cerevisiae for antimony speciation and antimony(III) preconcentration in water samples

    International Nuclear Information System (INIS)

    An analytical method was developed for antimony speciation and antimony(III) preconcentration in water samples. The method is based on the selective retention of Sb(III) by modified Saccharomyces cerevisiae in the presence of Sb(V). Heat, caustic and solvent pretreatments of the biomass were investigated to improve the kinetics and thermodynamics of Sb(III) uptake process at room temperature. Heating for 30 min at 80 deg. C was defined as the optimal treatment. Antimony accumulation by the cells was independent of pH (5-10) and ionic strength (0.01-0.1 mol L-1). 140 mg of yeast and 2 h of contact were necessary to ensure quantitative sequestration of Sb(III) up to 750 μg L-1. In these conditions, Sb(V) was not retained. Sb(V) was quantified in sorption supernatant by inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma optical emission spectrometry (ICP-OES). Sb(III) was determined after elution with 40 mmol L-1 thioglycolic acid at pH 10. A preconcentration factor close to nine was achieved for Sb(III) when 100 mL of sample was processed. After preconcentration, the detection limits for Sb(III) and Sb(V) were 2 and 5 ng L-1, respectively, using ICP-MS, 7 and 0.9 μg L-1 using ICP-OES. The proposed method was successfully applied to the determination of Sb(III) and Sb(V) in spiked river and mineral water samples. The relative standard deviations (n = 3) were in the 2-5% range at the tenth μg L-1 level and less than 10% at the lowest Sb(III) and Sb(V) tested concentration (0.1 μg L-1). Corrected recoveries were in all cases close to 100%

  11. Characterization of Antimony exchanged Hydrous Zirconium oxide

    International Nuclear Information System (INIS)

    Pentavalent 125Sb bearing species are persistent even after chemical treatment in low level liquid waste effluents. It was found that Hydrous Zirconium Oxide (HZO) had an efficiency better that 80% for Sb pick in a wide pH range of 1-13 for concentrations up to 150 mg/l. HZO coated on poly urethane foam was used in WMD Trombay for removal for 125Sb from waste effluent. The exchange capacity of HZO with 40% moisture content ranged between 0.7-0.9 meq/g for removal of Sb(V). In order to understand the mechanism of Sb uptake by HZO, freshly prepared HZO exchanged with trivalent and pentavalent Sb from aqueous solutions was characterized with FTIR and XRD. The FTIR analysis confirmed presence of surface hydroxyl groups. Sb exchanged HZO samples showed modification in characteristic frequencies of -OH group when compared with unexchanged HZO. The broadening of -OH stretching frequency at 3400 cm-1 in Sb exchanged HZO-B indicated of ingress of disorderliness or weakening of -OH bond. The spectral shift was towards lower frequencies indicating clustering of low frequency bonds around -OH groups and weakening of -O-H bond. This change in -OH profile shows it to be the site of exchange/sorption. The XRD analysis showed HZO to be amorphous. Both pentavalent and trivalent antimony was exchanged with HZO, heat treated at 600℃ and analysed with XRD. Hydrous Zirconium Oxide (Heated up to 600℃) had an X-Ray diffraction pattern identical to Aldrich make pure Zirconia (Monoclinic) (PCPDF-371484). Pentavalent Sb loaded HZO and trivalent Sb loaded HZO showed different crystalline structures on heat treatment. Sb(V) loaded HZO shows Orthorhombic structure (PCCPDF-371413) and Sb(III) exchanged Zirconia shows tetragonal structure (PCPDF-501089). Cubic Sb2O5 antimony oxide crystals were also detected in the sample. From the above analysis it could be understood that the surface hydroxyl group helped in sorption of Sb species. But this was not purely surface phenomenon. Sb after

  12. Noninferiority of Miltefosine Versus Meglumine Antimoniate for Cutaneous Leishmaniasis in Children

    OpenAIRE

    Rubiano, Luisa Consuelo; Miranda, María Consuelo; Muvdi Arenas, Sandra; Montero, Luz Mery; Rodríguez-Barraquer, Isabel; Garcerant, Daniel; Prager, Martín; Osorio, Lyda; Rojas, Maria Ximena; Pérez, Mauricio; Nicholls, Ruben Santiago; Gore Saravia, Nancy

    2012-01-01

    Background. Children have a lower response rate to antimonial drugs and higher elimination rate of antimony (Sb) than adults. Oral miltefosine has not been evaluated for pediatric cutaneous leishmaniasis.

  13. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Science.gov (United States)

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  14. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  15. Hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S.; Niemann, Michael U.; Goswami, D. Yogi; Stefanakos, Elias K.

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  16. Martensite transformation in antimony implanted stainless steel

    International Nuclear Information System (INIS)

    The authors have used Rutherford backscattering analysis (RBS) and transmission electron microscopy (TEM) and diffraction to investigate austenitic stainless steel crystals implanted at room temperature with 80 keV Sb+ ions to a fluence of 5 x 1020 ions/m2, thus providing implantation with a heavy group V element. RBS channeling spectra from implanted crystals show a damage peak which approaches the height of the random level and therefore indicates a very high degree of disorder in the implanted layers. The distribution of the disorder extends to a depth 3-5 times the depth of the primary radiation damage. The Sb peaks under channeling as well as random conditions are indistinguishable, confirming that substitutionality during implantation is negligible. To establish the nature of the disorder which cannot be assessed from the RBS analysis alone, and in particular to assess whether an amorphous alloy is formed in the implanted layer as indicated from the RBS spectra, samples implanted under similar conditions were investigated in the TEM. Significant extra spots in the patterns can be ascribed to the presence of a radiation induced b.c.c. phase of martensitic origin. The result that a significant amount of martensite can be induced by antimony implantation seems to indicate that the main driving force for the transition is due to damage induced stress concentrations. (Auth.)

  17. Recovery of antimony-125 from tin-124 irradiated by neutrons

    International Nuclear Information System (INIS)

    Currently, antimony-125 is produced by recovery from tin-124 irradiated by neutrons in nuclear reactors. The radionuclide builds up following the pathway: Sn-124 (n,γ) → Sn-125 (β-) (9.6 days) → Sb-125 ((β-) (2.77 years) The cross-section of the (n,γ) reaction is low (0.2 barn), therefore tin metal enriched with tin-124 is used. It should be noted that the use of an enriched target decreases the build-up of other radionuclides as compared to the natural mixture of tin isotopes. Published data showed that ion exchange on anion exchangers is one of the most promising procedures of recovery of antimony-125 from irradiated tin-124. We irradiated tin metal enriched with tin-124 (approximately 96%). After cooling and storage, the specific activity was 5 μCi per g of metal. The irradiated sample was dissolved in concentrated hydrochloric acid containing hydrogen peroxide or bromine in order to convert tin to the tetravalent state and antimony to the pentavalent state. We used tin-119m as a mark for an express gamma-spectrometric determination of the distribution coefficients. We studied the separation of Sb-125 and tin on strongly basic (Dowex-50 and AV-17), moderately basic (AN-2FN), and weakly basic (AN-31) ion exchangers. Hydrochloric acid, a mixture of hydrochloric and hydrobromic acids, and nitric acid were used as the elutriating agents. The samples from chromatography were subjected to gamma-spectrometric analysis using Si(Li) and Ge(Li) semiconductor detectors. In experiments examining the separation on strongly basic anion exchangers, the attained decontamination factor for removal of tin from antimony-125 was approximately 104-105 in one cycle. In the experiments devoted to the separation on moderately basic and weakly basic anion exchangers, tin was eluted before antimony-125. This should improve reasonably the regeneration of the enriched tin samples. The most interesting and significant results were obtained in the study of separation of antimony-125

  18. Oral Delivery of Meglumine Antimoniate-β-Cyclodextrin Complex for Treatment of Leishmaniasis

    OpenAIRE

    Demicheli, Cynthia; Ochoa, Rosemary; da Silva, José B. B.; Falcão, Camila A. B.; Rossi-Bergmann, Bartira; Melo, Alan L.; Sinisterra, Ruben D.; Frézard, Frédéric

    2004-01-01

    The need for daily parenteral administration represents one of the most serious limitations in the clinical use of pentavalent antimonials against leishmaniasis. In this work, we investigated the ability of β-cyclodextrin to enhance the oral absorption of antimony and to promote the oral efficacy of meglumine antimoniate against experimental cutaneous leishmaniasis. The occurrence of interactions between β-cyclodextrin and meglumine antimoniate was demonstrated through the changes induced in ...

  19. The influence of pet containers on antimony concentration in bottled drinking water

    OpenAIRE

    Perić-Grujić Aleksandra A.; Radmanovac Aleksandar R.; Stojanov Aleksander M.; Pocajt Viktor V.; Ristić Mirjana Đ.

    2010-01-01

    Antimony trioxide (Sb2O3) is the most frequently used catalyst in the polyethylene terephthalate (PET) manufacture. As a result, antimony is incorporated into PET bottles at concentration level of 100-300 mg/kg. PET containers are used for drinking water and beverages, as well as food packaging and in the pharmaceutical industry. Thus, it is important to understand the factors that may influence the release of antimony from the catalysts into water and other products, since antimony is potent...

  20. The influence of pet containers on antimony concentration in bottled drinking water

    Directory of Open Access Journals (Sweden)

    Perić-Grujić Aleksandra A.

    2010-01-01

    Full Text Available Antimony trioxide (Sb2O3 is the most frequently used catalyst in the polyethylene terephthalate (PET manufacture. As a result, antimony is incorporated into PET bottles at concentration level of 100-300 mg/kg. PET containers are used for drinking water and beverages, as well as food packaging and in the pharmaceutical industry. Thus, it is important to understand the factors that may influence the release of antimony from the catalysts into water and other products, since antimony is potentially toxic trace element. In this paper, the antimony content in nine brands of bottled mineral and spring water from Serbia, and seven brands of bottled mineral and spring water from EU countries was analyzed. The measurements were conducted using the inductively coupled plasma-mass spectrometry (ICP-MS technique. In the all examined samples the antimony concentration was bellow the maximum contaminant level of 5 μg/L prescribed by the Serbian and EU regulations. Comparison of the content of antimony in PET bottled waters with the content of antimony in water bottled commercially in glass and the natural content of antimony in pristine groundwaters, provides explicit evidence of antimony leaching from PET containers. Since waters bottled in PET have much greater concentration ratio of Sb to Pb than corresponding pristine groundwaters, it can be assumed that bottled waters cannot be used as the relavant source for the study of the natural antimony content in groundwaters. There is a clear relation between the quality of water in bottles (composition, ion strength and antimony leaching rate. Moreover, while the rate of antimony leaching is slow at temperatures below 60 oC, at the temperature range of 60-80 oC antimony release occurs and reaches maximum contaminant level rapidly. As antimony can cause both acute and chronic health problems, factors that promote the increase of antimony concentration should be avoided.

  1. Antimony Doped Tin Oxide Thin Films: Co Gas Sensor

    Directory of Open Access Journals (Sweden)

    P.S. Joshi

    2011-01-01

    Full Text Available Tin dioxide (SnO2 serves as an important base material in a variety of resistive type gas sensors. The widespread applicability of this semicoducting oxide is related both to its range of conductance variability and to the fact that it responds to both oxidising and reducing gases. The antimony doped tin-oxide films were prepared by spray pyrolysis method. The as-deposited films are blackish in colour. Addition of antimony impurity showed little increase in the thickness. The X-ray diffraction pattern shows characteristic tin oxide peaks with tetragonal structure. As the doping concentration of antimony was increased, new peak corresponding to Sb was observed. The intensity of this peak found to be increased when the Sb concentration was increased from 0.01 % to the 1 % which indicates the antimony was incorporated into the tin oxide. For gas sensing studies ohmic contacts were preferred to ensure the changes in resistance of sensor is due to only adsorption of gas molecule. The graph of I-V shows a straight line in nature which indicates the ohmic contact. The sensitivity of the sensor for CO gas was tested. The sensitivity of antimony doped tin oxide found to be increased with increasing Sb concentration. The maximum sensitivity was observed for Sb = 1 % at a working temperature of 250 °C.

  2. Behavior of arsenic impurity at antimony electric precipitation

    International Nuclear Information System (INIS)

    In the paper the arsenic impurity electrochemical behavior and it purification from antimony by electric precipitation out of fluoride solutions was studied. For this the arsenic sample with mass 0.003-0.006 g has been irradiated at the WWR-SM nuclear reactor during 3-5 hour in the thermal neutron flux 1013 n/cm2 s, after 24 h keeping the sample has being dissolved in the concentrated nitric acid, and then it has been evaporated several times with distillation water addition up to wet precipitation state. It is shown, that arsenic impurity behavior character in the antimony electric precipitation out to fluoride electrolyte depends on the electrolyte content, electrolysis conditions, arsenic valency state in arsenic impurity existence in the five-valency state its joint electric reduction with antimony is practically not observing. In the case the arsenic being in three-valency state, it joint electric reduction with antimony is taking place. In this time the electrolytic antimony contents arsenic impurities less in dozen time than initial material

  3. Experimental reproducibility analysis in DU hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Daeseo; Park, Jongcheol; Chung, Hongsuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A storage and delivery system (SDS) is used for storing hydrogen isotopes as a metal hydride form. The rapid hydriding of tritium is very important not only for safety reasons but also for the economic design and operation of the SDS. For the storage, supply, and recovery of hydrogen isotopes, depleted uranium (DU) has been extensively proposed. To develop nuclear fusion technology, it will be necessary to store and supply hydrogen isotopes needed for Tokamak operation. The experimental reproducibility of bed temperature on DU hydriding was also analyzed. The experimental reproducibility of apparatus was acceptable for all the experiments. The experimental reproducibility of tank pressure on DU hydriding was analyzed. As the hydriding performs, the tank pressure showed decreasing trend. The experimental reproducibility of bed temperature on DU hydriding was also analyzed. As the hydriding performs, the bed temperatures increased up to maximum temperature with exothermic reaction and then they showed decreasing trend. The experimental reproducibility of apparatus was acceptable for all the experiments.

  4. Hydriding failure analysis based on PIE data

    International Nuclear Information System (INIS)

    Failure causes of the two fuel rods of a Korean nuclear power plant had been investigated by using PIE technique. The destructive and physico-chemical examinations revealed that the clad hydriding phenomena had caused the rod failures primarily and secondarily in each case. In this study the basic mechanisms of the primary and the secondary hydriding failures are reviewed, PIE data such as cladding inner and outer surface oxide thickness and the restructuring of fuel pellets are analyzed, and they are compared with predicted behaviors by a fuel performance code. The results strongly support that the hydriding processes, primary and secondary, had played critical roles in the respective fuel rods failures. (author)

  5. Solid hydrides as hydrogen storage reservoirs

    International Nuclear Information System (INIS)

    Metal hydrides as hydrogen storage materials are briefly reviewed in this paper. Fundamental properties of metal-hydrogen (gas) system such as Pressure-Composition-Temperature (P-C-T) characteristics are discussed on the light of the metal-hydride thermodynamics. Attention is specially paid to light metal hydrides which might have application in the car and transport sector. The pros and cons of MgH2 as a light material are outlined. Researches in course oriented to improve the behaviour of MgH2 are presented. Finally, other very promising alternative materials such as Al compounds (alanates) or borohydrides as light hydrogen accumulators are also considered. (Author)

  6. Hydride observations using the neutrography technique

    International Nuclear Information System (INIS)

    Neutron radiography observations were performed at the RA-6 experimental nuclear facility in Bariloche. Images from a prototype of a hydride-based hydrogen storage device have been obtained. The technique allows visualizing the inner hydride space distribution. The hydride appeared compacted at the lower part of the prototype after several cycles of hydrogen charge and discharge. The technique has also been applied to the study of Zr/ZrH2 samples. There is a linear relation between the sample width/hydrogen concentration and the photograph grey scale. This information could be useful for the study of nuclear engineering materials and to determine their possible degradation by hydrogen pick up (author)

  7. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf; Tunold, Reidar

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... observed. The impedance analysis was found to be an efficient method for characterizing metal hydride electrodes in situ....

  8. Antimony Resistance in Leishmania, Focusing on Experimental Research

    Directory of Open Access Journals (Sweden)

    Fakhri Jeddi

    2011-01-01

    Full Text Available Leishmaniases are parasitic diseases that spread in many countries with a prevalence of 12 million cases. There are few available treatments and antimonials are still of major importance in the therapeutic strategies used in most endemic regions. However, resistance toward these compounds has recently emerged in areas where the replacement of these drugs is mainly limited by the cost of alternative molecules. In this paper, we reviewed the studies carried out on antimonial resistance in Leishmania. Several common limitations of these works are presented before prevalent approaches to evidence antimonial resistance are related. Afterwards, phenotypic determination of resistance is described, then confronted to clinical outcome. Finally, we detail molecular mechanisms and targets involved in resistance and already identified in vitro within selected mutant strains or in clinical isolates.

  9. Lattice dynamics of femtosecond laser-excited antimony

    Science.gov (United States)

    Abdel-Fattah, Mahmoud Hanafy; Bugayev, Aleksey; Elsayed-Ali, Hani E.

    2016-07-01

    Ultrafast electron diffraction is used to probe the lattice dynamics of femtosecond laser-excited antimony thin film. The temporal hierarchies of the intensity and position of diffraction orders are monitored. The femtosecond laser excitation of antimony film was found to lead to initial compression after the laser pulse, which gives way to tension vibrating at new equilibrium displacement. A damped harmonic oscillator model, in which the hot electron-blast force contributes to the driving force of oscillations in lattice spacing, is used to interpret the data. The electron-phonon energy-exchange rate and the electronic Grüneisen parameter were obtained.

  10. Tritium removal using vanadium hydride

    International Nuclear Information System (INIS)

    The results of an initial examination of the feasibility of separation of tritium from gaseous protium-tritium mixtures using vanadium hydride in cyclic processes is reported. Interest was drawn to the vanadium-hydrogen system because of the so-called inverse isotope effect exhibited by this system. Thus the tritide is more stable than the protide, a fact which makes the system attractive for removal of tritium from a mixture in which the light isotope predominates. The initial results of three phases of the research program are reported, dealing with studies of the equilibrium and kinetics properties of isotope exchange, development of an equilibrium theory of isotope separation via heatless adsorption, and experiments on the performance of a single heatless adsorption stage. In the equilibrium and kinetics studies, measurements were made of pressure-composition isotherms, the HT--H2 separation factors and rates of HT--H2 exchange. This information was used to evaluate constants in the theory and to understand the performance of the heatless adsorption experiments. A recently developed equilibrium theory of heatless adsorption was applied to the HT--H2 separation using vanadium hydride. Using the theory it was predicted that no separation would occur by pressure cycling wholly within the β phase but that separation would occur by cycling between the β and γ phases and using high purge-to-feed ratios. Heatless adsorption experiments conducted within the β phase led to inverse separations rather than no separation. A kinetic isotope effect may be responsible. Cycling between the β and γ phases led to separation but not to the predicted complete removal of HT from the product stream, possibly because of finite rates of exchange. Further experimental and theoretical work is suggested which may ultimately make possible assessment of the feasibility and practicability of hydrogen isotope separation by this approach

  11. Geoneutrino and Hydridic Earth model. Version 2

    OpenAIRE

    Bezrukov, Leonid

    2013-01-01

    Uranium, Thorium and Potassium-40 abundances in the Earth were calculated in the frame of Hydridic Earth model. Terrestrial heat producton from U, Th and K40 decays was calculated also. We must admit the existance of Earth expansion process to understand the obtained large value of terrestrial heat producton. The geoneutrino detector with volume more than 5 kT (LENA type) must be constructed to definitely separate between Bulk Silicat Earth model and Hydridic Earth model. In second version of...

  12. Atomistic Potentials for Palladium-Silver Hydrides

    OpenAIRE

    Hale, L. M.; Wong, B. M.; Zimmerman, J. A.; Zhou, X.

    2013-01-01

    New EAM potentials for the ternary palladium-silver-hydrogen system are developed by extending a previously developed palladium-hydrogen potential. The ternary potentials accurately capture the heat of mixing and structural properties associated with solid solution alloys of palladium-silver. Stable hydrides are produced with properties that smoothly transition across the compositions. Additions of silver to palladium are predicted to alter the properties of the hydrides by decreasing the mis...

  13. Probing the cerium/cerium hydride interface using nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Brierley, Martin, E-mail: martin.brierley@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom); University of Manchester, Manchester M13 9PL (United Kingdom); Knowles, John, E-mail: john.knowles@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom)

    2015-10-05

    Highlights: • A disparity exists between the minimum energy and actual shape of a cerium hydride. • Cerium hydride is found to be harder than cerium metal by a ratio of 1.7:1. • A zone of material under compressive stress was identified surrounding the hydride. • No distribution of hardness was apparent within the hydride. - Abstract: A cerium hydride site was sectioned and the mechanical properties of the exposed phases (cerium metal, cerium hydride, oxidised cerium hydride) were measured using nanoindentation. An interfacial region under compressive stress was observed in the cerium metal surrounding a surface hydride that formed as a consequence of strain energy generated by the volume expansion associated with precipitation of the hydride phase.

  14. Probing the cerium/cerium hydride interface using nanoindentation

    International Nuclear Information System (INIS)

    Highlights: • A disparity exists between the minimum energy and actual shape of a cerium hydride. • Cerium hydride is found to be harder than cerium metal by a ratio of 1.7:1. • A zone of material under compressive stress was identified surrounding the hydride. • No distribution of hardness was apparent within the hydride. - Abstract: A cerium hydride site was sectioned and the mechanical properties of the exposed phases (cerium metal, cerium hydride, oxidised cerium hydride) were measured using nanoindentation. An interfacial region under compressive stress was observed in the cerium metal surrounding a surface hydride that formed as a consequence of strain energy generated by the volume expansion associated with precipitation of the hydride phase

  15. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4

    International Nuclear Information System (INIS)

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  16. Self-standing nanoribbons of antimony selenide and antimony sulfide with well-defined size and band gap

    Energy Technology Data Exchange (ETDEWEB)

    Vadapoo, Rajasekarakumar; Krishnan, Sridevi; Yilmaz, Hulusi [Department of Physics, University of Puerto Rico, San Juan, PR 00936 (Puerto Rico); Marin, Carlos [Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States)

    2011-04-29

    Sub-10 nm semiconducting nanostructures are crucial for the realization of nanoscale devices. Fabrication of nanostructures at this scale with homogeneous properties is challenging. Using ab initio calculations, we show that self-standing ribbons of antimony selenide and antimony sulfide of width 1.1 nm exhibit well-defined bandgaps of 1.66 and 2.16 eV, respectively. Molecular dynamics studies show that these ribbons are stable at 500 K. The one-dimensional (1D) heterostructure of these nanoribbons (Sb{sub 2}Se{sub 3}/Sb{sub 2}S{sub 3}) along the [001] direction shows a straddling type behavior.

  17. Selective oxidation of propene on bismuth molybdate and mixed oxides of tin and antimony and of uranium and antimony

    International Nuclear Information System (INIS)

    Propene + 1802 reactions have been studied in a static reaction system on bismuth molybdate and mixed oxides of tin and antimony and of uranium and antimony. The [160] acrolein content of the total acrolein formed and the proportion of 160 in the oxygen of the carbon dioxide by-product have been determined. The results indicate that for each catalyst the lattice is the only direct source of the oxygen in the aldehyde, and that lattice and/or gas phase oxygen is used in carbon dioxide formation. Oxygen anion mobility appears to be greater in the molybdate catalyst than in the other two. (author)

  18. gamma-Zr-Hydride Precipitate in Irradiated Massive delta- Zr-Hydride

    DEFF Research Database (Denmark)

    Warren, M. R.; Bhattacharya, D. K.

    1975-01-01

    During examination of A Zircaloy-2-clad fuel pin, which had been part of a test fuel assembly in a boiling water reactor, several regions of severe internal hydriding were noticed in the upper-plenum end of the pin. Examination of similar fuel pins has shown that hydride of this type is caused by...

  19. Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B

    Science.gov (United States)

    Morizot, Gloria; Jouffroy, Romain; Faye, Albert; Chabert, Paul; Belhouari, Katia; Calin, Ruxandra; Charlier, Caroline; Miailhes, Patrick; Siriez, Jean-Yves; Mouri, Oussama; Yera, Hélène; Gilquin, Jacques; Tubiana, Roland; Lanternier, Fanny; Mamzer, Marie-France; Legendre, Christophe; Peyramond, Dominique; Caumes, Eric; Lortholary, Olivier; Buffet, Pierre

    2016-01-01

    We report on 4 patients (1 immunocompetent, 3 immunosuppressed) in whom visceral leishmaniasis had become unresponsive to (or had relapsed after) treatment with appropriate doses of liposomal amphotericin B. Under close follow-up, full courses of pentavalent antimony were administered without life-threatening adverse events and resulted in rapid and sustained clinical and parasitological cure. PMID:26735920

  20. Vapor pressures of dimethylcadmium, trimethylbismuth, and tris(dimethylamino)antimony

    Czech Academy of Sciences Publication Activity Database

    Morávek, Pavel; Fulem, Michal; Pangrác, Jiří; Hulicius, Eduard; Růžička, K.

    2013-01-01

    Roč. 360, Dec (2013), s. 106-110. ISSN 0378-3812 R&D Projects: GA ČR GA13-15286S; GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : vapor pressure * dimethylcadmium * trimethylbismuth * tris(dimethylamino)antimony * sublimation and vaporization enthalpy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.241, year: 2013

  1. Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    OpenAIRE

    Kathawa, J.; Fry, C; Thoennessen, M

    2012-01-01

    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  2. Vacuum distillation of antimony-mercury gold containing concentrates

    International Nuclear Information System (INIS)

    Results of researches on vacuum distillation of mercury from gold containing antimony-mercury concentrates are considered in this article. It is shown that at vacuum of 20-50 mm Hg and temperature 300 deg C mercury is sublimated and gold remain in a cinder. (author)

  3. Antimony content of macrofungi from clean and polluted areas

    Czech Academy of Sciences Publication Activity Database

    Borovička, J.; Řanda, Zdeněk; Jelínek, E.

    2006-01-01

    Roč. 64, č. 11 (2006), s. 1837-1844. ISSN 0045-6535 Institutional research plan: CEZ:AV0Z10480505 Keywords : mushrooms * antimony pollution * bioaccumulation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.442, year: 2006

  4. The determination of the thermodynamic activity of antimony in alpha-iron

    International Nuclear Information System (INIS)

    In this paper a method is suggested for determining the thermodynamic activity of antimony dissolved in alpha-iron, based on the study of antimony distribution between the two phases: liquid lead and solid iron. By this method, it was found that solid solutions of antimony in alpha-iron can be distinguished by positive divergences from the ideal state. Over a fairly wide range of concentrations, solutions of antimony in iron obey Henry's law. Special experiments on the distribution of antimony between lead and liquid iron showed that in the liquid state also the iron-antimony system is marked by positive divergences from the ideal state when small concentrations of antimony are present. The heat required for the solution of antimony in alpha-iron, and the excess partial molar entropy, were calculated from the activity temperature. The results were used for accurately locating the line showing the solubility limit of antimony in alpha-iron. Since alloys of antimony with iron were obtained by diffusion saturation and not by cooling from the liquid state, there was no liquefaction. Thus the lattice constant of the alloys and its relation to the alloy concentration could be reliably determined. The solubility limit established from X-ray data agrees with that obtained with Sb124. (author)

  5. In Vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Directory of Open Access Journals (Sweden)

    Samanta Etel Treiger Borborema

    2005-10-01

    Full Text Available Pentavalent antimony, as meglumine antimoniate (Glucantime® or sodium stibogluconate (Pentostam® , is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes 122Sb and 124Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology.Os antimoniais pentavalentes, como o antimoniato de meglumina (Glucantime® ou estibogluconato de sódio (Pentostam® , são o principal tratamento para a leishmaniose, um complexo de doenças causadas pelo protozoário parasita Leishmania, uma doença endêmica e negligenciada no Brasil. Apesar do seu uso clínico por mais de meio século, seu mecanismo de ação, toxicidade e dados de farmacocinética permanecem desconhecidos. Os métodos analíticos para determinação de antimônio em sistemas biológicos são complexos e apresentam baixa sensibilidade. Estudos utilizando radiotraçadores têm papel potencial no desenvolvimento farmacológico. O objetivo deste estudo foi desenvolver um radiotraçador de antimônio, com propriedades físicas e biológicas adequadas. O antimoniato de meglumina foi irradiado por nêutrons no reator nuclear IEA-R1, produzindo dois radioisótopos: 122

  6. Mechanism of corrosion of zirconium hydride and impact of precipitated hydrides on the Zircaloy-4 corrosion behaviour

    International Nuclear Information System (INIS)

    Highlights: • Higher corrosion rate of hydride compared to matrix (Zy4). • Higher oxygen diffusion coefficient through oxide formed on hydride. • Presence of Zr3O phase between hydride and oxide. • Hydrogen from the hydride phase is not integrated in the oxide during the corrosion process. - Abstract: In Pressurized Water Reactors, zirconium hydrides precipitate in the matrix and could increase the oxidation rate of the claddings. To understand their effect, corrosion tests, TEM and μ-XRD analyses have been performed. This work showed that the oxidation rate and the oxygen diffusion coefficient in the oxide formed on massive hydride are much greater than those of Zircaloy-4. Moreover, oxide characterizations indicated an additional phase indexed as the sub-oxide Zr3O between the oxide film and the massive hydride. Finally, the hydrogen of the hydrides is not incorporated in the oxide during the corrosion process

  7. Hydrogen storage in complex metal hydrides

    Directory of Open Access Journals (Sweden)

    BORISLAV BOGDANOVIĆ

    2009-02-01

    Full Text Available Complex metal hydrides such as sodium aluminohydride (NaAlH4 and sodium borohydride (NaBH4 are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides. The most important point for a wide application of these materials is the reversibility under moderate technical conditions. At present, only NaAlH4 has favourable thermodynamic properties and can be employed as a thermally reversible means of hydrogen storage. By contrast, NaBH4 is a typical non- -reversible complex metal hydride; it reacts with water to produce hydrogen.

  8. The versatility of hydride-forming materials

    International Nuclear Information System (INIS)

    Full text: Already in 1866 it was realised by Graham that large amounts of hydrogen gas were, as he called it, occluded in pure metallic palladium. Even after more than one century of research in the field of hydrogen storage materials this area is still of great interest. This is not only due to the present-day commercial importance of rechargeable Nickel-Metal Hydride (NiMH) batteries, in which hydride-forming intermetallic materials are widely exploited, but also from a fundamental point of view where new discoveries are still being made. In this review these two areas will be highlighted on the basis of two illustrative examples. The first example relates to the application of hydride-forming bulk materials as electrodes in NiMH batteries. Several hydride-forming compounds are, in principle, available to be used as energy storage electrode material. It turned out, however, that AB5 -type compounds are most successfully applied due to their excellent electrode properties, like high storage capacity, rate capability and rapid electrode activation. Another important aspect is the electrode stability during cycling, which determines the battery cycle life. By designing multicomponent AB5 compounds it has been shown that this stability can be drastically improved. Recently, a second class of very stable compounds has been proposed. These so-called non-stoichiometric AB5+x compounds are characterised by the fact that the severe particle size reduction, always accompanying the hydride-formation process, is reduced. The stability mechanism responsible for this remarkable behaviour will be outlined. The second example relates to thin film applications. Recently, it has been found that the electronic conductivity of thin films composed of rare earth metal hydrides like, for example, yttrium hydride and gadolinium hydride, changes dramatically from metallic in the dihydride state to semiconducting in the trihydride state. In line with these conductivity changes the

  9. Stress induced reorientation of vanadium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Beardsley, M. B.

    1977-10-01

    The critical stress for the reorientation of vanadium hydride was determined for the temperature range 180/sup 0/ to 280/sup 0/K using flat tensile samples containing 50 to 500 ppM hydrogen by weight. The critical stress was observed to vary from a half to a third of the macroscopic yield stress of pure vanadium over the temperature range. The vanadium hydride could not be stress induced to precipitate above its stress-free precipitation temperature by uniaxial tensile stresses or triaxial tensile stresses induced by a notch.

  10. Automotive cooling systems based on metal hydrides

    OpenAIRE

    Linder, Marc

    2010-01-01

    The present work focuses on metal hydride sorption systems as an alternative technology for automotive air-conditioning systems. Although this technology offers the possibility to increase the energy efficiency of a car (by utilising waste heat) and consequently reduces the CO2 emissions, its weight specific cooling power has so far been the main obstacle for an automotive application. Based on investigations of various metal hydrides, two alloys (LmNi4.91Sn0.15 and Ti0.99Zr0.01V0.43Fe0.09Cr0...

  11. States of antimony and tin atoms in lead chalcogenides

    International Nuclear Information System (INIS)

    It is shown by Mössbauer spectroscopy of the 119Sb(119mSn) isotope that impurity antimony atoms in PbS, PbSe, and PbTe lattices are distributed between cation and anion sublattices. In n-type samples, the greatest part of antimony is located in the anion sublattice; in hole ones, in the cation sublattice. The tin atoms formed as a result of radioactive decay of 119Sb (antisite state) are electrically inactive in the anion sub-lattice of PbS and PbSe, while, in the cation sublattice, they form donor U− centers. Electron exchange between the neutral and doubly ionized tin U− centers via the allowed band states is observed. The tin atoms formed after radioactive decay of 119Sb are electrically inactive in the anion and cation sublattices of PbTe.

  12. Resistance to Arsenic- and Antimony-Based Drugs

    OpenAIRE

    Milena Salerno; Arlette Garnier-Suillerot

    2003-01-01

    Organic arsenicals were the first antimicrobial agents specifically synthesized for the treatment of infectious diseases such as syphilis and sleeping sickness. For the treatment of diseases caused by trypanosomatid parasites, organic derivatives of arsenic and the related metalloid antimony are still the drugs of choice. Arsenic trioxide, As203, has been used for a long time in traditional Chinese medicines for treatment of various diseases, and it has recently been shown to be clinically ac...

  13. Crystallization of antimony orthotantalate and its physical properties

    International Nuclear Information System (INIS)

    Physicochemical conditions of monophase synthesis of antimony orthoniobate monocrystals in the system SbO3-Ta2O5-KHF2-H2O2-H2O were investigated. In the area of monophase synthesis of SbTaO4 monocrystals kinetic studies of its growth conditions for inoculation, depending on solvent concentration, temperature, pyroelectric properties of the monocrystal grown were studied and conclusion was made on their practical use

  14. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, M. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, USA; The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Hernandez-Garcia, C. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Poelker, M. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Elmustafa, A. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, USA; The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

    2015-06-01

    CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  15. Correlation of CsK{sub 2}Sb photocathode lifetime with antimony thickness

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, M. A., E-mail: mmamu001@odu.edu; Elmustafa, A. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States); The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Hernandez-Garcia, C.; Poelker, M. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2015-06-01

    CsK{sub 2}Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  16. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    Directory of Open Access Journals (Sweden)

    M. A. Mamun

    2015-06-01

    Full Text Available CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  17. Removal of lead from crude antimony by using NaPo3 as lead elimination reagent

    OpenAIRE

    Ye L.G.; Tang C.B.; Yang S.H.; Chen Y.M.; Zhang W.H.

    2015-01-01

    In order to solve the shortcomings when removing lead from crude antimony in the traditional antimony smelting, a new process was provided using NaPO3 as lead elimination reagent to yield phosphate slag, and it was removed by floating on the surface of the liquid antimony. Reaction mechanism was clarified by using the TG-DTA and XRD techniques and single factor experiments of removal lead from crude antimony were engaged. The results show that PbO and NaPO3...

  18. Effects of δ-hydride precipitation at a crack tip on crack propagation in delayed hydride cracking of Zircaloy-2

    International Nuclear Information System (INIS)

    Highlights: • Steady state crack velocity of delayed hydride cracking in Zircaloy-2 was analyzed. • A large stress peak is induced at an end of hydride by volume expansion of hydride. • Hydrogen diffuses to the stress peak, thereby accelerating steady hydride growth. • Crack velocity was estimated from the calculated hydrogen flux into the stress peak. • There was good agreement between calculation results and experimental data. -- Abstract: Delayed hydride cracking (DHC) of Zircaloy-2 is one possible mechanism for the failure of boiling water reactor fuel rods in ramp tests at high burnup. Analyses were made for hydrogen diffusion around a crack tip to estimate the crack velocity of DHC in zirconium alloys, placing importance on effects of precipitation of δ-hydride. The stress distribution around the crack tip is significantly altered by precipitation of hydride, which was strictly analyzed using a finite element computer code. Then, stress-driven hydrogen diffusion under the altered stress distribution was analyzed by a differential method. Overlapping of external stress and hydride precipitation at a crack tip induces two stress peaks; one at a crack tip and the other at the front end of the hydride precipitate. Since the latter is larger than the former, more hydrogen diffuses to the front end of the hydride precipitate, thereby accelerating hydride growth compared with that in the absence of the hydride. These results indicated that, after hydride was formed in front of the crack tip, it grew almost steadily accompanying the interaction of hydrogen diffusion, hydride growth and the stress alteration by hydride precipitation. Finally, crack velocity was estimated from the calculated hydrogen flux into the crack tip as a function of temperature, stress intensity factor and material strength. There was qualitatively good agreement between calculation results and experimental data

  19. Effect of yttrium on nucleation and growth of zirconium hydrides

    International Nuclear Information System (INIS)

    Addition of yttrium in zirconium causes precipitates of yttrium, which form two types of particles and are oxidized upon heat treatment. One type of particles with sub-micrometer scale sizes has a low population, whereas the other with nano scale sizes has a high population and cluster distribution. Owing to strong affinity of yttrium to hydrogen, the nanoparticles, mostly within the grains of the Zr–Y alloy, attract nucleation of hydrides at the clusters of the nanoparticles and cause preferential distribution of intragranular hydrides. In comparison with that of Zr, additional nanoparticles in the Zr–Y alloy impede further growth of hydride precipitates during hydriding. It is deduced that the impediment of growing hydride precipitates by the nanoparticles is developed during an auto-catalytic nucleation process, which leads to formation of thin and intragranular hydrides, favorable to mitigation of hydride embrittlement

  20. Effect of yttrium on nucleation and growth of zirconium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changji; Xiong, Liangyin; Wu, Erdong; Liu, Shi, E-mail: sliu@imr.ac.cn

    2015-02-15

    Addition of yttrium in zirconium causes precipitates of yttrium, which form two types of particles and are oxidized upon heat treatment. One type of particles with sub-micrometer scale sizes has a low population, whereas the other with nano scale sizes has a high population and cluster distribution. Owing to strong affinity of yttrium to hydrogen, the nanoparticles, mostly within the grains of the Zr–Y alloy, attract nucleation of hydrides at the clusters of the nanoparticles and cause preferential distribution of intragranular hydrides. In comparison with that of Zr, additional nanoparticles in the Zr–Y alloy impede further growth of hydride precipitates during hydriding. It is deduced that the impediment of growing hydride precipitates by the nanoparticles is developed during an auto-catalytic nucleation process, which leads to formation of thin and intragranular hydrides, favorable to mitigation of hydride embrittlement.

  1. Metal hydrides for hydrogen storage in nickel hydrogen batteries

    International Nuclear Information System (INIS)

    Metal hydride hydrogen storage in nickel hydrogen (Ni/H2) batteries has been shown to increase battery energy density and improve battery heat management capabilities. However the properties of metal hydrides in a Ni/H2 battery environment, which contains water vapor and oxygen in addition to the hydrogen, have not been well characterized. This work evaluates the use of hydrides in Ni/H2 batteries by fundamental characterization of metal hydride properties in a Ni/H2 cell environment. Hydrogen sorption properties of various hydrides have been measured in a Ni/H2 cell environment. Results of detailed thermodynamic and kinetic studies of hydrogen sorption in LaNi5 in a Ni/H2 cell environment are presented. Long-term cycling studies indicate that degradation of the hydride can be minimized by cycling between certain pressure limits. A model describing the mechanism of hydride degradation is presented

  2. Are RENiAl hydrides metallic?

    Czech Academy of Sciences Publication Activity Database

    Eichinger, K.; Havela, L.; Prokleška, J.; Stelmakhovych, O.; Daniš, S.; Šantavá, Eva; Miliyanchuk, K.

    2009-01-01

    Roč. 100, č. 9 (2009), s. 1200-1202. ISSN 1862-5282 Grant ostatní: GA ČR(CZ) GA202/07/0418 Institutional research plan: CEZ:AV0Z10100520 Keywords : rare earth metals * magnetism * hydrides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.862, year: 2009

  3. Computational study of metal hydride cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Satheesh, A.; Muthukumar, P.; Dewan, Anupam [Department of Mechanical Engineering, Indian Institute of Technology, Guwahati, Guwahati 781039 (India)

    2009-04-15

    A computational study of a metal hydride cooling system working with MmNi{sub 4.6}Al{sub 0.4}/MmNi{sub 4.6}Fe{sub 0.4} hydride pair is presented. The unsteady, two-dimensional mathematical model in an annular cylindrical configuration is solved numerically for predicting the time dependent conjugate heat and mass transfer characteristics between coupled reactors. The system of equations is solved by the fully implicit finite volume method (FVM). The effects of constant and variable wall temperature boundary conditions on the reaction bed temperature distribution, hydrogen concentration, and equilibrium pressures of the reactors are investigated. A dynamic correlation of the pressure-concentration-temperature plot is presented. At the given operating temperatures of 363/298/278 K (T{sub H}/T{sub M}/T{sub C}), the cycle time for the constant and variable wall temperature boundary conditions of a single-stage and single-effect metal hydride system are found to be 1470.0 s and 1765.6 s, respectively. The computational results are compared with the experimental data reported in the literature for LaNi{sub 4.61}Mn{sub 0.26}Al{sub 0.13}/La{sub 0.6}Y{sub 0.4}Ni{sub 4.8}Mn{sub 0.2} hydride pair and a good agreement between the two was observed. (author)

  4. Recent advances on antimony(III/V) compounds with potential activity against tumor cells.

    Science.gov (United States)

    Hadjikakou, S K; Ozturk, I I; Banti, C N; Kourkoumelis, N; Hadjiliadis, N

    2015-12-01

    Antimony one of the heavier pnictogens, has been in medical use against microbes and parasites as well. Antimony-based drugs have been prescribed against leishmaniasis since the parasitic transmission of the tropical disease was understood in the beginning of the 20th century. The activity of arsenic against visceral leishmaniasis led to the synthesis of an array of arsenic-containing parasitic agents, among them the less toxic pentavalent antimonials: Stibosan, Neostibosan, and Ureastibamine. Other antimony drugs followed: sodium stibogluconate (Pentostam) and melglumine antimoniate (Glucantim or Glucantime); both continue to be in use today despite their toxic side effects and increasing loss in potency due to the growing resistance of the parasite against antimony. Antimony compounds and their therapeutic potentials are under consideration from many research groups, while a number of early reviews recording advances of antimony biomedical applications are also available. However, there are only few reports on the screening for antitumor potential of antimony compounds. This review focuses upon results obtained on the anti-proliferative activity of antimony compounds in the past years. This survey shows that antimony(III/V) complexes containing various types of ligands such as thiones, thiosemicarbazones, dithiocarbamates, carboxylic acids, or ketones, nitrogen donor ligands, exhibit selectivity against a variety of cancer cells. The role of the ligand type of the complex is elucidated within this review. The complexes and their biological activity are already reported elsewhere. However quantitative structure-activity relationship (QSAR) modeling studies have been carried out and they are reported for the first time here. PMID:26092367

  5. Complexation of HSA with different forms of antimony (Sb): An application of fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Antimony (Sb) pollution has been of a great environmental concern in some areas in China. Sb enters human body via drinking water, inhalation and food chain, unavoidably interacts with human serum albumin (HSA) in blood plasma, and consequently does harm to human health. The harmful effects of Sb on human health depend on the Sb species and their binding ability to HSA. In the present study, binding of three forms of Sb with HSA was investigated by excitation-emission matrix (EEM) spectroscopy. All of antimony potassium tartrate, antimony trichloride and potassium pyroantimonate quenched fluorescence of HSA. Values of conditional stability constant Ka (×105/M) for Sb and HSA systems were 8.13–9.12 for antimony potassium tartrate, 2.51–4.27 for antimony trichloride and 3.63–9.77 for potassium pyroantimonate. The binding constant Kb (×104/M) values of HSA with antimony potassium tartrate, antimony trichloride and potassium pyroantimonate were 0.02–0.07, 3.55–5.01, and 0.07–1.08, respectively. There was one independent class of binding site for antimony trichloride towards HSA. There was more than one Sb binding site and negative cooperativity between multiple binding sites for potassium pyroantimonate and antimony potassium tartrate towards HSA. The binding ability of HSA to complex Sb followed the order: antimony trichloride>potassium pyroantimonate>antimony potassium tartrate. -- Highlights: ► The first study reporting interaction of Sb with HSA. ► Sb can effectively quench the fluorescence of HSA. ► The binding ability of HSA to Sb was dependent on the form of Sb. ► Binding differences indicate differences in toxicity of various forms Sb to human. ► HAS-Sb binding parameters are important for understanding toxicity of Sb

  6. Leishmania donovani isolates with antimony-resistant but not -sensitive phenotype inhibit sodium antimony gluconate-induced dendritic cell activation.

    Directory of Open Access Journals (Sweden)

    Arun Kumar Haldar

    2010-05-01

    Full Text Available The inability of sodium antimony gluconate (SAG-unresponsive kala-azar patients to clear Leishmania donovani (LD infection despite SAG therapy is partly due to an ill-defined immune-dysfunction. Since dendritic cells (DCs typically initiate anti-leishmanial immunity, a role for DCs in aberrant LD clearance was investigated. Accordingly, regulation of SAG-induced activation of murine DCs following infection with LD isolates exhibiting two distinct phenotypes such as antimony-resistant (Sb(RLD and antimony-sensitive (Sb(SLD was compared in vitro. Unlike Sb(SLD, infection of DCs with Sb(RLD induced more IL-10 production and inhibited SAG-induced secretion of proinflammatory cytokines, up-regulation of co-stimulatory molecules and leishmanicidal effects. Sb(RLD inhibited these effects of SAG by blocking activation of PI3K/AKT and NF-kappaB pathways. In contrast, Sb(SLD failed to block activation of SAG (20 microg/ml-induced PI3K/AKT pathway; which continued to stimulate NF-kappaB signaling, induce leishmanicidal effects and promote DC activation. Notably, prolonged incubation of DCs with Sb(SLD also inhibited SAG (20 microg/ml-induced activation of PI3K/AKT and NF-kappaB pathways and leishmanicidal effects, which was restored by increasing the dose of SAG to 40 microg/ml. In contrast, Sb(RLD inhibited these SAG-induced events regardless of duration of DC exposure to Sb(RLD or dose of SAG. Interestingly, the inhibitory effects of isogenic Sb(SLD expressing ATP-binding cassette (ABC transporter MRPA on SAG-induced leishmanicidal effects mimicked that of Sb(RLD to some extent, although antimony resistance in clinical LD isolates is known to be multifactorial. Furthermore, NF-kappaB was found to transcriptionally regulate expression of murine gammaglutamylcysteine synthetase heavy-chain (mgammaGCS(hc gene, presumably an important regulator of antimony resistance. Importantly, Sb(RLD but not Sb(SLD blocked SAG-induced mgammaGCS expression in DCs by

  7. Oxidation and mobilization of metallic antimony in aqueous systems with simulated groundwater

    Science.gov (United States)

    Ilgen, A. G.; Majs, F.; Barker, A. J.; Douglas, T. A.; Trainor, T. P.

    2014-05-01

    Antimony (Sb) is a contaminant of concern that can be present in elevated concentrations in shooting range soils due to mobilization from spent lead/antimony bullets. Antimony in shooting range soils has been observed as either metallic Sb(0) or as Sb(V) immobilized by iron (hydr)oxides. The absence of Sb(III) in soils is indicative of rapid Sb(III) oxidation to Sb(V) under surface soil conditions. However, the major controls on antimony oxidation and mobility are poorly understood. To better understand these controls we performed multiple batch experiments under oxic conditions to quantify the oxidation and dissolution of antimony in systems where Sb(0) is oxidized to Sb(III) and further to Sb(V). We also tested how variations in the aqueous matrix composition and the presence of metallic lead (Pb) affect the dissolution, solid phase speciation, and oxidation of antimony. We monitored changes in the aqueous antimony speciation using liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS). To test which solid phases form as a result of Sb(0) oxidation, and therefore potentially limit the mobility of antimony in our studied systems, we characterized the partially oxidized Sb(0) powders by means of extended X-ray absorption fine structure (EXAFS) spectroscopy and powder X-ray diffraction (XRD).

  8. Tin dioxide sol-gel derived films doped with platinum and antimony deposited on porous silicon

    NARCIS (Netherlands)

    Savaniu, C.; Arnautu, A.; Cobianu, C.; Craciun, G.; Flueraru, C.; Zaharescu, M.; Parlog, C.; Paszti, F.; Berg, van den A.

    1999-01-01

    SnO2 sol-gel derived thin films doped simultaneously with Pt and Sb are obtained and reported for the first time. The Sn sources were tin(IV) ethoxide or tin(II) ethylhexanoate, while hexachloroplatinic acid (H2PtCl6) and antimony chloride (SbCl3) were used as platinum and antimony sources, respecti

  9. Comparison of modification with strontium and the refining with antimony in A 356 aluminium alloys

    International Nuclear Information System (INIS)

    Strontium and Antimony treated A356 aluminium alloy samples were metallographically characterized in the as cast and solution and aged conditions. Antimony treated alloy has shown slower spheroidizing kinetics of the Silicon particles during solution treatment, lower porosity level and higher tensile strength and elongation than Strontium treated one. (author)

  10. Leishmania donovani: an in vitro study of antimony-resistant amphotericin B-sensitive isolates

    DEFF Research Database (Denmark)

    Sharief, Abdalla Hassan; Gasim Khalil, Eltahir Awad; Theander, Thor G;

    2006-01-01

    Drug sensitivity of clinically antimony-unresponsive Leishmania donovani isolates from Eastern Sudan was evaluated in an in vitro culture system against sodium stibogluconate (Pentostam) and Amphotericin B. Eight isolates, six from antimony-resistant and two from clinically responsive patients were...

  11. Waste treatment as applied to the problem of recovery of antimony-125

    International Nuclear Information System (INIS)

    In the report we present the average radionuclide and chemical composition of processing solutions in various stages of treatment of spent nuclear fuel. The behavior of antimony-125 during sorption from these solutions was studied. A series of oxide and phosphate compounds was used as sorbents. The best results on recovery of antimony were reached on silica gel. A necessary condition for prolonged high-cycle operation of silica gel in actual practice is its rather complete regeneration. In this connection, we studied completeness of antimony desorption from various sorbents. The best results were obtained with aqueous hydrochloric and oxalic acids. Our study showed the possibility of recovery of antimony-125 from spent nuclear fuel wastes by adsorption on silica gel from processing solutions with subsequent desorption of the target product. In the average the yield of antimony-125 is 85%. (authors)

  12. Testing of antimony selective media for treatment of liquid radwaste

    International Nuclear Information System (INIS)

    Nuclear power plants have sought radiation source term reduction and reduced discharge of radioactive constituents for many years. In the case of pressurized water reactors (PWRs), the latter efforts have been directed toward capture and immobilization of recalcitrant (ubiquitous radionuclides with long half-lives) species such as Cs-134 and Cs-137 and Co-58 and Co-60. As these plants resolved, or at least mitigated, the problems with radiocesium and radio-cobalt, antimony radionuclides (Sb-122, Sb-124, and Sb-125) have become a primary concern in liquid liquid radwaste systems Graver Technologies developed a granular composite metal oxide media with good selectivity for radio-antimony. Initial laboratory data were collected using non-radioactive salts of antimony, cesium, and cobalt to judge efficacy of selective removal of antimony. Based on success of those trials, the media, designated Gravex GX187, was tested in partnership with Energy Solutions (nee Duratek) using actual liquid liquid radwaste in two PWR plants. One of these plants performed extensive slip-stream trials comparing the GX187 with strong base anion resins. With more than 2500 bed volumes of throughput, the GX187 outperformed the other competitors by reducing both Sb-124 and Sb-125 radionuclides below minimum detectable activity (MDA) with average decontamination factors (DF's) of 170, even when subjected to high levels of borate. Based on these favorable results, Energy Solutions installed the GX187 in a layered bed in their ALPS liquid radwaste processing system at this plant in August 2005. After one year of intermittent, batchwise operation including an outage, the GX187 processed more than 2.25 million liters (>600,000 gallons) of liquid liquid radwaste while reducing the Sb-125 activity to 2.9 E-08 Bq/L (DF=111) on average. This evaluation is ongoing and will continue at least until the fall 2006 outage at this plant. Concurrently, Graver developed a second generation antimony selective

  13. Hydrogen storage in metallic hydrides: the hydrides of magnesium-nickel alloys

    International Nuclear Information System (INIS)

    The massive and common use of hydrogen as an energy carrier requires an adequate solution to the problem of storing it. High pressure or low temperatures are not entirely satisfactory, having each a limited range of applications. Reversible metal hydrides cover a range of applications intermediate to high pressure gas and low temperature liquid hydrogen, retaining very favorable safety and energy density characteristics, both for mobile and stationary applications. This work demonstrates the technical viability of storing hydrogen in metal hydrides of magnesium-nickel alloys. Also, it shows that technology, a product of science, can be generated within an academic environment, of the goal is clear, the demand outstanding and the means available. We review briefly theoretical models relating to metal hydride properties, specially the thermodynamics properties relevant to this work. We report our experimental results on hydrides of magnesium-nickel alloys of various compositions including data on structure, hydrogen storage capacities, reaction kinetics, pressure-composition isotherms. We selected a promising alloy for mass production, built and tested a modular storage tank based on the hydrides of the alloy, with a capacity for storing 10 Nm sup(3) of hydrogen of 1 atm and 20 sup(0)C. The tank weighs 46,3 Kg and has a volume of 21 l. (author)

  14. Behavior of ruthenium, cesium and antimony during simulated HLLW vitrification

    International Nuclear Information System (INIS)

    The behavior of ruthenium, cesium, and antimony during the vitrification of simulated high-level radioactive liquid wastes (HLLW) in a liquid fed melter was studied on a laboratory scale and on a semi-pilot scale. In the laboratory melter of a 2.5 kg capacity, a series of tests with the simulate traced with 103Ru, 134Cs and 124Sb, has shown that the Ru and Cs losses to the melter effluent are generally higher than 10% whereas the antimony losses remain lower than 0.4%. A wet purification system comprising in series, a dust scrubber, a condenser, an ejector venturi and an NOx washing column retains most of the activity present in the off-gas so that the release fractions for Ru at the absolute filter inlet ranges between 5.10-3 to 5.10-5% of the Ru fed, for Cs the corresponding release fraction ranges between 3.10-3 to 10-4% and for Sb the release fraction ranges between 1.7 10-4 to 1.7 10-5%. The same experiments were performed at a throughput of 1 to 2 1 h-1 of simulated solution in the semi-pilot scale unit RUFUS. The RUFUS unit comprises a glass melter with a 50 kg molten glass capacity and the wet purification train comprises in series a dust scrubber, a condenser, an ejector venturi and an NOx washing column. The tracer tests were restricted to 103Ru and 134Cs since the laboratory tests had shown that the antimony losses were very low. The results of the tests are presented

  15. Metal hydrides based high energy density thermal battery

    International Nuclear Information System (INIS)

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV0.62Mn1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles

  16. METHOD OF FABRICATING A URANIUM-ZIRCONIUM HYDRIDE REACTOR CORE

    Science.gov (United States)

    Weeks, I.F.; Goeddel, W.V.

    1960-03-22

    A method is described of evenly dispersing uranlum metal in a zirconium hydride moderator to produce a fuel element for nuclear reactors. According to the invention enriched uranium hydride and zirconium hydride powders of 200 mesh particle size are thoroughly admixed to form a mixture containing 0.1 to 3% by weight of U/sup 235/ hydride. The mixed powders are placed in a die and pressed at 100 tons per square inch at room temperature. The resultant compacts are heated in a vacuum to 300 deg C, whereby the uranium hydride deoomposes into uranium metal and hydrogen gas. The escaping hydrogen gas forms a porous matrix of zirconium hydride, with uramum metal evenly dispersed therethrough. The advantage of the invention is that the porosity and uranium distribution of the final fuel element can be more closely determined and controlled than was possible using prior methods of producing such fuel ele- ments.

  17. Metabolism of antimony-124 in lactating dairy cows

    International Nuclear Information System (INIS)

    Lactating cows received oral and intravenous administrations of radioactive antimony (III) chloride to study its intestinal and urinary excretion, secretion into milk and organ distribution. Milk samples were taken twice a day and the milk, feces and urine assayed using gamma spectroscopy. Cows administered orally were sacrificed at 102 days and those injected intravenously at 70 days. Distribution of 124 Sb in the organs was determined at the time of sacrifice. Excretion of 124Sb occurs mainly via urine, little is secreted into milk. Highest organ concentrations are in the spleen, liver and bone. (U.K.)

  18. Electrostatically defined silicon quantum dots with counted antimony donor implants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87175 (United States); Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Bielejec, E.; Carroll, M. S. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  19. Electrostatically defined silicon quantum dots with counted antimony donor implants

    International Nuclear Information System (INIS)

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants

  20. Antimony implanted strained Si for nMOSFET applications

    OpenAIRE

    Zamani, Atieh

    2009-01-01

    Incorporation of implanted antimony (Sb) in strained-silicon (s-Si) formed on relaxed-SiGe virtual substrates (10 and 30% Ge) has been studied. The implantation doses were 5×1013- 5×1014 cm-2 with an energy of 20 keV. The activation of dopant was performed by an rapid thermal annealing (RTA) treatment at 700 and 800 °C for 30 sec. Projected range of this implantation is about 20 nm which was also confirmed by different techniques. The layers were analyzed in terms of strain relaxation, sheet ...

  1. SANS Measurement of Hydrides in Uranium

    International Nuclear Information System (INIS)

    SANS scattering is shown to be an effective method for detecting the presence of hydrogen precipitates in uranium. High purity polycrystalline samples of depleted uranium were given several hydriding treatments which included extended exposures to hydrogen gas at two different pressures at 630 C as well as a furnace anneal at 850 C followed by slow cooling in the near absence hydrogen gas. All samples exhibited neutron scattering that was in proportion to the expected levels of hydrogen content. While the scattering signal was strong, the shape of the scattering curve indicated that the scattering objects were large sized objects. Only by use of a very high angular resolution SANS technique was it possible to make estimates of the major diameter of the scattering objects. This analysis permits an estimate of the volume fraction and means size of the hydride precipitates in uranium

  2. NMR investigations of YMn2Hx hydrides

    International Nuclear Information System (INIS)

    The YMn2Hx hydrides with x = 1, 2, 3 were investigated by 55Mn NMR spin echo measurements at atmospheric and high pressure. Resonance lines at frequencies up to 440 MHz were observed for the hydrides, corresponding to a huge increase of the hyperfine fields at those Mn with hydrogen neighbours. At high pressure the initial decrease of the magnitude of the Mn hyperfine field of YMn2H1 at 4.2 K was found to be 4% per kbar which is an order of magnitude bigger than observed in the other magnetically ordered materials. The effects are interpreted in terms of changes of the orbital contribution and valence electron contribution to the hyperfine field caused by hydrogenation and the influence of the external pressure. (orig.)

  3. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf;

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  4. Synthesis of metal hydrides by cold rolling

    International Nuclear Information System (INIS)

    'Full text:' In the development of metal hydrides for commercial applications, a special attention should be devoted to the ways of production. For commercial success, the raw elements of the hydrogen storage materials should be of low cost, the synthesis process should be inexpensive and easily scalable. Therefore, it is important to put some effort on the elaboration of new and more efficient means of producing metal hydrides. In this perspective, cold rolling was investigated as a new means of producing nanocrystalline materials. This technique is well-known in the industry and easily scalable. Cold rolling was performed on Mg-Ni system. The evolution of morphology, crystal structure, crystallite size, deformation, and preferred orientation was studied as a function of number of rolling passes. Cold rolling followed by a heat treatment produced the intermetallic Mg2Ni. Without heat treatment and for a large number of rolling, an amorphous phase was synthesized. (author)

  5. Numerical study of a magnesium hydride tank

    Science.gov (United States)

    Delhomme, Baptiste; de Rango, Patricia; Marty, Philippe

    2012-11-01

    Hydrogen storage in metal hydride tanks (MHT) is a very promising solution. Several experimental tanks, studied by different teams, have already proved the feasibility and the interesting performances of this solution. However, in much cases, an optimization of tank geometry is still needed in order to perform fast hydrogen loading. The development of efficient numerical tools is a key issue for MHT design and optimization. We propose a simple model representing a metal hydride tank exchanging its heat of reaction with a thermal fluid flow. In this model, the radial and axial discretisations have been decoupled by using Matlab® one-dimensional tools. Calculations are compared to experimental results obtained in a previous study. A good agreement is found for the loading case. The discharging case shows some discrepancies, which are discussed in this paper.

  6. The hydride fluoride crystal structure database, HFD

    Energy Technology Data Exchange (ETDEWEB)

    Gingl, F.; Gelato, L.; Yvon, K. [Geneva Univ. (Switzerland). Lab. Crystallographie aux Rayons X

    1997-05-20

    HFD is a new data base containing crystal structure information on more than one thousand metal hydrides and fluorides. It includes space group, cell parameters, standardized atom positions, site occupancies and references. The compilation is critical as only refined crystal structures are considered and the data are checked for internal consistency. It is comprehensive as structural information is extracted from all major scientific journals, and it is continuously updated. HFD can be searched according to various criteria such as symmetry, chemical elements, composition etc. The primary motivation for creating HFD was to predict new metal hydrides and to study their structural analogies with metal fluorides. However, HFD can also be used for other applications such as the simulation of diffraction patterns and the drawing of crystal structures. (orig.) 13 refs.

  7. Speciesion arsenic and selenium using hydride method atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Hydrides production - atomic absorption spectroscopy system was studied. Hydrides production tool and gas-liquid separator were tested and successfully used in this work. Hydride was produced through natrium borohydride reaction with sample solution. Emitted gas was separated by gas-liquid separator before it is carried by nitrogen gas through T tube which is put in atomic absorption flame spectrophotometer. Efficiency of the system was tested through standard reference sample and seawater / sediment samples which is collected from Negeri Johor water bays

  8. Plasmonic hydrogen sensing with nanostructured metal hydrides.

    Science.gov (United States)

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-12-23

    In this review, we discuss the evolution of localized surface plasmon resonance and surface plasmon resonance hydrogen sensors based on nanostructured metal hydrides, which has accelerated significantly during the past 5 years. We put particular focus on how, conceptually, plasmonic resonances can be used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and at the single-nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes in the quest to develop efficient solid-state hydrogen storage materials with fast response times, reasonable thermodynamics, and acceptable long-term stability. Therefore, a brief introduction to the thermodynamics of metal hydride formation is also given. However, plasmonic hydrogen sensors not only are of academic interest as research tool in materials science but also are predicted to find more practical use as all-optical gas detectors in industrial and medical applications, as well as in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier. Therefore, the wide range of different plasmonic hydrogen sensor designs already available is reviewed together with theoretical efforts to understand their fundamentals and optimize their performance in terms of sensitivity. In this context, we also highlight important challenges to be addressed in the future to take plasmonic hydrogen sensors from the laboratory to real applications in devices, including poisoning/deactivation of the active materials, sensor lifetime, and cross-sensitivity toward other gas species. PMID:25427244

  9. METHOD AND APPARATUS FOR MAKING URANIUM-HYDRIDE COMPACTS

    Science.gov (United States)

    Wellborn, W.; Armstrong, J.R.

    1959-03-10

    A method and apparatus are presented for making compacts of pyrophoric hydrides in a continuous operation out of contact with air. It is particularly useful for the preparation of a canned compact of uranium hydride possessing high density and purity. The metallic uranium is enclosed in a container, positioned in a die body evacuated and nvert the uranium to the hydride is admitted and the container sealed. Heat is applied to bring about the formation of the hydride, following which compression is used to form the compact sealed in a container ready for use.

  10. Spectrophotometric determination of volautile inorganic hydrides in binary gaseous mixtures

    International Nuclear Information System (INIS)

    A study was made on possibility of single and continuons analysis of binary mixtures (hydride-gas) for the content of volatile inorganic hydrides (VIH) from absorption spectra in the 185-280 nm band. Dependences of the percentage of VIH transmission on the wavelength are presented. It is shown that the maximum of their absorption depends on the element-hydrogen the bond length and binding energy. Detection limit for boron hydride was established to be n x 10-3% vol at 185-190 nm wavelength. Technique for spectrophotometric hydride determination in binary mixtures with hydrogen, argon, helium was developed. The technique provides the continuous control of gaseous mixture composition

  11. Identification of the zirconium hydrides metallography in zircaloy-2

    International Nuclear Information System (INIS)

    Technique for the Identification of the zirconium hydrides in metallographic specimens have been developed. Microhardness, quantitative estimation and relative orientation of the present hydrides as well as grain size determination of the different Zircaloy-2 tube specimens have also been made. The specimens used were corrosion- tested in water during various periods of time at 300 degree castrating, prior to the metallographic examination. Reference specimens, as received, and heavily hydride specimens in a hydrogen atmosphere at 800 degree centigrees, have been used in the previous stages of the work. No difficulties have been met in this early stage of acquaintanceship with the zirconium hydrides. (Author) 5 refs

  12. Solubility behaviour of antimony(III) and antimony(V) solids in basic aqueous solutions at 300{sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Lemire, R.J.; Tosello, N.B.; Halliday, J.D

    1999-12-01

    The major contributions of the isotopes {sup 122}Sb and {sup 124}Sb to activity transport in a CANDU reactor primary heat transport system (HTS), have been associated with oxygen ingress during reactor shutdown. As part of a program to minimize the release and redeposition of these isotopes, the solubilities of antimony(III) and (V) oxides and salts have been measured in basic solutions at temperatures from 25 to 300{sup o}C. The results provide information on the charge and the stability as a function of temperature of antimony solution species and, hence, a guide to the trends in the temperature dependence of the solubilities of antimony solids. In solutions in which oxidation of antimony(III) to antimony(V) is minimized, the solubility of Sb{sub 2}O{sub 3} increases by about two orders of magnitude between 25 and 200{sup o}C, and then levels out or decreases slightly. At 250{sup o}C, in oxidizing solutions, Sb{sub 2}O{sub 5}{center_dot}xH{sub 2}O and simple sodium antimonate(V) were found to be unstable in sodium hydroxide solutions with respect to the solid, Na{sub 2{alpha}}[H(H{sub 2}O)]{sub 2-2{alpha}}Sb{sub 2}O{sub 6}, which has a pyrochlore structure. The solubility of this partially protonated sodium antimonate increases from 25 to 200{sup o}C and decreases at temperatures above 250{sup o}C. These solubility changes for the antimony (V) solids reflect changes in the stability of the anionic antimony solution species (SbO{sub 3}{sup -} or Sb(OH){sub 6}{sup -}), even though the compositions of antimony-containing solids in basic oxidizing solutions are strongly dependent on the cations and their aqueous phase concentrations. All solids used in the present experiments would be expected to generate total solution antimony concentrations {>=} 0.00005 mol{center_dot}dm{sup -3} in any neutral or basic aqueous solutions (assuming no added sodium salts). Therefore, under HTS conditions, precipitation of any antimony oxides or mixed oxides is unlikely. It cannot be

  13. Thermal decomposition kinetics of antimony oxychloride in air

    Institute of Scientific and Technical Information of China (English)

    阳卫军; 唐谟堂; 金胜明

    2002-01-01

    The DTA and XRD techniques were employed to study thermal decomposition mechanism of antimony oxychloride SbOCl in the air. The thermal decomposition reaction occurs in four steps, and the former three steps as: SbOCl(s)→Sb4O5Cl2(s)+SbCl3(g)→Sb8O11Cl2(s)+SbCl3(g)→Sb2O3(s)+SbCl3(g). The forth step is the oxidation of Sb2O3 by air, Sb2O3(s)+O2→Sb2O4(s). The activation energy and the order of the thermal decomposition reaction of antimony oxychloride in three steps presented in DTA curves were calculated according to Kinssinger methods from DTA curves. The values of activation energy and the order are respectively 91.97kJ/mol, 0.73 in the first step, 131.14kJ/mol, 0.63 in the second step and 146.94kJ/mol, 1.58 in the third step.

  14. Alkali oxide-tantalum, niobium and antimony oxide ionic conductors

    Science.gov (United States)

    Roth, R. S.; Brower, W. S.; Parker, H. S.; Minor, D. B.; Waring, J. L.

    1975-01-01

    The phase equilibrium relations of four systems were investigated in detail. These consisted of sodium and potassium antimonates with antimony oxide and tantalum and niobium oxide with rubidium oxide as far as the ratio 4Rb2O:llB2O5 (B=Nb, Ta). The ternary system NaSbO3-Sb2O4-NaF was investigated extensively to determine the actual composition of the body centered cubic sodium antimonate. Various other binary and ternary oxide systems involving alkali oxides were examined in lesser detail. The phases synthesized were screened by ion exchange methods to determine mobility of the mobility of the alkali ion within the niobium, tantalum or antimony oxide (fluoride) structural framework. Five structure types warranted further investigation; these structure types are (1) hexagonal tungsten bronze (HTB), (2) pyrochlore, (3) the hybrid HTB-pyrochlore hexagonal ordered phases, (4) body centered cubic antimonates and (5) 2K2O:3Nb2O5. Although all of these phases exhibit good ion exchange properties only the pyrochlore was prepared with Na(+) ions as an equilibrium phase and as a low porosity ceramic. Sb(+3) in the channel interferes with ionic conductivity in this case, although relatively good ionic conductivity was found for the metastable Na(+) ion exchanged analogs of RbTa2O5F and KTaWO6 pyrochlore phases.

  15. Antimony removal from the polyethylene terephthalate manufacture wastewater

    Directory of Open Access Journals (Sweden)

    Tomas Vengris

    2010-04-01

    Full Text Available In this study, antimony removal by coagulation from polyethylene terephthalate resin production wastewater of „Orion Global PET“ factory in Klaipėda city was investigated, with regard to the dependence of coagulant type and dosage, pH and presence of organics. FeCl3 ∙6H2O, FeSO4 ∙7H2O, AlCl3∙6H2O and TiCl4 salts were used as coagulants. Ti(IV and Fe(III revealed oneself to be the most effective coagulants. Antimony removal effectiveness is moderate and low using FeSO4 ∙7H2O and AlCl3∙6H2O coagulants, respectively. The addition of 10 mg dm-3 Ti(IV and 30 mg dm-3 Fe(III reduces by ~98% of the Sb, when the initial amount of Sb in wastewater is about 1200 mkg/l. The action of Fe(III is practically independent in the pH range 4-9, and that of Ti(IV slightly decreases in the same pH interval. The Sb amount in wastewater can be reduced to 13-20 mkg dm-3, while the initial Sb concentration is 1200 mkg dm-3. The presence of organic compounds in wastewater determines the reduction of Sb removal by coagulation.

  16. Antimony contamination and its effect on Trifolium plants

    Science.gov (United States)

    Corrales, Isabel; Barceló, Juan; Bech, Jaume; Poschenrieder, Charlotte

    2014-05-01

    Antimony is not an essential element and soil Sb contents usually are low.However, soil contamination by Sb has increased in the last years due to the human activities (combustion of fossil fuels, mining, waste incineration, smelting, shooting and road traffic). The main objective of this work was to study the effect of different concentrations of antimony (KSb(OH)6) in order to evaluate the effect on growth and Sb uptake on Trifolium pratense cv. Milvus and Trifolium repens. Our results show that Sb accumulated both in roots and shoots of clover without any negative effect on root growth, cellular viability and lipid peroxidation. This absence of toxicity sympthoms in clover plants could be very dangerous because Sb can be inadvertedly incorporated into the trophic chain causing toxic effects both in animals and humans. The absence of toxic effects on plants does not seem to be due to detoxification by phytochelatins because the use of the gamma-glutamylcysteine synthetase inhibitor, L-buthionine-[S,R]-sulphoximine (BSO) did not enhance Sb toxicity to plants. (Supported by the Spanish MICINN project BFU2010-14873)

  17. Uranium-zirconium hydride fuel properties

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D. [Department of Nuclear Engineering, University of California at Berkeley, Berkeley, CA 94720 (United States)], E-mail: fuelpr@nuc.berkeley.edu; Greenspan, Ehud [Department of Nuclear Engineering, University of California at Berkeley, Berkeley, CA 94720 (United States); Garkisch, Hans D. [Westinghouse Electric Company LLC, Pittsburgh, PA 15236 (United States); Petrovic, Bojan [School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2009-08-15

    Properties of the two-phase hydride U{sub 0.3}ZrH{sub 1.6} pertinent to performance as a nuclear fuel for LWRs are reviewed. Much of the available data come from the Space Nuclear Auxiliary Power (SNAP) program of 4 decades ago and from the more restricted data base prepared for the TRIGA research reactors some 3 decades back. Transport, mechanical, thermal and chemical properties are summarized. A principal difference between oxide and hydride fuels is the high thermal conductivity of the latter. This feature greatly decreases the temperature drop over the fuel during operation, thereby reducing the release of fission gases to the fraction due only to recoil. However, very unusual early swelling due to void formation around the uranium particles has been observed in hydride fuels. Avoidance of this source of swelling limits the maximum fuel temperature to {approx}650 deg. C (the design limit recommended by the fuel developer is 750 deg. C). To satisfy this temperature limitation, the fuel-cladding gap needs to be bonded with a liquid metal instead of helium. Because the former has a thermal conductivity {approx}100 times larger than the latter, there is no restriction on gap thickness as there is in helium-bonded fuel rods. This opens the possibility of initial gap sizes large enough to significantly delay the onset of pellet-cladding mechanical interaction (PCMI). The large fission-product swelling rate of hydride fuel (3x that of oxide fuel) requires an initial radial fuel-cladding gap of {approx}300 m if PCMI is to be avoided. The liquid-metal bond permits operation of the fuel at current LWR linear-heat-generation rates without exceeding any design constraint. The behavior of hydrogen in the fuel is the source of phenomena during operation that are absent in oxide fuels. Because of the large heat of transport (thermal diffusivity) of H in ZrH{sub x}, redistribution of hydrogen in the temperature gradient in the fuel pellet changes the initial H/Zr ratio of 1

  18. Uranium-zirconium hydride fuel properties

    International Nuclear Information System (INIS)

    Properties of the two-phase hydride U0.3ZrH1.6 pertinent to performance as a nuclear fuel for LWRs are reviewed. Much of the available data come from the Space Nuclear Auxiliary Power (SNAP) program of 4 decades ago and from the more restricted data base prepared for the TRIGA research reactors some 3 decades back. Transport, mechanical, thermal and chemical properties are summarized. A principal difference between oxide and hydride fuels is the high thermal conductivity of the latter. This feature greatly decreases the temperature drop over the fuel during operation, thereby reducing the release of fission gases to the fraction due only to recoil. However, very unusual early swelling due to void formation around the uranium particles has been observed in hydride fuels. Avoidance of this source of swelling limits the maximum fuel temperature to ∼650 deg. C (the design limit recommended by the fuel developer is 750 deg. C). To satisfy this temperature limitation, the fuel-cladding gap needs to be bonded with a liquid metal instead of helium. Because the former has a thermal conductivity ∼100 times larger than the latter, there is no restriction on gap thickness as there is in helium-bonded fuel rods. This opens the possibility of initial gap sizes large enough to significantly delay the onset of pellet-cladding mechanical interaction (PCMI). The large fission-product swelling rate of hydride fuel (3x that of oxide fuel) requires an initial radial fuel-cladding gap of ∼300 m if PCMI is to be avoided. The liquid-metal bond permits operation of the fuel at current LWR linear-heat-generation rates without exceeding any design constraint. The behavior of hydrogen in the fuel is the source of phenomena during operation that are absent in oxide fuels. Because of the large heat of transport (thermal diffusivity) of H in ZrHx, redistribution of hydrogen in the temperature gradient in the fuel pellet changes the initial H/Zr ratio of 1.6 to ∼1.45 at the center and

  19. Segregation of antimony in InP in MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Weeke, Stefan

    2008-07-01

    In this work the segregation of antimony in indium phosphide in metal organic vapour phase epitaxy (MOVPE)was systematically investigated. Therefore phosphine stabilized InP surfaces were treated with tri-methyl-antimony (TMSb) in MOVPE. An antimony rich Sb/InP surface was established, showing a typical spectra for the antimonides observed in reflectance anisotropy spectroscopy (RAS).Adsorption and desorption of antimony are investigated, as well as the incorporation of Sb during overgrowth of the Sb/InP surface with InP. Therefore the growth parameters temperature, TMSb partial pressure and treatment time are varied and their influence investigated. The experiments are monitored in-situ with RAS, the achieved data is correlated with ex-situ characterisation such as X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS). It is shown that under treatment with TMSb a stable Sb/InP surface is formed within seconds, which does not change under further TMSb treatment. This process is rarely influenced by the TMSb partial pressure. On the contrary, the desorption of Sb is a very slow process. Two main processes can be distinguished: The desorption of excess Sb from the surface and the formation of the MOVPE prepared InP (2 x 1) surface. The reaction velocity of adsorption and desorption increases with temperature. Above a critical value the increase of TMSb partial pressure has no influence on the time for desorption. During overgrowth of the Sb/InP surface the opposite temperature dependence is observed: with increasing growth temperature the typical spectra for antimonides is observed longer. An analysis of the grown samples with XRD and SIMS showed the formation of an InPSb double quantum well. One layer is formed at the interface, the second one 50 nm-120 nm deep in the InP. The location of the 2nd InPSb layer can be correlated with the vanishing of the Sb signature in RAS. The distance between the quantum wells increases with growth temperature, until it

  20. Leaching Mechanism of Complicated Antimony-Lead Concentrate and Sulfur Formation in Slurry Electrolysis

    Institute of Scientific and Technical Information of China (English)

    WangChengyan; QiuDingfan; JiangPeihai

    2004-01-01

    Anodic reaction mechanism of complicated antimony-lead concentrate in slurry electrolysis was investigated by the anodic polarization curves determined under various conditions. The main reactions on the anode are the oxidations of FeCln(2-n) . Though the oxidation of jamesonite particle on the anode can occur during the whole process, it is less. With the help of mineralogy studies and relevant tests, the leaching reaction mechanism of jameson[to and gudmundite during slurry electrolysis was ascertained. Because of the oxidation reaction of FeCl3 produced by antimony-lead concentrate itself, the non-oxidation complex acid dissolution of jameson[re, the oxidation complex acid dissolution of gudmundite, and the oxidation of air carried by stirring, the leaching ratio of antimony reaches about 35% when HCl-NH4Cl solution is used to leach antimony-lead concentrate directly. So when the theoretical electric quantity is given to oxidation of antimony in slurry electrolysis, all of antimony, lead and iron containing in antimony-lead concentrate, are leached. The formation of sulfur is through the directly redox reaction of Fe3+ and jameson[re. The S2- in jamesonite is oxidized into S0 , and forms the crystals of sulfur again on the spot. The redox reaction of Fe3+ and H2S formed by non-oxidative acid dissolution of jamesonite is less.

  1. Stress field computation for hydride blister forming in Zr alloys

    International Nuclear Information System (INIS)

    Hydrogen migration under thermal gradient in zirconium alloys results in formation of hydride blisters. An array of blisters makes Zirconium alloy components of nuclear reactors susceptible to fracture. The whole process of hydride blister formation and fracture of these components is very complex and involves hydrogen migration under thermal gradient, hydride precipitation, straining of the matrix, setting up of hydrostatic stress gradient, enhanced hydrogen migration under the combined influence of thermal and stress gradients, stress reorientation of hydrides, cracking of hydrides, crack growth by delayed hydride cracking mechanism, interlinking of blisters and spontaneous fracture of the component. In this work we estimate the stress components in hydride blisters and the surrounding matrix for certain assumed blister depth as a function of hydride matrix yield strength ratio. The simulation was carried out for a semi ellipsoidal blister using ABAQUS finite element package. The blister formation was simulated by single step and multiple step transformation of the matrix to hydride. It is felt that the same methodology can be used to estimate the stress field around semi constrained inclusion such as hydride blister(s) in hydride forming metals like uranium, zirconium, titanium etc. and of localized corrosion products in metals and alloys. A matrix of dimension in the ratio 5 (along direction 1):1 (along direction 2) was considered for the computations. The Zr matrix having hexagonal crystal structure and faced centered cubic zirconium hydride was modeled as elastically isotropic. Both matrix and hydride was modeled to undergo linear work hardening up to ultimate tensile strength (=1.25Xyield strength), corresponding to a plastic strain of 10 percent. A small strain small displacement theory was adopted. Computations were made for an axisymmetric case with the symmetry axis along the 2 direction. Transformation of zirconium hydrogen solid solution into hydride

  2. Behaviour of antimony during thermal treatment of Sb-rich halogenated waste

    International Nuclear Information System (INIS)

    Antimony compounds have a wide range of industrial applications, particularly as additives in flame retardants. To ensure environmentally friendly waste incineration of Sb-rich wastes, it is essential to strengthen the knowledge about the fate of antimony and the potential formation of harmful species. Investigations should be conducted particularly in relation with the main operational parameters controlling the process, chiefly temperature, residence time and air supply in the oven and in the post-combustion zone, prior final adapted cleaning of the flue-gas stream. Experimental studies focusing on antimony behaviour were undertaken through laboratory-scale thermal treatment at 850 deg. C and 1100 deg. C of a Sb-rich halogenated waste, originating from the sector of flame retardants formulation. The configuration of our laboratory experimental device allowed to achieve only low oxidative conditions in the waste bed, but high oxidative strength coupled with high temperature and sufficient gas residence time in the post-combustion zone, as prescribed during the incineration of hazardous wastes. Atomic absorption spectroscopy was used to assess the partition of antimony in the different compartments of the process. The oxidation degree of antimony in the gas-phase was determined by the use of electrochemical techniques, namely polarography coupled with anodic stripping voltamperometry. The partition of antimony between the residual ash and the gas-phase under moderate oxidative conditions in the waste bed was constant, whatever the temperature: the volatilization rate for antimony was ∼64%, while a ∼36% fraction remained in the residual bottom ashes. But interestingly, while at 850 oC, antimony was mainly present in the gas-phase at a +III oxidation degree, an increase in temperature of 250 oC favoured the presence of antimony to its highest oxidation degree +V in the flue-gas stream, a valence known to be involved in less toxic species.

  3. Antimony powder-modified carbon paste electrodes for electrochemical stripping determination of trace heavy metals

    International Nuclear Information System (INIS)

    Highlights: → New antimony powder-modified carbon paste electrode. → Combination of specific properties of carbon paste substrate and metallic antimony. → No requirement of using toxic antimony(III) salts. → Electrochemical stripping determination of trace heavy metals at ppb levels. → Anodic stripping voltammetric and stripping chronopotentiometric measurements. - Abstract: A new type of the antimony electrode based on a carbon paste bulk-modified with antimony powder (Sb-CPE) is presented for the determination of cadmium(II) and lead(II) ions at the microgram-per-liter concentration level, when using square-wave anodic stripping voltammetric or stripping chronopotentiometric protocol. The Sb-CPE was prepared by mixing fine antimony powder, carbon powder, and silicon oil, thus combining typical features of the carbon paste material with specific electrochemical properties of antimony. Key-operational parameters, including the amount of antimony powder in the carbon paste mixture, effect of the deposition potential and deposition time, were optimized and electroanalytical performance of the Sb-CPE in nondeaerated solution of 0.01 M hydrochloric acid (pH 2) was compared with related bismuth powder-modified carbon paste electrode (Bi-CPE) and with in situ prepared antimony film carbon paste electrode (SbF-CPE). The electrode of interest exhibited well-developed signals and highly linear calibration plots for both metal ions tested. In addition, favorable limits of detection were achieved; namely: 1.4 μg L-1 for Cd(II) and 0.9 μg L-1 for Pb(II). The applicability of the new electrode was demonstrated on the analysis of tap water (spiked sample). Besides voltammetric measurements, the Sb-CPE was preliminary tested also under chronopotentiometric stripping mode in deoxygenated solutions, revealing also an excellent electroanalytical performance.

  4. Structural and optical characterization of thermally evaporated bismuth and antimony films for photovoltaic applications

    Science.gov (United States)

    Srimathy, N.; Ruban Kumar, A.

    2016-05-01

    In this present study, the thin film of bismuth and antimony is coated by thermal evaporation system equipped with the inbuilt ultra high vacuum system. XRD analysis confirmed the rhombohedral structure of Bismuth and Antimony on the prepared film. The surface roughness and physical appearance is analyzed by Atomic force microscopy. The results of Raman Spectroscopy show the wave functions and the spectrum of electrons. The preparation technique and conditions strongly influence the crystalline structure and the phase composition of bismuth and antimony thin films. The electrical and optical properties for the prepared film are analyzed. The results show a great interest and promising applications in Photovoltaic devices.

  5. Varicella zoster virus reactivation during or immediately following treatment of tegumentary leishmaniasis with antimony compounds

    Directory of Open Access Journals (Sweden)

    Andrea Barbieri Barros

    2014-07-01

    Full Text Available Antimony compounds are the cornerstone treatments for tegumentary leishmaniasis. The reactivation of herpes virus is a side effect described in few reports. We conducted an observational study to describe the incidence of herpes zoster reactivation during treatment with antimony compounds. The global incidence of herpes zoster is approximately 2.5 cases per 1,000 persons per month (or 30 cases per 1,000 persons per year. The estimated incidence of herpes zoster in patients undergoing antimony therapy is higher than previously reported.

  6. High ramp rate thermogravimetric analysis of zirconium(II) hydride and titanium(II) hydride

    International Nuclear Information System (INIS)

    Highlights: • A unique arc image device has been proposed for high ramp rate thermogravimetry. • Powder oxidation influences decomposition kinetics at temperatures below 933 K. • Particle size has a negligible effect on TiH2 decomposition behavior. • Improvements to the device are required to conduct accurate kinetic analysis. - Abstract: Zirconium and titanium hydride are utilized in liquid phase metal foam processing techniques. This application results in immediate exposure to molten metal and almost immediate decomposition at high temperatures. Most decomposition characterization techniques utilize slow heating rates and are unable to capture the decomposition behavior of hydrides under foam processing conditions. In order to address this issue a specialized high ramp rate thermogravimetric analyzer was created from a xenon arc image refiner. In addition to thermogravimetry, complimentary techniques including X-ray diffraction and scanning electron microscopy were used to characterize hydride decomposition and compare the results to literature. Hydrides were partially oxidized and separated into particles size ranges to evaluate the influence of these factors on decomposition. Oxidizing treatments were found to decrease decomposition rate only at temperatures below 933 K (660 °C) while particle size effects appeared to be negligible. Several improvements to the unique TGA apparatus presented in the current work are suggested to allow reliable kinetic modeling and analysis

  7. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.

    Science.gov (United States)

    Jones, J Stuart; Gabbaï, François P

    2016-05-17

    Stimulated by applications in catalysis, the chemistry of ambiphilic ligands featuring both donor and acceptor functionalities has experienced substantial growth in the past several years. The unique opportunities in catalysis offered by ambiphilic ligands stem from the ability of their acceptor functionalities to play key roles via metal-ligand cooperation or modulation of the reactivity of the metal center. Ligands featuring group 13 centers, most notably boranes, as their acceptor functionalities have undoubtedly spearheaded these developments, with remarkable results having been achieved in catalytic hydrogenation and hydrosilylation. Motivated by these developments as well as by our fundamental interest in the chemistry of heavy group 15 elements, we became fascinated by the possibility of employing antimony centers as Lewis acids within ambiphilic ligands. The chemistry of antimony-based ligands, most often encountered as trivalent stibines, has historically been considered to mirror that of their lighter phosphorus-based congeners. There is growing evidence, however, that antimony-based ligands may display unique coordination behavior and reactivity. Additionally, despite the diverse Lewis acid and redox chemistry that antimony exhibits, there have been only limited efforts to explore this chemistry within the coordination sphere of a transition metal. By incorporation of antimony into the framework of polydentate ligands in order to enforce the main group metal-transition metal interaction, the effect of redox and coordination events at the antimony center on the structure, electronics, and reactivity of the metal complex may be investigated. This Account describes our group's continuing efforts to probe the coordination behavior, reactivity, and application of ambiphilic ligands incorporating antimony centers. Structural and theoretical studies have established that both Sb(III) and Sb(V) centers in polydentate ligands may act as Z-type ligands toward late

  8. Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed

    Directory of Open Access Journals (Sweden)

    Thirugnasambandam G. Manivasagam

    2012-10-01

    Full Text Available As potential hydrogen storage media, magnesium based hydrides have been systematically studied in order to improve reversibility, storage capacity, kinetics and thermodynamics. The present article deals with the electrochemical and optical properties of Mg alloy hydrides. Electrochemical hydrogenation, compared to conventional gas phase hydrogen loading, provides precise control with only moderate reaction conditions. Interestingly, the alloy composition determines the crystallographic nature of the metal-hydride: a structural change is induced from rutile to fluorite at 80 at.% of Mg in Mg-TM alloy, with ensuing improved hydrogen mobility and storage capacity. So far, 6 wt.% (equivalent to 1600 mAh/g of reversibly stored hydrogen in MgyTM(1-yHx (TM: Sc, Ti has been reported. Thin film forms of these metal-hydrides reveal interesting electrochromic properties as a function of hydrogen content. Optical switching occurs during (dehydrogenation between the reflective metal and the transparent metal hydride states. The chronological sequence of the optical improvements in optically active metal hydrides starts with the rare earth systems (YHx, followed by Mg rare earth alloy hydrides (MgyGd(1-yHx and concludes with Mg transition metal hydrides (MgyTM(1-yHx. In-situ optical characterization of gradient thin films during (dehydrogenation, denoted as hydrogenography, enables the monitoring of alloy composition gradients simultaneously.

  9. Kinetics of Final Degassing of Hydrogen Desorption by Metal Hydrides

    CERN Document Server

    Drozdov, I V

    2014-01-01

    The proposed model concerns the 'confluent shrinking core' scenario and reproduces the desorption kinetic after the complete decay of the stoichiometric hydride ($\\beta$-phase). The exact analytical solution is obtained, the numerical values are demonstrated by the example of magnesium hydride.

  10. High energy density battery based on complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  11. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk;

    2006-01-01

    -hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...

  12. Hydrogen storage in the form of metal hydrides

    Science.gov (United States)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  13. Ultra-sonic observation in niobium hydride precipitation

    International Nuclear Information System (INIS)

    The hidrogen embrittlement of exothermic ocluders, had been considered as due to applied stress induced hydride precipitates leading to brittle fracture. The results of simultaneous measurements of macroscopic deformation and elastic change due to hydride precipitation, using the ultrasonic pulse-echo technique are showed. THen it was tested the possibility of kinectis precipitation parameters evoluation. (Author)

  14. Preferred hydride growth orientations on oxide-coated gadolinium surfaces

    International Nuclear Information System (INIS)

    Highlights: ► The preferred hydride growth orientations on gadolinium metal coated by a thin oxide layer are presented. ► A preferred growth of the (1 0 0)h plane of the face centered cubic (FCC) GdH2 is observed for the hydride spots forming below the oxidation layer. ► A change to the (1 1 1)h plane of the cubic hydride dominates for the hydride's Growth Centers. ► The texture change is attributed to the surface normal compressive stress component exerted by the oxidation layer on the developing hydride. - Abstract: The initial development of hydrides on polycrystalline gadolinium (Gd), as on some other hydride forming metals, is characterized by two sequential steps. The first step involves the rapid formation of a dense pattern of small hydride spots (referred to as the “small family” of hydrides) below the native oxidation layer. The second stage takes place when some of the “small family” nucleants (referred to as “growth centers”, GCs) break the oxide layer, leading to their rapid growth and finally to the massive hydriding of the sample. In the present study, the texture of the two hydride families was studied, by combining X-ray diffraction (XRD) analysis with a microscopic analysis of the hydride, using scanning electron microscopy (SEM) and atomic force microscopy (AFM). It has been observed that for the “small family”, a preferred growth of the (1 0 0)h plane of the cubic GdH2 takes place, whereas for the GCs, a change to the (1 1 1)h plane of the cubic hydride dominates. These preferred growth orientations were analyzed by their structure relation with the (0 0 .1)m basal plane of the Gd metal. It has been concluded that the above texture change is due to the surface normal compressive stress component exerted by the oxidation overlayer on the developing hydride, preventing the (0 0 .1)m||(1 1 1)h growth orientation. This stress is relieved upon the rupture of that overlayer and the development of the GCs, leading to the

  15. Modular hydride beds for mobile applications

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, M.E.; Stewart, K.D.

    1997-08-01

    Design, construction, initial testing and simple thermal modeling of modular, metal hydride beds have been completed. Originally designed for supplying hydrogen to a fuel cell on a mobile vehicle, the complete bed design consists of 8 modules and is intended for use on the Palm Desert Vehicle (PDV) under development at the Schatz Energy Center, Humbolt State University. Each module contains approximately 2 kg of a commercially available, low temperature, hydride-forming metal alloy. Waste heat from the fuel cell in the form of heated water is used to desorb hydrogen from the alloy for supplying feed hydrogen to the fuel cell. In order to help determine the performance of such a modular bed system, six modules were constructed and tested. The design and construction of the modules is described in detail. Initial testing of the modules both individually and as a group showed that each module can store {approximately} 30 g of hydrogen (at 165 PSIA fill pressure, 17 C), could be filled with hydrogen in 6 minutes at a nominal, 75 standard liters/min (slm) fueling rate, and could supply hydrogen during desorption at rates of 25 slm, the maximum anticipated hydrogen fuel cell input requirement. Tests made of 5 modules as a group indicated that the behavior of the group run in parallel both in fueling and gas delivery could be directly predicted from the corresponding, single module characteristics by using an appropriate scaling factor. Simple thermal modeling of a module as an array of cylindrical, hydride-filled tubes was performed. The predictions of the model are in good agreement with experimental data.

  16. Metal hydrides for concentrating solar thermal power energy storage

    Science.gov (United States)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  17. Helium trapping at erbium oxide precipitates in erbium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    The formation of He bubbles in erbium tritides is a significant process in the aging of these materials. Due to the long-standing uncertainty about the initial nucleation process of these bubbles, there is interest in mechanisms that can lead to the localization of He in erbium hydrides. Previous work has been unable to identify nucleation sites in homogeneous erbium hydride. This work builds on the experimental observation that erbium hydrides have nano- scale erbium oxide precipitates due to the high thermodynamic stability of erbium oxide and the ubiquitous presence of oxygen during materials processing. Fundamental DFT calculations indicate that the He is energetically favored in the oxide relative to the bulk hydride. Activation energies for the motion of He in the oxide and at the oxide-hydride interface indicate that trapping is kinetically feasible. A simple kinetic Monte Carlo model is developed that demonstrates the degree of trapping of He as a function of temperature and oxide fraction.

  18. Low-frequency excitations in zirconium hydrides

    International Nuclear Information System (INIS)

    The slow inelastic neutron scattering (INS) on ZrHx systems (x = 0.38, 0.52) revealed new excitations located within the energy range 2-10 MeV. Besides the acoustic vibrations specific to α-HCP Zr and γ-FCO Zr hydride the fine structure of these excitations is clearly observed. The origin of the new observed peaks is not very clear but a proton tunneling or a resonance effect in α-Zr lattice could be taken into account

  19. Tritium immobilization and packaging using metal hydrides

    International Nuclear Information System (INIS)

    Tritium recovered from CANDU heavy water reactors will have to be packaged and stored in a safe manner. Tritium will be recovered in the elemental form, T2. Metal tritides are effective compounds in which to immobilize the tritium as a stable non-reactive solid with a high tritium capacity. The technology necessary to prepare hydrides of suitable metals, such as titanium and zirconium, have been developed and the properties of the prepared materials evaluated. Conceptual designs of packages for containing metal tritides suitable for transportation and long-term storage have been made and initial testing started. (author)

  20. Nanostructured Magnesium Hydride for Reversible Hydrogen Storage

    Science.gov (United States)

    de Rango, P.; Chaise, A.; Fruchart, D.; Miraglia, S.; Marty, Ph.

    2013-05-01

    The aim of this work was to develop suitable materials to store hydrogen in a solid state. A systematic investigation of the co-milling process of magnesium hydride with a transition metal was undertaken in order to produce nanostructured and highly reactive powders. The initiating role of the transition metal was evidenced by in situ neutron diffraction experiments. High performances in terms of thermal and mechanical behavior were achieved introducing expanded graphite and compacting the mixture to form composite materials. Absorption and desorption kinetics have been measured versus temperature and H2 pressure.

  1. Formation of hydrides blisters in zirconium alloys

    International Nuclear Information System (INIS)

    The formation of zirconium hydrides blisters in zirconium alloys due to the presence of a thermal gradient is a possible phenomenon which may occur in structural components of a reactor (pressure tubes), thus resulting a very important matter for the nuclear industry. For this reason, a series of experiments were initiated in the Hydrogen Damage Laboratory so as to obtain blisters of zirconium alloys and to study the aspects related to them. Zry-4 and Zr-2.5% Nb blisters were obtained. The propagation of a fissure present in a blister and the fracture surface were observed. The fissure propagated weakly in the blister and stopped in the Zry-4 matrix. (Author)

  2. Hydrogen in novel solid-state metal hydrides

    International Nuclear Information System (INIS)

    Solid-state metal hydrides display hydrogen densities close to that of liquid hydrogen and thus provide a safe and efficient way of storing hydrogen. As a result of recent neutron and synchrotron diffraction work some novel metal hydrides have been characterized that shed new light on the nature of metal-hydrogen interactions. While hydrogen appears as an anion surrounded by a large inventory of cation configurations in ionic hydrides such as Ca4Mg3H14, Ca19Mg8H54, Eu2MgD6, Eu6Mg7D26 and Eu2Mg3D10, it acts as a terminal ligand in covalently bonded hydride complexes based on p-elements such as [BH4]- and d-elements such as [IrH5]4- and [IrH4]5- in the complex hydrides LiBH4 and Mg6Ir2H11, respectively. Surprisingly, hydride complexes and hydride anions can also be discerned in typically metallic (interstitial) hydrides such as NdMgNi4H4 (= Nd3+Mg+2.[Ni4H4]5-) and LaMg2NiD7 (= La3+Mg+22.[NiH4]4-.3H-). Some hydrides also reveal other interesting features such as a hydrogenation induced Ce4+→Ce3+ valence change in CeMn1.8Al0.2H4.4 at room temperature that is accompanied by a Mn/Al metal atom exchange over distances of ∝2.6 A, and a hydrogen induced metal-to-nonmetal transition near ambient conditions that leads from the metallic compound Mg3Ir to the red colored hydride Mg6Ir2H11. In this article recent work and some methodological aspects are highlighted. (orig.)

  3. Results of NDE Technique Evaluation of Clad Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Dennis C. Kunerth

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing

  4. Development of hydride absorber for fast reactor. Application of hafnium hydride to control rod of large fast reactor

    International Nuclear Information System (INIS)

    The application of hafnium hydride (Hf-hydride) to a control rod for a large fast reactor where the B4C control rod is originally employed is studied. Three types of Hf-hydride control rods are designed. The control rod worth and its change during the burnup are evaluated for different hydrogen-to-hafnium ratios and are compared with those of the original B4C control rod. The result indicates that the worths of the Hf-hydride and the 10B-enriched B4C control rods are approximately the same, and the lifetime of the Hf-hydride control rod is almost four times longer than that of the 10B-enriched B4C control rod. The core performances of the shutdown margin, sodium void reactivity, Doppler reactivity coefficient, and breeding ratio are analyzed. It is indicated that those for the Hf-hydride control rod are almost the same as those for the original B4C control rod. The behavior of neutrons moderated by the Hf-hydride control rod is analyzed. It is confirmed that the Hf-hydride control rod does not cause any thermal spike problems in the fast reactor core. (author)

  5. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Rico, A., E-mail: alvaro.rico@urjc.es [DIMME, Departamento de Tecnología Mecánica, Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Madrid (Spain); Martin-Rengel, M.A., E-mail: mamartin@mater.upm.es [Departamento de Ciencia de los Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren SN, E-28040 Madrid (Spain); Ruiz-Hervias, J., E-mail: jesus.ruiz@upm.es [Departamento de Ciencia de los Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren SN, E-28040 Madrid (Spain); Rodriguez, J. [DIMME, Departamento de Tecnología Mecánica, Universidad Rey Juan Carlos, c/Tulipán s/n, E-28933 Móstoles, Madrid (Spain); Gomez-Sanchez, F.J., E-mail: javier.gomez@amsimulation.com [Advanced Material Simulation, S.L, Madrid (Spain)

    2014-09-15

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young’s modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young’s modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found.

  6. Crystal structure and thermodynamic properties of potassium antimony tungsten oxide

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, Aleksandr V., E-mail: knav@uic.nnov.ru [Nizhny Novgorod State University, Gagarin Prospekt 23/2, Nizhny Novgorod, 603950 (Russian Federation); Tananaev, Ivan G. [Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky prospect, Moscow GSP-1, 119991 (Russian Federation); Kuznetsova, Nataliya Yu.; Smirnova, Nataliya N.; Letyanina, Irene A.; Ladenkov, Igor V. [Nizhny Novgorod State University, Gagarin Prospekt 23/2, Nizhny Novgorod, 603950 (Russian Federation)

    2010-02-20

    In the present work potassium antimony tungsten oxide with pyrochlore structure is refined by the Rietveld method (space group Fd3m, Z = 8). The temperature dependences of heat capacity have been measured for the first time in the range from 7 to 370 K for this compound. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity C{sub p}{sup o}(T), enthalpy H{sup o}(T) - H{sup o}(0), entropy S{sup o}(T) - S{sup o}(0) and Gibbs function G{sup o}(T) - H{sup o}(0), for the range from T {yields} 0 to 370 K. The differential scanning calorimetry was applied to measure the incongruent melting temperature of compound under study. The high-temperature X-ray diffraction was used for the determining thermal expansion coefficients.

  7. Atomistic mechanisms governing structural stability change of zinc antimony thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaolong [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); Lin, Jianping, E-mail: jaredlin@163.com [School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Qiao, Guanjun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Zhao, E-mail: zwangzhao@gmail.com [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-01-05

    The structural stability of thermoelectric materials is a subject of growing importance for their energy harvesting applications. Here, we study the microscopic mechanisms governing the structural stability change of zinc antimony at its working temperature, using molecular dynamics combined with experimental measurements of the electrical and thermal conductivity. Our results show that the temperature-dependence of the thermal and electrical transport coefficients is strongly correlated with a structural transition. This is found to be associated with a relaxation process, in which a group of Zn atoms migrates between interstitial sites. This atom migration gradually leads to a stabilizing structural transition of the entire crystal framework, and then results in a more stable crystal structure of β–Zn{sub 4}Sb{sub 3} at high temperature.

  8. Coherent and Incoherent Structural Dynamics in Laser-Excited Antimony

    CERN Document Server

    Waldecker, Lutz; Bertoni, Roman; Vasileiadis, Thomas; Garcia, Martin E; Zijlstra, Eeuwe S; Ernstorfer, Ralph

    2016-01-01

    We investigate the excitation of phonons in photoexcited antimony and demonstrate that the entire electron-lattice interactions, in particular coherent and incoherent electron-phonon coupling, can be probed simultaneously. Using femtosecond electron diffraction (FED) with high temporal resolution, we observe the coherent excitation of the fully symmetric \\Ag\\ optical phonon mode via the shift of the minimum of the atomic potential energy surface. Molecular dynamics simulations are performed to quantify the change in lattice potential and the associated real-space amplitude of the coherent atomic oscillations. In addition, our experimental configuration allows observing the energy transfer from electrons to phonons via incoherent electron-lattice scattering events. Applying a modified two-temperature model, the electron-phonon coupling is determined from the data as a function of electronic temperature.

  9. NEW THIO S2- ADDUCTS WITH ANTIMONY (III AND V HALIDE: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    HASSAN ALLOUCH

    2013-12-01

    Full Text Available Five new S2- adducts with SbIII and SbV halides have been synthesized and studied by infrared. Discrete structures have been suggested, the environment around the antimony being tetrahedral, trigonal bipyramidal or octahedral.

  10. Liquid-liquid extraction of arsenic, antimony, selenium and tellurium by zinc diethyldithiocarbamate

    International Nuclear Information System (INIS)

    The authors report the solvent extraction, oxidation, reduction, extraction in the presence of iron, and reextraction of arsenic, antimony, selenium and tellurium. These processes were studied using radioactive tracers. (G.T.H.)

  11. Urinary antimony speciation by HPLC-ICP-MS

    OpenAIRE

    Krachler, M; Emons, H

    2001-01-01

    This is the first study to report on the determination of Sb species in urine. To this end, HPLC was coupled online to an ICP-MS instrument using ultrasonic nebulization (USN) or hydride generation (HG) for sample introduction into the ICP-MS. The high chloride concentration in urine seriously hampered the chromatographic separation of Sb(v) and Sb(III) on the Dionex AS14 anion exchange column. Distinct signal suppression, shifting of retention times and severe peak broadening did not allow t...

  12. Antimonial drugs entrapped into phosphatidylserine liposomes: physicochemical evaluation and antileishmanial activity

    OpenAIRE

    Samanta Etel Treiger Borborema; João Alberto Osso Junior; Heitor Franco de Andrade Junior; Nanci do Nascimento

    2016-01-01

    Abstract: INTRODUCTION: Leishmaniasis is a disease caused by the protozoan Leishmania that resides mainly in mononuclear phagocytic system tissues. Pentavalent antimonials are the main treatment option, although these drugs have toxic side effects and high resistance rates. A potentially alternative and more effective therapeutic strategy is to use liposomes as carriers of the antileishmanial agents. The aims of this study were to develop antimonial drugs entrapped into phosphatidylserine l...

  13. Removal of lead from crude antimony by using NaPo3 as lead elimination reagent

    Directory of Open Access Journals (Sweden)

    Ye L.G.

    2015-01-01

    Full Text Available In order to solve the shortcomings when removing lead from crude antimony in the traditional antimony smelting, a new process was provided using NaPO3 as lead elimination reagent to yield phosphate slag, and it was removed by floating on the surface of the liquid antimony. Reaction mechanism was clarified by using the TG-DTA and XRD techniques and single factor experiments of removal lead from crude antimony were engaged. The results show that PbO and NaPO3 begin endothermic reaction at 863K (590°C, and the reaction mainly form NaPb4(PO43 and NaPbPO4 below 1123K (850°C and above 1123K (850°C, respectively. Sb2O3 and NaPO3 start the reaction at 773K (500°C and generate an antimonic salt compound. The reaction product of the mixture of PbO, Sb2O3 and NaPO3 show that NaPO3 reacted with PbO prior when NaPO3 was insufficient, amorphous antimony glass will be generated only when NaPO3 was adequate. Single factor experiments were taken with NaNO3 as oxidizing agent under argon, effect of reaction time, reaction temperature and dosage of NaPO3 and NaNO3 on smelting results. The average content of lead in refined antimony was 0.05340% and 98.85% of lead were removed under optimal conditions; the content of lead in antimony have meet the requirements of commercial antimony.

  14. Electrochemical antimony removal from accumulator acid: Results from removal trials in laboratory cells

    International Nuclear Information System (INIS)

    Highlights: ► In non-divided cells, antimony did not deposit at cathode due to oxidation of Sb(III) at anode. ► Copper and graphite were found to be the most suitable electrode materials for antimony deposition. ► Sb species covering electrode lowers deposition efficiency with time. ► Thus, periodical renewal of cathode material is necessary. ► Calculated specific electroenergy consumption was relatively high. ► In contrast, absolute energy consumption was low due to small quantities of antimony removed. - Abstract: Regeneration of spent accumulator acid could be an alternative process for crystallization, neutralisation and disposal. Therefore, for the first time in a study of the possibilities of electrochemical removal of antimony and accumulator acid regeneration on a laboratory scale, two synthetic and several real systems containing sulfuric acid of concentrations ranging between 28% and 36%, and antimony species were tested. Discontinuous electrochemical reactors with anion exchange membranes were successfully used in these experiments, which were conducted at a temperature of 35 °C. Removal of antimony using cells that were not divided by a separator, however, was not possible. In selected experiments, by varying the electrode material, type of electrolyte, and cell current, the concentration of antimony could be reduced from the range of 5 ppm to 0.15 ppm. This resulted in current efficiencies between 0.00002% and 0.001%, and in specific electroenergy demands between 100 Wh L−1 and 2000 Wh L−1. In other experiments on substances with antimony contents up to 3500 mg L−1, the current efficiencies obtained were more than a thousandfold higher. In contrast to the formally high relative energy consumption parameters absolute demand parameters are relatively small and favour the electrochemical method in small scale application. Besides plate electrodes, 3D-cathodes were used. Copper- and graphite cathodes produced the best results.

  15. Neutron scattering on hydrides of intermetallic compounds

    International Nuclear Information System (INIS)

    This review surveys the application of neutron scattering for the investigation of the microscopic behaviour of hydrogen in intermetallic compounds. This concerns the structure as well as the dynamics. Neutron diffraction experiments were performed on Ti1.2Mn1.8D3 and LaNi5D7. In the latter case the dominant nickel scattering could be suppressed by isotope substitution with 60Ni, and the anisotropic broadening of the Bragg peaks could be modelled in a correspondingly modified Rietveld-profile refinement. For the investigation of hydrogen diffusion in intermetallic hydrides by means of quasielastic neutron scattering an iterative multiple scattering correction procedure has been developped which allows a reliable determination of hydrogen diffusion coefficients. The mechanism of hydrogen diffusion in intermetallic hydrides comprises three types of jumps: escape jumps out of energetically lower interstitials, transport jumps over the energetically higher sites and locally restricted jump processes. For Ti1.2Mn1.8H3 the main features of the diffusional behaviour could be described quantitatively in the framework of a three state model. By means of neutron vibrational spectroscopy information about the occupied hydrogen sites and thus about the structure can be extracted from the symmetry splitting of the vibrational modes. In this way we showed that in α-LaNi5Hx, La2Ni4-octahedral and La2Ni2-tetrahedral interstitial sites are occupied. (orig./GG)

  16. Millimeter-Wave Spectroscopy of Ethylmercury Hydride

    Science.gov (United States)

    Goubet, M.; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.

    2012-06-01

    The first millimeter-wave rotational spectrum of an organomercury compound, ethylmercury hydride (CH_3CH_2HgH), has been recorded using the Lille fast-scan spectrometer in the frequency range 120 -- 180 GHz. The spectroscopic study is complemented by quantum chemical calculations taking into account relativistic effects on the mercury atom. The very good agreement between theoretical and experimental molecular parameters validates the chosen ab initio method, in particular its capability to predict the accurate values of the quartic centrifugal distortion constants related to this type of compound. Estimations of the nuclear quadrupole coupling constants are not as predictive as the structural parameters but good enough to satisfy the spectroscopic needs. In addition, the orientation of the H--Hg--C bonds axis deduced from the experimental nuclear quadrupole coupling constants compares well with the corresponding ab initio value. From the good agreement between experimental and theoretical results, together with the observation of the six most abundant isotopes of mercury, ethylmercury hydride is unambiguously identified and its calculated equilibrium geometry is confirmed. Alekseev, E.A. et al. Radio Physics and Radio Astronomy 3 (2012) 78.

  17. NATO Advanced Study Institute on Metal Hydrides

    CERN Document Server

    1981-01-01

    In the last five years, the study of metal hydrides has ex­ panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti­ tute to provide an in-depth view of the field for those active in its various aspects. The inclusion of speakers from non-NATO coun­ tries provided the opportunity for cross-fertilization of ideas for future research. While the emphasis of the Institute was on basic properties, there was a conscious effort to stimulate interest in the applic...

  18. Metal hydrides for lithium-ion batteries.

    Science.gov (United States)

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries. PMID:18849978

  19. Synthesis and hydride transfer reactions of cobalt and nickel hydride complexes to BX3 compounds.

    Science.gov (United States)

    Mock, Michael T; Potter, Robert G; O'Hagan, Molly J; Camaioni, Donald M; Dougherty, William G; Kassel, W Scott; DuBois, Daniel L

    2011-12-01

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H(2) gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe)(2) (dmpe = 1,2-bis(dimethylphosphinoethane)) was capable of reducing a variety of BX(3) compounds having a hydride affinity (HA) greater than or equal to the HA of BEt(3). This study examines the reactivity of less expensive cobalt and nickel hydride complexes, HCo(dmpe)(2) and [HNi(dmpe)(2)](+), to form B-H bonds. The hydride donor abilities (ΔG(H(-))°) of HCo(dmpe)(2) and [HNi(dmpe)(2)](+) were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX(3) compounds. The collective data guided our selection of BX(3) compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe)(2) was observed to transfer H(-) to BX(3) compounds with X = H, OC(6)F(5), and SPh. The reaction with B(SPh)(3) is accompanied by the formation of dmpe-(BH(3))(2) and dmpe-(BH(2)(SPh))(2) products that follow from a reduction of multiple B-SPh bonds and a loss of dmpe ligands from cobalt. Reactions between HCo(dmpe)(2) and B(SPh)(3) in the presence of triethylamine result in the formation of Et(3)N-BH(2)SPh and Et(3)N-BH(3) with no loss of a dmpe ligand. Reactions of the cationic complex [HNi(dmpe)(2)](+) with B(SPh)(3) under analogous conditions give Et(3)N-BH(2)SPh as the final product along with the nickel-thiolate complex [Ni(dmpe)(2)(SPh)](+). The synthesis and characterization of HCo(dedpe)(2) (dedpe = Et(2)PCH(2)CH(2)PPh(2)) from H(2) and a base is also discussed, including the formation of an uncommon trans dihydride species, trans-[(H)(2)Co(dedpe)(2)][BF(4)]. PMID:22040085

  20. Effect of Antimony, Phosphorous and Salinity on Growth, Root Membrane Permeability and Root Antimony, Iron and Zinc Concentration of Corn in Hydroponic Media

    OpenAIRE

    H. Barangizi; M. Afyuni; B. Rezaee

    2010-01-01

    Antimony (Sb) pollution has increased in recent years because of human activities and extensive usage of antimony compounds. To date, only a few researches have been conducted in this field in Iran. The purpose of this research is to determine fresh and dry weight, root permeability percentage and root concentration of Sb, Fe and Zn in the corn. This greenhouse research was performed in hydroponics. A factorial experiment (3 × 2 × 3) with three Sb concentrations (0, 6, 18 mgL-1), with and wit...

  1. Effect of metal hydrides on the burning characteristics of boron

    International Nuclear Information System (INIS)

    Highlights: • The effect of some metal hydrides on the burning characteristics of boron is studied for the first time. • We are the first to conduct a TG experiment on boron samples at high temperatures (a maximum of 1750 °C). • The thermal reaction process of boron is firstly divided into five stages according to the weight gain rate of the sample. • Specific values of metal hydrides on ignition delay time and combustion intensity of boron are obtained. - Abstract: In this study, the effect of four metal hydrides on the burning characteristics of boron was investigated. Thermogravimetric experiment results show that the thermal reaction process of boron samples can be divided into five stages. The thermal reactions of boron can be significantly promoted with LiH, which can reduce the initial temperature of the first violent reaction stage by ∼140 °C. The starting temperature of the post-reaction stage also decreases by ∼260 °C. The results of the laser ignition experiment suggest that all four metal hydrides can promote boron burning. Nonetheless, different metal hydrides display varied promotional effects. Among the studied hydrides, LiH is the most effective additive and shortens the ignition delay time of boron by ∼34.1%. Moreover, it enhances the combustion intensity of boron by ∼117.6%. The other three metal hydrides (CaH2, TiH2, and ZrH2) can also contribute to boron burning

  2. Zircaloy-4 hydriding. Hydrogen distribution in PWR's rod cladding

    International Nuclear Information System (INIS)

    In pressurised water reactors, Zircaloy 4 is used as fuel cladding in contact with hot water. The precipitation of hydrides at room temperatures causes mechanical deterioration of the cladding. As the cladding is subjected to a radial temperature gradient, the hydrogen distribution is greatly affected. The image analysis method is used to determine the hydride distribution in the irradiated cladding. To calibrate this method, a device was specially built for the preparation of Zircaloy specimens with known hydrogen contents. The hydriding conditions and hydrogen content determination procedures were fixed. We have successfully realized specimens with various hydrogen contents. With these specimens, a relationship between the parameter Sv (surface density of hydrides) and the hydrogen content was established. This parameter Sv is independent from the Zircaloy 4 metallurgical state (i.e. stress relieved or recrystallized) and from the analysis section (longitudinal or transverse). Study of hydrogen content and hydride distribution in irradiated cladding by means of image analysis showed that the method is limited by its ability of separation between neighbouring hydrides at cladding's periphery where the hydrogen content can reach several thousands ppm. Nevertheless, this method gives us some information about hydride distribution inside the cladding. A model for thermal diffusion was developped to stimulate the migration of hydrogen in Zirconium alloys. This model was used to predict hydrogen distribution in the irradiated cladding. Comparison of model predictions with results of image analysis shows good agreement. (Author). refs., figs., tabs

  3. Isotope exchange between gaseous hydrogen and uranium hydride powder

    International Nuclear Information System (INIS)

    Highlights: • Isotope exchange between hydrogen gas and uranium hydride powder can be rapid and reversible. • Gas–solid exchange rate is controlled by transport within ∼0.7 μm hydride particles. • Gas chromatographic separation of hydrogen isotopes using uranium hydride is feasible. - Abstract: Isotope exchange between gaseous hydrogen and solid uranium hydride has been studied by flowing hydrogen (deuterium) gas through packed powder beds of uranium deuteride (hydride). We used a residual gas analyzer system to perform real-time analysis of the effluent gas composition. We also developed an exchange and transport model and, by fitting it to the experimental data, extracted kinetic parameters for the isotope exchange reaction. Our results suggest that, from approximately 70 to 700 kPa and 25 to 400 °C, the gas-to-solid exchange rate is controlled by hydrogen and deuterium transport within the ∼0.7 μm diameter uranium hydride particles. We use our kinetic parameters to show that gas chromatographic separation of hydrogen and deuterium using uranium hydride could be feasible

  4. The development of metal hydrides using as concentrating solar thermal storage materials

    Science.gov (United States)

    Qu, Xuanhui; Li, Yang; Li, Ping; Wan, Qi; Zhai, Fuqiang

    2015-12-01

    Metal hydrides high temperature thermal heat storage technique has great promising future prospects in solar power generation, industrial waste heat utilization and peak load regulating of power system. This article introduces basic principle of metal hydrides for thermal storage, and summarizes developments in advanced metal hydrides high-temperature thermal storage materials, numerical simulation and thermodynamic calculation in thermal storage systems, and metal hydrides thermal storage prototypes. Finally, the future metal hydrides high temperature thermal heat storage technique is been looked ahead.

  5. Structural relationships in complex hydrides of the late transition metals

    International Nuclear Information System (INIS)

    Literature data on complex hydrides of the late transition metals (groups 7-10), such as the hydrogen storage material Mg2NiH4, are reviewed with respect to order-disorder phase transitions and structural relationships. They are analysed in terms of crystallographic group-subgroup trees and their use in understanding the different crystal structures from a symmetry point of view is demonstrated. New data are presented on the low temperature behaviour of magnesium iridium hydrides and strontium rhodium hydrides studied by powder X-ray diffraction. (orig.)

  6. Technical and economic aspects of hydrogen storage in metal hydrides

    Science.gov (United States)

    Schmitt, R.

    1981-01-01

    The recovery of hydrogen from such metal hydrides as LiH, MgH2, TiH2, CaH2 and FeTiH compounds is studied, with the aim of evaluating the viability of the technique for the storage of hydrogen fuel. The pressure-temperature dependence of the reactions, enthalpies of formation, the kinetics of the hydrogen absorption and desorption, and the mechanical and chemical stability of the metal hydrides are taken into account in the evaluation. Economic aspects are considered. Development of portable metal hydride hydrogen storage reservoirs is also mentioned.

  7. PIE techniques for hydride reorientation test at NDC

    International Nuclear Information System (INIS)

    Dry storage of spent fuels in the interim storage facility is being planned in Japan. However, the gradual deterioration of the mechanical property of fuel cladding due to internal pressure and temperature during the storage term is known. Therefore, the integrity of stored fuel rods should be confirmed before the start of dry storage. For the last several years, NDC had a lot of experiences on the hydride reorientation test. The specimen preparation techniques on the hydride reorientation test and the mechanical testing techniques after the hydride reorientation are shown in this paper. (author)

  8. Delayed hydride in zirconium based alloys

    International Nuclear Information System (INIS)

    Delayed Hydride Cracking (DHC) velocity along the axial direction of Zirconium-2.5% Nb pressure tube materials of different origins i.e. CANDU and RBMK (TMT -I), has been determined in the temperature range of 162 to 250 degree C. DHC crack growth was monitored using Direct Current Potential Drop Technique. It has been observed that the DHC velocity of both materials increases with increase in test temperature. The DHC velocity for the RBMK (TMT -I) material was found about 2 to 5 times lower than that for the CANDU materials at each temperature. In addition, the activation energy of the phenomena was calculated taking into account that DHC is a thermal activated mechanism, following an Arrhenius-type law. (author)

  9. The progress of nanocrystalline hydride electrode materials

    International Nuclear Information System (INIS)

    This paper reviews research at the Institute of Materials Science and Engineering, Poznan University of Technology, on the synthesis of nanocrystalline hydride electrode materials. Nanocrystalline materials have been synthesized by mechanical alloying (MA) followed by annealing. Examples of the materials include TiFe-, ZrV2-, LaNi5 and Mg2Ni-type phases. Details on the process used and the enhancement of properties due to the nanoscale structures are presented. The synthesized alloys were used as negative electrode materials for Ni-MH battery. The properties of hydrogen host materials can be modified substantially by alloying to obtain the desired storage characteristics. For example, it was found that the respective replacement of Fe in TiFe by Ni and/or by Cr, Co, Mo improved not only the discharge capacity but also the cycle life of these electrodes. The hydrogen storage properties of nanocrystalline ZrV2- and LaNi5-type powders prepared by mechanical alloying and annealing show no big difference with those of melt casting (polycrystalline) alloys. On the other hand, a partial substitution of Mg by Mn or Al in Mg2Ni alloy leads to an increase in discharge capacity, at room temperature. Furthermore, the effect of the nickel and graphite coating on the structure of some nanocrystalline alloys and the electrodes characteristics were investigated. In the case of Mg2Ni-type alloy mechanical coating with graphite effectively reduced the degradation rate of the studied electrode materials. The combination of a nanocrystalline TiFe-, ZrV2- and LaNi5-type hydride electrodes and a nickel positive electrode to form a Ni-MH battery, has been successful. (authors)

  10. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  11. Arsenic and Antimony Content in Soil and Plants from Baia Mare Area, Romania

    Directory of Open Access Journals (Sweden)

    Gabriela Oprea

    2010-01-01

    Full Text Available Problem statement: The objective of this research was to evaluate the degree of soil contamination with arsenic and antimony in Baia Mare, a nonferrous mining and metallurgical center located in the North West region of Romania. The soil in the area is affected by the emissions of powders containing metals from metallurgical factories. Previous studies indicated the soil contamination with copper, zinc, cadmium and lead, but there is few data about the actual level of soil pollution with arsenic and antimony. Approach: The soil samples were collected from 2 districts of Baia Mare: Ferneziu, which is located in the proximity of a lead smelter and Săsar district which is located along the Sasar River in the preferential direction of the wind over a metallurgical factory producing lead. As reference was considered Dura area located in a less polluted hilly area, in the west part of the town. Samples of soil and plants from the residential area of Ferneziu, Săsar and Dura districts were collected. The arsenic determination was carried out by inductively coupled plasma atomic emission spectrometry and the antimony determination by inductively coupled plasma mass spectrometry. Results: In Ferneziu area, the concentration of arsenic in soil ranged between 0.25 and 255 mg kg-1. In Săsar district the arsenic concentration in the soil ranged between 5.5 and 295 mg kg-1. Regarding antimony, in Ferneziu area the concentration ranged between 5.3 and 40.6 mg kg-1; while in Săsar, antimony soils concentrations vary in the range: 0.9-18.4. Arsenic and antimony concentrations in plants were low for almost of the samples, both in Ferneziu and Săsar area indicating a low mobility of these elements in the studied soils. Conclusion: This study indicated the soil pollution with arsenic both in Ferneziu district and in Săsar district. The soil pollution with antimony was found especially in Ferneziu district.

  12. The MRP1-mediated effluxes of arsenic and antimony do not require arsenic-glutathione and antimony-glutathione complex formation.

    Science.gov (United States)

    Salerno, Milena; Petroutsa, Maria; Garnier-Suillerot, Arlette

    2002-04-01

    Arsenic trioxide is an effective treatment for acute promyelocytic leukemia, but resistance to metalloid salts is found in humans. Using atomic absorption spectroscopy, we have measured the rate of uptake of arsenic trioxide and of antimony tartrate in GLC4 and GLC4/ADR cells overexpressing MRP1 and the rate of their MRP1-mediated effluxes as a function of the intracellular GSH concentration. In sensitive cells, after 1 h, a pseudosteady state is reached where intra- and extracellular concentrations of metalloid are the same. This precludes the formation, at short term, of complexes between arsenic or antimony with GSH. In resistant cells reduced intracellular accumulation of arsenic (or antimony), reflecting an increased rate of arsenic (or antimony) efflux from the cells, is observed. No efflux of the metalloid is observed in GSH depleted cells. The two metalloids and GSH are pumped out by MRP1 with the same efficiency. Moreover for the three compounds 50% of the efflux is inhibited by 2 microM MK571. This led us to suggest that As- and Sb-containing species could be cotransported with GSH. PMID:12018890

  13. Artificial exomuscle investigations for applications-metal hydride

    International Nuclear Information System (INIS)

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software. (review article)

  14. Artificial exomuscle investigations for applications-metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bedard, Stephane [Victhom Human Bionics Inc., Saint-Augustin-de-Desmaures, QC (Canada)

    2007-03-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software. (review article)

  15. Formation of hydride blisters in zirconium alloy pressure tubes

    International Nuclear Information System (INIS)

    The fracture of the Zircaloy-2 pressure tube in the Pickering Unit 2 power reactor was associated with the growth of hydride blisters at points of contact between the pressure tube and the cooler calandria tube surrounding it. Similar blisters have been observed in a Zr-2.5 wt% Nb pressure tube in WR-1, an organic-cooled research reactor. These hydride blisters were formed and grew as a result of the thermal diffusion of hydrogen in the zirconium, a mechanism whereby hydrogen diffuses down a temperature gradient. If the terminal solid solubility of hydrogen is exceeded in the cooler regions, hydride will precipitate. In this paper, the time required to grow these hydride blisters will be estimated from the blister size and the hydrogen distribution in its neighborhood, by using simple equations derived from thermal diffusion theory

  16. Out-of-pile accelerated hydriding of Zircaloy fasteners

    International Nuclear Information System (INIS)

    Mechanical joints between Zircaloy and nickel-bearing alloys, mainly the Zircaloy-4/Inconel-600 combination, were exposed to water at 4500F and 5200F to study hydriding of Zircaloy in contact with a dissimilar metal. Accelerated hydriding of the Zircaloy occurred at both temperatures. At 4500F the dissolved hydrogen level of the water was over ten times that at 5200F. At 5200F the initially high hydrogen ingress rate decreased rapidly as exposure time increased and was effectively shut off in about 25 days. Severely hydrided Zircaloy components successfully withstood thermal cycling and mechanical testing. Chromium plating of the nickel-bearing parts was found to be an effective and practical barrier in preventing nickel-alloy smearing and accelerated hydriding of Zircaloy

  17. A nuclear analytical model for uranium zirconium hydride reactor core

    International Nuclear Information System (INIS)

    The nuclear analytical model and codes for the uranium zirconium hydride reactor are outlined. The criticality and control rods effeciency of abroad TRIGA reactor are obtained using this model and codes. The results are satisfactory

  18. A mechanistic approach to develop the secondary hydriding criteria

    International Nuclear Information System (INIS)

    Reliable criteria of secondary hydriding failures are important to assure safe operation of nuclear fuel in LWR power units. The present paper reviews available data on massive hydriding of Zirconium claddings covering out-of-pile studies and in-pile tests in research reactors. Analyses of these experimental data give evidence that threshold conditions leading to the onset of massive hydriding are drastically changed under irradiation. The changes are caused mainly by irradiation damage of oxygen sublattice in ZrO2 by fission fragments leaving the periphery of fuel pellets. The tests in research reactors provide a basis to develop a parametric dependency which relates the threshold of massive hydriding to composition of steam-hydrogen mixture, irradiation dose rate and temperature

  19. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain)

    International Nuclear Information System (INIS)

    A study about topsoil antimony distribution and mobility from the soils to the biomass has been afforded in three abandoned Sb mining areas located at Extremadura. Physico-chemical characteristics of the soils and total antimony levels were measured in soils and autochthonous plant species (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa). Comparison with corresponding values in reference areas isolated from the mining activities is discussed. Antimony mobility in the soils was estimated by measuring the water extractable fraction; low results were obtained for the three soil areas, with no statistical differences. Plant ability to accumulate antimony was estimated by use of plant accumulation coefficients (PAC). Seasonal (spring vs. autumn) effects on the antimony content in the plant species. Cytisus striatus from Mari Rosa mine presented antimony excluder characteristics, whereas Dittrichia viscosa specimens growing in San Antonio mine showed a significant antimony bioaccumulation. - Bioaccumulation of antimony in vegetal species growing in mining areas

  20. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Murciego, A. Murciego [Area de Cristalografia y Mineralogia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Sanchez, A. Garcia [IRNA-CSIC, Departamento de Geoquimica Ambiental, Aptdo. 257, Salamanca (Spain); Gonzalez, M.A. Rodriguez [Area de Cristalografia y Mineralogia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Gil, E. Pinilla [Departamento de Quimica Analitica y Electroquimica, Facultad de Ciencias, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain)]. E-mail: epinilla@unex.es; Gordillo, C. Toro [Departamento de Quimica Analitica y Electroquimica, Facultad de Ciencias, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Fernandez, J. Cabezas [Area de Ecologia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Triguero, T. Buyolo [Area de Ecologia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain)

    2007-01-15

    A study about topsoil antimony distribution and mobility from the soils to the biomass has been afforded in three abandoned Sb mining areas located at Extremadura. Physico-chemical characteristics of the soils and total antimony levels were measured in soils and autochthonous plant species (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa). Comparison with corresponding values in reference areas isolated from the mining activities is discussed. Antimony mobility in the soils was estimated by measuring the water extractable fraction; low results were obtained for the three soil areas, with no statistical differences. Plant ability to accumulate antimony was estimated by use of plant accumulation coefficients (PAC). Seasonal (spring vs. autumn) effects on the antimony content in the plant species. Cytisus striatus from Mari Rosa mine presented antimony excluder characteristics, whereas Dittrichia viscosa specimens growing in San Antonio mine showed a significant antimony bioaccumulation. - Bioaccumulation of antimony in vegetal species growing in mining areas.

  1. Transparent yttrium hydride thin films prepared by reactive sputtering

    OpenAIRE

    Mongstad, T.; Platzer-Björkman, C.; Karazhanov, S. Zh.; Holt, A.; Maehlen, J. P.; Hauback, B. C.

    2011-01-01

    Metal hydrides have earlier been suggested for utilization in solar cells. With this as a motivation we have prepared thin films of yttrium hydride by reactive magnetron sputter deposition. The resulting films are metallic for low partial pressure of hydrogen during the deposition, and black or yellow-transparent for higher partial pressure of hydrogen. Both metallic and semiconducting transparent YHx films have been prepared directly in-situ without the need of capping layers and post-deposi...

  2. The Production of Uranium Metal by Metal Hydrides Incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P. P.

    1943-01-01

    Metal Hydrides Incorporated was a pioneer in the production of uranium metal on a commercial scale and supplied it to all the laboratories interested in the original research, before other methods for its production were developed. Metal Hydrides Inc. supplied the major part of the metal for the construction of the first experimental pile which, on December 2, 1942, demonstrated the feasibility of the self-sustaining chain reaction and the release of atomic energy.

  3. Electronic structure and optical properties of lightweight metal hydrides

    NARCIS (Netherlands)

    Setten, van M.J.; Popa, V.A.; Wijs, de G.A.; Brocks, G.

    2007-01-01

    We study the dielectric functions of the series of simple hydrides LiH, NaH, MgH2, and AlH3, and of the complex hydrides Li3AlH6, Na3AlH6, LiAlH4, NaAlH4, and Mg(AlH4)2, using first-principles density-functional theory and GW calculations. All compounds are large gap insulators with GW single-partic

  4. Thin-film metal hydrides for solar energy applications

    OpenAIRE

    2012-01-01

    Thin-film metal hydrides may become important solar energy materials in the future. This thesis demonstrates interesting material properties of metal hydride films, relevant for applications as semiconducting materials for photovoltaic (PV) solar cells and for regulation of light using smart window technology. List of papers. Papers II-VI are removed from the thesis due to copyright restrictions. Paper I C. Platzer-Björkman, T. Mongstad, S. Zh. Karazhanov, J. P. Mæhlen, E. S. Marst...

  5. Suppression of the critical temperature in binary vanadium hydrides

    International Nuclear Information System (INIS)

    Highlights: • Addition of 10 mol% Cr to V increases the β-hydride TC to >200 °C. • Addition of 10 mol% Ni to V increases the β-hydride TC to >400 °C. • Addition of 10 mol% Al to V decreases the β-hydride TC to 90Al10 membrane can be cycled to 2 without β-hydride formation. -- Abstract: The tendency of vanadium-based alloy membranes to embrittle is the biggest commercialisation barrier for this hydrogen separation technology. Excessive hydrogen absorption and the α → β hydride transition both contribute to brittle failure of these membranes. Alloying is known to reduce absorption, but the influence of alloying on hydride phase formation under conditions relevant to membrane operation has not been studied in great detail previously. Here, the effect of Cr, Ni, and Al alloying additions on V–H phase equilibrium has been studied using hydrogen absorption measurements and in situ X-ray diffraction studies. The addition of 10 mol% Ni increases the critical temperature for α + β hydride formation to greater than 400 °C, compared to 170 °C for V. Cr also increases the critical temperature, to between 200 and 300 °C. The addition of 10 mol% Al, however, suppresses the critical temperature to less than 30 °C, thereby enabling this material to be cycled thermally and hydrostatically while precluding formation of the β-hydride phase. This is despite Al also decreasing hydrogen absorption. The implication of this finding is that one of the mechanisms of brittle failure in vanadium-based hydrogen-selective membranes has been eliminated, thereby increasing the robustness of this material relative to V

  6. Modelling of fuel rod hydriding failures in water reactors

    International Nuclear Information System (INIS)

    Mechanistic models which were developed to describe primary hydriding phenomena in claddings of initially intact rods with residual moisture are described. The models include the following key processes: fuel rod thermal behavior, UO2 fuel oxidation in steam-hydrogen atmosphere under irradiation, hydrogen diffusion in zirconium and in the hydride, growth of the hydride phase. Fuel rod thermomechanical behavior is calculated by using RTOP integral fuel code. An oxidation model represents the effects of temperature dynamics and temperature profile along fuel axis and radius on fuel oxidation as well as on hydrogen accumulation inside the fuel rod. Along with ordinary thermal dissociation of water molecules, the oxidation model also addresses radiolysis of the steam-hydrogen mixture due to fission fragments. The present radiolysis model takes into account the effects of the gas mixture composition, temperature and pressure. A new model of cladding hydriding is proposed in which calculation of the massive hydride growth is performed in 2-D geometry. Hydrogen transport in zirconium cladding is modeled with account for thermodiffusion. The RTOP code comprising the models developed allows us to calculate different scenarios of hydriding rod failures under given operation conditions. Test calculations were carried out and compared to available data. It is shown that there are threshold values of initial steam content inside the intact fuel rod which lead to the possibility of through-cladding hydride growth and formation of the primary defect. The threshold values depend on the oxidation state of the cladding inner surface, linear power profile in the fuel rod, fuel rod geometry, cladding temperature conditions and hydrogen diffusivities in zirconium and zirconium hydride

  7. Hydride distribution around a blister in Zr-2.5Nb pressure tubes

    International Nuclear Information System (INIS)

    Blisters were grown in Zr-2.5Nb pressure tube sections by a thermal gradient without applying external stress. The surrounding hydride distribution was analyzed. Hydride platelets were observed in the radial direction of the blister. The precipitation of these hydrides was found to be favored by low temperature of blister growth and slow cooling rate after blister formation. The misfit strain produced by hydride blister growth provides the stress necessary to promote radial precipitation. During the subsequent tensile test at 200 C (delayed hydride cracking test) the radial hydride length and thickness are increased. This increase is explained by a stress concentrator effect of the blister. When this effect vanishes, the increase of radial hydrides continues by an autocatalytic effect and stress concentrator effect of the hydride platelet. If a crack originated in the blister reaches the matrix it could propagate along a radial hydride previously precipitated. (orig.)

  8. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND GLASS AMPLIFICATION

    Directory of Open Access Journals (Sweden)

    B. Tioua

    2015-07-01

    Full Text Available Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses. In this poster will offer new doped erbium glasses synthesized in silicate crucibles were obtained in the combination Sb2O3-WO3-Na2O. Several properties are measured and correlated with glass compositions. The absorption spectral studies have been performed for erbium doped glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the theory of Judd-Ofelt, various radiative properties, such as transition probability, branching ratio and radiative life time for various emission levels of these doped glasses have been determined and reported. These results confirm the ability of antimony glasses for glass amplification.

  9. Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

    2013-09-30

    The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

  10. Metal Hydrides for High-Temperature Power Generation

    Directory of Open Access Journals (Sweden)

    Ewa C. E. Rönnebro

    2015-08-01

    Full Text Available Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES applications. By using TES with solar technologies, heat can be stored from sun energy to be used later, which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT metal hydride operating reversibly at 600–800 °C to generate heat, as well as a low-temperature (LT hydride near room temperature that is used for hydrogen storage during sun hours until there is the need to produce electricity, such as during night time, a cloudy day or during peak hours. We proceeded from selecting a high-energy density HT-hydride based on performance characterization on gram-sized samples scaled up to kilogram quantities with retained performance. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a ~200-kWh/m3 bench-scale prototype was designed and fabricated, and we demonstrated the ability to meet or exceed all performance targets.

  11. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  12. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process

    International Nuclear Information System (INIS)

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-α phase to transform to UH3: a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert γ -phase to α -phase. Subsequent hydriding transforms this α -phase to UH3. The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  13. Predictors of an unsatisfactory response to pentavalent antimony in the treatment of American visceral leishmaniasis

    Directory of Open Access Journals (Sweden)

    Santos Mácia A.

    2002-01-01

    Full Text Available Although treatment of visceral leishmaniasis with pentavalent antimony is usually successful, some patients require second-line drug therapy, most commonly with amphotericin B. To identify the clinical characteristics that predict an inadequate response to pentavalent antimony, a case-control study was undertaken in Teresina, Piaui, Brazil. Over a two-year period, there were 19 cases of VL in which the staff physicians of a hospital prescribed second-line therapy with amphotericin B after determining that treatment with pentavalent antimony had failed. The control group consisted of 97 patients that were successfully treated with pentavalent antimony. A chart review using univariate and multivariate analysis was performed. The cure rate was 90% with amphotericin B. The odds ratio for the prescription of amphotericin B was 10.2 for children less than one year old, compared with individuals aged over 10 years. Patients who presented coinfection had an OR of 7.1 while those on antibiotics had an OR of 2.8. These data support either undertaking a longer course of therapy with pentavalent antimony for children or using amphotericin B as a first-line agent for children and individuals with coinfections. It also suggests that chemoprophylaxis directed toward bacterial coinfection in small children with VL may be indicated.

  14. Copper-promoted cementation of antimony in hydrochloric acid system: A green protocol.

    Science.gov (United States)

    Wu, Lian-Kui; Li, Ying-Ying; Cao, Hua-Zhen; Zheng, Guo-Qu

    2015-12-15

    A new method of recovering antimony in hydrochloric acid system by cementation with copper powder was proposed and carried out at laboratory scale. Thermodynamic analysis and cyclic voltammetry test were conducted to study the cementation process. This is a novel antimony removal technology and quite meets the requirements of green chemistry. The main cement product Cu2Sb is a promising anodic material for lithium and sodium ion battery. And nearly all consumed copper powder are transformed into CuCl which is an important industrial material. The effect of reaction temperature, stoichiometric ratio of Cu to Sb(III), stirring rate and concentration of HCl on the cementation efficiency of antimony were investigated in detail. Optimized cementation condition is obtained at 60 °C for 120 min and stirring rate of 600 rpm with Cu/Sb(III) stoichiometric ratio of 6 in 3 mol L(-1) HCl. At this time, nearly all antimony can be removed by copper powder and the cementation efficiency is over 99%. The structure and morphologies of the cement products were characterized by X-ray diffraction and scanning electron microscopy, respectively. Results show that the reaction temperature has little influence on the morphology of the cement products which consist of particles with various sizes. The activation energy of the cementation antimony on copper is 37.75 kJ mol(-1), indicating a chemically controlled step. Inductively coupled plasma mass spectrometry results show that no stibine generates during the cementation process. PMID:26252996

  15. Determination of traces of uranium and thorium in antimony(III) oxide by ICP-MS

    International Nuclear Information System (INIS)

    Traces of uranium and thorium in antimony(III) oxide were determined by inductively coupled plasma mass spectrometry (ICP-MS). A method of vaporization as the halide was applied to the separation of the analytes from the antimony matrix. Because the above separation method is so simple, reduced of external contamination was expected. In the case of vaporization using hydrochloric acid, however, it was found that antimony trichloride ions overlapped thorium ion of 232 (m/z). To find the most suitable conditions for matrix separation, vaporization behaviors were studied by using different acidic solutions such as HBr, HBr-HClO4 and HBr-H2SO4. Neither HBr+HClO4 nor HBr+H2SO4 was able to reduce the antimony matrix down to an unaffected level on ICP-MS measurement. On the other hand, in the case of the vaporization using hydrobromic acid, almost all the antimony matrix was removed. Determination limits obtained by this method were 0.02 and 0.03 ng g-1 for uranium and thorium, respectively. (author)

  16. A quantitative phase field model for hydride precipitation in zirconium alloys: Part II. Modeling of temperature dependent hydride precipitation

    International Nuclear Information System (INIS)

    A quantitative free energy functional developed in Part I (Shi and Xiao, 2014 [1]) was applied to model temperature dependent δ-hydride precipitation in zirconium in real time and real length scale. At first, the effect of external tensile load on reorientation of δ-hydrides was calibrated against experimental observations, which provides a modification factor for the strain energy in free energy formulation. Then, two types of temperature-related problems were investigated. In the first type, the effect of temperature transient was studied by cooling the Zr–H system at different cooling rates from high temperature while an external tensile stress was maintained. At the end of temperature transients, the average hydride size as a function of cooling rate was compared to experimental data. In the second type, the effect of temperature gradients was studied in a one or two dimensional temperature field. Different boundary conditions were applied. The results show that the hydride precipitation concentrated in low temperature regions and that it eventually led to the formation of hydride blisters in zirconium. A brief discussion on how to implement the hysteresis of hydrogen solid solubility on hydride precipitation and dissolution in the developed phase field scheme is also presented

  17. Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation

    International Nuclear Information System (INIS)

    Highlights: • We have proposed a method to recover antimony from electronic plastics. • The most efficient acid solution was sodium hydrogen tartrate in dimethyl sulfoxide. • Gamma irradiation did not influence the antimony leaching ability. - Abstract: There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5 M) dissolved in either dimethyl sulfoxide or water (at ca. 23 °C and heated to ca. 105 °C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed

  18. Mixed Antimony(V Complexes with Different Sugars to Modulate the Oral Bioavailability of Pentavalent Antimonial Drugs

    Directory of Open Access Journals (Sweden)

    Weverson A. Ferreira

    2014-04-01

    Full Text Available Previous studies have shown that the association of the drug meglumine antimoniate (MA with β-cyclodextrin can improve its bioavailability by the oral route. In this work, ribose and maltose were investigated for their ability to form mixed or association complexes with MA, release MA and modulate the serum levels of Sb after oral administration in mice. Analysis of the MA/ribose composition by high performance liquid chromatography coupled to mass spectrometry (LCMS-IT-TOF revealed the presence of mixed meglumine-Sb-ribose and Sb-ribose complexes. Analysis of the MA/maltose composition suggested the formation of MA-maltose association compounds. Circular dichroism characterization of these compositions following dilution in water at 37 °C suggested a partial and slow dissociation of the association compounds. When the MA/ribose composition was administered orally and compared to MA, the serum concentration of Sb was significantly lower after 1 h and greater after 3 h. On the other hand, the MA/maltose composition showed similar serum Sb concentration after 1 h and higher level of Sb after 3 h, when compared to MA. In conclusion, the present study has demonstrated the formation of mixed or association complexes of MA with sugars, such as maltose and ribose, which promoted sustained serum level of Sb after oral administration.

  19. Hydriding and dehydriding characteristics of LiBH4 and transition metals-added magnesium hydride

    International Nuclear Information System (INIS)

    Graphical abstract: Hydriding reaction curves under 12 bar H2, and dehydriding reaction curves under 1.0 bar H2, at 593 K at the 1st cycle for MgH2–10Ni–2LiBH4–2Ti and MgH2. Highlights: ► Addition of Ni, LiBH4, and Ti to MgH2 to increase reaction rates. ► Sample preparation by reactive mechanical grinding. ► At n = 2, the sample absorbed 4.05 wt% H for 60 min at 593 K under 12 bar H2. ► Analysis of rate-controlling step for dehydriding of the sample at n = 3. - Abstract: In this study, MgH2 was used as a starting material instead of Mg. Ni, Ti, and LiBH4 with a high hydrogen-storage capacity of 18.4 wt% were added. A sample with a composition of MgH2–10Ni–2LiBH4–2Ti was prepared by reactive mechanical grinding. The activation of MgH2–10Ni–2LiBH4–2Ti was completed after the first hydriding–dehydrding cycle. The hydriding rate decreases as the temperature increases due to the decrease in the driving force for the hydriding reaction. At the 1st cycle, the sample desorbs 1.45 wt% H for 10 min, 2.54 wt% H for 20 min, 3.13 wt% H for 30 min, and 3.40 wt% H for 60 min at 593 K under 1.0 bar H2. At the 2nd cycle, the sample absorbs 3.84 wt% H for 5 min, 3.96 wt% H for 10 min, and 4.05 wt% H for 60 min at 593 K under 12 bar H2. MgH2–10Ni–2LiBH4–2Ti after reactive mechanical grinding contained MgH2, Mg, Ni, TiH1.924, and MgO phases. The reactive mechanical grinding of Mg with Ni, LiBH4, and Ti is considered to create defects on the surface and in the interior of Mg (to facilitate nucleation), and to reduce the particle size of Mg (to shorten diffusion distances of hydrogen atoms). The formation of Mg2Ni during hydriding–dehydriding cycling increases the hydriding and dehydriding rates of the sample

  20. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  1. Anodic stripping voltammetry of antimony using gold nanoparticle-modified carbon screen-printed electrodes

    International Nuclear Information System (INIS)

    Carbon screen-printed electrodes (CSPE) modified with gold nanoparticles present an interesting alternative in the determination of antimony using differential pulse anodic stripping voltammetry. Metallic gold nanoparticles deposits have been obtained by direct electrochemical deposition. Scanning electron microscopy measurements show that the electrochemically synthesized gold nanoparticles are deposited in aggregated form. Any undue effects caused by the presence of foreign ions in the solution were also analyzed to ensure that common interferents in the determination of antimony by ASV. The detection limit for Sb(III) obtained was 9.44 x 10-10 M. In terms of reproducibility, the precision of the above mentioned method in %R.S.D. values was calculated at 2.69% (n = 10). The method was applied to determine levels of antimony in seawater samples and pharmaceutical preparations

  2. Response of cutaneous leishmaniasis (chiclero's ulcer) to treatment with meglumine antimoniate in Southeast Mexico.

    Science.gov (United States)

    Vargas-Gonzalez, A; Canto-Lara, S B; Damian-Centeno, A G; Andrade-Narvaez, F J

    1999-12-01

    Cutaneous leishmaniasis, known as chiclero's ulcer in southeastern Mexico, is characterized by a predominantly single, painless, ulcerated lesion, without lymphangitis or adenopathy. When located on the ear, it tends to become chronic, causing destruction of the pinna and disfigurement. It is caused predominantly by Leishmania (L.) mexicana. Although pentavalent antimonials (Sb5+) are the mainstay of leishmanial therapy and have been used for more than 50 years, dosage regimens have been repeatedly modified and the best one has not been fully identified. The main purpose of the present study was to investigate the response of chiclero's ulcer to treatment with meglumine antimoniate. One hundred five patients were treated with meglumine antimoniate at a daily dose of 1 ampule per day (425 mg of Sb5+) until healing. The lesions healed after a mean of 25 days (range = 5-60 days). PMID:10674678

  3. Synthesis of barium mercaptides and application of antimony/barium mercaptides

    Institute of Scientific and Technical Information of China (English)

    瞿龙; 张露露; 舒万艮

    2001-01-01

    Mercaptoacetic acid, isooctyl thioglycolate and barium hydroxide used as start materials, barium bis (2-ethylhexyl thioglycolate) (Ba(2EHTG)2), barium thioglycolate (Ba(TG)) and barium bisthioglycolate (Ba(TG)2) were synthesized. Their optimum synthetic techniques were discussed, and some physicochemical data were reported. Infrared spectroscopy and elemental analysis methods were used to identify the structures. They were put into PVC plastic products together with antimony tris (2-ethylhexyl thioglycolate) (Sb(2EHTG)3) under the suitable compounding, and their heat stability to PVC was studied. It is shown that these barium mercaptides have remarkable synergisms with antimony mercaptides and the long-term stabilizing effect of organoantimony stabilizer can be effectively improved, reducing the amount of antimony compounds so as to avoid the decrease of its stabilizing effect.

  4. Geothermal and fluid flowing simulation of ore-forming antimony deposits in Xikuangshan

    Institute of Scientific and Technical Information of China (English)

    YANG Ruiyan; MA Dongsheng; BAO Zhengyu; PAN Jiayong; CAO Shuanglin; XIA Fei

    2006-01-01

    The Xikuangshan Antimony Deposit located in the Mid-Hunan Basin, China, is the largest antimony deposit in the world. Based on the hydrogeological and geochemical data collected from four sections, Xikuangshan-Dajienao (AO), Xikuangshan-Dashengshan (BO), Xikuangshan-Longshan (CO) and Dafengshan (DO) in the Basin, an advanced metallogenic model related to deep-cyclic meteoric water of Xikuangshan Antimony Deposit is put forward in this paper using a model of heat-gravity-driving fluid flow transportation. The simulation results show that the ore-forming fluid of the deposit mainly comes from the Dashengshan and Longshan areas where BO and CO sections are located if the overall basin keeps a constant atmospheric precipitation and infiltration rate during mineralization, and that the average transportation speed of the ore-forming fluids is about 0.2-0.4 m/a.

  5. Simultaneous Heat and Mass Transfer in DU Hydriding

    International Nuclear Information System (INIS)

    The sources of nuclear fusion reaction are deuterium (D) and tritium (T). Generally, D is fused into T, which generates helium atoms and neutrons. At this time, a tremendous amount of energy is generated. D + T → 4He + n (E = 17.6 MeV) Hydrogen is a gas, and cannot be stored in large amounts. In addition, it can be explosive. Therefore, one of the storing methods for hydrogen is metal hydride. In this research, several kinds of metal hydrides including U, Zr, ZrCo, ZrNi, and LaNi5 have been simulated through modeling work of hydrogen absorption, desorption, and pressure effect in a bed using DU. For the exact modeling of the hydriding process, it is necessary to calculate simultaneous heat and mass transfer because, in the hydriding process, not only is hydrogen gas transported by mass transport and chemisorption but heat transfer also occurs through absorption. Therefore, in this paper, we tried to calculate the simultaneous heat and mass transfer using numerical analysis methods. Simultaneous heat and mass transfer in DU hydriding is well fitted compared to the experimental data, and is more reasonable considering only one variable. The hydriding process changes the temperature and atomic ratio simultaneously, and thus it is necessary to consider in company with two transport phenomena. The numerical analysis method applied Euler's method; however, the Runge-Kutta method is a more widely used numerical solution of a differential equation. Therefore, when analyzing the hydriding process, Runge-Kutta or another method will henceforth be applied

  6. Influence of uranium hydride oxidation on uranium metal behaviour

    International Nuclear Information System (INIS)

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  7. Future trends of global atmospheric antimony emissions from anthropogenic activities until 2050

    Science.gov (United States)

    Zhou, Junrui; Tian, Hezhong; Zhu, Chuanyong; Hao, Jiming; Gao, Jiajia; Wang, Yong; Xue, Yifeng; Hua, Shenbin; Wang, Kun

    2015-11-01

    This paper presents the scenario forecast of global atmospheric antimony (Sb) emissions from anthropogenic activities till 2050. The projection scenarios are built based on the comprehensive global antimony emission inventory for the period 1995-2010 which is reported in our previous study. Three scenarios are set up to investigate the future changes of global antimony emissions as well as their source and region contribution characteristics. Trends of activity levels specified as 5 primary source categories are projected by combining the historical trend extrapolation with EIA International energy outlook 2013, while the source-specific dynamic emission factors are determined by applying transformed normal distribution functions. If no major changes in the efficiency of emission control are introduced and keep current air quality legislations (Current Legislation scenario), global antimony emissions will increase by a factor of 2 between 2010 and 2050. The largest increase in Sb emissions is projected from Asia due to large volume of nonferrous metals production and waste incineration. In case of enforcing the pollutant emission standards (Strengthened Control scenario), global antimony emissions in 2050 will stabilize with that of 2010. Moreover, we can anticipate further declines in Sb emissions for all continents with the best emission control performances (Maximum Feasible Technological Reduction scenario). Future antimony emissions from the top 10 largest emitting countries have also been calculated and source category contributions of increasing emissions of these countries present significant diversity. Furthermore, global emission projections in 2050 are distributed within a 1° × 1°latitude/longitude grid. East Asia, Western Europe and North America present remarkable differences in emission intensity under the three scenarios, which implies that source-and-country specific control measures are necessary to be implemented for abating Sb emissions from

  8. Hydriding and neutron irradiation in zircaloy-4

    International Nuclear Information System (INIS)

    The composition of Zircaloy-4 for nuclear applications is specified by the ASTM B350 Standard, that fixes the amount of alloying elements (Sn, Fe, Cr) and impurities (Ni, Hf, O, N, C, among others) to optimize good corrosion and mechanical behavior.The recycling of zircaloy-4 scrap and chips resulting from cladding tube fabrication is an interesting issue.However, changes in the final composition of the recycled material may occur due to contamination with tool pieces, stainless steel chips, turnings, etc. while scrap is stored and handled. Since the main components of the possible contaminants are Fe, Cr and Ni, it arises the interest in studying up to what limit the Fe, Ni and Cr contents could be exceeded beyond the standard specification without affecting significantly the alloy properties.Zircaloy-4 alloys elaborated with Fe, Cr and Ni additions and others of standard composition in use in nuclear plants are studied by tensile tests, SEM observations and EDS microanalysis.Some samples are tested in the initial condition and others after hydriding treatments and neutron irradiation in the RA6

  9. Reactions of NO with nitrogen hydrides x

    Science.gov (United States)

    Mebel, A. M.; Lin, M. C.

    In this review, we consider the reactions of NO ( x 1,2) with the nitrogen x hydrides NH, NH and NH . The reactions are relevant to the post-combustion, non-catalytic reduction of NO with NH in the thermal de-NO process and with x x HNCO in the rapid reduction of NO as well as to the thermal decomposition of x some high-energy materials, including ammonium dinitramide. The practical importance has motivated considerable theoretical interest in these reactions. We review numerous ab - initio molecular orbital studies of potential energy surfaces for NO NH and theoretical calculations of their kinetic parameters, such as x y thermal rate constants and branching ratios of various products. The most advanced theoretical calculations are carried out using the Gaussian-2 family of methods which provides the chemical accuracy (within 2 kcal mol ) for the energetics and molecular parameters of the reactants, products, intermediates and transition states. We present a detailed comparison of the theoretical results with available experimental data. We show that the reactions of NO with NH and NH x are very fast because they occur without a barrier and lead to the formation of multiple products which include radicals and stable molecules. The reactions of NO with NH , taking place by the H abstraction to form NH and HNO , are slow x x but still relevant to the NH de-NO system, because of their fast reverse processes x which have not yet been measured experimentally.

  10. Co-doping with antimony to control phosphorous diffusion in germanium

    KAUST Repository

    Tahini, H. A.

    2013-02-15

    In germanium, phosphorous and antimony diffuse quickly and as such their transport must be controlled in order to design efficient n-typed doped regions. Here, density functional theory based calculations are used to predict the influence of double donor co-doping on the migration activation energies of vacancy-mediated diffusion processes. The migration energy barriers for phosphorous and antimony were found to be increased significantly when larger clusters involving two donor atoms and a vacancy were formed. These clusters are energetically stable and can lead to the formation of even larger clusters involving a number of donor atoms around a vacancy, thereby affecting the properties of devices.

  11. Studies on Thin Films of Antimony Vacuum Evaporated from a Knudsen-Type Source

    Directory of Open Access Journals (Sweden)

    K.L. Chaudhary

    2000-10-01

    Full Text Available A Knudsen-type evaporation source was used for the deposition of thin films of antimony to study their growth and microstructure under different rates of evaporation and substrate temperatures when vacuum evaporated onto air-cleaved KC1, mica, amorphous carbon and doped KCl substrates. The crystallisation of these films on exposure to an electron beam of moderate intensity inside the electron microscope was studied, and the orientations of the crystallised films wrt the substrate were established. It has been concluded that antimony films prepared by this source compare well with those prepared by other sources of vacuum evaporation.

  12. An evaluation of the migration of antimony from polyethylene terephthalate (PET) plastic used for bottled drinking water.

    Science.gov (United States)

    Chapa-Martínez, C A; Hinojosa-Reyes, L; Hernández-Ramírez, A; Ruiz-Ruiz, E; Maya-Treviño, L; Guzmán-Mar, J L

    2016-09-15

    The leaching of antimony (Sb) from polyethylene terephthalate (PET) bottling material was assessed in twelve brands of bottled water purchased in Mexican supermarkets by atomic fluorescence spectrometry with a hydride generation system (HG-AFS). Dowex® 1X8-100 ion-exchange resin was used to preconcentrate trace amounts of Sb in water samples. Migration experiments from the PET bottle material were performed in water according to the following storage conditions: 1) temperature (25 and 75°C), 2) pH (3 and 7) and 3) exposure time (5 and 15days), using ultrapure water as a simulant for liquid foods. The test conditions were studied by a 2(3) factorial experimental design. The Sb concentration measured in the PET packaging materials varied between 73.0 and 111.3mg/kg. The Sb concentration (0.28-2.30μg/L) in all of the PET bottled drinking water samples examined at the initial stage of the study was below the maximum contaminant level of 5μg/L prescribed by European Union (EU) regulations. The parameters studied (pH, temperature, and storage time) significantly affected the release of Sb, with temperature having the highest positive significant effect within the studied experimental domain. The highest Sb concentration leached from PET containers was in water samples at pH7 stored at 75°C for a period of 5days. The extent of Sb leaching from the PET ingredients for different brands of drinking water can differ by as much as one order of magnitude in experiments conducted under the worst-case conditions. The chronic daily intake (CDI) caused by the release of Sb in one brand exceeded the Environmental Protection Agency (USEPA) regulated CDI value of 400ng/kg/day, with values of 514.3 and 566.2ng/kg/day for adults and children. Thus, the appropriate selection of the polymer used for the production of PET bottles seems to ensure low Sb levels in water samples. PMID:27192700

  13. Micro-scale fracture experiments on zirconium hydrides and phase boundaries

    Science.gov (United States)

    Chan, H.; Roberts, S. G.; Gong, J.

    2016-07-01

    Fracture properties of micro-scale zirconium hydrides and phase boundaries were studied using microcantilever testing methods. FIB-machined microcantilevers were milled on cross-sectional surfaces of hydrided samples, with the most highly-stressed regions within the δ-hydride film, within the α-Zr or along the Zr-hydride interface. Cantilevers were notched using the FIB and then tested in bending using a nanoindenter. Load-displacement results show that three types of cantilevers have distinct deformation properties. Zr cantilevers deformed plastically. Hydride cantilevers fractured after a small amount of plastic flow; the fracture toughness of the δ-hydride was found to be 3.3 ± 0.4 MPam1/2 and SEM examination showed transgranular cleavage on the fracture surfaces. Cantilevers notched at the Zr-hydride interface developed interfacial voids during loading, at loads considerably lower than that which initiate brittle fracture of hydrides.

  14. Numerical simulation and performance test of metal hydride hydrogen storage system

    Directory of Open Access Journals (Sweden)

    Tzu-Hsiang Yen, Bin-Hao Chen, Bao-Dong Chen

    2011-05-01

    Full Text Available Metal hydride reactors are widely used in many industrial applications, such as hydrogen storage, thermal compression, heat pump, etc. According to the research requirement of metal hydride hydrogen storage, the thermal analyses have been implemented in the paper. The metal hydride reaction beds are considered as coupled cylindrical tube modules which combine the chemical absorption and desorption in metal hydride. The model is then used metal hydride LaNi5 as an example to predict the performance of metal hydride hydrogen storage devices, such as the position of hydration front and the thermal flux. Under the different boundary condition the characteristics of heat transfer and mass transfer in metal hydride have influence on the hydrogen absorption and desorption. The researches revealed that the scroll design can improve the temperature distribution in the reactor and the porous tube for directing hydrogen can increase the penetration depth of hydride reaction to decrease the hydrogen absorption time.

  15. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  16. Influence of Specific Surface Area of Powder on Hydrogen Desorption Kinetics for Metal Hydrides

    CERN Document Server

    Drozdov, I V

    2014-01-01

    The observable results for desorption kinetics by powder of metal hydride on the example of mangesium hydride are reproduced with the model formulated in terms of specific surface of powder. A volumetric measurement of hydrogen desorption process is evaluated on an example of wet ball milled magnesium hydride, and can be applied generally for any metal hydride. The exact solution of the model reproduces the shape of experimental curves for desorption process providing a satisfying agreement with experimental data.

  17. A study of advanced magnesium-based hydride and development of a metal hydride thermal battery system

    Science.gov (United States)

    Zhou, Chengshang

    Metal hydrides are a group of important materials known as energy carriers for renewable energy and thermal energy storage. A concept of thermal battery based on advanced metal hydrides is studied for heating and cooling of cabins in electric vehicles. The system utilizes a pair of thermodynamically matched metal hydrides as energy storage media. The hot hydride that is identified and developed is catalyzed MgH2 due to its high energy density and enhanced kinetics. TiV0.62Mn1.5, TiMn2, and LaNi5 alloys are selected as the matching cold hydride. A systematic experimental survey is carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. The results show that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Solid solution alloys of magnesium are exploited as a way to destabilize magnesium hydride thermodynamically. Various elements are alloyed with magnesium to form solid solutions, including indium and aluminum. Thermodynamic properties of the reactions between the magnesium solid solution alloys and hydrogen are investigated, showing that all the solid solution alloys that are investigated in this work have higher equilibrium hydrogen pressures than that of pure magnesium. Cyclic stability of catalyzed MgH2 is characterized and analyzed using a PCT Sievert-type apparatus. Three systems, including MgH2-TiH 2, MgH2-TiMn2, and MgH2-VTiCr, are examined. The hydrogenating and dehydrogenating kinetics at 300°C are stable after 100 cycles. However, the low temperature (25°C to 150°C) hydrogenation kinetics suffer a severe degradation during hydrogen cycling. Further experiments confirm that the low temperature kinetic degradation can be mainly related the extended hydrogenation-dehydrogenation reactions. Proof

  18. A metal hydride-polymer composite for hydrogen storage applications

    International Nuclear Information System (INIS)

    To address the issue of the breakdown into fine powders that occurs in the practical use of metal hydrides, the possibility of using a polymeric material as a matrix that contains the active metal particles was experimentally assessed. A ball milling approach in the tumbling mode was used to develop a metal hydride-polymer composite with a high metal to polymer weight ratio. The alloy powder was blended with the polymer and a coating of the metal particles was obtained. The composite was consolidated by hot pressing and the pellets were characterized in terms of their hydriding-dehydriding properties. The materials did not show significant losses in either loading capacity or kinetic properties. The polymeric matrix resulted as being stable under hydrogen cycling. Further, from SEM observation it was confirmed that the metal powders remained embedded in the polymeric matrix even after a number of cycles and that the overall dimensional integrity was retained.

  19. Theoretical Estimate of Hydride Affinities of Aromatic Carbonyl Compounds

    Institute of Scientific and Technical Information of China (English)

    AI Teng; ZHU Xiao-Qing; CHENG Jin-Pei

    2003-01-01

    @@ Aromatic carbonyl compounds are one type of the most important organic compounds, and the reductions ofthem by hydride agents such as LiAlH4 or NaBH4 are widely used in organic synthesis. The reactivity of carbonyl compounds generally increases in the following order: ketone < aldehyde, and amide < acid < ester < acid halide, which could be related to their hydride affinities (HA). In the previous paper, Robert[1] calculated the absolute HAof a series of small non-aromatic carbonyl compounds. In this paper, we use DFT method at B3LYP/6-311 + + G (2d, 2p)∥B3LYP/6-31 + G* level to estimate hydride affinities of five groups of aromatic carbonyl compounds. The detailed results are listed in Table 1.

  20. Infrared diode laser spectroscopy of lithium hydride

    International Nuclear Information System (INIS)

    The fundamental and hot bands of the vibration--rotation transitions of 6 LiH, 7 LiH, 6 LiD, and 7 LiD were observed by infrared diode laser spectroscopy at Doppler-limited resolution. Lithium hydride molecules were produced by the reaction of the Li vapor with hydrogen at elevated temperatures. Some 40 transitions were observed and, after combined with submillimeter-wave spectra reported by G. M. Plummer et al. [J. Chem. Phys. 81, 4893 (1984)], were analyzed to yield Dunham-type constants with accuracies more than an order of magnitude higher than those published in the literature. It was clearly demonstrated that the Born--Oppenheimer approximation did not hold, and some parameters representing the breakdown were evaluated. The Born--Oppenheimer internuclear distance r/sup BO//sub e/ was derived to be 1.594 914 26 (59) A, where a new value of Planck's constant recommended by CODATA was employed. The relative intensity of absorption lines was measured to determine the ratio of the permanent dipole moment to its first derivative with respect to the internuclear distance: μ/sub e/ [(partialμpartialr)/sub e/ r/sub e/ ] = 1.743(86). The pressure broadening parameter Δν/sub p/ P was determined to be 6.40 (22) MHzTorr by measuring the linewidth dependence on the pressure of hydrogen, which was about four times larger than the value for the dipole--quadrupole interaction estimated by Kiefer and Bushkovitch's theory

  1. High-Spin Cobalt Hydrides for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Patrick L. [Yale University

    2013-08-29

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  2. Dissolution and Precipitation Temperatures of δ Hydrides in Zirconium

    International Nuclear Information System (INIS)

    Anelastic effects due to the formation and dissolution of hydrides on crystal bar Zirconium (O-6 and 2x10-5 , in a gaseous atmosphere (He) to allow a better thermal conductivity inside the pendulum.Hydriding was achieved inside the pendulum by the inlet of hydrogen gas.The final hydrogen contents was determined by fusion analysis and resulted in 36 ppm.The first ''in situ'' hydriding is obtained by introducing an hydrogen pressure of 60kPa in the pendulum during 1h at 295K. Then, the hydrogen atmosphere is extracted by mechanical vacuum and an helium atmosphere is reinserted.The IF and G measurements are made in this condition. During the first heating an anomaly at 430K and a little step in the modulus G are obtained, indicating a d dissolution temperature TSSD of 430K for 8.6 wt ppm of H.After a solubilization of 10min at 495K, there are simultaneous effects: a step in G and an IF peak which is not enough developed on its right side.They presume a d precipitation temperature TSSP of 485K for 20 wt ppm of H. After a 1h at 490K, the peaks are again obtained with slight changes.The second ''in situ'' hydration during 8h at 173K, give rise to several peaks and modulus variations in the temperature range (300-400)K which are assessed to be due to transitions occurring to metastable γ and ε hydrides formed upon hydriding at low temperature, and to the δ hydride

  3. Diel variation of arsenic, molybdenum and antimony in a stream draining natural As geochemical anomaly

    Czech Academy of Sciences Publication Activity Database

    Drahota, P.; Nováková, B.; Matoušek, Tomáš; Mihaljevič, M.; Rohovec, Jan; Filippi, Michal

    2013-01-01

    Roč. 31, APR (2013), s. 84-93. ISSN 0883-2927 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:68081715 ; RVO:67985831 Keywords : arsenic * molybdenum * antimony * trace elements * diel cycle Subject RIV: CB - Analytical Chemistry, Separation; DD - Geochemistry (GLU-S) Impact factor: 2.021, year: 2013

  4. Differences in antimony and arsenic releases from lead smelter fly ash in soils

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Mihaljevič, M.; Šebek, O.; Valigurova, R.; Klementová, Mariana

    2012-01-01

    Roč. 72, Supp. 4 (2012), s. 15-22. ISSN 0009-2819 Institutional research plan: CEZ:AV0Z40320502 Keywords : Antimony * Arsenic * Lead smelting * Fly ash * Soil * Mobility Subject RIV: CA - Inorganic Chemistry Impact factor: 1.351, year: 2012

  5. Transparent Conducting Films of Antimony-Doped Tin Oxide with Uniform Mesostructure Assembled from Preformed Nanocrystals

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rathouský, Jiří; Rasp, M.; Schütz, B.; Niederberger, M.; Fattakhova-Rohlfing, D.

    Vol. 1. Boca Raton : Taylor-Francis, 2010, s. 627-630. ISBN 978-1-4398-3401-5. - ( Nanotech 2010) R&D Projects: GA ČR GA104/08/0435 Institutional research plan: CEZ:AV0Z40400503 Keywords : antimony-doped tin oxide * mesoporous materials * nanoparticles * self-assembly Subject RIV: CF - Physical ; Theoretical Chemistry

  6. Determination of barium and antimony in gun shot residues by neutron activation analysis

    International Nuclear Information System (INIS)

    The antimony contents on both hands of 7 persons before and after firing an automatic pistol were determined by instrumental neutron activation analysis. The gun shot residues were removed from hands by a 4% solution of cellulose acetate in acetone. The average content of antimony on both hands before firing obtained from 70 measurements (35 from each hand) was 0.040 ± 0.010 micro gram, whereas the average contents on the right and the left hands after 1 firing were 0.385 ± 0.036 and 0.144 ± 0.029 micro gram respectively. The ration of the antimony contents after 1 firing to the normal level (before firing) was 9.9 for the right and 3.6 for the left. No significant difference was observed between male and female, smoker and non-smoker. The antimony content after several firings was not much different from that of 1 firing and it reduced to the normal level within 2 days after firing. The barium contents before and after firing were studied from one person. Barium was precipitated as Ba SO4 before counting. An average contents of 0.936 ± 0.551 micro gram for both hands before firing, 4.092 ± 2.687 micro gram for the right hand and 1.363 ± 0.879 micro gram for the left hand after 1 firing were found

  7. Transparent Conducting Films of Antimony-Doped Tin Oxide with Uniform Mesostructure Assembled from Preformed Nanocrystals

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rasp, M.; Rathouský, Jiří; Schütz, B.; Niederberger, M.; Fattakhova-Rohlfing, D.

    2010-01-01

    Roč. 6, č. 5 (2010), s. 633-637. ISSN 1613-6810 R&D Projects: GA ČR GA104/08/0435 Institutional research plan: CEZ:AV0Z40400503 Keywords : antimony-doped tin oxide * msoporous materials * nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.333, year: 2010

  8. Antimony production by carbothermic reduction of stibnite in the presence of lime

    Directory of Open Access Journals (Sweden)

    Padilla R.

    2014-01-01

    Full Text Available Experimental work on the carbothermic reduction of Sb2S3 in the presence of lime was carried out in the temperature range of 973 to 1123 K to produce antimony in an environmentally friendly manner. The results demonstrated the technical feasibility of producing antimony by this method without producing SO2 gas. Complete conversion of Sb2S3 was obtained at 1023 K in about 1000 seconds and at 1123 K in less than 250 seconds using stibnite-carbon-lime mixtures with molar ratios Sb2S3:CaO:C = 1:3:3. It was found that the reduction proceeds through the formation of an intermediate oxide SbO2, which is subsequently reduced by CO(g to yield antimony metal and CaS. The kinetics of the Sb2S3 reduction was analyzed by using the equation ln(1-X = -kt. The activation energy was 233 kJ mol-1 in the temperature range of 973 to 1123 K. This value would correspond to an antimony catalyzed carbon oxidation by CO2.

  9. Reaction products and corrosion of molybdenum electrode in glass melt containing antimony oxides and sodium sulfate

    Czech Academy of Sciences Publication Activity Database

    Matěj, J.; Langrová, Anna

    2012-01-01

    Roč. 56, č. 3 (2012), s. 280-285. ISSN 0862-5468 Institutional support: RVO:67985831 Keywords : antimony oxides * corrosion * glass melt * Molybdenum electrode * sulfate Subject RIV: DD - Geochemistry Impact factor: 0.418, year: 2012 http://www.ceramics-silikaty.cz/2012/pdf/2012_03_280.pdf

  10. On the segregation behavior of tin and antimony at grain boundaries of polycrystalline bcc iron

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Šandera, P.; Horníková, J.; Pokluda, J.; Godec, M.

    2016-01-01

    Roč. 363, Feb (2016), 140-144. ISSN 0169-4332 R&D Projects: GA ČR GAP108/12/0144 Institutional support: RVO:68378271 Keywords : grain boundary segregation * tin * antimony * Fe based alloy * AES quantification Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014

  11. Synthesis of antimony tris(mercaptoethyl carboxylates) as thermal stabilizer for polyvinyl chloride

    Institute of Scientific and Technical Information of China (English)

    舒万艮; 刘又年; 陈启元

    2002-01-01

    A novel type of thermal stabilizers-antimony tris(mercaptoethyl carboxylates) (Sb(SCH2CH2OOCR) 3), was synthesized from carboxylic acid, antimony trioxide and 2-mercaptoethanol in two steps. The experimental results show that the molar ratio of carboxylic acid to antimony tris(2-hydroxyethyl mercaptide) is 1.2, when adding 0.6% tetra-n-butyl titanate as catalyst and xylene as isotropic solvent, heating and refluxing for about 2~4h. The thermal stability was measured by heat-aging oven test. The thermal stability time is about 8~40min(at 200℃) when adding 2% tetra-n-butyl titanate in polyvinyl chloride(PVC). Among these stabilizers, antimony tris(mercaptoethyl stearate) has best thermal stability. Its thermal stability is better than that of Ca-Zn complex and basic lead stabilizers, and equal to that of organotin. In addition, the stabilization mechanism of this kind of stabilizers for PVC was discussed briefly.

  12. Photoelectron spectroscopy of boron aluminum hydride cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H., E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Xiang [Center for Space Science and Technology, University of Maryland–Baltimore County, Baltimore, Maryland 21250 (United States); Kiran, Boggavarapu, E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K. [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup −}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  13. Energy management of fuel cell electric vehicle with hydrid tanks

    OpenAIRE

    Ravey, Alexandre; FAIVRE, Sébastien; HIGEL, Charles; HAREL, Fabien; Djerdir, Abdesslem

    2014-01-01

    This paper proposes a novel control strategy for fuel cell electric vehicle including hydrid tanks using fuzzy logic controller. The aim of the study is to manage both thermal and electric energy with the same controller in order to use the fuel cell system as a range extender by preventing the batteries state of charge to drop too quickly. The presented controller use both batteries state of charge and thermal status of hydrid tank to control the fuel cell power. This work is a part of the M...

  14. Hydriding and dehydriding properties of CaSi

    International Nuclear Information System (INIS)

    The hydriding and dehydriding properties of CaSi were investigated both theoretically and experimentally. First-principles calculations suggested that CaSiH n is thermodynamically stable. Experimentally, the p -c isotherms clearly demonstrated plateau pressures in a temperature range of 473-573 K and the maximum hydrogen content was 1.9 weight % (wt.%) under a hydrogen pressure of 9 MPa at 473 K. The structure of CaSiH n is different from those of ZrNi hydrides, although CaSi has the CrB-type structure as well as ZrNi

  15. Synthesis and characterization of a novel mesoporous silica functionalized with [1,5 bis(di-2-pyridyl)methylene thiocarbohydrazide] and its application as enrichment sorbent for determination of antimony by FI-HG-ETAAS.

    Science.gov (United States)

    López Guerrero, M M; Siles Cordero, M T; Vereda Alonso, E; García de Torres, A; Cano Pavón, J M

    2014-11-01

    A simple, sensitive, low-cost and rapid flow injection (FI) on-line sorption preconcentration/hydride generation system has been synchronously coupled to an electrothermal atomic absorption spectrometer (ETAAS) for the determination of trace amounts of Sb in aqueous environmental samples (river and sea water samples). The system is based on retention of the analyte onto a micro-column filled with a novel mesoporous silica functionalised with [1,5 bis(di-2-pyridyl) methylene] thiocarbohydrazide placed in the injection valve of the FI manifold. The adsorption capacity of the resin for Sb was found to be 160.8 µmol g(-1). Chemicals and flow variables affecting the continuous preconcentration of antimony, the direct generation of antimony hydride and the final determination of this element by ETAAS were evaluated. The optimized operating conditions selected were: sample pH 5.0, sample flow rate 2.5 ml min(-1), eluent flow rate 5.4 ml min(-1), eluent 2.0% thiourea in 4.0% nitric acid. Under the optimum conditions, the calibration graph obtained was linear over the range 0.025-2.5 μg L(-1). At a sample frequency of 20 h(-1) and 120 s preconcentration time, the enrichment factor was 22. The detection limit of the method (3ơ) was 1 ng L(-1) for a 5.0 mL sample volume and the precision was 0.9% (RSD) for 11 replicate determinations at 1.0 μg L(-1) Sb. The preconcentration factor and detection limit can be improved by increasing the preconcentration time, which can be increased at least up to 5 min. The accuracy of the proposed method was demonstrated by analyzing two certified reference materials and by determining the analyte content in spiked environmental water samples. The results obtained using this method were in good agreement with the certified values of the standard reference materials and the recoveries for the spiked river and sea water samples were 91.3-109.9%. PMID:25127557

  16. Exploring "aerogen-hydride" interactions between ZOF2 (Z = Kr, Xe) and metal hydrides: An ab initio study

    Science.gov (United States)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba

    2016-06-01

    In this work, a new σ-hole interaction formed between ZOF2 (Z = Kr and Xe) as the Lewis acid and a series of metal-hydrides HMX (M = Be, Mg, Zn and X = H, F, CN, CH3) is reported. The nature of this interaction, called "aerogen-hydride" interaction, is unveiled by molecular electrostatic potential, non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses. Our results indicate that the aerogen-hydride interactions are quite strong and can be comparable in strength to other σ-hole bonds. An important charge-transfer interaction is also associated with the formation of OF2Z⋯HMX complexes.

  17. Observations on Hydride Structures at the Tip of Arrested Cracks Grown under Conditions of Delayed Hydride Cracking

    International Nuclear Information System (INIS)

    One sample of Zr2.5%Nb and one sample of cold worked and stress relieved Zircaloy-4 which have been tested for hydrogen induced crack growth have been examined in the crack tip region with the aim of determining the mechanism behind the growth of cracks. The proposed mechanisms are brittle failure of a crack tip hydride and hydrogen enhanced localized shear. The examinations were done by TEM and SEM. However attempts to produce a TEM specimen with a thinned region at the tip of the crack were unsuccessful in both samples. One feature observed in the Zr2.5%Nb material may however be an indication of intense shear deformation at the tip of the crack. On the other hand all observations on the Zircaloy-4 sample indicate precipitation of hydrides ahead of the crack tip and the presence of hydrides on the crack flanks

  18. Antimonial drugs entrapped into phosphatidylserine liposomes: physicochemical evaluation and antileishmanial activity

    Directory of Open Access Journals (Sweden)

    Samanta Etel Treiger Borborema

    2016-04-01

    Full Text Available Abstract: INTRODUCTION: Leishmaniasis is a disease caused by the protozoan Leishmania that resides mainly in mononuclear phagocytic system tissues. Pentavalent antimonials are the main treatment option, although these drugs have toxic side effects and high resistance rates. A potentially alternative and more effective therapeutic strategy is to use liposomes as carriers of the antileishmanial agents. The aims of this study were to develop antimonial drugs entrapped into phosphatidylserine liposomes and to analyze their biological and physicochemical characteristics. METHODS: Liposomes containing meglumine antimoniate (MA or pentavalent antimony salt (Sb were obtained through filter extrusion (FEL and characterized by transmission electron microscopy. Promastigotes of Leishmania infantum were incubated with the drugs and the viability was determined with a tetrazolium dye (MTT assay. The effects of these drugs against intracellular amastigotes were also evaluated by optical microscopy, and mammalian cytotoxicity was determined by an MTT assay. RESULTS: Liposomes had an average diameter of 162nm. MA-FEL showed inhibitory activity against intracellular L. infantum amastigotes, with a 50% inhibitory concentration (IC50 of 0.9μg/mL, whereas that of MA was 60μg/mL. Sb-FEL showed an IC50 value of 0.2μg/mL, whereas that of free Sb was 9μg/mL. MA-FEL and Sb-FEL had strong in vitro activity that was 63-fold and 39-fold more effective than their respective free drugs. MA-FEL tested at a ten-times higher concentration than Sb-FEL did not show cytotoxicity to mammalian cells, resulting in a higher selectivity index. CONCLUSIONS: Antimonial drug-containing liposomes are more effective against Leishmania-infected macrophages than the non-liposomal drugs.

  19. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  20. Studies of boron hydrides: new heteroboranes

    International Nuclear Information System (INIS)

    I. The chemistry of the bipentaborane 2,2'-(B5H8)2 is investigated to some extent. Pyrolysis of 2,2'-(B5H8)2 resulted in the formation of non-volatile solid boron hydrides and hydrogen. Treatment of 2,2'-(B5H8)2 with bromine in the presence of AlBr3 resulted in the isolation of 1,1'Br2-2,2'-(B5H7)2. Reaction of 2,2'-(B5H8)2 with deprotonating agents resulted in the formation of the corresponding anions. Reaction of 2,2'-(B5H8)2 with diborane followed by acidification afforded n-B9H15 and B10H14 in moderate yield. II. Reaction of K+B9H12S- with potassium polyselenide resulted in the isolation of stable white crystals of B9H9SSe. Treatment of B9H9SSe with one equivalent of base in methanol gave the unstable heteroborane B8H9(OCH3)SSE and treatment with two equivalents of base afforded yellow crystals of B7H9SSe. Reaction of K+B9H12S- with arsenic trioxide in aqueous basic solution gave the electron-rich heteroborane, B8H8As2S in moderate yield. This resulted in the isolation and identification of Et3N.BH3 and the new metalloborane B7H7As2SCo(C5H5). Treatment of B10H11Se- with As2O3 resulted in the isolation of the stable nido-heteroborane B8H8As2Se in low yield. Reaction of B7C2H13 with potassium polyselenide gave the arachno selenacarborane B7H2C11Se in low yield. The structure of the new heteroborane is proposed on the basis of 11B and 1H nmr spectra. Reaction of B7C2H13 with AsCl3 resulted in the isolation of white stable crystals of B7C2H9As2 in 40 percent yield

  1. Uranium Hydride Nucleation Kinetics: Effects of Oxide Thickness and Vacuum Outgassing

    International Nuclear Information System (INIS)

    Many factors such as impurities in the oxide and metal, microstructure, gas impurities, and oxide thickness may influence the rate and location of the nucleation of hydride on uranium. This work has concentrated on isolating one of these variables, the oxide thickness, and measuring the effect of the oxide thickness on uranium hydride nucleation. Uranium samples, all from the same lot, were prepared with different oxide thicknesses. The oxide thickness was measured using Rutherford Backscattering Spectroscopy. Oxidized uranium samples were then exposed to ultra-high purity hydrogen gas under constant volume conditions. Decreases in pressure indicated hydrogen uptake by the sample. The time for hydride nucleation--as well as the maximum hydriding rate--was then calculated from the measured decreases in pressure. The time to nucleate a hydride was found to increase whereas the maximum hydriding rate was found to decrease with increasing oxide thickness. The density of hydride pits also decreased with increasing oxide thickness. The observed results support the argument that the nucleation of hydride is controlled somewhat by diffusion of hydrogen through the oxide layer. Vacuum outgassing of samples, thereby removing the oxide impurities and keeping the oxide thickness constant, dramatically decreased the nucleation time and increased the maximum hydriding rate. Again, this is consistent with hydrogen diffusion through the oxide controlling the nucleation of hydride. Impurities in the oxide layer can decrease the diffusivity of hydrogen and therefore delay the nucleation of uranium hydride

  2. Hydride generation in-atomizer collection atomic absorption spectrometry for the determination of antimony in acetic acid leachates from pewter cups

    Czech Academy of Sciences Publication Activity Database

    Dessuy, M. B.; Kratzer, Jan; Vale, M. G. R.; Welz, B.; Dědina, Jiří

    2011-01-01

    Roč. 87, - (2011), s. 255-261. ISSN 0039-9140 R&D Projects: GA ČR GA203/09/1783 Institutional research plan: CEZ:AV0Z40310501 Keywords : in-atomizer trapping * in-atomizer trapping * tin interference Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.794, year: 2011

  3. Internal friction study of hydrides in zirconium at low hydrogen contents

    International Nuclear Information System (INIS)

    Full text: Internal friction and shear modulus measurements were carried out on crystal bar zirconium in the as received and hydride conditions using an inverted forced pendulum. Hydriding was achieved in two ways: inside and out of the pendulum. The final hydrogen content determined by fusion analysis in the 'in situ' hydride sample was of 36 ppm. Another sample was hydride by the cathodic charge method with 25 ppm. The thermal solid solubility (TSS) phase boundary presents hysteresis between the precipitation (TSSP) and the dissolution (TSSD) temperatures for the zirconium hydrides. During the first thermal cycling the anelastic effects could be attributed to the δ, ε and metastable γ zirconium hydrides. After 'in situ' annealing at 490 K, these peaks completely disappear in the electrolytically charged sample, while in the 'in situ' hydride, the peaks remain with decreasing intensity. This effect can be understood in terms of the different surface conditions of the samples. (author)

  4. Comparison of irradiation hardening and microstructure evolution in ion-irradiated delta and epsilon hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Oono, Naoko, E-mail: n-oono@eng.hokudai.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Higuchi, Toru; Sakamoto, Kan; Nakatsuka, Masafumi [Nippon Nuclear Fuel Development Co., Ltd., 2163 Naritacho Oarai, Higashi-Ibaraki, Ibaraki 311-1313 (Japan); Hasegawa, Akiko; Kondo, Sosuke; Iwata, Noriyuki Y.; Matsui, Hideki; Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2013-11-15

    A δ-Zr-hydride was irradiated with 6.4 MeV Fe{sup 3+} ions to clarify the relationship between hardening and microstructural changes of bulk Zr-hydrides under neutron irradiation. Irradiation hardening was measured by nanoindentation tests. Transmission electron microscope cross-sectional observations showed that the deformation mechanism of the δ-Zr-hydride was both slip and twinning. Dislocation loops were observed in the irradiated hydride matrix. These irradiation-induced defects make slip deformation difficult and consequently promote the twin deformation of δ-Zr-hydride. This work is a continuation of the previous our work (J. Nucl. Mater. 419 (2011) 366–370) focused upon ε-Zr-hydride and we discuss a comparison between the two Zr-hydrides.

  5. Cooling Performance Improvement of the Heat Driven Type Metal Hydride Refrigerator-Heat Transfer Enhancement Influence of Metal Hydride Sheet Loading Into a Metal Hydride Particle Bed

    OpenAIRE

    Bae, Sangchul; Katsuta, Masafumi; Homma, Ikuto; Morita, Eiji

    2012-01-01

    In the refrigeration and air conditioning fields, the demands of energy conservation and renewable energy have been increased recently. In this study, we aim at the development of the heat driven type metal hydride (abbr., MH) that can be driven by the low temperature exhaust or solar heat under 100ᵒC. In order to use this system commercially, heat transfer enhancement of MH particle bed, activation characteric improvement and production cost reduction of MH must be achieved. In this study, w...

  6. Electrochromism of Mg-Ni hydride switchable mirrors

    Science.gov (United States)

    Isidorsson, Jan; Giebels, I. A. M. E.; Di Vece, M.; Griessen, Ronald

    2001-11-01

    Switchable mirrors have so far been made of rare-earth and rare-earth-magnesium based metal-hydrides. In this investigation we study Mg-Ni-hydrides, which have been shown by Richardson et al. to exhibit switchable properties similar to those of the rare-earth hydrides. Cyclic voltammetry on MgzNiHx samples with 0.8 less than z less than 3.7 shows that addition of one Mg atom per Mg2Ni gives the best ab/desorption kinetics for hydrogen. X- ray diffraction reveals a structural change as hydrogen is absorbed. The metal-insulator transition is confirmed with simultaneous resistivity measurements. A pressure- composition isotherm of Mg2NiHx is also determined electrochemically. Optical spectrometry during gas loading gives an optical band gap of 1.6 eV for Mg2NiH4. This gap increases with increasing Mg content in a way similar to that of the Mg-doped rare-earth hydrides.

  7. Structural deformation of metallic uranium surrounding hydride growth sites

    International Nuclear Information System (INIS)

    Highlights: • UH3 formation on uranium surfaces by a controlled uptake of hydrogen at 240 °C. • Large hydride growths (35–125 μm in diameter) form at the surface. • Confined hydride expansion during growth generates stress in the subsurface. • EBSD scans found micro-cracking and twins as forms of stress relief in the metal. - Abstract: Electron backscatter diffraction (EBSD) was utilised to probe the microstructure of uranium metal in the vicinity of surface corrosion pits, resulting from hydrogen exposure (5 × 104 Pa, at 240 °C). Microstructural analysis of the surface revealed a subtle increase of grain orientation variation for grains at the border of the hydride growths. Cross sectional analysis, at pit sites, revealed significant microstructure deformation in the form of crystal twinning and micro-cracking beneath the surface. These observations provide qualitative evidence that local stress intensities generated as a consequence of hydride growth and confinement, were sufficient to cause deformation within the parent metal

  8. Design and integration of a hydrogen storage on metallic hydrides

    International Nuclear Information System (INIS)

    This work presents a hydrogen storage system using metal hydrides for a Combined Heat and Power (CHP) system. Hydride storage technology has been chosen due to project specifications: high volumetric capacity, low pressures (≤ 3.5 bar) and low temperatures (≤ 75 C: fuel cell temperature). During absorption, heat from hydride generation is dissipated by fluid circulation. An integrated plate-fin type heat exchanger has been designed to obtain good compactness and to reach high absorption/desorption rates. At first, the storage system has been tested in accordance with project specifications (absorption 3.5 bar, desorption 1.5 bar). Then, the hydrogen charge/discharge times have been decreased to reach system limits. System design has been used to simulate thermal and mass comportment of the storage tank. The model is based on the software Fluent. We take in consideration heat and mass transfers in the porous media during absorption/desorption. The hydride thermal and mass behaviour has been integrated in the software. The heat and mass transfers experimentally obtained have been compared to results calculated by the model. The influence of experimental and numerical parameters on the model behaviour has also been explored. (author)

  9. Nanocrystalline Metal Hydrides Obtained by Severe Plastic Deformations

    Directory of Open Access Journals (Sweden)

    Jacques Huot

    2012-01-01

    Full Text Available It has recently been shown that Severe Plastic Deformation (SPD techniques could be used to obtain nanostructured metal hydrides with enhanced hydrogen sorption properties. In this paper we review the different SPD techniques used on metal hydrides and present some specific cases of the effect of cold rolling on the hydrogen storage properties and crystal structure of various types of metal hydrides such as magnesium-based alloys and body centered cubic (BCC alloys. Results show that generally cold rolling is as effective as ball milling to enhance hydrogen sorption kinetics. However, for some alloys such as TiV0.9Mn1.1 alloy ball milling and cold rolling have detrimental effect on hydrogen capacity. The exact mechanism responsible for the change in hydrogenation properties may not be the same for ball milling and cold rolling. Nevertheless, particle size reduction and texture seems to play a leading role in the hydrogen sorption enhancement of cold rolled metal hydrides.

  10. Study on the effect of hydrogen purification with metal hydride

    International Nuclear Information System (INIS)

    The effects of hydrogen purification with a AB5-type metal hydride were studied for the development of hydrogen purification system. The system set up two packed-beds, heat exchangers, data acquisition equipment and automatic control unit was used in the work and the compositions of two different gas-mixtures have CO, CH4, CO2, O2 and N2. We investigated about its tolerance against impurities, pressure-composition-isotherm and life cycle test, XRD and particle size analysis with a used metal hydride. Gas chromatograph was used for the analysis of feed and product gas. The used metal hydride is a La, Nd-rich Mm-based AB5 type which has the hydrogen storage capacity of 1.4 wt%. In life cycle test, there were no change of plateau pressure and hysteresis after 600 cycles but hydrogen storage capacity was decreased by about 6.8% and 10.7% after 220, 600 cycles, respectively. The used sample is high strong against CH4 and CO2 but very weak in CO atmosphere. The hydrogen purification performance with gas mixtures was decreased in the order of CH4 ≥ CO ≥ O2 ≥ N2 ≥ CO2. The reason CO investigated high purification effect in gas mixture is due to a strong chemisorption in metal hydride matrix that CO was not released out of the alloy. (authors)

  11. Hydrogen adsorption on palladium and palladium hydride at 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Skulason, Egill; Nielsen, Gunver;

    2010-01-01

    The dissociative sticking probability for H-2 on Pd films supported on sputtered Highly Ordered Pyrolytic Graphite (HOPG) has been derived from measurements of the rate of the H-D exchange reaction at 1 bar. The sticking probability for H-2, S. is higher on Pd hydride than on Pd (a factor of 1.4 ...

  12. Process of forming a sol-gel/metal hydride composite

    Science.gov (United States)

    Congdon, James W.

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  13. Thin-film metal hydrides for solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Mongstad, Trygve Tveiteraas

    2012-11-01

    Thin-film metal hydrides may become important solar energy materials in the future. This thesis demonstrates interesting material properties of metal hydride films, relevant for applications as semiconducting materials for photovoltaic (PV) solar cells and for regulation of light using smart window technology.The work presented here has comprised an experimental study, focusing on three different materials: Magnesium hydride (MgH2), magnesium nickel hydride (Mg2NiH4) and yttrium hydride (YHx). Reactive sputter deposition was used to prepare the metal hydride film samples.This synthesis method is relatively uncommon for metal hydrides. Here,the first demonstration of reactive sputtering synthesis for YHx and Mg2NiH4 is given. Different challenges in forming singlephase, pure metal hydrides were identified: MgH2 could not be deposited without 3-16% metallic Mg present in the films, and YHx was found to react strong-ly to oxygen (O) during the deposition process. On the other hand, Mg2NiH4 films formed easily and apparently without major metallic clusters and with low O content.Mg2NiH4 is a semiconductor with an optical band gap that is suitable for PV solar cells. This study has showed that films with promising electrical and optical properties can be synthesized using reactive cosputtering of Mg and Ni. Using optical methods, the band gap for the as deposited samples was estimated to 1.54-1.76 eV, depending on the Mg-Ni composition. The asdeposited films were amorphous or nano-crystalline, but could be crystallized into the high-temperature fcc structure of Mg2NiH4 using heat treatment at 523 K. The band gap of the crystalline films was 2.1-2.2 eV, depending on the composition.A pronounced photochromic reaction to visible and UV light was observed for transparent yttrium hydride (T-YHx) samples. The optical transmission was reduced when the samples were illuminated, and the original optical transmission was restored when the samples were kept under dark conditions

  14. Synthesis of hydrides by interaction of intermetallic compounds with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Boris P., E-mail: tarasov@icp.ac.ru [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Fokin, Valentin N.; Fokina, Evelina E. [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Yartys, Volodymyr A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, Kjeller NO 2027 (Norway); Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim NO 7491 (Norway)

    2015-10-05

    Highlights: • Interaction of the intermetallics A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} with NH{sub 3} was studied. • The mechanism of interaction of the alloys with ammonia is temperature-dependent. • Hydrides, hydridonitrides, disproportionation products or metal–N–H compounds are formed. • NH{sub 4}Cl was used as an activator of the reaction between ammonia and intermetallics. • Interaction with ammonia results in the synthesis of the nanopowders. - Abstract: Interaction of intermetallic compounds with ammonia was studied as a processing route to synthesize hydrides and hydridonitrides of intermetallic compounds having various stoichiometries and types of crystal structures, including A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} (A = Mg, Ti, Zr, Sc, Nd, Sm; B = transition metals, including Fe, Co, Ni, Ti and nontransition elements, Al and B). In presence of NH{sub 4}Cl used as an activator of the reaction between ammonia and intermetallic alloys, their interaction proceeds at rather mild P–T conditions, at temperatures 100–200 °C and at pressures of 0.6–0.8 MPa. The mechanism of interaction of the alloys with ammonia appears to be temperature-dependent and, following a rise of the interaction temperature, it leads to the formation of interstitial hydrides; interstitial hydridonitrides; disproportionation products (binary hydride; new intermetallic hydrides and binary nitrides) or new metal–nitrogen–hydrogen compounds like magnesium amide Mg(NH{sub 2}){sub 2}. The interaction results in the synthesis of the nanopowders where hydrogen and nitrogen atoms become incorporated into the crystal lattices of the intermetallic alloys. The nitrogenated materials have the smallest particle size, down to 40 nm, and a specific surface area close to 20 m{sup 2}/g.

  15. Extraction-radiochemical study of the ion-association complex of antimony (V) with tetrazolium violet and its thermal behavior

    International Nuclear Information System (INIS)

    The optimum conditions for extraction of ion-associated complexes (IAS) formed from the tetrazolium salt - tetrazolium violet and Sb(V) in hydrochloric acid medium have been studied. An isotope of antimony (125Sb) was used for determination of the recovery factor (R%) and distribution ratio (DSb). The thermal behavior of the antimony complex with tetrazole violet was studied using differential thermal and thermogravimetric analysis. (author) 12 refs.; 3 figs

  16. Electrodes modified with bismuth, antimony and tin precursor compounds for electrochemical stripping analysis of trace metals (a short review)

    OpenAIRE

    Lezi, Nikolitsa; Economou, Anastasios; Barek, Jiří

    2014-01-01

    Over the last decade, intensive research is being carried out towards the development of “green” electrochemical sensors. Bismuth, antimony and tin electrodes have been proposed as potential substitutes of mercury electrodes in electrochemical stripping analysis of trace metals. The main advantage of these metals as electrode materials is their lower toxicity compared to mercury. Among the different configuration of bismuth, antimony and tin electrodes, one of the most attractive inv...

  17. Electrodeposition of SnSbCu Alloy on Copper from an Electrolyte with Varied Content of Antimony Chloride

    Science.gov (United States)

    Valeeva, A. Kh.; Valeev, I. Sh.

    2015-10-01

    The microstructure and chemical composition of electrodeposited alloys of the SnSbCu system with varied concentration of antimony chloride in the electrolyte have been investigated. It is shown that during electrodeposition mechanical-mixture alloys are not formed, but rather intermetallic compounds. It is found that increasing the concentration of antimony chloride in the electrolyte leads to a decrease in the tin content and cracking of the coating.

  18. Investigation into properties of the mixture of perfluoro-2-methyl-bicyclo(4,4,0) decane with antimony fluoride

    International Nuclear Information System (INIS)

    State diagram was constructed for a binary system formed by antimony fluoride and perfluoro-2-methyl-bicyclo-(4,4,0)decane in the temperature range of -58 deg to +56 deg C. Temperature dependence of solubility and the differential molar heat of solubility of solid Sb F5 were determined. Above the melting point of antimony fluoride these components were found to form a system of two sparingly miscible liquids with upper critical dissolution temperature

  19. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.

    Science.gov (United States)

    Li, Yongchao; Hu, Xiaoxian; Ren, Bozhi

    2016-01-01

    The present article summarizes antimony mine distribution, antimony mine drainage generation and environmental impacts, and critically analyses the remediation approach with special emphasis on iron oxidizing bacteria and sulfate reducing bacteria. Most recent research focuses on readily available low-cost adsorbents, such as minerals, wastes, and biosorbents. It is found that iron oxides prepared by chemical methods present superior adsorption ability for Sb(III) and Sb(V). However, this process is more costly and iron oxide activity can be inhibited by plenty of sulfate in antimony mine drainage. In the presence of sulfate reducing bacteria, sulfate can be reduced to sulfide and form Sb2S3 precipitates. However, dissolved oxygen and lack of nutrient source in antimony mine drainage inhibit sulfate reducing bacteria activity. Biogenetic iron oxide minerals from iron corrosion by iron-oxidizing bacteria may prove promising for antimony adsorption, while the micro-environment generated from iron corrosion by iron oxidizing bacteria may provide better growth conditions for symbiotic sulfate reducing bacteria. Finally, based on biogenetic iron oxide adsorption and sulfate reducing bacteria followed by precipitation, the paper suggests an alternative treatment for antimony mine drainage that deserves exploration. PMID:27148704

  20. Synthesis and enhanced hydrogen desorption kinetics of magnesium hydride using hydriding chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Ho [Icheon Branch, Korea Institute of Ceramic Engineering and Technology (KICET), Icheon-si, Gyeonggi-do (Korea, Republic of); Kim, Byung-Goan [Korea Energy Materials Co.Ltd., 409, Daegu Technopark, 1-11, Hosan-Dong, Dalse-Gu 704-230 (Korea, Republic of); Kang, Yong-Mook, E-mail: dake@kaist.ac.kr [Department of Chemistry, Dongguk University-Seoul, 100715 Seoul (Korea, Republic of)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We synthesized pure MgH{sub 2} by a hydriding chemical vapor synthesis process in a hydrogen atmosphere. Black-Right-Pointing-Pointer The particle size HCVS-MgH{sub 2} was drastically reduced to the sub-micron or micrometer-scale. Black-Right-Pointing-Pointer HCVS-MgH{sub 2} showed different shapes (needle-like nanofibers and angulated plate) depending on the deposited position. Black-Right-Pointing-Pointer HCVS-MgH{sub 2} desorbed hydrogen up to about 7.2 wt% and 7.1 wt%. - Abstract: This paper describes the hydriding chemical vapor synthesis (HCVS) of the hydrogen storage alloy MgH{sub 2} in a hydrogen atmosphere and the product's hydrogenation properties. Mg powder was used as a starting material to produce submicron MgH{sub 2} and uniformly heated to a temperature of 600 Degree-Sign C for Mg vaporization. The effects of deposited positions in HCVS reactor on the morphology and the composition of the obtained products were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) analyses. It is clearly seen that after the HCVS process, the particle size of synthesized MgH{sub 2} was drastically reduced to the sub-micron or micrometer-scale and these showed different shapes (needle-like nanofibers and angulated plate) depending on the deposited position. The hydrogen desorption temperatures of HCVS-MgH{sub 2} were measured using a differential scanning calorimeter (DSC). It was found that after the HCVS process, the desorption temperature of HCVS-MgH{sub 2} decreased from 430 to 385 Degree-Sign C and, simultaneously, the smallest particle size and the highest specific surface area were obtained. These observations indicate that the minimum hydrogen desorption temperature of HCVS-MgH{sub 2} powder with needle-like form can be obtained, and that this temperature is dependent on the particle size and the specific surface area of the products. The thermogravimetric

  1. Exploring metal hydrides using autoclave and multi-anvil hydrogenations

    Science.gov (United States)

    Puhakainen, Kati

    Metal hydride materials have been intensively studied for hydrogen storage applications. In addition to potential hydrogen economy applications, metal hydrides offer a wide variety of other interesting properties. For example, hydrogen-dominant materials, which are hydrides with the highest hydrogen content for a particular metal/semimetal composition, are predicted to display high-temperature superconductivity. On the other side of the spectrum are hydrides with small amounts of hydrogen (0.1 - 1 at.%) that are investigated as viable magnetic, thermoelectric or semiconducting materials. Research of metal hydride materials is generally important to gain fundamental understanding of metal-hydrogen interactions in materials. Hydrogenation of Zintl phases, which are defined as compounds between an active metal (alkali, alkaline earth, rare earth) and a p-block metal/semimetal, were attempted by a hot sintering method utilizing an autoclave loaded with gaseous hydrogen (Hydride formation competes with oxidative decomposition of a Zintl phase. The oxidative decomposition, which leads to a mixture of binary active metal hydride and p-block element, was observed for investigated aluminum (Al) and gallium (Ga) containing Zintl phases. However, a new phase Li2Al was discovered when Zintl phase precursors were synthesized. Using the single crystal x-ray diffraction (SCXRD), the Li2Al was found to crystallize in an orthorhombic unit cell (Cmcm) with the lattice parameters a = 4.6404(8) Å, b = 9.719(2) Å, and c = 4.4764(8) Å. Increased demand for materials with improved properties necessitates the exploration of alternative synthesis methods. Conventional metal hydride synthesis methods, like ball-milling and autoclave technique, are not responding to the demands of finding new materials. A viable alternative synthesis method is the application of high pressure for the preparation of hydrogen-dominant materials. Extreme pressures in the gigapascal ranges can open access to

  2. Hydride redistribution and crack growth in Zr-2.5 wt.% Nb stressed in torsion

    International Nuclear Information System (INIS)

    The effect of applied shear stresses on zirconium hydride solubility in a zirconium alloy was investigated. Recent studies have shown that zirconium hydride precipiates probably nucleate and grow by means of a shear transformation mechanism. It is postulated that these transformation shear strains can interact with applied shear stress gradients in the same way that the dilatational strains can interact with a dilatational stress gradient, providing a driving force for hydride accumulation, hydride embrittlement and crack propagation. To test this proposition, crack growth experiments were carried out under torsional loading conditions on hydrided, round notched bar specimens of cold-worked Zr-2.5 wt.% Nb cut from Pickering-type pressure tube material. Postmortem metallographic examination of the hydride distribution in these samples showed that, in many cases, the hydrides appeared to have reoriented in response to the applied shear stress and that hydride accumulation at the notch tip had occurred. However, except in a few cases, the rate of accumulation of reoriented hydrides at the notch tip due to applied shear stresses was much less than the rate due to corresponding applied uniaxial stresss. Moreover, the process in shear appears to be more sensitive to the inital hydride size. Attempts to elucidate the fracture mechanism by fractographic examination using scanning and replica transmission electron microscopy proved to be inconclusive because of smearing of the fracture face. (auth)

  3. Metal Hydride Wall Stress Measurements on a Four-Inch Short (FISH) Bed

    International Nuclear Information System (INIS)

    A 38 cm (15 inch) long metal hydride bed fabricated using 11.4 cm (4.5 inch) O.D., standard schedule 316/316L stainless steel pipe was fitted with 22 strain gauges to measure tangential and longitudinal stress resulting from hydride absorption and desorption cycling. Tests were conducted using two different LaNi4.25Al0.75 metal hydride fill-levels in the bed.Tests conducted with hydride filled to two-thirds (1.75L) of the 2.63L total bed volume resulted in a maximum stress less than one-third of the pipe's ASME Code allowable, for hydride absorption up to a hydrogen-to-metal ratio (H/M) of 0.86. After 15 absorption/desorption tests and hydride passivation, examination of the bed interior revealed a significant decrease in particle size and increase in hydride height. The second fill level had 0.4L of fresh hydride added to the bed's cycled hydride material, and 56 absorption/desorption tests, up to a gas loading of 0.83 H/M performed. Second fill tests resulted in maximum stresses less than 40% of the ASME Code allowable. Post-test bed radiographs showed a further increase in the apparent hydride fill height, and internal component deformation

  4. In situ study of hydride precipitation kinetics and re-orientation in Zircaloy using synchrotron radiation

    International Nuclear Information System (INIS)

    The orientation and distribution of hydrides formed in zirconium alloy nuclear fuel cladding can strongly influence material behavior and in particular resistance to crack growth. The hydride microstructure and hydride platelet orientation (whether in-plane or radial relative to the cladding tubes) are crucial to determining cladding failure limits during mechanical testing. Hydride formation is normally studied by post-facto metallography, performed at room temperature and in the absence of applied stress. This study uses synchrotron radiation to observe in situ the kinetics of hydride dissolution and precipitation in previously hydrided Zircaloy samples. The experiments allow the direct observation of hydride dissolution, re-precipitation, and re-orientation, during heating and cooling under load. The solubility limits and the hydride-matrix orientation relationship determined from in situ experiments were in good agreement with previous post-facto examinations of bulk materials. The present measurements performed under stress and at temperature showed a characteristic diffraction signature of reoriented hydrides. The results suggest a threshold stress for hydride re-orientation between 75 and 80 MPa for the microstructure/texture studied. These results are discussed in light of existing knowledge.

  5. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  6. Effect of alloy elements and hydride morphology on hydrogen embrittlement of zirconium alloy

    International Nuclear Information System (INIS)

    The effects of Nb and Sn on hydride embrittlement of Zr alloys were investigated. For this, experimental Zr alloys were prepared in a sheet shape and charged with hydrogen. The microstructure and hydride morphology were analyzed and the tensile properties were measured to understand the role of Nb and Sn on the hydride embrittlement of Zr alloy. With addition of Nb and Sn, recrystallization was retarded during the final annealing heat treatment. The retardation was mainly caused from β-Nb precipitates and Sn solute atoms, which was confirmed from texture analyses. Of the two, Sn was found to more effective in retarding recrystallization. When hydrogen was charged, hydride clusters with stacked hydride platelets were observed in unalloyed Zr. However, with addition of Nb and Sn, such hydride clusters were replaced with hydrides platelets which were more or less aligned with the rolling direction and linked up on the rolling plane, and hydride length and the spacing between hydrides were increased. This change in hydride morphology was caused by the retardation of recrystallization. Again, Sn was found to be more effective in in modifying the hydride morphology and aligning hydrides on the rolling plane. Both Nb and Sn contributed to the strengthening of Zr alloys, but Sn is more effective in strengthening than Nb. However, tensile strengths of the experimental alloys were nearly independent of the absorbed hydrogen contents. While ductility was reduced with increasing hydrogen contents, the degree of ductility loss was dependent on Nb and Sn contents which increased hydrogen solubility and retarded recrystallization. For alloys with 1%-Nb and/or 1%-Sn, increase in hydrogen solubility was the main contributor to increase in resistance to hydride embrittlement. On the other hand, for an alloy with 2%-Nb resulted in large amount of β-Nb precipitates, which in turn significantly retarded recrystallization. Therefore, the added contribution of retardation of

  7. Understanding the radiolabelling mechanism of 99mTc-antimony sulphide colloid

    International Nuclear Information System (INIS)

    The chemistry of antimony trisulphide colloid (ATC) was examined to elucidate the radiolabelling mechanism with 99mTcO4-. Ion exchange chromatography and atomic absorption spectrophotometry techniques determined ATC to be resistant to hydrolysis in 0.1 M hydrochloric acid (HCl) at 25 deg. C or 100 deg. C (>97% recovery, Sb3+ absent). Hydrogen sulphide gas detected did not participate in the mechanism, where antimony trisulphide and 99mTcO4- in HCl/100 deg. C yielded 96% 99mTc-product from a K2S-free formulation (versus 98% when K2S was present). 99mTcO4- was reduced >90% by DMSA or dithiothreitol under the same conditions, identifying involvement of thiol groups. Infrared analysis of Re-ATC showed S-O bonds, indicating excess thiol groups at the colloid surface were oxidised at the expense of 99mTcO4- reduction

  8. A facile and fast route to prepare antimony (Sb) nanostructures without additives

    KAUST Repository

    Shah, M.A.

    2011-12-01

    Herein, we report a safe, low cost and reproducible approach for the synthesis of antimony (Sb) nanostructures with most of them having prism like morphology and having well defined faces in the range of ∼70210 nm. The organics free approach is based on a reaction of antimony powder and pure water at ∼210 °C without using any harmful additives and amines. The XRD pattern confirmed the composition and crystallinity of the grown nanostructures. The reported method besides being organics free is economical, fast and free of pollution, which will make it suitable for large scale production. Furthermore, it is well expected that such a technique could be extended to prepare many other important metal and metal oxide nanostructures. The prospects of the process are bright and promising. © 2012 Sharif University of Technology. Production and hosting by Elsevier B.V. All rights reserved.

  9. Determination by neutron activation analysis of loss of arsenic, antimony, bromine and mercury during lyophilization

    International Nuclear Information System (INIS)

    Neutron activation analysis has been used to monitor the loss of arsenic, as dimethylarsinic acid, (CH3)2AsOOH, or as sodium arsenate (Na2HAsO4.7H2O), antimony (as potassium antimony, tartrate, KSbC4O7.1/2H2O) and bromine (as bromide ion) during lyophilization of acidified and neutral aqueous synthetic and environmental samples. Losses of Sb and As ranged from zero to 60%, while losses of bromine were constant (at 91%) in acidic solutions. The variable losses of As and Sb were due solely to the presence of and partial decomposition of the (CH3)2AsOOH. Electrochemical oxidation of Br- to Br2 is responsible for the high losses of bromine. In addition losses of mercury (as methylmercuric chloride) were 1O0% in both acidic and neutral aqueous synthetic samples during lyophilization. (author)

  10. Deciphering lead and cadmium stripping peaks for porous antimony deposited electrodes

    Directory of Open Access Journals (Sweden)

    Taimoor Aqeel Ahmad

    2016-06-01

    Full Text Available Cadmium and lead are generally taken as model heavy metal ions in water to scale the detection limit of various electrode sensors, using electrochemical sensing techniques. These ions interact with the electrochemically deposited antimony electrodes depending on the diffusion limitations. The phenomenon acts differently for the in-situ and ex-situ deposition as well as for porous and non-porous electrodes. A method has been adopted in this study to discourage the stripping and deposition of the working ions (antimony to understand the principle of heavy metal ion detection. X-ray photoelectron spectroscopy (XPS technique was used to establish the interaction between the working and dissolved ions. In addition to the distinct peaks for each analyte, researchers also observed a shoulder peak. A possible reason for the presence of this peak was provided. Different electrochemical tests were performed to ascertain the theory on the basis of the experimental observations.

  11. Antimony/Graphitic Carbon Composite Anode for High-Performance Sodium-Ion Batteries.

    Science.gov (United States)

    Zhao, Xin; Vail, Sean A; Lu, Yuhao; Song, Jie; Pan, Wei; Evans, David R; Lee, Jong-Jan

    2016-06-01

    Although the room-temperature rechargeable sodium-ion battery has emerged as an attractive alternative energy storage solution for large-scale deployment, major challenges toward practical sodium-ion battery technology remain including identification and engineering of anode materials that are both technologically feasible and economical. Herein, an antimony-based anode is developed by incorporating antimony into graphitic carbon matrices using low-cost materials and scalable processes. The composite anode exhibits excellent overall performance in terms of packing density, fast charge/discharge capability and cyclability, which is enabled by the conductive and compact graphitic network. A full cell design featuring this composite anode with a hexacyanometallate cathode achieves superior power output and low polarization, which offers the potential for realizing a high-performance, cost-effective sodium-ion battery. PMID:27172376

  12. Antimony segregation in stressed SiGe heterostructures grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    The effects of the growth temperature, composition, and elastic strains in separate layers on the segregation of antimony are studied experimentally for stressed SiGe structures grown by molecular beam epitaxy. It is established that the growth conditions and parameters of the structures exert an interrelated influence on the segregation of Sb: the degree of the influence of the composition and elastic stresses in the SiGe layers on Sb segregation depends on the growth temperature. It is shown that usage of a method previously proposed by us for the selective doping of silicon structures with consideration for the obtained dependences of Sb segregation on the growth conditions and parameters of the SiGe layers makes it possible to form SiGe structures selectively doped with antimony

  13. Synthesis, spectroscopic characterization and antibacterial activity of antimony(III) bis(dialkyldithiocarbamato)alkyldithiocarbonates.

    Science.gov (United States)

    Chauhan, H P S; Bakshi, Abhilasha; Bhatiya, Sumit

    2011-10-15

    Some mixed sulfur donor ligand complexes of antimony(III) of the general formula [(R(2)NCS(2))](2)SbS(2)COR' where R = CH(3), C(2)H(5) and R' = Me, Et, Pr(n), Pr(i), Bu(n) and Bu(i) have been synthesized by the reaction of antimony(III) bis(dialkyldithiocarbamate) chloride with potassium organodithiocarbonate in an equimolar ratio by stirring at room temperature in benzene/CS(2) mixture. These complexes have been characterized by physicochemical [elemental analysis, melting points and molecular weight determinations] and spectral [UV, IR, Far-IR, NMR ((1)H and (13)C), FAB(+) mass and powder X-ray diffraction] studies. Free ligands and synthesized complexes have also been screened against different bacterial strains and results obtained made it desirable to delineate a comparison between free ligands, standard drug used and synthesized complexes. PMID:21764366

  14. Measurement of aluminium, silicon, manganese, copper and antimony in slag, castings and white metal

    International Nuclear Information System (INIS)

    Chemical analysis of the slag showed 24.90% SiO2, 17.88% Al2O3, 0.75% F2O3, 46.4% CaO and 2.34% MgO. In the four cast metal samples the manganese concentration was 0.75%, 0.48%, 0.47% and 0.42%. The white metal contained 59.04% tin, 7.43% antimony, 22.55% lead and 7.08% copper. The slag, casting and white metal samples came from the Industrial Research Centre for Central Africa (CRIAC), having been provided originally by the Société Somkat of Lubumbashi which operates iron, bronze and aluminium foundries. The aluminium, silicon, manganese, copper and antimony concentrations were easily measured, without the need for chemical separation. (author)

  15. Bi-antimony capped Keggin polyoxometalate modified with Cu-ligand fragment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jiao [College of Chemistry and Material Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024 (China); Han, Zhangang, E-mail: hanzg116@yahoo.com.cn [College of Chemistry and Material Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024 (China); Zhang, Heng; Yu, Haitao [College of Chemistry and Material Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024 (China); Zhai, Xueliang, E-mail: xlzhai253@mail.hebtu.edu.cn [College of Chemistry and Material Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024 (China)

    2012-10-15

    Three polyoxometalates consisting of bi-antimony capped Keggin-type clusters: [Cu(mbpy){sub 2}]{sub 2}[PMo{sub 12}O{sub 40}Sb{sub 2}]{center_dot}4H{sub 2}O (1), [Cu(mbpy){sub 2}][PMo{sub 12}O{sub 40}Sb{sub 2}] (2) and {l_brace}Cu(mbpy)[Cu(mbpy){sub 2}]{sub 2}{r_brace}[VMo{sub 8}V{sub 4}O{sub 40}Sb{sub 2}]{center_dot}2H{sub 2}O (3) (mbpy=4,4 Prime -dimethyl-2,2 Prime - dipyridyl in 1 and 2; 5,5 Prime -dimethyl-2,2 Prime -dipyridyl in 3) have been synthesized and characterized by IR, X-ray powder diffraction, TG analysis and electrochemical property. Single-crystal analysis revealed that all of three compounds are built upon bi-antimony capped Keggin-type polyoxoanions and Cu-mbpy cations. In 1-3, two Sb{sup III} centers located at the two opposite of anionic surface adopt fundamentally tetragonal pyramidal coordination geometry. Both compounds 1 and 2 consist of P-centered Keggin structure, while compound 3 presents a V-centered Keggin anion. The Keggin-type anions present different structural features: isolated cluster in 1 and Cu-ligand-supported cluster in 2 and 3. - Graphical abstract: Three hybrid compounds consisting of bi-antimony capped Keggin-type clusters modified with Cu-ligand cations have been synthesized and characterized. Highlights: Black-Right-Pointing-Pointer Three hybrid compounds consisting of bi-antimony capped Keggin-type clusters have been synthesized. Black-Right-Pointing-Pointer Two Sb{sup III} centers located at the two opposite of anionic surface adopt tetragonal pyramidal coordination geometry. Black-Right-Pointing-Pointer The anions present different structural features: isolated and Cu-ligand-supported cluster.

  16. Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium

    OpenAIRE

    Rajmund Michalski; Sebastian Szopa; Magdalena Jabłońska; Aleksandra Łyko

    2012-01-01

    Due to the fact that metals and metalloids have a strong impact on the environment, the methods of their determination and speciation have received special attention in recent years. Arsenic, antimony, and thallium are important examples of such toxic elements. Their speciation is especially important in the environmental and biomedical fields because of their toxicity, bioavailability, and reactivity. Recently, speciation analytics has been playing a unique role in the studies of biogeochemi...

  17. Metal corrosion studies with the fluorosulphonic acid-antimony pentafluoride superacid system

    International Nuclear Information System (INIS)

    Because of their rapid dissolution of many actinide metals and refractory oxides, superacids such as HSO3F/SbF5 have potential applications in actinide processing. However, material compatibility must first be addressed because of the highly corrosive nature of superacids. This paper describes the qualitative rates of attack of fluorosulphonic acid-antimony pentafluoride superacid on a variety of metal substrates relevant to nuclear processing

  18. Molybdenum-vanadium-antimony mixed oxide catalyst for isobutane partial oxidation synthesized using magneto hydrodynamic forces

    OpenAIRE

    Stuyven, Bernard; Emmerich, Jens; Eloy, Pierre; Van Humbeeck, Jan; Jacobs, Pierre; Kirschhock, Christine; Martens, Johan; Breynaert, Eric

    2014-01-01

    A peculiar effect was observed that the oxidation behavior of antimony oxide prepared in presence of a weak permanent magnetic field is changed. Reactivity of alpha-Sb2O3 (senarmontite) towards oxidation is significantly enhanced after recirculating its suspension in a magneto hydrodynamic (MHD) system. This inspired the MHD synthesis of a molybdenum-vanadiumantimony mixed oxide with superior catalytic activity for selective partial oxidation of isobutane. Traditionally these mixed oxides are...

  19. Temporal and spatial distribution of atmospheric antimony emission inventories from coal combustion in China

    International Nuclear Information System (INIS)

    A multiple-year inventory of atmospheric antimony (Sb) emissions from coal combustion in China for the period of 1980-2007 has been calculated for the first time. Specifically, the emission inventories of Sb from 30 provinces and 4 economic sectors (thermal power, industry, residential use, and others) are evaluated and analyzed in detail. It shows that the total Sb emissions released from coal combustion in China have increased from 133.19 t in 1980 to 546.67 t in 2007, at an annually average growth rate of 5.4%. The antimony emissions are largely emitted by industrial sector and thermal power generation sector, contributing 53.6% and 26.9% of the totals, respectively. At provincial level, the distribution of Sb emissions shows significant variation. Between 2005 and 2007, provinces always rank at the top five largest Sb emissions are: Guizhou, Hunan, Hebei, Shandong, and Anhui. - Highlights: → Atmospheric Sb emission inventory from coal in China during 1980-2007 is developed. → We included 1612 coal samples to determine the provincial mean Sb contents in coal. →Emission inventories of Sb from 30 provinces and 4 economic sectors are evaluated. → Total 546.67t Sb emissions in 2007 are mainly emitted from industrial sector. → There is significant variation for Sb distribution among different provinces. - A multiple-year inventory of atmospheric antimony emissions from coal combustion in China for the period of 1980-2007 has been calculated for the first time.

  20. Antimony in the Contaminated Site of El Triunfo, Baja California Sur, Mexico

    Directory of Open Access Journals (Sweden)

    Marmolejo-Rodríguez A. J.

    2013-04-01

    Full Text Available Antimony has properties similar to arsenic with some of its compounds toxic to humans. Therefore it is necessary to control the wastes accumulated by anthropogenic activities, such as mining, where it is in tailings to be released to the environment. According to the Environment Protection Agency, the maximum value in sediments is 11.2 mg Sb kg–1 and the Earth’s crust average is 0.2 mg Sb kg–1. In this semiarid area, the drainage basin El Carrizal is impacted with wastes of an abandoned gold mine at the Mining District El Triunfo (MD – ET which have tailings with 17,600 mg kg–1 of antimony. In the main dry river (arroyo, the Sb content is between 0.6 and 122 mg kg–1. This element is transported from the source throughout the fluvial basin to discharge into the Pacific Ocean. In the arroyo mouth we collected one sedimentary core and the sediment from dunes (28.6 – 45.7 and 6.43 – 7.74 mg Sb kg–1. This research concluded the antimony is enriched in this semiarid system, with Normalized Enrichment Factors severely enriched mainly in arroyo sediments close to the MD-ET

  1. Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings

    International Nuclear Information System (INIS)

    Spangles produced by batch hot-dip galvanizing process have a rougher surface and a greater surface segregation of alloying element compared with those in continuous hot-dip galvanizing line (CGL), owing to the cooling rate of the former is much smaller than that of the later. Therefore, typical spangles on a batch hot-dipped Zn-0.05Al-0.2Sb alloy coating were investigated. The chemical, morphological characterization and identification of the phases on the spangles were examined by scanning electron microscopy (SEM), backscattered electron imaging (BSE), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The results showed that the coating surface usually exhibited three kinds of spangles: shiny, feathery and dull spangle, of which extensively antimony surface segregation was detected. The nature of precipitate on the coating surface was identified as β-Sb3Zn4, The precipitated β-Sb3Zn4 particles distributed randomly on the shiny spangle surface, both β-Sb3Zn4 particles and dentritic segregation of antimony dispersed in the dendritic secondary arm spacings of the feathery spangle and on the whole dull spangle surface. The dentritic segregation of antimony and precipitation of Sb3Zn4 compound are discussed by a proposed model.

  2. Methylated arsenic and antimony species in suspended matter of the river Ruhr, Germany

    Directory of Open Access Journals (Sweden)

    L. Duester

    2008-04-01

    Full Text Available The methylated antimony and arsenic species content of sediments derived from a sedimentation bowl of the river Ruhr were monitored over a 12 month period. The most prevalent species detected were monomethylarsenic (MMAs and monomethylantimony (MMSb. The methylantimony and methylarsenic species concentration was found to be directly correlated to the winter spate. As the biological activity in the water body is generally low at this time of the year, it may be concluded that the concentration maxima in winter originated from the translocation of soil- and sediment particles to the river by heavy rains and the melting of snow. A second maximum in Spring/early Summer was observed for the methylarsenic species, and specifically the dimethylarsenic species (DMAs; this occurred in parallel to the algal bloom. A change in the methylarsenic speciation pattern was observed between April, May and June, with DMAs replacing MMAs as the dominant methylarsenic species. For methylated antimony species no seasonal variation in the species pattern was detected. Taken together these data strongly indicate a higher degree of transformation of arsenic compared to antimony in the Ruhr river system in spring and can be taken as a record for a biogeochemical different behaviour of these two elements which are often treated as equivalent in environmental studies.

  3. Studies in atomic-fluorescence spectroscopy-V The fluorescence characteristics and determination of antimony.

    Science.gov (United States)

    Dagnall, R M; Thompson, K C; West, T S

    1967-10-01

    Atomic-fluorescence of antimony may be generated in an air-propane flame by nebulizing aqueous solutions of antimony salts whilst irradiating the flame by means of a microwave-excited electrode-less discharge tube operating at 30 W. The strongest fluorescence is exhibited by the (4)S(11 2 ) --> (4)P(1 3 ) 2311 A resonance line and weaker signals are observed at the 2068 and 2176 A resonance lines and at four intercombination lines, at 2598, 2671, 2770 and 2878 A. A process of thermally assisted direct-line fluorescence is postulated to account for the otherwise inexplicable intensity of the 2598 A line emission. Atomic-fluorescence spectroscopy at 2176 A permits the determination of antimony in the range 0.1-120 ppm with a detection limit of 0.05 ppm. With the same equipment and source, the range of measurement for atomic-absorption was 6-120 ppm and the detection limit was 1 ppm. No interferences were observed from 100-fold molar amounts of Cd, Co, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, NH(4), Pb and Zn or from arsenate, chloride, nitrate, phosphate and sulphate. PMID:18960212

  4. Ultrasound- assisted emulsification microextraction for separation of trace amounts of antimony prior to FAAS determination

    International Nuclear Information System (INIS)

    We describe a simple and rapid method for the ultrasound-assisted microextraction of antimony using the solidified floating organic drop method. The effects of pH, type and volume of the extractant, time of sonication, amount of chelating agent, type and amount of surfactant were investigated and optimized. Bromopyrogollol red is acting as the chelating agent. Antimony(III) ion was extracted into finely dispersed droplets of undecanol after ion-pair formation with the water soluble chelator and the cationic detergent benzyldimethyltetradecylammonium chloride. Flame atomic absorption spectrometry was used for the detection. The resulting calibration is linear in the concentration range from 4. 0 to 900 ng mL-1 of Sb(III) with a correlation coefficient of 0. 9981. The enrichment factor is 67, the detection limit is 0. 62 ng mL-1, and the relative standard deviation is ±3. 6% (at 100 ng mL-1; for n = 10). The method was successfully applied to the determination of antimony in water samples. (author)

  5. Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the Ribes Valley (Eastern Pyrenees)

    Science.gov (United States)

    Bech, Jaume; Corrales, Isabel; Duran, Paola; Roca, Núria; Tume, Pedro; Barceló, Juan; Poschenrieder, Charlotte

    2010-05-01

    Soil contamination by antimony is of increasing environmental concern due to the use of this amphoterous p-block element in many industrial applications such as flame retardant, electronics, alloys, rubber and textile industries. However, little is still known about the response of plants to antimony. Here we report on the accumulation of antimony and other potentially toxic elements (mainly As, Pb and Cu) in plants growing around a former antimony mine in the ribes Valley located in the Eastern Pyrenees (424078E, 4686100N alt. 1145 m.a.s.l) that was operating approximately between the years 1870 to 1960. The ore mineral veins are included in quartz gangue. The main ores were: Sulphides: Stibnite (Sb2S3), Pyrite (FeS2), Sphalerite (ZnS), Arsenopyrite (FeAs), Galenite (PbS), Chalcopyrite (CuFeS2), Tetrahydrite (Cu5Sb2S3). Sulphosals: Boulangerite (5PbS•2Sb2S3), Jamesonite (4PbS•FeS•3Sb2S3), Zinckenite (6PbS•7Sb2S3), Plagionite (5PbS•4Sb2S3), Bournonite PbCu (Sb,As)S3, Pyrargirite (Ag3SbS3). Soil and plant samples were taken at five locations with different levels of Sb, As, and polymetallic contamination. Both pseudototal (aqua regia soluble) and extractable (EDTA) concentrations of metals from sites with low (sites 1 and 2), moderate (site 3 and 4) and high (sites 5 and 6) pollutant burdens were studied. The range of agua regia and EDTA values in mgkg-1 is as follows: Sb 8-2904 and 0.88-44; As: 33-16186 and 3.2-167; Pb: 79-4794 and 49-397; Cu: 66-712 and 48-56 mg•kg-1, respectively). While sites 1 to 4 had alkaline soil pH (7.4-8.7), sites 5 and 6 were acidic with values of 6 and 4.6, respectively. Different herbaceous plant species (Poa annua, Echium vulgare, Sonchus asper, Barbera verna among others) at the low and moderately polluted sites were able to efficiently restrict Sb and As transport to shoots showing average concentration ranges between 5.5 and 23 mg/kg As and 1.21 mg/kg and 4.9 mg/kg Sb. However, at the highly polluted acidic sites (5 and

  6. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    International Nuclear Information System (INIS)

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: (1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs; (2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs; (3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs; and (4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs

  7. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  8. Formation and growth of hydride blisters in Zr-2.5Nb pressure tubes

    International Nuclear Information System (INIS)

    Hydride blisters were formed on the outer surface of Zr-2.5Nb pressure tube by a nonuniform steady thermal diffusion process. A thermal gradient was applied to the pressure tube with a heat bath kept at a temperature of 415 .deg. C and an aluminum cold finger cooled with flowing water of 15 .deg. C. Optical microscopy and three-dimensional laser profilometry were used to characterize the hydride blisters with different hydrogen concentrations and thermal diffusion time. Hydride blisters were expected to start at a hydrogen concentration of 30 - 70 ppm and a thermal diffusion time of 4 - 6x105 sec. The hydride blister size increases with higher hydrogen concentrations and longer thermal diffusion time. Some of the samples revealed cracks on the hydride blisters. The ratio of hydride blister depth to height was estimated as approximately 8:1

  9. Molecular early main group metal hydrides: synthetic challenge, structures and applications.

    Science.gov (United States)

    Harder, Sjoerd

    2012-11-25

    Within the general area of early main group metal chemistry, the controlled synthesis of well-defined metal hydride complexes is a rapidly developing research field. As group 1 and 2 metal complexes are generally highly dynamic and lattice energies for their [MH](∞) and [MH(2)](∞) salts are high, the synthesis of well-defined soluble hydride complexes is an obvious challenge. Access to molecular early main group metal hydrides, however, is rewarding: these hydrocarbon-soluble metal hydrides are highly reactive, have found use in early main group metal catalysis and are potentially also valuable molecular model systems for polar metal hydrides as a hydrogen storage material. The article focusses specifically on alkali and alkaline-earth metal hydride complexes and discusses the synthetic challenge, molecular structures, reactivity and applications. PMID:23012695

  10. On the high-pressure superconducting phase in platinum hydride

    Science.gov (United States)

    Szczȩśniak, D.; Zemła, T. P.

    2015-08-01

    Motivated by the ambiguous experimental data for the superconducting phase in silane (SiH4), which may originate from platinum hydride (PtH), we provide a theoretical study of the superconducting state in the latter alloy. The quantitative estimates of the thermodynamics of PtH at 100 GPa are given for a wide range of Coulomb pseudopotential values ({μ }*) within the Eliashberg formalism. The obtained critical temperature value ({T}{{C}}\\in for {μ }*\\in ) agrees well with the experimental TC for SiH4, which may be ascribed to PtH. Moreover, the calculated characteristic thermodynamic ratios exceed the predictions of the Bardeen-Cooper-Schrieffer theory, implying the occurrence of strong-coupling and retardation effects in PtH. We note that our results may be of high relevance for future theoretical and experimental studies on hydrides.

  11. X-ray photoemission spectroscopy study of zirconium hydride

    International Nuclear Information System (INIS)

    X-ray photoemission spectroscopy (XPS) measurements are reported for ZrH/sub 1.65/ and Zr metal. The valence-band measurements are compared with available band-theory density-of-states calculations for the metal and hydride. The hydride spectrum differs significantly from the metal spectrum. Most important, a strong peak associated with hydrogen s electrons appears approximately 7 eV below the Fermi level. XPS measurements of Zr 4p core levels show a binding-energy shift of 1 eV between Zr metal and ZrH/sub 1.65/. It is argued that this shift results from charge readjustment in the vicinity of the Zr site. With the addition of hydrogen, net charge must be transferred from the Zr site to the hydrogen site. A charge-density analysis based on simplified cluster calculations is presented

  12. Effects of metastability on hydrogen sorption in fluorine substituted hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Pinatel, E.R.; Corno, M.; Ugliengo, P.; Baricco, M., E-mail: marcello.baricco@unito.it

    2014-12-05

    Highlights: • Fluorine substitution in simple metal hydrides has been modelled. • The stability of the MH{sub (1−x)}F{sub x} solid solutions has been discussed. • Conditions for reversibility of sorption reactions have been suggested. - Abstract: In this work ab initio calculations and Calphad modelling have been coupled to describe the effect of fluorine substitution on the thermodynamics of hydrogenation–dehydrogenation in simple hydrides (NaH, AlH{sub 3} and CaH{sub 2}). These example systems have been used to discuss the conditions required for the formation of a stable hydride–fluoride solid solution necessary to obtain a reversible hydrogenation reaction.

  13. Hydride precipitation in zirconium studied by pendulum techniques

    International Nuclear Information System (INIS)

    Measurements of the precipitation peak, the autotwisting strain and the properties of hydride dislocations have been used to map the hydrogen terminal solid solubility boundary in polycrystalline samples and a single-crystal sample of α-zirconium. A low-frequency torsion pendulum was employed for some of the measurements and a low-frequency flexure pendulum for others. These pendulum techniques were successful in extending measurements of the hydrogen terminal solid solubility boundary in α-zirconium to the relatively low hydrogen concentration range 2 to 50 μg/g of technological interest in the nuclear industry. In addition, the results were used to obtain qualitative and quantitative information about the stress dependence of the hydrogen terminal solid solubility boundary and the kinetics of hydride precipitation or dissolution in response to a step change in the applied stress

  14. Detecting low concentrations of plutonium hydride with magnetization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Wook; Mun, E. D.; Baiardo, J. P.; Zapf, V. S.; Mielke, C. H. [National High Magnetic Field Laboratory, MPA-CMMS, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545 (United States); Smith, A. I.; Richmond, S.; Mitchell, J.; Schwartz, D. [Nuclear Material Science Group, MST-16, LANL, Los Alamos, New Mexico 87545 (United States)

    2015-02-07

    We report the formation of plutonium hydride in 2 at. % Ga-stabilized δ-Pu, with 1 at. % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here, we use magnetization, X-ray, and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuH{sub x} on the surface of the sample with x ∼ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with ferromagnetic PuH{sub 1.9}.

  15. Detecting low concentrations of plutonium hydride with magnetization measurements

    International Nuclear Information System (INIS)

    We report the formation of plutonium hydride in 2 at. % Ga-stabilized δ-Pu, with 1 at. % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here, we use magnetization, X-ray, and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuHx on the surface of the sample with x ∼ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with ferromagnetic PuH1.9

  16. Development of a novel metal hydride-air secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Gamburzev, S.; Zhang, W.; Velev, O.A.; Srinivasan, S.; Appleby, A.J. [Texas A and M University, College Station (United States). Center for Electrochemical Systems and Hydrogen Research; Visintin, A. [Universidad Nacional de La Plata (Argentina). Insituto Nacional de Investigaciones Fisicoquimica Teoricas y Applicadas

    1998-05-01

    A laboratory metal hydride/air cell was evaluated. Charging was via a bifunctional air gas-diffusion electrode. Mixed nickel and cobalt oxides, supported on carbon black and activated carbon, were used as catalysts in this electrode. At 30 mA cm{sup -2} in 6 M KOH, the air electrode potentials were -0.2 V (oxygen reduction) and +0.65 V (oxygen evolution) vs Hg/HgO. The laboratory cell was cycled for 50 cycles at the C/2 rate (10 mA cm{sup -2}). The average discharge/charge voltages of the cell were 0.65 and 1.6 V, respectively. The initial capacity of the metal hydride electrode decreased by about 15% after 50 cycles. (author)

  17. Influence of oxide layer on hydrogen desorption from zirconium hydride

    International Nuclear Information System (INIS)

    Hydrogen desorption from zirconium hydride with hydrogen content of 1.95 H/Zr in He and He-5%O2 atmospheres was studied by thermal desorption spectroscopy (TDS). The morphology, structure and valence states of the oxide layer formed on the surface of zirconium hydride were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It was found that hydrogen desorption is retarded in the presence of oxygen. Heating in He leads to a large desorption range starting at 500 deg. C while heating in He-5%O2 atmosphere delays decomposition to relatively higher temperature of 525 deg. C. A protective oxide layer composed of monoclinic ZrO2 and small amount of tetragonal ZrO1.88, which acts as a very effective diffusion barrier. The O-H bond was observed in the oxide layer, which is beneficial to fix hydrogen atoms and prevent hydrogen diffusion

  18. Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction

    Science.gov (United States)

    Colas, Kimberly B.; Motta, Arthur T.; Daymond, Mark R.; Almer, Jonathan D.

    2013-09-01

    The circumferential hydrides normally present in nuclear reactor fuel cladding after reactor exposure may dissolve during drying for dry storage and re-precipitate when cooled under load into a more radial orientation, which could embrittle the fuel cladding. It is necessary to study the rates and conditions under which hydride reorientation may happen in order to assess fuel integrity in dry storage. The objective of this work is to study the effect of applied stress and thermal cycling on the hydride morphology in cold-worked stress-relieved Zircaloy-4 by combining conventional metallography and in situ X-ray diffraction techniques. Metallography is used to study the evolution of hydride morphology after several thermo-mechanical cycles. In situ X-ray diffraction performed at the Advanced Photon Source synchrotron provides real-time information on the process of hydride dissolution and precipitation under stress during several thermal cycles. The detailed study of diffracted intensity, peak position and full-width at half-maximum provides information on precipitation kinetics, elastic strains and other characteristics of the hydride precipitation process. The results show that thermo-mechanical cycling significantly increases the radial hydride fraction as well as the hydride length and connectivity. The radial hydrides are observed to precipitate at a lower temperature than circumferential hydrides. Variations in the magnitude and range of hydride strains due to reorientation and cycling have also been observed. These results are discussed in light of existing models and experiments on hydride reorientation. The study of hydride elastic strains during precipitation shows marked differences between circumferential and radial hydrides, which can be used to investigate the reorientation process. Cycling under stress above the threshold stress for reorientation drastically increases both the reoriented hydride fraction and the hydride size. The reoriented hydride

  19. Ground-state energy and relativistic corrections for positronium hydride

    International Nuclear Information System (INIS)

    Variational calculations of the ground state of positronium hydride (HPs) are reported, including various expectation values, electron-positron annihilation rates, and leading relativistic corrections to the total and dissociation energies. The calculations have been performed using a basis set of 4000 thoroughly optimized explicitly correlated Gaussian basis functions. The relative accuracy of the variational energy upper bound is estimated to be of the order of 2x10-10, which is a significant improvement over previous nonrelativistic results.

  20. Geoneutrinos and Hydridic Earth (or primordially Hydrogen-Rich Planet)

    OpenAIRE

    Bezrukov, L.; Sinev, V.

    2014-01-01

    Geoneutrino is a new channel of information about geochemical composition of the Earth. We alnalysed here the following problem. What statistics do we need to distinguish between predictions of Bulk Silicate Earth model and Hydridic Earth model for Th/U signal ratio? We obtained the simple formula for estimation of error of Th/U signal ratio. Our calculations show that we need more than $22 kt \\cdot year$ exposition for Gran-Sasso underground laboratory and Sudbury Neutrino Observatory. We ne...

  1. Scanning electron microscope techniques for studying Zircaloy corrosion and hydriding

    International Nuclear Information System (INIS)

    A procedure has been developed for preparing scanning electron microscope (SEM) samples of irradiated or unirradiated Zircaloy, suitable for oxide layer imaging, hydride concentration and morphology determination, and X-ray microanalysis (EPMA). The area fraction of the hydride phase is determined by image analysis of backscattered electron images (BEI). Measurements performed on unirradiated laboratory-hydrided samples, as well as cladding samples from pressurized water reactor (PWR) fuel irradiated to a burnup of about 40 MWd/kg U, gave good agreement with hot extraction hydrogen analysis over a wide range of hydrogen concentrations, based on the assumption that all the hydrogen i present as the δ-phase hydride. The local hydrogen concentration can be determined quantitatively with a spatial resolution of less than 100μm. This capability was used to determine the radial hydrogen concentration profiles across the cladding wall for PWR samples with different total hydrogen contents, surface oxide thicknesses, and local heat rating. The results indicated that the hydrogen concentration profile was essentially flat (uniform) across the wall thickness for the samples with a low total hydrogen content (∼200 ppm) or a negligible radial heat flux (plenum), while the samples from fueled sections with >200 ppm or a negligible radial heat flux (plenum), while the samples from fueled sections with >200 ppm H had a steep increase in the hydrogen concentration close to the outer surface. Analysis of a longitudinal section showed peak hydrogen concentrations opposite pellet interfaces a factor of two higher than in the mid-pellet region

  2. Inelastic neutron scattering from amorphous hydride of Zr2Pd

    International Nuclear Information System (INIS)

    Time-of-flight inelastic neutron scattering data was obtained on hydrided Zr2Pd metallic glass using the Crystal Analyzer Spectrometer at the Los Alamos pulsed spallation neutron source. Energy transfers from about 40 MeV to several hundred MeV were obtained with sufficiently good statistics and signal to noise ratio to show the second harmonic as well as the fundamental hydrogen optic mode

  3. Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Tomassetti, G.

    2014-01-01

    Roč. 19, č. 7 (2014), s. 2313-2333. ISSN 1531-3492 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:61388998 Keywords : metal-hydrid phase transformation * hydrogen diffusion * swelling Subject RIV: BA - General Mathematics Impact factor: 0.768, year: 2014 http://aimsciences.org/journals/pdfs.jsp?paperID=10195&mode=full

  4. Dendritic surface morphology of palladium hydride produced by electrolytic deposition

    International Nuclear Information System (INIS)

    Conventional and high-resolution electron microscopic studies of electrolytically-deposited palladium hydride reveal a fascinating variety of surface profile morphologies. The observations provide direct information concerning the surface structure of palladium electrodes and the mechanism of electrolytic deposition of palladium black. Both classical electrochemical mechanisms and recent 'modified diffusion-limited-aggregation' computer simulations are discussed in comparison with the experimental results. 13 refs., 9 figs

  5. The calculated rovibronic spectrum of scandium hydride, ScH

    OpenAIRE

    Lodi, Lorenzo; Yurchenko, Sergei N.; Tennyson, Jonathan

    2015-01-01

    The electronic structure of six low-lying electronic states of scandium hydride, $X\\,{}^{1}\\Sigma^+$, $a\\,{}^{3}\\Delta$, $b\\,{}^{3}\\Pi$, $A\\,{}^{1}\\Delta$ $c\\,{}^{3}\\Sigma^+$, and $B\\,{}^{1}\\Pi$, is studied using multi-reference configuration interaction as a function of bond length. Diagonal and off-diagonal dipole moment, spin-orbit coupling and electronic angular momentum curves are also computed. The results are benchmarked against experimental measurements and calculations on atomic scan...

  6. Hydrogen storage materials and metal hydride-Ni batteries

    International Nuclear Information System (INIS)

    The hydrogen storage alloy is the key active material in metal hydride-Ni (MH-Ni) batteries. A brief review of hydrogen storage negative electrode materials including misch-nickel-based alloys, Laves phase alloys, magnesium-based alloys, vanadium-based solid solutions and nanotubes is presented. Current problems that need to be solved are mentioned. In addition, recent developments of MH/Ni-batteries with high power and energy are introduced

  7. Hydride effect on the tensile properties of HANA-4 alloy

    International Nuclear Information System (INIS)

    KAERI has developed some Zr-based new alloys, called HANA alloys, for high burn-up fuel cladding material. The sample specimens of HANA cladding tube material showed good performance in corrosion and creep properties at the irradiation test in Halden test reactor up to 10GW/MtU as well as the un-irradiation tests. Zirconium alloys has been used as nuclear fuel cladding material because they have satisfactory mechanical strength and corrosion resistance. It was reported that zirconium alloys responded abnormally in mechanical behavior over a certain temperature and strain rates. For example, the embrittlement of Zircaloy-4 (Zr-1.5Sn-0.2Fe-0.1Cr) alloy can be increased over 227 ∼ 427 .deg. C due to dynamic strain aging(DSA). The change of mechanical properties of HANA-4(Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr) alloy from DSA was already studied from room temperature to 500 .deg. C when its specimens had been tested with the strain rate of 1.67x10-2/s and 8.33x10-5/s. When a zirconium alloy is used in a nuclear reactor, hydrides form in it from not only external hydrogen sources such as waterside corrosion, dissolved hydrogen in coolant, water radiolysis but also internal sources such as hydrogen content in fuel pellets and moisture absorbed by the uranium dioxide fuel pellet. Hydrogen embrittlement of zirconium alloys has been extensively studied because hydrides may act as a sudden failure at very low strain. For low and medium hydrogen content, the hydrides crack during tensile loading and accelerate the ductile fracture process. To study the effect of hydride on the mechanical properties of HANA-4 cladding tube which had been finally heat-treated at 470 .deg. C, this research was done with tensile tests as an extension of the prior study

  8. Corrosion and hydridation features of RBMK type reactor technological channels

    International Nuclear Information System (INIS)

    Generalization results, obtained in the course of monitoring the corrosion state and hydridation of RBMK-1000 and RBMK-1500 reactor technological channels (TC) are presented. It is shown, that the corrosion behaviour of TC tube metal in reactors differs notably. Comparison of data on hybridization of RBMK-100 and RBMK-1500 reactor technological tubes allows one to suppose a possibly higher tendency to hydrogen absorption in Zr - 2.5% of Nb alloy under TMT-1 and TMT-2 states

  9. Computational modelling of structure and dynamics in lightweight hydrides

    OpenAIRE

    Aeberhard, Philippe C.; David, William I. F.; Edwards, Peter P.

    2012-01-01

    Hydrogen storage in lightweight hydrides continues to attract significant interest as the lack of a safe and efficient storage of hydrogen remains the major technological barrier to the widespread use of hydrogen as a fuel. The metal borohydrides Ca(BH₄)₂ and LiBH₄ form the subject of this thesis; three aspects of considerable academic interest were investigated by density functional theory (DFT) and molecular dynamics (MD) modelling. (i) High-pressure crystal structures of Ca(BH₄)₂ were pred...

  10. Proximity breakdown of hydrides in superconducting niobium cavities

    OpenAIRE

    Romanenko, A.; Barkov, F.; Cooley, L. D.; Grassellino, A.

    2012-01-01

    Many modern and proposed future particle accelerators rely on superconducting radio frequency cavities made of bulk niobium as primary particle accelerating structures. Such cavities suffer from the anomalous field dependence of their quality factors Q0. High field degradation - so-called high field Q-slope - is yet unexplained even though an empirical cure is known. Here we propose a mechanism based on the presence of proximity-coupled niobium hydrides, which can explain this effect. Further...

  11. Comparison of oral itraconazole and intramuscular meglumine antimoniate in the treatment of cutaneous leishmaniasis

    International Nuclear Information System (INIS)

    To compare the efficacy and tolerability of oral itraconazole against intramuscular meglumine antimoniate in the treatment of Cutaneous Leishmaniasis (CL). Two hundred eligible and consenting patients of Cutaneous Leishmaniasis (CL) were divided in two groups with 100 patients in each. The number and location of the lesions were documented and clinical types of cutaneous leishmaniasis were noted. The diagnosis was confirmed by skin slit smear and histopathology of the lesional skin. Culture on Nicolle Novy MacNeal (NNN) medium and Leishmanin test was done in all patients. All the patients in both groups were subjected to complete blood picture, urine examination, serum urea and creatinine levels and ECG examination. One group was given itraconazole 100 mg twice daily orally for a duration of 6-8 weeks. The other group was given meglumine antimoniate 10 cc in the form of deep intramuscular injections for 15-30 days. The efficacy of the treatment was judged by clinical and parasitological response. Side effects of the agents were also noted during treatment. Out of 200 patients studied, 185 were males and 15 were females. The mean age of presentation was 30 + 6.6 years. Single lesion was seen in 132 (66%) subjects whereas 68 (34%) subjects had multiple lesions. Slit skin smears were positive in 50 (25%) of the patients. Skin biopsy yielded the presence of LT bodies in 150 (75%) subjects. The culture was positive in 102 (51%) cases. Leishmanin test was positive in 94% subjects. Seventy-five (75%) patients on itraconazole therapy showed complete clinical and parasitological cure in 4-8 weeks duration. A rise in ALT was seen in 12% subjects. Five (5%) subjects did not show any improvement till the end of therapy. Sixty-five (65%) subjects on meglumine antimoniate showed complete healing in 15-30 days. In 35 (35%) of the patients, the treatment had to be stopped due to intolerable side-effects. Four cases of lupoid leishmaniasis and 4 cases of sporotrichoid leishmaniasis

  12. Study on determination of antimony in environmental samples by nuclear technique neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Tassiane Cristina Gomes; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    Full text: The Interest on determination of antimony in environmental samples has increased significantly in recent years due to the impact caused by human activities and their potential cumulative toxic at low concentrations, apart from not having known biological function. However, the quantification of antimony has interference problems due to low concentrations that hinder its analysis. Therefore becomes of great interest to establish adequate procedures for neutron activation analysis (NAA) to obtain reliable results in environmental samples. In this context, reference materials INCT-TL-1 Tea Leaves, INCT-MPH -2 Mixed Polish Herbs, CTA-VTL-2 Virginia Tobaco Leaves, White Cabbage BCR-679, IAEA 140/TM Seaweed (Focus sp), IAEA -SL-1 Lake Sediment and IAEA-336 Lichen, were selected for analysis and evaluation of results. Aliquots of these standard synthetic materials and antimony were irradiated in the nuclear research reactor IEA-R1 under thermal neutron flux of approximately 5 x 1012 cm{sup -2} s{sup -1} for a period of 8 or 16 hours. After appropriate decay time, the induced gamma activity of the irradiated samples and standard was measured using hyperpure Ge detector coupled to the digital spectrum analyzer DAS 1000, both from Canberra. The radioisotopes measured with gamma ray energies and the half-life were Sb-122 (E{gamma} = 564keV ; t1=2 = 2:7d) and Sb - 124 (E{gamma} = 1692keV; t1=2 60:2d). Antimony concentrations were calculated by the comparative method and the uncertainties of the results were estimated using statistical error of the sample and standard counts Results obtained in these analyses showed a good agreement with certified values and relative errors varying from 0.78 to 13.8%. The values of the standardized difference or Z-scores obtained were lower than 2, indicating that the obtained data were within the range of certified values at a significance level of 68%, demonstrating the suitability of the method used for determination of antimony

  13. Study on determination of antimony in environmental samples by nuclear technique neutron activation analysis

    International Nuclear Information System (INIS)

    Full text: The Interest on determination of antimony in environmental samples has increased significantly in recent years due to the impact caused by human activities and their potential cumulative toxic at low concentrations, apart from not having known biological function. However, the quantification of antimony has interference problems due to low concentrations that hinder its analysis. Therefore becomes of great interest to establish adequate procedures for neutron activation analysis (NAA) to obtain reliable results in environmental samples. In this context, reference materials INCT-TL-1 Tea Leaves, INCT-MPH -2 Mixed Polish Herbs, CTA-VTL-2 Virginia Tobaco Leaves, White Cabbage BCR-679, IAEA 140/TM Seaweed (Focus sp), IAEA -SL-1 Lake Sediment and IAEA-336 Lichen, were selected for analysis and evaluation of results. Aliquots of these standard synthetic materials and antimony were irradiated in the nuclear research reactor IEA-R1 under thermal neutron flux of approximately 5 x 1012 cm-2 s-1 for a period of 8 or 16 hours. After appropriate decay time, the induced gamma activity of the irradiated samples and standard was measured using hyperpure Ge detector coupled to the digital spectrum analyzer DAS 1000, both from Canberra. The radioisotopes measured with gamma ray energies and the half-life were Sb-122 (Eγ = 564keV ; t1=2 = 2:7d) and Sb - 124 (Eγ = 1692keV; t1=2 60:2d). Antimony concentrations were calculated by the comparative method and the uncertainties of the results were estimated using statistical error of the sample and standard counts Results obtained in these analyses showed a good agreement with certified values and relative errors varying from 0.78 to 13.8%. The values of the standardized difference or Z-scores obtained were lower than 2, indicating that the obtained data were within the range of certified values at a significance level of 68%, demonstrating the suitability of the method used for determination of antimony in this type sample

  14. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    International Nuclear Information System (INIS)

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable γ (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  15. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    OpenAIRE

    Borislav Bogdanović; Michael Felderhoff

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  16. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    Directory of Open Access Journals (Sweden)

    Borislav Bogdanović

    2009-01-01

    Full Text Available For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  17. High temperature metal hydrides as heat storage materials for solar and related applications.

    Science.gov (United States)

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 degrees C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described. PMID:19333448

  18. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  19. Transparent yttrium hydride thin films prepared by reactive sputtering

    International Nuclear Information System (INIS)

    Research highlights: → Thin films of transparent (semiconducting) and black (metallic) yttrium hydride. → Magnetron sputtering with an yttrium target and hydrogen as a reactive gas. → Optical transmission and reflection resemble β-YH2 (black) and γ-YH3 (transparent). → XRD shows that transparent films have an expanded fcc lattice with a = 5.35 A. → Samples are stable at ambient conditions. - Abstract: Metal hydrides have earlier been suggested for utilization in solar cells. With this as a motivation we have prepared thin films of yttrium hydride by reactive magnetron sputter deposition. The resulting films are metallic for low partial pressure of hydrogen during the deposition, and black or yellow-transparent for higher partial pressure of hydrogen. Both metallic and semiconducting transparent YHx films have been prepared directly in situ without the need of capping layers and post-deposition hydrogenation. Optically the films are similar to what is found for YHx films prepared by other techniques, but the crystal structure of the transparent films differ from the well-known YH3-η phase, as they have an fcc lattice instead of hcp.

  20. Superconductivity of novel tin hydrides (SnnHm) under pressure

    Science.gov (United States)

    Mahdi Davari Esfahani, M.; Wang, Zhenhai; Oganov, Artem R.; Dong, Huafeng; Zhu, Qiang; Wang, Shengnan; Rakitin, Maksim S.; Zhou, Xiang-Feng

    2016-03-01

    With the motivation of discovering high-temperature superconductors, evolutionary algorithm USPEX is employed to search for all stable compounds in the Sn-H system. In addition to the traditional SnH4, new hydrides SnH8, SnH12 and SnH14 are found to be thermodynamically stable at high pressure. Dynamical stability and superconductivity of tin hydrides are systematically investigated. Im2-SnH8, C2/m-SnH12 and C2/m-SnH14 exhibit higher superconducting transition temperatures of 81, 93 and 97 K compared to the traditional compound SnH4 with Tc of 52 K at 200 GPa. An interesting bent H3–group in Im2-SnH8 and novel linear H in C2/m-SnH12 are observed. All the new tin hydrides remain metallic over their predicted range of stability. The intermediate-frequency wagging and bending vibrations have more contribution to electron-phonon coupling parameter than high-frequency stretching vibrations of H2 and H3.

  1. Structural and magnetic properties of DyFe3 hydrides

    International Nuclear Information System (INIS)

    The ternary hydride phases, DyFe3H/sub x/ with x = 1.7, 2.5, and 4.2 all retain the PuNi3 rhombohedral structure of DyFe3 with a maximum volume expansion of 18% for DyFe3H/sub 4.2/. All phases show a preferential expansion parallel to the c0 axis. From bulk magnetization measurements, the Dy-Fe spin compensation temperature is found to decrease linearly from 5450K for DyFe3 to 1500K for DyFe3H/sub 4.2/ with increasing volume of the hydride phases. The 161Dy Moessbauer results for the two Dy sites in the structure indicate a slight reduction occurs in free-ion moment found for DyFe3 in all hydride phases. In addition, the 57Fe Moessbauer data show that the average Fe moment for the five inequivalent Fe sites increases with hydrogen concentration up to x = 2.5

  2. Superconductivity of novel tin hydrides (SnnHm) under pressure

    Science.gov (United States)

    Mahdi Davari Esfahani, M.; Wang, Zhenhai; Oganov, Artem R.; Dong, Huafeng; Zhu, Qiang; Wang, Shengnan; Rakitin, Maksim S.; Zhou, Xiang-Feng

    2016-01-01

    With the motivation of discovering high-temperature superconductors, evolutionary algorithm USPEX is employed to search for all stable compounds in the Sn-H system. In addition to the traditional SnH4, new hydrides SnH8, SnH12 and SnH14 are found to be thermodynamically stable at high pressure. Dynamical stability and superconductivity of tin hydrides are systematically investigated. Im2-SnH8, C2/m-SnH12 and C2/m-SnH14 exhibit higher superconducting transition temperatures of 81, 93 and 97 K compared to the traditional compound SnH4 with Tc of 52 K at 200 GPa. An interesting bent H3–group in Im2-SnH8 and novel linear H in C2/m-SnH12 are observed. All the new tin hydrides remain metallic over their predicted range of stability. The intermediate-frequency wagging and bending vibrations have more contribution to electron-phonon coupling parameter than high-frequency stretching vibrations of H2 and H3. PMID:26964636

  3. Permeation analysis of tritium through the titanium hydride storage vessel

    International Nuclear Information System (INIS)

    A preliminary design of a stainless steel vessel for the long-term storage of hydrogen isotopes has been proposed. The immobilized hydrogen as a titanium hydride could be used in a stainless steel vessel for this application. The vessel as a primary package is designed to form titanium hydride and to contain the hydrogen isotopes and helium-3 produced from the tritium decay. In order to predict against the possibility of a contamination and the deterioration of the mechanical properties, a numerical calculation was carried out for a diffusion analysis of the hydrogen isotopes and helium inside the stainless steel vessel. Numerical results showed that a negligible amount of tritium would be released by a permeation through the vessel wall of a 0.7cm thickness at normal conditions over the entire period of the storage. In the case that the vessel was heated up to a temperature of 600 C for the routine condition of an activation or exothermic hydriding, it would be of little concern regarding a tritium loss or a contamination. However, when the vessel was exposed to a fire condition with a temperature of 800 C, permeation of the hydrogen through the vessel wall resulted in a serious increase in the amount of tritium escaping, in a very short time

  4. The electronic structure of zirconium in hydrided and oxidized states

    International Nuclear Information System (INIS)

    Highlights: • XANES and XPS of zirconium in oxidized and hydrided states were studied. • The variations in the XANES spectra are explained with density functional theory. • Hydrogen preferentially bonds to specific oxygen sites in the monoclinic ZrO2. • The monoclinic ZrO2 offers the strongest barrier against hydriding attack. - Abstract: Valence band energy shifts for pure zirconium and a model zirconium alloy (Zircaloy-4) in oxidized and hydrided states have been investigated with X-ray photoelectron spectroscopy (XPS) and X-ray Absorption Near-Edge Structure (XANES) technique. With XANES, we show that O/H interactions in oxidized Zr can be detected in the near-edge region of O K. Using density functional theory (DFT) simulations, we have determined where H atoms bond in the monoclinic ZrO2 lattice. The preferred stoichiometry is ZrO2:H, but the O-H bond is weak; increasing H causes the H atoms to form H2 molecules rather than O-H bonds. These interactions cause energy shifts in the Zr 3d XPS spectra. The results illustrate the complex processes of hydrogen and oxygen interactions at the Zr surface

  5. Safety aspects of tritium storage in metal hydride form

    International Nuclear Information System (INIS)

    Air or nitrogen ingress accident scenarios into JET tritium storage containers, filled with uranium or intermetallic compound (IMC) hydrides, are discussed based on the experimentally determined kinetics of the reaction of these hydrides with air, O2 and N2. Reaction of uranium with air can occur at room temperature. For the initiation of the reactions of uranium with N2 or of some intermetallic compounds with air, elevated temperatures are required. Temperature rises of the metal hydrides due to air ingress are estimated for various cases. Modern tritium storage containers are protected against air ingress by intermediate and secondary containments which can be either evacuated or filled with inert gas. Therefore, air ingress can only occur due to double failure: failure of secondary containment and process containment at the same time. At JET, the secondary containments are filled with N2. However, even for N2, temperature increases are expected during the ingress into uranium beds (U-beds) for particular scenarios. It is shown that the JET design would not fail in this event. The calculation also shows that the smallest temperature rises during air, O2 or N2 ingress are expected for a getter bed design with free space above the metal getter layer for the gas to flow from inlet to outlet tube. 14 refs., 3 figs., 4 tabs

  6. Modellization of Metal Hydride Canister for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Rocio Maceiras

    2015-06-01

    Full Text Available Hydrogen shows very interesting features for its use on-board applications as fuel cell vehicles. This paper presents the modelling of a tank with a metal hydride alloy for on-board applications, which provides good performance under ambient conditions. The metal hydride contained in the tank is Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5. A two-dimensional model has been performed for the refuelling process (absorption and the discharge process (desorption. For that, individual models of mass balance, energy balance, reaction kinetics and behaviour of hydrogen gas has been modelled. The model has been developed under Matlab / Simulink© environment. Finally, individual models have been integrated into a global model, and simulated under ambient conditions. With the aim to analyse the temperature influence on the state of charge and filling and emptying time, other simulations were performed at different temperatures. The obtained results allow to conclude that this alloy offers a good behaviour with the discharge process under normal ambient conditions. Keywords: Hydrogen storage; metal hydrides; fuel cell; simulation; board applications

  7. Hydrogen Storage using Metal Hydrides in a Stationary Cogeneration System

    International Nuclear Information System (INIS)

    In the frame of the development of a hydrogen production and storage unit to supply a 40 kW stationary fuel cell, a metal hydride storage tank was chosen according to its reliability and high energetic efficiency. The study of AB5 compounds led to the development of a composition adapted to the project needs. The absorption/desorption pressures of the hydride at 75 C (2 / 1.85 bar) are the most adapted to the specifications. The reversible storage capacity (0.95 %wt) has been optimized to our work conditions and chemical kinetics is fast. The design of the Combined Heat and Power CHP system requires 5 kg hydrogen storage but in a first phase, only a 0.1 kg prototype has been realised and tested. Rectangular design has been chosen to obtain good compactness with an integrated plate fin type heat exchanger designed to reach high absorption/desorption rates. In this paper, heat and mass transfer characteristics of the Metal Hydride tank (MH tank) during absorption/desorption cycles are given. (authors)

  8. Neutron diffraction studies of metal hydrides alloys for hydrogen storage

    International Nuclear Information System (INIS)

    In this paper we present results obtained from two different classes of metal hydrides. First, we will discuss the effect of ball milling on the hydrogen storage properties of magnesium hydride. High energy milling of MgD2 produces a nanocrystalline structure made of a mixture of β-MgD2 and the high temperature/high pressure phase γ-MgD2. Neutron powder diffraction showed that the ball-milled β-MgD2 and γ-MgD2 structures are distorted compared to the same phases synthesised at high-pressure and high temperature. The Mg-D bond lengths are modified in β-MgD2. In γ-MgD2 phase, only one bond length is changed. This may be the explanation for the limited amount of γ-MgD2 synthesized by energetic ball milling. The second case is the crystal structure of a new class of metal hydrides, the so called 'Laves phase related BCC solid solution'. From neutron diffraction, we found that two phases are present in the as-cast alloy TiV0.9Mn1.1. One is a BCC solid solution, the other is a C14 Laves phase. We found that in the C14 phase there is a preferential site for titanium atoms while the vanadium and manganese atoms are distributed on the other two sites. (author)

  9. Performance study of a hydrogen powered metal hydride actuator

    Science.gov (United States)

    Mainul Hossain Bhuiya, Md; Kim, Kwang J.

    2016-04-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C-50 °C. Stress-strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress-strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future.

  10. Air passivation of metal hydride beds for waste disposal

    International Nuclear Information System (INIS)

    One waste acceptance criteria for hydride bed waste disposal is that the bed be non-pyrophoric. Batch-wise air ingress tests were performed which determined the amount of air consumed by a metal hydride bed. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 deg.C internal temperature rise upon the first air exposure cycle and a 0.1 deg.C temperature rise upon a second air exposure. A total of 346 sec air was consumed by the bed (0.08 sec per gram Ti). A desorbed, 9.66 kg LaNi4.25Al0.75 prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12. cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water. (authors)

  11. Multidimensional Chemical Modeling. III. Abundance and excitation of diatomic hydrides

    CERN Document Server

    Bruderer, Simon; Stäuber, P; Doty, Steven D

    2010-01-01

    The Herschel Space Observatory opens the sky for observations in the far infrared at high spectral and spatial resolution. A particular class of molecules will be directly observable; light diatomic hydrides and their ions (CH, OH, SH, NH, CH+, OH+, SH+, NH+). These simple constituents are important both for the chemical evolution of the region and as tracers of high-energy radiation. If outflows of a forming star erode cavities in the envelope, protostellar far UV (FUV; 6 100 K) for water ice to evaporate. If the cavity shape allows FUV radiation to penetrate this hot-core region, the abundance of FUV destroyed species (e.g. water) is decreased. In particular, diatomic hydrides and their ions CH$+, OH+ and NH+ are enhanced by many orders of magnitude in the outflow walls due to the combination of high gas temperatures and rapid photodissociation of more saturated species. The enhancement of these diatomic hydrides is sufficient for a detection using the HIFI and PACS instruments onboard Herschel. The effect...

  12. Effect of the hydrogen content and cooling velocity in the hydrides precipitation in α-zirconium

    International Nuclear Information System (INIS)

    Zirconium specimens containing 50-300 ppm hydrogen have been cooled from the hydrogen solution treatment temperature at different rates by furnace cooling, air cooling and oil quenching. Optical and electron microscopical investigations have revealed grain boundary Δ - hydrides in slowly cooled specimens. At higher cooling rates γ and Δ hydrides have been found precipitated both intergranularly and intragranularly. Grain boundary Δ hydrides have been also observed in oil quenched specimens with 300 ppm hydrogen. Quenched specimens have revealed Widmanstatten and parallel plate type hydride morphologies. (Author)

  13. Measurement and modeling of strain fields in zirconium hydrides precipitated at a stress concentration

    Science.gov (United States)

    Allen, Gregory B.; Kerr, Matthew; Daymond, Mark R.

    2012-11-01

    Hydrogen adsorption into zirconium, as a result of corrosion in aqueous environments, leads to the precipitation of a secondary brittle hydride phase. These hydrides tend to first form at stress concentrations such as fretting flaws or cracks in engineering components, potentially degrading the structural integrity of the component. One mechanism for component failure is a slow crack growth mechanism known as Delayed Hydride Cracking (DHC), where hydride fracture occurs followed by crack arrest in the ductile zirconium matrix. The current work employs both an experimental and a modeling approach to better characterize the effects and behavior of hydride precipitation at such stress concentrations. Strains around stress concentrations containing hydrides were mapped using High Energy X-ray Diffraction (HEXRD). These studies highlighted important differences in the behavior of the hydride phase and the surrounding zirconium matrix, as well as the strain associated with the precipitation of the hydride. A finite element model was also developed and compared to the X-ray strain mapping results. This model provided greater insight into details that could not be obtained directly from the experimental approaches, as well as providing a framework for future modeling to predict the effects of hydride precipitation under varied conditions.

  14. Mechanical characteristics of hydrides in titanium and titanium-palladium alloy

    International Nuclear Information System (INIS)

    With the aim of estimating of stress-strain curve and fracture strain of thin layer hydrides of pure titanium (Gr.1) and titanium-palladium alloy (Gr.17), we utilized dual indentation method and advanced indentation machine equipped with acoustic emission (AE) monitoring system. We first estimated stress-strain curves of two base metals and two hydrides utilizing the dual indentation method. Next we estimated the fracture strain of two hydrides by FEM method using the critical indentation force to cause the Mode-I crack in hydrides during indentation tests. The critical force was correctly determined by waveform analysis of AEs detected during indentation test. The fracture strain of hydride of Gr.1 was estimated as 8.1% and larger than that (4.3%) of Gr.17 hydride. Fracture strains of two hydrides appear to be due to the chemical composition of the hydrides. Gr.1 produced a TiH2 hydride, while Gr.1 did a TiH1.971. (author)

  15. Investigation of Liquid Metal Bonded Hydride Fuels for LWRs - A Review

    International Nuclear Information System (INIS)

    Hydride fuels have been proposed for power production applications in LWRs. The fuel consists of uranium-zirconium hydride pellets clad with Zircaloy tubing. The fuel-cladding gap is filled with a liquid lead-tin- bismuth alloy. Incentives for hydride fuel incorporation into LWRs are briefly reviewed followed by a detailed discussion of material properties, steady-state and transient behaviour, and irradiation effects on hydride fuels. The discussion is based on historical data from the SNAP program and General Atomics' TRIGA reactors and recent research conducted at Universities of Tokyo and California, Berkeley. (author)

  16. Some new techniques in tritium gas handling as applied to metal hydride synthesis

    International Nuclear Information System (INIS)

    A state-of-the-art tritium Hydride Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilized unique fast-cycling 5.63 mole uranium beds (50.9 g to T2 at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops

  17. Some new techniques in tritium gas handling as applied to metal hydride synthesis

    International Nuclear Information System (INIS)

    A state-of-the-art tritium Hydriding Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilizes unique fast-cycling 7.9 mole uranium beds (47.5g of T at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops. 12 refs., 7 figs

  18. Hydride phase equilibria in V-Ti-Ni alloy membranes

    International Nuclear Information System (INIS)

    Highlights: • V70Ti15Ni15 (at.%) comprises a vanadium solid solution plus NiTi and NiTi2. • Dissolution of Ni and Ti into vanadium solid solution increase critical temperature for BCT β-hydride formation. • Three VSS hydride phase fields were observed: BCC, BCC + BCT, BCT + BCT. • NiTi and NiTi2 phases do not stabilise the alloy against brittle failure. - Abstract: Vanadium is highly permeable to hydrogen which makes it one of the leading alternatives to Pd alloys for hydrogen-selective alloy membrane applications, but it is prone to brittle failure through excessive hydrogen absorption and transitions between the BCC α and BCT β phases. V-Ti-Ni alloys are a prospective class of alloy for hydrogen-selective membrane applications, comprising a highly-permeable vanadium solid solution and several interdendritic Ni-Ti compounds. These Ni-Ti compounds are thought to stabilise the alloy against brittle failure. This hypothesis was investigated through a systematic study of V70Ti15Ni15 by hydrogen absorption and X-ray diffraction under conditions relevant to membrane operation. Dissolved hydrogen concentration in the bulk alloy and component phases, phase identification, thermal and hydrogen-induced expansion, phase quantification and hydride phase transitions under a range of pressures and temperatures have been determined. The vanadium phase passes through three different phase fields (BCC, BCC + BCT, BCT + BCT) during cooling under H2 from 400 to 30 °C. Dissolution of Ni and Ti into the vanadium phase increases the critical temperature for β-hydride formation from <200 to >400 °C. Furthermore, the Ni-Ti phases also exhibit several phase transitions meaning their ability to stabilise the alloy is questionable. We conclude that this alloy is significantly inferior to V with respect to its stability when used as a hydrogen-selective membrane, but the hydride phase transitions suggest potential application for high-temperature hydrogen and thermal energy

  19. Reactivity patterns of transition metal hydrides and alkyls

    International Nuclear Information System (INIS)

    The complex PPN+ CpV(CO)3H- (Cp=eta5-C5H5 and PPN = (Ph3P)2) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN+ CpV(CO)3H- reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN+[CpV(C)3X]- and in some cases the binuclear bridging hydride PPN+ [CpV(CO)3]2H-. The borohydride salt PPN+[CpV(CO)3BH4]- has also been prepared. The reaction between CpV(CO)3H- and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)3H-. Sodium amalgam reduction of CpRh(CO)2 or a mixture of CpRh(CO)2 and CpCo(CO)2 affords two new anions, PPN+ [Cp2Rh3(CO)4]- and PPN+[Cp2RhCo(CO)2]-. CpMo(CO)3H reacts with CpMo(CO)3R (R=CH3,C2H5, CH2C6H5) at 25 to 500C to produce aldehyde RCHO and the dimers [CpMo(CO)3]2 and [CpMo(CO)2]2. In general, CpV(CO)3H- appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)3H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)3H- generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)3H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species

  20. Biodistribution of meglumine antimoniate in healthy and Leishmania (Leishmania infantum chagasi-infected BALB/c mice

    Directory of Open Access Journals (Sweden)

    Samanta Etel Treiger Borborema

    2013-08-01

    Full Text Available Pentavalent antimonials such as meglumine antimoniate (MA are the primary treatments for leishmaniasis, a complex disease caused by protozoan parasites of the genus Leishmania . Despite over 70 years of clinical use, their mechanisms of action, toxicity and pharmacokinetics have not been fully elucidated. Radiotracer studies performed on animals have the potential to play a major role in pharmaceutical development. The aims of this study were to prepare an antimony radiotracer by neutron irradiation of MA and to determine the biodistribution of MA in healthy and Leishmania (Leishmania infantum chagasi-infected mice. MA (Glucantime(r was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes, 122Sb and 124Sb, with high radionuclidic purity and good specific activity. This irradiated compound presented anti-leishmanial activity similar to that of non-irradiated MA in both in vitro and in vivo evaluations. In the biodistribution studies, healthy mice showed higher uptake of antimony in the liver than infected mice and elimination occurred primarily through biliary excretion, with a small proportion of the drug excreted by the kidneys. The serum kinetic curve was bi-exponential, with two compartments: the central compartment and another compartment associated with drug excretion. Radiotracers, which can be easily produced by neutron irradiation, were demonstrated to be an interesting tool for answering several questions regarding antimonial pharmacokinetics and chemotherapy.

  1. Leachability of antimony from energy ashes. Total contents, leachability and remedial suggestions; Lakning av antimon fraan energiaskor. Totalhalter, lakbarhet samt foerslag till aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Baeckstroem, Mattias [Oerebro Univ. (Sweden)

    2006-01-15

    In the current project total concentrations for antimony in 31 energy ashes have been compiled. The average concentration of antimony in boiler fly ash and grate boiler fly ash is 192 and 1,140 mg/kg, respectively. The corresponding antimony concentrations for boiler ashes and grate bottom ashes are 86,5 and 61,8 mg/kg, respectively. Multivariate calculations clearly pointed out waste as the major source for antimony in ashes. The difference between total antimony concentration in fly ash and bottom ash is greatest for grate boilers, in average 18 times higher in the fly ash. The difference for CFB/BFB-boilers is only slightly more than 2. However, based on amount, 75% of the total antimony inventory is recovered in the fly ashes for both CFB/BFB and grate boilers. Eleven (eight of which were bottom ashes) out of the 31 samples exceeded the guidelines for inert waste. It is clear that the higher ionic strength in the solutions from the fly ashes contribute to decrease the solubility for critical minerals retaining antimony. In addition, the fly ashes have considerably larger effective surface able to sorb trace elements. A clear and positive covariance was discovered between aluminium and antimony. Furthermore, it was noted that antimony showed no typical anionic behaviour despite the fact that it according to the geochemical calculations should be present as SbO{sub 3}{sup -}. At L/S 10, a maximum of 1% of the total antimony concentration is leached. This should be compared to chloride that had 94% of the total concentration leached at L/S 10. There was no correlation between the leached antimony concentrations and the total antimony concentrations. The sequential extractions also suggest a low leachability for antimony from the ashes. In average only 9,6% is released at pH 7, 7,3% at pH 5, 3,6% during reducing conditions and 3,2% during oxidising conditions. In total, only 24% of the total antimony concentrations is released during the four extraction steps. The

  2. Selective liquid-liquid extraction of antimony(III from hydrochloric acid media by N-n-octylaniline in xylene

    Directory of Open Access Journals (Sweden)

    M. A. ANUSE

    2004-04-01

    Full Text Available N-n-Octylaniline in xylene was used for the extraction separation of antimony(III from hydrochloric acid media. Antimony(III was extracted quantitatively with 10 mL 4 % N-n-octylaniline in xylene. It was stripped from the organic phase with 0.5 M ammonia and estimated photometrically by the iodide method. The effect of metal ion, acid, reagent concentration and various foreign ions was investigated. The method affords binary and ternary separation of antimony(III from tellurium(IV, selenium(IV, lead(II, bismuth(III, tin(IV, germanium(IV, copper(II, gold(III, iron(III and zinc(II. The method is applicable for the analysis of synthetic mixtures, alloys and semiconductor thin films. It is fast, accurate and precise.

  3. Synthesis, characterization and single crystal X-ray analysis of chlorobis(N,N-dimethyldithiocarbamato-S,S′antimony(III

    Directory of Open Access Journals (Sweden)

    H.P.S. Chauhan

    2015-07-01

    Full Text Available The title compound chlorobis(N,N-dimethyldithiocarbamato-S,S′antimony(III has been prepared in distilled acetonitrile and characterized by physicochemical [melting point and molecular weight determination, elemental analysis (C, H, N, S & Sb], spectral [FT–IR, far IR, NMR (1H & 13C] studies. The crystal and molecular structure was further confirmed using single crystal X-ray diffraction analysis which features a five-coordinate geometry for antimony(III within a ClS4 donor set. The distortion in the co-planarity of ClSbS3 evidences the stereochemical influence exerts by the lone pair of electrons on antimony(III. Two centrosymmetrically related molecule held together via C–H···Cl secondary interaction result in molecular aggregation of the compound.

  4. Pharmacokinetics and tissue distribution of Antimony after multiple intramuscular administrations in the Hamster

    International Nuclear Information System (INIS)

    The fate of pentavalent antimony (Sb) in different tissues in the body after intramuscular administration is of great interest for the future study of Sb therapy in different sitting. Pharmacokinetics and tissue distribution of antimony (Sb) were studied in the hamster after daily dose of sodium stibogluconate equivalent to 120 mg kg of Sb, administered intramuscularly for two weeks. Liver, spleen, heart, kidney and skin tissues were isolated after blood collection at the specified time. Antimony was measured in these tissues after suitable treatment, ashing and processing, by flame less atomic absorption spectrophotometry. The concentration of Sb time profile in blood showed a linear raid decline with elimination half life (tz1/2) of 1.7h. The concentration of drug (ug/gm) declined in a biphasic manner from almost all tissues. However, the concentrations of Sb were declined in slower fashion from the hamster tissues than from the blood. The maximum concentration of Sb was determined in the kidney tissues (3416+-631ug/gm) while the lowest concentration was in the spleen (209+-187ug/gm). The maximum concentration of Sb in the kidney (ug/gm) was more than 25 fold higher than that measured from blood (ug/ml). The AUC of Sb in the studied tissues was in this rank: kidney>liver>skin>spleen>heart>blood. Surprisingly, the heart, spleen and liver showed a similar t1/2 of 5.2-6.2h while the kidney and skin had a t1/2 of about 3h. Therefore, disposition of Sb seems to kinetically follow multicompartmental compartmental model. The kidneys got the highest concentration of drug which may lead to nephrotoxicity on long term therapy. (author)

  5. Lithium-antimony-lead liquid metal battery for grid-level energy storage

    Science.gov (United States)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J.; Boysen, Dane A.; Bradwell, David J.; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R.

    2014-10-01

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this finding

  6. Development and pharmacokinetic of antimony encapsulated in liposomes of phosphatidylserine using radioisotopes in experimental leishmaniasis

    International Nuclear Information System (INIS)

    Leishmaniasis are a complex of parasitic diseases caused by intra macrophage protozoa of the genus Leishmania, and is fatal if left untreated. Pentavalent antimonials, though toxic and their mechanism of action being unclear, remain the first-line drugs for treatment. Effective therapy could be achieved by delivering antileishmanial drugs to these sites of infection. Liposomes are phospholipid vesicles that promote improvement in the efficacy and action of drugs in target cell. Liposomes are taken up by the cells of mononuclear phagocytic system (MPS). The purpose of this study was to develop a preparation of meglumine antimonate encapsulated in liposomes of phosphatidylserine and to study its pharmacokinetic in healthy mice to establish its metabolism and distribution. Quantitative analysis of antimony from liposomes demonstrated that Neutron Activation Analysis was the most sensitive technique with almost 100 % of accuracy. All liposome formulations presented a mean diameter size of 150 nm. The determination of IC50 in infected macrophage showed that liposome formulations were between 10 - 63 fold more effective than the free drug, indicating higher selectivity index. By fluorescence microscopy, an increased uptake of fluorescent-liposomes was seen in infected macrophages during short times of incubation compared with non-infected macrophages. Biodistribution studies showed that meglumine antimonate irradiated encapsulated in liposomes of phosphatidylserine promoted a targeting of antimony for MPS tissues and maintained high doses in organs for a prolonged period. In conclusion, these data suggest that meglumine antimonate encapsulated in liposomes showed higher effectiveness than the non-liposomal drug against Leishmania infection. The development of liposome formulations should be a new alternative for the chemotherapy of infection diseases, especially Leishmaniasis, as they are used to sustain and target pharmaceuticals to the local of infection. (author)

  7. The LABCG2 Transporter from the Protozoan Parasite Leishmania Is Involved in Antimony Resistance.

    Science.gov (United States)

    Perea, Ana; Manzano, José Ignacio; Castanys, Santiago; Gamarro, Francisco

    2016-06-01

    Treatment for leishmaniasis, which is caused by Leishmania protozoan parasites, currently relies on a reduced arsenal of drugs. However, the significant increase in the incidence of drug therapeutic failure and the growing resistance to first-line drugs like antimonials in some areas of Northern India and Nepal limit the control of this parasitic disease. Understanding the molecular mechanisms of resistance in Leishmania is now a matter of urgency to optimize drugs used and to identify novel drug targets to block or reverse resistant mechanisms. Some members of the family of ATP-binding cassette (ABC) transporters in Leishmania have been associated with drug resistance. In this study, we have focused our interest to characterize LABCG2's involvement in drug resistance in Leishmania. Leishmania major parasites overexpressing the ABC protein transporter LABCG2 were generated in order to assess how LABCG2 is involved in drug resistance. Assays of susceptibility to different leishmanicidal agents were carried out. Analysis of the drug resistance profile revealed that Leishmania parasites overexpressing LABCG2 were resistant to antimony, as they demonstrated a reduced accumulation of Sb(III) due to an increase in drug efflux. Additionally, LABCG2 was able to transport thiols in the presence of Sb(III) Biotinylation assays using parasites expressing LABCG2 fused with an N-terminal green fluorescent protein tag revealed that LABCG2 is partially localized in the plasma membrane; this supports data from previous studies which suggested that LABCG2 is localized in intracellular vesicles that fuse with the plasma membrane during exocytosis. In conclusion, Leishmania LABCG2 probably confers antimony resistance by sequestering metal-thiol conjugates within vesicles and through further exocytosis by means of the parasite's flagellar pocket. PMID:27021316

  8. Antimony film sensor for sensitive rare earth metal analysis in environmental samples.

    Science.gov (United States)

    Makombe, Martin; van der Horst, Charlton; Silwana, Bongiwe; Iwuoha, Emmanuel; Somerset, Vernon

    2016-07-01

    A sensor for the adsorptive stripping voltammetric determination of rare earth elements has been developed. The electrochemical procedure is based on the oxidation of the rare earth elements complexed with alizarin complexone at a glassy carbon electrode that was in situ modified with an antimony film, during an anodic scan from -0.2 V to 1.1 V (vs. Ag/AgCl) and deposition potential of -0.1 V (vs. Ag/AgCl). The factors influencing the adsorptive stripping capability were optimised, including the complexing agent concentration, plating concentration of antimony and deposition time. The detection of rare earth elements (La, Ce and Pr) were realised in 0.08 M sodium acetate (pH = 5.8) solution as supporting electrolyte, with 2 × 10(-6) M alizarin complexone and 1.0 mg L(-1) antimony solution. Under the optimised conditions, a deposition time of 360 s was obtained and a linear response was observed between 1 and 25 µg L(-1). The reproducibility of the voltammetric measurements was found to be within 5.0% RSD for 12 replicate measurements of cerium(III) concentration of 5 µg L(-1) using the same electrode surface. The detection limits obtained using stripping analysis was 0.06, 0.42 and 0.71 μg L(-1) for Ce(III), La(III) and Pr(III), respectively. The developed sensor has been successfully applied for the determination of cerium, lanthanum and praseodymium in municipal tap water samples. PMID:27065049

  9. Determination of PM10 deposition based on antimony flux to selected urban surfaces

    International Nuclear Information System (INIS)

    Deposition of PM10 particles to several types of urban surfaces was investigated within this study. Antimony was chosen as a tracer element to calculate dry deposition velocities for PM10, since antimony proved to be present almost exclusively in PM10 particles in ambient urban air. During 18 months, eight sampling sites in Berlin and Karlsruhe, two cities in Germany, were operated. PM10 concentrations and dry deposition were routinely sampled as two week averages. Additionally, leaf-samples were collected at three sites with tall vegetation. The obtained deposition velocities ranged from 0.8 to 1.3 cm s-1 at roadside sites and from 0.4 to 0.5 cm s-1 at the other sites. With reference to the whole canopy, additional deposition velocities of about 0.5 cm s-1 were obtained for leaf surfaces. As a consequence, it can be concluded that vegetation-covered areas beside streets show the highest potential to capture particles in urban areas. - Highlights: → Deposition velocities of PM10 were determined using Sb as a tracer element. → Dry PM10 deposition velocities ranged from 0.8 to 1.3 cm s-1 at roadside sites. → Dry PM10 deposition velocities ranged from 0.4 to 0.5 cm s-1 at other urban sites. → Additional deposition velocities of 0.5 cm s-1 were obtained for leaf surfaces. - Antimony is used as a tracer element to calculate dry deposition velocities of PM10 particles to selected urban surfaces.

  10. Hydride precipitation and its influence on mechanical properties of notched and unnotched Zircaloy-4 plates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiyang, E-mail: zw603@uowmail.edu.au [Faculty of Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); The Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Garbe, Ulf [The Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Li, Huijun [Faculty of Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Harrison, Robert P.; Toppler, Karl [The Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Studer, Andrew J. [The Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Palmer, Tim [The Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Planchenault, Guillaume [Electricite De France, 6 Avenue Montaigne, 93192 Noisy Le Grand Cédex (France)

    2013-05-15

    The hydride formation and its influence on the mechanical performance of hydrided Zircaloy-4 plates containing different hydrogen contents were studied at room temperature. For the unnotched plate samples with the hydrogen contents ranging from 25 to 850 wt. ppm, the hydrides exerted an insignificant effect on the tensile strength, while the ductility was severely degraded with increasing hydrogen content. The fracture mode and degree of embrittlement were strongly related to the hydrogen content. When the hydrogen content reached a level of 850 wt. ppm, the plate exhibited negligible ductility, resulting in almost completely brittle behavior. For the hydrided notched plate, the tensile stress concentration associated with the notch tip facilitated the hydride accumulation at the region near the notch tip and the premature crack propagation through the hydride fracture during hydriding. The final brittle through-thickness failure for this notched sample was mainly attributed to the formation of a continuous hydride network on the thickness section and the obtained very high hydrogen concentration (estimated to be 1965 wt. ppm)

  11. Cracking in hydride blisters in Zr-2.5Nb pressure tubes

    International Nuclear Information System (INIS)

    When the pressure tubes contact to the calandria tubes in the CANDU reactor, temperature gradient in the Zr-2.5Nb pressure tube causes the thermal diffusion of hydrogen and formation of hydride blisters. This surface shape change is a result of the volume expansion associated with the transformation from pressure tube matrix to δ-phase hydride. Cracking in the hydride blisters may cause a direct failure of pressure tubes or develope to the delayed hydride cracking. The Zr-2.5Nb pressure tube specimen are hydrided by an electrolytic method and homogenized considering the temperature and time of hydrogen diffusion. The hydride blisters are formed on the outer surface of the specimen by a thermal diffusion between a heat bath maintained at the temperature of 415 deg C and an aluminum cold finger cooled with the flowing water of 15 deg C. An optical microscopy and 3-dimensional profilometry were used to characterize the hydride blisters with different hydrogen concentrations and thermal diffusion times. It reveals higher possibility of cracking for higher hydrogen concentration and longer time for thermal diffusion. The mechanism of cracking in the hydride blister is discussed

  12. Hydride trapping for AAS: Complex analytical problems can be handled with a simple instrumentation

    Czech Academy of Sciences Publication Activity Database

    Dědina, Jiří; de Moraes, D. P.; Dessuy, M. B.; Kratzer, Jan; Matoušek, Tomáš; de Moraes Flores, E. M.; Vale, M. G. R.

    Ankara Üniversitesi, 2011. [National Spectroscopy Congress /12./. 18.05.2011-22.05.2011, Antalya] R&D Projects: GA ČR GA203/09/1783 Institutional research plan: CEZ:AV0Z40310501 Keywords : atomic absorption spectrometry * hydride generation * hydride trapping Subject RIV: CB - Analytical Chemistry, Separation

  13. Absorption kinetics and hydride formation in magnesium films: Effect of driving force revisited

    International Nuclear Information System (INIS)

    Electrochemical hydrogen permeation measurements and in situ gas-loading X-ray diffraction measurements were performed on polycrystalline Mg films. Hydrogen diffusion constants, the hydride volume content and the in-plane stress were determined for different values of driving forces at 300 K. For α-Mg–H, a hydrogen diffusion constant of DHMg=7(±2)·10-11 m2 s−1 was determined. For higher concentrations, different kinetic regimes with reduced apparent diffusion constants DHtot were found, depending on the driving force, decreasing to about DHtot = 10−18 m2 s−1. This lowest measured diffusion constant is two orders of magnitude larger than that of bulk β-MgH2, and the difference is ascribed to a contribution from a fast diffusion along grain boundaries. The different kinetics regimes are attributed to the spatial distribution of hydrides. A heterogeneous hydride nucleation and growth model is suggested that is based on hemispherical hydrides spatially distributed according to the nuclei densities expressed as a function of the driving force. The model allows us to qualitatively explain the complex stress development, the different diffusion regimes and the blocking-layer thickness. As the blocking-layer thickness inversely scales with the driving force, small driving forces allow the hydriding of large film volume fractions. Maximum stress situations occur for hydride distances reaching four times the hydride radius and for hydride distances equaling the film thickness

  14. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    International Nuclear Information System (INIS)

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  15. Experiments on hadronic-atom x-ray intensities of hydrides and deuterides

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, C.E.; Lum, G.K.; Godfrey, G.L.

    1977-04-01

    Kaonic-atom x-ray intensities of elements Z = 3, 6, 8, 11, and 20 were significantly reduced when the elements were in hydride form. The ratios I (ZH/sub m/)/I (Z) have a noticeable Z dependence. Deuterides of C and O showed slightly less x-ray emission than their hydride counterparts.

  16. Thermal and mechanical properties of zirconium hydrides with various hafnium contents

    International Nuclear Information System (INIS)

    Zirconium (Zr) hydride is currently expected as a neutron shield material for fast reactors. In order to evaluate safety and economic efficiency of the nuclear reactor, the thermal and mechanical properties of the hydride should be understood. In addition, since chemical properties of Zr and hafnium (Hf) are quite similar, Zr contains a few percent Hf generally. Therefore, it is very important to evaluate the effect of Hf content on the properties of Zr hydride. In the present study, fine bulk samples of δ-phase Zr hydrides with various Hf contents were prepared and their thermal and mechanical properties were investigated. We examined the phase states and the microstructure of the hydrides by means of X-ray diffraction and SEM/EDX analyses. In the temperature range from room temperature to 673 K, the heat capacity and the thermal diffusivity of the hydrides were measured and the thermal conductivity was evaluated. The Vickers hardness and the sound velocity of the hydrides were measured at room temperature, and the elastic modulus was calculated from the measured sound velocity. The effects of temperature and Hf content on the properties of Zr hydrides were studied. (author)

  17. Hydride precipitation and its influence on mechanical properties of notched and unnotched Zircaloy-4 plates

    International Nuclear Information System (INIS)

    The hydride formation and its influence on the mechanical performance of hydrided Zircaloy-4 plates containing different hydrogen contents were studied at room temperature. For the unnotched plate samples with the hydrogen contents ranging from 25 to 850 wt. ppm, the hydrides exerted an insignificant effect on the tensile strength, while the ductility was severely degraded with increasing hydrogen content. The fracture mode and degree of embrittlement were strongly related to the hydrogen content. When the hydrogen content reached a level of 850 wt. ppm, the plate exhibited negligible ductility, resulting in almost completely brittle behavior. For the hydrided notched plate, the tensile stress concentration associated with the notch tip facilitated the hydride accumulation at the region near the notch tip and the premature crack propagation through the hydride fracture during hydriding. The final brittle through-thickness failure for this notched sample was mainly attributed to the formation of a continuous hydride network on the thickness section and the obtained very high hydrogen concentration (estimated to be 1965 wt. ppm)

  18. Separation of antimony from synthetic cloth. Application in forensic science using neutron activation analysis

    International Nuclear Information System (INIS)

    A simple ion-exchange separation procedure was developed for selective removal of antimony from synthetic cloth to facilitate determination of several trace elements frequently used to identify gunshot residues by neutron activation analysis. Radiotracers of Sb, Ba, Cu, Co, As, Zn, Hg and Ag were employed to optimize the developed procedure. The method involves the quantitative retention of the above elements, except of Sb, from 0.2M ammonium carbonate solution using Chelex 100 resin and subsequent quantitative elution of the elements of interest with 2M nitric acid for gamma-ray spectrometry. The procedure was tested by simulated gunshot residues. (author)

  19. Investigation of adsorption interaction of cadmium oxide with antimony (3) in alkaline solutions

    International Nuclear Information System (INIS)

    Adsorption processes on cadmium oxide in pure antimonite alkaline (KOH) solutions and in the presence of organic additions (sodium salt of carboxymethylcellulose, straw oil) have been studied. It is shown, that in the systems being studied, the chemosorptional interaction, leading to a sharp change in the adsorbent surface state is observed. It is established that the formation of a surface high-disperse cadmium oxide-antimony com ound on the cadmium oxide results in practically complete suppression of the cadmium oxide hydration process in aqueous solutions

  20. Polymorphism and properties of Bi{sub 2}WO{sub 6} doped with pentavalent antimony

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonova, E.P.; Belov, D.A. [M.V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Gagor, A.B.; Pietraszko, A.P. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-950 Wrocław (Poland); Alekseeva, O.A. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 119333 Moscow (Russian Federation); Voronkova, V.I., E-mail: voronk@polly.phys.msu.ru [M.V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation)

    2014-04-05

    Highlights: • The limit of Bi{sub 2}W{sub 1−x}Sb{sub x}O{sub 6−y} solid solutions is at x = 0.05. • Bi{sub 2}W{sub 1−x}Sb{sub x}O{sub 6−y} does not fully transform into high-temperature monoclinic phase. • Sb{sup 5+} has a weak effect on the temperatures of the ferroelectric transitions. • γ→γ{sup ‴} transition near 650 °C was observed as strong permittivity peak at 0.01–8 Hz. • The conductivity of Bi{sub 2}W{sub 0.96}Sb{sub 0.04}O{sub 6−y} at 800 °C reaches 0.02 S/cm. -- Abstract: Antimony-containing solid solutions isostructural with bismuth tungstate, Bi{sub 2}WO{sub 6}, have been prepared in air as polycrystalline samples by solid-state reactions and as single crystals by unseeded flux growth. The antimony in the solid solutions is in a pentavalent state and substitutes for tungsten in the structure of Bi{sub 2}WO{sub 6}. The Bi{sub 2}W{sub 1−x}Sb{sub x}O{sub 6−y} solid solutions have been shown to exist in the composition range 0 ⩽ x ⩽ 0.05. We have examined the effect of Sb{sup 5+} doping on the polymorphism and properties of Bi{sub 2}WO{sub 6}. In contrast to undoped Bi{sub 2}WO{sub 6}, antimony-substituted bismuth tungstate does not completely transform into its high-temperature, monoclinic phase at 960 °C and remains two-phase up to temperatures approaching its melting point. Antimony substitution for tungsten has a weak effect on the temperatures of the ferroelectric phase transitions. Heterovalent substitution of Sb{sup 5+} for W{sup 6+} is accompanied by the formation of extra oxygen vacancies and an increase in the electrical conductivity of the solid solutions by one to two orders of magnitude relative to undoped Bi{sub 2}WO{sub 6}.

  1. Influence of arsenic,antimony and cobalt impurities on the cathodic process in zinc electrowinning

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By means of an electrochemical study,the influence of arsenic,antimony and cobalt on cathodic polarization in the zinc electrowinning process,the associated kinetic equations and parameters,and the polarization mechanism have been studied.The results show that the experimental values of the kinetic parameters are in accord with the theoretical values in the ZnSO4/H2SO4 solution with a single impurity is added.In contrast,the charge transfer coefficient α is smaller than the theoretical value in the ZnSO4/H2SO4 solution when the three impurities are added together.

  2. Impact of Biofield Treatment on Physical, Structural and Spectral Properties of Antimony Sulfide

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Antimony sulfide (Sb2S3) has gained extensive attention in solar cells due to their potential as a low-cost and earth abundant absorber material. In solar cell absorber, the optoelectrical properties such as energy band gap and absorption coefficient of Sb2S3play an important role, which have strong relationships with their crystal structure, lattice parameter and crystallite size. Hence in the present investigation, Sb2S3 powder samples were exposed to biofield treatment, and furthe...

  3. Novel antimony doped tin oxide/carbon aerogel as efficient electrocatalytic filtration membrane

    Science.gov (United States)

    Liu, Zhimeng; Zhu, Mengfu; Wang, Zheng; Wang, Hong; Deng, Cheng; Li, Kui

    2016-05-01

    A facile method was developed to prepare antimony doped tin oxide (Sb-SnO2)/carbon aerogel (CA) for use as an electrocatalytic filtration membrane. The preparation process included synthesis of a precursor sol, impregnation, and thermal decomposition. The Sb-SnO2, which was tetragonal in phase with an average crystallite size of 10.8 nm, was uniformly distributed on the CA surface and firmly attached via carbon-oxygen-tin chemical bonds. Preliminary filtration tests indicated that the Sb-SnO2/CA membrane had a high rate of total organic carbon removal for aqueous tetracycline owing to its high current efficiency and electrode stability.

  4. Electromagnetic absorption and shielding behavior of polyaniline-antimony oxide composites

    Science.gov (United States)

    Faisal, Muhammad; Khasim, Syed

    2013-02-01

    This work highlights the microwave absorption and electromagnetic interference (EMI) shielding properties of synthesized polyaniline (PAni)-antimony oxide (Sb2O3) composites in the 8-12 GHz (X-band) range. These composites showed absorption dominated EMI shielding effectiveness (EMI SEA) of -34 to -40 dB (> 99 % attenuation), indicating their shielding potential throughout the X-band. Our analyses reveal that the Sb2O3 particles in PAni matrix have key impact in determining the microwave absorption properties of the composites.

  5. Mathematical modeling of the nickel/metal hydride battery system

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, B K [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  6. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.

    Science.gov (United States)

    Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D

    2015-04-01

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results. PMID:26262969

  7. Characteristics of hydriding and hydrogen embrittlement of the Ti-Al-Zr alloy

    International Nuclear Information System (INIS)

    The characteristics of hydriding and hydrogen embrittlement of the Ti-Al-Zr alloy were evaluated. The amount of hydrogen absorbed into the alloy at 500 deg. C was continuously monitored using a hydrogen pressure measurement. The rate of decrease in hydrogen pressure indicated a high absorption rate of hydrogen into the alloy, following a linear rate law. X-ray diffraction studies showed the formation of δ-phase titanium hydride (TiH1.97) after hydriding. At room temperature, the alloy showed much sensitivity to embrittlement in ductility by hydrogen. The δ-hydrides in the grain boundaries promoted the crack propagation in the presence of stress, leading to the cleavage failure mode. However, the tensile strengths were almost independent of the hydrogen content up to 1174 ppm. It is thus concluded that the δ-hydride acts to decrease the ductility without affecting tensile strengths

  8. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    International Nuclear Information System (INIS)

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described

  9. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction.

    Science.gov (United States)

    Kim, Ki Chul; Dai, Bing; Karl Johnson, J; Sholl, David S

    2009-05-20

    The reaction thermodynamics of metal hydrides are crucial to the use of these materials for reversible hydrogen storage. In addition to altering the kinetics of metal hydride reactions, the use of nanoparticles can also change the overall reaction thermodynamics. We use density functional theory to predict the equilibrium crystal shapes of seven metals and their hydrides via the Wulff construction. These calculations allow the impact of nanoparticle size on the thermodynamics of hydrogen release from these metal hydrides to be predicted. Specifically, we study the temperature required for the hydride to generate a H(2) pressure of 1 bar as a function of the radius of the nanoparticle. In most, but not all, cases the hydrogen release temperature increases slightly as the particle size is reduced. PMID:19420649

  10. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction

    International Nuclear Information System (INIS)

    The reaction thermodynamics of metal hydrides are crucial to the use of these materials for reversible hydrogen storage. In addition to altering the kinetics of metal hydride reactions, the use of nanoparticles can also change the overall reaction thermodynamics. We use density functional theory to predict the equilibrium crystal shapes of seven metals and their hydrides via the Wulff construction. These calculations allow the impact of nanoparticle size on the thermodynamics of hydrogen release from these metal hydrides to be predicted. Specifically, we study the temperature required for the hydride to generate a H2 pressure of 1 bar as a function of the radius of the nanoparticle. In most, but not all, cases the hydrogen release temperature increases slightly as the particle size is reduced.

  11. Strategies for the improvement of the hydrogen storage properties of metal hydride materials.

    Science.gov (United States)

    Wu, Hui

    2008-10-24

    Metal hydrides are an important family of materials that can potentially be used for safe, efficient and reversible on-board hydrogen storage. Light-weight metal hydrides in particular have attracted intense interest due to their high hydrogen density. However, most of these hydrides have rather slow absorption kinetics, relatively high thermal stability, and/or problems with the reversibility of hydrogen absorption/desorption cycling. This paper discusses a number of different approaches for the improvement of the hydrogen storage properties of these materials, with emphasis on recent research on tuning the ionic mobility in mixed hydrides. This concept opens a promising pathway to accelerate hydrogenation kinetics, reduce the activation energy for hydrogen release, and minimize deleterious possible by-products often associated with complex hydride systems. PMID:18821548

  12. Mobility and chemical bond of hydrogen in titanium and palladium hydrides

    International Nuclear Information System (INIS)

    The probabilities for π- meson capture by hydrogen are measured at 25, 155 and 200 deg C in TiHsub(1.65) hydride and at 25, -120 and -196 deg C in PdHsub(0.67) hydride. An analysis of the results obtained shows that within the accuracy of the measurements (approximately 10%) a sharp (up to 1012) change in the mobility of hydrogen in the hydrides induced by temperature changes within the ranges indicated does not noticeably affect the probabilities for π- meson capture by bound hydrogen, i.e. does not lead to appreciable changes in the Me-H bond. A comparison of the capture probabilities for palladium hydride and hydrides of neighboring transition metals shows that there are no pronounced anomalies in the Pd-H bond

  13. Hydride Ions, HCO+ and Ionizing Irradiation in Star Forming Region

    Science.gov (United States)

    Benz, Arnold O.; Bruderer, Simon; van Dishoeck, Ewine

    2016-06-01

    Hydrides are fundamental precursor molecules in cosmic chemistry and many hydride ions have become observable in high quality for the first time thanks to the Herschel Space Observatory. Ionized hydrides, such as CH+ and OH+ and also HCO+ affect the chemistry of molecules such as water. They also provide complementary information on irradiation by far UV (FUV) or X-rays and gas temperature.We explore hydrides of the most abundant heavier elements in an observational survey covering star forming regions with different mass and evolutionary state. Twelve YSOs were observed with HIFI on Herschel in 6 spectral settings providing fully velocity-resolved line profiles. The YSOs include objects of low (Class 0 and I), intermediate, and high mass, with luminosities ranging from 4 Ls to 2 105 Ls.The targeted lines of CH+, OH+, H2O+, and C+ are detected mostly in blue-shifted absorption. H3O+ and SH+ are detected in emission and only toward some high-mass objects. For the low-mass YSOs the column density ratios of CH+/OH+ can be reproduced by simple chemical models implying an FUV flux of 2 – 400 times the ISRF at the location of the molecules. In two high-mass objects, the UV flux is 20 – 200 times the ISRF derived from absorption lines, and 300 – 600 ISRF using emission lines. Upper limits for the X-ray luminosity can be derived from H3O+ observations for some low-mass objects.If the FUV flux required for low-mass objects originates at the central protostar, a substantial FUV luminosity, up to 1.5 Ls, is required. For high-mass regions, the FUV flux required to produce the observed molecular ratios is smaller than the unattenuated flux expected from the central object(s) at the Herschel beam radius. This is consistent with an FUV flux reduced by circumstellar extinction or by bloating of the protostar.The ion molecules are proposed to form in FUV irradiated cavity walls that are shocked by the disk wind. The shock region is turbulent, broadening the lines to some 1

  14. Data acquisition for delayed hydride cracking studies using DCPD technique

    International Nuclear Information System (INIS)

    Direct current potential drop (DCPD) is a commonly used technique for making measurements on crack propagation in Delayed Hydride Cracking (DHC) studies on materials. It consists of passing a highly stable current ( 5-15A) through a Compact Toughness (CT) specimen of the material subjected to a mechanical load at the requisite elevated temperature, and precisely measuring and tracking the very small voltage developed across two points of specific geometry on it. Though simple in principle, this involves measuring and extracting very small signals from inevitable large spurious signals in a harsh environment, and it requires a high quality data acquisition and analysis system to extract the required information from the experiment

  15. Equilibrium composition for the reaction of plutonium hydride with air

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    There are six independent constituents with 4 chemical elements, i.e. PuH2.7(s), PuN(s), Pu2O3(s), N2, O2 and H2, therefore , the system described involves of 2 independent reactions ,both those of the experimental, which indicates that the chemical equilibrium is nearly completely approached. Therefore, it is believed that the reaction rate of plutonium hydride with air is extremely rapid. The present paper has briefly discussed the simultaneous reactions and its thermodynamic coupling effect.

  16. Simulation of metal hydride reactor with aluminium foam matrix

    International Nuclear Information System (INIS)

    'Full text:' A 1-D model has been developed for testing different designs of hydride reactors. The computer program can simulate a complete reactor or a part of it in planar, cylindrical or spherical geometry. It reproduces an experimental loop: absorption followed by desorption and calculates heat transfer during the reaction. Simulation results have been confronted to experimental data with very good correlation. A reactor with a heat transfer matrix inside, such as aluminum foam, can be simulated. We have evaluated the size limits of a reactor and the category of foam that preserves the good reaction kinetic performances of a reactor filled with LaNi5. (author)

  17. Uranium-zirconium hydride TRIGA-LEU fuel

    International Nuclear Information System (INIS)

    The development and testing of TRIGA-LEU fuel with up to 45 wt-% U is described. Topics that are discussed include properties of hydride fuels, the prompt negative temperature coefficient, pulse heating tests, fission product retention, and the limiting design basis parameter and values. General specifications for Er-U-ZrH TRIGA-LEU fuel with 8.5 to 45 wt-% U and an outline of the inspections during manufacture of the fuel are also included. (author). 8 figs, 1 tab

  18. Comparison between different reactions of group IV hydride with H

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Shaolong; ZHANG; Xuqiang; ZHANG; Qinggang; ZHANG; Yici

    2006-01-01

    The four-dimensional time-dependent quantum dynamics calculations for reactions of group IV hydride with H are carried out by employing the semirigid vibrating rotor target model and the time-dependent wave packet method. The reaction possibility, cross section and rate constants for reactions (H+SiH4 and H+GeH4) in different initial vibrational and rotational states are obtained. The common feature for such kind of reaction process is summarized. The theoretical result is consistent with available measurement, which indicates the credibility of this theory and the potential energy surface.

  19. A compact hydrogen recycling system using metal hydrides

    International Nuclear Information System (INIS)

    A gas recycling system to prevent losses of isotopically enriched hydrogen gas has been developed for the operation of a liquid target (2.7 l) used by the Radiative Muon Capture group at TRIUMF. The experimental requirements for high gas purity (chemical impurities below 10-9), low operating pressure (below 1 bar abs) and high loading pressure (about 10 bar needed for a palladium purifier) together with the usual hydrogen safety requirements were satisfied with a metal hydride storage device in combination with a small pump/compressor system. A description of the complete system together with its characteristic operational data are given in this paper. ((orig.))

  20. The calculated rovibronic spectrum of scandium hydride, ScH

    CERN Document Server

    Lodi, Lorenzo; Tennyson\\, Jonathan

    2015-01-01

    The electronic structure of six low-lying electronic states of scandium hydride, $X\\,{}^{1}\\Sigma^+$, $a\\,{}^{3}\\Delta$, $b\\,{}^{3}\\Pi$, $A\\,{}^{1}\\Delta$ $c\\,{}^{3}\\Sigma^+$, and $B\\,{}^{1}\\Pi$, is studied using multi-reference configuration interaction as a function of bond length. Diagonal and off-diagonal dipole moment, spin-orbit coupling and electronic angular momentum curves are also computed. The results are benchmarked against experimental measurements and calculations on atomic scandium. The resulting curves are used to compute a line list of molecular ro-vibronic transitions for $^{45}$ScH.

  1. Precipitation of reoriented hydrides and textural change of α-zirconium grains during delayed hydride cracking of Zr-2.5%Nb pressure tube

    International Nuclear Information System (INIS)

    Cantilever beam (CB) specimens referred to as L90 and L60 with the notch directions tilted normal to, and at an angle of 60 deg. to, the transverse direction of a cold-worked and annealed Zr-2.5%Nb pressure tube, respectively, were subjected to delayed hydride cracking (DHC) testing at 250 deg. C. L60 specimen showed slanted growth of the DHC crack compared to L90 without tilting. An X-ray diffractometric study was carried out on the fractured surfaces of the two CB specimens after DHC testing. The δ-hydride phase was confirmed to sit on the fracture surface, demonstrating the growth of the DHC crack through fracturing of the reoriented hydrides. Furthermore, the texture of the reoriented hydrides was determined for the first time. Comparing the pole figures of the {1 1 1}δ-hydride and the (0 0 0 1)α-zirconium, it is concluded that the reoriented hydrides nucleate first of all at the α-zirconium grains. A change in the orientation of the α-zirconium grains, mainly by twinning on the {1 0 1-bar} planes, was demonstrated to occur during the propagation of the DHC crack. On the basis of the above findings, a mechanism of the DHC was discussed

  2. Formation of alloys in Ti-V system in hydride cycle and synthesis of their hydrides in self-propagating high-temperature synthesis regime

    Energy Technology Data Exchange (ETDEWEB)

    Aleksanyan, A.G., E-mail: a.g.aleks_yan@mail.ru [A.B. Nalbandyan Institute of Chemical Physics of Armenian NAS, 5/2 P.Sevak Str., Yerevan 0014 (Armenia); Dolukhanyan, S.K. [A.B. Nalbandyan Institute of Chemical Physics of Armenian NAS, 5/2 P.Sevak Str., Yerevan 0014 (Armenia); Shekhtman, V.Sh. [Institute of Solid State Physics, RAS, Chernogolovka, Moscow District 142432 (Russian Federation); Huot, J., E-mail: jacques_huot@uqtr.ca [Institut de recherche sur l' hydrogene, Universite du Quebec a Trois-Rivieres (Canada); Ter-Galstyan, O.P.; Mnatsakanyan, N.L. [A.B. Nalbandyan Institute of Chemical Physics of Armenian NAS, 5/2 P.Sevak Str., Yerevan 0014 (Armenia)

    2011-09-15

    Research highlights: > We synthesize Ti-V alloys by new 'hydride cycle' method. Structural characteristics of formed alloys we investigate by X-ray diffraction. > We show that the alloys contain mainly BCC crystal structure. > We investigate the interaction of the synthesized alloys with hydrogen in combustion regime. > We study the properties of hydrides by X-ray, DTA and DSC analyses. - Abstract: In the present work, the possibility of formation of titanium and vanadium based alloys of BCC structure using hydride cycle was investigated. The mechanism of formation of alloys in Ti-V system from the powders of hydrides TiH{sub 2} and VH{sub 0.9} (or of V) by compaction followed by dehydrogenation was studied. Then, the interaction of the synthesized alloys with hydrogen in combustion regime (self-propagating high-temperature synthesis, SHS) resulting in hydrides of these alloys was investigated. DTA and DSC analyses of some alloys and their hydrides were performed and their thermal characteristics were measured.

  3. Effect of antimony incorporation on structural properties of CuInS{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabeh, M., E-mail: mohamedbenrabeh@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Chaglabou, N., E-mail: nadia_chaglabou@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Kanzari, M., E-mail: Mounir.Kanzari@ipeit.rnu.t [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia)

    2010-02-15

    CuInS{sub 2} (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS{sub 2} phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  4. Understanding the radiolabelling mechanism of {sup 99m}Tc-antimony sulphide colloid

    Energy Technology Data Exchange (ETDEWEB)

    Tsopelas, Chris E-mail: ctsopela@mail.rah.sa.gov.au

    2003-12-01

    The chemistry of antimony trisulphide colloid (ATC) was examined to elucidate the radiolabelling mechanism with {sup 99m}TcO{sub 4}{sup -}. Ion exchange chromatography and atomic absorption spectrophotometry techniques determined ATC to be resistant to hydrolysis in 0.1 M hydrochloric acid (HCl) at 25 deg. C or 100 deg. C (>97% recovery, Sb{sup 3+} absent). Hydrogen sulphide gas detected did not participate in the mechanism, where antimony trisulphide and {sup 99m}TcO{sub 4}{sup -} in HCl/100 deg. C yielded 96% {sup 99m}Tc-product from a K{sub 2}S-free formulation (versus 98% when K{sub 2}S was present). {sup 99m}TcO{sub 4}{sup -} was reduced >90% by DMSA or dithiothreitol under the same conditions, identifying involvement of thiol groups. Infrared analysis of Re-ATC showed S-O bonds, indicating excess thiol groups at the colloid surface were oxidised at the expense of {sup 99m}TcO{sub 4}{sup -} reduction.

  5. A Black Phosphate Conversion Coating on Steel Surface Using Antimony(III)-Tartrate as an Additive

    Science.gov (United States)

    Li, Feng; Wang, Guiping

    2016-05-01

    A novel black phosphate conversion coating was formed on steel surface through a Zn-Mn phosphating bath containing mainly ZnO, H3PO4, Mn(H2PO4)2, and Ca(NO3)2, where antimony(III)-tartrate was used as the blackening agent of phosphatization. The surface morphology and composition of the coating were characterized by scanning electron microscopy, energy dispersion spectroscopy, and x-ray photoelectron spectroscopy. Corrosion resistance of the coating was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy. The pH value of the solution had significant influence on the formation and corrosion resistance of the coating. The experimental results indicated that the Sb plays a vital role in the blackening of phosphate conversion coating. The optimal concentration of antimony(III)-tartrate in the phosphating bath used in this experiment was 1.0 g L-1, as higher values reduced the corrosion resistance of the coating. In addition, by saponification and oil seals, the corrosion duration of the black phosphate coating in a copper sulfate spot test can be as long as 20 min.

  6. Effect of electronic contribution on temperature-dependent thermal transport of antimony telluride thin film

    International Nuclear Information System (INIS)

    Highlights: • We investigated thermal transport of the antimony telluride thin films. • The contribution of the electronic thermal conductivity increased up to ∼77% at 300 K. • We theoretically analyze and explain the high contribution of electronic component. - Abstract: We study the theoretical and experimental characteristics of thermal transport of 100 nm and 500 nm-thick antimony telluride (Sb2Te3) thin films prepared by radio frequency magnetron sputtering. The thermal conductivity was measured at temperatures ranging from 20 to 300 K, using four-point-probe 3-ω method. Out-of-plane thermal conductivity of the Sb2Te3 thin film was much lesser in comparison to the bulk material in the entire temperature range, confirming that the phonon- and electron-boundary scattering are enhanced in thin films. Moreover, we found that the contribution of the electronic thermal conductivity (κe) in total thermal conductivity (κ) linearly increased up to ∼77% at 300 K with increasing temperature. We theoretically analyze and explain the high contribution of electronic component of thermal conductivity towards the total thermal conductivity of the film by a modified Callaway model. Further, we find the theoretical model predictions to correspond well with the experimental results

  7. Antimony retention and release from drained and waterlogged shooting range soil under field conditions.

    Science.gov (United States)

    Hockmann, Kerstin; Tandy, Susan; Lenz, Markus; Reiser, René; Conesa, Héctor M; Keller, Martin; Studer, Björn; Schulin, Rainer

    2015-09-01

    Many soils polluted by antimony (Sb) are subject to fluctuating waterlogging conditions; yet, little is known about how these affect the mobility of this toxic element under field conditions. Here, we compared Sb leaching from a calcareous shooting range soil under drained and waterlogged conditions using four large outdoor lysimeters. After monitoring the leachate samples taken at bi-weekly intervals for >1.5 years under drained conditions, two of the lysimeters were subjected to waterlogging with a water table fluctuating according to natural rainfall water infiltration. Antimony leachate concentrations under drained conditions showed a strong seasonal fluctuation between 110 μg L(-1) in summer and soil solution indicated that this decrease in Sb(V) concentrations was attributable to the reduction of Sb(V) to Sb(III) and the stronger sorption affinity of the latter to iron (Fe) (hydr)oxide phases. Our results demonstrate the importance of considering seasonal and waterlogging effects in the assessment of the risks from Sb-contaminated sites. PMID:25592464

  8. Phase effects on chemical behaviors of tin, antimony and tellurium fission products in aqueous solutions

    International Nuclear Information System (INIS)

    The oxidation states of tin, antimony and tellurium isotopes formed predominantly (>91%) by fission were investigated in aqueous solutions of 233U irradiated in a reactor. Results were corrected for the thermal reactions with the bulk radiolysis products using tracers for each element. In 0.4 M H2SO4 solutions containing 4.3 mM 233UO22+, 1.5 mM Te(IV) and 1.5 mM Te(VI), the fraction of Te(IV) is 98 +- 2% in the absence of oxygen and 92 +- 3% in the presence of oxygen. In frozen solutions of the same composition, the fraction of Te(IV) is 83 +- 2% in the absence of oxygen and 81 +- 3% in the presence of oxygen. Similar differences are also found in the case of the antimony isotopes in 0.4 M H2SO4 solutions and the tin isotopes in 1 M HCl solutions. For the interpretation of the differences, the reducing action of the species diffusing from the track of the fission fragments is considered. (author)

  9. Effect of indium and antimony doping in SnS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chaki, Sunil H., E-mail: sunilchaki@yahoo.co.in; Chaudhary, Mahesh D.; Deshpande, M.P.

    2015-03-15

    Highlights: • Single crystals growth of pure SnS, indium doped SnS and antimony doped SnS by direct vapour transport (DVT) technique. • Doping of In and Sb occurred in SnS single crystals by cation replacement. • The replacement mechanism ascertained by EDAX, XRD and substantiated by Raman spectra analysis. • Dopants concentration affects the optical energy bandgap. • Doping influences electrical transport properties. - Abstract: Single crystals of pure SnS, indium (In) doped SnS and antimony (Sb) doped SnS were grown by direct vapour transport (DVT) technique. Two doping concentrations of 5% and 15% each were employed for both In and Sb dopants. Thus in total five samples were studied viz., pure SnS (S1), 5% In doped SnS (S2), 15% In doped SnS (S3), 5% Sb doped SnS (S4) and 15% Sb doped SnS (S5). The grown single crystal samples were characterized by evaluating their surface microstructure, stoichiometric composition, crystal structure, Raman spectroscopy, optical and electrical transport properties using appropriate techniques. The d.c. electrical resistivity and thermoelectric power variations with temperature showed semiconducting and p-type nature of the as-grown single crystal samples. The room temperature Hall Effect measurements further substantiated the semiconducting and p-type nature of the as-grown single crystal samples. The obtained results are deliberated in detail.

  10. The analysis of antimony species by using ESI-MS and HPLC-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Lintschinger, J.; Schramel, O.; Kettrup, A. [GSF-Forschungszentrum fuer Umwelt und Gesundheit GmbH, Institut fuer Oekologische Chemie, Ingolstaedter Landstrasse 1, Gebaeude 22, D-85758 Neuherberg (Germany)

    1998-05-01

    A new method for the separation of organic antimony as trimethylantimony dichloride (TMSbCl{sub 2}) and inorganic Sb(V) and Sb(III) by using anion exchange high-performance liquid chromatography coupled with inductively-coupled plasma mass spectrometry (ICP-MS) is presented. In comparison with previous work the detection limits for both species were significantly decreased, down to 5 ngL{sup -1}, mainly by avoiding any contamination from the chromatographic device. Using an ultrasonic nebulizer (USN) improved the detection limits for inorganic Sb species, but was useless for the HPLC method due to problems in the recovery of the TMSbCl{sub 2}. Matrix interferences of the chromatographic determination were studied in detail and the method was applied to environmental samples assumed to contain organic antimony species. Additionally, the molecular structure of the TMSbCl{sub 2} in solution was studied by using electrospray-ionization mass spectrometry (ESI-MS) showing that this species occurs most probably as [TMSbOH]{sup +} in aqueous solutions. (orig.) With 7 figs., 2 tabs., 14 refs.

  11. Migration of antimony from PET containers into regulated EU food simulants.

    Science.gov (United States)

    Sánchez-Martínez, María; Pérez-Corona, Teresa; Cámara, Carmen; Madrid, Yolanda

    2013-11-15

    Antimony migration from polyethylene terephthalate (PET) containers into aqueous (distilled water, 3% acetic acid, 10% and 20% ethanol) and fatty food simulants (vegetable oil), as well as into vinegar, was studied. Test conditions were according to the recent European Regulation 10/2011 (EU, 2011). Sb migration was assayed by ICP-MS and HG-AFS. The results showed that Sb migration values ranged from 0.5 to 1.2μg Sb/l, which are far below the maximum permissible migration value for Sb, 40μg Sb/kg, (EU, Regulation 10/2011). Parameters as temperature and bottle re-use influence were studied. To assess toxicity, antimony speciation was performed by HPLC-ICP-MS and HG-AFS. While Sb(V) was the only species detected in aqueous simulants, an additional species (Sb-acetate complex) was measured in wine vinegar. Unlike most of the studies reported in the literature, migration tests were based on the application of the EU directive, which enables comparison and harmonisation of results. PMID:23790852

  12. Evaluation of antimony microparticles supported on biochar for application in the voltammetric determination of paraquat.

    Science.gov (United States)

    Gevaerd, Ava; de Oliveira, Paulo R; Mangrich, Antonio S; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2016-05-01

    This work describes the construction and application of carbon paste electrodes modified with biochar and antimony microparticles (SbBCPE) for voltammetric determination of paraquat using a simple and sensitive procedure based on voltammetric stripping analysis. Some parameters such as amount of biochar and antimony used in the composition of the carbon paste and instrumental parameters were examined in detail. Under optimized conditions, an analytical curve was obtained for paraquat determination employing SbBCPE, which showed a linear response ranging from 0.2 to 2.9μmolL(-1), with limit of detection and quantification of 34nmolL(-1) and 113nmolL(-1), respectively, after paraquat pre-concentration of 120s. The repeatability study presented a RSD=2.0% for 10 consecutive measurements using the same electrode surface and the reproducibility study showed a RSD=2.7% for measurements with 10 different electrode surfaces. The proposed sensor was successfully applied for paraquat determination in tap water and citric fruit juice spiked samples and good recoveries were obtained without any sample pre-treatment, showing its promising analytical performance. PMID:26952405

  13. High levels of antimony in dust from e-waste recycling in southeastern China

    International Nuclear Information System (INIS)

    Environmental contamination due to uncontrolled e-waste recycling is an emerging global issue. Antimony (Sb) is a toxic element used in semiconductor components and flame retardants for circuit board within electronic equipment. When e-waste is recycled, Sb is released and contaminates the surrounding environment; however, few studies have characterized the extent of this problem. In this study, we investigated Sb and arsenic (As) distributions in indoor dust from 13 e-waste recycling villages in Guiyu, Guangdong Province, southeastern China. Results revealed significantly elevated concentrations of Sb (6.1-232 mg/kg) in dust within all villages, which were 3.9-147 times higher than those from the non e-waste sites, indicating e-waste recycling was an important source of Sb pollution. On the contrary, As concentrations (5.4-17.7 mg/kg) in e-waste dusts were similar to reference values from the control sites. Therefore, dusts emitted from e-waste recycling may be characterized by high Sb/As ratios, which may help identify the contamination due to the e-waste recycling activities. - Highlights: → Antimony and arsenic concentrations in dust from e-waste recycling were investigated. → E-waste recycling is an important emerging source of Sb pollution. → Sb/As ratios may help identify the e-waste contamination.

  14. Contrasting distribution of trace elements between representative antimony deposits in southern China

    International Nuclear Information System (INIS)

    The Xuefeng uplifted belt and the neighboring Xikuangshan region of southern China is the largest antimony producing area in the world. The mineralizing solution which was responsible for the antimony deposition is considered to be derived mainly from deep crustal fluids during a large tectonic movement of the Jurassic time. We analyzed trace elements of ore minerals and fluid inclusions from this area by CSIRO's micro-PIXE to understand characteristics of the mineralizing solution. We selected three representative 'super-large' deposits, one in the Xikuangshan area and the others within the Xuefeng belt: (1) Xikuangshan (simple Sb) which is structurally controlled by large-scale transcrustal faults and fractures, and mainly hosted by limestone; (2) Wuxi (Sb-Au-W), embedded in slate and structurally controlled by large-scale faults and fractures; and (3) Banxi (simple Sb) which is hosted by slate and controlled by local fractures. Our preliminary result indicated that the trace element distribution is highly contrasting for these three deposits corresponding to each geologic setting. Our case study showed that being combined with field evidence, micro-PIXE can contribute to understand large tectonic movements and to establish an effective exploration model for super-large mineral deposits

  15. Structure and properties of antimony-doped lanthanum molybdate La2Mo2O9

    International Nuclear Information System (INIS)

    Polycrystalline samples of the composition La2Mo2−xSbxO9−y, where 0 ≤ x ≤ 0.05, were prepared by solid-phase synthesis. Single crystals of La2Mo1.96Sb0.04O8.17 were obtained by spontaneous crystallization from flux. The structure of the metastable βms phase of this compound was determined at room temperature by X-ray diffraction. It was found that the La, Mo, and O1 atoms are displaced from the threefold axis on which they are located in the high-temperature β phase. It was shown that molybdenum atoms in the crystal structure are partially replaced by antimony atoms, which are located on the threefold axis. In antimony-doped crystals, lanthanum atoms partially return to the site on the threefold axis and the coordination environment of molybdenum cations becomes more ordered, thus facilitating the stabilization of the cubic phase at room temperature. Calorimetric measurements (DSC) showed that the introduction of Sb as the dopant into the La2Mo2O9 structure leads to a decrease in the temperature of the α → β phase transition from 570 to 520°C and to the partial suppression of this transition. The temperature behavior of the conductivity confirms the DSC data. Thus, doping with Sb contributes to the stabilization of the cubic phase at room temperature.

  16. Organically complexed iron enhances bioavailability of antimony to maize (Zea mays) seedlings in organic soils.

    Science.gov (United States)

    Ptak, Corey; McBride, Murray

    2015-12-01

    Antimony (Sb) is a metalloid belonging to group 15 of the periodic table. Chemical similarities between arsenic (As) and Sb produce concerns about potential health effects of Sb and enrichment in the environment. Antimony is found in oxic environments predominately as an oxyanionic species, antimonite (Sb[OH](6-)). As a result of its net negative charge, Sb[OH](6-) was not initially predicted to have strong interactions with natural organic matter. Oxyanionic species could bind the negatively charged organic matter via a ternary complexation mechanism, in which cationic metals mediate the strong association between organic matter functional groups and oxyanions. However, these interactions are poorly understood in how they influence the bioavailability of oxyanionic contaminants to plants. Iron (Fe) additions to organic soils have been found to increase the number of organically complexed Fe sites suitable for Sb exchange, resulting in a reduced bioavailable fraction of Sb. The bioavailability of Sb to maize seedlings as a function of organically complexed Fe was examined using a greenhouse study. A significant increase in plant tissue Sb was observed as organically complexed Fe increased, which was not predicted by methods commonly used to assess bioavailable Sb. Extraction of soils with organic acids common to the maize rhizosphere suggested that organic acid exudation can readily mobilize Sb bound by organic Fe complexes. PMID:26076768

  17. One-step synthesis of antimony-doped tin dioxide nanocrystallites and their property

    Institute of Scientific and Technical Information of China (English)

    ZHENG Min; WANG Bao

    2009-01-01

    Antimony-doped tin dioxide(ATO) nanoparticles with primary diameter in the range of 9-10 nm were rapidly synthesized via a novel combustion technique, starting with antimony trichloride and tin tetrachloride as metal sources and self-assembly compounds as fuels. The combustion phenomena and characteristics of products were controlled by assembling components in fuel compounds according to appropriate molar ratio. The as-synthesized products were characterized by XRD, SEM, TEM and XPS, respectively. The electrical conductivity was evaluated through measuring the antistatic property of polyester fiber treated by the as-synthesized products. The results show that a mild combustion phenomena without release of smoke can be taken on and perfect azury rutile ATO crystal with complete substitution can be formed rapidly under the appropriate synthetic conditions. The antistatic property of the polyester fiber treated by the as-synthesized ATO products is enhanced remarkably. The triboelectricity voltage below 1.0 kV, half life below 1.0 s and surface resistance below 1.0×106 Ω can be attained.

  18. Distributions and impact factors of antimony in topsoils and moss in Ny-Ålesund, Arctic

    International Nuclear Information System (INIS)

    The distribution of antimony (Sb) in topsoil and moss (Dicranum angustum) in disturbed and undisturbed areas, as well as coal and gangue, in Ny-Ålesund, Arctic was examined. Results show that the weathering of coal bed could not contribute to the increase of Sb concentrations in topsoil and moss in the study area. The distribution of Sb is partially associated with traffic and historical mining activities. The occurrence of the maximum Sb concentration is due to the contribution of human activities. In addition, the decrease of Sb content in topsoil near the coastline may be caused by the washing of seawater. Compared with topsoils, moss could be a useful tool for monitoring Sb in both highly and lightly polluted areas. - Highlights: ► We examined the distribution of antimony in topsoil and moss in Ny-Ålesund, Arctic. ► The distribution of Sb is associated with traffic and historical mining activities. ► The weathering of coal bed cannot lead to the Sb increase in the surface environment. ► The distribution of Sb in moss could reflect the accumulation of Sb pollution. ► Moss can be a useful tool for monitoring Sb in highly and lightly polluted areas. - The distribution of Sb in Ny-Ålesund is partially associated with traffic and historical mining activities, and moss can be a useful tool for monitoring Sb in both highly and lightly polluted areas.

  19. Determination of antimony in nail and hair by thermal neutron activation analysis

    International Nuclear Information System (INIS)

    The concentration of antimony in nail and hair was determined by thermal neutron activation analysis. Samples were collected from the workers of an antimony refinery, inhabitants near the refinery, and residents in control area. They were irradiated by Kyoto University 5000 kW Reactor for 1 h, and cooled for 30 to 100 days. After cooling, the concentration of Sb in nail and hair was estimated by measuring the intensity of γ-ray from 124Sb of the samples, then the samples were washed by 0.1 % aqueous solution of nonionic surface active agent in an ultrasonic cleaner. The γ-ray spectrometry was done again (after washing). The concentration of Sb in nail before washing was 730 ppm for the workers, 2.46 ppm for habitants near the refinery, and 0.19 ppm for the control; after washing, it became 230 ppm for the workers, 0.63 ppm for habitants, and 0.09 ppm for the control. The concentration of Sb in hair before and after washing was 222 ppm and 196 ppm for the workers, and 0.21 ppm and 0.15 ppm for the control, respectively. (author)

  20. Morphology-controlled growth of crystalline antimony sulfide via a refluxing polyol process

    Science.gov (United States)

    Zhang, Rui; Chen, Xiangying; Mo, Maosong; Wang, Zhenghua; Zhang, Meng; Liu, Xinyuan; Qian, Yitai

    2004-02-01

    By refluxing antimony trichloride (SbCl 3) and thiourea in various solvents at suitable reaction conditions, antimony sulfide (Sb 2S 3) crystallites with a diversity of well-defined morphologies were synthesized. Sb 2S 3 rods with the average diameter of 800 nm and the length of 7 μm, as well as microtubes with the average outer diameter of 1.2 μm, the average inner diameter of 800 nm and the length of 8 μm, were obtained in 1,2-propanediol at 180°C for 10 min. In contrast, a series of experiments under different conditions were carried out to investigate the influencing factors on the reaction. The as-synthesized products were characterized by powder X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscope and X-ray photoelectron spectra. The results indicate Sb 2S 3 crystals with different morphologies, including rod-like, tube-like, bowknot-like, flower-like, straw-bundled-like, taken under different experimental conditions. It is found that the reaction temperature, time, solvent and poly(vinyl pyrrolidone) (as a polymer capping reagent) play important roles in the formation of the final Sb 2S 3 crystallites with different morphologies. Also, the possible growth mechanism is discussed.

  1. A quantitative phase field model for hydride precipitation in zirconium alloys: Part I. Development of quantitative free energy functional

    International Nuclear Information System (INIS)

    A temperature dependent, quantitative free energy functional was developed for the modeling of hydride precipitation in zirconium alloys within a phase field scheme. The model takes into account crystallographic variants of hydrides, interfacial energy between hydride and matrix, interfacial energy between hydrides, elastoplastic hydride precipitation and interaction with externally applied stress. The model is fully quantitative in real time and real length scale, and simulation results were compared with limited experimental data available in the literature with a reasonable agreement. The work calls for experimental and/or theoretical investigations of some of the key material properties that are not yet available in the literature

  2. Development of a component design tool for metal hydride heat pumps

    Science.gov (United States)

    Waters, Essene L.

    Given current demands for more efficient and environmentally friendly energy sources, hydrogen based energy systems are an increasingly popular field of interest. Within the field, metal hydrides have become a prominent focus of research due to their large hydrogen storage capacity and relative system simplicity and safety. Metal hydride heat pumps constitute one such application, in which heat and hydrogen are transferred to and from metal hydrides. While a significant amount of work has been done to study such systems, the scope of materials selection has been quite limited. Typical studies compare only a few metal hydride materials and provide limited justification for the choice of those few. In this work, a metal hydride component design tool has been developed to enable the targeted down-selection of an extensive database of metal hydrides to identify the most promising materials for use in metal hydride thermal systems. The material database contains over 300 metal hydrides with various physical and thermodynamic properties included for each material. Sub-models for equilibrium pressure, thermophysical data, and default properties are used to predict the behavior of each material within the given system. For a given thermal system, this tool can be used to identify optimal materials out of over 100,000 possible hydride combinations. The selection tool described herein has been applied to a stationary combined heat and power system containing a high-temperature proton exchange membrane (PEM) fuel cell, a hot water tank, and two metal hydride beds used as a heat pump. A variety of factors can be used to select materials including efficiency, maximum and minimum system pressures, pressure difference, coefficient of performance (COP), and COP sensitivity. The targeted down-selection of metal hydrides for this system focuses on the system's COP for each potential pair. The values of COP and COP sensitivity have been used to identify pairs of highest interest for

  3. Kinetic deuterium isotope effects on ligand migrations in metal hydrides

    International Nuclear Information System (INIS)

    Variable-temperature (VT) 1H and 13C NMR studies of the complexes (μ-X)2Os3(CO)9(μ3-η2-(CH3CH2)2C2) (X = H or D) reveal that alkyne migration over the face of the cluster is directly linked to hydride migrations on the metal core as evidenced by a temperature-independent isotope effect (kHH/kDD = 1.7). In a related study of the VT 13C NMR of (μ-X)2M3(CO)9(μ3-S) (X = H or D; M = Ru, Os) the observation of a kHH/kDD = 1.6 for both the osmium and ruthenium complexes demonstrates that the first stage of carbonyl averaging is brought about by hydride migration and not axial-radial exchange of carbonyl groups, a process that occurs only at higher temperatures. The mechanistic implications of these results are discussed in the context of the reactivity of metal clusters and the dynamic properties of the metal-hydrogen bond

  4. Lab-size rechargeable metal hydride-air cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Kang; Noreus, Dag [Department of Materials and Enviromental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2010-09-01

    Lab-size rechargeable metal hydride-air (MH-air) cells with a gas management device were designed in order to minimize the loss of electrolyte. An AB{sub 5}-type hydrogen storage alloy was used as anode materials of the MH-air. The thickness of the metal hydride electrodes was in the range of 3.0-3.4 mm. Porous carbon-based air electrodes with Ag{sub 2}O catalysts were used as bi-functional electrodes for oxygen reduction and generation. The electrodes were first examined in half-cells to evaluate their performance and then assembled into one MH-air cell. The results showed the good cycling stability of the rechargeable MH-air cell with a capacity of 1990 mAh. The discharge voltage was 0.69 V at 0.05-0.1 C. The charge efficiency was about 90%. The specific and volumetric energy densities were about 95Wh kg{sup -1} and 140 Wh L{sup -1}, respectively. (author)

  5. Separation of covalent hydrides by gas-solid chromatography

    International Nuclear Information System (INIS)

    A fully automated method was developed for separating the hydrides of elements of the IVth to VIIIth main subgroup of the periodic system and of Kr and Xe on the basis of their volatility using gas chromatography. The automated instrument allowing to carry out reduction, separation of the gaseous phase, the loading of a PORAPAK-packed column, the chromatographic separation and sampling was controlled by a HP 2116B computer. The elution time, peak area and the number of theoretical column plates were computed from chromatograms. The capture probably proceeded by a type of nonpolar nonspecific sorption (ΔH/Tsub(b) = 19.2 cal/mol.deg). The height of the theoretical plate was 0.05 to 0.1 cm. The technique may be used as a routine radiochemical method for group separations and for the separation of radioactive hydrides contained in the solution of targets irradiated with neutrons or charged particles in the preparation of radioactive sources of short-lived radionuclides, or in destructive activation analysis. (M.K.)

  6. Gas phase contributions to topochemical hydride reduction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yoji [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan); Li, Zhaofei [Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Hirai, Kei [Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tassel, Cédric [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8302 (Japan); Loyer, François [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Institut des Sciences Chimiques de Rennes, UMR 6226 Université de Rennes 1-CNRS, équipe CSM, Bât. 10B, Campus de Beaulieu, 263, Avenue du Général Leclerc, 35042 Rennes Cedex (France); Ichikawa, Noriya [CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan); Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Abe, Naoyuki [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Yamamoto, Takafumi [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Shimakawa, Yuichi [CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan); Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); and others

    2013-11-15

    Alkali and alkali earth hydrides have been used as solid state reductants recently to yield many interesting new oxygen-deficient transition metal oxides. These reactions have tacitly been assumed to be a solid phase reaction between the reductant and parent oxide. We have conducted a number of experiments with physical separation between the reductant and oxides, and find that in some cases reduction proceeds even when the reagents are physically separated, implying reactions with in-situ generated H{sub 2} and, to a lesser extent, getter mechanisms. Our findings change our understanding of these topochemical reactions, and should enhance the synthesis of additional new oxides and nanostructures. - Graphical abstract: Topochemical reductions with hydrides: Solid state or gas phase reaction? Display Omitted - Highlights: • SrFeO{sub 2} and LaNiO{sub 2} were prepared by topochemical reduction of oxides. • Separating the reducing agent (CaH{sub 2}, Mg metal) from the oxide still results in reduction. • Such topochemical reactions can occur in the gas phase.

  7. Electronic Principles of Hydrogen Incorporation and Dynamics in Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Ljiljana Matović

    2012-08-01

    Full Text Available An approach to various metal hydrides based on electronic principles is presented. The effective medium theory (EMT is used to illustrate fundamental aspects of metal-hydrogen interaction and clarify the most important processes taking place during the interaction. The elaboration is extended using the numerous existing results of experiment and calculations, as well as using some new material. In particular, the absorption/desorption of H in the Mg/MgH2 system is analyzed in detail, and all relevant initial structures and processes explained. Reasons for the high stability and slow sorption in this system are noted, and possible solutions proposed. The role of the transition-metal impurities in MgH2 is briefly discussed, and some interesting phenomena, observed in complex intermetallic compounds, are mentioned. The principle mechanism governing the Li-amide/imide transformation is also discussed. Latterly, some perspectives for the metal-hydrides investigation from the electronic point of view are elucidated.

  8. Gas desorption properties of ammonia borane and metal hydride composites

    International Nuclear Information System (INIS)

    'Full text': Ammonia borane (NH3BH3) has been of great interest owing to its ideal combination of low molecular weight and high H2 storage capacity of 19.6 mass %, which exceeds the current capacity of gasoline. DOE's year 2015 targets involve gravimetric as well as volumetric energy densities. In this work, we have investigated thermal decomposition of ammonia borane and calcium hydride composites at different molar ratio. The samples were prepared by planetary ball milling under hydrogen gas atmosphere pressure of 1Mpa at room temperature for 2, and 10 hours. The gas desorption properties were examined by thermal desorption mass spectroscopy (TDMS). The identification of phases was carried out by X-ray diffraction. The results obtain were shown in fig (a),(b),and (c). Hydrogen desorption properties were observed at all molar ratios, but the desorption temperature is significantly lower at around 70 oC at molar ratio 1:1 as shown in fig (c), and unwanted gas (ammonia) emissions were remarkably suppressed by mixing with the calcium hydride. (author)

  9. Electronic structure of the palladium hydride studied by compton scattering

    CERN Document Server

    Mizusaki, S; Yamaguchi, M; Hiraoka, N; Itou, M; Sakurai, Y

    2003-01-01

    The hydrogen-induced changes in the electronic structure of Pd have been investigated by Compton scattering experiments associated with theoretical calculations. Compton profiles (CPs) of single crystal of Pd and beta phase hydride PdH sub x (x=0.62-0.74) have been measured along the [100], [110] and [111] directions with a momentum resolution of 0.14-0.17 atomic units using 115 keV x-rays. The theoretical Compton profiles have been calculated from the wavefunctions obtained utilizing the full potential linearized augmented plane wave method within the local density approximation for Pd and stoichiometric PdH. The experimental and the theoretical results agreed well with respect to the difference in the CPs between PdH sub x and Pd, and the anisotropy in the CPs of Pd or PdH sub x. This study provides lines of evidence that upon hydride formation the lowest valance band of Pd is largely modified due to hybridization with H 1s-orbitals and the Fermi energy is raised into the sp-band. (author)

  10. Gallium Nitride Nanowires Grown by Hydride Vapor Phase Epitaxy

    Institute of Scientific and Technical Information of China (English)

    LIU Zhan-Hui; XIU Xiang-Qan; YAN Huai-Yue; ZHANG Rong; XIE Zi-Li; HAN Ping; SHI Yi; ZHENG You-Dou

    2011-01-01

    @@ GaN nanowires are grown by hydride vapor phase epitaxy using nickel as a catalyst.The properties of the obtained GaN nanowires are characterized by scanning and transmission electron microscopy,electron diffraction,roomtemperature photoluminescence and energy dispersive spectroscopy.The results show that the nanowires are wurtzite single crystals growing along the[0001]direction and a redshift in the photoluminescence is observed due to a superposition of several effects.The Raman spectra are close to those of the bulk GaN and the significantly broadening of those modes indicates the phonon confinement effects associated with the nanoscale dimensions of the system.%GaN nanowires are grown by hydride vapor phase epitaxy using nickel as a catalyst. The properties of the obtained GaN nanowires are characterized by scanning and transmission electron microscopy, electron diffraction, room-temperature photoluminescence and energy dispersive spectroscopy. The results show that the nanowires are wurtzite single crystals growing along the [0001] direction and a redshift in the photoluminescence is observed due to a superposition of several effects. The Raman spectra are close to those of the bulk GaN and the significantly broadening of those modes indicates the phonon confinement effects associated with the nanoscale dimensions of the system.

  11. Interstellar chemistry of nitrogen hydrides in dark clouds

    CERN Document Server

    Gal, Romane Le; Faure, Alexandre; Forêts, Guillaume Pineau des; Rist, Claire; Maret, Sébastien

    2013-01-01

    The aim of the present work is to perform a comprehensive analysis of the interstellar chemistry of nitrogen, focussing on the gas-phase formation of the smallest polyatomic species and in particular nitrogen hydrides. We present a new chemical network in which the kinetic rates of critical reactions have been updated based on recent experimental and theoretical studies, including nuclear spin branching ratios. Our network thus treats the different spin symmetries of the nitrogen hydrides self-consistently together with the ortho and para forms of molecular hydrogen. This new network is used to model the time evolution of the chemical abundances in dark cloud conditions. The steady-state results are analysed, with special emphasis on the influence of the overall amounts of carbon, oxygen, and sulphur. Our calculations are also compared with Herschel/HIFI observations of NH, NH$_2$, and NH$_3$ detected towards the external envelope of the protostar IRAS 16293-2422. The observed abundances and abundance ratios ...

  12. A low tritium hydride bed inventory estimation technique

    International Nuclear Information System (INIS)

    Low tritium hydride beds were developed and deployed into tritium service in Savannah River Site. Process beds to be used for low concentration tritium gas were not fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory measurement method. Low tritium beds contain less than the detection limit of the IBA (In-Bed Accountability) technique used for tritium inventory. This paper describes two techniques for estimating tritium content and uncertainty for low tritium content beds to be used in the facility's physical inventory (PI). PI are performed periodically to assess the quantity of nuclear material used in a facility. The first approach (Mid-point approximation method - MPA) assumes the bed is half-full and uses a gas composition measurement to estimate the tritium inventory and uncertainty. The second approach utilizes the bed's hydride material pressure-composition-temperature (PCT) properties and a gas composition measurement to reduce the uncertainty in the calculated bed inventory

  13. Superconductive "sodalite"-like clathrate calcium hydride at high pressures

    CERN Document Server

    Wang, Hui; Tanaka, Kaori; Iitaka, Toshiaki; Ma, Yanming

    2012-01-01

    Hydrogen-rich compounds hold promise as high-temperature superconductors under high pressures. Recent theoretical hydride structures on achieving high-pressure superconductivity are composed mainly of H2 fragments. Through a systematic investigation of Ca hydrides with different hydrogen contents using particle-swam optimization structural search, we show that in the stoichiometry CaH6 a body-centred cubic structure with hydrogen that forms unusual "sodalite" cages containing enclathrated Ca stabilizes above pressure 150 GPa. The stability of this structure is derived from the acceptance by two H2 of electrons donated by Ca forming a "H4" unit as the building block in the construction of the 3-dimensional sodalite cage. This unique structure has a partial occupation of the degenerated orbitals at the zone centre. The resultant dynamic Jahn-Teller effect helps to enhance electron-phonon coupling and leads to superconductivity of CaH6. A superconducting critical temperature (Tc) of 220-235 K at 150 GPa obtained...

  14. Electron and nuclear magnetic resonances in compounds and metallic hydrides

    International Nuclear Information System (INIS)

    Proton pulsed Nuclear Magnetic Resonance measurements were performed on the metallic hydrides ZrCr2Hx (x = 2, 3, 4) and ZrV2Hy (y = 2, 3, 4, 5) as a function of temperature between 180 and 400K. The ultimate aim was the investigation of the relaxation mechanisms in these systems by means of the measurement of both the proton (1H) spin-lattice (T1) and spin-spin (T2) relaxation times and to use these data to obtain information about the diffusive motion of the hydrogen atoms. The diffusional activation energies, the jump frequencies and the Korringa constant, Ck, related with the conduction electron contribution to the 1H relaxation were determined for the above hydrides as a function of hydrogen concentration. Our results were analysed in terms of the relaxation models described by Bloembergen, Purcell and Pound (BPP model) and by Torrey. The Korringa type relaxation due to the conduction electrons in metallic systems was also used to interpret the experimental results. We also present the Electron Paramagnetic Ressonance (EPR) study of Gd3+, Nd3+ and Er3+ ions as impurities in several AB3 intermetallic compounds where A = LA, Ce, Y, Sc, Th, Zr and B = Rh, Ir, Pt. The results were analysed in terms of the multiband model previously suggested to explain the behaviour of the resonance parameter in AB2 Laves Phase compounds. (author)

  15. Multi-scale characterization of nanostructured sodium aluminum hydride

    Science.gov (United States)

    NaraseGowda, Shathabish

    Complex metal hydrides are the most promising candidate materials for onboard hydrogen storage. The practicality of this class of materials is counter-poised on three critical attributes: reversible hydrogen storage capacity, high hydrogen uptake/release kinetics, and favorable hydrogen uptake/release thermodynamics. While a majority of modern metallic hydrides that are being considered are those that meet the criteria of high theoretical storage capacity, the challenges lie in addressing poor kinetics, thermodynamics, and reversibility. One emerging strategy to resolve these issues is via nanostructuring or nano-confinement of complex hydrides. By down-sizing and scaffolding them to retain their nano-dimensions, these materials are expected to improve in performance and reversibility. This area of research has garnered immense interest lately and there is active research being pursued to address various aspects of nanostructured complex hydrides. The research effort documented here is focused on a detailed investigation of the effects of nano-confinement on aspects such as the long range atomic hydrogen diffusivities, localized hydrogen dynamics, microstructure, and dehydrogenation mechanism of sodium alanate. A wide variety of microporous and mesoporous materials (metal organic frameworks, porous silica and alumina) were investigated as scaffolds and the synthesis routes to achieve maximum pore-loading are discussed. Wet solution infiltration technique was adopted using tetrahydrofuran as the medium and the precursor concentrations were found to have a major role in achieving maximum pore loading. These concentrations were optimized for each scaffold with varying pore sizes and confinement was quantitatively characterized by measuring the loss in specific surface area. This work is also aimed at utilizing neutron and synchrotron x-ray characterization techniques to study and correlate multi-scale material properties and phenomena. Some of the most advanced

  16. Highly conducting nanosized monodispersed antimony-doped tin oxide particles synthesized via nanoaqueous sol-gel method

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rathouský, Jiří; Rasp, M.; Štefanić, G.; Günther, S.; Niederberger, M.; Fattakhova-Rohlfing, D.

    Vol. 1. Boca Raton : Taylor-Francis, 2010, s. 340-343. ISBN 978-1-4398-3401-5. - ( Nanotech 2010) R&D Projects: GA ČR GA104/08/0435 Institutional research plan: CEZ:AV0Z40400503 Keywords : antimony-doped tin oxide * TCO * nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry

  17. Ambulatory oesophageal pH monitoring : a comparison between antimony, ISFET, and glass pH electrodes

    NARCIS (Netherlands)

    Hemmink, Gerrit J. M.; Weusten, Bas L. A. M.; Oors, Jac; Bredenoord, Albert J.; Timmer, Robin; Smout, Andre J. P. M.

    2010-01-01

    Background and aim Ambulatory oesophageal pH-impedance monitoring is a widely used test to evaluate patients with reflux symptoms. Several types of pH electrodes are available: antimony, ion sensitive field effect transistor (ISFET), and glass electrodes. These pH electrodes have not been compared d

  18. Comparative phytotoxicity of methylated and inorganic arsenic- and antimony species to Lemna minor, Wolffia arrhiza and Selenastrum capricornutum

    NARCIS (Netherlands)

    L. Duester; H.G. van der Geest; S. Moelleken; A.V. Hirner; K. Kueppers

    2011-01-01

    The alkylation of metalloids through the transfer of methyl groups is an important factor in the biogeochemical cycling of elements like arsenic and antimony. In the environment, many different organic and inorganic forms of these elements can therefore be found in soils, sediments or organisms. Stu

  19. A cloud point extraction for spectrophotometric determination of ultra- trace antimony without chelating agent in environmental and biological samples

    International Nuclear Information System (INIS)

    We report on a simple, sensitive and reliable method for the cloud point extraction of antimony (Sb) and its subsequent spectrophotometric detection. It is based on the color reaction of Sb (III) with iodide in acidic medium and subsequent micelle-mediated extraction of tetraiodoantimonate using a non-ionic surfactant in the absence of any chelating agent. The effects of reaction and extraction parameters were optimized. The calibration plot is linear in the range of 0.80-95 ng mL-1 of antimony in the sample solution, with a regression coefficient (r) of 0.9994 (for n=9). The detection limit (at SNR=3) is 0.23 ng mL-1, and the relative standard deviations at 10 and 70 ng mL-1 of antimony are 3.32 and 1.85 % (at n=8), respectively. The method compared favorably to other methods and was applied to determine antimony in seawater, anti-leishmania drug (glucantime), and human serum. (author)

  20. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  1. The use of colloidal nano gold as an effective modifier for the determination of antimony, arsenic and lead by ETAAS

    International Nuclear Information System (INIS)

    Complete text of publication follows. Colloidal nano gold was prepared and used as a modifier for the determination of antimony, arsenic and lead by electrothermal atomic absorption spectrometry. The effects of pyrolysis and atomization temperature, the amounts of interferants and modifier on the sensitivities of antimony, arsenic and lead in the presence of modifier were investigated. In addition, the contribution of another modifying reagent Mg(NO3)2 mixed with colloidal nano gold was also investigated. The modifier allows the use of pyrolysis temperatures between 1200 deg C and 1300 deg C for antimony, arsenic and lead. In the presence of colloidal nano gold modifier, the tolerance limits of NaCl and Na2SO4 for the quantitative recoveries of antimony, arsenic and lead were investigated. After optimization of experimental conditions, the three elements were successfully determined in some model solutions containing some sulphate and chloride salts as well as in CRM water samples at 95% confidence level using pure aqueous standards. The effectiveness of modifier was compared with that of the mixed universal modifier (Mg+Pd).

  2. Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes.

    Science.gov (United States)

    Maity, Ayan; Teets, Thomas S

    2016-08-10

    This Review highlights stoichiometric reactions and elementary steps of catalytic reactions involving cooperative participation of transition-metal hydrides and main group Lewis acids. Included are reactions where the transition-metal hydride acts as a reactant as well as transformations that form the metal hydride as a product. This Review is divided by reaction type, illustrating the diverse roles that Lewis acids can play in mediating transformations involving transition-metal hydrides as either reactants or products. We begin with a discussion of reactions where metal hydrides form direct adducts with Lewis acids, elaborating the structure and dynamics of the products of these reactions. The bulk of this Review focuses on reactions where the transition metal and Lewis acid act in cooperation, and includes sections on carbonyl reduction, H2 activation, and hydride elimination reactions, all of which can be promoted by Lewis acids. Also included is a section on Lewis acid-base secondary coordination sphere interactions, which can influence the reactivity of hydrides. Work from the past 50 years is included, but the majority of this Review focuses on research from the past decade, with the intent of showcasing the rapid emergence of this field and the potential for further development into the future. PMID:27164024

  3. Preparation and chemical crystallographic study of new hydrides and hydro-fluorides of ionic character

    International Nuclear Information System (INIS)

    Within the context of a growing interest in the study of reversible hydrides with the perspective of their application in hydrogen storage, this research thesis more particularly addressed the case of ternary hydrides and fluorides, and of hydro-fluorides. The author reports the development of a method of preparation of alkaline hydrides, of alkaline earth hydrides and of europium hydride, and then the elaboration of ternary hydrides. He addresses the preparation of caesium fluorides and of calcium or nickel fluorides, of Europium fluorides, and of ternary fluorides. Then, he addresses the preparation of hydro-fluorides (caesium, calcium, europium fluorides, and caesium and nickel fluorides). The author presents the various experimental techniques: chemical analysis, radio-crystallographic analysis, volumetric mass density measurement, magnetic measurements, ionic conductivity measurements, Moessbauer spectroscopy, and nuclear magnetic resonance. He reports the crystallographic study of some ternary alkaline and alkaline-earth hydrides (KH-MgH2, RbH-CaH2, CsH-CaH2, RbH-MgH2 and CsH-MgH2) and of some hydro-fluorides (CsCaF2H, EuF2H, CsNiF2H)

  4. Hydride blister formation in Zr-2.5wt%Nb pressure tube alloy

    International Nuclear Information System (INIS)

    Hydride blisters were grown over a period of 5-91 days under controlled thermal boundary condition using Zr-2.5wt%Nb pressure tube sections. Rectangular plate type specimens were hydrided to hydrogen concentration in the range of 20-250 ppm by weight and homogenized at 400 deg. C. These specimens were held in a specially fabricated jig capable of producing the required thermal gradients. The bulk specimen and the cold spot temperatures were maintained in the range of 270-400 deg. C and 40-100 deg. C respectively. Depending on the thermal gradients employed, two types of blister morphology were identified. The type I blister was single, round and located at the cold spot region whereas the type II blister consisted of several small blisters along a ring around the cold spot. Microstructural examination of the blister cross-section revealed three regions; a single-phase region consisting of hydrides, a region consisting of matrix containing both radial and circumferential hydrides, and another region consisting of matrix and circumferential hydrides. An attempt was made to rationalize the observed radial-circumferential hydride platelet orientation. Hydride blister growth rates were found to vary strongly with hydrogen concentration and bulk specimen temperature. The observed time for blister growth was found to be in agreement with the Sawatzky's model

  5. Characterisation of hydride blister in reactor operated zircaloy-2 pressure tube

    International Nuclear Information System (INIS)

    Zircaloy-2 pressure tubes pickup Hydrogen species (H and D) during in-reactor service. The hydrogen pickup leads to hydride precipitation and in the event of a contact between the pressure tube and the calandria tube, hydrogen migrates to the cold spot leading to the formation of hydride blister. One such hydride blister location in an operated Zircaloy-2 pressure tube of RAPS-2 was subjected to metallographic studies and mapping of the microstructure across the tube thickness. Mapping of the hydrogen concentration across the tube thickness was carried out by careful sampling and H estimation by DSC technique. The H profile across the tube thickness, up to the blister boundary, was generated. The hydride blister region was found to be made up of microstructurally different regions starting from dense massive hydride at the outer surface and followed in sequence by a region with dense and thick platelets oriented parallel to the blister boundary and radial platelet region, which subsequently merged with the background platelet distribution appropriate for the average hydrogen content of the pressure tube. The equivalent blister depth corresponding to H content of 16,000 w/ppm has been estimated from the H profile at the blister location. In the case of a hydride blister with measured thickness of 0.4mm the equivalent blister thickness was found to be 0.414mm. Mapping of the hardness of the massive hydride and the adjoining microstructurally different regions was carried out by microhardness measurements at room temperature. (author)

  6. The role of stress-state on the deformation and fracture mechanism of hydrided and non-hydrided Zircaloy-4

    Science.gov (United States)

    Cockeram, B. V.; Hollenbeck, J. L.

    2015-12-01

    Zircaloy-4 was tested at room-temperature over a range of hydrogen content between 10 and 200 ppm, and stress-states between a triaxiality of -0.23 and 0.9. Triaxiality (η) is defined as the ratio of hydrostatic stress to von Mises stress and was controlled through use of select mechanical test specimen designs. Testing of smooth and notched tensile specimens (η = 0.33 to 0.9) results in an increase in the stress to initiate plastic deformation and a decrease in strain to failure at higher values of η. Increases in triaxiality are shown to have a more significant effect on reducing the strain to failure when the material is hydrided. Increases in strain to failure are observed at lower values of triaxiality for dual keyhole specimens (η = 0.1) and compression specimens (η = -0.17 to -0.23), with hydrided material showing much less decrement in strain to failure at these lower triaxialities. Examinations of microstructure are used to show that a change in mechanism for deformation and fracture with triaxiality can explain these differences in mechanical behavior and a model is developed to describe the observed changes in strain to failure with stress-state.

  7. Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction

    International Nuclear Information System (INIS)

    The circumferential hydrides normally present in nuclear reactor fuel cladding after reactor exposure may dissolve during drying for dry storage and re-precipitate when cooled under load into a more radial orientation, which could embrittle the fuel cladding. It is necessary to study the rates and conditions under which hydride reorientation may happen in order to assess fuel integrity in dry storage. The objective of this work is to study the effect of applied stress and thermal cycling on the hydride morphology in cold-worked stress-relieved Zircaloy-4 by combining conventional metallography and in situ X-ray diffraction techniques. Metallography is used to study the evolution of hydride morphology after several thermo-mechanical cycles. In situ X-ray diffraction performed at the Advanced Photon Source synchrotron provides real-time information on the process of hydride dissolution and precipitation under stress during several thermal cycles. The detailed study of diffracted intensity, peak position and full-width at half-maximum provides information on precipitation kinetics, elastic strains and other characteristics of the hydride precipitation process. The results show that thermo-mechanical cycling significantly increases the radial hydride fraction as well as the hydride length and connectivity. The radial hydrides are observed to precipitate at a lower temperature than circumferential hydrides. Variations in the magnitude and range of hydride strains due to reorientation and cycling have also been observed. These results are discussed in light of existing models and experiments on hydride reorientation. The study of hydride elastic strains during precipitation shows marked differences between circumferential and radial hydrides, which can be used to investigate the reorientation process

  8. Hydride re-orientation in Zircaloy and its effect on the tensile properties. Revised edition

    International Nuclear Information System (INIS)

    Based on literature studies and experimental work, investigations were carried out to determine the stress and thermal conditions required for the reorientation of hydrides from an initial circumferential orientation to a radial one. The section of microscopic reference was transverse, in hydride ring samples of Zircaloy. It was found that, both the degree of reorientation and the relative amount of radial hydrides achieved, were dependent on the hydrogen content of the material, given the same stress and thermal conditions. The need to take most of the hydrides into solution at the uppermost temperature of the thermal cycle, in order for complete reorientation to occur, became also clear. In general, an upper temperature of 500 deg C, in combination with an orientation stress in the interval 150-200 MPa was found to be adequate for the reorientation to radial hydrides. On the basis of these initial results, attempts were then made to produce ring test samples in which the hydrides had assumed the radial orientation. These were subsequently subjected to the tensile test in order to investigate the effect of hydride reorientation on the tensile properties of the material. The tests, which were conducted at room temperature and higher temperatures (100 deg C - 300 deg C), showed that the hydrides were brittle at room temperature but became less so at higher temperatures. With the exception of the samples which were tested at room temperature, all the other samples did show a ductile failure. At the strain rate employed in the present work (0.02cm/mm) therefore, the radial hydrides could not be said to have a reducing effect on the ductile characteristics of Zircaloy at higher temperatures

  9. Small Angle Neutron Scattering Investigation of Hydride Precipitations in Zircaloy-4

    International Nuclear Information System (INIS)

    The precipitation and annealing behavior of hydrogen in Zircaloy-4 was investigated by means of small angle neutron scattering. The results show that already during cool down in the air lock of the applied furnace zirconium hydride precipitates are formed. The size of the hydrides seems to be greater than the upper detection limit of the SANS experiments performed. These hydrides seem to be stable during various annealing at temperatures between 573 and 773 K for 1 to 16 days in inert atmosphere. (author)

  10. Thermal decomposition kinetics of titanium hydride and Al alloy melt foaming process

    Institute of Scientific and Technical Information of China (English)

    YANG; Donghui; HE; Deping; YANG; Shangrun

    2004-01-01

    A temperature programmed decomposition (TPD) apparatus with metal tube structure, in which Ar is used as the carrier gas, is established and the TPD spectrum of titanium hydride is acquired. Using consulting table method (CTM), spectrum superposition method (SSM) and differential spectrum technique, TPD spectrum of titanium hydride is separated and a set of thermal decomposition kinetics equations are acquired. According to these equations, the relationship between decomposition quantity and time for titanium hydride at the temperature of 940 K is obtained and the result well coincides with the Al alloy melt foaming process.

  11. Rapid Microwave Synthesis, Characterization and Reactivity of Lithium Nitride Hydride, Li4NH

    OpenAIRE

    Nuria Tapia-Ruiz; Natalie Sorbie; Nicolas Vaché; Hoang, Tuan K. A.; Gregory, Duncan H.

    2013-01-01

    Lithium nitride hydride, Li4NH, was synthesised from lithium nitride and lithium hydride over minute timescales, using microwave synthesis methods in the solid state for the first time. The structure of the microwave-synthesised powders was confirmed by powder X-ray diffraction [tetragonal space group I41/a; a = 4.8864(1) Å, c = 9.9183(2) Å] and the nitride hydride reacts with moist air under ambient conditions to produce lithium hydroxide and subsequently lithium carbonate. Li4NH undergoes n...

  12. Proton beam production by a laser ion source with hydride target

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M., E-mail: okamura@bnl.gov [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Stifler, C. [Engineering Physics Systems Department, Providence College, Providence, Rhode Island 02918 (United States); Palm, K. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Steski, D.; Kanesue, T. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Ikeda, S. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa (Japan); Kumaki, M. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama (Japan); Research Institute for Science and Engineering, Waseda University, Tokyo (Japan)

    2016-02-15

    We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam.

  13. Generalized computational model for high-pressure metal hydrides with variable thermal properties

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2015-01-01

    This study considers a detailed 1D fueling model applied to a metal hydride system, with Ti1.1CrMn as the absorbing alloy, to predict the weight fraction of the absorbed hydrogen and the solid bed temperature. Dependencies of thermal conductivity and specific heat capacity upon pressure and...... hydrogen content, respectively, are accounted for by interpolating experimental data. The effect of variable parameters on the critical metal hydride thickness is investigated and compared to results obtained from a constant-parameter analysis. Finally, the discrepancy in the metal hydride thickness value...

  14. The storage of hydrogen in the form of metal hydrides: An application to thermal engines

    Science.gov (United States)

    Gales, C.; Perroud, P.

    1981-01-01

    The possibility of using LaNi56, FeTiH2, or MgH2 as metal hydride storage sytems for hydrogen fueled automobile engines is discussed. Magnesium copper and magnesium nickel hydrides studies indicate that they provide more stable storage systems than pure magnesium hydrides. Several test engines employing hydrogen fuel have been developed: a single cylinder motor originally designed for use with air gasoline mixture; a four-cylinder engine modified to run on an air hydrogen mixture; and a gas turbine.

  15. Behaviour of depleted uranium as metal hydride in a storage vessel

    International Nuclear Information System (INIS)

    Full text: The storage of hydrogen isotopes as metal hydrides is considered a safe and modern technique. The metal hydrides offer a great opportunity for improvement of tritium processing. They allow the design of safe, compact and efficient tritium handling equipment. The paper presents our experience in developing a technology of making experimental hydride storage vessels for tritium handling and processing. The vessel, using depleted uranium as metallic matrix, was tested to determine the experimental conditions for activation, loading and desorption hydrogen. Using depleted uranium, a hydrogen/metal ratio (H/Me) of 2.9 could be achieved. The equipment was tested by successive absorption/desorption cycles. (authors)

  16. Proton beam production by a laser ion source with hydride target

    International Nuclear Information System (INIS)

    We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam

  17. Thermodynamics and statistical mechanics of some hydrides of the lanthanides and actinides

    International Nuclear Information System (INIS)

    This work deals mainly with the thermodynamic and physical properties of the hydrides of the lanthanides and actinides. In addition, statistical models have been developed and applied to metal-hydrogen systems. A kinetic study of the uranium-hydrogen system was performed. The thermodynamic properties of the hydrides of neptunium, thorium, praseodymium, neodymium, samarium and europium were determined. In addition the samarium-europium-hydrogen ternary system was investigated. Moessbauer effect measurements of cubic neptunium hydrides were interpreted according to a model presented. A comparison. (author)

  18. Analytical control of production of As, P, Si, B hydrides and the mixtures on their basis

    International Nuclear Information System (INIS)

    Highly sensitive and selective detectors which are in the basis of some analytical devices, such as chromatograph Tzvet 500G attachment POU-80, gigrometer Enisej gas analyzer Platon that permit to control the production of As, P, Si, B hydrides, are tested. The techniques of tetermination of constant gases, general carbon, moisture in the mixtures based on As, P, Si, B hydrides with diluting gases (H2, He, Ar) as well as hydrides in them and in the air of working premises, are suggested

  19. Determination of natural isotopic variation in antimony using inductively coupled plasma mass spectrometry for an uncertainty estimation of the standard atomic weight of antimony

    International Nuclear Information System (INIS)

    The isotopic variation of industrially produced antimony was estimated using multiple-collector inductively coupled plasma mass spectrometry. A reproducible 123Sb/121Sb ratio of ±0.004% (2 standard deviations) was routinely obtained using a Sn doping mass discrimination correction technique. Only a small isotopic variation of about 0.05% was observed among industrially important Sb materials (five commercially available reagents and two ore minerals). The degree of Sb isotopic variation to determine the uncertainty in Sb atomic weight can be reduced by this new analytical technique to 0.00025 compared to the currently accepted IUPAC isotopic variation determined by conventional mass spectrometry of ±0.001. Heavy isotope enrichment of Sb in a drainage water sample from a stibnite mining area was found. This heavy isotope enrichment tendency in an aqueous environment may be useful in detecting anthropogenic Sb input from industrial emission by the smelting process via air because Sb of anthropogenic origin will have lighter isotope enrichment features. (author)

  20. Spin dynamics of complex oxides, bismuth-antimony alloys, and bismuth chalcogenides

    Science.gov (United States)

    Sahin, Cuneyt

    The emerging field of spintronics relies on the manipulation of electron spin in order to use it in spin-based electronics. Such a paradigm change has to tackle several challenges including finding materials with sufficiently long spin lifetimes and materials which are efficient in generating pure spin currents. This thesis predicts that two types of material families could be a solution to the aforementioned challenges: complex oxides and bismuth based materials. We derived a general approach for constructing an effective spin-orbit Hamiltonian which is applicable to all nonmagnetic materials. This formalism is useful for calculating spin-dependent properties near an arbitrary point in momentum space. We also verified this formalism through comparisons with other approaches for III-V semiconductors, and its general applicability is illustrated by deriving the spin-orbit interaction and predicting spin lifetimes for strained strontium titanate (STO) and a two-dimensional electron gas in STO (such as at the LAO/STO interface). Our results suggest robust spin coherence and spin transport properties in STO related materials even at room temperature. In the second part of the study we calculated intrinsic spin Hall conductivities for bismuth-antimony (BISb) semimetals with strong spin-orbit couplings, from the Kubo formula and using Berry curvatures evaluated throughout the Brillouin zone from a tight-binding Hamiltonian. Nearly crossing bands with strong spin-orbit interaction generate giant spin Hall conductivities in these materials, ranging from 474 ((h/e)O--1cm--1) for bismuth to 96((h/e)O--1cm --1) for antimony; the value for bismuth is more than twice that of platinum. The large spin Hall conductivities persist for alloy compositions corresponding to a three-dimensional topological insulator state, such as Bi0.83Sb0.17. The spin Hall conductivity could be changed by a factor of 5 for doped Bi, or for Bi0.83Sb0.17, by changing the chemical potential by 0.5 e