WorldWideScience

Sample records for antimony 124

  1. Metabolism of antimony-124 in lactating dairy cows

    International Nuclear Information System (INIS)

    Bruwaene, R. van; Gerber, G.B.; Kirchmann, R.; Colard, J.

    1982-01-01

    Lactating cows received oral and intravenous administrations of radioactive antimony (III) chloride to study its intestinal and urinary excretion, secretion into milk and organ distribution. Milk samples were taken twice a day and the milk, feces and urine assayed using gamma spectroscopy. Cows administered orally were sacrificed at 102 days and those injected intravenously at 70 days. Distribution of 124 Sb in the organs was determined at the time of sacrifice. Excretion of 124 Sb occurs mainly via urine, little is secreted into milk. Highest organ concentrations are in the spleen, liver and bone. (U.K.)

  2. Antimony

    DEFF Research Database (Denmark)

    Bredsdorff, Lea; Nielsen, Elsa

    The Danish Environmental Protection Agency has requested an evaluation of health hazards by exposure to antimony. This resulted in the present report which includes estimation of a quality criterion in soil for antimony....

  3. Antimony

    Science.gov (United States)

    Seal, Robert R.; Schulz, Klaus J.; DeYoung,, John H.; Sutphin, David M.; Drew, Lawrence J.; Carlin, James F.; Berger, Byron R.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Antimony is an important mineral commodity used widely in modern industrialized societies. The element imparts strength, hardness, and corrosion resistance to alloys that are used in many areas of industry, including in lead-acid storage batteries. Antimony’s leading use is as a fire retardant in safety equipment and in household goods, such as mattresses. The U.S. Government has considered antimony to be a critical mineral mainly because of its use in military applications. The great majority of the world’s antimony comes from China, and much of the remainder is shipped to China for smelting. Antimony resources are unevenly distributed around the world. China has the bulk of the world’s identified resources; other countries that have identified antimony resources include Bolivia, Canada, Mexico, Russia, South Africa, Tajikistan, and Turkey. Resources in the United States are located mainly in Alaska, Idaho, Montana, and Nevada. The most significant antimony mineral deposits occur in geologic environments with a thick sequence of siliciclastic sedimentary rocks in areas with significant fault and fracture systems. The most common antimony ore mineral is stibnite (Sb2 S3 ), but more than 100 other minerals also contain antimony. The presence of antimony in surface waters and groundwaters results primarily from rock weathering, soil runoff, and anthropogenic sources. Global emissions of antimony to the atmosphere average 6,100 metric tons per year. Empirical data suggest that the acid-generating potential of antimony mine waste is low.

  4. Ion-exchange separation of radioiodine and its application to production of {sup 124}I by alpha particle induced reactions on antimony

    Energy Technology Data Exchange (ETDEWEB)

    Shuza Uddin, Md. [Forschungszentrum Juelich (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Atomic Energy Research Establishment, Inst. of Nuclear Science and Technology, Dhaka (Bangladesh); Qaim, Seyed M.; Spahn, Ingo; Spellerberg, Stefan; Scholten, Bernhard; Coenen, Heinz H. [Forschungszentrum Juelich (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Hermanne, Alex [Vrije Univ. Brussel (Belgium). Cyclotron Lab.; Hossain, Syed Mohammod [Atomic Energy Research Establishment, Inst. of Nuclear Science and Technology, Dhaka (Bangladesh)

    2015-07-01

    The basic parameters related to radiochemical separation of iodine from tellurium and antimony by anion-exchange chromatography using the resin Amberlyst A26 were studied. The separation yield of {sup 124}I amounted to 96% and the decontamination factor from {sup 121}Te and {sup 122}Sb was > 10{sup 4}. The method was applied to the production of {sup 124}I via the {sup 123}Sb(α, 3n) reaction. In an irradiation of 110 mg of {sup nat}Sb{sub 2}O{sub 3} (thickness ∝0.08 g/cm{sup 2}) with 38 MeV α-particles at 1.2 μA beam current for 4 h, corresponding to the beam energy range of E{sub α} = 37 → 27 MeV, the batch yield of {sup 124}I obtained was 12.42 MBq and the {sup 125}I and {sup 126}I impurities amounted to 3.8% and 0.7%, respectively. The experimental batch yield of {sup 124}I amounted to 80% of the theoretically calculated value but the level of the radionuclidic impurities were in agreement with the theoretical values. About 96% of the radioiodine was in the form of iodide and the inactive impurities (Te, Sb, Sn) were below the permissible level. Due to the relatively high level of radionuclidic impurity the {sup 124}I produced would possibly be useful only for restricted local consumption or for animal experiments.

  5. Antimony Toxicity

    OpenAIRE

    Sundar, Shyam; Chakravarty, Jaya

    2010-01-01

    Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The...

  6. Antimony Toxicity

    Directory of Open Access Journals (Sweden)

    Shyam Sundar

    2010-12-01

    Full Text Available Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The major toxic side-effects of antimonials as a result of therapy are cardiotoxicity (~9% of patients and pancreatitis, which is seen commonly in HIV and visceral leishmaniasis co-infections. Quality control of each batch of drugs produced and regular monitoring for toxicity is required when antimonials are used therapeutically.

  7. Determination of antimony in antimony oxide by EDXRF and NAA

    International Nuclear Information System (INIS)

    Ghosh, M.; Swain, K.K.; Wagh, D.N.; Verma, R.

    2015-01-01

    It is proposed to use 124 Sb - 9 Be neutron source for starting Proto Type Fast Breeder Reactor, IGCAR, Kalpakkam. 124 Sb (γ-ray energy = 1.69 MeV; t 1/2 = 60 d) is obtained by irradiating antimony oxide and as per specification, antimony content in the oxide should be ≥ 83.0 % i.e antimony should be in the form of trioxide. Although gravimetry is the most precise and accurate method for % level analysis, it is tedious and time consuming. In this work, the study reported the determination of antimony by energy dispersive X-ray fluorescence (EDXRF) spectrometry and validation of the result by neutron activation analysis (NAA) technique. Antimony oxide encapsulated in stainless steel tube (internal diameter = 0.5 mm) was received from BHAVINI, Kalpakkam. X-ray diffraction (XRD) measurement indicated that the sample was antimony trioxide. For EDXRF analysis, calibration standards were prepared by mixing spectroscopic grade antimony trioxide with microcrystalline cellulose (2.5 to 20 mg g -1 of antimony) and pellets were made by using hydraulic press. Sample pellets were also prepared by mixing with microcrystalline cellulose. EDXRF measurement was carried out using Jordan Valley, EX-3600 M spectrometer with a Rhodium X-ray source. Characteristic K α X-ray of Sb (26.35 keV) was used for quantification. A typical XRF spectrum of the sample is shown after XRF analysis, sample and standard pellets were sealed in clean polyethylene bags and were irradiated in AHWR critical facility reactor, BARC for 4 h. Gamma ray measurement of irradiated samples were carried out using HPGe detector and 564.2 keV gamma ray of 122 Sb was used for quantification

  8. In vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta Etel Treiger; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Lab. de Biologia Molecular]. E-mail: samanta@usp.br; Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Centro de Radiofarmacia]. E-mail: jaosso@ipen.br; Andrade Junior, Heitor Franco de [Instituto de Medicina Tropical de Sao Paulo (IMT-SP), SP (Brazil). Lab. de Protozoologia]. E-mail:hfandrad@usp.br

    2005-10-15

    Pentavalent antimony, as meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam), is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes {sup 122} Sb and {sup 124} Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology. (author)

  9. Antimony in aquatic systems

    OpenAIRE

    Filella, Montserrat; Belzile, Nelson; Chen, Yuwei; Elleouet, C.; May, P. M.; Mavrocordatos, D.; Nirel, P.; Porquet, A.; Quentel, F.; Silver, S.

    2003-01-01

    Antimony is ubiquitous in the environment. In spite of its proven toxicity, it has received scant attention so far. This communication presents an overview of current knowledge as well as the early results of a concerted, multidisciplinary effort to unveil antimony behaviour and fate in natural aquatic systems.

  10. Pharmacokinetic of antimony in mice with cutaneous Leishmaniasis

    International Nuclear Information System (INIS)

    Borborema, Samanta E.T.; Nascimento, Nanci do; Osso Junior, Joao A.

    2007-01-01

    Cutaneous Leishmaniasis (CL) remains a major world health problem, with about 1.5 million new cases each year. Caused by protozoa Leishmania, in South America, this infection can vary from a chronic skin ulcer, to an erosive mucosal disease and severe facial disfigurement. Pentavalent antimony (Sb +5 ) as sodium stibogluconate (Pentostam) or meglumine antimoniate (Glucantime) are main drugs for treating most forms of human leishmaniasis. For six decades, despite the recent developments, the effective therapy to cutaneous leishmaniasis has been based on long parenteral courses of such drugs, even though these are fairly costly, toxic and inconvenient to use, without adequate knowledge on their pharmacokinetics or mechanism of action. Pharmacokinetics studies could be based on bioactive traceable drugs, usually with radioactive isotopes, but antimony radioisotopes are unavailable commercially. Neutron irradiation is a powerful tool in the analysis of mineral content of samples, for antimony, there are at least two main isotopes that could be formed after neutron irradiation in nuclear reactor. The aim of the present study was to construct antimony salts with those radioisotopes to obtain tracers to compare the pharmacokinetic and the tissue distribution of neutron irradiated meglumine antimoniate in healthy and cutaneous leishmaniasis experimentally infected mice. Meglumine antimoniate, (Glucantime, Aventis, S.P, Brazil), was neutron irradiated inside the IEA-R1 nuclear reactor (IPEN/CNEN-SP), producing two radioisotopes 122 Sb and 124 Sb. Its biodistribution was verified in BALB/c mice experimentally infected with Leishmania (Leishmania) Amazonensis, which received a single intraperitoneal dose of the drug. At different times after injection, the tissues and blood were excised and activity measured in a NaI (Tl) scintillation counter. Compared with the healthy mice, experimentally infected mice had significantly lower maximum concentration of antimony and high

  11. Pharmacokinetic of antimony in mice with cutaneous Leishmaniasis

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta E.T.; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Lab. de Biologia Molecular]. E-mails: samanta@usp.br; nnascime@ipen.br; Andrade Junior, Heitor F. de [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Lab. de Biologia Molecular; Instituto de Medicina Tropical de Sao Paulo, Sao Paulo, SP (Brazil); E-mail: hfandrad@usp.br; Osso Junior, Joao A. [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Centro de Radiofarmacia]. E-mail: jaosso@ipen.br

    2007-07-01

    Cutaneous Leishmaniasis (CL) remains a major world health problem, with about 1.5 million new cases each year. Caused by protozoa Leishmania, in South America, this infection can vary from a chronic skin ulcer, to an erosive mucosal disease and severe facial disfigurement. Pentavalent antimony (Sb{sup +5}) as sodium stibogluconate (Pentostam) or meglumine antimoniate (Glucantime) are main drugs for treating most forms of human leishmaniasis. For six decades, despite the recent developments, the effective therapy to cutaneous leishmaniasis has been based on long parenteral courses of such drugs, even though these are fairly costly, toxic and inconvenient to use, without adequate knowledge on their pharmacokinetics or mechanism of action. Pharmacokinetics studies could be based on bioactive traceable drugs, usually with radioactive isotopes, but antimony radioisotopes are unavailable commercially. Neutron irradiation is a powerful tool in the analysis of mineral content of samples, for antimony, there are at least two main isotopes that could be formed after neutron irradiation in nuclear reactor. The aim of the present study was to construct antimony salts with those radioisotopes to obtain tracers to compare the pharmacokinetic and the tissue distribution of neutron irradiated meglumine antimoniate in healthy and cutaneous leishmaniasis experimentally infected mice. Meglumine antimoniate, (Glucantime, Aventis, S.P, Brazil), was neutron irradiated inside the IEA-R1 nuclear reactor (IPEN/CNEN-SP), producing two radioisotopes {sup 122}Sb and {sup 124}Sb. Its biodistribution was verified in BALB/c mice experimentally infected with Leishmania (Leishmania) Amazonensis, which received a single intraperitoneal dose of the drug. At different times after injection, the tissues and blood were excised and activity measured in a NaI (Tl) scintillation counter. Compared with the healthy mice, experimentally infected mice had significantly lower maximum concentration of antimony

  12. Antimony: a flame fighter

    Science.gov (United States)

    Wintzer, Niki E.; Guberman, David E.

    2015-01-01

    Antimony is a brittle, silvery-white semimetal that conducts heat poorly. The chemical compound antimony trioxide (Sb2O3) is widely used in plastics, rubbers, paints, and textiles, including industrial safety suits and some children’s clothing, to make them resistant to the spread of flames. Also, sodium antimonate (NaSbO3) is used during manufacturing of high-quality glass, which is found in cellular phones.

  13. Decontamination and disposal of Sb-124 at Palo Verde Nuclear Generating Station

    International Nuclear Information System (INIS)

    Miller, A.D.; Hillmer, T.P.; Kester, J.W.; Hensch, J.R.

    1988-01-01

    Palo Verde Nuclear Generating Station (PVNGS) is a three unit Combustion Engineering pressurized water reactor site. Each unit consists of an identical, self contained 1270 MWe reactor. This standardized design allows sharing of design improvements and equipment leading to optimum operation of the individual units. One design improvement, identified early into the operation of Unit 1, involved the elemental antimony content of the seals and bearings within the reactor coolant pumps. Normal wear of these components releases small amounts of elemental antimony. This antimony in turn deposits on in-core surfaces and activates to produce the isotopes Sb-122 and Sb-124. These isotopes emit highly energetic gamma rays which contribute significantly to the exposure and radwaste disposal charges at PVNGS. For these reasons, the Antimony Removal Program was undertaken to remove the radioactive and elemental antimony from the nuclear steam supply system at all three units. The work presented here describes the antimony decontamination and disposal

  14. Solubility behaviour of antimony(III) and antimony(V) solids in basic aqueous solutions at 300oC

    International Nuclear Information System (INIS)

    Lemire, R.J.; Tosello, N.B.; Halliday, J.D.

    1999-12-01

    The major contributions of the isotopes 122 Sb and 124 Sb to activity transport in a CANDU reactor primary heat transport system (HTS), have been associated with oxygen ingress during reactor shutdown. As part of a program to minimize the release and redeposition of these isotopes, the solubilities of antimony(III) and (V) oxides and salts have been measured in basic solutions at temperatures from 25 to 300 o C. The results provide information on the charge and the stability as a function of temperature of antimony solution species and, hence, a guide to the trends in the temperature dependence of the solubilities of antimony solids. In solutions in which oxidation of antimony(III) to antimony(V) is minimized, the solubility of Sb 2 O 3 increases by about two orders of magnitude between 25 and 200 o C, and then levels out or decreases slightly. At 250 o C, in oxidizing solutions, Sb 2 O 5 ·xH 2 O and simple sodium antimonate(V) were found to be unstable in sodium hydroxide solutions with respect to the solid, Na 2α [H(H 2 O)] 2-2α Sb 2 O 6 , which has a pyrochlore structure. The solubility of this partially protonated sodium antimonate increases from 25 to 200 o C and decreases at temperatures above 250 o C. These solubility changes for the antimony (V) solids reflect changes in the stability of the anionic antimony solution species (SbO 3 - or Sb(OH) 6 - ), even though the compositions of antimony-containing solids in basic oxidizing solutions are strongly dependent on the cations and their aqueous phase concentrations. All solids used in the present experiments would be expected to generate total solution antimony concentrations ≥ 0.00005 mol·dm -3 in any neutral or basic aqueous solutions (assuming no added sodium salts). Therefore, under HTS conditions, precipitation of any antimony oxides or mixed oxides is unlikely. It cannot be ruled out that hydrated Sb 2 O 5 (especially the pyrochlore form) might be less soluble in near-neutral, low

  15. THE ATOMIC WEIGHT OF ANTIMONY

    Institute of Scientific and Technical Information of China (English)

    张青莲; 钱秋宇; 赵墨田

    1989-01-01

    With enriched antimony isotopes of 99.224 atom% 121Sb and 99.528 atom% 123Sb, twotracer solutions were prepared, whose antimony content was ascertained by the isotopicdilution analysis utilizing an accurately assayed laboratory standard. Mass spectrometricmeasurements were made on a Finnigan MAT- 261 instrument to find the ratio of masses121 and 123. Five synthetic mixtures formed from the tracers served to determine thecorrection factor of mass discrimination. The isotopic abundances thus found for the anti-mony in the mineral stibnite together with the known nuclidic masses yield an accurateatomic weight of antimony as 121 .7575± 0 .0009.

  16. Oligosilanylated Antimony Compounds

    OpenAIRE

    Zitz, Rainer; Gatterer, Karl; Reinhold, Crispin R. W.; M?ller, Thomas; Baumgartner, Judith; Marschner, Christoph

    2015-01-01

    By reactions of magnesium oligosilanides with SbCl3, a number of oligosilanylated antimony compounds were obtained. When oligosilanyl dianions were used, either the expected cyclic disilylated halostibine was obtained or alternatively the formation of a distibine was observed. Deliberate formation of the distibine from the disilylated halostibine was achieved by reductive coupling with C8K. Computational studies of Sb?Sb bond energies, barriers of pyramidal inversion at Sb, and the conformati...

  17. Recovery of antimony-125 from tin-124 irradiated by neutrons

    International Nuclear Information System (INIS)

    Baluev, A.V.; Mityakhina, V.S.; Krasnikov, L.V.; Galkin, B.Ya.; Besnosyuk, V.I.

    2003-01-01

    Separation of 125 Sb from tin using highly basic, medium-basic, and weakly basic ion-exchangers was studied. The best results were obtained for AN-31 weakly basic anion exchanger. The yield of 125 Sb was 95 -98 % of the initial activity, the yield of tin, 98 ± 0.5% of the initial amount. The separation coefficient is 10 6 -10 7 for one cycle. A procedure based on ion exchange was developed. Extraction procedures of separation of 125 Sb from tin were studied. Isoamyl alcohol, ethyl acetate, and di-n-butyl ether were used as extracting agents. The most efficient extracting agent is di-n-butyl ether. Carrier-free radiochemically pure sample of 125 Sb was produced. More than 20 mCi of the target product was recovered. The extraction recovery procedure of 125 Sb has been developed. (author)

  18. Possibilities of using neutron activation analysis to discovery antimony aureoles at near-surface deposits

    International Nuclear Information System (INIS)

    Voin, M.I.; Kuligin, V.M.; Rakovskij, Eh.E.

    1978-01-01

    Described is the technique for determining antimony in rock and ore samples by instrumental neutron activation method with the sensitivity of 0.5 g/t from the 0.3-0.5 g weighed amount. Antimony was determined using the photopeak of antimony-124 isotope with the energy of 1692 keV. For analysis, 0.1 g samples were packed in aluminium foil and irradiated for 22 hours by reactor neutron fluence of 1.2x10 13 neutron/cm 2 xs. After cooling for 7 days induced activity of samples was measured using multichannel analizer with semiconductor detector with sensitive zone volume of 40 cm 3 . Real sensitivity while determining antimony was 1g/t, mean square error in the content range of 1-10 g/t is 14%

  19. Studies on the dissolution of antimony doped ferrites

    International Nuclear Information System (INIS)

    Keny, S.J.; Kumbhar, A.G.; Sanjukta, A.; Pandey, S.; Venkateswaran, G.; Ramanathan, S.

    2008-01-01

    Antimony (Sb) present in the PHT (primary heat transport) pump seals and bearings of PHWRs (Pressurized Heavy Water Reactor) is released during operation of the reactor and gets deposited on the in-core zircaloy surfaces. Neutron flux in the reactor core activates this Sb to 122 Sb (t 1/2 2.6 days) and 124 Sb (t 1/2 60 days). Release of this Sb (radioactive antimony) and its deposition on out of core surfaces occurs due to oxygen ingress in the system during shutdown periods and off normal conditions. Sb deposition on the magnetite bearing carbon steel surface of the PHT system results in increase of radiation fields. The consequence of this is low apparent decontamination factors observed after system decontamination. Once Sb is deposited on bare carbon steel (CS) surface or magnetite bearing carbon steel surface it is not amenable for removal by normal reductive decontamination process. It has to decay by its own half-life or has to be removed by oxidative dissolution. To understand the role of antimony and its removal on the ion exchange column, antimony doped ferrites were prepared and their dissolution in CNA (citric acid, NTA, Ascorbic acid; 1.4+1.4+1.7 mM) formulation was studied. The time taken for the dissolution of antimony-doped ferrites was found to increase with increasing Sb content in the ferrite. The point of zero charge (pzc) value of Sb substituted magnetite was determined to understand its adsorption on carbon steel surfaces of the PHT system. The pzc values for Fe 3 O 4 and Sb 2 O 3 , with H + / OH - as only potential determining ions in the aqueous medium, were 6.5 and 1.7 respectively. While, pzc of magnetite in typical decontamination formulations was below 3. The pzc for aqueous suspension of antimony-substituted magnetite (sintered at 1173 K) was 4.4. On the other hand, in CEA (citric acid, EDTA, Ascorbic acid) formulation up to a pH of 1.5, surface charge on the antimony-substituted magnetite was negative. Hence, even at this low pH, pzc

  20. In Vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Directory of Open Access Journals (Sweden)

    Samanta Etel Treiger Borborema

    2005-10-01

    Full Text Available Pentavalent antimony, as meglumine antimoniate (Glucantime® or sodium stibogluconate (Pentostam® , is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes 122Sb and 124Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology.Os antimoniais pentavalentes, como o antimoniato de meglumina (Glucantime® ou estibogluconato de sódio (Pentostam® , são o principal tratamento para a leishmaniose, um complexo de doenças causadas pelo protozoário parasita Leishmania, uma doença endêmica e negligenciada no Brasil. Apesar do seu uso clínico por mais de meio século, seu mecanismo de ação, toxicidade e dados de farmacocinética permanecem desconhecidos. Os métodos analíticos para determinação de antimônio em sistemas biológicos são complexos e apresentam baixa sensibilidade. Estudos utilizando radiotraçadores têm papel potencial no desenvolvimento farmacológico. O objetivo deste estudo foi desenvolver um radiotraçador de antimônio, com propriedades físicas e biológicas adequadas. O antimoniato de meglumina foi irradiado por nêutrons no reator nuclear IEA-R1, produzindo dois radioisótopos: 122

  1. Radiochemical studies of the separation of some chloro-complexes of tin, antimony, cadmium and indium

    International Nuclear Information System (INIS)

    Ramamoorthy, N.; Mani, R.S.

    1976-01-01

    Radioisotopes of tin, antimony, cadmium and indium such as tin-113, antimony-124, antimony-125, cadmium-109, cadmium-115, indium-113m and indium-111 find extensive applications as tracers in various fields. These isotopes are produced by irradiation of targets in a reactor or a cyclotron. It is usually observed that in addition to the nuclear reactions giving rise to the desired isotopes, side reactions also take place giving rise to radionuclidic contaminants. Thus, antimony-125, indium-114m and indium-114 will be present in the cyclotron produced indium-111. The authors have studied column chromatography over hydrous zirconia for the separation of antimony from tin and indium, and cadmium from indium. These studies have thrown light on the role and behaviour of antimony-125 present as an impurity in tin-113 during the preparation of tin-113-indium-113m generators and have indicated methods for the preparation of 115 Cd-sup(115m)In generators and for separation of 111 In from proton irradiated cadmium targets. (Authors)

  2. Solubility behaviour of antimony(III) and antimony(V) solids in basic aqueous solutions at 300{sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Lemire, R.J.; Tosello, N.B.; Halliday, J.D

    1999-12-01

    The major contributions of the isotopes {sup 122}Sb and {sup 124}Sb to activity transport in a CANDU reactor primary heat transport system (HTS), have been associated with oxygen ingress during reactor shutdown. As part of a program to minimize the release and redeposition of these isotopes, the solubilities of antimony(III) and (V) oxides and salts have been measured in basic solutions at temperatures from 25 to 300{sup o}C. The results provide information on the charge and the stability as a function of temperature of antimony solution species and, hence, a guide to the trends in the temperature dependence of the solubilities of antimony solids. In solutions in which oxidation of antimony(III) to antimony(V) is minimized, the solubility of Sb{sub 2}O{sub 3} increases by about two orders of magnitude between 25 and 200{sup o}C, and then levels out or decreases slightly. At 250{sup o}C, in oxidizing solutions, Sb{sub 2}O{sub 5}{center_dot}xH{sub 2}O and simple sodium antimonate(V) were found to be unstable in sodium hydroxide solutions with respect to the solid, Na{sub 2{alpha}}[H(H{sub 2}O)]{sub 2-2{alpha}}Sb{sub 2}O{sub 6}, which has a pyrochlore structure. The solubility of this partially protonated sodium antimonate increases from 25 to 200{sup o}C and decreases at temperatures above 250{sup o}C. These solubility changes for the antimony (V) solids reflect changes in the stability of the anionic antimony solution species (SbO{sub 3}{sup -} or Sb(OH){sub 6}{sup -}), even though the compositions of antimony-containing solids in basic oxidizing solutions are strongly dependent on the cations and their aqueous phase concentrations. All solids used in the present experiments would be expected to generate total solution antimony concentrations {>=} 0.00005 mol{center_dot}dm{sup -3} in any neutral or basic aqueous solutions (assuming no added sodium salts). Therefore, under HTS conditions, precipitation of any antimony oxides or mixed oxides is unlikely. It cannot be

  3. Mineral Resource of the Month: Antimony

    Science.gov (United States)

    Guberman, David E.

    2015-01-01

    Antimony is a lustrous silvery-white semimetal or metalloid. Archaeological and historical studies indicate that antimony and its mineral sulfides have been used by humans for at least six millennia. The alchemist Basil Valentine is sometimes credited with “discovering” the element; he described the extraction of metallic antimony from stibnite in his treatise “The Triumphal Chariot of Antimony,” published sometime between 1350 and 1600. In the early 18th century, Jöns Jakob Berzelius chose the periodic symbol for antimony (Sb) based on stibium, which is the Latin name for stibnite.

  4. Tin-antimony oxide oxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Frank J. [Open University, Department of Chemistry (United Kingdom)

    1998-12-15

    Tin-antimony oxide catalysts for the selective oxidation of hydrocarbons have been made by precipitation techniques. The dehydration of the amorphous dried precipitate by calcination at increasingly higher temperatures induces the crystallisation of a rutile-related tin dioxide-type phase and the segregation of antimony oxides which volatilise at elevated temperatures. The rutile-related tin dioxide-type phase contains antimony(V) in the bulk and antimony(III) in the surface. Specific catalytic activity for the oxidative dehydrogenation of butene to butadiene is associated with materials with large concentrations of antimony(III) in the surface.

  5. Uptake and retention of 124Sb in the common mussel, shrimp and shore crab

    International Nuclear Information System (INIS)

    Weers, A.W. van

    1981-01-01

    The uptake of radioactive antimony from water and food by mussels, shrimps and shore crabs and the subsequent loss in non-radioactive sea water were studied with 124 Sb. The concentration factors of about 0.6 for mussels and 2.5 for shrimps, reached by direct uptake from sea water, remained considerably below stable-antimony concentration factors reported for these organisms. The loss of 124 Sb after uptake of the radionuclide by mussels during 19 and 32 days respectively, could be described by a loss from two compartments with different rates. The distribution of the radionuclide in the animals did not change during the retention period. Antimony-124 taken up from sea water by shrimps was largely accounted for by adsorption to the exoskeleton, as was shown by the effect of moulting on the time course of subsequent loss in non-radioactive sea water. Antimony-124 applied to freeze-dried mussel flesh that was fed to shrimps was lost according to a single exponential function. The mean biological half-life of 124 Sb elimination was about 10 days. Two components were shown to be present in the retention of 124 Sb in two groups of shore crabs, one of which was fed freeze-dried shrimps spiked with 124 Sb, while the second group received shrimps labelled by uptake of 124 Sb with food. The only significant difference between the two groups was a longer mean biological half-life of the short-lived component in the second group. In shrimps and crabs only a small fraction of 124 Sb taken up with food ends up in the exoskeleton. About 45% of retained activity in crabs was found in the digestive gland. (author)

  6. First principles calculation of two dimensional antimony and antimony arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K. [Department. of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India); Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)

    2016-05-23

    This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.

  7. Assessment of alternate ion exchange resins for improved antimony removal from the primary heat transport system

    Energy Technology Data Exchange (ETDEWEB)

    Burany, R.; Suryanarayan, S.; Husain, A. [Kinectrics, Inc., Toronto, ON (Canada)

    2015-07-01

    Radiation fields around the CANDU heat transport system are a major contributor to worker dose during inspection, maintenance and refurbishment activities. While Co-60 is typically the dominant contributor to radiation fields in CANDU reactors, Sb-124, an activation product of antimony, is also a significant contributor, accounting for 5-20% of the radiation fields. The goal of this research project was to investigate resins for improved removal of antimony under both oxidizing and reducing conditions.Several candidate resins were tested and short-listed through a sequence of iterative testing. The results of the laboratory testing have identified potential candidates for improved antimony removal. Further testing is required to ensure compatibility with existing station resin specifications. (author)

  8. Geomicrobial interactions with arsenic and antimony

    Science.gov (United States)

    Oremland, Ronald S.

    2015-01-01

    Although arsenic and antimony are generally toxic to life, some microorganisms exist that can metabolize certain forms of these elements. Some can use arsenite or stibnite as potential or sole energy sources, whereas others can use aresenate and antimonite (as was discovered only recently) as terminal electron acceptors. Still other microbes can metabolize arsenic and antimony compounds to detoxify them. These reactions are important from a geomicrobial standpoint because they indicate that a number of microbes contribute to arsenic and antimony mobilization or immobilization in the environment and play a role in arsenic and antimony cycles. Recent reviews include five on prokaryotes and arsenic metabolism, a review with an arsenic perspective on biomining, and a series on environmental antimony, including one about antimony and its interaction with microbiota.

  9. Mineral resource of the month: antimony

    Science.gov (United States)

    ,

    2008-01-01

    The article describes the characteristics and industrial uses of antimony. Antimony, which is produced as a byproduct of mining other metals such as gold, lead or silver, is used in everything from flame retardants, batteries, ceramics and glass. It is also used in glass for television picture tubes, computer monitors, pigments and catalysts.

  10. Behavior of ruthenium, cesium and antimony during simulated HLLW vitrification

    International Nuclear Information System (INIS)

    Klein, M.; Weyers, C.; Goossens, W.R.A.

    1985-01-01

    The behavior of ruthenium, cesium, and antimony during the vitrification of simulated high-level radioactive liquid wastes (HLLW) in a liquid fed melter was studied on a laboratory scale and on a semi-pilot scale. In the laboratory melter of a 2.5 kg capacity, a series of tests with the simulate traced with 103 Ru, 134 Cs and 124 Sb, has shown that the Ru and Cs losses to the melter effluent are generally higher than 10% whereas the antimony losses remain lower than 0.4%. A wet purification system comprising in series, a dust scrubber, a condenser, an ejector venturi and an NOx washing column retains most of the activity present in the off-gas so that the release fractions for Ru at the absolute filter inlet ranges between 5.10 -3 to 5.10 -5 % of the Ru fed, for Cs the corresponding release fraction ranges between 3.10 -3 to 10 -4 % and for Sb the release fraction ranges between 1.7 10 -4 to 1.7 10 -5 %. The same experiments were performed at a throughput of 1 to 2 1 h -1 of simulated solution in the semi-pilot scale unit RUFUS. The RUFUS unit comprises a glass melter with a 50 kg molten glass capacity and the wet purification train comprises in series a dust scrubber, a condenser, an ejector venturi and an NOx washing column. The tracer tests were restricted to 103 Ru and 134 Cs since the laboratory tests had shown that the antimony losses were very low. The results of the tests are presented

  11. FIRST REPORT ON OTOTOXICITY OF MEGLUMINE ANTIMONIATE

    Directory of Open Access Journals (Sweden)

    Cláudia Maria Valete-Rosalino

    2014-09-01

    Full Text Available Introduction: Pentavalent antimonials are the first drug of choice in the treatment of tegumentary leishmaniasis. Data on ototoxicity related with such drugs is scarcely available in literature, leading us to develop a study on cochleovestibular functions. Case Report: A case of a tegumentary leishmaniasis patient, a 78-year-old man who presented a substantial increase in auditory threshold with tinnitus and severe rotatory dizziness during the treatment with meglumine antimoniate, is reported. These symptoms worsened in two weeks after treatment was interrupted. Conclusion: Dizziness and tinnitus had already been related to meglumine antimoniate. However, this is the first well documented case of cochlear-vestibular toxicity related to meglumine antimoniate.

  12. A comparative study of ion exchange properties of antimony (III) tungstoselenite with those of antimony (III) tungstate and antimony (III) selenite

    International Nuclear Information System (INIS)

    Janardanan, C.; Nair, S.M.K.

    1996-01-01

    A new inorganic ion exchanger, antimony (III) tungstoselenite, has been prepared and characterised. Its exchange capacity and distribution coefficients for various metal ions and the effects of temperature and electrolyte concentrations on ion exchange capacity have been compared with antimony (III) tungstate and antimony (III) selenite. Six binary separations using the exchanger have been carried out. (author). 7 refs., 1 tab

  13. Report on antimony-beryllium neutron sources examined after 7.45 effective full power years in the Dodewaard BWR

    International Nuclear Information System (INIS)

    Engen, W.R. van; Ainsworth, A.

    1984-01-01

    A source of neutrons is required to check instrumentation in the Dodewaard BWR after each shut-down. The longest shut-down is the annual refuelling shut-down when the reactor is routinely out for several weeks. Thus the isotopic neutron source needs to have a radioactive half-life which is sufficiently longer than several weeks. An appropriate source is antimony-124/ beryllium which has a half-life of 60.9 days. In this source 1.7 MeV gamma rays emitted by antimony-124 bombard the beryllium target material and produce neutrons. A report on the sources falls under the headings: design considerations (active insert; encapsulation (general considerations; chemical considerations; single or double encapsulation; radium-226 emanating source)); source production; post irradiation examination results (visual examination; eddy current tests); conclusions. (U.K.)

  14. Speciation of antimony in polyethylene terephthalate bottles

    International Nuclear Information System (INIS)

    Martin, R.R.; Ablett, J.; Shotyk, W.S.; Naftel, S.; Northrup, P.

    2010-01-01

    Antimony contamination has been reported in drinking water from polyethylene terephthalate (PET) bottles. Micro-X-ray fluorescence (XRF) analysis has been used to identify the distribution and chemical form of residual antimony used as a catalyst in the manufacture of PET bottles. The results are consistent with clusters of Sb(III) having dimensions of the order of tens of micrometers, clearly showing the ability of synchrotron radiation analyses to both map elemental distribution and determine oxidation state.

  15. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  16. Sorption of antimony on human teeth

    International Nuclear Information System (INIS)

    Nofal, M.; Amin, H.; Alian, G.

    1997-01-01

    The study of the uptake of toxic elements on human teeth represents an interesting research area, as the fate of these elements when present in the human food is of health significance. Since antimony is one of the common toxic elements and since, the chemical behaviour of antimony is similar to that of arsenic, one of the most important toxic elements commonly encountered in cases of food poisoning, it has been decided to investigate its uptake on human teeth and on other restoration materials. The radioactive tracer technique was used to evaluate the concentration of antimony sorbed on teeth. This tracer was obtained by irradiation of antimony metal in the reactor, subsequent dissolution in concentrated sulphuric acid, evaporation to dryness and making the solution 6 M in Hydrochloric acid (1). Antimony prepared in this way is in the trivalent state (Sb III). Sorption was studied in water, tea, coffee, red tea and chicken soup. The highest sorption was achieved from water and chicken soup and least sorption was noticed in case of coffee. The results are presented in the form of the depletion of the radioactivity (A) of antimony with time in presence of a tooth in water and other drinks

  17. Antimony measurement in high pressure reactor water loop

    International Nuclear Information System (INIS)

    Svarc, V.; Dudjakova, K.; Martykan, M.; Sus, F.; Kysela, J.

    2005-01-01

    RVS 3 loop is highly contaminated due to antimony main circulating pump bearings. Antimony is one of the major contaminant in PWR units. Different technologies to remove Sb from the systems have been tried. (N.T.)

  18. Potential of rice husks for antimony removal

    International Nuclear Information System (INIS)

    Khalid, Nasir; Ahmad, Shujaat; Toheed, Aqidat; Ahmed, Jamil

    2000-01-01

    The adsorption behavior of rice husks for antimony ions from aqueous solutions has been investigated as a function of appropriate electrolyte, equilibration time, hydrogen ions, amount of adsorbent, concentration of adsorbate, effect of diverse ions and temperature. The best conditions in which this material can be used as adsorbent have been explored. The radiotracer technique was employed to determine the distribution of antimony ( 122 Sb) using a batch method. Maximum adsorption was observed at 0.01 mol L -1 acid solutions (HNO 3 , HCl, H 2 SO 4 and HClO 4 ) using 1.0 g of adsorbent for 1.92x10 -5 mol L -1 antimony concentration in 10 min equilibration time. Studies show that the adsorption decreases with the increase in the concentrations of all the acids. The adsorption data follow the Freundlich isotherm over the range of 1.92x10 -5 to 2.05x10 -4 mol L -1 antimony concentration. The characteristic Freundlich constants i.e., 1/n=0.82±0.05 and K=4.61±0.07 m mol g -1 have been computed for the sorption system. The uptake of antimony increases with the rise in temperature (299-323 K). Thermodynamic quantities i.e., ΔG 0 , ΔS 0 and ΔH 0 have also been calculated for the system. The sorption process was found to be endothermic

  19. Perspectives of antimony compounds in oncology

    Institute of Scientific and Technical Information of China (English)

    Pankaj SHARMA; Diego PEREZ; Armando CABRERA; Nee ROSAS; Jose Luis ARIAS

    2008-01-01

    Antimony, a natural element that has been used as a drug for over more than 100 years, has remarkable therapeutic efficacy in patients with acute promyelocytic leukemia. This review focuses on recent advances in developing antimony anti- cancer agents with an emphasis on antimony coordination complexes, Sb (Ⅲ) and Sb (V). These complexes, which include many organometallic complexes, may provide a broader spectrum of antitumoral activity. They were compared with classical platinum anticancer drugs. The review covers the literature data pub- lished up to 2007. A number of antimonials with different antitumoral activities are known and have diverse applications, even though little research has been done on their possibilities. It might be feasible to develop more specific and effective inhibitors for phosphatase-targeted, anticancer therapeutics through the screen- ing of sodium stibogluconate (SSG) and potassium antimonyltartrate-related compounds, which are comprised of antimony conjugated to different organic moieties. For example, SSG appears to be a better inhibitor than suramin which is a compound known for its antineoplastic activity against several types of cancers.

  20. Antimony bioavailability in mine soils

    International Nuclear Information System (INIS)

    Flynn, Helen C.; Meharg, Andy A.; Bowyer, Phillipa K.; Paton, Graeme I.

    2003-01-01

    Antimony has low bioavailability in mining and smelting contaminated soils and bacterial biosensors are not suitable for its detection. - Five British former mining and smelting sites were investigated and found to have levels of total Sb of up to 700 mg kg -1 , indicating high levels of contamination which could be potentially harmful. However, this level of Sb was found to be biologically unavailable over a wide range of pH values, indicating that Sb is relatively unreactive and immobile in the surface layers of the soil, remaining where it is deposited rather than leaching into lower horizons and contaminating ground water. Sb, sparingly soluble in water, was unavailable to the bacterial biosensors tested. The bioluminescence responses were correlated to levels of co-contaminants such as arsenic and copper, rather than to Sb concentrations. This suggests that soil contamination by Sb due to mining and smelting operations is not a severe risk to the environment or human health provided that it is present as immobile species and contaminated sites are not used for purposes which increase the threat of exposure to identified receptors. Co-contaminants such as arsenic and copper are more bioavailable and may therefore be seen as a more significant risk

  1. Extraction of antimony from nitric acid solutions using tributyl phosphate. II. Tributyl phosphate-antimony(V)-nitric acid system

    International Nuclear Information System (INIS)

    Lakaev, V.S.; Smelov, V.S.

    1989-01-01

    The extraction of pentavalent antimony from nitric acid solutions using tributyl phosphate has been investigated. A possible mechanism for the extraction of antimony(V) has been determined and the (pre)concentration constant for the process has been calculated. The composition of the extracted antimony(V) complex has been deduced. A negative effect of temperature on the distribution coefficient for antimony(V) has also been demonstrated

  2. ANTIMONY INDUCED CRYSTALLIZATION OF AMORPHOUS SILICON

    Institute of Scientific and Technical Information of China (English)

    Y. Wang; H.Z. Li; C.N. Yu; G.M. Wu; I. Gordon; P. Schattschneider; O. Van Der Biest

    2007-01-01

    Antimony induced crystallization of PVD (physics vapor deposition) amorphous silicon can be observed on sapphire substrates. Very large crystalline regions up to several tens of micrometers can be formed. The Si diffraction patterns of the area of crystallization can be observed with TEM (transmission electron microscopy). Only a few and much smaller crystals of the order of 1μm were formed when the antimony layer was deposited by MBE(molecular beam epitaxy) compared with a layer formed by thermal evaporation. The use of high vacuum is essential in order to observe any Sb induced crystallization at all. In addition it is necessary to take measures to limit the evaporation of the antimony.

  3. Neutrons and antimony physical measurements and interpretations

    International Nuclear Information System (INIS)

    Smith, A. B.

    2000-01-01

    New experimental information for the elastic and inelastic scattering of ∼ 4--10 MeV neutrons from elemental antimony is presented. The differential measurements are made at ∼ 40 or more scattering angles and at incident neutron-energy intervals of ∼ 0.5 MeV. The present experimental results, those previously reported from this laboratory and as found in the literature are comprehensively interpreted using spherical optical-statistical and dispersive-optical models. Direct vibrational processes via core-excitation, isospin and shell effects are discussed. Antimony models for applications are proposed and compared with global, regional, and specific models reported in the literature

  4. Synthesis and application of antimony pent(isooctyl thioglycollate)

    Institute of Scientific and Technical Information of China (English)

    LIU You-nian; LI Hong-bing; SHU Wan-gen; CHEN Qi-yuan

    2005-01-01

    A new type of thermal stabilizer, antimony pent(isooctyl thioglycollate)(Sb(SCH2COOC8H17)5), was synthesized by using antimony trioxide, isooctanol and thioglycolic acid in 2 steps. Firstly, antimony trioxide was oxidized into colloidal antimony peroxide. Then antimony peroxide and isooctyl thioglycollate reacted stoichiometrically for 2 h with the yield of 87%. This compound was used as thermal stabilizer for polyvinyl chloride(PVC). The results show that the thermal stability time is 52 min at 200 ℃ by heat-ageing oven test when adding 2.5% thermal stabilizer to PVC resin. Compared with antimony tris(isooctyl thiolycollate), the initial thermal stability of antimony pent(isooctyl thioglycollate) is better than that of antimony tris(isooctyl thioglycollate), while the long-term thermal stability time is shorter than that of antimony tris(isooctyl thioglycollate). Meanwhile, the synergism of antimony pent(isooctyl thioglycollate) with calcium stearate was studied, indicating that when the mass ratio of antimony pent(isooctyl thioglycollate) to calcium stearate is 2:1, the thermal stability time of PVC is 58 min.

  5. Effect of precipitation route on the properties of antimony trioxide

    International Nuclear Information System (INIS)

    Abdullah, Abdul Halim; Noor, Nor Hayati Mohd; Ramli, Irmawati; Hashim, Mansor

    2008-01-01

    Antimony trioxide was prepared, using antimony potassium tartarate as starting material, via forward and reverse precipitation technique. The characteristics of the resulting antimony oxides were determined by BET surface area method, differential thermogravimetry analysis (DTG), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and SEM. The DTG curves for all uncalcined samples showed only a single endothermic peak which indicated that the sample is antimony trioxide. Unlike forward precipitation technique which resulted in a single antimony trioxide phase which is senarmontite, reverse precipitation technique produced antimony trioxide with both senarmontite and valentinite phase. Upon calcinations at 723 K, a small amount of Sb 2 O 4 with cervantite phase was formed at the expense of Sb 2 O 3 senarmontite phase as detected from the XRD pattern and infrared spectrum of RSb. The effect of preparation route on the properties of the antimony trioxide produced was clearly demonstrated

  6. Microbial antimony biogeochemistry: Enzymes, regulation, and related metabolic pathways

    Science.gov (United States)

    Li, Jingxin; Qian Wang,; Oremland, Ronald S.; Kulp, Thomas R.; Rensing, Christopher; Wang, Gejiao

    2016-01-01

    Antimony (Sb) is a toxic metalloid that occurs widely at trace concentrations in soil, aquatic systems, and the atmosphere. Nowadays, with the development of its new industrial applications and the corresponding expansion of antimony mining activities, the phenomenon of antimony pollution has become an increasingly serious concern. In recent years, research interest in Sb has been growing and reflects a fundamental scientific concern regarding Sb in the environment. In this review, we summarize the recent research on bacterial antimony transformations, especially those regarding antimony uptake, efflux, antimonite oxidation, and antimonate reduction. We conclude that our current understanding of antimony biochemistry and biogeochemistry is roughly equivalent to where that of arsenic was some 20 years ago. This portends the possibility of future discoveries with regard to the ability of microorganisms to conserve energy for their growth from antimony redox reactions and the isolation of new species of “antimonotrophs.”

  7. Chlorination of antimony and its volatilization treatment of waste antimony-uranium composite oxide catalyst

    International Nuclear Information System (INIS)

    Sawada, K.; Enokida, Y.

    2011-01-01

    For the waste antimony-uranium composite oxide catalyst, the chlorination of antimony and its volatilization treatment were proposed, and evaluated using hydrogen chloride gas at 873-1173 K. During the treatment, the weight loss of the composite oxide sample, which resulted from the volatilization of antimony, was confirmed. An X-ray diffraction analysis showed that uranium oxide, U 3 O 8 , was formed during the reaction. After the treatment at 1173 K for 1 h, almost all the uranium contained in the waste catalyst was dissolved by a 3 M nitric acid solution at 353 K within 10 min, although that of the non-treated catalyst was less than 0.1%. It was found that the chlorination and volatilization treatment was effective to separate antimony from the composite oxide catalyst and change uranium into its removable form. (orig.)

  8. Arsenic and Antimony Transporters in Eukaryotes

    Directory of Open Access Journals (Sweden)

    Ewa Maciaszczyk-Dziubinska

    2012-03-01

    Full Text Available Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  9. Arsenic and Antimony Transporters in Eukaryotes

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  10. Experience with antimony activity removal process in Indian PHWRs

    International Nuclear Information System (INIS)

    Velmurugan, S.; Mittal, Vinit K.; Kumbhar, A.G.; Narasimhan, S.V.; Bhat, H.R.; Krishna Rao, K.S.; Upadhyay, S.K.; Jain, A.K.

    2008-01-01

    The problem of antimony (Sb) activity during decontamination was first encountered in NAPS-1 and Sb activity deposition took place during the decontamination resulting in poor decontamination factors (DF). Sb problem has been observed in PWRs and PHWRs elsewhere also. These utilities use an oxidative process involving the addition of H 2 O 2 to remove these Sb activities from the core and remove it on ion exchange resins. Experience in CANDU PHWRs indicated disappearance of H 2 O 2 in quantities higher than that observed in PWRs. This is attributed to the higher pick-up of H 2 O 2 by the magnetite/ferrites over large carbon steel surface present in the primary coolant system of PHWRs. Systematic work was carried out to understand the deposition of Sb on PHT system surfaces and a new method was evolved to remove the Sb activities from the system. This alternative reductive chemical process involve the addition of Nitrilo Tri Acetic Acid, Citric Acid and Rodine-92B and circulating the chemicals for a short period and then the Sb and other activities released from the core are removed by the mixed bed. Subsequent to the Sb removal process, the normal chemical decontamination of the system is carried out to remove 60 Co and other activities. This non-oxidizing Sb removal process was applied to NAPS-2 primary system prior to EMCCR. During this Sb removal process of NAPS-2, around 450 μCi/L activity of 124 Sb was released from the system surfaces to the formulation. Activity measurement in the samples collected and the on-line radiation field data indicated that deposition of Sb activities on system surfaces has been prevented by Rodine-92B and subsequently these activities have been removed by mixed bed IX columns. Antimony removal process worked successfully, but in the second normal decontamination process around 150 μCi/L activities came in the formulation which was not anticipated. As a result DF observed immediately after the decontamination campaign was not good

  11. Potent heme-degrading action of antimony and antimony-containing parasiticidal agents.

    Science.gov (United States)

    Drummond, G S; Kappas, A

    1981-02-01

    The ability of antimony and antimony-containing parasiticidal agents to enhance the rate of heme degradation in liver and kidney was investigated. Trivalent antimony was shown to be an extremely potent inducer of heme oxygenase, the initial and rate-limiting enzyme in heme degradation, in both organs, whereas the pentavalent form was a weak inducer of this enzyme. The ability of antimony to induce heme oxygenase was dose-dependent, independent of the salt used, and not a result of a direct activation of the enzyme in vitro. Concomitant with heme oxygenase induction by antimony, microsomal heme and cytochrome P-450 contents decreased, the cyto-chrome P-450-dependent mixed function oxidase system was impaired, and delta-ami-nolevulinate synthase (ALAS), the rate-limiting enzyme of heme synthesis, underwent the sequential changes-initial inhibition followed by rebound induction-usually associated with the administration of transition elements such as cobalt. Antimony induction of heme oxygenase however, unlike the enzyme induction elicited by cobalt, was not prevented either by cysteine administered orally or as a cysteine metal complex, or by simultaneous zinc administration. Desferoxamine also did not block heme oxygenase induction by antimony, but this chelator did prevent the rebound increase in ALAS activity associated with antimony or cobalt treatment. Antimony-containing parasiticidal drugs were also potent inducers of heme oxygenase in liver and kidney. The heme degradative action of these drugs may be related in part to the jaundice commonly associated with the prolonged therapeutic use of these agents. The heme-oxygenase-inducing action of antimony-containing parasiticidal drugs is a newly defined biological property of these compounds. The relation between the parasiticidal and the heme-oxygenase-inducing actions of such drugs is unknown. However, certain parasites contain hemoproteins or require heme compounds during their life cycle. It may therefore be

  12. Production of no-carrier-added {sup 123}I via heavy-ion activation of natural antimony oxide

    Energy Technology Data Exchange (ETDEWEB)

    Maji, S. [The Univ. of Burdwan (India). Dept. of Chemistry; Lahiri, S. [Saha Institute of Nuclear Physics, Kolkata (India). Chemical Sciences Div.

    2007-07-01

    Activation of natural Sb{sub 2}O{sub 3} with 48 MeV {sup 7}Li{sup 3+} beam results in the formation of no-carrier-added {sup 123}I in the matrix along with the radionuclides {sup 123,125}Xe and {sup 122}Sb. The {sup 123}I yield amounts to about 400 kBq/{mu}Ah and the radionuclidic impurity of {sup 124}I to {proportional_to}1.2% of {sup 123}I. Attempts to separate no-carrier-added iodine from bulk antimony target involved liquid-liquid extraction with TOA and HDEHP as well as precipitation of Sb{sub 2}S{sub 3} with thioacetamide. The precipitation technique was found to be the most effective for quantitative separation of {sup 123}I from the bulk antimony oxide target. (orig.)

  13. Preparation of antimony-doped nanoparticles by hydrothermal method

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming-xi; YANG Tian-zu; GU Ying-ying; DU Zuo-juan; LIU Jian-ling

    2005-01-01

    Antimony-doped tin oxide(ATO) nanoparticles were prepared by the mild hydrothermal method at 200 ℃ using sodium stannate, antimony oxide, sodium hydroxide and sulfuric acid as the starting materials. The doped powders were examined by differential thermal analysis(DTA), X-ray diffractometry(XRD) and transmission electron microscopy(TEM). The doping levels of antimony were determined by volumetric method and iodimetry.The results show that antimony is incorporated into the crystal lattice of tin oxide and the doping levels of antimony in the resulting powders are 2.4%, 4.3 % and 5.1 % (molar fraction). The mean particle size of ATO nanoparticles is in the range of 25 - 30 nm. The effects of antimony doping level on the crystalline size and crystallinity were also discussed.

  14. Electrical properties of cadmium telluride films doped with antimony

    International Nuclear Information System (INIS)

    Atdaev, B.S.; Garyagdyev, G.; Grin', V.F.; Noskov, A.I.

    1989-01-01

    Effect of cadmium telluride doping with antimony on electric and photoelectric properties is investigated. Temperature dependence of dark (σ d ) and photoconductivity (σ p ) during excitation from the range of proper absorption in the temperature range 77-300 K and spectral distribution of photoconductivity at 300 K are investigated. It is shown that in the process of doping antimony diffusses intensively over CdTe grain boundaries, decreasing potential barriers between them and due to diffusion into CdTe grains it changes their electrical properties. The acceptor character of antimony impurity can be caused by antimony diffusion into tellurium sublattice owing to proximity of their ionic and covalent radii

  15. The exposure to and health effects of antimony

    DEFF Research Database (Denmark)

    Cooper, Ross G.; Harrison, Adrian Paul

    2009-01-01

    . Antimony toxicity is dependent on the exposure dose, duration, route (breathing, eating, drinking, or skin contact), other chemical exposures, age, sex, nutritional status, family traits, life style, and state of health. Chronic exposure to antimony in the air at levels of 9 mg/m3 may exacerbate irritation...... of the eyes, skin, and lungs. Long-term inhalation of antimony can potentiate pneumoconiosis, altered electrocardiograms, stomach pain, diarrhea, vomiting, and stomach ulcers, results which were confirmed in laboratory animals. Although there were investigations of the effect of antimony in sudden infant...

  16. Protection of cesium-antimony photocathodes

    International Nuclear Information System (INIS)

    Buzulutskov, A.; Breskin, A.; Chechik, R.; Prager, M.; Shefer, E.

    1996-06-01

    In order to operate gaseous photomultipliers in the visible range it was suggested to protect sensitive photocathodes against contact to air and counting gases by their coating with a thin solid dielectric film. We present data on coating of cesium- antimony photocathodes with alkali-halide (NaI, CsI, CsF, NaF), oxide (SiO) and organic (hexatriacontane, calcium stearate) films. The photoelectron transmission through these films and their protection capability have been studied in detail. Cesium-antimony photocathodes are shown to withstand exposure to considerable doses of oxygen and dry air when coated with Nal films. This opens ways to their operation in gas media. (authors), 11 refs., 6 figs

  17. EVALUAION OF NEUTRON DATA FOR NATURAL ANTIMONY

    Institute of Scientific and Technical Information of China (English)

    1991-01-01

    <正> The complete neutron nuclear data of natural antimony have been per-formed for CENDL-2 in neutron energy range from 10-5eV to 20 MeV.Someof the data have been calculated by means of theoretical model.A good agree-ment was obtained with measured values.The recommended data were com-pared with the evaluations of JENDL-3 and ENDF/B-6.

  18. Identification of Potential Biomarkers for Antimony Susceptibility ...

    Indian Academy of Sciences (India)

    Identification of Potential Biomarkers for Antimony Susceptibility/Resistance in L. donovani Rentala Madhubala School of Life Sciences Jawaharlal Nehru University New Delhi, India · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16.

  19. Synthesis of Antimony Doped Amorphous Carbon Films

    Science.gov (United States)

    Okuyama, H.; Takashima, M.; Akasaka, H.; Ohtake, N.

    2013-06-01

    We report the effects of antimony (Sb) doping on the electrical and optical properties of amorphous carbon (a-C:H) films grown on silicon and copper substrates by magnetron sputtering deposition. For film deposition, the mixture targets fabricated from carbon and antimony powders was used. The atomic concentration of carbon, hydrogen, and antimony, in the film deposited from the 1.0 mol% Sb containing target were 81, 17, 2 at.%, respectively. These elements were homogeneously distributed in the film. On the structural effect, the average continuous sp2 carbon bonding networks decreased with Sb concentration increasing, and defects in the films were increased with the Sb incorporation because atomic radius of Sb atoms is twice larger size than that of carbon. The optical gap and the electrical resistivity were carried out before and after the Sb doping. The results show that optical gap dropped from 3.15 to 3.04 eV corresponding to non-doping to Sb-doping conditions, respectively. The electrical resistivity reduced from 10.5 to 1.0 MΩm by the Sb doping. These results suggest the doping level was newly formed in the forbidden band.

  20. Synthesis of Antimony Doped Amorphous Carbon Films

    International Nuclear Information System (INIS)

    Okuyama, H; Takashima, M; Akasaka, H; Ohtake, N

    2013-01-01

    We report the effects of antimony (Sb) doping on the electrical and optical properties of amorphous carbon (a-C:H) films grown on silicon and copper substrates by magnetron sputtering deposition. For film deposition, the mixture targets fabricated from carbon and antimony powders was used. The atomic concentration of carbon, hydrogen, and antimony, in the film deposited from the 1.0 mol% Sb containing target were 81, 17, 2 at.%, respectively. These elements were homogeneously distributed in the film. On the structural effect, the average continuous sp 2 carbon bonding networks decreased with Sb concentration increasing, and defects in the films were increased with the Sb incorporation because atomic radius of Sb atoms is twice larger size than that of carbon. The optical gap and the electrical resistivity were carried out before and after the Sb doping. The results show that optical gap dropped from 3.15 to 3.04 eV corresponding to non-doping to Sb-doping conditions, respectively. The electrical resistivity reduced from 10.5 to 1.0 MΩm by the Sb doping. These results suggest the doping level was newly formed in the forbidden band.

  1. 21 CFR 862.3110 - Antimony test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Antimony test system. 862.3110 Section 862.3110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862.3110 Antimony test system. (a) Identification. A...

  2. 40 CFR 721.5547 - Antimony double oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Antimony double oxide. 721.5547 Section 721.5547 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5547 Antimony double oxide. (a)...

  3. Determination of antimony trioxide in fire-retardant conveyor belts

    Energy Technology Data Exchange (ETDEWEB)

    Rytych-Witwicka, B.; Szmyd, E.

    1976-12-01

    Two methods for the determination of antimony trioxide in rubber and pvc are described. One is a colorimetric method based on the reaction of antimony with rhodamine B; the other is a polarographic method. The results of the two methods show a satisfactory consistency and the methods themselves appear rapid and effective.

  4. The presence of antimony in various dental filling materials

    International Nuclear Information System (INIS)

    Molokhia, Anat; Combe, E.C.; Lilley, J.D.

    1985-01-01

    Antimony was determined in a number of non-metallic dental materials currently used for tooth restoration. The method applied was instrumental neutron activation analysis. The concentration of antimony in some of the brands tested was found to be as high as 900 fold that in the normal hard dental tissues. (author)

  5. Antimony-121 Moessbauer spectra of antimony(III) compounds with a stereochemically active lone pair

    International Nuclear Information System (INIS)

    Takeda, Masuo; Takahashi, Masashi; Ohyama, Ryuhichi

    1986-01-01

    The Sb-121 Moessbauer parameters at 20 K for 23 antimony(III) compounds were obtained and the data are discussed in terms of known crystal structures. The isomer shifts and quadrupole coupling constants depend strongly on the type of configuration around the Sb(III) atoms with stereochemically active lone pair electrons. (Auth.)

  6. Effect of antimony on lead-acid battery negative

    International Nuclear Information System (INIS)

    Mahato, B.K.; Bullock, K.R.; Strebe, J.L.; Wilkinson, D.F.

    1985-01-01

    The role of antimony on the lead-acid battery negative in terms of its effect on charge efficiency, its effect on gassing overpotential, its interactive influence with lignin expander in controlling the charge efficiency, and its retentive behavior or purging characteristics as SbH 3 in the overcharge gas stream was investigated. Linear potential sweep (LPS) cycling of Plante-type lead electrodes were used to determine the effect of antimony on gassing overpotential and to monitor its concentration either in the active material or the exit gas stream. Results showed a significant contribution of antimony in decreasing charge efficiency and an overwhelming role of lignin expander in suppressing the effect of antimony on charge efficiency. The critical lead-electrode potential for purging antimony from the electrode is close to -1275 mV (vs. Hg/Hg 2 SO 4 )

  7. Antimony removal from aqueous solutions using Zirconium hydroxide

    International Nuclear Information System (INIS)

    Petrescu, D.; Velciu, L.; Bucur, C.

    2016-01-01

    In this paper it is presented an experimental test for non-radioactive antimony removal from aqueous solutions using zirconium hydroxide powder. Also, it was studied how the temperature and pH influences antimony adsorption onto zirconium hydroxide surface. After the adsorption, solutions were filtered on Cellulose Mixed Ester Membrane with 0.2 μm pore size to remove the zirconium powder and then the aqueous solutions were sent to Inductively Coupled Plasma Optic Emission Spectrometry (ICP-OES) for quantitative analysis of Sb. Zirconium hydroxide powders were examined by optical microscopy. For the solutions that were tested at pH 4.5 and 10.2 the antimony concentration dropped below the detection limit of ICP-OES device, proof of antimony adsorption on zirconium hydroxide. Also, for the other tested solutions which had pH=12 the antimony concentration reduced with 77% and 80%. The temperature had no influence upon adsorption mechanism. (authors)

  8. Determination of antimony in nail and hair by thermal neutron activation analysis

    International Nuclear Information System (INIS)

    Katayama, Yukio; Ishida, Norio

    1987-01-01

    The concentration of antimony in nail and hair was determined by thermal neutron activation analysis. Samples were collected from the workers of an antimony refinery, inhabitants near the refinery, and residents in control area. They were irradiated by Kyoto University 5000 kW Reactor for 1 h, and cooled for 30 to 100 days. After cooling, the concentration of Sb in nail and hair was estimated by measuring the intensity of γ-ray from 124 Sb of the samples, then the samples were washed by 0.1 % aqueous solution of nonionic surface active agent in an ultrasonic cleaner. The γ-ray spectrometry was done again (after washing). The concentration of Sb in nail before washing was 730 ppm for the workers, 2.46 ppm for habitants near the refinery, and 0.19 ppm for the control; after washing, it became 230 ppm for the workers, 0.63 ppm for habitants, and 0.09 ppm for the control. The concentration of Sb in hair before and after washing was 222 ppm and 196 ppm for the workers, and 0.21 ppm and 0.15 ppm for the control, respectively. (author)

  9. The {sup 124}Sb activity standardization by gamma spectrometry for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M.C.M. de, E-mail: marcandida@yahoo.com.b [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes, Instituto de Radioprotecao e Dosimetria, Comissao Nacional de Energia Nuclear (SEMRA/LNMRI/IRD/CNEN), Av. Salvador Allende s/n, Recreio, Rio de Janeiro, RJ, CEP 22780-160 (Brazil); Iwahara, A.; Delgado, J.U.; Poledna, R.; Silva, R.L. da [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes, Instituto de Radioprotecao e Dosimetria, Comissao Nacional de Energia Nuclear (SEMRA/LNMRI/IRD/CNEN), Av. Salvador Allende s/n, Recreio, Rio de Janeiro, RJ, CEP 22780-160 (Brazil)

    2010-07-21

    This work describes a metrological activity determination of {sup 124}Sb, which can be used as radiotracer, applying gamma spectrometry methods with hyper pure germanium detector and efficiency curves. This isotope with good activity and high radionuclidic purity is employed in the form of meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam) to treat leishmaniasis. {sup 124}Sb is also applied in animal organ distribution studies to solve some questions in pharmacology. {sup 124}Sb decays by {beta}-emission and it produces several photons (X and gamma rays) with energy varying from 27 to 2700 keV. Efficiency curves to measure point {sup 124}Sb solid sources were obtained from a {sup 166m}Ho standard that is a multi-gamma reference source. These curves depend on radiation energy, sample geometry, photon attenuation, dead time and sample-detector position. Results for activity determination of {sup 124}Sb samples using efficiency curves and a high purity coaxial germanium detector were consistent in different counting geometries. Also uncertainties of about 2% (k=2) were obtained.

  10. 124Sb - Activity measurement and determination of photon emission intensities

    International Nuclear Information System (INIS)

    Be, M.M.; Chauvenet, B.

    2009-07-01

    The international traceability of antimony 124, in term of activity, is very limited. The results of 124 Sb activity measurements sent to the SIR (BIPM - International System of Reference, BIPM.RI(II)-K1.Sb-124.) are scarce. Up to now, only three laboratories have contributed. Two of them carried out measurements using the 4πβ-γ coincidence counting technique and the third one using the 4πγ method with a well-type crystal detector. The first two results are in agreement but the last one differs significantly from them, by 2 %. The decay scheme consistency cannot be excluded when trying to explain those discrepancies. In other respects, this nuclide emits high-energy gamma rays, and then could be selected as a valuable standard radionuclide for the calibration of gamma-ray detectors in that energy range, given well known photon intensities. Those considerations led to the proposal of an international exercise and to the realisation of this Euromet project, registered as project no. 907, coordinated by CEA-List-LNE/LNHB. The first part of this exercise was dedicated to activity measurements and to their comparison. For this purpose, participants were asked to make use of all the direct measurement techniques available in their laboratory in order to confirm or not the existence of possible biases specific to some measuring methods. In addition, this exercise offered the opportunity of improving the uncertainties of the gamma-ray intensities. Then, participants were asked, in the second part of the exercise, to carry out X-ray and gamma-ray intensity measurements. These results have been compared to previous published values and new decay scheme data are proposed. Eight international laboratories participated in this exercise. (authors)

  11. Structural and electrical characterization of zinc oxide doped with antimony

    Directory of Open Access Journals (Sweden)

    G. Juárez Díaz

    2014-08-01

    Full Text Available In this work we report the results of structural and electrical characterization realized on zinc oxide single crystal samples with (001 orientation, which were doped with antimony. Doping was carried out by antimony thermal diffusion at 1000 °C for periods of 1 and 2 hours under nitrogen environment from a solid source formed by antimony oxide. Electrical characterization by I-V curves and Hall effect shown an increase in acceptor concentration which demonstrates that doping is effective and create holes in zinc oxide samples.

  12. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand

    International Nuclear Information System (INIS)

    Wilson, N.J.; Craw, D.; Hunter, K.

    2004-01-01

    A historic antimony smelter site at Endeavour Inlet, New Zealand has smelter residues with up to 17 wt.% antimony. Residues include coarse tailings (cm scale particles, poorly sorted), sand tailings (well sorted) and smelter slag (blocks up to 30 cm across). All of this material has oxidised to some degree over the ca. 100 years since the site was abandoned. Oxidation has resulted in acidification of the residues down to pH 2-5. Smelter slag contains pyrrhotite (FeS) and metallic antimony, and oxidation is restricted to surfaces only. The coarse tailings are the most oxidised, and few sulfide grains persist. Unoxidised sand tailings contain 10-20 vol.% stibnite (Sb 2 S 3 ) containing up to 5% As, with subordinate arsenopyrite (FeAsS), and minor pyrite (FeS 2 ). The sand tailings are variably oxidised on a scale of 2-10 cm, but original depositional layering is preserved during oxidation and formation of senarmontite (Sb 2 O 3 ). Oxidation of sand tailings has resulted in localised mobility of both Sb and As on the cm scale, resulting in redistribution of these metalloids with iron oxyhydroxide around sand grain boundaries. Experiments demonstrate that Sb mobility decreases with time on a scale of days. Attenuation of both As and Sb occurs due to adsorption on to iron oxyhydroxides which are formed during oxidation of the smelter residues. There is no detectable loss of Sb or As from the smelter site into the adjacent river, <50 m away, which has elevated Sb (ca. 20 μg/l) and As (ca. 7 μg /l) from mineralised rocks upstream. Despite the high concentrations of Sb and As in the smelter residues, these metalloids are not being released into the environment. - High levels of antimony in primitive smelter soils remain largely immobile on the metre scale

  13. How can we adapt to geological scarcity of antimony? Investigation of antimony's substitutability and of other measures to achieve a sustainable use

    NARCIS (Netherlands)

    Henckens, M.L.C.M.; Driessen, P.P.J.; Worrell, E.

    Abstract Antimony is an element that is applied in many useful applications for mankind. However, antimony resources are very scarce, when comparing the current extraction rates with the availability of antimony containing ores. From an inter-temporal sustainability perspective, current generations

  14. Tissue distribution of residual antimony in rats treated with multiple doses of meglumine antimoniate

    Directory of Open Access Journals (Sweden)

    Deise Riba Coelho

    2014-07-01

    Full Text Available Meglumine antimoniate (MA and sodium stibogluconate are pentavalent antimony (SbV drugs used since the mid-1940s. Notwithstanding the fact that they are first-choice drugs for the treatment of leishmaniases, there are gaps in our knowledge of their toxicological profile, mode of action and kinetics. Little is known about the distribution of antimony in tissues after SbV administration. In this study, we evaluated the Sb content of tissues from male rats 24 h and three weeks after a 21-day course of treatment with MA (300 mg SbV/kg body wt/d, subcutaneous. Sb concentrations in the blood and organs were determined by inductively coupled plasma-mass spectrometry. In rats, as with in humans, the Sb blood levels after MA dosing can be described by a two-compartment model with a fast (t1/2 = 0.6 h and a slow (t1/2 >> 24 h elimination phase. The spleen was the organ that accumulated the highest amount of Sb, while bone and thyroid ranked second in descending order of tissues according to Sb levels (spleen >> bone, thyroid, kidneys > liver, epididymis, lungs, adrenals > prostate > thymus, pancreas, heart, small intestines > skeletal muscle, testes, stomach > brain. The pathophysiological consequences of Sb accumulation in the thyroid and Sb speciation in the liver, thyroid, spleen and bone warrant further studies.

  15. Zhao Tiancong——A MONUMENT TO ANTIMONY IN CHINA

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    Professor Zhao Tiancong is a famous specialist of our country in nonferrous merallurgy field and a doctoral teacher of Central South University of Technology. He has been devoting diligently his life to the development of the antimony metallurgy.

  16. Determining arsenic in elemental antimony containing selenium and tellurium

    International Nuclear Information System (INIS)

    Mogileva, M.G.; Kozlova, E.L.

    1986-01-01

    The authors have developed a method of determining arsenic in metallic antimony containing selenium, tellurium, and mercury, in which they isolated it in elementary form for separation from the antimony and the associated elements (silicon and phosphorus), followed by colorimetric determination of the arsenic from arsenic-molbdenum blue. The reducing agents to reduce the arsenic were sodium hypophosphite and tin(II) chloride, which do not reduce antimony and which do not interfere with the determination. This method of determining arsenic in metallic antimony without preliminary separation of the selenium and tellurium is in no way inferior in accuracy to the method given in All-Union State Standard (GOST) 1367.4-83

  17. Thermodynamic Behavior of Lead-Antimony Alloy in Vacuum Distillation

    Institute of Scientific and Technical Information of China (English)

    1989-01-01

    The distribution of metals in Pb-Sb ailoy during vacuum distillation was calculated.The composition curve of vapor-liquid phases determined by this work is different from those of. other researchers.The curve intersects the diagonal at C.The compositions of vapor and liquid at C are identical.The antimony content of vapor on the left of C is less than that of liquid,and the vapor on the right-side of C contains more antimony.These characteristics can be applied to the elimination of antimony from crude lead or the elimination of lead from crude antimony.The position of C moves rightwards with temperature increment.The discrepency among the compositions of C suggested by diffrent authors was explained.

  18. Interplay of single particle and collective excitations in antimony nuclei

    International Nuclear Information System (INIS)

    Stan-Sion, C.

    1987-01-01

    The antimony nuclei are considered classical examples for coexisting spherical and well-deformed structures. The electromagnetic moment measurements presented in this paper provide direct evidence for shape coexistence. 8 refs., 3 figs. (M.F.W.)

  19. Antimony and sleep-related disorders: NHANES 2005-2008.

    Science.gov (United States)

    Scinicariello, Franco; Buser, Melanie C; Feroe, Aliya G; Attanasio, Roberta

    2017-07-01

    Antimony is used as a flame-retardant in textiles and plastics, in semiconductors, pewter, and as pigments in paints, lacquers, glass and pottery. Subacute or chronic antimony poisoning has been reported to cause sleeplessness. The prevalence of short sleep duration (sleep apnea (OSA) affects 12-28 million US adults. Insufficient sleep and OSA have been linked to the development of several chronic conditions including diabetes, cardiovascular disease, obesity and depression, conditions that pose serious public health threats. To investigate whether there is an association between antimony exposure and sleep-related disorders in the US adult population using the National Health and Nutrition Examination Survey (NHANES) 2005-2008. We performed multivariate logistic regression to analyze the association of urinary antimony with several sleep disorders, including insufficient sleep and OSA, in adult (ages 20 years and older) participants of NHANES 2005-2008 (n=2654). We found that participants with higher urinary antimony levels had higher odds to experience insufficient sleep (≤6h/night) (OR 1.73; 95%CI; 1.04, 2.91) as well as higher odds to have increased sleep onset latency (>30min/night). Furthermore, we found that higher urinary antimony levels in participants were associated with OSA (OR 1.57; 95%CI; 1.05, 2.34), sleep problems, and day-time sleepiness. In this study, we found that urinary antimony was associated with higher odds to have insufficient sleep and OSA. Because of the public health implications of sleep disorders, further studies, especially a prospective cohort study, are warranted to evaluate the association between antimony exposure and sleep-related disorders. Copyright © 2017. Published by Elsevier Inc.

  20. Effect of antimony substitution in iron pnictide compounds

    OpenAIRE

    Schmidt, D.; Braun, H. F.

    2015-01-01

    In the present study we have examined the effect of negative chemical pressure in iron pnictides. We have synthesized substitution series replacing arsenic by antimony in a number of 1111- and 122-iron arsenides and present their crystallographic and physical properties. The SDW transition temperature in LaFeAs$_{\\mathrm{1-x}}$Sb$_{\\mathrm{x}}$O decreases with increasing antimony content, while the superconducting transition temperature in LaFeAs$_{\\mathrm{1-x}}$Sb$_{\\mathrm{x}}$O$_{\\mathrm{0...

  1. Electron irradiation effects in amorphous antimony thin films obtained by cluster-beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, G.; Treilleux, M.; Santos Aires, F.; Cabaud, B.; Melinon, P.; Hoareau, A. (Lyon-1 Univ., 69 - Villeurbanne (France))

    1991-03-01

    In order to understand the differences existing between films obtained with a classical molecular beam deposition (MBD) and the new low-energy cluster beam deposition (LECBD), transmission electron microscopy has been used to characterize the first stages of antimony LECBD. Antimony deposits are discontinuous and amorphous up to 2 nm in thickness. They are formed with isolated amorphous antimony particles surrounded by an amorphous antimony oxide shell. Moreover, under electron beam exposure in the microscope, an amorphous-crystal transformation has been observed in the oxide shell. Electron irradiation induces the formation of a crystallized antimony oxide (Sb{sub 2}O{sub 3}) around the amorphous antimony core. (author).

  2. Yield of 117Sb, 118mSb, 120mSb, 122Sb, 124Sb in reactions Sn (p, xn)

    International Nuclear Information System (INIS)

    Dmitriev, P.P.; Konstantinov, I.O.

    1993-01-01

    Yield of 117 Sb, 118m Sb, 120m Sb, 122 Sb, 124 Sb from thick target depending on proton energy is measured. The maximum proton energy is 21.7±0.2 MeV. Antimony isotopes yield in separate reactions when irradiating of tin isotopes with 100% enrichment is determined using the method published earlier. The methods for production of 117 Sb, 118m Sb, 120m Sb, 122 Sb, 124 Sb with high radioisotope purity are shown. 13 refs., 1 fig., 3 tabs

  3. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials

    International Nuclear Information System (INIS)

    Jiang Xiuming; Wen Shengping; Xiang Guoqiang

    2010-01-01

    A simple, sensitive method for the speciation of inorganic antimony by cloud point extraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented and evaluated. The method based on the fact that formation of a hydrophobic complex of antimony(III) with ammonium pyrrolidine dithiocarbamate (APDC) at pH 5.0 and subsequently the hydrophobic complex enter into surfactant-rich phase, whereas antimony(V) remained in aqueous solutions. Antimony(III) in surfactant-rich phase was analyzed by ETAAS after dilution by 0.2 mL nitric acid in methanol (0.1 M), and antimony(V) was calculated by subtracting antimony(III) from the total antimony after reducing antimony(V) to antimony(III) by L-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of APDC and Triton X-114, equilibrium temperature and incubation time, sample volume were investigated in detail. Under the optimum conditions, the detection limit (3σ) of the proposed method was 0.02 ng mL -1 for antimony(III), and the relative standard deviation was 7.8% (c = 1.0 ng mL -1 , n = 7). The proposed method was successfully applied to speciation of inorganic antimony in the leaching solutions of different food packaging materials with satisfactory results.

  4. Sorbents for effective removal of radioactive antimony during chemical decontamination

    International Nuclear Information System (INIS)

    Nishad, Padala Abdul; Bhaskarapillai, Anupkumar; Velmurugan, Sankaralingam

    2014-01-01

    Removal of radioactive antimony is a challenging problem. Often, during decontamination, they get mobilized around the system and redeposit in different areas thus offsetting the reduction in the radiation field obtained by removing other activities such as 60 Co. Thus, there is a clear need for better antimony removing materials/strategies for effective reactor decontamination. In this regard, six commercially available sorbents namely, Tulsion A33 (strong base anion (-OH) resin), Amberlite IRC-718 (chelating resin), Radex ® Sb-1000, nano TiO 2 -special grade (Inorganic type IX), Chitosan (biosorbent) and Aeroxide p25 (nano TiO 2 , Inorganic type IX) were evaluated for their antimony sorption properties. Radex ® and TiO 2 based materials were found to be more effective in removing both Sb(V) and Sb(III). Solution pH was seen to significantly influence the antimony sorption and the effect was more prominent in anion resin, when tested under column conditions. Apart from the commercial sorbents, we have synthesised a robust high performing sorbent (TA-Chitosan beads) in the form of stable beads, using nano-TiO 2 and chitosan. The beads were found to retain the antimony sorption properties of the nano-TiO 2 , while adapting a physical format suitable for large scale operations. The sorbent exhibited almost complete sorption of antimony both in low (ppb level) as well as high concentrations of antimony. The suitability of the beads for use in column mode has been established and its radiation stability was probed in detail. The beads were found to be stable to irradiations as ascertained from the TOC values and unchanged sorption properties. The sorption properties of the CHITA beads in typical decontamination formulation containing mixture of complexing agents have been investigated in detail. (author)

  5. Complex processing of antimony-mercury gold concentrates of Dzhizhikrut Deposit

    International Nuclear Information System (INIS)

    Abdusalyamova, M.N.; Gadoev, S.A.; Dreisinger, D.; Solozhenkin, P.M.

    2013-01-01

    Present article is devoted to complex processing of antimony-mercury gold concentrates of Dzhizhikrut Deposit. The purpose of research was obtaining the metallic mercury and antimony with further gold and thallium extraction.

  6. Simple and effective method for nuclear tellurium isomers separation from antimony cyclotron targets

    International Nuclear Information System (INIS)

    Bondarevskij, S.I.; Eremin, V.V.

    1999-01-01

    Simple and effective method of generation of tellurium nuclear isomers from irradiated on cyclotron metallic antimony is suggested. Basically this method consists in consideration of the big difference in volatilities of metallic forms of antimony, tin and tellurium. Heating of the tin-antimony alloy at 1200 K permits to separate about 90 % of produced quantity of 121m Te and 123m Te (in this case impurity of antimony radionuclides is not more than 1 % on activity) [ru

  7. Blocking of indium incorporation by antimony in III-V-Sb nanostructures

    International Nuclear Information System (INIS)

    Sanchez, A M; Beltran, A M; Ben, T; Molina, S I; Beanland, R; Gass, M H; De la Pena, F; Walls, M; Taboada, A G; Ripalda, J M

    2010-01-01

    The addition of antimony to III-V nanostructures is expected to give greater freedom in bandgap engineering for device applications. One of the main challenges to overcome is the effect of indium and antimony surface segregation. Using several very high resolution analysis techniques we clearly demonstrate blocking of indium incorporation by antimony. Furthermore, indium incorporation resumes when the antimony concentration drops below a critical level. This leads to major differences between nominal and actual structures.

  8. The investigation of antimony extraction with tributyl phosphate from nitric acid solutions

    International Nuclear Information System (INIS)

    Lakaev, V.S.; Smelov, V.S.

    1988-01-01

    Experimental data on trivalent antimony extraction with tributyl phosphate from nitric acid solutions containing (3.2-4.3)x10 -6 mol/l of antimony-125 isotope are presented. Possible mechanism of antimony (3) extraction is determined and the concentration constant for this process is calculated. Effect of temperature on the extraction of trivalent antimony is estimated. The values of enthalpy, free enthalpy and entropy are determined

  9. Thermodynamic analysis of separating lead and antimony in chloride system

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-zhong; CAO Hua-zhen; LI Bo; YUAN Hai-jun; ZHENG Guo-qu; YANG Tian-zu

    2009-01-01

    In chloride system, thermodynamic analysis is a useful guide to separate lead and antimony as well as to understand the separation mechanism. An efficient and feasible way for separating lead and antimony was discussed. The relationships of [Pb2+][Cl-]2-lg[Cl]T and E-lg[Cl]T in Pb-Sb-Cl-H2O system were studied, and the solubilities of lead chloride at different antimony concentrations were calculated based on principle of simultaneous equilibrium. The results show that insoluble salt PbCl2 will only exist stably in a certain concentration range of chlorine ion. This concentration range of chlorine ion expands a little with increasing the concentration of antimony in the system while narrows as the system acidity increases. The solubility of Pb2+ in solution decreases with increasing the concentration of antimony in the system, whereas increases with increasing the concentration of total chlorine. The concentration range of total chlorine causing lead solubility less than 0.005 mol/L increases monotonically.

  10. Behavior of arsenic impurity at antimony electric precipitation

    International Nuclear Information System (INIS)

    Kim, G.N.; Rakhmanov, A.

    2001-01-01

    In the paper the arsenic impurity electrochemical behavior and it purification from antimony by electric precipitation out of fluoride solutions was studied. For this the arsenic sample with mass 0.003-0.006 g has been irradiated at the WWR-SM nuclear reactor during 3-5 hour in the thermal neutron flux 10 13 n/cm 2 s, after 24 h keeping the sample has being dissolved in the concentrated nitric acid, and then it has been evaporated several times with distillation water addition up to wet precipitation state. It is shown, that arsenic impurity behavior character in the antimony electric precipitation out to fluoride electrolyte depends on the electrolyte content, electrolysis conditions, arsenic valency state in arsenic impurity existence in the five-valency state its joint electric reduction with antimony is practically not observing. In the case the arsenic being in three-valency state, it joint electric reduction with antimony is taking place. In this time the electrolytic antimony contents arsenic impurities less in dozen time than initial material

  11. I-124 Imaging and Dosimetry

    Directory of Open Access Journals (Sweden)

    Russ Kuker

    2017-02-01

    Full Text Available Although radioactive iodine imaging and therapy are one of the earliest applications of theranostics, there still remain a number of unresolved clinical questions as to the optimization of diagnostic techniques and dosimetry protocols. I-124 as a positron emission tomography (PET radiotracer has the potential to improve the current clinical practice in the diagnosis and treatment of differentiated thyroid cancer. The higher sensitivity and spatial resolution of PET/computed tomography (CT compared to standard gamma scintigraphy can aid in the detection of recurrent or metastatic disease and provide more accurate measurements of metabolic tumor volumes. However the complex decay schema of I-124 poses challenges to quantitative PET imaging. More prospective studies are needed to define optimal dosimetry protocols and to improve patient-specific treatment planning strategies, taking into account not only the absorbed dose to tumors but also methods to avoid toxicity to normal organs. A historical perspective of I-124 imaging and dosimetry as well as future concepts are discussed.

  12. Martensite transformation in antimony implanted stainless steel

    International Nuclear Information System (INIS)

    Johnson, E.; Littmark, U.; Johansen, A.; Christodoulides, C.

    1981-01-01

    The authors have used Rutherford backscattering analysis (RBS) and transmission electron microscopy (TEM) and diffraction to investigate austenitic stainless steel crystals implanted at room temperature with 80 keV Sb + ions to a fluence of 5 x 10 20 ions/m 2 , thus providing implantation with a heavy group V element. RBS channeling spectra from implanted crystals show a damage peak which approaches the height of the random level and therefore indicates a very high degree of disorder in the implanted layers. The distribution of the disorder extends to a depth 3-5 times the depth of the primary radiation damage. The Sb peaks under channeling as well as random conditions are indistinguishable, confirming that substitutionality during implantation is negligible. To establish the nature of the disorder which cannot be assessed from the RBS analysis alone, and in particular to assess whether an amorphous alloy is formed in the implanted layer as indicated from the RBS spectra, samples implanted under similar conditions were investigated in the TEM. Significant extra spots in the patterns can be ascribed to the presence of a radiation induced b.c.c. phase of martensitic origin. The result that a significant amount of martensite can be induced by antimony implantation seems to indicate that the main driving force for the transition is due to damage induced stress concentrations. (Auth.)

  13. [Pollution characteristics of antimony, arsenic and mercury in human hair at Xikuangshan antimony mining area and Guiyang City, China].

    Science.gov (United States)

    Liu, Bi-Jun; Wu, Feng-Chang; Deng, Qiu-Jing; Mo, Chang-Li; Zhu, Jing; Zeng, Li; Fu, Zhi-You; Li, Wen

    2009-03-15

    The concentration levels of antimony, arsenic and mercury in human hair collected from Xikuangshan antimony mining area and Guiyang City were determined by hydride generation-atomic fluorescence spectrometry after having been digested by nitric acid and perchloric acid. The contents of Sb, As and Hg are 15.9, 4.21, 1.79 microg/g in the samples from Xikuangshan antimony mining area and 0.532, 0.280, 0.338 microg/g in the samples from Guiyang City respectively. The contents of Sb, As and Hg in human hair of Xikuangshan antimony area are much higher than those of Guiyang City. The independent-samples t-test shows that there are no marked differences in the contents of Sb and As between male and female hair samples from both Xikuangshan antimony mining area and Guiyang City (p > 0.05), while Hg contents in male hair are apparently higher than those in female hair from Guiyang City (p mining area may significantly affect human health than in the un-mining areas.

  14. REACTION PRODUCTS AND CORROSION OF MOLYBDENUM ELECTRODE IN GLASS MELT CONTAINING ANTIMONY OXIDES AND SODIUM SULFATE

    Directory of Open Access Journals (Sweden)

    JIŘÍ MATĚJ

    2012-09-01

    Full Text Available The products on the interface of a molybdenum electrode and glass melt were investigated primarily at 1400°C in three model glass melts without ingredients, with 1 % Sb2O3 and with 1 % Sb2O3 and 0.5 % SO3 (wt. %, both under and without load by alternating current. Corrosion of the molybdenum electrode in glass melt without AC load is higher by one order of magnitude if antimony oxides are present. The corrosion continues to increase if sulfate is present in addition to antimony oxides. Isolated antimony droplets largely occur on the electrode-glass melt interface, and numerous droplets are also dissipated in the surrounding glass if only antimony oxides are present in the glass melt. A comparatively continuous layer of antimony occurs on the interface if SO3 is also present, antimony being always in contact with molybdenum sulfide. Almost no antimony droplets are dissipated in the glass melt. The total amount of precipitated antimony also increases. The presence of sulfide on the interface likely facilitates antimony precipitation. The reaction of molybdenum with antimony oxides is inhibited in sites covered by an antimony layer. The composition of sulfide layers formed at 1400°C approximates that of Mo2S3. At 1100°C, the sulfide composition approximates that of MoS4. Corrosion multiplies in the glass melt without additions through the effect of AC current, most molybdenum being separated in the form of metallic particles. Corrosion also increases in the glass melt containing antimony oxides. This is due to increased corrosion in the neighborhood of the separated antimony droplets. This mechanism also results in the loosening of molybdenum particles. The amount of precipitated antimony also increases through the effect of the AC current. AC exerts no appreciable effect on either corrosion, the character of the electrode-glass interface, or antimony precipitation in the glass melt containing SO3.

  15. Antimony Resistance in Leishmania, Focusing on Experimental Research

    Directory of Open Access Journals (Sweden)

    Fakhri Jeddi

    2011-01-01

    Full Text Available Leishmaniases are parasitic diseases that spread in many countries with a prevalence of 12 million cases. There are few available treatments and antimonials are still of major importance in the therapeutic strategies used in most endemic regions. However, resistance toward these compounds has recently emerged in areas where the replacement of these drugs is mainly limited by the cost of alternative molecules. In this paper, we reviewed the studies carried out on antimonial resistance in Leishmania. Several common limitations of these works are presented before prevalent approaches to evidence antimonial resistance are related. Afterwards, phenotypic determination of resistance is described, then confronted to clinical outcome. Finally, we detail molecular mechanisms and targets involved in resistance and already identified in vitro within selected mutant strains or in clinical isolates.

  16. 42 CFR 124.503 - Compliance level.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Compliance level. 124.503 Section 124.503 Public... Unable To Pay § 124.503 Compliance level. (a) Annual compliance level. Subject to the provisions of this... persons unable to pay if it provides for the fiscal year uncompensated services at a level not less than...

  17. 21 CFR 163.124 - White chocolate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false White chocolate. 163.124 Section 163.124 Food and... CONSUMPTION CACAO PRODUCTS Requirements for Specific Standardized Cacao Products § 163.124 White chocolate. (a) Description. (1) White chocolate is the solid or semiplastic food prepared by intimately mixing and grinding...

  18. 42 CFR 124.8 - Grantee accountability.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Grantee accountability. 124.8 Section 124.8 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES HEALTH RESOURCES DEVELOPMENT... and Modernization § 124.8 Grantee accountability. (a) Records requirements. (1) Applicants who have...

  19. 7 CFR 4280.124 - Interest rates.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Interest rates. 4280.124 Section 4280.124 Agriculture... Improvements Program Section B. Guaranteed Loans § 4280.124 Interest rates. (a) The interest rate for the... in similar circumstances in the ordinary course of business. The interest rate charged is subject to...

  20. 24 CFR 884.124 - Audit.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Audit. 884.124 Section 884.124... HOUSING PROJECTS Applicability, Scope and Basic Policies § 884.124 Audit. (a) Where a State or local..., receiving financial assistance under this part, the audit requirements in 24 CFR part 44 shall apply. (b...

  1. 24 CFR 882.124 - Audit.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Audit. 882.124 Section 882.124...) SECTION 8 MODERATE REHABILITATION PROGRAMS Applicability, Scope and Basic Policies § 882.124 Audit. PHAs receiving financial assistance under this part are subject to audit requirements in 24 CFR part 44. [50 FR...

  2. 42 CFR 436.124 - Newborn children.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Newborn children. 436.124 Section 436.124 Public... the Categorically Needy § 436.124 Newborn children. (a) The agency must provide Medicaid eligibility to a child born to a woman who has applied for, has been determined eligible and is receiving...

  3. 7 CFR 1221.124 - Reports.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Reports. 1221.124 Section 1221.124 Agriculture... INFORMATION ORDER Sorghum Promotion, Research, and Information Order Reports, Books, and Records § 1221.124 Reports. (a) Each first handler, on a State-by-State basis, will be required to provide to the Board...

  4. 10 CFR 600.124 - Program income.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Program income. 600.124 Section 600.124 Energy DEPARTMENT... Nonprofit Organizations Post-Award Requirements § 600.124 Program income. (a) The standards set forth in this section shall be used to account for program income related to projects financed in whole or in...

  5. 14 CFR 1260.124 - Program income.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Program income. 1260.124 Section 1260.124..., Hospitals, and Other Non-Profit Organizations Post-Award Requirements § 1260.124 Program income. (a) The standards set forth in this section shall be used to account for program income related to projects financed...

  6. 18 CFR 401.124 - Construction.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Construction. 401.124 Section 401.124 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.124 Construction. This part is...

  7. Antimony recycling in the United States in 2000

    Science.gov (United States)

    Carlin, James F.

    2006-01-01

    The importance of recycling has become more obvious as concerns about the environment and import dependence have grown in recent years. When materials are recycled, fewer natural resources are consumed, and less waste products go to landfills or pollute the water and air. This study, one of a series of reports on metals recycling in 2000, discusses the flow of antimony from mining through its uses and disposal with emphasis on recycling. In 2000, the recycling efficiency for antimony was estimated to be 89 percent, and the recycling rate was about 20 percent.

  8. Standardization of intralesional meglumine antimoniate treatment for cutaneous leishmaniasis.

    Science.gov (United States)

    Duque, Maria Cristina de Oliveira; Vasconcellos, Érica de Camargo Ferreira E; Pimentel, Maria Inês Fernandes; Lyra, Marcelo Rosandiski; Pacheco, Sandro Javier Bedoya; Marzochi, Mauro Celio de Almeida; Rosalino, Cláudia Maria Valete; Schubach, Armando de Oliveira

    2016-01-01

    Intralesional treatment for cutaneous leishmaniasis has been applied for over 30 years at the Oswaldo Cruz Foundation, Rio de Janeiro, with good therapeutic results and without relevant systemic toxicity. Meglumine antimoniate was injected subcutaneously, using a long medium-caliber needle (for example, 30mm × 0.8mm); patients received 1-3 injections, with 15-day intervals. The technique is described in detail sufficient to enable replication. The treatment of cutaneous leishmaniasis with intralesional meglumine antimoniate is a simple, effective, and safe technique, which may be used in basic healthcare settings.

  9. Lattice dynamics of femtosecond laser-excited antimony

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, Mahmoud Hanafy [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States); Bugayev, Aleksey [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Elsayed-Ali, Hani E., E-mail: helsayed@odu.edu [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States)

    2016-07-01

    Ultrafast electron diffraction is used to probe the lattice dynamics of femtosecond laser-excited antimony thin film. The temporal hierarchies of the intensity and position of diffraction orders are monitored. The femtosecond laser excitation of antimony film was found to lead to initial compression after the laser pulse, which gives way to tension vibrating at new equilibrium displacement. A damped harmonic oscillator model, in which the hot electron-blast force contributes to the driving force of oscillations in lattice spacing, is used to interpret the data. The electron–phonon energy-exchange rate and the electronic Grüneisen parameter were obtained.

  10. Preparation and characterization of antimony barium composite oxide photocatalysts

    Science.gov (United States)

    Han, X. P.; Yao, B. H.; Pan, Q. H.; Pen, C.; Zhang, C. L.

    2018-01-01

    In this paper, two kinds of antimony barium composite oxide photocatalysts have been prepared by two methods and characterized by XRD and SEM. The photocatalytic activity was evaluated by a photocatalytic reactor and an ultraviolet spectrophotometer. The results showed that-BaSb2O5•4H2O, BaSb2O6 two kinds of antimony barium composite oxide photocatalysts were successfully prepared in this experiment and they showed good photocatalytic properties. In addition, BaSb2O6 morphology showed more regular, microstructure and better catalytic performance.

  11. Inhibition of DNA-double strand break repair by antimony compounds

    International Nuclear Information System (INIS)

    Takahashi, Sentaro; Sato, Hiroshi; Kubota, Yoshihisa; Utsumi, Hiroshi; Bedford, Joel S.; Okayasu, Ryuichi

    2002-01-01

    DNA double strand breaks (DSBs), induced by γ-irradiation in Chinese hamster ovary cells, were used to examine whether antimony compounds affect the repair of DNA damage. The cells were first incubated with antimony trichloride or antimony potassium tartrate (both Sb(III)) for 2 h, and then irradiated with γ-rays at a dose of 40 Gy. The DNA DSB was quantified with pulsed field gel electrophoresis immediately after irradiation (non-repair group) as well as at 30 min post-irradiation (repair group). The degree of repair inhibition was determined by the differences in the amount of DNA DSB between non-repair and repair groups. Both antimony compounds inhibited repair of DNA DSB in a dose dependent manner. In trichloride, 0.2 mM antimony significantly inhibited the rejoining of DSB, while 0.4 mM was necessary in potassium antimony tartrate. The mean lethal doses, D 0 , for the treatment with antimony trichloride and antimony potassium tartrate, were approximately 0.21 and 0.12 mM, respectively. This indicates that the repair inhibition by antimony trichloride occurred in the dose range near D 0 , but the antimony potassium tartrate inhibited the repair at doses where most cells lost their proliferating ability. This is the first report to indicate that antimony compounds may inhibit the repair of radiation-induced DNA DSB

  12. Self-standing nanoribbons of antimony selenide and antimony sulfide with well-defined size and band gap

    International Nuclear Information System (INIS)

    Vadapoo, Rajasekarakumar; Krishnan, Sridevi; Yilmaz, Hulusi; Marin, Carlos

    2011-01-01

    Sub-10 nm semiconducting nanostructures are crucial for the realization of nanoscale devices. Fabrication of nanostructures at this scale with homogeneous properties is challenging. Using ab initio calculations, we show that self-standing ribbons of antimony selenide and antimony sulfide of width 1.1 nm exhibit well-defined bandgaps of 1.66 and 2.16 eV, respectively. Molecular dynamics studies show that these ribbons are stable at 500 K. The one-dimensional (1D) heterostructure of these nanoribbons (Sb 2 Se 3 /Sb 2 S 3 ) along the [001] direction shows a straddling type behavior.

  13. Selective oxidation of propene on bismuth molybdate and mixed oxides of tin and antimony and of uranium and antimony

    International Nuclear Information System (INIS)

    Pendleton, P.; Taylor, D.

    1976-01-01

    Propene + 18 0 2 reactions have been studied in a static reaction system on bismuth molybdate and mixed oxides of tin and antimony and of uranium and antimony. The [ 16 0] acrolein content of the total acrolein formed and the proportion of 16 0 in the oxygen of the carbon dioxide by-product have been determined. The results indicate that for each catalyst the lattice is the only direct source of the oxygen in the aldehyde, and that lattice and/or gas phase oxygen is used in carbon dioxide formation. Oxygen anion mobility appears to be greater in the molybdate catalyst than in the other two. (author)

  14. Behavior of antimony isotopes in the primary coolant of WWER-1000-type nuclear reactors in NPP Kozloduy during operation and shutdown

    International Nuclear Information System (INIS)

    Dobrevski, Ivan D.; Zaharieva, Neli N.; Minkova, Katia F.; Gerchev, Nikolay B.

    2009-01-01

    This paper focuses on the behavior of the antimony isotopes 122 Sb and 124 Sb in the coolant of the WWER reactors in the nuclear power plant Kozloduy (Bulgaria) during operation and shutdown. It is concluded that the chemical properties of their actual precursor, the isotope 121 Sb, determine the behavior of 122 Sb and 124 Sb during operation, load fluctuations, and shutdown as well as during the reactor coolant purification process. It is supposed that differences between the reactor bulk and the core fuel cladding surface chemistry as well as the presence of sub-cooled nucleate boiling at the fuel cladding may create conditions under which a local oxidizing environment may come into existence. (orig.)

  15. Ultrafast photoinduced structure phase transition in antimony single crystals

    NARCIS (Netherlands)

    Fausti, Daniele; Misochko, Oleg V.; van Loosdrecht, Paul H. M.

    2009-01-01

    Picosecond Raman scattering is used to study the photoinduced ultrafast dynamics in Peierls distorted antimony. We find evidence for an ultrafast nonthermal reversible structural phase transition. Most surprisingly, we find evidence that this transition evolves toward a lower symmetry in contrast to

  16. Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B.

    Directory of Open Access Journals (Sweden)

    Gloria Morizot

    2016-01-01

    Full Text Available We report on 4 patients (1 immunocompetent, 3 immunosuppressed in whom visceral leishmaniasis had become unresponsive to (or had relapsed after treatment with appropriate doses of liposomal amphotericin B. Under close follow-up, full courses of pentavalent antimony were administered without life-threatening adverse events and resulted in rapid and sustained clinical and parasitological cure.

  17. Vapor pressures of dimethylcadmium, trimethylbismuth, and tris(dimethylamino)antimony

    Czech Academy of Sciences Publication Activity Database

    Morávek, Pavel; Fulem, Michal; Pangrác, Jiří; Hulicius, Eduard; Růžička, K.

    2013-01-01

    Roč. 360, Dec (2013), s. 106-110 ISSN 0378-3812 R&D Projects: GA ČR GA13-15286S; GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : vapor pressure * dimethylcadmium * trimethylbismuth * tris(dimethylamino)antimony * sublimation and vaporization enthalpy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.241, year: 2013

  18. Application of KWU antimony removal process at Gentilly-2

    International Nuclear Information System (INIS)

    Dundar, Y.; Odar, S.; Streit, K.; Allsop, H.; Guzonas, D.

    1996-09-01

    This paper describes the work performed to adapt the KWU PWR antimony removal process to CANDU plant conditions, and the application of the process at the Hydro Quebec unit, Gentilly-2. The results of the application will be presented and the 'lessons learned' will be discussed in detail. (author)

  19. The acidic properties of mixed tin and antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Irving, E.A.; Taylor, D.

    1978-01-01

    The acidic properties of mixed tin + antimony oxide catalysts were studied in the isomerization of 3,3-dimethyl-1-butene, cyclopropane, 1-butene, and cis-2-butene and the dehydration of isopropanol over the mixed oxides outgassed at room temperature and 698/sup 0/K. Only the zero-order portions of the reaction were used for calculations. With catalysts outgassed at room temperature, weakly acidic sites were present, and all the reactions probably occurred by a carbonium ion mechanism with Broensted acid sites as a source of protons. The rates increased with increasing antimony content to a maximum at approx. 50 at. % and then decreased with further increase in the antimony content. Outgassing of the catalysts at 698/sup 0/K increased the isomerization rate of 3,3-dimethyl-1-butene, but decreased those for cyclopropane and isopropanol due to poisoning by the propylene produced. For 1-butene and cis-2-butene and catalysts outgassed at 698/sup 0/K, only catalysts with less than 50Vertical Bar3< antimony were active. The catalysts were poisoned by treatment with bases or with sodium acetate. A proposed correlation between rates and acidity led to the conclusion that the catalyst composition corresponding to maximum acidity differs from that for maximum selective oxidation activity. Graphs and 10 references.

  20. Neutron activation analysis of arsenic and antimony in human hair

    International Nuclear Information System (INIS)

    Kanda, Yukio; Isono, Hideo; Kozuka, Hiroshi.

    1975-01-01

    A radiochemical neutron activation method for the determination of trace amounts of arsenic and antimony in human hair samples is studied. The sample of hair (100 mg) irradiated for 5 hours with a neutron flux of 2.1x10 12 n/cm 2 s was decomposed with a sulfuric-nitric acid mixture after addition of each 5 mg of arsenic and antimony as carrier. Arsine and stibine were evolved from the solution of decomposed hair by reduction with 3 g of granular zinc and were absorbed in 0.1N iodine solution for half an hour. Metal arsenic was separated from iodine solution by precipitation with sodium hypophosphite, followed by precipitation of antimony as sulfide with thioacetamide. These precipitates were dissolved and their gamma-ray spectra were measured with a well type 3''x3'' NaI(TI) detector equipped with a 200 channel pulse-height analyzer. After the measurement of gamma-ray spectra, the chemical yields were determined by colorimetric methods. The relative standard deviations were 7% and 4% for 0.01 μg As and 0.024 μg Sb, respectively. The sensitivity of this method was estimated to be 1x10 -3 μg for arsenic and 2x10 -3 μg for antimony. (auth.)

  1. Antimony content of macrofungi from clean and polluted areas

    Czech Academy of Sciences Publication Activity Database

    Borovička, J.; Řanda, Zdeněk; Jelínek, E.

    2006-01-01

    Roč. 64, č. 11 (2006), s. 1837-1844 ISSN 0045-6535 Institutional research plan: CEZ:AV0Z10480505 Keywords : mushrooms * antimony pollution * bioaccumulation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.442, year: 2006

  2. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butanoic acid, antimony (3=) salt. 721.1930 Section 721.1930 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1930 Butanoic acid,...

  3. Excitation functions for alpha-particle-induced reactions with natural antimony

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. L.; Shah, D. J.; Mukherjee, S.; Chintalapudi, S. N. [Vadodara, M. S. Univ. of Baroda (India). Fac. of Science. Dept. of Physics

    1997-07-01

    Stacked-foil activation technique and {gamma} - rays spectroscopy were used for the determination of the excitation functions of the {sup 121}Sb [({alpha}, n); ({alpha}, 2n); ({alpha},4 n); ({alpha}, p3n); ({alpha}, {alpha}n)]; and Sb [({alpha}, 3n); ({alpha}, 4n); ({alpha}, {alpha}3n)] reactions. The excitation functions for the production of {sup 124}I, {sup 123}I, {sup 121}I, {sup 121}Te and {sup 120}Sb were reported up to 50 MeV. The reactions {sup 121} Sb ({alpha}, {alpha}n) + {sup 123} Sb ({alpha}, {alpha}3n) are measured for the first time. Since natural antimony used as the target has two odd mass stable isotopes of abundances 57.3 % ({sup 121}Sb), their activation in some cases gives the same product nucleus through different reaction channels but with very different Q-values. In such cases, the individual reaction cross-sections are separated with the help of theoretical cross-sections. The experimental cross-sections were compared with the predictions based on hybrid model of Blann. The high-energy part of the excitation functions are dominated by the pre-equilibrium reaction mechanism and the initial exciton number n{sub 0} = 4 (4 p 0 h) gives fairly good agreement with presently measured results.

  4. Validation of methodology and uncertainty assessment of antimony determination in environmental materials using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Matsubara, Tassiane C.M.; Saiki, Mitiko; Zahn, Guilherme S.; Moreira, Edson G.

    2013-01-01

    Antimony is an element found in low concentrations in the environment. However, its determination has attracted great interest because of the knowledge of its toxicity and increasing application. Neutron activation analysis (NAA) is a suitable method for the determination of several elements in different types, but in case of Sb, the analysis presents some difficulties due to spectral interferences. The objective of this research was to validate the method of NAA and uncertainty assessment for Sb determination in environmental samples. The experimental procedure consisted of irradiating twelve certified reference samples of different kind of matrices. The samples were irradiated in the nuclear research reactor IEA R1 IPEN/CNEN/SP followed by measurement of induced radioactivity, using a hyperpure germanium detector coupled to a gamma ray spectrometry. The radioisotopes 122 Sb and 124 Sb were measured and the Sb concentrations with their respective uncertainties were obtained by the comparative method. Relative errors and values of Z scores were calculated to evaluate the accuracy of the results for Sb determination in certified reference materials. The evaluation of the components that contribute to uncertainty measurement of the Sb concentration, showed that the major uncertainty contribution is due to statistical counting. The results also indicated that the uncertainty value of the combined standard uncertainty depends on the radioisotope measured and the decay time used for counting. (author)

  5. Increased thiol levels in antimony-resistant Leishmania infantum isolated from treatment-refractory visceral leishmaniasis in Brazil.

    Science.gov (United States)

    Magalhães, Lucas S; Bomfim, Lays Gs; Mota, Sthefanne G; Cruz, Geydson S; Corrêa, Cristiane B; Tanajura, Diego M; Lipscomb, Michael W; Borges, Valéria M; Jesus, Amélia R de; Almeida, Roque P de; Moura, Tatiana R de

    2018-02-01

    BACKGROUND Treatment-refractory visceral leishmaniasis (VL) has become an important problem in many countries. OBJECTIVES We evaluated the antimony-resistance mechanisms of Leishmania infantum isolated from VL patients refractory or responsive to treatment with pentavalent antimony. METHODS Strains isolated from antimony-refractory patients (in vitro antimony-resistant isolates) and antimony-responsive patients (in vitro antimony-sensitive isolates) were examined. Morphological changes were evaluated by transmission electron microscopy after trivalent antimony exposure. P-glycoprotein (P-gp) efflux pump activity was evaluated using the pump-specific inhibitor verapamil hydrochloride, and the role of thiol in trivalent antimony resistance was investigated using the enzymatic inhibitor L-buthionine sulfoximine. FINDINGS Antimony treatment induced fewer alterations in the cellular structure of L. infantum resistant isolates than in that of sensitive isolates. P-gp efflux activity was not involved in antimony resistance in these isolates. Importantly, the resistant isolates contained higher levels of thiol compared to the sensitive isolates, and inhibition of thiol synthesis in the resistant isolates recovered their sensitivity to trivalent antimony treatment, and enhanced the production of reactive oxygen species in promastigotes exposed to the drug. MAIN CONCLUSIONS Our results demonstrate that isolates from patients with antimony-refractory VL exhibited higher thiol levels than antimony-sensitive isolates. This indicates that redox metabolism plays an important role in the antimony-resistance of New World VL isolates.

  6. Effects of antimony additions on the fracture of nickel at 600 C

    International Nuclear Information System (INIS)

    White, C.L.; Padgett, R.A.

    1983-01-01

    Antimony additions (about 1 wt pct) are found to drastically lower tensile ductility and induce extensive intergranular cracking in nickel at 600 C. This effect is most pronounced at lower strain rates. These results are contrasted to results for pure nickel where ductility is high and failure occurs via plastic instability. Scanning electron microscopy revealed faceting of crack and cavity surfaces in the antimony doped nickel. Auger electron spectroscopy revealed segregation of antimony and (residual) sulfur to both grain boundaries and to the internal free surfaces of cracks and cavities. Inert ion sputter profiling showed that most of the antimony and sulfur enrichment on these surfaces is confined within a few atom layers of the interface. The embrittling influence of antimony is discussed in terms of the observed antimony and sulfur segregation to internal interfaces. Possible connections between the segregation and the observed embrittlement involve segregation effects on grain boundary sliding, grain boundary and surface diffusivities, and interfacial energetics

  7. Controls on the Mobility of Antimony in Mine Waste from Three Deposit Types

    Science.gov (United States)

    Jamieson, H.; Radková, A. B.; Fawcett, S.

    2017-12-01

    Antimony can be considered both a critical metal and an environmental hazard, with a toxicity similar to arsenic. It is concentrated in stibnite deposits, but also present in polymetallic and precious metal ores, frequently accompanied by arsenic. We have studied the mineralogical controls on the mobility of antimony in three types of mine waste: stibnite tailings from an antimony mine, tetrahedrite-bearing waste rock from copper mining, and gold mine tailings and ore roaster waste. Our results demonstrate that the tendency of antimony to leach into the aqueous environment or remain sequestered in solid phases depends on the primary host minerals and conditions governing the precipitation of secondary antimony-hosting phases. In tailings at the Beaver Brook antimony mine in Newfoundland, Canada, stibnite oxidizes rapidly, and secondary minerals such as the relatively insoluble Sb-Fe tripuhyite-like phase and Sb-bearing goethite. However, under dry conditions, the most important secondary Sb host is the Mg-Sb hydroxide brandholzite, but this easily soluble mineral disappears when it rains. Antimony that was originally hosted in tetrahedrite, a complex multi-element sulfosalt, in the historic waste rock piles at Špania Dolina-Piesky, Slovakia, is not as mobile as Cu and As during weathering but reprecipiates to a mixture of tripuhyite and romeite. Finally, the original antimony-hosting minerals, both stibnite and sulphosalts, in the gold ore at Giant Mine, Yellowknife, Canada were completely destroyed during ore roasting. In tailings-contaminated sediments, antimony persists in roaster-generated iron oxide phases, except under reducing conditions where some of the antimony forms a Sb-S phase. The combined presence of antimony and arsenic in mine waste complicates risk assessment but in general, our findings suggest that antimony is less mobile than arsenic in the environment.

  8. Identification of Antimony- and Arsenic-Oxidizing Bacteria Associated with Antimony Mine Tailing

    Science.gov (United States)

    Hamamura, Natsuko; Fukushima, Koh; Itai, Takaaki

    2013-01-01

    Antimony (Sb) is a naturally occurring toxic element commonly associated with arsenic (As) in the environment and both elements have similar chemistry and toxicity. Increasing numbers of studies have focused on microbial As transformations, while microbial Sb interactions are still not well understood. To gain insight into microbial roles in the geochemical cycling of Sb and As, soils from Sb mine tailing were examined for the presence of Sb- and As-oxidizing bacteria. After aerobic enrichment culturing with AsIII (10 mM) or SbIII (100 μM), pure cultures of Pseudomonas- and Stenotrophomonas-related isolates with SbIII oxidation activities and a Sinorhizobium-related isolate capable of AsIII oxidation were obtained. The AsIII-oxidizing Sinorhizobium isolate possessed the aerobic arsenite oxidase gene (aioA), the expression of which was induced in the presence of AsIII or SbIII. However, no SbIII oxidation activity was detected from the Sinorhizobium-related isolate, suggesting the involvement of different mechanisms for Sb and As oxidation. These results demonstrate that indigenous microorganisms associated with Sb mine soils are capable of Sb and As oxidation, and potentially contribute to the speciation and mobility of Sb and As in situ. PMID:23666539

  9. 9 CFR 124.42 - Hearing procedure.

    Science.gov (United States)

    2010-01-01

    ... Diligence Hearing § 124.42 Hearing procedure. (a) The presiding officer shall be appointed by the... hearing. (g) The due diligence hearing will be conducted in accordance with rules of practice adopted for... opportunity to participate as a party in the hearing. The standard of due diligence set forth in § 124.33 will...

  10. 7 CFR 945.124 - Reports.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Reports. 945.124 Section 945.124 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... address of the shipper; the car or truck identification; the loading point; destination; consignee; the...

  11. 7 CFR 959.124 - Reports.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Reports. 959.124 Section 959.124 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements...; destination; consignee; the inspection certificate number when inspection is required; and any other...

  12. 7 CFR 948.124 - Reports.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Reports. 948.124 Section 948.124 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... point; destination; consignee; the inspection certificate number when inspection is required; and any...

  13. 7 CFR 966.124 - Approved receiver.

    Science.gov (United States)

    2010-01-01

    ... limited to, the following information: (1) Name, address, contact person, telephone number, and e-mail... 7 Agriculture 8 2010-01-01 2010-01-01 false Approved receiver. 966.124 Section 966.124 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements...

  14. 17 CFR 256.124 - Other investments.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Other investments. 256.124... COMPANY ACT OF 1935 2. Investments § 256.124 Other investments. This account shall include the cost or current value of investments, whichever is less, in securities, club memberships, associations, life...

  15. Determination of phosphorus contamination during antimony implantation by measurement and simulation

    International Nuclear Information System (INIS)

    Kuruc, M.; Hulenyi, L.; Kinder, R.

    2006-01-01

    Experimental determination of phosphorus cross-contamination during antimony implantation is presented. As a suitable structure for this experiment, a buried layer was employed which is created by implanting antimony followed by a long diffusion process. The samples implanted in different implanters were analysed by secondary ion mass spectrometry (SIMS), four-point probe and spreading resistance methods. The obtained results were compared with those calculated by program SUPREM-IV. Methods that can and cannot be used to determine phosphorus contamination during antimony implantation and to estimate the fluence of phosphorus being co-implanted with antimony are described in detail

  16. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, M. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, USA; The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Hernandez-Garcia, C. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Poelker, M. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Elmustafa, A. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, USA; The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

    2015-06-01

    CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  17. Investigation of antimony extraction from nitric acid solutions by tributyl phosphate

    International Nuclear Information System (INIS)

    Lakaev, V.S.; Smelov, V.S.

    1988-01-01

    The effect of iodide, hydrogen and pertechnetate ions on antimony extraction by tri-n-butyl phosphate (TBP) from aqueous nitric acid solutions under irradiated nuclear fuel processing is investigated at room temperature. The coefficients of antimony distribution are shown to increase at the presence of technetium ions 2-3 times and iodine ions - 100 and more times. Variation of hydrogen ion concentration does not affect antimony extraction. The schemes of the mechanism of antimony extraction at the pressence of iodide and pertechnetate ions are presented. Compositions of the formed compounds are given

  18. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    Directory of Open Access Journals (Sweden)

    M. A. Mamun

    2015-06-01

    Full Text Available CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  19. Correlation of CsK{sub 2}Sb photocathode lifetime with antimony thickness

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, M. A., E-mail: mmamu001@odu.edu; Elmustafa, A. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States); The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Hernandez-Garcia, C.; Poelker, M. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2015-06-01

    CsK{sub 2}Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  20. Antimony contamination, consequences and removal techniques: A review.

    Science.gov (United States)

    Li, Jiayu; Zheng, BoHong; He, Yangzhuo; Zhou, Yaoyu; Chen, Xiao; Ruan, Shan; Yang, Yuan; Dai, Chunhao; Tang, Lin

    2018-07-30

    A significant amount of antimony (Sb) enters into the environment every year because of the wide use of Sb compounds in industry and agriculture. The exposure to Sb, either direct consumption of Sb or indirectly, may be fatal to the human health because both antimony and antimonide are toxic. Firstly, the introduction of Sb chemistry, distribution and health threats are presented in this review, which is essential to the removal techniques. Then, we provide the recent and common techniques to remove Sb, including adsorption, coagulation/flocculation, membrane separation, electrochemical methods, ion exchange and extraction. Removal techniques concentrate on the advantages, drawbacks, economical efficiency and the recent achievements of each technique. We also take an overall consideration of experimental conditions, comparison criteria, and economic aspects. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Proton-activation technique for the determination of antimony

    International Nuclear Information System (INIS)

    Krivan, V.; Barth, P.

    1979-01-01

    Photon-activation analysis has been applied to the determination of antimony. Thick-target yields and analytical sensitivities are given for the indicator-radionuclides sup(119m)Te, sup(119g)Te, sup(121m)Te, sup(121g)Te, sup(123m)Te, sup(120m)Sb and sup(122g)Sb for proton energies between 9 and 25 MeV. In irradiations with a 5-μA beam for 5 hr, followed by a specific separation of the indicator-radionuclides, limits of detection at the ppm level can be achieved. Data are given for the most significant interfering reactions. Antimony was determined instrumentally in bismuth of very pure grade and the results are compared with those obtained from two independent techniques. (author)

  2. Preparation and properties of organo(acetylacetonato)antimony(V) compounds

    NARCIS (Netherlands)

    Meinema, H.A.; Noltes, J.G.

    Organo(acetylacetonato)antimony(V) compounds of the types R2SbCl2Acac, R4SbAcac, PhSbCl3Acac and Cl4SbAcac have been synthesized. The compounds are monomeric in solution. IR and PMR data of these compounds, which contain a chelated Acac ligand have been discussed. Ph2SbCl2Acac shows abnormal

  3. Uptake and Transformation of Methylated and Inorganic Antimony in Plants.

    Science.gov (United States)

    Ji, Ying; Mestrot, Adrien; Schulin, Rainer; Tandy, Susan

    2018-01-01

    Used as a hardening agent in lead bullets, antimony (Sb) has become a major contaminant in shooting range soils of some countries including Switzerland. Soil contamination by Sb is also an environmental problem in countries with Sb-mining activities such as China and Bolivia. Because of its toxicity and relatively high mobility, there is concern over the risk of Sb transfer from contaminated soils into plants, and thus into the food chain. In particular there is very little information on the environmental behavior of methylated antimony, which can be produced by microbial biomethylation of inorganic Sb in contaminated soils. Using a new extraction and high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) method, we investigated antimony speciation in roots and shoots of wheat, fescue, rye, and ryegrass plants exposed to trimethyl antimony(V) (TMSb), antimonite (Sb(III)), and antimonate (Sb(V)) in hydroponics. The total root Sb concentrations followed the order Sb(III) treatment > Sb(V) treatment > TMSb treatment, except for fescue. Shoot Sb concentrations, however, did not differ among the three treatments. In the Sb(V) treatment small quantities of TMSb were found in the roots, whereas no TMSb was detected in the roots of Sb(III)-treated plants. In contrast, similar concentrations of TMSb were found in the shoots in both inorganic Sb treatments. The results indicate that biomethylation of Sb may occur in plants. In the TMSb treatment TMSb was the major Sb species, but the two inorganic Sb species were also found both in shoots and roots along with some unknown Sb species, suggesting that also TMSb demethylation may occur within plant tissues. The results furthermore indicate that methylated Sb is more mobile in plants than inorganic Sb species. Knowledge about this is important in risk assessments of Sb-contaminated sites, as methylation may render Sb more toxic than inorganic Sb, as it is known for arsenic (As).

  4. Theoretical Analysis of Rydberg and Autoionizing State Spectra of Antimony

    Institute of Scientific and Technical Information of China (English)

    Shuang-Fei Lv; Ruohong Li; Feng-Dong Jia; Xiao-Kang Li; Jens Lassen; Zhi-Ping Zhong

    2017-01-01

    We calculate the Rydberg and autoionization Rydberg spectra of antimony (Sb) from first principles by relativistic multichannel theory within the framework of multichannel quantum defect theory.Our calculation can be used to classify and assign the atomic states described in recently reported three Rydberg series and four autoionizing states.The perturbation effects on line intensity,variation and line profile are discussed.Assignments of the perturber states and autoionizing states are presented.

  5. Distribution of liposome-encapsulated antimony in dogs

    Directory of Open Access Journals (Sweden)

    D.A. Schettini

    2003-02-01

    Full Text Available The achievement of complete cure in dogs with visceral leishmaniasis is currently a great challenge, since dogs are the main reservoir for the transmission of visceral leishmaniasis to humans and they respond poorly to conventional treatment with pentavalent antimonials. In order to improve the efficacy of treatment, we developed a novel formulation for meglumine antimoniate based on the encapsulation of this drug in freeze-dried liposomes (LMA. The aim of the present study was to evaluate the biodistribution of antimony (Sb in dogs following a single intravenous bolus injection of LMA. Four healthy male mongrel dogs received LMA at 3.8 mg Sb/kg body weight and were sacrificed 3, 48 and 96 h and 7 days later. Antimony was determined in the blood, liver, spleen and bone marrow. In the bone marrow, the highest Sb concentration was observed at 3 h (2.8 µg/g wet weight whereas in the liver and spleen it was demonstrated at 48 h (43.6 and 102.4 µg/g, respectively. In these organs, Sb concentrations decreased gradually and reached levels of 19.1 µg/g (liver, 28.1 µg/g (spleen and 0.2 µg/g (bone marrow after 7 days. Our data suggest that the critical organ for the treatment with LMA could be the bone marrow, since it has low Sb levels and, presumably, high rates of Sb elimination. A multiple dose treatment with LMA seems to be necessary for complete elimination of parasites from bone marrow in dogs with visceral leishmaniasis.

  6. Redox substoichiometric isotope dilution analysis of metallic arsenic for antimony

    International Nuclear Information System (INIS)

    Kambara, Tomihisa; Yoshioka, Hiroe; Suzuki, Junsuke; Shibata, Yasue.

    1979-01-01

    In 1 M HCl solution Sb(III) reacts with N-benzoyl-N-phenylhydroxylamine (BPHA) to form a complex extractable into chloroform while the extraction of Sb(V) is negligible. The redox substoichiometric isotope dilution analysis based on this reaction was applied to the determination of antimony in metallic arsenic. After the dissolution of metallic arsenic, Sb(V) was separated from As(V) by a tribenzylamine extraction from 8 M HCl solution and the extracted Sb(V) was stripped into 0.5 M NaOH solution. Thereafter, all the Sb(V) were completely reduced to Sb(III) by bubbling SO 2 gas through 3 M HCl solution. As the substoichiometric reaction, the oxidation of Sb(III) to Sb(V) by a substoichiometric amount of potassium dichromate was used, followed by separation of these species by the BPHA extraction of Sb(III). The substoichiometric oxidation of Sb(III) was found to be quantitative over HCl concentration range from 0.8 to 1.2 M. The amount of antimony was determined by isotope dilution analysis using the method of carrier amount variation. By the present method the determination of as small as 0.36 μg antimony was accomplished with a good accuracy (relative error; 5.6%) and also the method was successfully applied to the determination of antimony in arsenic samples containing known amounts of Sb(III) and in metallic arsenic. The present method gives reliable results with the good accuracy and precision. (author)

  7. High dose implantations of antimony for buried layer applications

    International Nuclear Information System (INIS)

    Gailliard, J.P.; Dupuy, M.; Garcia, M.; Roussin, J.C.

    1978-01-01

    Electrical and physical properties of high dose implantations of antimony in silicon have been studied for use in buried layer applications. The results have been obtained both on and oriented silicon wafers. Following implantations which lead to amorphization we perform an annealing at 600 0 C for 10 mn in order to recrystallize the layer. The observed electrical properties (μ, R) show that the concentration of electrically active antimony ions is greater than that predicted from the solubility of antimony in silicon. Further annealing (in the range 1050 0 - 1200 0 ) induces: firstly a precipitation of the Sb and secondly a diffusion and dissolution of the precipitates. There is a different evolution of the defects in the and silicon slices. T.E.M. reveals no defects in the wafers after one hour annealing at 1200 0 C, whereas defects and twins remain in wafers. Having obtained the evolution of R with time and temperature it is then determined the implantation and annealing conditions which lead to the low resistivity (R = 10) needed for buried layer applications. Results with very many industrially made devices are discussed

  8. Synthesis and tribological properties of antimony N, N-diethanoldithiocarbamate

    Institute of Scientific and Technical Information of China (English)

    李丽; 黄可龙; 瞿龙; 舒万艮

    2001-01-01

    Antimony N, N-diethanoldithiocarbamate was synthesized with diethanolamine, antimony trioxide and carbon disulfide. The influences of temperature, reaction time, solvents and their dosages were investigated, and the optimum synthesis conditions were: reaction temperature 15~20 ℃, reaction time 2.5 h, 250 mL CH3OH as solvent and the hot CH3OH as recrystallization solvent. Element analysis, IR, 1HNMR and 13CNMR spectra were used to study its chemical composition and molecular structure. Antimony N, N-diethanol-dithiocarbamate was added in the base oil, and its properties of wear resistance and extreme pressure were studied by FB, FD and WSD. The synthesis product behaves per fectly as wear resistance and extreme pressure additive and its extreme pressure property is superior to its wear resistance property. The mechanism of tribological action was discussed by using XPS and AES spectra, and the reason of good wear resistance and extreme pressure properties is that the synthesis product decompose element C, S and N.

  9. Study on antimony oxide self-assembled inside HZSM-5

    International Nuclear Information System (INIS)

    Li Bin; Li Shijie; Wang Yingxia; Li Neng; Liu Xiyao; Lin Bingxiong

    2005-01-01

    Sb/ZSM-5 was obtained by solid-state reaction with the mixture of Sb 2 O 3 and zeolite HZSM-5 under a dry nitrogen flow at 773K. Characterization of the treated zeolite was undertaken with XRD, 27 Al MAS NMR, BET, TGA and FT-IR. The results revealed that part of the antimony oxides migrated into the channels of zeolite, and decreased the Bronsted acid sites in Sb/ZSM-5 remarkably. The other part of antimony oxides together with the amorphous alumino-silicate in the products distributed on the external surface of zeolite ZSM-5 and modified it, while the framework of ZSM-5 in crystal phase was retained. The structure of occluded antimony oxide inside the channels of ZSM-5 was studied by XRD Rietveld method. The result showed that their structure can be described as a chain of non-perfect [Sb 5 O 5 (H 2 O) 2 ] n 5n+ , which is parallel to the straight channel of ZSM-5. There is about 0.6 [Sb 5 O 5 (H 2 O) 2 ] 5+ unit in every cell of the ZSM-5 on an average

  10. Research on the Characteristics and Mechanism of the Cumulative Release of Antimony from an Antimony Smelting Slag Stacking Area under Rainfall Leaching

    Science.gov (United States)

    Zhou, Yingying; Deng, Renjian

    2017-01-01

    We aimed to study the characteristics and the mechanism of the cumulative release of antimony at an antimony smelting slag stacking area in southern China. A series of dynamic and static leaching experiments to simulate the effects of rainfall were carried out. The results showed that the release of antimony from smelting slag increased with a decrease in the solid-liquid ratio, and the maximum accumulated release was found to be 42.13 mg Sb/kg waste and 34.26 mg Sb/kg waste with a solid/liquid ratio of 1 : 20; the maximum amount of antimony was released within 149–420 μm size fraction with 7.09 mg/L of the cumulative leaching. Also, the antimony release was the greatest and most rapid at pH 7.0 with the minimum release found at pH 4.0. With an increase in rainfall duration, the antimony release increased. The influence of variation in rainfall intensity on the release of antimony from smelting slag was small. PMID:28804669

  11. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water.

    Science.gov (United States)

    Westerhoff, Paul; Prapaipong, Panjai; Shock, Everett; Hillaireau, Alice

    2008-02-01

    Antimony is a regulated contaminant that poses both acute and chronic health effects in drinking water. Previous reports suggest that polyethylene terephthalate (PET) plastics used for water bottles in Europe and Canada leach antimony, but no studies on bottled water in the United States have previously been conducted. Nine commercially available bottled waters in the southwestern US (Arizona) were purchased and tested for antimony concentrations as well as for potential antimony release by the plastics that compose the bottles. The southwestern US was chosen for the study because of its high consumption of bottled water and elevated temperatures, which could increase antimony leaching from PET plastics. Antimony concentrations in the bottled waters ranged from 0.095 to 0.521 ppb, well below the US Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 6 ppb. The average concentration was 0.195+/-0.116 ppb at the beginning of the study and 0.226+/-0.160 ppb 3 months later, with no statistical differences; samples were stored at 22 degrees C. However, storage at higher temperatures had a significant effect on the time-dependent release of antimony. The rate of antimony (Sb) release could be fit by a power function model (Sb(t)=Sb 0 x[Time, h]k; k=8.7 x 10(-6)x[Temperature ( degrees C)](2.55); Sb 0 is the initial antimony concentration). For exposure temperatures of 60, 65, 70, 75, 80, and 85 degrees C, the exposure durations necessary to exceed the 6 ppb MCL are 176, 38, 12, 4.7, 2.3, and 1.3 days, respectively. Summertime temperatures inside of cars, garages, and enclosed storage areas can exceed 65 degrees C in Arizona, and thus could promote antimony leaching from PET bottled waters. Microwave digestion revealed that the PET plastic used by one brand contained 213+/-35 mgSb/kg plastic; leaching of all the antimony from this plastic into 0.5L of water in a bottle could result in an antimony concentration of 376 ppb. Clearly, only a small

  12. Heavy weight vehicle traffic and its relationship with antimony content in human blood.

    Science.gov (United States)

    Quiroz, Waldo; De Gregori, Ida; Basilio, Paola; Bravo, Manuel; Pinto, Marcela; Lobos, Maria Gabriela

    2009-05-01

    Brake pads systems are nowadays considered as one of the most important sources of antimony in airborne particulate matter. One way that antimony can enter the body is through the lungs and specially by the interaction of antimony with -SH groups present in erythrocyte membrane cells. In spite of that, there are no studies about antimony enrichment in blood of workers exposed to high vehicle traffic. Port workers are generally exposed to heavy weight vehicle traffic. In Chile the biggest marine port is found in Valparaíso City. In this study antimony in whole blood and its fractions (erythrocytes-plasma and erythrocytes membranes-cytoplasm) of 45 volunteers were determined. The volunteers were port workers from Valparaíso city, and two control groups, one from Valparaíso and another from Quebrada Alvarado, the latter being a rural area located about 100 Km away from Valparaíso. The results demonstrate that port workers are highly impacted by antimony emissions from heavy weight vehicle traffic showing an average concentration of 27 +/- 9 ng Sb kg(-1), 5-10 times higher than the concentration of antimony in the blood of control groups. These are the highest antimony levels in blood ever reported in the literature. The highest antimony percentages (>60%) were always found in the erythrocyte fractions. However, the exposure degree to vehicle traffic is significant over antimony distribution in plasma, erythrocytes and cytoplasm. This results shows that the antimony mass in the erythrocyte membranes, was approximately constant at 1.0 +/- 0.1 ng Sb g(-1) of whole blood in all blood samples analyzed.

  13. Complexation of HSA with different forms of antimony (Sb): An application of fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Song, Wenjuan; Zhang, Daoyong; Pan, Xiangliang; Lee, Duu-Jong

    2013-01-01

    Antimony (Sb) pollution has been of a great environmental concern in some areas in China. Sb enters human body via drinking water, inhalation and food chain, unavoidably interacts with human serum albumin (HSA) in blood plasma, and consequently does harm to human health. The harmful effects of Sb on human health depend on the Sb species and their binding ability to HSA. In the present study, binding of three forms of Sb with HSA was investigated by excitation-emission matrix (EEM) spectroscopy. All of antimony potassium tartrate, antimony trichloride and potassium pyroantimonate quenched fluorescence of HSA. Values of conditional stability constant K a (×10 5 /M) for Sb and HSA systems were 8.13–9.12 for antimony potassium tartrate, 2.51–4.27 for antimony trichloride and 3.63–9.77 for potassium pyroantimonate. The binding constant K b (×10 4 /M) values of HSA with antimony potassium tartrate, antimony trichloride and potassium pyroantimonate were 0.02–0.07, 3.55–5.01, and 0.07–1.08, respectively. There was one independent class of binding site for antimony trichloride towards HSA. There was more than one Sb binding site and negative cooperativity between multiple binding sites for potassium pyroantimonate and antimony potassium tartrate towards HSA. The binding ability of HSA to complex Sb followed the order: antimony trichloride>potassium pyroantimonate>antimony potassium tartrate. -- Highlights: ► The first study reporting interaction of Sb with HSA. ► Sb can effectively quench the fluorescence of HSA. ► The binding ability of HSA to Sb was dependent on the form of Sb. ► Binding differences indicate differences in toxicity of various forms Sb to human. ► HAS-Sb binding parameters are important for understanding toxicity of Sb

  14. Complexation of HSA with different forms of antimony (Sb): An application of fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wenjuan [State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); Zhang, Daoyong [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Pan, Xiangliang, E-mail: xlpan@ms.xjb.ac.cn [State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); Lee, Duu-Jong [State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China)

    2013-04-15

    Antimony (Sb) pollution has been of a great environmental concern in some areas in China. Sb enters human body via drinking water, inhalation and food chain, unavoidably interacts with human serum albumin (HSA) in blood plasma, and consequently does harm to human health. The harmful effects of Sb on human health depend on the Sb species and their binding ability to HSA. In the present study, binding of three forms of Sb with HSA was investigated by excitation-emission matrix (EEM) spectroscopy. All of antimony potassium tartrate, antimony trichloride and potassium pyroantimonate quenched fluorescence of HSA. Values of conditional stability constant K{sub a} (×10{sup 5}/M) for Sb and HSA systems were 8.13–9.12 for antimony potassium tartrate, 2.51–4.27 for antimony trichloride and 3.63–9.77 for potassium pyroantimonate. The binding constant K{sub b} (×10{sup 4}/M) values of HSA with antimony potassium tartrate, antimony trichloride and potassium pyroantimonate were 0.02–0.07, 3.55–5.01, and 0.07–1.08, respectively. There was one independent class of binding site for antimony trichloride towards HSA. There was more than one Sb binding site and negative cooperativity between multiple binding sites for potassium pyroantimonate and antimony potassium tartrate towards HSA. The binding ability of HSA to complex Sb followed the order: antimony trichloride>potassium pyroantimonate>antimony potassium tartrate. -- Highlights: ► The first study reporting interaction of Sb with HSA. ► Sb can effectively quench the fluorescence of HSA. ► The binding ability of HSA to Sb was dependent on the form of Sb. ► Binding differences indicate differences in toxicity of various forms Sb to human. ► HAS-Sb binding parameters are important for understanding toxicity of Sb.

  15. LUMINESCENT PROPERTIES OF SILICATE GLASSES WITH CERIUM IONS AND ANTIMONY

    Directory of Open Access Journals (Sweden)

    A. M. Klykova

    2014-05-01

    Full Text Available The paper deals with the results of an experimental study of luminescence excitation spectra and luminescence of silicate glasses containing cerium ions and antimony. The aim of this work was to study the features of the luminescence and the effect of UV irradiation and heat treatment on luminescence and the state of cerium ions and antimony in glass. We investigated glass system Na2O-ZnO-Al2O3-SiO2-NaF-NaBr with additives CeO2 and Sb2O3. Synthesis was carried out in platinum crucibles in the air at 14500C. The samples were polished glass plates with a thickness of 0.5-1 mm. UV irradiation was carried out with a mercury lamp having a wide range of radiation in the spectral range 240-390 nm. It was conducted in a Nabertherm muffle furnaces. Luminescence spectra and excitation spectra were measured using a spectrofluorimeter MPF-44A (PerkinElmer at the room temperature. Measured luminescence spectra were corrected in view of the spectral sensitivity of the photodetector for spectrofluorimeter. Adjustment of the excitation spectra for the spectral dependence of the intensity of the excitation source was not carried out. During the experiments it was found that in silicate glasses Sb3+ ions can exist in two energy states, which corresponds to a different environment with oxygen ions. Heat treatment of these glasses in an oxidizing atmosphere leads to an increase in ion concentration of Sb3+ ions with a greater amount of oxygen in the environment. In glasses containing antimony and cerium ions, ultraviolet irradiation causes a change in the valence of cerium ions and antimony, which is accompanied by luminescence quenching. Subsequent heat treatment of glass leads to the inverse processes and restore luminescence excitation spectra. The study of fluorescent properties of silicate glasses with cerium and antimony ions led to the conclusion of the practical significance of this work. Promising multifunctional materials can be created on the basis of

  16. Effect of temperature during ion sputtering on the surface segregation rate of antimony in an iron-antimony alloy at higher temperatures

    International Nuclear Information System (INIS)

    Oku, M.; Hirokawa, K.; Kimura, H.; Suzuki, S.

    1986-01-01

    The surface segregation of antimony in an iron-0.23 at% antimony alloy was studied by XPS. The segregation rate in the temperature range between 800 and 900 K depends on the temperature during sputtering with argon ion of kinetic energy of 1 keV. The sputtering at room temperature or 473 K gives higher values of the segregation rate than those at 673 K. Both cases give the activation energy of 170 kJmol -1 for the surface segregation rate. The segregation of antimony is not observed after the sample is heated at 1000 K. (author)

  17. Leishmania donovani isolates with antimony-resistant but not -sensitive phenotype inhibit sodium antimony gluconate-induced dendritic cell activation.

    Directory of Open Access Journals (Sweden)

    Arun Kumar Haldar

    2010-05-01

    Full Text Available The inability of sodium antimony gluconate (SAG-unresponsive kala-azar patients to clear Leishmania donovani (LD infection despite SAG therapy is partly due to an ill-defined immune-dysfunction. Since dendritic cells (DCs typically initiate anti-leishmanial immunity, a role for DCs in aberrant LD clearance was investigated. Accordingly, regulation of SAG-induced activation of murine DCs following infection with LD isolates exhibiting two distinct phenotypes such as antimony-resistant (Sb(RLD and antimony-sensitive (Sb(SLD was compared in vitro. Unlike Sb(SLD, infection of DCs with Sb(RLD induced more IL-10 production and inhibited SAG-induced secretion of proinflammatory cytokines, up-regulation of co-stimulatory molecules and leishmanicidal effects. Sb(RLD inhibited these effects of SAG by blocking activation of PI3K/AKT and NF-kappaB pathways. In contrast, Sb(SLD failed to block activation of SAG (20 microg/ml-induced PI3K/AKT pathway; which continued to stimulate NF-kappaB signaling, induce leishmanicidal effects and promote DC activation. Notably, prolonged incubation of DCs with Sb(SLD also inhibited SAG (20 microg/ml-induced activation of PI3K/AKT and NF-kappaB pathways and leishmanicidal effects, which was restored by increasing the dose of SAG to 40 microg/ml. In contrast, Sb(RLD inhibited these SAG-induced events regardless of duration of DC exposure to Sb(RLD or dose of SAG. Interestingly, the inhibitory effects of isogenic Sb(SLD expressing ATP-binding cassette (ABC transporter MRPA on SAG-induced leishmanicidal effects mimicked that of Sb(RLD to some extent, although antimony resistance in clinical LD isolates is known to be multifactorial. Furthermore, NF-kappaB was found to transcriptionally regulate expression of murine gammaglutamylcysteine synthetase heavy-chain (mgammaGCS(hc gene, presumably an important regulator of antimony resistance. Importantly, Sb(RLD but not Sb(SLD blocked SAG-induced mgammaGCS expression in DCs by

  18. 9 CFR 124.43 - Administrative decision.

    Science.gov (United States)

    2010-01-01

    ... Diligence Hearing § 124.43 Administrative decision. Within 30 days after completion of the due diligence... publish the due diligence redetermination in the Federal Register, notify PTO of the redetermination, and...

  19. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability: Description of the primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Antimony Subcategory § 421.140...

  20. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability;...

  1. Investigation of the effect of some parameters on the degree of leaching antimony from stibnite

    Directory of Open Access Journals (Sweden)

    Remeteiová Dagmar

    1998-12-01

    Full Text Available The paper presents results of experiments of agitation leaching of antimony from stibnite in alkaline solutions of Na2S +NaOH. The influence of different solution solutions ratio of the reacting phases and of different rate of stirring on the degree of leaching of antimony was investigated.

  2. Tin dioxide sol-gel derived films doped with platinum and antimony deposited on porous silicon

    NARCIS (Netherlands)

    Savaniu, C.; Arnautu, A.; Cobianu, C.; Craciun, G.; Flueraru, C.; Zaharescu, M.; Parlog, C.; Paszti, F.; van den Berg, Albert

    1999-01-01

    SnO2 sol-gel derived thin films doped simultaneously with Pt and Sb are obtained and reported for the first time. The Sn sources were tin(IV) ethoxide or tin(II) ethylhexanoate, while hexachloroplatinic acid (H2PtCl6) and antimony chloride (SbCl3) were used as platinum and antimony sources,

  3. Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology.

    Science.gov (United States)

    Liu, Tiantian; Qiu, Keqiang

    2018-04-05

    With the wide application of lead acid battery, spent lead acid battery has become a serious problem to environmental protection and human health. Though spent battery can be a contaminant if not handled properly, it is also an important resource to obtain refined lead. Nowadays, the Sb-content in lead storage batteries is about 0.5-3 wt%, which is higher than the Sb-content in the crude lead. However, there are few reports about the process of removing antimony from high-antimony lead bullion. In this study, vacuum displacement reaction technology, a new process for removing antimony from high-antimony lead melts, was investigated. During this process, lead oxide was added to the system and antimony from lead melts was converted into antimony trioxide, which easily was evaporated under vacuum so that antimony was removed from lead melts. The experimental results demonstrated that Sb-content in lead melts decreased from 2.5% to 23 ppm under following conditions: mass ratio of PbO/lead bullion of 0.33, residual gas pressure of 30 Pa, melt temperature of 840 °C, reaction time of 60 min. The distillate gotten can be used as by-product to produce antimony white. Moreover, this study is of importance to recycling of waste lead storage batteries alloy. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Electrodeposition of antimony, tellurium and their alloys from molten acetamide mixtures

    NARCIS (Netherlands)

    Nguyen, H.P.; Peng, X.; Murugan, G.; Vullers, R.J.M.; Vereecken, P.M.; Fransaer, J.

    2013-01-01

    We examine the electrodeposition of antimony (Sb), tellurium (Te) and their alloys from molten mixtures of acetamide - antimony chloride and tellurium chloride. The binary mixtures of acetamide with SbCl3 and TeCl 4 exhibit eutectic formation with large depressions of freezing points to below room

  5. Leishmania donovani: an in vitro study of antimony-resistant amphotericin B-sensitive isolates

    DEFF Research Database (Denmark)

    Sharief, Abdalla Hassan; Gasim Khalil, Eltahir Awad; Theander, Thor G

    2006-01-01

    Drug sensitivity of clinically antimony-unresponsive Leishmania donovani isolates from Eastern Sudan was evaluated in an in vitro culture system against sodium stibogluconate (Pentostam) and Amphotericin B. Eight isolates, six from antimony-resistant and two from clinically responsive patients were...

  6. Comparison of modification with strontium and the refining with antimony in A 356 aluminium alloys

    International Nuclear Information System (INIS)

    Fuoco, Ricardo; Correa, Edison Roberto; Correa, Alzira V.O.; Bocalini Junior, Mario

    1992-01-01

    Strontium and Antimony treated A356 aluminium alloy samples were metallographically characterized in the as cast and solution and aged conditions. Antimony treated alloy has shown slower spheroidizing kinetics of the Silicon particles during solution treatment, lower porosity level and higher tensile strength and elongation than Strontium treated one. (author)

  7. Assessment of Industrial Antimony Exposure and Immunologic Function for Workers in Taiwan.

    Science.gov (United States)

    Wu, Chin-Ching; Chen, Yi-Chun

    2017-06-26

    This study investigated antimony exposure among employees in industries in Taiwan and evaluated whether their immunologic markers were associated with antimony exposure. We recruited 91 male workers and 42 male office administrators from 2 glass manufacturing plants, 1 antimony trioxide manufacturing plants, and 2 engineering plastic manufacturing plants. Air samples were collected at worksites and administrative offices, and each participant provided specimens of urine, blood, and hair to assay antimony levels. We also determined white blood cells, lymphocyte, and monocyte, IgA, IgE, and IgG in blood specimens. The mean antimony concentration in the air measured at worksites was much higher in the antimony trioxide plant (2.51 ± 0.57 mg/m³) than in plastic plants (0.21 ± 0.06 mg/m³) and glass plants (0.14 ± 0.01 mg/m³). Antimony levels in blood, urine, and hair measured for participants were correlated with worksites and were higher in workers than in administrators. The mean serum IgG, IgA, and IgE levels were lower in workers than in administrators ( p industrial plants than for administrators. This study suggests serum IgG, IgA, and IgE levels are negatively associated with antimony exposure.

  8. Surface area of antimony oxide by isotope exchange and other methods

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Y.K.; Acharya, B.V.; Rangamannar, B.

    1985-06-17

    Specific surface areas of antimony oxide samples, one commercial, the other prepared from antimony trichloride were measured by heterogeneous isotope exchange, gas adsorption, air permeability and microscopic methods. Specific surface areas obtained by these four methods for the two samples were compared and the observed differences are explained.

  9. Pilot plant studies on the extraction of antimony metal from lower grade krinj stibnite ore

    International Nuclear Information System (INIS)

    Rehman, W.; Riaz, M.; Ishaq, M.

    2013-01-01

    Antimony is a silvery white, brittle and crystalline solid which is extensively consumed in lead acid batteries, antimonial lead alloys, flame retardants and a variety of metallic products. The antimony content of commercial ores range from 5-60% and determines the method of extraction, either pyrometallurgical or hydrometallurgical. The present study focuses on pilot plant scale extraction of antimony metal from lower grade stibnite ore of Krinj (Chitral) without the use of iron scrap, thus eliminating the second step of iron removal in conventional direct reduction method. A tilting gas fired furnace with digital temperature control system and a heat recuperator was designed to optimize the operating parameters for extraction of antimony metal. Weight ratios of flux and reductant, operating time and operating temperature were optimized. Highest percentage recovery and purity were achieved using soda ash as a flux, at a temperature of 900 degree C for 2 hours. (author)

  10. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency.

    Science.gov (United States)

    Wen, Xixing; Chen, Chao; Lu, Shuaicheng; Li, Kanghua; Kondrotas, Rokas; Zhao, Yang; Chen, Wenhao; Gao, Liang; Wang, Chong; Zhang, Jun; Niu, Guangda; Tang, Jiang

    2018-06-05

    Antimony selenide is an emerging promising thin film photovoltaic material thanks to its binary composition, suitable bandgap, high absorption coefficient, inert grain boundaries and earth-abundant constituents. However, current devices produced from rapid thermal evaporation strategy suffer from low-quality film and unsatisfactory performance. Herein, we develop a vapor transport deposition technique to fabricate antimony selenide films, a technique that enables continuous and low-cost manufacturing of cadmium telluride solar cells. We improve the crystallinity of antimony selenide films and then successfully produce superstrate cadmium sulfide/antimony selenide solar cells with a certified power conversion efficiency of 7.6%, a net 2% improvement over previous 5.6% record of the same device configuration. We analyze the deep defects in antimony selenide solar cells, and find that the density of the dominant deep defects is reduced by one order of magnitude using vapor transport deposition process.

  11. Alkaline sulfide pretreatment of an antimonial refractory Au-Ag ore for improved cyanidation

    Science.gov (United States)

    Alp, Ibrahim; Celep, Oktay; Deveci, Haci

    2010-11-01

    This paper presents the alkaline sulfide pretreatment of an antimonial refractory gold and silver ore. In the ore, gold occurs mainly as gold-silver alloys and as associated with quartz and framboidal pyrite grains, and, to a small extent, as the inclusions within antimonial sulfides. Silver is present extensively as antimonial sulfides such as andorite. Alkaline sulfide pretreatment was shown to allow the decomposition of the antimonial sulfide minerals (up to 98% Sb removal) and to remarkably improve the amenability of gold (e.g., from leaching. An increase in reagent concentration (1-4 mol/L Na2S or NaOH) and temperature (20-80°C), and a decrease in particle size seem to produce an enhancing effect on metal extraction. These findings suggest that alkaline sulfide leaching can be suitably used as a chemical pretreatment method prior to the conventional cyanidation for antimonial refractory gold and silver ores.

  12. Organic ligand-induced dissolution kinetics of antimony trioxide

    Institute of Scientific and Technical Information of China (English)

    Xingyun Hu; Mengchang He

    2017-01-01

    The influence of low-molecular-weight dissolved organic matter (LMWDOM) on the dissolution rate of Sb2O3 was investigated.Some representative LMWDOMs with carboxyl,hydroxyl,hydrosulfuryl and amidogen groups occurring naturally in the solution were chosen,namely oxalic acid,citric acid,tartaric acid,EDTA,salicylic acid,phthalandione,glycine,thiolactic acid,xylitol,glucose and catechol.These LMWDOMs were dissolved in inert buffers at pH =3.7,6.6 and 8.6 and added to powdered Sb2O3 in a stirred,thermostatted reactor (25℃).The addition of EDTA,tartaric acid,thiolactic acid,citric acid and oxalic acid solutions at pH 3.7 and catechol at pH 8.6 increased the rate of release of antimony.In the 10 mmol/L thiolactic acid solution,up to 97% by mass of the antimony was released after 120 min reaction.There was no effect on the dissolution of Sb2O3 for the other ligands.A weak correlation between dissolution rate with the dissociation constant of ligands and the stability of the dissolved complex was also found.All the results showed that the extent of the promoting effect of ligands on the dissolution of Sb2O3 was not determined by the stability of the dissolved complex,but by the dissociation constant of ligands and detachment rate of surface chelates from the mineral surface.This study can not only help in further understanding the effect of individual low-molecular-weight organic ligands,but also provides a reference to deduce the effect of natural organic matters with oxygen-bearing functional groups on the dissolution of antimony oxide minerals.

  13. Organic ligand-induced dissolution kinetics of antimony trioxide.

    Science.gov (United States)

    Hu, Xingyun; He, Mengchang

    2017-06-01

    The influence of low-molecular-weight dissolved organic matter (LMWDOM) on the dissolution rate of Sb 2 O 3 was investigated. Some representative LMWDOMs with carboxyl, hydroxyl, hydrosulfuryl and amidogen groups occurring naturally in the solution were chosen, namely oxalic acid, citric acid, tartaric acid, EDTA, salicylic acid, phthalandione, glycine, thiolactic acid, xylitol, glucose and catechol. These LMWDOMs were dissolved in inert buffers at pH=3.7, 6.6 and 8.6 and added to powdered Sb 2 O 3 in a stirred, thermostatted reactor (25°C). The addition of EDTA, tartaric acid, thiolactic acid, citric acid and oxalic acid solutions at pH3.7 and catechol at pH8.6 increased the rate of release of antimony. In the 10mmol/L thiolactic acid solution, up to 97% by mass of the antimony was released after 120min reaction. There was no effect on the dissolution of Sb 2 O 3 for the other ligands. A weak correlation between dissolution rate with the dissociation constant of ligands and the stability of the dissolved complex was also found. All the results showed that the extent of the promoting effect of ligands on the dissolution of Sb 2 O 3 was not determined by the stability of the dissolved complex, but by the dissociation constant of ligands and detachment rate of surface chelates from the mineral surface. This study can not only help in further understanding the effect of individual low-molecular-weight organic ligands, but also provides a reference to deduce the effect of natural organic matters with oxygen-bearing functional groups on the dissolution of antimony oxide minerals. Copyright © 2016. Published by Elsevier B.V.

  14. Comprehensive thermal and structural characterization of antimony-phosphate glass

    Science.gov (United States)

    Moustafa, S. Y.; Sahar, M. R.; Ghoshal, S. K.

    For the first time, we prepare new ternary glass systems of composition (95-x)Sb2O3-xP2O5-5MgO, where x = 45, 40, 35 mol%; (85-x)Sb2O3-xP2O5-15MgO, where x = 55, 35, 25 mol%; (75-x)Sb2O3-xP2O5-25MgO, where x = 45, 35, 25 mol%; and 60Sb2O3-(40-x)P2O5-xMgO, where x = 10, 20 mol% via melt-quenching method. Synthesized glasses are characterized using XRD, FESEM, EDX, and TG/DTA measurements. The influence of varying modifier concentrations on their thermal properties is evaluated. The XRD patterns confirmed the amorphous nature of samples. SEM images demonstrated interesting phase formation with ribbons-like texture. Five crystalline phases are evidenced in the ternary diagram which are antimony phosphate and antimony orthophosphate as major phases as well as magnesium phosphate, magnesium cyclo-tetraphosphate and cervantite as minor phases. EDX spectra detected the right elemental traces. Detailed thermal analysis of these glasses revealed their high-molecular polymer character for Sb2O3 content greater than 50 mol%. Three different glass transition temperatures are achieved around 276, 380-381 and 422-470 °C depending on the composition. Furthermore, the solidus and liquidus temperature are found to decrease with increasing Sb2O3 and increases for MgO contents till 15 mol% and then decrease, where the lowest recorded solidus temperature is 426 °C. This observation may open up new research avenues for antimony based ternary glasses and an exploitation of the derived results for optoelectronics applications, photonic devices and non-linear optical devices.

  15. Antimony(3) ethylenediaminetetraacetate complexes with single- and doubly charged cations

    International Nuclear Information System (INIS)

    Davidovich, R.L.; Logvinova, V.B.; Kajdalova, T.A.

    1998-01-01

    The antimony(3) ethylenediaminetetraacetate complexes with alkaline and bivalent metals cations of the M + Sb(Edta) · H 2 O (M + = K, Rb, Cs, NH 4 ), M 2+ [Sb(Edta)] 2 · 8H 2 O (M 2+ = Mg, Ca, Sr, Co, Cd) composition are synthesized. Roentgenographic and IR-spectroscopic characteristics of the synthesized substances are determined. Two groups of the isostructural compounds: M + Sb(Edta) · H 2 O (M + = K, Rb, NH 4 ) and M 2+ [Sb(Edta)] 2 · 8H 2 O (M 2+ = Mg, Ca, Sr, Mn, Co, Cd) are established [ru

  16. Evaluation of Neutron Nuclear Data for Natural Titanium and Antimony

    Institute of Scientific and Technical Information of China (English)

    1989-01-01

    <正> The evaluations of neutron data of natural titanium and antimony are performedin the energy range from 10-5 eV to 20 MeV.The following data are included:resonance parameters,cross sections of total,elastic seattering,nonelastic sea-ttering,inelastic seattering,(n,2n),(n,3n),and(n,X)(X=p,d,t,3He,α)reactions etc.The angular distributions and energy distributions of secondaryneutrons are also given.The reproduced cross sections from resolved and unresolved

  17. Electrostatically defined silicon quantum dots with counted antimony donor implants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87175 (United States); Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Bielejec, E.; Carroll, M. S. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  18. Extraction of antimony and arsenic from sulphidic concentrates

    Directory of Open Access Journals (Sweden)

    BalហPeter

    2000-09-01

    Full Text Available The efficiency of both mineral processing and extractive metallurgy of minerals depends on the separation of individual mineral components and on the exposure of their surface. The production of flotation concentrates, with particle sizes of tens of microns, is not sufficient for many hydrometallurgical processes to operate at their optimum. As a consequence, metallurgical plants require for the effective processing high temperatures and pressures and some sort of concentrate pretreatment. Mechanical activation is an innovative procedure where an improvement in hydrometallurgical processes can be attained via a combination of new surface area and formation of crystalline defects in minerals. The lowering of reaction temperatures, the increase of rate and amount of solubility, preparation of water soluble compounds, the necessity for simpler and less expensive reactors and shorter reaction times are some of the advantages of mechanical activation. The environmental aspects of these processes are particularly attractive.This paper is devoted to the examples of application of mechanochemical treatment in the processing of sulfidic concentrates. The sulphide concentrates of various origin (Peru, Chile, Slovakia were succesfully tested for antimony and arsenic extraction. The mechanochemical treatment improve the degree of recovery and the rate of leaching of both metals. Two modes of mechanochemical treatment were tested: the mechanical activation before leaching and the mechanochemical leaching which integrates mechanical activation and leaching into a common step. The flowsheet consisted of mechanochemical leaching in an attritor and further operations as filtration, cementation, antimony precipitation, crystallization and arsenic precipitation. The pilot plant unit was designed for 500 kg per day feed of tetrahedrite concentrate. For the antimony extraction, electrowinning has also been considered. The residue which is a CuAgAu concentrate was

  19. The Evaluation of the Corrosion Resistance of the Al-Si Alloys Antimony Alloyed

    Directory of Open Access Journals (Sweden)

    Svobodova J.

    2014-06-01

    Full Text Available This paper deals with the evaluation of the corrosion resistance of the Al-Si alloys alloyed with the different amount of antimony. Specifically it goes about the alloy AlSi7Mg0,3 which is antimony alloyed in the concentrations 0; 0,001; 0,005; 0,01 a 0,05 wt. % of antimony. The introduction of the paper is dedicated to the theory of the aluminium alloys corrosion resistance, testing and evaluation of the corrosion resistance. The influence of the antimony to the Al-Si alloys properties is described further in the introduction. The experimental part describes the experimental samples which were prepared for the experiment and further they were exposed to the loading in the atmospheric conditions for a period of the 3 months. The experimental samples were evaluated macroscopically and microscopically. The results of the experiment were documented and the conclusions in terms of the antimony impact to the corrosion resistance of the Al-Si alloy were concluded. There was compared the corrosion resistance of the Al-Si alloy antimony alloyed (with the different antimony content with the results of the Al-Si alloy without the alloying after the corrosion load in the atmospheric conditions in the experiment.

  20. The potential DNA toxic changes among workers exposed to antimony trioxide.

    Science.gov (United States)

    El Shanawany, Safaa; Foda, Nermine; Hashad, Doaa I; Salama, Naglaa; Sobh, Zahraa

    2017-05-01

    Occupational exposure to antimony has gained much interest when specific toxic effects were noticed among workers processing antimony. Thus, the aim of the present work was to investigate the potential DNA oxidative damage occurring among Egyptian workers occupationally exposed to antimony trioxide. The study was conducted on 25 subjects exposed to antimony trioxide while working in the polymerization process of polyester in Misrayon and Polyester Fiber Company, KafrEldawwar, Beheira, Egypt. Urinary antimony levels were assessed using inductive coupled plasma-optical emission spectrometry (ICP-OES) and considered as a biological exposure index. DNA damage and total oxidant capacity (TOC) were assessed using ELISA. DNA damage was detected in the form of increased apurinic/apyrimidinic (AP) sites among antimony trioxide-exposed workers compared to control subjects, but it could not be explained by oxidative mechanisms due to lack of significant correlation between DNA damage and measured TOC. Antimony trioxide might have a genotoxic impact on occupationally exposed workers which could not be attributed to oxidative stress in the studied cases.

  1. Investigation of Antimony Leaching from Bottles (PET into the Bottled Waters in Fars Province

    Directory of Open Access Journals (Sweden)

    Masoud Noshadi

    2015-05-01

    Full Text Available Polyethylene Terephthalate (PET is the most common material used in manufacturing mineral water bottles. Antimony trioxide (Sb2O3 used to form the PET containers may pollute water with their ingredients. In this research, graphite furnance atomic absorption spectrometry was used to investigate the effects of storage time (1 to 8 weeks, storage temperature (-20 to 80 °C, pH (6.3 to 8.3, exposure to sunlight, and UV radiation on leaching antimony from PET bottles into the mineral water of 15 bottled water brands available in Fars Province. Concentrations of antimony in the first and second weeks were lower than the maximum standard limit (5 ppb recommended by Iranian regulations. Antimony concentration in one sample (brand A rose above the standard limit after four weeks and in 3 samples (brands A, F, and J with antimony concentrations of 5.48, 5.08, and 5.06 µg/L, respectively exceeded the standard limit after 8 weeks. Sunlight, UV radiation, changes in pH, and storage at temperatures of -20 ℃, 60 ℃, and 80℃ were also found to increase antimony concentrations to levels above the maximum standard limit. Clearly, storing bottled mineral water in ambient conditions may lead to the release of antimony into bottled water, which is a serious threat to public health.

  2. In Vitro Antiparasitic and Apoptotic Effects of Antimony Sulfide Nanoparticles on Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Saied Soflaei

    2012-01-01

    Full Text Available Visceral leishmaniasis is one of the most important sever diseases in tropical and subtropical countries. In the present study the effects of antimony sulfide nanoparticles on Leishmania infantum in vitro were evaluated. Antimony sulfide NPs (Sb2S5 were synthesized by biological method from Serratia marcescens bacteria. Then the cytotoxicity effects of different concentrations (5, 10, 25, 50, and 100 μg/mL of this nanoparticle were assessed on promastigote and amastigote stages of L. infantum. MTT method was used for verification results of promastigote assay. Finally, the percentages of apoptotic, necrotic, and viable cells were determined by flow cytometry. The results indicated the positive effectiveness of antimony sulfide NPs on proliferation of promastigote form. The IC50 (50% inhibitory concentration of antimony sulfide NPs on promastigotes was calculated 50 μg/mL. The cytotoxicity effect was dose-dependent means by increasing the concentration of antimony sulfide NPs, the cytotoxicity curve was raised and the viability curve of the parasite dropped simultaneously. Moreover, the IC50 of antimony sulfide NPs on amastigote stage was calculated 25 μg/mL. On the other hand, however, antimony sulfide NPs have a low cytotoxicity effect on uninfected macrophages but it can induce apoptosis in promastigote stage at 3 of 4 concentrations.

  3. Electrical conductivity of uranium-antimony oxide catalysts

    International Nuclear Information System (INIS)

    Golunski, S.E.; Nevell, T.G.; Hucknall, D.J.

    1985-01-01

    The relative ionic and electronic contributions to the electrical conductivity of a uranium-antimony oxide catalyst and of USbO 5 have been determined from measurements of a.c. and d.c. conductance. Under inert atmospheres (390 to 775 K) conduction in the catalyst (predominantly USb 3 O 10 together with small proportions of Sb 2 O 4 and USbO 5 ) is associated with both electronic and effectively charged atomic point defects. Only electronic conduction occurs in USbO 5 . Under oxygen (10 to 70 kPa, 493 to 682 K) both materials are n-type semiconductors at higher temperatures, but at lower temperatures semiconducting behaviour varies with the pressure of oxygen. Heating USbO 5 in oxygen induces an ionic contribution to conductivity. Ionic conduction in the catalyst is eliminated by heating in hydrogen or propene at 470 K but is restored by heating in oxygen. It is suggested that both charged oxygen vacancies and interstitial oxide ions are involved in interactions of gaseous components with uranium-antimony oxides. With alkenes, interstitial oxide ions give rise to the products of selective partial oxidation. (author)

  4. Thermal decomposition kinetics of antimony oxychloride in air

    Institute of Scientific and Technical Information of China (English)

    阳卫军; 唐谟堂; 金胜明

    2002-01-01

    The DTA and XRD techniques were employed to study thermal decomposition mechanism of antimony oxychloride SbOCl in the air. The thermal decomposition reaction occurs in four steps, and the former three steps as: SbOCl(s)→Sb4O5Cl2(s)+SbCl3(g)→Sb8O11Cl2(s)+SbCl3(g)→Sb2O3(s)+SbCl3(g). The forth step is the oxidation of Sb2O3 by air, Sb2O3(s)+O2→Sb2O4(s). The activation energy and the order of the thermal decomposition reaction of antimony oxychloride in three steps presented in DTA curves were calculated according to Kinssinger methods from DTA curves. The values of activation energy and the order are respectively 91.97kJ/mol, 0.73 in the first step, 131.14kJ/mol, 0.63 in the second step and 146.94kJ/mol, 1.58 in the third step.

  5. Bacterial Communities in the Groundwater of Xikuangshan Antimony Mine, China

    Science.gov (United States)

    Wu, M.; Wang, H.; Wang, N.; Wang, M.

    2017-12-01

    Xikuangshan (XKS) is the biggest antimony (Sb) mine around the word, which causes serious environmental contamination due to the mining actives. To fully understand the bacterial compositions in the groundwater around the mining area in XKS and their correlation with environmental factors, groundwater samples were collected and subject to 16S rDNA high throughput sequencing. Results indicated that Proteobacteria (especially Gamma-Proteobacteria) dominated bacterial communities in high-Sb groundwater samples, whereas Bacteroidetes predominated in low-Sb groundwater. Furthermore, antimony concentration was found to be the most significant factor shaping bacterial communities (P=0.002) with an explanation of 9.16% of the variation. Other factors such as pH, contents of Mg, Ca and orthophosphate were also observed to significantly correlate with bacterial communities. This was the first report to show the important impact of Sb concentration on bacterial community structure in the groundwater in the mining area. Our results will enhance the understanding of subsurface biogeochemical processes mediated by microbes.

  6. Electrical conductivity of uranium-antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Golunski, S.E.; Nevell, T.G. (Portsmouth Polytechnic (UK)); Hucknall, D.J. (Southampton Univ. (UK). Dept. of Chemistry)

    1985-05-01

    The relative ionic and electronic contributions to the electrical conductivity of a uranium-antimony oxide catalyst and of USbO/sub 5/ have been determined from measurements of a.c. and d.c. conductance. Under inert atmospheres (390 to 775 K) conduction in the catalyst (predominantly USb/sub 3/O/sub 10/ together with small proportions of Sb/sub 2/O/sub 4/ and USbO/sub 5/) is associated with both electronic and effectively charged atomic point defects. Only electronic conduction occurs in USbO/sub 5/. Under oxygen (10 to 70 kPa, 493 to 682 K) both materials are n-type semiconductors at higher temperatures, but at lower temperatures semiconducting behaviour varies with the pressure of oxygen. Heating USbO/sub 5/ in oxygen induces an ionic contribution to conductivity. Ionic conduction in the catalyst is eliminated by heating in hydrogen or propene at 470 K but is restored by heating in oxygen. It is suggested that both charged oxygen vacancies and interstitial oxide ions are involved in interactions of gaseous components with uranium-antimony oxides. With alkenes, interstitial oxide ions give rise to the products of selective partial oxidation.

  7. Behaviour of antimony during thermal treatment of Sb-rich halogenated waste

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J. [Laboratoire Gestion des Risques et Environnement, 25 rue de Chemnitz, 68200 Mulhouse (France); Dorge, S., E-mail: sophie.dorge@uha.fr [Laboratoire Gestion des Risques et Environnement, 25 rue de Chemnitz, 68200 Mulhouse (France); Trouve, G. [Laboratoire Gestion des Risques et Environnement, 25 rue de Chemnitz, 68200 Mulhouse (France); Venditti, D.; Durecu, S. [TREDI Departement de Recherche, Technopole de Nancy-Brabois, 9 avenue de la Foret de Haye, BP 184, 54505 Vandoeuvre-les-Nancy (France)

    2009-07-30

    Antimony compounds have a wide range of industrial applications, particularly as additives in flame retardants. To ensure environmentally friendly waste incineration of Sb-rich wastes, it is essential to strengthen the knowledge about the fate of antimony and the potential formation of harmful species. Investigations should be conducted particularly in relation with the main operational parameters controlling the process, chiefly temperature, residence time and air supply in the oven and in the post-combustion zone, prior final adapted cleaning of the flue-gas stream. Experimental studies focusing on antimony behaviour were undertaken through laboratory-scale thermal treatment at 850 deg. C and 1100 deg. C of a Sb-rich halogenated waste, originating from the sector of flame retardants formulation. The configuration of our laboratory experimental device allowed to achieve only low oxidative conditions in the waste bed, but high oxidative strength coupled with high temperature and sufficient gas residence time in the post-combustion zone, as prescribed during the incineration of hazardous wastes. Atomic absorption spectroscopy was used to assess the partition of antimony in the different compartments of the process. The oxidation degree of antimony in the gas-phase was determined by the use of electrochemical techniques, namely polarography coupled with anodic stripping voltamperometry. The partition of antimony between the residual ash and the gas-phase under moderate oxidative conditions in the waste bed was constant, whatever the temperature: the volatilization rate for antimony was {approx}64%, while a {approx}36% fraction remained in the residual bottom ashes. But interestingly, while at 850 {sup o}C, antimony was mainly present in the gas-phase at a +III oxidation degree, an increase in temperature of 250 {sup o}C favoured the presence of antimony to its highest oxidation degree +V in the flue-gas stream, a valence known to be involved in less toxic species.

  8. Behaviour of antimony during thermal treatment of Sb-rich halogenated waste

    International Nuclear Information System (INIS)

    Klein, J.; Dorge, S.; Trouve, G.; Venditti, D.; Durecu, S.

    2009-01-01

    Antimony compounds have a wide range of industrial applications, particularly as additives in flame retardants. To ensure environmentally friendly waste incineration of Sb-rich wastes, it is essential to strengthen the knowledge about the fate of antimony and the potential formation of harmful species. Investigations should be conducted particularly in relation with the main operational parameters controlling the process, chiefly temperature, residence time and air supply in the oven and in the post-combustion zone, prior final adapted cleaning of the flue-gas stream. Experimental studies focusing on antimony behaviour were undertaken through laboratory-scale thermal treatment at 850 deg. C and 1100 deg. C of a Sb-rich halogenated waste, originating from the sector of flame retardants formulation. The configuration of our laboratory experimental device allowed to achieve only low oxidative conditions in the waste bed, but high oxidative strength coupled with high temperature and sufficient gas residence time in the post-combustion zone, as prescribed during the incineration of hazardous wastes. Atomic absorption spectroscopy was used to assess the partition of antimony in the different compartments of the process. The oxidation degree of antimony in the gas-phase was determined by the use of electrochemical techniques, namely polarography coupled with anodic stripping voltamperometry. The partition of antimony between the residual ash and the gas-phase under moderate oxidative conditions in the waste bed was constant, whatever the temperature: the volatilization rate for antimony was ∼64%, while a ∼36% fraction remained in the residual bottom ashes. But interestingly, while at 850 o C, antimony was mainly present in the gas-phase at a +III oxidation degree, an increase in temperature of 250 o C favoured the presence of antimony to its highest oxidation degree +V in the flue-gas stream, a valence known to be involved in less toxic species.

  9. Antimony and arsenic exhibit contrasting spatial distributions in the sediment and vegetation of a contaminated wetland.

    Science.gov (United States)

    Warnken, Jan; Ohlsson, Rohana; Welsh, David T; Teasdale, Peter R; Chelsky, Ariella; Bennett, William W

    2017-08-01

    Antimony is a priority environmental contaminant that is relatively poorly studied compared to other trace metal(loid)s. In particular, the behaviour of antimony in wetland sediments, where anaerobic conditions often dominate, has received considerably less attention compared to well-drained terrestrial soil environments. Here we report the results of a spatial assessment of antimony in the sediments and vegetation of a freshwater wetland exposed to stibnite tailings for the past forty years. The concentration of antimony in the sediment decreased rapidly with distance from the tailings deposit, from a maximum of ∼22,000 mg kg -1 to ∼1000 mg kg -1 at a distance of ∼150 m. In contrast, arsenic was distributed more evenly across the wetland, indicating that it was more mobile under the prevailing hypoxic/anoxic conditions. Less clear trends were observed in the tissues of wetland plants, with the concentrations of antimony in waterlilies (2.5-195 mg kg -1 ) showing no clear trends with distance from the tailings deposit, and no correlation with sediment concentrations. Sedges and Melaleuca sp. trees had lower antimony concentrations (<25 mg kg -1 and 5 mg kg -1 , respectively) compared to waterlilies, but showed a non-significant trend of higher concentrations closer to the tailings. For all vegetation types sampled, antimony concentrations were consistently lower than arsenic concentrations (Sb:As = 0.27-0.31), despite higher concentrations of antimony in the sediment. Overall, the results of this study highlight clear differences in the behaviour of antimony and arsenic in freshwater wetlands, which should be considered during the management and remediation of such sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Synthesis, characterisation and electrochemical evaluation of reduced graphene oxide modified antimony nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Silwana, Bongiwe; Horst, Charlton van der [Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR), Stellenbosch 7600 (South Africa); SensorLab, Department of Chemistry, University of the Western Cape, Bellville 7535 (South Africa); Iwuoha, Emmanuel [SensorLab, Department of Chemistry, University of the Western Cape, Bellville 7535 (South Africa); Somerset, Vernon, E-mail: vsomerset@csir.co.za [Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR), Stellenbosch 7600 (South Africa)

    2015-10-01

    This paper demonstrates some aspects on the synthesis and characterisation of nanoparticles of metallic alloys using polyvinyl alcohol as a stabiliser, which combines high surface area and superior hybrid properties. The present experimental design was to synthesise a nanocomposite of reduced graphene oxide and antimony nanoparticles to be used as thin films for macro- and micro-carbon electrodes for enhancing sensing of different toxic metal pollutants in the environment. The synthetic process of reduced graphene oxide was done using the modified Hummers method while antimony pentachloride was reduced with sodium borohydride into nanoparticles of antimony using polyvinyl-alcohol as a stabiliser. The systematic investigation of morphology was done by scanning electron microscopy and high resolution-transmission electron microscope, which revealed the synthesis of a product, consists of reduced graphene oxide antimony nanoparticles. The electrochemical behaviour of the reduced graphene oxide antimony nanoparticles coated on a glassy carbon electrode was performed using voltammetric and impedance techniques. Electrochemical impedance measurements showed that the overall resistance, including the charge–transfer resistance, was smaller with reduced graphene oxide antimony nanoparticles than reduced graphene oxide and antimony nanoparticles, on their own. Evaluation of the reduced graphene oxide antimony nanoparticle sensor in the stripping voltammetry has shown a linear working range for concentration of platinum (II) between 6.0 × 10{sup −6}–5.4 × 10{sup −5} μg L{sup −1} with limit of detection of 6 × 10{sup −6} μg L{sup −1} (signal-to-noise ratio = 3), which is below the World Health Organisation guidelines for freshwater. - Highlights: • Reduced graphene oxide modified antimony nanoparticles were chemically synthesised. • TEM results show rGO-Sb nanoparticles with a diameter range of between 2 and 20 nm. • Impedance results confirm

  11. Segregation of antimony in InP in MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Weeke, Stefan

    2008-07-01

    In this work the segregation of antimony in indium phosphide in metal organic vapour phase epitaxy (MOVPE)was systematically investigated. Therefore phosphine stabilized InP surfaces were treated with tri-methyl-antimony (TMSb) in MOVPE. An antimony rich Sb/InP surface was established, showing a typical spectra for the antimonides observed in reflectance anisotropy spectroscopy (RAS).Adsorption and desorption of antimony are investigated, as well as the incorporation of Sb during overgrowth of the Sb/InP surface with InP. Therefore the growth parameters temperature, TMSb partial pressure and treatment time are varied and their influence investigated. The experiments are monitored in-situ with RAS, the achieved data is correlated with ex-situ characterisation such as X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS). It is shown that under treatment with TMSb a stable Sb/InP surface is formed within seconds, which does not change under further TMSb treatment. This process is rarely influenced by the TMSb partial pressure. On the contrary, the desorption of Sb is a very slow process. Two main processes can be distinguished: The desorption of excess Sb from the surface and the formation of the MOVPE prepared InP (2 x 1) surface. The reaction velocity of adsorption and desorption increases with temperature. Above a critical value the increase of TMSb partial pressure has no influence on the time for desorption. During overgrowth of the Sb/InP surface the opposite temperature dependence is observed: with increasing growth temperature the typical spectra for antimonides is observed longer. An analysis of the grown samples with XRD and SIMS showed the formation of an InPSb double quantum well. One layer is formed at the interface, the second one 50 nm-120 nm deep in the InP. The location of the 2nd InPSb layer can be correlated with the vanishing of the Sb signature in RAS. The distance between the quantum wells increases with growth temperature, until it

  12. Segregation of antimony in InP in MOVPE

    International Nuclear Information System (INIS)

    Weeke, Stefan

    2008-01-01

    In this work the segregation of antimony in indium phosphide in metal organic vapour phase epitaxy (MOVPE)was systematically investigated. Therefore phosphine stabilized InP surfaces were treated with tri-methyl-antimony (TMSb) in MOVPE. An antimony rich Sb/InP surface was established, showing a typical spectra for the antimonides observed in reflectance anisotropy spectroscopy (RAS).Adsorption and desorption of antimony are investigated, as well as the incorporation of Sb during overgrowth of the Sb/InP surface with InP. Therefore the growth parameters temperature, TMSb partial pressure and treatment time are varied and their influence investigated. The experiments are monitored in-situ with RAS, the achieved data is correlated with ex-situ characterisation such as X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS). It is shown that under treatment with TMSb a stable Sb/InP surface is formed within seconds, which does not change under further TMSb treatment. This process is rarely influenced by the TMSb partial pressure. On the contrary, the desorption of Sb is a very slow process. Two main processes can be distinguished: The desorption of excess Sb from the surface and the formation of the MOVPE prepared InP (2 x 1) surface. The reaction velocity of adsorption and desorption increases with temperature. Above a critical value the increase of TMSb partial pressure has no influence on the time for desorption. During overgrowth of the Sb/InP surface the opposite temperature dependence is observed: with increasing growth temperature the typical spectra for antimonides is observed longer. An analysis of the grown samples with XRD and SIMS showed the formation of an InPSb double quantum well. One layer is formed at the interface, the second one 50 nm-120 nm deep in the InP. The location of the 2nd InPSb layer can be correlated with the vanishing of the Sb signature in RAS. The distance between the quantum wells increases with growth temperature, until it

  13. Simultaneous analysis of arsenic, antimony, selenium and tellurium in environmental samples using hydride generation ICPMS

    International Nuclear Information System (INIS)

    Jankowski, L.M.; Breidenbach, R.; Bakker, I.J.I.; Epema, O.J.

    2009-01-01

    Full text: A quantitative method for simultaneous analysis of arsenic, antimony, selenium and tellurium in environmental samples is being developed using hydride generation ICPMS. These elements must be first transformed into hydride-forming oxidation states. This is particularly challenging for selenium and antimony because selenium is susceptible to reduction to the non-hydride-forming elemental state and antimony requires strong reducing conditions. The effectiveness of three reducing agents (KI, thiourea, cysteine) is studied. A comparison is made between addition of reducing agent to the sample and addition of KI to the NaBH 4 solution. Best results were obtained with the latter approach. (author)

  14. Antimony susceptibility of Leishmania isolates collected over a 30-year period in Algeria.

    Science.gov (United States)

    Eddaikra, Naouel; Ait-Oudhia, Khatima; Kherrachi, Ihcen; Oury, Bruno; Moulti-Mati, Farida; Benikhlef, Razika; Harrat, Zoubir; Sereno, Denis

    2018-03-01

    In Algeria, the treatment of visceral and cutaneous leishmanioses (VL and CL) has been and continues to be based on antimony-containing drugs. It is suspected that high drug selective pressure might favor the emergence of chemoresistant parasites. Although treatment failure is frequently reported during antimonial therapy of both CL and VL, antimonial resistance has never been thoroughly investigated in Algeria. Determining the level of antimonial susceptibility, amongst Leishmania transmitted in Algeria, is of great importance for the development of public health policies. Within the framework of the knowledge about the epidemiology of VL and CL amassed during the last 30 years, we sampled Leishmania isolates to determine their susceptibility to antimony. We analyzed a total of 106 isolates including 88 isolates collected between 1976 and 2013 in Algeria from humans, dogs, rodents, and phlebotomines and 18 collected from dogs in France. All the Algerian isolates were collected in 14 localities where leishmaniasis is endemic. The 50% inhibitory concentrations (IC50) of potassium antimony tartrate (the trivalent form of antimony, Sb(III)) and sodium stibogluconate (the pentavalent form of antimony, Sb(V)) were determined in promastigotes and intramacrophage amastigotes, respectively. The epidemiological cutoff (ECOFF) that allowed us to differentiate between Leishmania species causing cutaneous or visceral leishmaniases that were susceptible (S+) or insusceptible (S-) to the trivalent form of antimony was determined. The computed IC50 cutoff values were 23.83 μg/mL and 15.91 μg/mL for VL and CL, respectively. We report a trend of increasing antimony susceptibility in VL isolates during the 30-year period. In contrast, an increase in the frequency of S- phenotypes in isolates causing CL was observed during the same period. In our study, the emergence of S- phenotypes correlates with the inclusion of L. killicki (syn: L. tropica) isolates that cause cutaneous

  15. Characteristic electron energy losses in monoatomic antimony films on (110) and (112) tungsten faces

    International Nuclear Information System (INIS)

    Gorodetskij, D.A.; Gorchinskij, A.D.; Shevlyakov, S.A.

    1981-01-01

    Complex investigations of antimony condensation on a monoatomical clean surface of tungsten monocrystals are carried out. The completion of a physical antimony monolayer has been controlled by the methods of Auger-electron spectroscopy and slow electron diffraction. It is shown that at submonolayer coatings a collectivization of valent electrons occurs leading to appearance of peaks of surface and volumetric plasmons in the energy losses spectrum. The anomalous cencentrational dependence of antimony ionization peak intensity has been found. The origin of previously unexplored peaks in the energy losses spectrum is discussed [ru

  16. Varicella zoster virus reactivation during or immediately following treatment of tegumentary leishmaniasis with antimony compounds

    Directory of Open Access Journals (Sweden)

    Andrea Barbieri Barros

    2014-07-01

    Full Text Available Antimony compounds are the cornerstone treatments for tegumentary leishmaniasis. The reactivation of herpes virus is a side effect described in few reports. We conducted an observational study to describe the incidence of herpes zoster reactivation during treatment with antimony compounds. The global incidence of herpes zoster is approximately 2.5 cases per 1,000 persons per month (or 30 cases per 1,000 persons per year. The estimated incidence of herpes zoster in patients undergoing antimony therapy is higher than previously reported.

  17. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils

    International Nuclear Information System (INIS)

    Steely, Sarah; Amarasiriwardena, Dulasiri; Xing Baoshan

    2007-01-01

    The presence of antimony compounds is often suspected in the soil of apple orchards contaminated with lead arsenate pesticide and in the soil of shooting ranges. Nitric acid (1 M) extractable Sb from the shooting range (8300 μg kg -1 ) and the apple orchard (69 μg kg -1 ) had considerably higher surface Sb levels than the control site ( -1 ), and Sb was confined to the top ∼30 cm soil layer. Sb(V) was the principal species in the shooting range and the apple orchard surface soils. Size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) analysis of humic acids isolated from the two contaminated soils demonstrated that Sb has complexed to humic acid molar mass fractions. The results also indicate that humic acids have the ability to arrest the mobility of Sb through soils and would be beneficial in converting Sb(III) to a less toxic species, Sb(V), in contaminated areas. - The soil surface and depth distribution Sb(V) and Sb(III) species in a contaminated apple orchard and a shooting range, and the effect soil humic acids on inorganic antimony species is reported

  18. 7 CFR 28.124 - Payments; procedure.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing..., TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Fees and Costs § 28.124..., or money order, payable to the order of the “Agricultural Marketing Service, USDA”, and may not be...

  19. The promotion on cell growth of androgen-dependent prostate cancer by antimony via mimicking androgen activity.

    Science.gov (United States)

    Zhang, Changwen; Li, Penghao; Wen, Yingwu; Feng, Guowei; Liu, Yu; Zhang, Yangyi; Xu, Yong; Zhang, Zhihong

    2018-05-15

    Antimony is a widely used heavier pnictogens in industry, and its toxicity has been a matter of concern. Although previous studies have suggested that antimony may have the function as either a tumor suppressor or an oncogene in several cancers, the molecular basis underlying antimony-mediated transformation is still unclear. In the current study, we attempt to elucidate the potential role of antimony in the development of prostate cancer. Our results showed that the concentration of antimony was much higher in serum of prostate cancer patients, and was closely associated with poor outcome of patients who underwent radical prostatectomy. Additionally, low dose of antimony could promote proliferation and invasion of androgen-dependent prostate cancer cell line LNCaP cells in vitro and in vivo. The mechanistic studies demonstrated that exposure to antimony triggered the phosphorylation of androgen receptor (AR), which transcriptionally regulates the expression of androgen-related targets, including PSA and NKX3.1. Overall, our results unearthed that antimony could promote tumor growth by mimicking androgen activity in androgen-dependent prostate cancer cells. Therefore, these findings expanded our understanding on the molecular mechanism of antimony in tumorigenesis and tumor progression of prostate cancer, and it appears to be an inspiring strategy to restrain prostate cancer by inhibiting antimony-induced androgen-like effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide

    International Nuclear Information System (INIS)

    Sekhar, Vini C.; Nampoothiri, K. Madhavan; Mohan, Arya J.; Nair, Nimisha R.; Bhaskar, Thallada; Pandey, Ashok

    2016-01-01

    Highlights: • Biodegradation of a high impact polystyrene e − plastic. • 12.4% (w/w) e plastic film lost using an isolate, Enterobacter sp. • Noted changes in the physico-chemical characteristics of degraded e-plastic film. • Polystyrene intermediates were detected in the degradation medium. • e-plastic degrading microbes displayed extracellular depolymerase activity. - Abstract: Accumulation of electronic waste has increased catastrophically and out of that various plastic resins constitute one of the leading thrown out materials in the electronic machinery. Enrichment medium, containing high impact polystyrene (HIPS) with decabromodiphenyl oxide and antimony trioxide as sole carbon source, was used to isolate microbial cultures. The viability of these cultures in the e-plastic containing mineral medium was further confirmed by triphenyl tetrazolium chloride (TTC) reduction test. Four cultures were identified by 16S rRNA sequencing as Enterobacter sp., Citrobacter sedlakii, Alcaligenes sp. and Brevundimonas diminuta. Biodegradation experiments were carried out in flask level and gelatin supplementation (0.1% w/v) along with HIPS had increased the degradation rate to a maximum of 12.4% (w/w) within 30 days. This is the first report for this kind of material. The comparison of FTIR, NMR, and TGA analysis of original and degraded e-plastic films revealed structural changes under microbial treatment. Polystyrene degradation intermediates in the culture supernatant were also detected using HPLC analysis. The gravity of biodegradation was validated by morphological changes under scanning electron microscope. All isolates displayed depolymerase activity to substantiate enzymatic degradation of e-plastic.

  1. Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Sekhar, Vini C. [Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala (India); Nampoothiri, K. Madhavan, E-mail: madhavan85@hotmail.com [Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala (India); Mohan, Arya J.; Nair, Nimisha R. [Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala (India); Bhaskar, Thallada [Bio-Fuels Division (BFD), CSIR-Indian Institute of Petroleum (IIP), Dehradun, Uttarakhand 248005 (India); Pandey, Ashok [Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala (India)

    2016-11-15

    Highlights: • Biodegradation of a high impact polystyrene e − plastic. • 12.4% (w/w) e plastic film lost using an isolate, Enterobacter sp. • Noted changes in the physico-chemical characteristics of degraded e-plastic film. • Polystyrene intermediates were detected in the degradation medium. • e-plastic degrading microbes displayed extracellular depolymerase activity. - Abstract: Accumulation of electronic waste has increased catastrophically and out of that various plastic resins constitute one of the leading thrown out materials in the electronic machinery. Enrichment medium, containing high impact polystyrene (HIPS) with decabromodiphenyl oxide and antimony trioxide as sole carbon source, was used to isolate microbial cultures. The viability of these cultures in the e-plastic containing mineral medium was further confirmed by triphenyl tetrazolium chloride (TTC) reduction test. Four cultures were identified by 16S rRNA sequencing as Enterobacter sp., Citrobacter sedlakii, Alcaligenes sp. and Brevundimonas diminuta. Biodegradation experiments were carried out in flask level and gelatin supplementation (0.1% w/v) along with HIPS had increased the degradation rate to a maximum of 12.4% (w/w) within 30 days. This is the first report for this kind of material. The comparison of FTIR, NMR, and TGA analysis of original and degraded e-plastic films revealed structural changes under microbial treatment. Polystyrene degradation intermediates in the culture supernatant were also detected using HPLC analysis. The gravity of biodegradation was validated by morphological changes under scanning electron microscope. All isolates displayed depolymerase activity to substantiate enzymatic degradation of e-plastic.

  2. Liquid-liquid extraction of arsenic, antimony, selenium and tellurium by zinc diethyldithiocarbamate

    International Nuclear Information System (INIS)

    Bajo, S.; Wyttenbach, A.

    1978-03-01

    The authors report the solvent extraction, oxidation, reduction, extraction in the presence of iron, and reextraction of arsenic, antimony, selenium and tellurium. These processes were studied using radioactive tracers. (G.T.H.)

  3. Antimony Trioxide (ATO) - Summary of External Peer Review and Public Comments and Disposition

    Science.gov (United States)

    This document summarizes the public and external peer review comments that the EPA’s Office of Pollution Prevention and Toxics (OPPT) received for the draft work plan risk assessment for Antimony Trioxide (ATO).

  4. NEW THIO S2- ADDUCTS WITH ANTIMONY (III AND V HALIDE: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    HASSAN ALLOUCH

    2013-12-01

    Full Text Available Five new S2- adducts with SbIII and SbV halides have been synthesized and studied by infrared. Discrete structures have been suggested, the environment around the antimony being tetrahedral, trigonal bipyramidal or octahedral.

  5. Distribution of antimony in the oxide layer formed by potentiostatic oxidation of Pb-Sb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Arifuku, F.; Yoneyama, H.; Tamura, H.

    1979-09-01

    The distribution of antimony within the oxide films on Pb-Sb alloy prepared by potentiostatic oxidation in H/sub 2/SO/sub 4/ solutions was examined by SIMS. The study of oxide films prepared by applying different potentials for three hours showed that two types of film were obtained depending on whether the potential was more negative or more positive than 1.5 V. Antimony profiles were obtained for films at several stages in the initial growth. It was found that antimony was retained in the oxide film at 1.5 V during both nucleation and two- or three-dimensional growth of PbO/sub 2/ and at 1.6 V during the lateral overlaps of three-dimensional centers of PbO/sub 2/. Relationships between the antimony distribution profiles and the oxide film growth are discussed. 8 figures, 1 table.

  6. Co-doping with antimony to control phosphorous diffusion in germanium

    KAUST Repository

    Tahini, H. A.; Chroneos, Alexander; Grimes, R. W.; Schwingenschlö gl, Udo

    2013-01-01

    donor co-doping on the migration activation energies of vacancy-mediated diffusion processes. The migration energy barriers for phosphorous and antimony were found to be increased significantly when larger clusters involving two donor atoms and a vacancy

  7. Removal of lead from crude antimony by using NaPo3 as lead elimination reagent

    Directory of Open Access Journals (Sweden)

    Ye L.G.

    2015-01-01

    Full Text Available In order to solve the shortcomings when removing lead from crude antimony in the traditional antimony smelting, a new process was provided using NaPO3 as lead elimination reagent to yield phosphate slag, and it was removed by floating on the surface of the liquid antimony. Reaction mechanism was clarified by using the TG-DTA and XRD techniques and single factor experiments of removal lead from crude antimony were engaged. The results show that PbO and NaPO3 begin endothermic reaction at 863K (590°C, and the reaction mainly form NaPb4(PO43 and NaPbPO4 below 1123K (850°C and above 1123K (850°C, respectively. Sb2O3 and NaPO3 start the reaction at 773K (500°C and generate an antimonic salt compound. The reaction product of the mixture of PbO, Sb2O3 and NaPO3 show that NaPO3 reacted with PbO prior when NaPO3 was insufficient, amorphous antimony glass will be generated only when NaPO3 was adequate. Single factor experiments were taken with NaNO3 as oxidizing agent under argon, effect of reaction time, reaction temperature and dosage of NaPO3 and NaNO3 on smelting results. The average content of lead in refined antimony was 0.05340% and 98.85% of lead were removed under optimal conditions; the content of lead in antimony have meet the requirements of commercial antimony.

  8. Atomistic mechanisms governing structural stability change of zinc antimony thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaolong [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); Lin, Jianping, E-mail: jaredlin@163.com [School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Qiao, Guanjun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Zhao, E-mail: zwangzhao@gmail.com [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-01-05

    The structural stability of thermoelectric materials is a subject of growing importance for their energy harvesting applications. Here, we study the microscopic mechanisms governing the structural stability change of zinc antimony at its working temperature, using molecular dynamics combined with experimental measurements of the electrical and thermal conductivity. Our results show that the temperature-dependence of the thermal and electrical transport coefficients is strongly correlated with a structural transition. This is found to be associated with a relaxation process, in which a group of Zn atoms migrates between interstitial sites. This atom migration gradually leads to a stabilizing structural transition of the entire crystal framework, and then results in a more stable crystal structure of β–Zn{sub 4}Sb{sub 3} at high temperature.

  9. Antimony Accumulation Risk in Lettuce Grown in Brazilian Urban Gardens

    Directory of Open Access Journals (Sweden)

    Silvia Mancarella

    2016-08-01

    Full Text Available More than 80% of the Brazilian population inhabits urban areas. Diffused poverty and the lack of fresh vegetables have generated malnutrition and unbalanced diets. Thus, the interest in growing food locally, in urban allotments and community gardens, has increased. However, urban agriculture may present some risks caused by the urban pollution. Road traffic is considered the biggest source of heavy metals in urban areas. Hence, the objective of the study was the assessment of the accumulation of heavy metals in an urban garden in the city of Recife, at different distances from a road with high traffic burden. The results showed that the distance from the street decreased the accumulation of many potentially toxic elements. Furthermore, the human health risk was estimated, revealing that greater danger was associated with the accumulation of antimony. Concentration of other elements in the leaf tissues were within previously reported thresholds.

  10. Pump pulse duration dependence of coherent phonon amplitudes in antimony

    Energy Technology Data Exchange (ETDEWEB)

    Misochko, O. V., E-mail: misochko@issp.ac.ru [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)

    2016-08-15

    Coherent optical phonons of A{sub 1k} and E{sub k} symmetry in antimony have been studied using the femtosecond pump–probe technique. By varying the pump-pulse duration and keeping the probe duration constant, it was shown that the amplitude of coherent phonons of both symmetries exponentially decreases with increasing pulse width. It was found that the amplitude decay rate for the fully symmetric phonons with larger frequency is greater than that of the doubly degenerate phonons, whereas the frequency and lifetime for coherent phonons of both symmetries do not depend on the pump-pulse duration. Based on this data, the possibility of separation between dynamic and kinematic contributions to the generation mechanism of coherent phonons is discussed.

  11. Silicon quantum dots with counted antimony donor implants

    Science.gov (United States)

    Singh, Meenakshi; Pacheco, Jose; Perry, Daniel; Wendt, Joel; Manginell, Ronald; Dominguez, Jason; Pluym, Tammy; Luhman, Dwight; Bielejec, Edward; Lilly, Michael; Carroll, Malcolm

    Antimony donor implants next to silicon quantum dots have been detected with integrated solid-state diode detectors with single ion precision. Devices with counted number of donors have been fabricated and low temperature transport measurements have been performed. Charge offsets, indicative of donor ionization and coupling to the quantum dot, have been detected in these devices. The number of offsets corresponds to 10-50% of the number of donors counted. We will report on tunneling time measurements and spin readout measurements on the donor offsets. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  12. High-pressure Raman investigation of the semiconductor antimony oxide

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Aihui; Cao, Lihua [State Key Lab on High Power Semiconductor Laser, Changchun University of Science and Technology, 130022 Changchun (China); Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130012 Changchun (China); Wan, Chunming [State Key Lab on High Power Semiconductor Laser, Changchun University of Science and Technology, 130022 Changchun (China); Ma, Yanmei [Department of Agronomy, Jilin University, 130062 Changchun (China)

    2011-05-15

    The in situ high-pressure behavior of the semiconductor antimony trioxide (Sb{sub 2}O{sub 3}) has been investigated by Raman spectroscopy techniques in a diamond anvil cell up to 20 GPa at room temperature. New peaks in the external lattice mode range emerged at a pressure above 8.6-15 GPa, suggesting that the structural phase transition occurred. The pressure dependence of Raman frequencies was obtained. The band at 139 cm{sup -1} (assigned to group mode) has a pressure dependence of -0.475 cm{sup -1}/GPa and reveals significant softening at high pressure. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Antimony-Induced Neurobehavioral and Biochemical Perturbations in Mice.

    Science.gov (United States)

    Tanu, Tanzina; Anjum, Adiba; Jahan, Momotaj; Nikkon, Farjana; Hoque, Mominul; Roy, Apurba Kumar; Haque, Azizul; Himeno, Seiichiro; Hossain, Khaled; Saud, Zahangir Alam

    2018-03-08

    Groundwater used for drinking has been contaminated with naturally occurring inorganic arsenic and other metals, and metal-contaminated drinking water is the biggest threat to public health in Bangladesh. Toxic metals present in the drinking water have a strong relationship with chronic diseases in humans. Antimony (Sb), a naturally occurring metal, has been reported to be present in the drinking water along with other heavy metals in Bangladesh. Although Sb is present in the environment, very little attention has been given to the toxic effects of Sb. The present study was designed to investigate the in vivo effects of Sb on neurobehavioral changes like anxiety, learning and memory impairment, and blood indices related to organ dysfunction. Mice exposed to antimony potassium-tartrate hydrate (Sb) (10 mg/kg body weight) significantly (p < 0.05) decreased the time spent in open arms while increased the time spent in closed arms compared to the control mice in elevated plus maze. The mean latency time of control group to find the platform decreased (p < 0.05) significantly during 7 days learning as compared to Sb-treated group in Morris water maze test, and Sb-exposed group spent significantly (p < 0.05) less time in the desired quadrant as compared to the control group in probe trial. Sb treatment also significantly altered blood indices related to liver and kidney dysfunction. Additionally, Sb-induced biochemical alterations were associated with significant perturbations in histological architecture of liver and kidney of Sb-exposed mice. These data suggest that Sb has a toxic effect on neurobehavioral and biochemical changes in mice.

  14. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-04-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  15. Efficiency of manganese dioxide for the removal of antimony from aqueous solutions

    International Nuclear Information System (INIS)

    Hasany, S.M.; Najamuddin; Ikram, M.

    1993-01-01

    The sorption of antimony onto manganese dioxide from aqueous solution has been investigated as a function of shaking time, composition of electrolyte, concentration of sorbent and sorbate, Maximum sorption of antimony has been achieved from deionized water after 15 minutes shaking at 45 cm/sup 3/g/sup -1/ V/W ratio. The influence of different anions and cations on the sorption has also been examined. EDTA, tartrate, citrate and Fe(II) decreased the sorption significantly. Among the metal ions tested only Se (IV) has shown strong sorption than antimony whereas Co(II), Hf (IV) and Te(IV) indicated low sorption affinity under similar experimental conditions. The sorption of antimony was also tested by different isotherms. The data fitted only to Freyndlich and D-R models. The sorption capacity of 7.71 m mole g/sup -1/, mean energy of sorption of 8.9 kJ mole/sup -1/ and of B = 0.00632 mole/sup 2/kJ/sup -2/ have been system. It is concluded that manganese dioxide can be used for the removal of antimony from industrial effluents and for its recovery from very dilute solutions. The oxide can also be applied for the separation of antimony, selenium and arsenic from Te(IV). (author)

  16. Exposure to antimony from polyethylene terephthalate (PET) trays used in ready-to-eat meals.

    Science.gov (United States)

    Haldimann, M; Blanc, A; Dudler, V

    2007-08-01

    Antimony residues, a result of the use of a polycondensation catalyst in the production of polyethylene terephthalate (PET) oven-proof trays, were analysed in ready-to-eat meals. The toxicity of antimony has raised concerns about consumer safety; therefore, the migration of small fractions of these residues into ready meals and foods as a result of cooking directly in the PET trays was studied. A straightforward approach of measuring real samples was selected to obtain accurate exposure data. Background antimony concentration was determined separately from a series of lunch meals, which ranged from not detectable to 3.4 microg kg(-1). Microwave and conventional oven-cooking caused a distinct increase in the concentration of antimony in food and ready meals of 0-17 and 8-38 microg kg(-1), respectively, depending, to a certain extent, on the industrial preparations. The migrated quantities of antimony corresponded to 3-13 microg. For comparison, PET roasting bags and ready-made dough products in PET baking dishes were also evaluated. About half of the products prepared at a temperature of 180 degrees C exceeded the specific migration limit set for food contact material by the European Commission. However, the migrated amounts of antimony relative to the accepted tolerable daily intake (TDI) show that exposure from this type of food is currently not of toxicological concern.

  17. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-06-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  18. 9 CFR 124.33 - Standard of due diligence.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Standard of due diligence. 124.33 Section 124.33 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF... Diligence Petitions § 124.33 Standard of due diligence. (a) In determining the due diligence of an applicant...

  19. 32 CFR 536.124 - Settlement authority for maritime claims.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Settlement authority for maritime claims. 536.124 Section 536.124 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY CLAIMS AND ACCOUNTS CLAIMS AGAINST THE UNITED STATES Maritime Claims § 536.124 Settlement authority for maritime...

  20. 7 CFR 1.24 - Preservation of records.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Preservation of records. 1.24 Section 1.24 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Official Records § 1.24 Preservation of records. Agencies shall preserve all correspondence relating to the requests it receives under this...

  1. 21 CFR 133.124 - Cold-pack cheese food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cold-pack cheese food. 133.124 Section 133.124 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Cheese and Related Products § 133.124 Cold-pack cheese food. (a)(1) Cold-pack cheese food is the food...

  2. 18 CFR 284.124 - Terms and conditions.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Terms and conditions. 284.124 Section 284.124 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... AUTHORITIES Certain Transportation by Intrastate Pipelines § 284.124 Terms and conditions. Contracts for the...

  3. Copper-promoted cementation of antimony in hydrochloric acid system: A green protocol

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lian-Kui; Li, Ying-Ying; Cao, Hua-Zhen; Zheng, Guo-Qu, E-mail: zhenggq@zjut.edu.cn

    2015-12-15

    Highlights: • Antimony can be efficiently removed by cementation with copper powder. • Cemented antimony is in the form of Cu{sub 2}Sb. • Consumed copper powder is transformed to CuCl. • The cementation is a chemically controlled step. • No toxic stibine generates during the cementation process. - Abstract: A new method of recovering antimony in hydrochloric acid system by cementation with copper powder was proposed and carried out at laboratory scale. Thermodynamic analysis and cyclic voltammetry test were conducted to study the cementation process. This is a novel antimony removal technology and quite meets the requirements of green chemistry. The main cement product Cu{sub 2}Sb is a promising anodic material for lithium and sodium ion battery. And nearly all consumed copper powder are transformed into CuCl which is an important industrial material. The effect of reaction temperature, stoichiometric ratio of Cu to Sb(III), stirring rate and concentration of HCl on the cementation efficiency of antimony were investigated in detail. Optimized cementation condition is obtained at 60 °C for 120 min and stirring rate of 600 rpm with Cu/Sb(III) stoichiometric ratio of 6 in 3 mol L{sup −1} HCl. At this time, nearly all antimony can be removed by copper powder and the cementation efficiency is over 99%. The structure and morphologies of the cement products were characterized by X-ray diffraction and scanning electron microscopy, respectively. Results show that the reaction temperature has little influence on the morphology of the cement products which consist of particles with various sizes. The activation energy of the cementation antimony on copper is 37.75 kJ mol{sup −1}, indicating a chemically controlled step. Inductively coupled plasma mass spectrometry results show that no stibine generates during the cementation process.

  4. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain)

    International Nuclear Information System (INIS)

    Murciego, A. Murciego; Sanchez, A. Garcia; Gonzalez, M.A. Rodriguez; Gil, E. Pinilla; Gordillo, C. Toro; Fernandez, J. Cabezas; Triguero, T. Buyolo

    2007-01-01

    A study about topsoil antimony distribution and mobility from the soils to the biomass has been afforded in three abandoned Sb mining areas located at Extremadura. Physico-chemical characteristics of the soils and total antimony levels were measured in soils and autochthonous plant species (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa). Comparison with corresponding values in reference areas isolated from the mining activities is discussed. Antimony mobility in the soils was estimated by measuring the water extractable fraction; low results were obtained for the three soil areas, with no statistical differences. Plant ability to accumulate antimony was estimated by use of plant accumulation coefficients (PAC). Seasonal (spring vs. autumn) effects on the antimony content in the plant species. Cytisus striatus from Mari Rosa mine presented antimony excluder characteristics, whereas Dittrichia viscosa specimens growing in San Antonio mine showed a significant antimony bioaccumulation. - Bioaccumulation of antimony in vegetal species growing in mining areas

  5. Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Murciego, A. Murciego [Area de Cristalografia y Mineralogia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Sanchez, A. Garcia [IRNA-CSIC, Departamento de Geoquimica Ambiental, Aptdo. 257, Salamanca (Spain); Gonzalez, M.A. Rodriguez [Area de Cristalografia y Mineralogia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Gil, E. Pinilla [Departamento de Quimica Analitica y Electroquimica, Facultad de Ciencias, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain)]. E-mail: epinilla@unex.es; Gordillo, C. Toro [Departamento de Quimica Analitica y Electroquimica, Facultad de Ciencias, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Fernandez, J. Cabezas [Area de Ecologia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain); Triguero, T. Buyolo [Area de Ecologia, Universidad de Extremadura, Avda. Elvas, s/n, E-06071 Badajoz (Spain)

    2007-01-15

    A study about topsoil antimony distribution and mobility from the soils to the biomass has been afforded in three abandoned Sb mining areas located at Extremadura. Physico-chemical characteristics of the soils and total antimony levels were measured in soils and autochthonous plant species (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa). Comparison with corresponding values in reference areas isolated from the mining activities is discussed. Antimony mobility in the soils was estimated by measuring the water extractable fraction; low results were obtained for the three soil areas, with no statistical differences. Plant ability to accumulate antimony was estimated by use of plant accumulation coefficients (PAC). Seasonal (spring vs. autumn) effects on the antimony content in the plant species. Cytisus striatus from Mari Rosa mine presented antimony excluder characteristics, whereas Dittrichia viscosa specimens growing in San Antonio mine showed a significant antimony bioaccumulation. - Bioaccumulation of antimony in vegetal species growing in mining areas.

  6. Predictors of an unsatisfactory response to pentavalent antimony in the treatment of American visceral leishmaniasis

    Directory of Open Access Journals (Sweden)

    Santos Mácia A.

    2002-01-01

    Full Text Available Although treatment of visceral leishmaniasis with pentavalent antimony is usually successful, some patients require second-line drug therapy, most commonly with amphotericin B. To identify the clinical characteristics that predict an inadequate response to pentavalent antimony, a case-control study was undertaken in Teresina, Piaui, Brazil. Over a two-year period, there were 19 cases of VL in which the staff physicians of a hospital prescribed second-line therapy with amphotericin B after determining that treatment with pentavalent antimony had failed. The control group consisted of 97 patients that were successfully treated with pentavalent antimony. A chart review using univariate and multivariate analysis was performed. The cure rate was 90% with amphotericin B. The odds ratio for the prescription of amphotericin B was 10.2 for children less than one year old, compared with individuals aged over 10 years. Patients who presented coinfection had an OR of 7.1 while those on antibiotics had an OR of 2.8. These data support either undertaking a longer course of therapy with pentavalent antimony for children or using amphotericin B as a first-line agent for children and individuals with coinfections. It also suggests that chemoprophylaxis directed toward bacterial coinfection in small children with VL may be indicated.

  7. Influence of sulfur, phosphorus, and antimony segregation on the intergranular hydrogen embrittlement of nickel

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Baer, D.R.; Jones, R.H.; Thomas, M.T.

    1983-01-01

    The effectiveness of sulfur, phosphorus, and antimony in promoting the intergranular embrittlement of nickel was investigated using straining electrode tests in 1N H 2 SO 4 at cathodic potentials. Sulfur was found to be the critical grain boundary segregant due to its large enrichment at grain boundaries (10 4 to 10 5 times the bulk content) and the direct relationship between sulfur coverage and hydrogeninduced intergranular failure. Phosphorus was shown to be significantly less effective than sulfur or antimony in inducing the intergranular hydrogen embrittlement of nickel. The addition of phosphoru to nickel reduced the tendency for intergranular fracture and improved ductility because phosphoru segregated strongly to grain interfaces and limited sulfur enrichment. The hydrogen embrittling potency of antimony was also less than that of sulfur while its segregation propensity was considerably less. It was found that the effectiveness of segregated phosphorus and antimony in prompting inter granular embrittlement vs that of sulfur could be expressed in terms of an equivalent grain boundary sulfur coverage. The relative hydrogen embrittling potencies of sulfur, phosphorus, and antimony are discussed in reference to general mechanisms for the effect of impurity segregation on hydrogeninduced intergranular fracture

  8. Arsenic and antimony removal from drinking water by adsorption on granular ferric oxide.

    Science.gov (United States)

    Sazakli, Eleni; Zouvelou, Stavroula V; Kalavrouziotis, Ioannis; Leotsinidis, Michalis

    2015-01-01

    Arsenic and antimony occur in drinking water due to natural weathering or anthropogenic activities. There has been growing concern about their impact on health. The aim of this study was to assess the efficiency of a granular ferric oxide adsorbent medium to remove arsenic and antimony from drinking water via rapid small-scale column tests (RSSCTs). Three different water matrices - deionized, raw water treated with a reverse osmosis domestic device and raw water - were spiked with arsenic and/or antimony to a concentration of 100 μg L⁻¹. Both elements were successfully adsorbed onto the medium. The loadings until the guideline value was exceeded in the effluent were found to be 0.35-1.63 mg g⁻¹ for arsenic and 0.12-2.11 mg g⁻¹ for antimony, depending on the water matrix. Adsorption of one element was not substantially affected by the presence of the other. Aeration did not affect significantly the adsorption capacity. Granular ferric oxide could be employed for the simultaneous removal of arsenic and antimony from drinking water, whereas full-scale systems should be assessed via laboratory tests before their implementation.

  9. New fluorescent polymeric nanocomposites synthesized by antimony dodecyl-mercaptide thermolysis in polymer

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available In this work, the formation of semiconductive Sb2S3 nanoparticles inside amorphous polystyrene has been achieved by thermal degradation of the corresponding antimony dodecyl-mercaptide, Sb(SC12H253. The thermolysis of the dodecyl-mercaptide precursor was studied as both pure phase and mercaptide solution in polystyrene. The thermal decomposition of the antimony mercaptide precursor at 350°C, under vacuum, showed the formation of a mixture of antimony trisulfide (stibnite, Sb2S3 and zero-valent antimony (Sb phase. X-ray Powder Diffraction (XRD and Rietveld analysis carried out on the obtained nanostructured powder confirmed the presence of Sb and Sb2S3 phases in 10.4 wt% and 89.6 wt% amount, respectively. The same pyrolysis reaction was carried out in the polymer and the resulting nanocomposite material was characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, UV-VIS spectroscopy, and fluorescence spectroscopy. The nanocomposite structural characterization indicated the presence of well-dispersed nanoclusters of antimony and stibnite (15–30 nm in size inside the amorphous polymeric phase. Optical measurements on the obtained nanocomposite films showed a strong emission at 432 nm upon excitation at 371 nm, probably related to the presence of Sb2S3 nanoclusters.

  10. Extended solubility and martensitic hcp nickel formation in antimony implanted nickel

    International Nuclear Information System (INIS)

    Johnson, E.; Sarholt-Kristensen, L.; Johansen, A.

    1982-01-01

    Radiation damage microstructure and associated disorder have been investigated in antimony implanted nickel crystals using combined RBS and TEM analyses. In crystals implanted at and below room temperature with 80 keV Sb + ions to a fluence of 5x10 20 m -2 , the retained antimony concentration in the implantation zone is approaching 15 at.%, with nearly all the antimony located substitutionally. The associated disorder as seen in the RBS analysis is insignificant. Annealing up to 600 0 C has little influence on the antimony distribution, whilst the dechanneling level is reduced. TEM and diffraction analysis of room temperature implanted samples show that the radiation damage consists of dense distributions of dislocation clusters and tangles, superimposed on a rather homogeneous background of new phase particles, identified as hcp nickel. The particles have a size 0.1-0.2 μm. The high substitutional antimony concentration at and below room temperature, which exceeds the solubility limit, indicates that its formation is thermally diffusionless and rather an effect of radiation enhanced solubility. The diffusionless nature of the microstructure is also indicated from the presence of martensitic hcp nickel, believed to form due to relief of radiation induced internal stress. (Auth.)

  11. Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, T; Kim, H; Ning, XH; Sadoway, DR

    2014-08-08

    The performance of a calcium-antimony (Ca-Sb) alloy serving as the positive electrode in a Ca vertical bar vertical bar Sb liquid metal battery was investigated in an electrochemical cell, Ca(in Bi) vertical bar LiCl-NaCl-CaCl2 vertical bar Ca(in Sb). The equilibrium potential of the Ca-Sb electrode was found to lie on the interval, 1.2-0.95 V versus Ca, in good agreement with electromotive force (emf) measurements in the literature. During both alloying and dealloying of Ca at the Sb electrode, the charge transfer and mass transport at the interface are facile enough that the electrode potential varies linearly from 0.95 to 0.75 V vs Ca(s) as current density varies from 50 to 500 mA cm(-2). The discharge capacity of the Ca vertical bar vertical bar Sb cells increases as the operating temperature increases due to the higher solubility and diffusivity of Ca in Sb. The cell was successfully cycled with high coulombic efficiency (similar to 100%) and small fade rate (<0.01% cycle(-1)). These data combined with the favorable costs of these metals and salts make the Ca vertical bar vertical bar Sb liquid metal battery attractive for grid-scale energy storage. (C) The Author(s) 2014. Published by ECS. All rights reserved.

  12. Mechanisms of antimony interstitial penetration into cadmium telluride crystals

    CERN Document Server

    Nikonyuk, E S; Zakharuk, Z I; Fochuk, P M; Rarenko, A I

    2001-01-01

    The results of electrophysical investigations of CdTe crystals, grown by Bridgman method and doped with Sb impurity in concentrations for 10 sup 1 sup 7 -3 x 10 sup 1 sup 9 cm sup - sup 3 are presented. The analysis of the temperature dependence of Hall coefficient, current carrier mobility and photoconductivity at intrinsic excitation for samples taken from different parts of ingots allows to conclude, that Sb sub T sub e , Sb sub C sub d centers and (Sb sub T sub e Sb sub C sub d) associated appear in CdTe crystal during its doping by antimony impurity. The hole conductivity in doped crystals is controlled by A sub 3 (Sb sub T sub e) acceptors, their density not exceeding 5 x 10 sup 1 sup 6 cm sup - sup 3 , and is essentially less than the real impurity content. The ionization energy of A sub 3 acceptors is (0.28 +- 0.01) eV. In non-equilibrium conditions these acceptors play the role of adhesion centers for holes (at high temperatures) and the slow recombination centers for electrons (at low temperatures)

  13. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND GLASS AMPLIFICATION

    Directory of Open Access Journals (Sweden)

    B. Tioua

    2015-07-01

    Full Text Available Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses. In this poster will offer new doped erbium glasses synthesized in silicate crucibles were obtained in the combination Sb2O3-WO3-Na2O. Several properties are measured and correlated with glass compositions. The absorption spectral studies have been performed for erbium doped glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the theory of Judd-Ofelt, various radiative properties, such as transition probability, branching ratio and radiative life time for various emission levels of these doped glasses have been determined and reported. These results confirm the ability of antimony glasses for glass amplification.

  14. Mitochondrial Proteomics of Antimony and Miltefosine Resistant Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Isabel M. Vincent

    2015-10-01

    Full Text Available Antimony (SbIII and miltefosine (MIL are important drugs for the treatment of Leishmania parasite infections. The mitochondrion is likely to play a central role in SbIII and MIL induced cell death in this parasite. Enriched mitochondrial samples from Leishmania promastigotes selected step by step for in vitro resistance to SbIII and MIL were subjected to differential proteomic analysis. A shared decrease in both mutants in the levels of pyruvate dehydrogenase, dihydrolipoamide dehydrogenase, and isocitrate dehydrogenase was observed, as well as a differential abundance in two calcium-binding proteins and the unique dynamin-1-like protein of the parasite. Both mutants presented a shared increase in the succinyl-CoA:3-ketoacid-coenzyme A transferase and the abundance of numerous hypothetical proteins was also altered in both mutants. In general, the proteomic changes observed in the MIL mutant were less pronounced than in the SbIII mutant, probably due to the early appearance of a mutation in the miltefosine transporter abrogating the need for a strong mitochondrial adaptation. This study is the first analysis of the Leishmania mitochondrial proteome and offers powerful insights into the adaptations to this organelle during SbIII and MIL drug resistance.

  15. Samarium Polystibides Derived from Highly Activated Nanoscale Antimony.

    Science.gov (United States)

    Schoo, Christoph; Bestgen, Sebastian; Egeberg, Alexander; Klementyeva, Svetlana; Feldmann, Claus; Konchenko, Sergey N; Roesky, Peter W

    2018-05-14

    Zintl ions in molecular compounds are of fundamental interest for basic research and application. Two reactive antimony sources are presented that allow direct access to molecular polystibide compounds. These are Sb amalgam (Sb/Hg) and ultrasmall Sb 0 nanoparticles (d=6.6±0.8 nm), which were used independently as precursors for the synthesis of the largest f-element polystibide, [(Cp* 2 Sm) 4 Sb 8 ]. Whereas the reaction of the nanoparticles with [Cp* 2 Sm] directly led to [(Cp* 2 Sm) 4 Sb 8 ], Sm/Sb/Hg intermediates were isolated when using Sb/Hg as the precursor. These Sm/Sb/Hg intermediates [{(Cp* 2 Sm) 2 Sb} 2 (μ-Hg)] and [{(Cp* 2 Sm) 3 (μ 4 ,η 1:2:2:2 -Sb 4 )} 2 Hg] were synthetically trapped and structurally characterized, giving insight in the formation mechanism of polystibide compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Natural attenuation of antimony in mine drainage water

    International Nuclear Information System (INIS)

    Manaka, Mitsuo; Yanase, Nobuyuki; Sato, Tsutomu; Fukushi, Keisuke

    2007-01-01

    In this study, we investigated the natural attenuation of antimony (Sb) in the drainage water of an abandoned mine. Drainage water, waste rocks, and ocherous precipitates collected from the mine were investigated in terms of their mineralogy and chemistry. The chemistry of the drainage water was analyzed by measuring pH, oxidation-reduction potential (ORP), and electric conductivity on site as well as by inductively coupled plasma mass spectrometry and ion chromatography. As the drainage flowed downstream, the pH decreased rapidly from 7.05 to 3.26 and then increased slowly to 3.50. In a section where the pH increased, ocherous precipitates occur on a drainage water channel. We determined Sb levels in the drainage water, and the distribution of Sb in the mineral phases of waste rocks and precipitates was estimated by means of a sequential extraction procedure. The results of these investigations indicated that Sb, which is generated by the dissolution of stibnite (Sb 2 S 3 ) and secondary formed Sb minerals in waste rocks, was attenuated by iron-bearing ocherous precipitates, especially schwertmannite, that form over time in the drainage water. The Sb concentrations in the ocherous precipitates were up to 370 mg/kg, whereas the Sb concentrations in the drainage water downstream were below background levels (0.6 μg/L). Bulk distribution coefficients (K d ) for this Sb adsorption to the precipitates ranges up to at least 10 5 L/kg. (author)

  17. Determination of antimony by using tungsten trap atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Titretir, Serap [Department of Chemistry, Inoenue University, 44065 Malatya (Turkey); Kenduezler, Erdal [Department of Primary Education, Faculty of Education, Ahi Evran University, 40100 Kirsehir (Turkey); Arslan, Yasin [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Chemistry, Atatuerk University, 25240 Erzurum (Turkey); Kula, Ibrahim [Department of Chemistry, Mugla University, 48000 Mugla (Turkey); Bakirdere, Sezgin [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak (Turkey); Ataman, O. Yavuz. [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2008-08-15

    An electrically heated tungsten coil was used as a trap in the determination of antimony. The technique consists of three steps. Initially, SbH{sub 3} is formed by hydride generation procedure; then the analyte species in vapor form are transported to W-coil trap heated at 370 deg. C. Following the preconcentration step, the trap is heated to 895 deg. C; analyte species are revolatilized and transported to the flame-heated quartz atom cell where atomization and the formation of signal take place. The experimental parameters were optimized both for trap and no-trap studies. The most important experimental parameters are concentrations of HCl and NaBH{sub 4} solutions, H{sub 2} and Ar gas flow rates, and collection and revolatilization temperatures of W-coil. Accuracy was tested using a certified reference material, waste water EU-L-1. Limit of detection for the system is 16 ng l{sup -1} using a sample of 36 ml collected in 4.0 min. Enhancement factor in sensitivity was 17.

  18. Highly active and stable Pt electrocatalysts promoted by antimony-doped SnO2 supports for oxygen reduction reactions

    DEFF Research Database (Denmark)

    Yin, Min; Xu, Junyuan; Li, Qingfeng

    2014-01-01

    Alternative composite supports for platinum catalysts were synthesized from antimony doped tin dioxide (ATO) nanoparticles. In the range of the antimony content from 0 to 11mol%, the highest electrical conductivity of 1.1Scm-1 at 130°C was obtained for the 5mol% Sb ATO, from which composite...

  19. Reducing plant radiation fields by source term reduction - tracking cobalt and antimony to their sources at Gentilly-2

    International Nuclear Information System (INIS)

    Gauthier, P.; Guzonas, D.A.

    2006-01-01

    the same specifications at Gentilly-2 as at other CANDU 6 plants. Consequently, the task group revisited operating and maintenance practices, going back through station operating history to identify operational practices that could have lead to increased 59 Co release and/or 60 Co production. The focus rapidly moved to the fuel handling system, as it had long been suspected, but never proven, that the Stellite ram balls were a major source of 59 Co; the fuelling machines provide a direct route for the introduction of corrosion or wear products into the reactor core. Data on the gamma fields measured in the fuelling machine D 2 O supply room from 1995 to the present were reviewed. Water samples were taken and chemically analysed. The results confirmed the presence of 59 Co, probably generated by the wear and corrosion of the Stellite ram balls, and also confirmed the presence of antimony in the system. As part of the task group program, γ-spectrometry was performed in the course of a refuelling cycle. The results showed that variations in the general radiation fields observed in the fuelling machine D 2 O supply room resulted from variations of the 122 Sb and 124 Sb concentrations in the process water. The presence of 122 Sb (t 1/2 3.2 d) suggested that the antimony was recently released from the reactor core. 60 Co was also detected but the level was constant; 59 Co from the ram balls is invisible to γ-spectrometry before it is activated to 60 Co. Remedial actions were implemented in mid-July, 2004. Shortly after, a significant reduction in the radiation fields in the Gentilly-2 fuelling machine D2 O supply room was confirmed. During an unplanned outage in December 2004, a decrease in fields, in particular those due to 60 Co and radioantimony, was found at the reactor face. Activity monitoring scheduled for the 2005 annual outage should confirm if the source of the abnormally high fields has finally been identified. This presentation will describe the task force

  20. Effect of antimony nano-scale surface-structures on a GaSb/AlAsSb distributed Bragg reflector

    International Nuclear Information System (INIS)

    Husaini, S.; Shima, D.; Ahirwar, P.; Rotter, T. J.; Hains, C. P.; Dang, T.; Bedford, R. G.; Balakrishnan, G.

    2013-01-01

    Effects of antimony crystallization on the surface of GaSb during low temperature molecular beam epitaxy growth are investigated. The geometry of these structures is studied via transmission electron and atomic force microscopies, which show the surface metal forms triangular-shaped, elongated nano-wires with a structured orientation composed entirely of crystalline antimony. By depositing antimony on a GaSb/AlAsSb distributed Bragg reflector, the field is localized within the antimony layer. Polarization dependent transmission measurements are carried out on these nano-structures deposited on a GaSb/AlAsSb distributed Bragg reflector. It is shown that the antimony-based structures at the surface favor transmission of light polarized perpendicular to the wires.

  1. Spectrophotometric procedure using rhodamine B for determination of submicrogram quantities of antimony in rocks

    Science.gov (United States)

    Schnepfe, M.M.

    1973-01-01

    A spectrophotometric procedure using Rhodamine B is given for the determination of antimony in mineralized rocks after its separation as stibine. A study of the Rhodamine B reaction points to the importance of the order of addition of reagents in enhancing sensitivity and increasing the stability of the system. The tolerance of some 26 elements is established for the overall procedure. Although the limit of determination is approximately 0??5 ppm Sb in a 0??2-g sample, the procedure is intended primarily for screening samples containing more than 1 ppm Sb. In pure solutions 0??1 ??g of antimony can be determined with a relative standard deviation of 25%. For >0??2 ??g of antimony a relative standard deviation of 15% or less can be expected. ?? 1973.

  2. Synthesis of barium mercaptides and application of antimony/barium mercaptides

    Institute of Scientific and Technical Information of China (English)

    瞿龙; 张露露; 舒万艮

    2001-01-01

    Mercaptoacetic acid, isooctyl thioglycolate and barium hydroxide used as start materials, barium bis (2-ethylhexyl thioglycolate) (Ba(2EHTG)2), barium thioglycolate (Ba(TG)) and barium bisthioglycolate (Ba(TG)2) were synthesized. Their optimum synthetic techniques were discussed, and some physicochemical data were reported. Infrared spectroscopy and elemental analysis methods were used to identify the structures. They were put into PVC plastic products together with antimony tris (2-ethylhexyl thioglycolate) (Sb(2EHTG)3) under the suitable compounding, and their heat stability to PVC was studied. It is shown that these barium mercaptides have remarkable synergisms with antimony mercaptides and the long-term stabilizing effect of organoantimony stabilizer can be effectively improved, reducing the amount of antimony compounds so as to avoid the decrease of its stabilizing effect.

  3. Specific features of doping with antimony during the ion-beam crystallization of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Pashchenko, A. S., E-mail: as.pashchenko@gmail.com; Chebotarev, S. N.; Lunin, L. S. [Russian Academy of Sciences, Southern Scientific Center (Russian Federation); Irkha, V. A. [Special Engineering and Technology Department “Inversiya” Ltd. (Russian Federation)

    2016-04-15

    A method of doping during the growth of thin films by ion-beam crystallization is proposed. By the example of Si and Sb, the possibility of controllably doping semiconductors during the ion-beam crystallization process is shown. A calibrated temperature dependence of the antimony vapor flow rate in the range from 150 to 400°C is obtained. It is established that, an increase in the evaporator temperature above 200°C brings about the accumulation of impurities in the layer growth direction. Silicon layers doped with antimony to a concentration of 10{sup 18} cm{sup –3} are grown. It is shown that, as the evaporator temperature is increased, the efficiency of the activation of antimony in silicon nonlinearly decreases from ~10{sup 0} to ~10{sup –3}.

  4. Anodic stripping voltammetry of antimony using gold nanoparticle-modified carbon screen-printed electrodes

    International Nuclear Information System (INIS)

    Dominguez Renedo, Olga; Arcos Martinez, M. Julia

    2007-01-01

    Carbon screen-printed electrodes (CSPE) modified with gold nanoparticles present an interesting alternative in the determination of antimony using differential pulse anodic stripping voltammetry. Metallic gold nanoparticles deposits have been obtained by direct electrochemical deposition. Scanning electron microscopy measurements show that the electrochemically synthesized gold nanoparticles are deposited in aggregated form. Any undue effects caused by the presence of foreign ions in the solution were also analyzed to ensure that common interferents in the determination of antimony by ASV. The detection limit for Sb(III) obtained was 9.44 x 10 -10 M. In terms of reproducibility, the precision of the above mentioned method in %R.S.D. values was calculated at 2.69% (n = 10). The method was applied to determine levels of antimony in seawater samples and pharmaceutical preparations

  5. Conceptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony

    Directory of Open Access Journals (Sweden)

    Željko Kamberović

    2012-12-01

    Full Text Available This paper presents a preliminary design for treatment of mining and metallurgical wastewaters (MMW from the basin of antimony “Zajača“, which contains high concentrations of arsenic and antimony. MMW have been investigated in laboratory, due to large difference in concentrations of pollutants. Metallurgical wastewaters were treated using iron (II-sulfate and lime milk used to adjust the pH value at 7. After chemical treatment of metallurgical wastewater and its joining with mining wastewater, residual amount of arsenic in water was below maximum allowed concentrations, while the concentration of antimony, remained above the maximum allowed value. The final phase of purification process was performed using ion exchange resin. After treatment of MMW, they can be used as technical water in the smelting process of secondary raw lead materials.

  6. Study of upscaling possibilities for antimony sulfide solid state sensitized solar cells

    Science.gov (United States)

    Nikolakopoulou, Archontoula; Raptis, Dimitrios; Dracopoulos, Vasilios; Sygellou, Lamprini; Andrikopoulos, Konstantinos S.; Lianos, Panagiotis

    2015-03-01

    Solid state solar cells of inverted structure were constructed by successive deposition of nanoparticulate titania, antimony sulfide sensitizer and P3HT on FTO electrodes with PEDOT:PSS:Ag as counter electrode. Sensitized photoanode electrodes were characterized by XRD, Raman, XPS, FESEM and UV-vis. Small laboratory scale cells were first constructed and optimized. Functional cells were obtained by annealing the antimony sulfide film either in air or in inert atmosphere. High short-circuit currents were recorded in both cases with air-annealed sample producing more current but lower voltage. Small unit cells were combined to form cell modules. Connection of unit cells in parallel increased current but not proportionally to that of the unit cell. Connection in series preserved current and generated voltage multiplication. Cells were constructed and studied under ambient conditions, without encapsulation. The results encourage upscaling of antimony sulfide solar cells.

  7. Uranium accumulation in valentinite within the oxidation zone of an antimony occurrence

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, I.P.; Kurilo, M.V.

    1985-01-01

    As a result of mineralogic-radiogeochemical study of real composition of oxidation zone of antimony occurrence represented by quartz - antimonite vien in silicificated sandstones the previousy undescribed phenomenon of uranium concentration in valentinite Sb/sub 2/O/sub 3/ one of antimonite oxidation products has been found. According to the data of fission radiography the enrichment of valentinite with uranium is clearly seen, particularly of its concentrically zonal aggregates. The valentinite is the basic uranium mineral-concentrator in the oxidation zone, whereas in the initial mineral - antimonite as well as in the product of its more complete oxidation - stibiconite - uranium is lacking. Probably the crystallochemical properties of anhydrous antimony oxide (valentinite) by analogy with those for iron (goethite hematite) and titanium (leucoxene) are the most favourable for uranium adsorption as compared with high-water antimony oxides (stibiconite) or iron (limonite), which do not usually sorb uranium.

  8. Uranium accumulation in valentinite within the oxidation zone of an antimony occurrence

    International Nuclear Information System (INIS)

    Sergeev, I.P.; Kurilo, M.V.

    1985-01-01

    As a result of mineralogic-radiogeochemical study of real composition of oxidation zone of antimony occurrence represented by quartz - antimonite vien in silicificated sandstones the previousy undescribed phenomenon of uranium concentration in valentinite Sb 2 O 3 one of antimonite oxidation products has been found. According to the data of fission radiography the enrichment of valentinite with uranium is clearly seen, particularly of its concentrically zonal aggregates. The valentinite is the basic uranium mineral-concentrator in the oxidation zone, whereas in the initial mineral - antimonite as well as in the product of its more complete oxidation - stibiconite - uranium is lacking. Probably the crystallochemical properties of anhydrous antimony oxide (valentinite) by analogy with those for iron (goethite hematite) and titanium (leucoxene) are the most favourable for uranium adsorption as compared with high-water antimony oxides (stibiconite) or iron (limonite), which do not usually sorb uranium

  9. Mixed Antimony(V Complexes with Different Sugars to Modulate the Oral Bioavailability of Pentavalent Antimonial Drugs

    Directory of Open Access Journals (Sweden)

    Weverson A. Ferreira

    2014-04-01

    Full Text Available Previous studies have shown that the association of the drug meglumine antimoniate (MA with β-cyclodextrin can improve its bioavailability by the oral route. In this work, ribose and maltose were investigated for their ability to form mixed or association complexes with MA, release MA and modulate the serum levels of Sb after oral administration in mice. Analysis of the MA/ribose composition by high performance liquid chromatography coupled to mass spectrometry (LCMS-IT-TOF revealed the presence of mixed meglumine-Sb-ribose and Sb-ribose complexes. Analysis of the MA/maltose composition suggested the formation of MA-maltose association compounds. Circular dichroism characterization of these compositions following dilution in water at 37 °C suggested a partial and slow dissociation of the association compounds. When the MA/ribose composition was administered orally and compared to MA, the serum concentration of Sb was significantly lower after 1 h and greater after 3 h. On the other hand, the MA/maltose composition showed similar serum Sb concentration after 1 h and higher level of Sb after 3 h, when compared to MA. In conclusion, the present study has demonstrated the formation of mixed or association complexes of MA with sugars, such as maltose and ribose, which promoted sustained serum level of Sb after oral administration.

  10. Levels and risk factors of antimony contamination in human hair from an electronic waste recycling area, Guiyu, China.

    Science.gov (United States)

    Huang, Yue; Ni, Wenqing; Chen, Yaowen; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng

    2015-05-01

    The primitive electronic waste (e-waste) recycling has brought a series of environmental pollutants in Guiyu, China. Antimony is one of the important metal contaminants and has aroused the global concerns recently. We aimed to investigate concentrations of antimony in human hair from Guiyu and compared them with those from a control area where no e-waste recycling exists, and assessed the potential risk factors. A total of 205 human hair samples from Guiyu and 80 samples from Jinping were collected for analysis. All volunteers were asked to complete a questionnaire including socio-demographic characteristics and other possible factors related to hair antimony exposure. The concentrations of hair antimony were analyzed using atomic absorption spectrophotometer. Our results indicated that the level of hair antimony in volunteers from Guiyu (median, 160.78; range, 6.99-4412.59 ng/g) was significantly higher than those from Jinping (median, 61.74; range, 2.98-628.43 ng/g). The residents who engaged in e-waste recycling activities in Guiyu had higher hair antimony concentrations than others (P recycling. Multiple stepwise regression analysis indicated that hair antimony concentrations were associated with education level (β = -0.064), the time of residence in Guiyu (β = 0.112), living house also served as e-waste workshop (β = 0.099), the work related to e-waste (β = 0.169), and smoking (β = 0.018). The elevated hair antimony concentrations implied that the residents in Guiyu might be at high risk of antimony contamination, especially the e-waste recycling workers. Work related to e-waste recycling activities and long-time residence in Guiyu contributed to the high hair antimony exposure.

  11. On-line lab-in-syringe cloud point extraction for the spectrophotometric determination of antimony.

    Science.gov (United States)

    Frizzarin, Rejane M; Portugal, Lindomar A; Estela, José M; Rocha, Fábio R P; Cerdà, Victor

    2016-02-01

    Most of the procedures for antimony determination require time-consuming sample preparation (e.g. liquid-liquid extraction with organic solvents), which are harmful to the environment. Because of the high antimony toxicity, a rapid, sensitive and greener procedure for its determination becomes necessary. The goal of this work was to develop an analytical procedure exploiting for the first time the cloud point extraction on a lab-in-syringe flow system aiming at the spectrophotometric determination of antimony. The procedure was based on formation of an ion-pair between the antimony-iodide complex and H(+) followed by extraction with Triton X-114. The factorial design showed that the concentrations of ascorbic acid, H2SO4 and Triton X-114, as well as second and third order interactions were significant at the 95% confidence level. A Box-Behnken design was applied to obtain the response surfaces and to identify the critical values. System is robust at the 95% confidence level. A linear response was observed from 5 to 50 µg L(-1), described by the equation A=0.137+0.050C(Sb) (r=0.998). The detection limit (99.7% confidence level), the coefficient of variation (n=5; 15 µg L(-1)) and the sampling rate was estimated at 1.8 µg L(-1), 1.6% and 16 h(-1), respectively. The procedure allows quantification of antimony in the concentrations established by environmental legislation (6 µg L(-1)) and it was successfully applied to the determination of antimony in freshwater samples and antileishmanial drugs, yielding results in agreement with those obtained by HGFAAS at the 95% confidence level. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Antimony sorption properties of chitosan - nano TiO2 composite beads

    International Nuclear Information System (INIS)

    Nishad, Padala Abdul; Bhaskarapillai, Anupkumar; Velmurugan, Sankaralingam

    2015-01-01

    Routine decontamination campaigns of nuclear reactors are generally effective in removing various radionuclides such as cobalt, caesium, etc., and bring down the radiation field. However, during some of the decontamination campaigns, the radiation field at some surfaces was seen to have actually gone up. This was found to be due to lack of removal of antimony isotopes by the regular ion exchange resins used, which subsequently deposited over out of core surfaces leading to increased radiation field on those surfaces. Thus there exists a need for efficient antimony removal system. We have synthesised nano titania impregnated - epichlorohydrin crosslinked chitosan beads, which were found to have high sorption capacity for antimony. The beads, which were synthesised in formats suitable for large scale (column mode) applications, were shown to be effective sorbent of antimony in both +3 and +5 oxidation states. The sorbent exhibited complete removal of antimony from its aqueous solutions of concentration ranging from 150 ppb to 120 ppm. In order to understand the sorption mechanism and to fine tune the bead composition, the effect of crosslinker concentration used during the synthesis on the swelling and sorption properties of the beads was investigated in detail. The variation effected significant changes in physical parameters such as bead diameter, swelling ratio, equilibrium water content and true wet density. Sorption capacity, unlike with regular resins, was found to increase with increase in crosslinker amount. The antimony sorption capacity of the crosslinked beads prepared by crosslinking 0.3 g uncrosslinked beads with 6.4 mmol epichlorohydrin (crosslinker) was 493 μmol/g. Non-crosslinked beads showed a capacity of 75 μmol/g, while the crosslinked beads made with the least amount of crosslinker (0.64 mmol per 0.3 g beads) showed a capacity of 133 μmol/g. These results indicate the possible involvement of the crosslinker in the sorption. (author)

  13. Redox speciation analysis of antimony in soil extracts by hydride generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Fuentes, Edwar; Pinochet, Hugo; Gregori, Ida de; Potin-Gautier, Martine

    2003-01-01

    A sensitive atomic spectrometric method for the redox speciation analysis of antimony in soils is described. The method is based on the selective generation of stibine from Sb(III) in a continuous flow system using atomic fluorescence spectrometry for detection. Sb(V) is masked by citric or oxalic acid in HCl medium. The procedure was optimized with synthetic solutions of Sb(III) and Sb(V). The effect of carboxylic acid and HCl concentration on the recovery of Sb(III) and Sb(V) species from standard solutions, and on the fluorescence signal were studied. Both species were extracted from soil with H 2 O, 0.05 mol l -1 EDTA and 0.25 mol l -1 H 2 SO 4 . Since the soil samples were collected from sites impacted by copper mining activities, the effect of Cu 2+ on the determination of antimony in synthetic solutions and soil extracts was studied. Cu 2+ decreased the Sb(III) signal, but had no effect on the total antimony determination. Therefore, the selective determination of Sb(III) was carried out in citric acid-HCl medium, using the analyte addition technique. Total antimony in soil extracts was determined using the standard calibration technique after reducing Sb(V) to Sb(III) at room temperature with KI-ascorbic acid. The Sb(V) concentration was calculated from the difference between total antimony and Sb(III). The limits of detection (PS Analytical, Excalibur Millennium model) were 17 and 10 ng l -1 for Sb(III) and total antimony, respectively, and the R.S.D. at the 0.5-μg l -1 level were 2.5 and 2.4%, respectively. The total antimony concentration of soils is in the mg kg -1 range; the Sb recovery from the different soils by the extracting solutions was between less than 0.02% and approximately 10%. Similar recoveries were obtained using EDTA and sulfuric acid solutions. Sb(V) was found to be the main antimony species extracted from soils

  14. Co-doping with antimony to control phosphorous diffusion in germanium

    KAUST Repository

    Tahini, H. A.

    2013-02-15

    In germanium, phosphorous and antimony diffuse quickly and as such their transport must be controlled in order to design efficient n-typed doped regions. Here, density functional theory based calculations are used to predict the influence of double donor co-doping on the migration activation energies of vacancy-mediated diffusion processes. The migration energy barriers for phosphorous and antimony were found to be increased significantly when larger clusters involving two donor atoms and a vacancy were formed. These clusters are energetically stable and can lead to the formation of even larger clusters involving a number of donor atoms around a vacancy, thereby affecting the properties of devices.

  15. Development of Na/sup 123/I pharmaceutical from antimony target

    Energy Technology Data Exchange (ETDEWEB)

    Yongjian, L.; Qixun, S.; Dequn, S. (Shanghai Inst. of Nuclear Research, Academia Sinica, Shanghai (China))

    A new method for the production of Na/sup 123/I is described. It is produced by the /sup 121/Sb(..cap alpha..,2n)/sup 123/I nuclear reaction and using a natural antimony target prepared by electroplating in a bath of antimony oxide and hydrofluoric acid. The target is irradiated with 32MeV ..cap alpha..-beams then transferred to a dry distillation apparatus and the iodide evolved and absorbed in NaOH. Quality control is by paper chromatography.

  16. Reaction of Antimony-Uranium Composite Oxide in the Chlorination Treatment of Waste Catalyst - 13521

    International Nuclear Information System (INIS)

    Sawada, Kayo; Hirabayashi, Daisuke; Enokida, Youichi

    2013-01-01

    The effect of oxygen gas concentration on the chlorination treatment of antimony-uranium composite oxide catalyst waste was investigated by adding different concentrations of oxygen at 0-6 vol% to its chlorination agent of 0.6 or 6 vol% hydrogen chloride gas at 1173 K. The addition of oxygen tended to prevent the chlorination of antimony in the oxide. When 6 vol% hydrogen chloride gas was used, the addition of oxygen up to 0.1 vol% could convert the uranium contained in the catalyst to U 3 O 8 without any significant decrease in the reaction rate compared to that of the treatment without oxygen. (authors)

  17. Traffic-related distribution of antimony in roadside soils.

    Science.gov (United States)

    Földi, Corinna; Sauermann, Simon; Dohrmann, Reiner; Mansfeldt, Tim

    2018-06-01

    Vehicular emissions have become one of the main source of pollution of urban soils; this highlights the need for more detailed research on various traffic-related emissions and related distribution patterns. Since the banning of asbestos in the European Union, its substitution with antimony (Sb) in brake linings has led to increased inputs of this toxic metalloid to environmental compartments. The objective of this study was to provide detailed information about the spatial distribution patterns of Sb and to assess its mobility and bioavailability. Roadside soils along an arterial road (approx. 9000 vehicles per day) in Cologne (Germany) were studied along five transects, at four soil depths and at seven sampling points set at varying distances from the road (n = 140). For all samples, comprehensive soil characterization was performed and inverse aqua regia-extractable trace metal content was determined being pseudo-total contents. Furthermore, for one transect, also total Sb and a chemical sequential extraction procedure was applied (n = 28). Pseudo-total Sb for all transects decreased significantly with soil depth and distance from the road, reflecting a distribution pattern similar to that of other trace metals associated with brake lining emissions. Conversely, metals associated with exhaust emissions showed a convex distribution. The geochemical fractionation of Sb revealed the following trends: i) non-specifically sorbed Sb was <5%; ii) specifically sorbed Sb was only detected within 1 m distance from the road and decreased with depth; iii) Sb associated with poorly-crystalline Fe oxides decreased with distance from the road; and iv) content of Sb bounded to well-crystalline Fe oxides, and Sb present in the residual fraction remained relatively constant at each depth. Consequently, roadside soils appear to inhibit brake lining-related Sb contamination, with significant but rather low ecotoxicological potential for input into surface and groundwater

  18. Purity and crystallinity of microwave synthesized antimony sulfide microrods

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Alonso, Claudia, E-mail: claudiamartinezalonso30@gmail.com [Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, 76010 (Mexico); Olivos-Peralta, Eliot U. [Instituto de Energías Renovables, Universidad NacionalAutónoma de México, Temixco, Morelos, 62580 (Mexico); Sotelo-Lerma, Mérida [Universidad de Sonora, Hermosillo, Sonora, 83000 (Mexico); Sato-Berrú, Roberto Y. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, MéxicoD.F., 04510 (Mexico); Mayén-Hernández, S.A. [Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, 76010 (Mexico); Hu, Hailin, E-mail: hzh@ier.unam.mx [Instituto de Energías Renovables, Universidad NacionalAutónoma de México, Temixco, Morelos, 62580 (Mexico)

    2017-01-15

    Antimony sulfide (Sb{sub 2}S{sub 3}) is a promising semiconductor material for solar cell applications. In this work, microrods of Sb{sub 2}S{sub 3} were synthesized by microwave heating with different sulfur sources, solvents, temperature, heating rate, power, and solution concentration. It was found that 90% of stoichiometric Sb{sub 2}S{sub 3} can be obtained with thiourea (TU) or thioacetamide (TA) as sulfur sources and that their optical band gap values were within the range of 1.59–1.60 eV. The most crystalline Sb{sub 2}S{sub 3} were obtained by using TU. The morphology of the Sb{sub 2}S{sub 3} with TU the individual rods were exhibited, whereas rods bundles appeared in TA-based products. The solvents were ethylene glycol (EG) and dimethylformamide (DMF). EG generates more heat than DMF during the microwave synthesis. As a result, the Sb{sub 2}S{sub 3} obtained with EG contained a larger percentage of oxygen and smaller crystal sizes compared to those from DMF. On the other hand, the length and diameter of Sb{sub 2}S{sub 3} microrods can be increased by applying higher heating power although the crystal size did not change at all. In summary, pure and highly crystalline Sb{sub 2}S{sub 3} microrods of 6–10 μm long and 330–850 nm in diameter can be obtained by the microwave method with a careful selection of chemical and thermodynamic parameters of the synthesis. - Highlights: • Purity up to 90% of crystalline Sb{sub 2}S{sub 3} nanorods can be obtained by microwave heating. • The combination of solvent and sulfide type affects crystallinity & purity of Sb2S3. • The high pressure generated in microwave heating helps to form Sb{sub 2}S{sub 3} nanorods.

  19. Purity and crystallinity of microwave synthesized antimony sulfide microrods

    International Nuclear Information System (INIS)

    Martínez-Alonso, Claudia; Olivos-Peralta, Eliot U.; Sotelo-Lerma, Mérida; Sato-Berrú, Roberto Y.; Mayén-Hernández, S.A.; Hu, Hailin

    2017-01-01

    Antimony sulfide (Sb_2S_3) is a promising semiconductor material for solar cell applications. In this work, microrods of Sb_2S_3 were synthesized by microwave heating with different sulfur sources, solvents, temperature, heating rate, power, and solution concentration. It was found that 90% of stoichiometric Sb_2S_3 can be obtained with thiourea (TU) or thioacetamide (TA) as sulfur sources and that their optical band gap values were within the range of 1.59–1.60 eV. The most crystalline Sb_2S_3 were obtained by using TU. The morphology of the Sb_2S_3 with TU the individual rods were exhibited, whereas rods bundles appeared in TA-based products. The solvents were ethylene glycol (EG) and dimethylformamide (DMF). EG generates more heat than DMF during the microwave synthesis. As a result, the Sb_2S_3 obtained with EG contained a larger percentage of oxygen and smaller crystal sizes compared to those from DMF. On the other hand, the length and diameter of Sb_2S_3 microrods can be increased by applying higher heating power although the crystal size did not change at all. In summary, pure and highly crystalline Sb_2S_3 microrods of 6–10 μm long and 330–850 nm in diameter can be obtained by the microwave method with a careful selection of chemical and thermodynamic parameters of the synthesis. - Highlights: • Purity up to 90% of crystalline Sb_2S_3 nanorods can be obtained by microwave heating. • The combination of solvent and sulfide type affects crystallinity & purity of Sb2S3. • The high pressure generated in microwave heating helps to form Sb_2S_3 nanorods.

  20. A probability of synthesis of the superheavy element Z = 124

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H.C. [Government College for Women, Department of Physics, Kolar, Karnataka (India); Sridhar, K.N. [Government First Grade College, Department of Physics, Kolar, Karnataka (India)

    2017-10-15

    We have studied the fusion cross section, evaporation residue cross section, compound nucleus formation probability (P{sub CN}) and survival probability (P{sub sur}) of different projectile target combinations to synthesize the superheavy element Z=124. Hence, we have identified the most probable projectile-target combination to synthesize the superheavy element Z = 124. To synthesize the superheavy element Z=124, the most probable projectile target combinations are Kr+Ra, Ni+Cm, Se+Th, Ge+U and Zn+Pu. We hope that our predictions may be a guide for the future experiments in the synthesis of superheavy nuclei Z = 124. (orig.)

  1. I-124 and its applications in nuclear medicine and biology

    International Nuclear Information System (INIS)

    Weinreich, R.; Wyer, L.; Crompton, N.; Nievergelt-Egido, M.C.; Guenther, I.; Roelcke, U.; Leenders, K.L.; Knust, E.J.; Blasberg, R.G.

    1998-01-01

    4.15-d 124 I decays simultaneously by positron emission (25.6 %) and by electron capture (74.4 %). This dualistic decay allows in principle to use 124 I in both diagnostic and therapeutic approaches. In some high-current measurements, 124 I was produced via the nuclear reaction 124 Te(p,n) 124 I using 12.6 MeV protons in yields 25% below those of the mainly used reaction 124 Te(d,2n) 124 I, but with a very much lower contamination by long-lived 125 I and 126 I. The minimum obtained value for the sum of all impurities was 0.14% of the 124 I activity, at 6 days after end of bombardment, using 99.8% enriched 124 TeO 2 as target material. This yield/purity ratio also permits the production of 124 I by low-energy ''baby'' cyclotrons which could considerably increase the general availability of this nuclide. [ 124 ]IUdR was synthesized by direct electrophilic labelling in good yield (45-65 %), high radiochemical purity (>95%) and high specific activity for functional PET imaging of brain tumours. One day after administration to patients and after completion of the ''washout'', the only remaining activity was that in tumour structures. The comparison with the tumour labelling index showed that PET with [ 124 ]IUdR introduces a novel imaging approach: tumour diagnostics by the measurement of cell proliferation. [ 124 ]IodoHoechst 33258 was synthesized by direct electrophilic labelling in yields of 70 % and in a radiochemical purity of 99 %. In cell culture experiments using HTB-40 (human adenocarcinoma line), it was shown to be taken up by the DNA as well as the unlabelled fluorescence dye H 33258. Furthermore, its radiobiological activity was equal to that of the 125 I-labelled H 33258, but markedly stronger than that of the 131 I-labelled derivative. This suggests a mechanism for Auger-electron induced radiobiological activity as a novel therapeutical approach. p-[ 124 ]Iodophenylalanine and [ 124 ]iodo-α-methyltyrosine are two other compounds labelled with 124 I that

  2. Determination of total antimony and inorganic antimony species by hydride generation in situ trapping flame atomic absorption spectrometry: a new way to (ultra)trace speciation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Henryk Matusiewicz; Magdalena Krawczyk

    2008-07-01

    The analytical performance of non-chromatographic coupled hydride generation, integrated atom trap (HG-IAT) atomizer flame absorption spectrometry (FAAS) systems were evaluated for the speciation analysis of antimony in environmental samples. Antimony, using formation of stibine (SbH{sub 3}) vapors were atomized in an air-acetylene flame-heated IAT. A new design of HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangements was investigated. For the estimation of Sb(III) and Sb(V) concentrations in samples, the difference between the analytical sensitivities of the absorbance signals obtained for antimony hydride without and with previous treatment of samples with L-cysteine can be used. The concentration of Sb(V) was calculated by the difference between total Sb and Sb(III). A dramatic improvement in detection limit was achieved compared with that obtained using either of the atom trapping techniques, presented above, separately. This novel approach decreases the detection limit down to low pg mL{sup -1} levels. The concentration detection limit, defined as 3 times the blank standard deviation was 0.2 ng mL{sup -1}. For a 120 s in situ pre-concentration time , sensitivity enhancement compared to flame AAS, was 550 fold for Sb, using hydride generation-atom trapping technique. The accuracy of the method was verified by the use of certified reference materials (NIST SRM 2704 Buffalo River Sediment, SRM 2710 Montana Soil, SRM 1633a Coal Fly Ash, SRM 1575 Pine Needles, SRM 1643e Trace Elements in Water) and by aqueous standard calibration technique. The measured Sb content, in reference materials, were in satisfactory agreement with the certified values. The hyphenated technique was applied for antimony determinations in soil, sediment, coal fly ash, sewage and river water.

  3. The effects of antimony doping on the surface structure of rutile TiO2(110)

    International Nuclear Information System (INIS)

    Bechstein, Ralf; Schuette, Jens; Kuehnle, Angelika; Kitta, Mitsunori; Onishi, Hiroshi

    2009-01-01

    Titanium dioxide represents a very important wide bandgap photocatalyst that is known to be sensitized to visible light by transition metal doping. Antimony doping has been demonstrated to provide photocatalytic activity when codoped with chromium at an optimum dopant ratio [Sb]/[Cr] of about 1.5. Here, the role of antimony doping on the surface structure of rutile TiO 2 (110) is studied using non-contact atomic force microscopy (NC-AFM) under ultra-high vacuum conditions. At first glance, the surface structure of antimony-doped TiO 2 (110) resembles the structure of pristine TiO 2 (110). However, in contrast to what is found in pristine TiO 2 (110), a dense layer of protruding features is observed upon antimony doping, which is tentatively ascribed to antimony-rich clusters. Moreover, homogeneously distributed holes are found on the surface, which differ in depth and shape depending on the preparation conditions. Holes with depths ranging from a few up to more than a hundred monatomic steps are observed. These holes are explained by surface segregation of antimony during annealing, as the ionic radius of Sb 3+ is considerably larger than the ionic radius of Ti 4+ . Our finding provides an indication of why an antimony concentration larger than the optimum ratio results in decreased photocatalytic activity. Moreover, controlling annealing temperature seems to constitute a promising strategy for creating nanosized holes on TiO 2 surfaces.

  4. Influence of cooling rate and antimony addition content on graphite morphology and mechanical properties of a ductile iron

    Directory of Open Access Journals (Sweden)

    Liu Zhe

    2012-05-01

    Full Text Available Cooling rate and inoculation practice can greatly affect the graphite morphology of ductile irons. In the present research, the effects of the cooling rate and antimony addition on the graphite morphology and mechanical properties of ductile irons have been studied. Three ductile iron castings were prepared through solidification under cooling conditions S (slow, M (medium and F (fast. The cooling rates around the equilibrium eutectic temperature (1,150 ℃ for these cooling conditions (S, M and F were set at 0.21 ℃·min-1, 0.32 ℃·min-1 and 0.37 ℃·min-1, respectively. In addition, four ductile iron castings were prepared by adding 0.01%, 0.02%, 0.03% and 0.04% (by weight antimony, respectively under the slow cooling condition. The results show that the nodularity index, tensile strength and hardness of the ductile iron castings without antimony addition are all improved with the increase of cooling rate, while the ductile iron casting solidified under the medium cooling rate possesses the largest number of graphite nodules. Furthermore, for the four antimony containing castings, the graphite morphology and tensile strength are also improved by the antimony additions, and the effect of antimony addition is intensified when the addition increases from 0.01% to 0.03%. Moreover, the rare earth elements (REE/antimony ratio of 2 appears to be the most effective for fine nodular graphite formation in ductile iron.

  5. Treatment of visceral leishmaniasis: model-based analyses on the spread of antimony-resistant L. donovani in Bihar, India.

    Directory of Open Access Journals (Sweden)

    Anette Stauch

    Full Text Available BACKGROUND: Pentavalent antimonials have been the mainstay of antileishmanial therapy for decades, but increasing failure rates under antimonial treatment have challenged further use of these drugs in the Indian subcontinent. Experimental evidence has suggested that parasites which are resistant against antimonials have superior survival skills than sensitive ones even in the absence of antimonial treatment. METHODS AND FINDINGS: We use simulation studies based on a mathematical L. donovani transmission model to identify parameters which can explain why treatment failure rates under antimonial treatment increased up to 65% in Bihar between 1980 and 1997. Model analyses suggest that resistance to treatment alone cannot explain the observed treatment failure rates. We explore two hypotheses referring to an increased fitness of antimony-resistant parasites: the additional fitness is (i disease-related, by causing more clinical cases (higher pathogenicity or more severe disease (higher virulence, or (ii is transmission-related, by increasing the transmissibility from sand flies to humans or vice versa. CONCLUSIONS: Both hypotheses can potentially explain the Bihar observations. However, increased transmissibility as an explanation appears more plausible because it can occur in the background of asymptomatically transmitted infection whereas disease-related factors would most probably be observable. Irrespective of the cause of fitness, parasites with a higher fitness will finally replace sensitive parasites, even if antimonials are replaced by another drug.

  6. A facile and fast route to prepare antimony (Sb) nanostructures without additives

    KAUST Repository

    Shah, M.A.

    2011-01-01

    is based on a reaction of antimony powder and pure water at ∼210 °C without using any harmful additives and amines. The XRD pattern confirmed the composition and crystallinity of the grown nanostructures. The reported method besides being organics free

  7. Anion sensing with a Lewis acidic BODIPY-antimony(v) derivative.

    Science.gov (United States)

    Christianson, Anna M; Gabbaï, François P

    2017-02-21

    We describe the synthesis of a BODIPY dye substituted with a Lewis acidic antimony(v) moiety. This compound, which has been fully characterized, shows a high affinity for small anions including fluoride and cyanide, the complexation of which elicits a fluorescence turn-on response.

  8. Chemical consequences of the neutron irradiation of ionic antimony oxides and Fe Sb2O4

    Energy Technology Data Exchange (ETDEWEB)

    Facetti, J F [Asuncion Nacional Univ. (Paraguay). Inst. de Ciencias

    1970-01-01

    The chemical consequences fo the neutron irradiation of ionic antimony oxides and Fe Sb2O4 are studied. The nature of the Sb-O2 bond effects the yield of SbV the higher the yield the more covalent the bond. In addition, the Fe Sb2O4 obeys the Maddock's rule.

  9. On the segregation behavior of tin and antimony at grain boundaries of polycrystalline bcc iron

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Šandera, P.; Horníková, J.; Pokluda, J.; Godec, M.

    2016-01-01

    Roč. 363, Feb (2016), 140-144 ISSN 0169-4332 R&D Projects: GA ČR GAP108/12/0144 Institutional support: RVO:68378271 Keywords : grain boundary segregation * tin * antimony * Fe based alloy * AES quantification Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.387, year: 2016

  10. Morphology and photoresponse of crystalline antimony film grown on mica by physical vapor deposition

    Directory of Open Access Journals (Sweden)

    Shafa Muhammad

    2016-09-01

    Full Text Available Antimony is a promising material for the fabrication of photodetectors. This study deals with the growth of a photosensitive thin film by the physical vapor deposition (PVD of antimony onto mica surface in a furnace tube. The geometry of the grown structures was studied via scanning electron microscopy (SEM, X-ray diffraction (XRD, energy-dispersive X-ray spectroscopy (EDX and elemental diffraction analysis. XRD peaks of the antimony film grown on mica mostly matched with JCPDF Card. The formation of rhombohedral crystal structures in the film was further confirmed by SEM micrographs and chemical composition analysis. The Hall measurements revealed good electrical conductivity of the film with bulk carrier concentration of the order of 1022 Ω·cm-3 and mobility of 9.034 cm2/Vs. The grown film was successfully tested for radiation detection. The photoresponse of the film was evaluated using its current-voltage characteristics. These investigations revealed that the photosensitivity of the antimony film was 20 times higher than that of crystalline germanium.

  11. Transparent Conducting Films of Antimony-Doped Tin Oxide with Uniform Mesostructure Assembled from Preformed Nanocrystals

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rasp, M.; Rathouský, Jiří; Schütz, B.; Niederberger, M.; Fattakhova-Rohlfing, D.

    2010-01-01

    Roč. 6, č. 5 (2010), s. 633-637 ISSN 1613-6810 R&D Projects: GA ČR GA104/08/0435 Institutional research plan: CEZ:AV0Z40400503 Keywords : antimony -doped tin oxide * msoporous materials * nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.333, year: 2010

  12. Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions

    Science.gov (United States)

    Limited mechanistic knowledge is available to understand how biochar interacts with trace elements that exist predominantly as oxoanions, such as antimony (Sb). Soybean stover biochars were produced at 300 degrees C (SBC300) and 700 degrees C (SBC700), and were characterized by BET, Boehm titration,...

  13. Reaction products and corrosion of molybdenum electrode in glass melt containing antimony oxides and sodium sulfate

    Czech Academy of Sciences Publication Activity Database

    Matěj, J.; Langrová, Anna

    2012-01-01

    Roč. 56, č. 3 (2012), s. 280-285 ISSN 0862-5468 Institutional support: RVO:67985831 Keywords : antimony oxides * corrosion * glass melt * Molybdenum electrode * sulfate Subject RIV: DD - Geochemistry Impact factor: 0.418, year: 2012 http://www.ceramics-silikaty.cz/2012/pdf/2012_03_280.pdf

  14. Sorption-desorption of antimony species onto calcined hydrotalcite: Surface structure and control of competitive anions.

    Science.gov (United States)

    Constantino, Leonel Vinicius; Quirino, Juliana Nunes; Abrão, Taufik; Parreira, Paulo Sérgio; Urbano, Alexandre; Santos, Maria Josefa

    2018-02-15

    Calcined hydrotalcite can be applied to remove anionic contaminants from aqueous systems such as antimony species due to its great anion exchange capacity and high surface area. Hence, this study evaluated antimonite and antimonate sorption-desorption processes onto calcined hydrotalcite in the presence of nitrate, sulfate and phosphate. Sorption and desorption experiments of antimonite and antimonate were carried out in batch equilibrium and the post-sorption solids were analyzed by X-ray fluorescence (EDXRF). Sorption data were better fitted by dual-mode Langmuir-Freundlich model (R 2 >0.99) and desorption data by Langmuir model. High maximum sorption capacities were found for the calcined hydrotalcite, ranging from 617 to 790meqkg -1 . The competing anions strongly affected the antimony sorption. EDXRF analysis and mathematical modelling showed that sulfate and phosphate presented higher effect on antimonite and antimonate sorption, respectively. High values for sorption efficiency (SE=99%) and sorption capacity were attributed to the sorbent small particles and the large surface area. Positive hysteresis indexes and low mobilization factors (MF>3%) suggest very low desorption capacity to antimony species from LDH. These calcined hydrotalcite characteristics are desirable for sorption of antimony species from aqueous solutions. Copyright © 2017. Published by Elsevier B.V.

  15. Field-based scanning tunneling microscope manipulation of antimony dimers on Si(001)

    NARCIS (Netherlands)

    Rogge, S.; Timmerman, R.H.; Scholte, P.M.L.O.; Geerligs, L.J.; Salemink, H.W.M.

    2001-01-01

    The manipulation of antimony dimers, Sb2, on the silicon (001) surface by means of a scanning tunneling microscope (STM) has been experimentally investigated. Directed hopping of the Sb2 dimers due the STM tip can dominate over the thermal motion at temperatures between 300 and 500 K. Statistics on

  16. Enhancing the antimony sorption properties of nano titania-chitosan beads using epichlorohydrin as the crosslinker.

    Science.gov (United States)

    Nishad, Padala Abdul; Bhaskarapillai, Anupkumar; Velmurugan, Sankaralingam

    2017-07-15

    Antimony is classified as a pollutant of priority importance by USEPA. We have earlier reported the synthesis of nano-titania impregnated epichlorohydrin crosslinked chitosan (TA-Cts-Epi) beads, in a format suitable for large scale applications with high sorption capacity for antimony. To understand the sorption mechanism, and to fine tune the bead composition, the effect of crosslinking density on the swelling and sorption properties of the beads was investigated in detail. Epichlorohydrin effected significant changes in physical and sorption properties of the beads. The antimony sorption capacity of the TA-Cts-Epi beads prepared by crosslinking 0.3g non-crosslinked titania-chitosan beads (TA-Cts-NCL) with 6.4mmol epichlorohydrin was 493μmol/g, while those crosslinked with 0.64mmol showed a capacity of 133μmol/g. Whereas, TA-Cts-NCL beads showed a capacity of 75μmol/g. The increase in uptake capacity with increase in crosslinking demonstrated the active involvement of the epichlorohydrin moieties in antimony binding leading to enhanced sorption. Apart from altering the stability, swelling behaviour and sorption kinetics of the beads, crosslinking significantly increased the uptake of the anionic species via electrostatic interactions. Epichlorohydrin crosslinked chitosan beads prepared without TiO 2 also showed similar behaviour. The results demonstrated the involvement of chitosan, TiO 2 and epichlorohydrin in sorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Mixing of phosphorus and antimony ions in silicon by recoil implantation

    International Nuclear Information System (INIS)

    Kwok, H.L.; Lam, Y.W.; Wong, S.P.; Poon, M.C.

    1986-01-01

    The effects of mixing phosphorus and antimony ions in silicon by recoil implantation were examined. The electrical properties after ion mixing were investigated, and the results were compared with those obtained using other techniques. Different degrees of activation were also studied, by investigating the annealing behaviour. (U.K.)

  18. Dismantling and chemical characterization of spent Peltier thermoelectric devices for antimony, bismuth and tellurium recovery.

    Science.gov (United States)

    Balva, Maxime; Legeai, Sophie; Garoux, Laetitia; Leclerc, Nathalie; Meux, Eric

    2017-04-01

    Major uses of thermoelectricity concern refrigeration purposes, using Peltier devices, mainly composed of antimony, bismuth and tellurium. Antimony was identified as a critical raw material by EU and resources of bismuth and tellurium are not inexhaustible, so it is necessary to imagine the recycling of thermoelectric devices. That for, a complete characterization is needed, which is the aim of this work. Peltier devices were manually dismantled in three parts: the thermoelectric legs, the alumina plates on which remain the electrical contacts and the silicone paste used to connect the plates. The characterization was performed using five Peltier devices. It includes mass balances of the components, X-ray diffraction analysis of the thermoelectric legs and elemental analysis of each part of the device. It appears that alumina represents 45% of a Peltier device in weight. The electrical contacts are mainly composed of copper and tin, and the thermoelectric legs of bismuth, tellurium and antimony. Thermoelectric legs appear to be Se-doped Bi 2 Te 3 and (Bi 0,5 Sb 1,5 )Te 3 for n type and p type semiconductors, respectively. This work shows that Peltier devices can be considered as a copper ore and that thermoelectric legs contain high amounts of bismuth, tellurium and antimony compared to their traditional resources.

  19. Determination of barium and antimony in gun shot residues by neutron activation analysis

    International Nuclear Information System (INIS)

    Charuchinda, A.

    1975-01-01

    The antimony contents on both hands of 7 persons before and after firing an automatic pistol were determined by instrumental neutron activation analysis. The gun shot residues were removed from hands by a 4% solution of cellulose acetate in acetone. The average content of antimony on both hands before firing obtained from 70 measurements (35 from each hand) was 0.040 ± 0.010 micro gram, whereas the average contents on the right and the left hands after 1 firing were 0.385 ± 0.036 and 0.144 ± 0.029 micro gram respectively. The ration of the antimony contents after 1 firing to the normal level (before firing) was 9.9 for the right and 3.6 for the left. No significant difference was observed between male and female, smoker and non-smoker. The antimony content after several firings was not much different from that of 1 firing and it reduced to the normal level within 2 days after firing. The barium contents before and after firing were studied from one person. Barium was precipitated as Ba SO 4 before counting. An average contents of 0.936 ± 0.551 micro gram for both hands before firing, 4.092 ± 2.687 micro gram for the right hand and 1.363 ± 0.879 micro gram for the left hand after 1 firing were found

  20. Differences in antimony and arsenic releases from lead smelter fly ash in soils

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Mihaljevič, M.; Šebek, O.; Valigurova, R.; Klementová, Mariana

    2012-01-01

    Roč. 72, Supp. 4 (2012), s. 15-22 ISSN 0009-2819 Institutional research plan: CEZ:AV0Z40320502 Keywords : Antimony * Arsenic * Lead smelting * Fly ash * Soil * Mobility Subject RIV: CA - Inorganic Chemistry Impact factor: 1.351, year: 2012

  1. ANTIMONY HALIDES AND HgX2 (X = Cl, Br AMINE ADDUCTS: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    NDONGO GUEYE

    2013-12-01

    Full Text Available Eight new SbF3, SbCl5 and HgX2 (X = Cl, Br amine adducts have been synthesized and their infrared study carried out. Discrete structures have been suggested on the basis of elemental analysis and infrared data, the coordination number of antimony varying from five to nine, while the environment around Hg is tetrahedral.

  2. Diel variation of arsenic, molybdenum and antimony in a stream draining natural As geochemical anomaly

    Czech Academy of Sciences Publication Activity Database

    Drahota, P.; Nováková, B.; Matoušek, Tomáš; Mihaljevič, M.; Rohovec, Jan; Filippi, Michal

    2013-01-01

    Roč. 31, APR (2013), s. 84-93 ISSN 0883-2927 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:68081715 ; RVO:67985831 Keywords : arsenic * molybdenum * antimony * trace elements * diel cycle Subject RIV: CB - Analytical Chemistry, Separation; DD - Geochemistry (GLU-S) Impact factor: 2.021, year: 2013

  3. Antimony production by carbothermic reduction of stibnite in the presence of lime

    Directory of Open Access Journals (Sweden)

    Padilla R.

    2014-01-01

    Full Text Available Experimental work on the carbothermic reduction of Sb2S3 in the presence of lime was carried out in the temperature range of 973 to 1123 K to produce antimony in an environmentally friendly manner. The results demonstrated the technical feasibility of producing antimony by this method without producing SO2 gas. Complete conversion of Sb2S3 was obtained at 1023 K in about 1000 seconds and at 1123 K in less than 250 seconds using stibnite-carbon-lime mixtures with molar ratios Sb2S3:CaO:C = 1:3:3. It was found that the reduction proceeds through the formation of an intermediate oxide SbO2, which is subsequently reduced by CO(g to yield antimony metal and CaS. The kinetics of the Sb2S3 reduction was analyzed by using the equation ln(1-X = -kt. The activation energy was 233 kJ mol-1 in the temperature range of 973 to 1123 K. This value would correspond to an antimony catalyzed carbon oxidation by CO2.

  4. Dehydrogenation and concurrent isomerization of n-butenes on mixed tin and antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, E.A.; Taylor, D.

    1978-01-01

    The dehydrogenation and concurrent isomerization of n-butenes on mixed tin and antimony oxide catalysts which had been outgassed at 698/sup 0/K were carried out in the presence of oxygen at 474/sup 0/K, and the initial approximately zero-order rates of 1,3-butadiene formation and rates of isomerization were used as a measure of catalytic activity to construct activity patterns as a function of catalyst composition. A comparison of the patterns with those for the isomerization of 3,3-dimethyl-1-butene and for the selective oxidation of propane on the same catalysts indicated that the dehydrogenation of 1-butene involves a m-allyl intermediate, but isomerization occurs through carbonium ion formation. For the cis- and trans-isomers, both reactions apparently occurred via a common allyl (but not m-allyl) intermediate. Dehydrogenation to butadiene decreased in the order 1-butene > cis-2-butene trans-2-butene and was maximum at 10% antimony for 1-butene and 21% antimony for 2-butene. Isomerization was always slower than dehydrogenation and showed two maEima, at 21 (or 27%) and at 75% antimony.

  5. Improvement of hydrogen storage kinetics in ball-milled magnesium doped with antimony

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír; Roupcová, Pavla

    2017-01-01

    Roč. 42, č. 9 (2017), s. 6144-6151 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Hydrogen * Hydrogen storage * Storage capacity * Magnesium alloys * Antimony Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 3.582, year: 2016

  6. Signature inversion in doubly odd 124La

    International Nuclear Information System (INIS)

    Chantler, H.J.; Paul, E.S.; Boston, A.J.; Choy, P.T.W.; Nolan, P.J.; Carpenter, M.P.; Davids, C.N.; Seweryniak, D.; Charity, R.; Devlin, M.; Sarantites, D.G.; Chiara, C.J.; Fossan, D.B.; Koike, T.; LaFosse, D.R.; Starosta, K.; Fletcher, A.M.; Smith, J.F.; Jenkins, D.G.; Kelsall, N.S.

    2002-01-01

    High-spin states have been studied in neutron-deficient 57 124 La 67 , populated through the 64 Zn( 64 Zn,3pn) reaction at 260 MeV. The Gammasphere γ-ray spectrometer has been used in conjunction with the Microball charged-particle detector, the Neutron Shell, and the Argonne Fragment Mass Analyzer, in order to select evaporation residues of interest. The known band structures have been extended and new bands found. Most of the bands are linked together, allowing more consistent spin and parity assignments. Comparison of band properties to cranking calculations has allowed configuration assignments to be made and includes the first identification of the g 9/2 proton-hole in an odd-odd lanthanum isotope. Two bands have been assigned a πh 11/2 xνh 11/2 structure; the yrast one exhibits a signature inversion in its level energies below I=18.5(ℎ/2π), while the excited one exhibits a signature inversion above I=18.5(ℎ/2π)

  7. Comparative study of the influence of antimony oxide additives (III) and nickel hydroxide (II) on electrochemical behavior of cadmium electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kadnikova, N.V.; Lvova, L.A.; Ryabskaya, I.A.

    1983-01-01

    Comparative study of the influence of additives indicated that with partial or complete replacement in the active mass of the cadmium electrode of nickel hydroxide (II) by antimony oxide (III), the electrochemical characteristics do not significantly change. During prolonged storage of charged cadmium electrodes the presence of nickel hydroxide (II) and intermetal compound (IMC) of cadmium with nickel is formed and the specific surface increases. In the case of adding antimony (III) formation of noticeable quantities of IMC of cadmium with antimony is not observed. The specific surface is reduced during storage.

  8. 9 CFR 124.40 - Request for hearing.

    Science.gov (United States)

    2010-01-01

    ... Diligence Hearing § 124.40 Request for hearing. (a) Any interested person may request, within 60 days beginning on the date of publication of a due diligence determination by APHIS in accordance with § 124.32, that APHIS conduct an informal hearing on the due diligence determination. (b) The request for a...

  9. 13 CFR 124.107 - What is potential for success?

    Science.gov (United States)

    2010-01-01

    ... eligibility is based have substantial business management experience; (ii) The applicant has demonstrated... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false What is potential for success? 124.107 Section 124.107 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION 8(a) BUSINESS...

  10. 13 CFR 124.520 - Mentor/protege program.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Mentor/protege program. 124.520... § 124.520 Mentor/protege program. (a) General. The mentor/protege program is designed to encourage approved mentors to provide various forms of assistance to eligible Participants. This assistance may...

  11. 9 CFR 124.10 - APHIS liaison with PTO.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false APHIS liaison with PTO. 124.10 Section 124.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF... period was the first permitted commercial marketing or use of the product under the provision of law...

  12. 9 CFR 124.20 - Patent term extension calculation.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Patent term extension calculation. 124... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PATENT TERM RESTORATION Regulatory Review Period § 124.20 Patent term extension calculation. (a) As provided in 37 CFR 1...

  13. 38 CFR 59.124 - Inspections, audits, and reports.

    Science.gov (United States)

    2010-07-01

    ... reports. (a) A State will allow VA inspectors and auditors to conduct inspections and audits as necessary... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Inspections, audits, and reports. 59.124 Section 59.124 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...

  14. 27 CFR 31.124 - Stockholder continuing business of corporation.

    Science.gov (United States)

    2010-04-01

    ... business of corporation. 31.124 Section 31.124 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO... business of corporation. A registration completed by a corporation as a dealer in liquors, or as a dealer... dissolution of the corporation. The stockholder(s) must register as a new business. (26 U.S.C. 5124) ...

  15. 12 CFR 225.124 - Foreign bank holding companies.

    Science.gov (United States)

    2010-01-01

    ... SYSTEM BANK HOLDING COMPANIES AND CHANGE IN BANK CONTROL (REGULATION Y) Regulations Financial Holding Companies Interpretations § 225.124 Foreign bank holding companies. (a) Effective December 1, 1971, the... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Foreign bank holding companies. 225.124 Section...

  16. Montmorillonite Supported Titanium/Antimony Catalyst:Preparation, Characterization and Immobilization

    Institute of Scientific and Technical Information of China (English)

    CHEN Guiyong; WANG Xiaoqun; ZHAO Chuan; DU Shanyi

    2014-01-01

    Montmorillonite supported titanium (Ti-MMT) or antimony catalyst (Sb-MMT) has been a hot area of research on preparing polyethylene terephthalate/montmorillonite (PET/MMT) nanocomposites by in situ polymerization. So removal of Ti or Sb from Ti-MMT or Sb-MMT is not expected during in situ polymerization. Studies on immobilization of Ti or Sb on Ti-MMT or Sb-MMT are seldom reported. In this work, a series of montmorillonite supported catalysts of titanium (Ti-MMT) or antimony (Sb-MMT) and co-intercalated montmorillonite of titanium and antimony (Ti/Sb-MMT) were prepared by (1) the reaction of sodium bentonite suspension with intercalating solution containing titanium tetrachloride and/or antimony chloride, and (2) drying or calcinating the products at different temperature (100, 150, 240, 350 and 450℃). The physicochemical properties of these MMT supported catalysts were studied by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma optical emission spectrometer (ICPOES), N2 adsorption/desorption isotherms, UV-visible diffuse reflectance spectroscopy(UV-vis) and transmission electron microscopy (TEM). The immobile character of Ti or Sb on MMT supported catalysts was evaluated by a two-step method in deionized water or ethylene glycol. Several results were obtained, i e, (a) during the preparation, with an increase in drying or calcinating temperature, the amount of titanium and/or antimony species remained on these MMT supported catalysts decreased, (b) the experiments about immobile character of Ti or/and Sb showed that with an increase in drying or calcinating temperature, the immobilization of Ti and/or Sb species remained on these MMT supported catalysts increased gradually, (c) Ti-MMT calcinated at 450℃had the biggest pore volume, which means Ti-MMT had the best adsorption application prospect.

  17. Extraction-radiochemical study of the ion-association complex of antimony (V) with tetrazolium violet and its thermal behavior

    International Nuclear Information System (INIS)

    Kostova, S.G.; Boyanov, B.S.

    1995-01-01

    The optimum conditions for extraction of ion-associated complexes (IAS) formed from the tetrazolium salt - tetrazolium violet and Sb(V) in hydrochloric acid medium have been studied. An isotope of antimony ( 125 Sb) was used for determination of the recovery factor (R%) and distribution ratio (D S b). The thermal behavior of the antimony complex with tetrazole violet was studied using differential thermal and thermogravimetric analysis. (author) 12 refs.; 3 figs

  18. Localization of the antimony impurity atoms in the PbTe lattice determined by the Moessbauer emission spectroscopy

    International Nuclear Information System (INIS)

    Masterov, V.F.; Nasredinov, F.S.; Nemov, S.A.; Seregin, P.P.; Troitskaya, N.N.; Bondarevskij, S.I.

    1997-01-01

    The 119 Sb ( 119m Sn) emission Moessbauer spectroscopy has shown that a localization of the antimony impurity atoms in the PbTe lattice is affected by the conductivity type of the host material, the antimony atoms occupied mainly anion and cation sites in n-type and p-type samples, respectively. The 119 Sn impurity in the anion sublattice of PbTe formed an decay. Its charge state was shown to be independent of the Fermi level position

  19. The determination of the thermodynamic activity of antimony in alpha-iron; Determination de l'activite thermodynamique de l'antimoine dans le fer alpha; Opredelenie termodinamicheskoj aktivnosti sur'my v al'fa-zheleze; Determinacion de la actividad termodinamica del antimonio en el hierro alfa

    Energy Technology Data Exchange (ETDEWEB)

    Tomilin, I A

    1962-01-15

    In this paper a method is suggested for determining the thermodynamic activity of antimony dissolved in alpha-iron, based on the study of antimony distribution between the two phases: liquid lead and solid iron. By this method, it was found that solid solutions of antimony in alpha-iron can be distinguished by positive divergences from the ideal state. Over a fairly wide range of concentrations, solutions of antimony in iron obey Henry's law. Special experiments on the distribution of antimony between lead and liquid iron showed that in the liquid state also the iron-antimony system is marked by positive divergences from the ideal state when small concentrations of antimony are present. The heat required for the solution of antimony in alpha-iron, and the excess partial molar entropy, were calculated from the activity temperature. The results were used for accurately locating the line showing the solubility limit of antimony in alpha-iron. Since alloys of antimony with iron were obtained by diffusion saturation and not by cooling from the liquid state, there was no liquefaction. Thus the lattice constant of the alloys and its relation to the alloy concentration could be reliably determined. The solubility limit established from X-ray data agrees with that obtained with Sb{sup 124}. (author) [French] Le memoire propose, pour determiner l'activite thermodynamique de l'antimoine dissous dans le fer alpha, une methode fondee sur l'etude de la distribution de l'antimoine entre deux phases: plomb liquide et fer solide. La methode a permis d'etablir que les solutions solides de l'antimoine dans le fer alpha se distinguent par des divergences positives par rapport a l'etat parfait. Dans une gamme assez etendue de valeurs de la concentration, les solutions de l'antimoine dans le fer sont regies par la loi de Henry. Des experiences sur la repartition de l'antimoine entre le plomb et le fer liquide ont montre qu'a l'etat liquide, le systeme ferantimoine est caracterise par

  20. Intrachromosomal amplification, locus deletion and point mutation in the aquaglyceroporin AQP1 gene in antimony resistant Leishmania (Viannia guyanensis.

    Directory of Open Access Journals (Sweden)

    Rubens Monte-Neto

    2015-02-01

    Full Text Available Antimony resistance complicates the treatment of infections caused by the parasite Leishmania.Using next generation sequencing, we sequenced the genome of four independent Leishmania guyanensis antimony-resistant (SbR mutants and found different chromosomal alterations including aneuploidy, intrachromosomal gene amplification and gene deletion. A segment covering 30 genes on chromosome 19 was amplified intrachromosomally in three of the four mutants. The gene coding for the multidrug resistance associated protein A involved in antimony resistance was also amplified in the four mutants, most likely through chromosomal translocation. All mutants also displayed a reduced accumulation of antimony mainly due to genomic alterations at the level of the subtelomeric region of chromosome 31 harboring the gene coding for the aquaglyceroporin 1 (LgAQP1. Resistance involved the loss of LgAQP1 through subtelomeric deletions in three mutants. Interestingly, the fourth mutant harbored a single G133D point mutation in LgAQP1 whose role in resistance was functionality confirmed through drug sensitivity and antimony accumulation assays. In contrast to the Leishmania subspecies that resort to extrachromosomal amplification, the Viannia strains studied here used intrachromosomal amplification and locus deletion.This is the first report of a naturally occurred point mutation in AQP1 in antimony resistant parasites.

  1. Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation.

    Science.gov (United States)

    Tostar, Sandra; Stenvall, Erik; Boldizar, Antal; Foreman, Mark R St J

    2013-06-01

    There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5M) dissolved in either dimethyl sulfoxide or water (at ca. 23°C and heated to ca. 105°C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.

    Science.gov (United States)

    Li, Yongchao; Hu, Xiaoxian; Ren, Bozhi

    2016-01-01

    The present article summarizes antimony mine distribution, antimony mine drainage generation and environmental impacts, and critically analyses the remediation approach with special emphasis on iron oxidizing bacteria and sulfate reducing bacteria. Most recent research focuses on readily available low-cost adsorbents, such as minerals, wastes, and biosorbents. It is found that iron oxides prepared by chemical methods present superior adsorption ability for Sb(III) and Sb(V). However, this process is more costly and iron oxide activity can be inhibited by plenty of sulfate in antimony mine drainage. In the presence of sulfate reducing bacteria, sulfate can be reduced to sulfide and form Sb(2)S(3) precipitates. However, dissolved oxygen and lack of nutrient source in antimony mine drainage inhibit sulfate reducing bacteria activity. Biogenetic iron oxide minerals from iron corrosion by iron-oxidizing bacteria may prove promising for antimony adsorption, while the micro-environment generated from iron corrosion by iron oxidizing bacteria may provide better growth conditions for symbiotic sulfate reducing bacteria. Finally, based on biogenetic iron oxide adsorption and sulfate reducing bacteria followed by precipitation, the paper suggests an alternative treatment for antimony mine drainage that deserves exploration.

  3. Review of the prevalence and causes of antimony compounds resistance in different societies review article

    Directory of Open Access Journals (Sweden)

    Fariba Jaffary

    2017-09-01

    Full Text Available Cutaneous leishmaniasis (CL is an endemic parasitic disease of major health impact in many parts of the world and is caused by several species of the protozoan parasite Leishmania. Antimonial compounds (i.e glucantime and pentostam are the first-line treatment for cutaneous leishmaniasis with emerging drug resistance as a problem. The control of Leishmania is further complicated by the emergence of drug-resistant parasites. In the clinical settings, resistance to SbV containing drugs is now well established and it was found to occur in South America, Europe, the Middle East and most notably in India. Clinical resistance to organic pentavalent antimonials, in the form of sodium stibogluconate (pentostam or N-methylglucamine antimoniate (glucantime, has long been recognized. However, it is unknown whether the clinical failure of chemotherapy is attributable to the development of drug resistance mechanisms in the parasite or to a variety of host factors that might also contribute to low drug response. Reported rate of drug-resistance to antimonial compounds in Iran varies from 9.4% to 94.2% and there is not any comprehensive study on this issue. Indeed, in the endemic region treatment with SbV fails in more cases; thus, in general patients infected with resistant parasites are unresponsive although exceptions have been reported. This article aims to review the mechanisms of drug resistance to these compounds. The main resistance factors include genetical, enzymatic, intracellular (such as apoptosis and cytoskeleton changes and resistance proteins. Also, mechanisms related to drug transport and intracellular activation are discussed. Various methods of drug resistance detection such as culture and molecular methods (i.e polymerase chain reaction are reviewed. Although the exact mechanism of action glucantime is not clear, it seems that protein and gene factors involved in cellular drug entry are the main causes of drug resistance. Cross

  4. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xuejun; Wu, Zhijun [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875 (China); He, Mengchang, E-mail: hemc@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875 (China); Meng, Xiaoguang [Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Jin, Xin [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875 (China); Qiu, Nan; Zhang, Jing [Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-07-15

    Graphical abstract: - Highlights: • Antimony adsorption depended on the Sb species, pH, and the type of iron oxides. • Sb(V) adsorption favored at acidic pH, Sb(III) adsorption optimized in wider pH. • Antimony was adsorbed onto the iron oxides by the inner-sphere surface complex. • Bidentate mononuclear ({sup 2}E) was the dominant form of Sb incorporated into HFO. • XAFS and XPS indicated Sb(III) adsorbed was slowly oxidized to Sb(V). - Abstract: Antimony is detected in soil and water with elevated concentration due to a variety of industrial applications and mining activities. Though antimony is classified as a pollutant of priority interest by the United States Environmental Protection Agency (USEPA) and Europe Union (EU), very little is known about its environmental behavior and adsorption mechanism. In this study, the adsorption behaviors and surface structure of antimony (III/V) on iron oxides were investigated using batch adsorption techniques, surface complexation modeling (SCM), X-ray photon spectroscopy (XPS) and extended X-ray absorption fine structure spectroscopy (EXAFS). The adsorption isotherms and edges indicated that the affinity of Sb(V) and Sb(III) toward the iron oxides depended on the Sb species, solution pH, and the characteristics of iron oxides. Sb(V) adsorption was favored at acidic pH and decreased dramatically with increasing pH, while Sb(III) adsorption was constant over a broad pH range. When pH is higher than 7, Sb(III) adsorption by goethite and hydrous ferric oxide (HFO) was greater than Sb(V). EXAFS analysis indicated that the majority of Sb(III), either adsorbed onto HFO or co-precipitated by FeCl{sub 3}, was oxidized into Sb(V) probably due to the involvement of O{sub 2} in the long duration of sample preservation. Only one Sb–Fe subshell was filtered in the EXAFS spectra of antimony adsorption onto HFO, with the coordination number of 1.0–1.9 attributed to bidentate mononuclear edge-sharing ({sup 2}E) between Sb and

  5. Molecular Preadaptation to Antimony Resistance in Leishmania donovani on the Indian Subcontinent.

    Science.gov (United States)

    Dumetz, F; Cuypers, B; Imamura, H; Zander, D; D'Haenens, E; Maes, I; Domagalska, M A; Clos, J; Dujardin, J-C; De Muylder, G

    2018-04-25

    Antimonials (Sb) were used for decades for chemotherapy of visceral leishmaniasis (VL). Now abandoned in the Indian subcontinent (ISC) because of Leishmania donovani resistance, this drug offers a unique model for understanding drug resistance dynamics. In a previous phylogenomic study, we found two distinct populations of L. donovani : the core group (CG) in the Gangetic plains and ISC1 in the Nepalese highlands. Sb resistance was only encountered within the CG, and a series of potential markers were identified. Here, we analyzed the development of resistance to trivalent antimonials (Sb III ) upon experimental selection in ISC1 and CG strains. We observed that (i) baseline Sb III susceptibility of parasites was higher in ISC1 than in the CG, (ii) time to Sb III resistance was higher for ISC1 parasites than for CG strains, and (iii) untargeted genomic and metabolomic analyses revealed molecular changes along the selection process: these were more numerous in ISC1 than in the CG. Altogether these observations led to the hypothesis that CG parasites are preadapted to Sb III resistance. This hypothesis was experimentally confirmed by showing that only wild-type CG strains could survive a direct exposure to the maximal concentration of Sb III The main driver of this preadaptation was shown to be MRPA , a gene involved in Sb III sequestration and amplified in an intrachromosomal amplicon in all CG strains characterized so far. This amplicon emerged around 1850 in the CG, well before the implementation of antimonials for VL chemotherapy, and we discuss here several hypotheses of selective pressure that could have accompanied its emergence. IMPORTANCE The "antibiotic resistance crisis" is a major challenge for scientists and medical professionals. This steady rise in drug-resistant pathogens also extends to parasitic diseases, with antimony being the first anti- Leishmania drug that fell in the Indian subcontinent (ISC). Leishmaniasis is a major but neglected infectious

  6. Experimental determination of the energy levels of the antimony atom (Sb II), ions of the antimony (Sb II, Sb III), mercury (Hg IV) and cesium (Cs X)

    International Nuclear Information System (INIS)

    Arcimowicz, B.

    1993-01-01

    The thesis concerns establishing the energy scheme of the electronic levels, obtained from the analysis of the investigated spectra of antimony atom and ions (Sb I, Sb II, Sb III) and higher ionized mercury (Hg IV) and cesium (Cs X) atoms. The experimental studies were performed with optical spectroscopy methods. The spectra of the elements under study obtained in the spectral range from visible (680 nm) to vacuum UV (40 nm) were analysed. The classification and spectroscopic designation of the experimentally established 169 energy levels were obtained on the basis of the performed calculations and the fine structure analysis. The following configurations were considered: 5s 2 5p 2 ns, 5s 2 5p 2 n'd, 5s5p 4 of the antimony atom, 5s 2 5pns, 5s 2 5pn'd, 5s5p 3 of the ion Sb II, 5s 2 ns, 5s 2 n'd, 5s5p 2 of the on Sb III, 5d 8 6p of the ion Hg IV 4d 9 5s and 4d 9 5p Cs X. A reclassification was performed and some changes were introduced to the existing energy level scheme of the antimony atom, with the use of the information obtained from the absorption spectrum taken in the VUV region by the ''flash pyrolysis'' technique. The measurements of the hyperfine splittings in 19 spectral lines belonging to the antimony atom and ions additionally confirmed the assumed classification of the levels involved in these lines. The energy level scheme, obtained for Sb III, was compared to the other ones in the isoelectronic sequence starting with In I. On the basis of the analysis of the Hg IV spectrum it was proved that ground configuration of the three times ionized mercury atom is 5d 9 not 5d 8 6s as assumed until now. The fine structure, established from the analysis of the spectra of the elements under study was examined in multiconfiguration approximation. As a result of the performed calculations the fine structure parameters and wavefunctions were determined for the levels whose energy values were experimentally established in the thesis. (author). 140 refs, 22 figs, 17

  7. A facile and fast route to prepare antimony (Sb) nanostructures without additives

    KAUST Repository

    Shah, M.A.

    2011-12-01

    Herein, we report a safe, low cost and reproducible approach for the synthesis of antimony (Sb) nanostructures with most of them having prism like morphology and having well defined faces in the range of ∼70210 nm. The organics free approach is based on a reaction of antimony powder and pure water at ∼210 °C without using any harmful additives and amines. The XRD pattern confirmed the composition and crystallinity of the grown nanostructures. The reported method besides being organics free is economical, fast and free of pollution, which will make it suitable for large scale production. Furthermore, it is well expected that such a technique could be extended to prepare many other important metal and metal oxide nanostructures. The prospects of the process are bright and promising. © 2012 Sharif University of Technology. Production and hosting by Elsevier B.V. All rights reserved.

  8. Deciphering lead and cadmium stripping peaks for porous antimony deposited electrodes

    Directory of Open Access Journals (Sweden)

    Taimoor Aqeel Ahmad

    2016-06-01

    Full Text Available Cadmium and lead are generally taken as model heavy metal ions in water to scale the detection limit of various electrode sensors, using electrochemical sensing techniques. These ions interact with the electrochemically deposited antimony electrodes depending on the diffusion limitations. The phenomenon acts differently for the in-situ and ex-situ deposition as well as for porous and non-porous electrodes. A method has been adopted in this study to discourage the stripping and deposition of the working ions (antimony to understand the principle of heavy metal ion detection. X-ray photoelectron spectroscopy (XPS technique was used to establish the interaction between the working and dissolved ions. In addition to the distinct peaks for each analyte, researchers also observed a shoulder peak. A possible reason for the presence of this peak was provided. Different electrochemical tests were performed to ascertain the theory on the basis of the experimental observations.

  9. Antimony Influence on Shape of Eutectic Silicium in Al-Si Based Alloys

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2017-12-01

    Full Text Available Liquid AI-Si alloys are usually given special treatments before they are cast to obtain finer or modified matrix and eutectic structures, leading to improved properties. For many years, sodium additions to hypoeutectic and eutectic AI-Si melts have been recognized as the most effective method of modifying the eutectic morphology, although most of the group IA or IIA elements have significant effects on the eutectic structure. Unfortunately, many of these approaches also have associated several founding difficulties, such as fading, forming dross in presence of certain alloying elements, reduced fluidity, etc. ln recent years, antimony additions to AI-Si castings have attracted considerable attention as an alternative method of refining the eutectic structure. Such additions eliminate many of the difficulties listed above and provide permanent (i.e. non-fading refining ability. In this paper, the authors summarize work on antimony treatment of Al-Si based alloys.

  10. Dielectric Losses and Charge Transfer in Antimony-Doped TlGaS2 Single Crystal

    Science.gov (United States)

    Asadov, S. M.; Mustafaeva, S. N.

    2018-03-01

    Effect of semimetallic antimony (0.5 mol % Sb) on the dielectric properties and ac-conductivity of TlGaS2-based single crystals grown by the Bridgman-Stockbarger method has been studied. The experimental results on the frequency dispersion of dielectric coefficients and the conductivity of TlGa0.995Sb0.005S2 single crystals allowed the revealing of the dielectric loss nature, the charge transfer mechanism, and the estimation of the parameters of the states localized in the energy gap. The antimony-doping of the TlGaS2 single crystal leads to an increase in the density of states near the Fermi level and a decrease in the average time and average distance of hopes.

  11. An additive approach to low temperature zero pressure sintering of bismuth antimony telluride thermoelectric materials

    Science.gov (United States)

    Catlin, Glenn C.; Tripathi, Rajesh; Nunes, Geoffrey; Lynch, Philip B.; Jones, Howard D.; Schmitt, Devin C.

    2017-03-01

    This paper presents an additive-based approach to the formulation of thermoelectric materials suitable for screen printing. Such printing processes are a likely route to such thermoelectric applications as micro-generators for wireless sensor networks and medical devices, but require the development of materials that can be sintered at ambient pressure and low temperatures. Using a rapid screening process, we identify the eutectic combination of antimony and tellurium as an additive for bismuth-antimony-telluride that enables good thermoelectric performance without a high pressure step. An optimized composite of 15 weight percent Sb7.5Te92.5 in Bi0.5Sb1.5Te3 is scaled up and formulated into a screen-printable paste. Samples fabricated from this paste achieve a thermoelectric figure of merit (ZT) of 0.74 using a maximum processing temperature of 748 K and a total thermal processing budget of 12 K-hours.

  12. Determination by neutron activation analysis of loss of arsenic, antimony, bromine and mercury during lyophilization

    International Nuclear Information System (INIS)

    Carlson, M.; Litman, R.

    1978-01-01

    Neutron activation analysis has been used to monitor the loss of arsenic, as dimethylarsinic acid, (CH 3 ) 2 AsOOH, or as sodium arsenate (Na 2 HAsO 4 .7H 2 O), antimony (as potassium antimony, tartrate, KSbC 4 O 7 .1/2H 2 O) and bromine (as bromide ion) during lyophilization of acidified and neutral aqueous synthetic and environmental samples. Losses of Sb and As ranged from zero to 60%, while losses of bromine were constant (at 91%) in acidic solutions. The variable losses of As and Sb were due solely to the presence of and partial decomposition of the (CH 3 ) 2 AsOOH. Electrochemical oxidation of Br - to Br 2 is responsible for the high losses of bromine. In addition losses of mercury (as methylmercuric chloride) were 1O0% in both acidic and neutral aqueous synthetic samples during lyophilization. (author)

  13. Evaluation of the efficiency of the processes of purification of antimony to semiconductor grade purity

    International Nuclear Information System (INIS)

    Walis, L.; Rowinska, L.; Panczyk, E.

    1992-01-01

    A complex of techniques for purification of antimony from arsenic has been examined with the aid of radiotracer 76 As. The investigated processes comprised vacuum distillation, zone melting and remelting of the metal under artificial slags. The purification efficiencies for the above processes were high and amounted to 94% (for 30% of the charge), 50% (for 50% of the charge) and 99.5% (for 60% of the charge), respectively. Attempts were made to determine the kinetics of the separation of arsenic from antimony by distillation. The application of the radioactive tracer made it possible to determine rapidly the distribution of impurities after each stage of the process within a wide concentration range (10 -2 -10 -7 g/g). (author). 7 refs, 4 figs, 6 tabs

  14. Reaction of Antimony-Uranium Composite Oxide in the Chlorination Treatment of Waste Catalyst - 13521

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Kayo [EcoTopia Science Institute (Japan); Hirabayashi, Daisuke; Enokida, Youichi [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan)

    2013-07-01

    The effect of oxygen gas concentration on the chlorination treatment of antimony-uranium composite oxide catalyst waste was investigated by adding different concentrations of oxygen at 0-6 vol% to its chlorination agent of 0.6 or 6 vol% hydrogen chloride gas at 1173 K. The addition of oxygen tended to prevent the chlorination of antimony in the oxide. When 6 vol% hydrogen chloride gas was used, the addition of oxygen up to 0.1 vol% could convert the uranium contained in the catalyst to U{sub 3}O{sub 8} without any significant decrease in the reaction rate compared to that of the treatment without oxygen. (authors)

  15. Studies on optical properties of antimony doped SnO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Gürakar, Sibel, E-mail: sgurakar@eng.ankara.edu.tr; Serin, Tülay, E-mail: serin@eng.ankara.edu.tr; Serin, Necmi, E-mail: nserin@eng.ankara.edu.tr

    2015-10-15

    Highlights: • Antimony doped tin oxide thin films were grown by spray method on glass substrates. • The antimony doping was varied from 0 to 4 at%. • The structural properties of the films were investigated by X-ray diffraction method. • A simple analysis according to Swanepoel's method was applied to derive the real and imaginary parts of the complex index of refraction plus film thickness. • The dispersion of refractive index was investigated in terms of the single-oscillator Wemple and DiDomenico model to determine the optical parameters. - Abstract: Antimony doped tin oxide thin films were grown by spray method on microscope glass substrates. The antimony doping was varied from 0 to 4 at%. The structural properties of the films were investigated by X-ray diffraction method. The optical transmittances of thin films were measured with UV-Vis-NIR spectrometer in the 300–2000 nm wavelength range. A simple analysis according to Swanepoel's method was applied to derive the real and imaginary parts of the complex index of refraction plus film thickness. The dispersion of refractive index was investigated in terms of the single-oscillator Wemple and DiDomenico model and the important oscillating parameters such as the dispersion energy E{sub d}, the oscillation energy E{sub o}, the high frequency dielectric constant ε{sub ∞} were determined. The analysis of the refractive index has been carried out to calculate the lattice dielectric constant ε{sub L} and the ratio of carrier concentration to the effective mass N/m*. The real and imaginary parts of the electronic dielectric constant and optical conductivity were analyzed. The optical band gap, E{sub g} values of the films were obtained from the spectral dependence of the absorption coefficient, using the Tauc relation.

  16. Electronic band structure and optical properties of antimony selenide under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Abhijit, B.K.; Jayaraman, Aditya; Molli, Muralikrishna, E-mail: muralikrishnamolli@sssihl.edu.in [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, 515 134 (India)

    2016-05-23

    In this work we present the optical properties of Antimony Selenide (Sb{sub 2}Se{sub 3}) under ambient conditions and under pressure of 9.2 GPa obtained using first principles calculations. We investigated the electronic band structure using the FP-LAPW method within the sphere of the density functional theory. Optical properties like refractive index, absorption coefficient and optical conductivity are calculated using the WIEN2k code.

  17. Preconcentration and Determination of Antimony in Drinking Water Bottled by Modified Nano-Alumina

    Directory of Open Access Journals (Sweden)

    M Mohammad Zakizade

    2016-01-01

    Full Text Available Abstract Introduction: Antimony trioxide (Sb2O3 has been utilized as a catalyst in polyethylene terephtalate (PET production, and the studies conducted on the bottled water has demonstrated that antimony can be leached from PET bottles into drinking water. Methods: In this study, a simple method was applied in order to determine the trace amount of antimony in bottled drinking water based on preconcentration /solid phase extraction. The nano alumina modified with Schiff base ligand was used in regard with Sb preconcentration. The experiments were performed in a continuous system and HCI was used as eluent of Sb ion. Several chemical and flow variables were optimized for a quantitative preconcentration and determination of Sb ion. The atomic absorption spectroscopy was used to determine Sb ion concentration. In order to study the keeping conditions on the leaching of Sb ion from PET plastic, drinking water bottles were kept in different conditions(room temperature, sunny light and -18˚C. Results: The calibration graph was linear in the range of 0.5 to 15.0 ppm Sb with detection limit of 0.055 ppm. The flow rate of sample was optimized in range of 1.0-9.0 mLmin-1 and Sb ion can be quantitatively eluted at 90 Vsample: Veluent retio. Conclusion: The study results revealed that the modified nano alumina is an effective sorbent in regard with absorbing Sb ion from water and HCI 1M can be used as an appropriate eluent. Maximum leaching of Sb ion is observed when the bottled drinking water was exposed to the sun light. Keywords: Antimony; Bottled drinking water; Modified alumina; Preconcentration

  18. Synthesis and vibrational spectrum of antimony phosphate, SbPO4.

    Science.gov (United States)

    Brockner, Wolfgang; Hoyer, Lars P

    2002-07-01

    SbPO4 was synthesized via a new route by reacting antimony metal with meta-phosphoric acid, (HPO3)n at high temperatures. The Raman and IR spectra of the title compound were recorded and the vibrational modes assigned on the basis of a factor group analysis. The internal vibrations are derived from tetrahedral PO4 units (approaching Sb[PO4]) by the correlation method, although the structure is polymeric and not ionic.

  19. Chronic Arsenic Toxicity: Statistical Study of the Relationships Between Urinary Arsenic, Selenium and Antimony

    OpenAIRE

    Analía Boemo, BS; Irene María Lomniczi, PhD; Elsa Mónica Farfán Torres, PhD

    2012-01-01

    Background. The groundwater of Argentina’s Chaco plain presents arsenic levels above those suitable for human consumption. Studies suggest skin disorders among local populations caused by arsenic intake. The relationship between urinary arsenic and arsenic in drinking water is well known, but urinary arsenic alone is not enough for risk assessment due to modulating factors such as the intake of selenium and antimony. Objectives. Determining the relationship between urinary arsenic, seleniu...

  20. Neutron activation analysis of antimony in chromatin and nucleoids of HeLa cells

    International Nuclear Information System (INIS)

    Ashry, H.A.; Topaloglou, A.; Altmann, H.

    1988-02-01

    Antimony seems to be cancerogenic in men. In the present investigations we tried to find out if Sb +++ are also bound to the cell nucleus. HeLa cells were incubated with SbCl 3 and after a 18 h incubation time cells were lysed and crude chromatin isolated. In this preparation Sb was determined by neutron activation analysis. From the same cell culture nucleoids were prepared by ultracentrifugation and also Sb detected in these structures. 12 refs., 2 tabs. (Author)

  1. The Potential for the Treatment of Antimony-Containing Wastewater by Iron-Based Adsorbents

    Directory of Open Access Journals (Sweden)

    Ren-Jian Deng

    2017-10-01

    Full Text Available Antimony (Sb and its compounds are considered as global priority pollutants. Elevated concentrations of antimony in natural and industrial process wastewater are of global concern, particularly given interest in the potential toxicity and harm to the environment from aquatic exposure. Iron-based materials for treatment by adsorption are widely regarded to have potential merit for the removal of trace contaminants from water and especially in the search for efficient and low-cost techniques. In this paper, we review the application of iron-based materials in the sorption treatment of antimony contaminated water. The interaction of Sb is discussed in relation to adsorption performance, influencing factors, mechanism, modelling of adsorption (isotherm, kinetic and thermodynamic models, advantages, drawbacks and the recent achievements in the field. Although iron-based adsorbents show promise, the following three aspects are in need of further study. Firstly, a select number of iron based binary metal oxide adsorbents should be further explored as they show superior performance compared to other systems. Secondly, the possibility of redox reactions and conversion between Sb(III and Sb(V during the adsorption process is unclear and requires further investigation. Thirdly, in order to achieve optimized control of preferential adsorption sites and functional groups, the mechanism of antimony removal has to be qualitatively and quantitatively resolved by combining the advantages of advanced characterization techniques such as Fourier transform infrared spectroscopy(FTIR, X-ray photoelectron spectroscopy (XPS, Atomic force microscope(AFM, X-ray absorption near edge structure(XANES, and other spectroscopic methods. We provide details on the achievements and limitations of each of these stages and point to the need for further research.

  2. Mannosylated thiolated polyethylenimine nanoparticles for the enhanced efficacy of antimonial drug against Leishmaniasis.

    Science.gov (United States)

    Sarwar, Hafiz S; Ashraf, Sehreen; Akhtar, Sohail; Sohail, Muhammad F; Hussain, Syed Z; Rafay, Muhammad; Yasinzai, Masoom; Hussain, Irshad; Shahnaz, Gul

    2018-01-01

    Our aim was to inhibit trypanothione reductase (TR) and P-gp efflux pump of Leishmania by the use of thiolated polymers. Thus, increasing the intracellular accumulation and therapeutic effectiveness of antimonial compounds. Mannosylated thiolated chitosan and mannosylated thiolated chitosan-polyethyleneimine graft were synthesized and characterized. Meglumine antimoniate-loaded nanoparticles were prepared and evaluated for TR and P-gp efflux pump inhibition, biocompatibility, macrophage uptake and antileishmanial potential. Thiomers inhibited TR with Ki 2.021. The macrophage uptake was 33.7- and 18.9-fold higher with mannosylated thiolated chitosan-polyethyleneimine graft and mannosylated thiolated chitosan nanoparticles, respectively, as compared with the glucantime. Moreover, the in vitro antileishmanial activity showed 14.41- and 7.4-fold improved IC 50 for M-TCS-g-PEI and M-TCS, respectively as compared with glucantime. These results encouraged the concept that TR and P-gp inhibition by the use of thiomers improves the therapeutic efficacy of antimonial drugs.

  3. Antimony in the Contaminated Site of El Triunfo, Baja California Sur, Mexico

    Directory of Open Access Journals (Sweden)

    Marmolejo-Rodríguez A. J.

    2013-04-01

    Full Text Available Antimony has properties similar to arsenic with some of its compounds toxic to humans. Therefore it is necessary to control the wastes accumulated by anthropogenic activities, such as mining, where it is in tailings to be released to the environment. According to the Environment Protection Agency, the maximum value in sediments is 11.2 mg Sb kg–1 and the Earth’s crust average is 0.2 mg Sb kg–1. In this semiarid area, the drainage basin El Carrizal is impacted with wastes of an abandoned gold mine at the Mining District El Triunfo (MD – ET which have tailings with 17,600 mg kg–1 of antimony. In the main dry river (arroyo, the Sb content is between 0.6 and 122 mg kg–1. This element is transported from the source throughout the fluvial basin to discharge into the Pacific Ocean. In the arroyo mouth we collected one sedimentary core and the sediment from dunes (28.6 – 45.7 and 6.43 – 7.74 mg Sb kg–1. This research concluded the antimony is enriched in this semiarid system, with Normalized Enrichment Factors severely enriched mainly in arroyo sediments close to the MD-ET

  4. A NOVEL METHOD OF THE HYDRIDE SEPARATION FOR THE DETERMINATION OF ARSENIC AND ANTIMONY BY AAS

    Directory of Open Access Journals (Sweden)

    Ganden Supriyanto

    2010-06-01

    Full Text Available A novel method is proposed for the hydride separation when determinining of arsenic and antimony by AAS. A chromatomembrane cell was used as preconcentration-, extraction- and separation-manifold instead of the U-tube phase separator, which is normally fitted in continuous flow vapour systems generating conventionaly the hydrides. The absorbances of the hydrides produced were measured by an atomic absorption spectrophotometer at 193.7 nm and 217.6 nm. Under optimized analytical conditions, the calibration plot for arsenic was linear from 50 to 500 ng.mL-1 (r2 = 0.9982. The precision for three subsequent measurements of 500 ng.mL-1 arsenic gave rise to a relative standard deviation of 0.4%. The detection limit was 15 ng.mL-1, which is much lower compared with that of the conventional hydride system (2000 ng.mL-1. A similar result was observed in case of antimony: the detection limit was 8 ng.mL-1 when the proposed method was applied. Consequently, the sensitivity of the novel method surpasses systems with conventional hydride generation, i.e. the precision and the acuracy increase whereas the standard deviation and the detection limit decrease. The proposed method was applied in pharmacheutial analysis and the certified As-content of a commercial product was very sufficiently confirmed.   Keywords: Chromatomembrane Cell, Hydride separation, Arsenic detection, Antimony detection, AAS

  5. Sequestration of Antimony on Calcite Observed by Time-Resolved Nanoscale Imaging.

    Science.gov (United States)

    Renard, François; Putnis, Christine V; Montes-Hernandez, German; King, Helen E; Breedveld, Gijs D; Okkenhaug, Gudny

    2018-01-02

    Antimony, which has damaging effects on the human body and the ecosystem, can be released into soils, ground-, and surface waters either from ore minerals that weather in near surface environments, or due to anthropogenic releases from waste rich in antimony, a component used in batteries, electronics, ammunitions, plastics, and many other industrial applications. Here, we show that dissolved Sb can interact with calcite, a widespread carbonate mineral, through a coupled dissolution-precipitation mechanism. The process is imaged in situ, at room temperature, at the nanometer scale by using an atomic force microscope equipped with a flow-through cell. Time-resolved imaging allowed following the coupled process of calcite dissolution, nucleation of precipitates at the calcite surface and growth of these precipitates. Sb(V) forms a precipitate, whereas Sb(III) needs to be oxidized to Sb(V) before being incorporated in the new phase. Scanning-electron microscopy and Raman spectroscopy allowed identification of the precipitates as two different calcium-antimony phases (Ca 2 Sb 2 O 7 ). This coupled dissolution-precipitation process that occurs in a boundary layer at the calcite surface can sequester Sb as a solid phase on calcite, which has environmental implications as it may reduce the mobility of this hazardous compound in soils and groundwaters.

  6. Structural, magnetic and dielectric investigations in antimony doped nano-phased nickel-zinc ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, Ch.S. [Department of Physics, Regency Institute of Technology, Adivipolam Yanam 533464, Pondicherry (India); Sridhar, Ch.S.L.N. [Department of Physics, Vignana Bharathi Institute of Technology, Aushapur(v) Ghatkesar (M), Hyderabad 501301, Telangana (India); Govindraj, G. [Department of Physics, School of Physical, Chemical and Applied Sciences, Pondicherry University, R.V.Nagar, Kalapet, Pondicherry 605014 (India); Bangarraju, S. [Department of Physics, Andhra University, Visakhapatnam 530003, Andhrapradesh (India); Potukuchi, D.M., E-mail: potukuchidm@yahoo.com [Department of Physics, University College of Engineering, Jawaharlal Nehru Technological University:Kakinada, Kakinada 533003 (India)

    2015-02-15

    Nanocrystalline Ni–Zn–Sb ferrites synthesized by hydrothermal method are reported. Influence of Sb{sup 5+} ions on structural, magnetic and dielectric properties of ferrites is studied. Phase identification, lattice parameter and crystallite size studies are carried out using by X-ray diffraction (XRD). Addition of dopant resulted for decrease in lattice parameter. Crystallite size gets reduced from 62 nm to 38 nm with doping of Antimony. Crystallite size and porosity exhibit similar trends with doping. Morphological study is carried out by Field Emission Scanning Electron Microscopy (FESEM). Strong FTIR absorption bands at 400–600 cm{sup −1} confirm the formation of ferrite structure. Increase of porosity is attributed to the grain size. Doping with Antimony results for decrease in saturation magnetization and increase in coercivity. An initial increase of saturation magnetization for x=0.1 is attributed to the unusually high density. Reversed trend of coercivity with crystallite size are observed. Higher value of dielectric constant ε′(ω) is attributed to the formation of excess of Fe{sup 2+} ions caused by aliovalent doping of Sb{sup 5+} ions. Variation of dielectric constant infers hopping type of conductivity mechanism. The dielectric loss factor tanδ attains lower values of ∼10{sup −2}. High ac resistivity ρ(ω) of 10{sup 8} Ω cm is witnessed for antimony doped ferrites. Higher saturation magnetization and enhanced dielectric response directs for a possible utility as microwave oscillators and switches.

  7. pH-regulated antimony oxychloride nanoparticle formation on titanium oxide nanostructures: a photocatalytically active heterojunction

    KAUST Repository

    Buchholcz, Balázs

    2017-02-06

    Improving the catalytic activity of heterogeneous photocatalysts has become a hot topic recently. To this end, considerable progress has been made in the efficient separation of photogenerated charge carriers by e.g. the realization of heterojunction photocatalysts. V-VI-VII compound semiconductors, namely, bismuth oxyhalides, are popular photocatalysts. However, results on antimony oxyhalides [SbOX (X = Br, Cl, I)], the very promising alternatives to the well-known BiOX photomodifiers, are scarce. Here, we report the successful decoration of titanium oxide nanostructures with 8-11 nm diameter SbOX nanoparticles for the first time ever. The product size and stoichiometry could be controlled by the pH of the reactant mixture, while subsequent calcination could transform the structure of the titanate nanotube (TiONT) support and the prepared antimony oxychloride particles. In contrast to the ease of composite formation in the SbOX/TiONT case, anatase TiO could not facilitate the formation of antimony oxychloride nanoparticles on its surface. The titanate nanotube-based composites showed activity in a generally accepted quasi-standard photocatalytic test reaction (methyl orange dye decolorization). We found that the SbOCl/TiONT synthesized at pH = 1 is the most active sample in a broad temperature range.

  8. Polycrystalline thin films of antimony selenide via chemical bath deposition and post deposition treatments

    International Nuclear Information System (INIS)

    Rodriguez-Lazcano, Y.; Pena, Yolanda; Nair, M.T.S.; Nair, P.K.

    2005-01-01

    We report a method for obtaining thin films of polycrystalline antimony selenide via chemical bath deposition followed by heating the thin films at 573 K in selenium vapor. The thin films deposited from chemical baths containing one or more soluble complexes of antimony, and selenosulfate initially did not show X-ray diffraction (XRD) patterns corresponding to crystalline antimony selenide. Composition of the films, studied by energy dispersive X-ray analyses indicated selenium deficiency. Heating these films in presence of selenium vapor at 573 K under nitrogen (2000 mTorr) resulted in an enrichment of Se in the films. XRD peaks of such films matched Sb 2 Se 3 . Evaluation of band gap from optical spectra of such films shows absorption due to indirect transition occurring in the range of 1-1.2 eV. The films are photosensitive, with dark conductivity of about 2 x 10 -8 (Ω cm) -1 and photoconductivity, about 10 -6 (Ω cm) -1 under tungsten halogen lamp illumination with intensity of 700 W m -2 . An estimate for the mobility life time product for the film is 4 x 10 -9 cm 2 V -1

  9. Antimony sulfide thin films prepared by laser assisted chemical bath deposition

    International Nuclear Information System (INIS)

    Shaji, S.; Garcia, L.V.; Loredo, S.L.; Krishnan, B.

    2017-01-01

    Highlights: • Antimony sulfide thin films were prepared by normal CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • These films were photoconductive. - Abstract: Antimony sulfide (Sb_2S_3) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb_2S_3 thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV–vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb_2S_3 thin films for optoelectronic applications.

  10. Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings

    Science.gov (United States)

    Peng, Shu; Lu, Jintang; Che, Chunshan; Kong, Gang; Xu, Qiaoyu

    2010-06-01

    Spangles produced by batch hot-dip galvanizing process have a rougher surface and a greater surface segregation of alloying element compared with those in continuous hot-dip galvanizing line (CGL), owing to the cooling rate of the former is much smaller than that of the later. Therefore, typical spangles on a batch hot-dipped Zn-0.05Al-0.2Sb alloy coating were investigated. The chemical, morphological characterization and identification of the phases on the spangles were examined by scanning electron microscopy (SEM), backscattered electron imaging (BSE), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The results showed that the coating surface usually exhibited three kinds of spangles: shiny, feathery and dull spangle, of which extensively antimony surface segregation was detected. The nature of precipitate on the coating surface was identified as β-Sb 3Zn 4, The precipitated β-Sb 3Zn 4 particles distributed randomly on the shiny spangle surface, both β-Sb 3Zn 4 particles and dentritic segregation of antimony dispersed in the dendritic secondary arm spacings of the feathery spangle and on the whole dull spangle surface. The dentritic segregation of antimony and precipitation of Sb 3Zn 4 compound are discussed by a proposed model.

  11. Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings

    Energy Technology Data Exchange (ETDEWEB)

    Peng Shu, E-mail: shu.peng@mail.scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, No. 371 Wushan Road, Tianhe District, Guangzhou 510640 (China); Lu Jintang; Che Chunshan; Kong Gang; Xu Qiaoyu [School of Materials Science and Engineering, South China University of Technology, No. 371 Wushan Road, Tianhe District, Guangzhou 510640 (China)

    2010-06-01

    Spangles produced by batch hot-dip galvanizing process have a rougher surface and a greater surface segregation of alloying element compared with those in continuous hot-dip galvanizing line (CGL), owing to the cooling rate of the former is much smaller than that of the later. Therefore, typical spangles on a batch hot-dipped Zn-0.05Al-0.2Sb alloy coating were investigated. The chemical, morphological characterization and identification of the phases on the spangles were examined by scanning electron microscopy (SEM), backscattered electron imaging (BSE), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The results showed that the coating surface usually exhibited three kinds of spangles: shiny, feathery and dull spangle, of which extensively antimony surface segregation was detected. The nature of precipitate on the coating surface was identified as {beta}-Sb{sub 3}Zn{sub 4}, The precipitated {beta}-Sb{sub 3}Zn{sub 4} particles distributed randomly on the shiny spangle surface, both {beta}-Sb{sub 3}Zn{sub 4} particles and dentritic segregation of antimony dispersed in the dendritic secondary arm spacings of the feathery spangle and on the whole dull spangle surface. The dentritic segregation of antimony and precipitation of Sb{sub 3}Zn{sub 4} compound are discussed by a proposed model.

  12. Antimony sulfide thin films prepared by laser assisted chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); CIIDIT—Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico); Garcia, L.V. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); Loredo, S.L. [Centro de Investigación en Materiales Avanzados (CIMAV), Unidad Monterrey, PIIT, Apodaca, Nuevo León (Mexico); Krishnan, B. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66455 (Mexico); CIIDIT—Universidad Autónoma de Nuevo León, Apodaca, Nuevo León (Mexico); and others

    2017-01-30

    Highlights: • Antimony sulfide thin films were prepared by normal CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • These films were photoconductive. - Abstract: Antimony sulfide (Sb{sub 2}S{sub 3}) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb{sub 2}S{sub 3} thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV–vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb{sub 2}S{sub 3} thin films for optoelectronic applications.

  13. Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism.

    Science.gov (United States)

    Abin, Christopher A; Hollibaugh, James T

    2014-01-01

    Antimony (Sb) is a metalloid that has been exploited by humans since the beginning of modern civilization. The importance of Sb to such diverse industries as nanotechnology and health is underscored by the fact that it is currently the ninth-most mined metal worldwide. Although its toxicity mirrors that of its Group 15 neighbor arsenic, its environmental chemistry is very different, and, unlike arsenic, relatively little is known about the fate and transport of Sb, especially with regard to biologically mediated redox reactions. To further our understanding of the interactions between microorganisms and Sb, we have isolated a bacterium that is capable of using antimonate [Sb(V)] as a terminal electron acceptor for anaerobic respiration, resulting in the precipitation of antimonite [Sb(III)] as microcrystals of antimony trioxide. The bacterium, designated strain MLFW-2, is a sporulating member of a deeply branching lineage within the order Bacillales (phylum Firmicutes). This report provides the first unequivocal evidence that a bacterium is capable of conserving energy for growth and reproduction from the reduction of antimonate. Moreover, microbiological antimonate reduction may serve as a novel route for the production of antimony trioxide microcrystals of commercial significance to the nanotechnology industry.

  14. Effect of antimony oxide on magnesium vanadates for the selective oxidation of hydrogen sulfide to sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.T.; Chi, Z.H. [Department of Chemical Engineering, Tunghai University, ROC Taichung (Taiwan)

    2001-05-17

    The effect of antimony oxide addition to MgV{sub 2}O{sub 6} and Mg{sub 3}V{sub 2}O{sub 8} was studied in the selective oxidation of hydrogen sulfide to sulfur. Significant improvements in sulfur selectivity and yield were observed for the uncalcined mechanical mixtures of magnesium vanadates with {alpha}-Sb{sub 2}O{sub 4}. Calcination of the mechanical mixtures resulted in the much stronger synergy in catalytic activity and sulfur selectivity. For the uncalcined samples, XRD, TPR and XPS studies indicated that antimony reduction behaviors in the mechanical mixtures differed very much from those in {alpha}-Sb{sub 2}O{sub 4} alone, suggested that their selectivity improvements might be due to the interactions (probably oxygen transfer) between {alpha}-Sb{sub 2}O{sub 4} and magnesium vanadates. For the calcined samples, XRD results indicated that their better catalytic performances in H{sub 2}S oxidation were primarily attributed to the formation of VSbO{sub 4} compound from antimony oxide and magnesium vanadates.

  15. The effects of antimony doping on the surface structure of rutile TiO{sub 2}(110)

    Energy Technology Data Exchange (ETDEWEB)

    Bechstein, Ralf; Schuette, Jens; Kuehnle, Angelika [Fachbereich Physik, Universitaet Osnabrueck, Barbarastrasse 7, D-49076 Osnabrueck (Germany); Kitta, Mitsunori; Onishi, Hiroshi [Department of Chemistry, Kobe University, Rokko-dai, Nada-ku, Kobe 657-8501 (Japan)], E-mail: kuehnle@uos.de

    2009-07-01

    Titanium dioxide represents a very important wide bandgap photocatalyst that is known to be sensitized to visible light by transition metal doping. Antimony doping has been demonstrated to provide photocatalytic activity when codoped with chromium at an optimum dopant ratio [Sb]/[Cr] of about 1.5. Here, the role of antimony doping on the surface structure of rutile TiO{sub 2}(110) is studied using non-contact atomic force microscopy (NC-AFM) under ultra-high vacuum conditions. At first glance, the surface structure of antimony-doped TiO{sub 2}(110) resembles the structure of pristine TiO{sub 2}(110). However, in contrast to what is found in pristine TiO{sub 2}(110), a dense layer of protruding features is observed upon antimony doping, which is tentatively ascribed to antimony-rich clusters. Moreover, homogeneously distributed holes are found on the surface, which differ in depth and shape depending on the preparation conditions. Holes with depths ranging from a few up to more than a hundred monatomic steps are observed. These holes are explained by surface segregation of antimony during annealing, as the ionic radius of Sb{sup 3+} is considerably larger than the ionic radius of Ti{sup 4+}. Our finding provides an indication of why an antimony concentration larger than the optimum ratio results in decreased photocatalytic activity. Moreover, controlling annealing temperature seems to constitute a promising strategy for creating nanosized holes on TiO{sub 2} surfaces.

  16. Comparison of oral itraconazole and intramuscular meglumine antimoniate in the treatment of cutaneous leishmaniasis

    International Nuclear Information System (INIS)

    Saleem, K.; Rahman, A.

    2007-01-01

    To compare the efficacy and tolerability of oral itraconazole against intramuscular meglumine antimoniate in the treatment of Cutaneous Leishmaniasis (CL). Two hundred eligible and consenting patients of Cutaneous Leishmaniasis (CL) were divided in two groups with 100 patients in each. The number and location of the lesions were documented and clinical types of cutaneous leishmaniasis were noted. The diagnosis was confirmed by skin slit smear and histopathology of the lesional skin. Culture on Nicolle Novy MacNeal (NNN) medium and Leishmanin test was done in all patients. All the patients in both groups were subjected to complete blood picture, urine examination, serum urea and creatinine levels and ECG examination. One group was given itraconazole 100 mg twice daily orally for a duration of 6-8 weeks. The other group was given meglumine antimoniate 10 cc in the form of deep intramuscular injections for 15-30 days. The efficacy of the treatment was judged by clinical and parasitological response. Side effects of the agents were also noted during treatment. Out of 200 patients studied, 185 were males and 15 were females. The mean age of presentation was 30 + 6.6 years. Single lesion was seen in 132 (66%) subjects whereas 68 (34%) subjects had multiple lesions. Slit skin smears were positive in 50 (25%) of the patients. Skin biopsy yielded the presence of LT bodies in 150 (75%) subjects. The culture was positive in 102 (51%) cases. Leishmanin test was positive in 94% subjects. Seventy-five (75%) patients on itraconazole therapy showed complete clinical and parasitological cure in 4-8 weeks duration. A rise in ALT was seen in 12% subjects. Five (5%) subjects did not show any improvement till the end of therapy. Sixty-five (65%) subjects on meglumine antimoniate showed complete healing in 15-30 days. In 35 (35%) of the patients, the treatment had to be stopped due to intolerable side-effects. Four cases of lupoid leishmaniasis and 4 cases of sporotrichoid leishmaniasis

  17. Molecular epidemiology and in vitro evidence suggest that Leishmania braziliensis strain helps determine antimony response among American tegumenary leishmaniasis patients.

    Science.gov (United States)

    Silva, Silvana C; Guimarães, Luiz Henrique; Silva, Juliana A; Magalhães, Viviane; Medina, Lilian; Queiroz, Adriano; Machado, Paulo Roberto L; Schriefer, Albert

    2018-02-01

    Antimony is the first line drug for treating American tegumentary leishmaniasis (ATL) in Brazil. In this country, Leishmania braziliensis causes at least three distinct forms of disease: localized cutaneous (CL), mucosal (ML) and disseminated leishmaniasis (DL). All forms can be found in Corte de Pedra, Northeast Brazil. ML and DL respond poorly to antimony, in contrast to CL. The L. braziliensis population causing ATL in Corte de Pedra is genetically very diverse, with strains of the parasite associating with the clinical form of leishmaniasis. We tested the hypotheses that antimony refractoriness is associated with L. braziliensis genotypes, and that parasites from ML and DL present greater in vitro resistance to antimony than L. braziliensis from CL. Comparison of geographic coordinates of living sites between antimony responders and non-responders by Cusick and Edward́s test showed that refractoriness and responsiveness to the drug were similarly wide spread in the region (p>0.05). Parasites were then genotyped by sequencing a locus starting at position 425,451 on chromosome 28, which is polymorphic among L. braziliensis of Corte de Pedra. Haplotype CC- in CHR28/425,451 was associated with risk of treatment failure among CL patients (Fisheŕs exact test, p=0.03, odds ratio=4.65). This haplotype could not be found among parasites from ML or DL. Finally, sensitivity to antimony was evaluated exposing L. braziliensis promastigotes to increasing concentrations of meglumine antimoniate in vitro. Parasites from ML and DL were more resistant to antimony at doses of 2mg/100μL and beyond than those isolated from CL (Fisher's exact test, p=0.02 and p=0.004, respectively). The intrinsically lower susceptibility of L. brazliensis from ML and DL to antimony parallels what is observed for patients' responsiveness in the field. This finding reinforces that ML and DL patients would benefit from initiating treatment with drugs currently considered as second line, like

  18. Increased biliary excretion of glutathione is generated by the glutathione-dependent hepatobiliary transport of antimony and bismuth.

    Science.gov (United States)

    Gyurasics, A; Koszorús, L; Varga, F; Gregus, Z

    1992-10-06

    We have recently demonstrated that the hepatobiliary transport of arsenic is glutathione-dependent and is associated with a profound increase in biliary excretion of glutathione (GSH), hepatic GSH depletion and diminished GSH conjugation (Gyurasics A, Varga F and Gregus Z, Biochem Pharmacol 41: 937-944 and Gyurasics A, Varga F and Gregus Z, Biochem Pharmacol 42: 465-468, 1991). The present studies in rats aimed to determine whether antimony and bismuth, other metalloids in group Va of the periodic table, also possess similar properties. Antimony potassium tartrate (25-100 mumol/kg, i.v.) and bismuth ammonium citrate (50-200 mumol/kg, i.v.) increased up to 50- and 4-fold, respectively, the biliary excretion of non-protein thiols (NPSH). This resulted mainly from increased hepatobiliary transport of GSH as suggested by a close parallelism in the biliary excretion of NPSH and GSH after antimony or bismuth administration. Within 2 hr, rats excreted into bile 55 and 3% of the dose of antimony (50 mumol/kg, i.v.) and bismuth (150 mumol/kg, i.v.), respectively. The time courses of the biliary excretion of these metalloids and NPSH or GSH were strikingly similar suggesting co-ordinate hepatobiliary transport of the metalloids and GSH. However, at the peak of their excretion, each molecule of antimony or bismuth resulted in a co-transport of approximately three molecules of GSH. Diethyl maleate, indocyanine green and sulfobromophthalein (BSP), which decreased biliary excretion of GSH, significantly diminished excretion of antimony and bismuth into bile indicating that hepatobiliary transport of these metalloids is GSH-dependent. Administration of antimony, but not bismuth, decreased hepatic GSH level by 30% and reduced the GSH conjugation and biliary excretion of BSP. These studies demonstrate that the hepatobiliary transport of trivalent antimony and bismuth is GSH-dependent similarly to the hepatobiliary transport of trivalent arsenic. Proportionally to their biliary

  19. Antimony doped barium strontium ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yihan, E-mail: lyhyy@mail.ustc.edu.cn [School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, 221116 (China); Lu, Xiaoyong [China Anhui Key Laboratory of Low Temperature Co-fired Materials, Department of Chemistry, Huainan Normal University, Huainan, Anhui, 232001 (China); Niu, Jinan; Chen, Hui [School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, 221116 (China); Ding, Yanzhi [China Anhui Key Laboratory of Low Temperature Co-fired Materials, Department of Chemistry, Huainan Normal University, Huainan, Anhui, 232001 (China); Ou, Xuemei [School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, 221116 (China); Zhao, Ling [Department of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 (China)

    2016-05-05

    Antimony was doped to barium strontium ferrite to produce ferrite-based perovskites with a composition of Ba{sub 0.5}Sr{sub 0.5}Fe{sub 1−x}Sb{sub x}O{sub 3−δ} (x = 0.0, 0.05, 0.1) as novel cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The perovskite properties including oxygen nonstoichiometry (δ), mean valence of B-site, tolerance factors, thermal expansion coefficient (TEC) and electrical conductivity (σ) are explored as a function of antimony content. By defect chemistry analysis, the TECs decrease since the variable oxygen vacancy concentration is decreased by Sb doping, and σ decreases with x due to the reduced charge concentration of Fe{sup 4+} content. Consequently, the electrochemical performance was substantially improved and the interfacial polarization resistance was reduced from 0.213 to 0.120 Ωcm{sup 2} at 700 °C with Sb doping. The perovskite with x = 1.0 is suggested as the most promising composition as SOFC cathode material. - Highlights: • Antimony is doped to barium strontium ferrite to produce novel cathodes. • δ, TECs and σ are evaluated as a function of antimony content. • The electrochemical performance is substantially improved with antimony doping.

  20. Species-Specific Antimonial Sensitivity in Leishmania Is Driven by Post-Transcriptional Regulation of AQP1

    Science.gov (United States)

    Mandal, Goutam; Mandal, Srotoswati; Sharma, Mansi; Charret, Karen Santos; Papadopoulou, Barbara; Bhattacharjee, Hiranmoy; Mukhopadhyay, Rita

    2015-01-01

    Leishmania is a digenetic protozoan parasite causing leishmaniasis in humans. The different clinical forms of leishmaniasis are caused by more than twenty species of Leishmania that are transmitted by nearly thirty species of phlebotomine sand flies. Pentavalent antimonials (such as Pentostam or Glucantime) are the first line drugs for treating leishmaniasis. Recent studies suggest that pentavalent antimony (Sb(V)) acts as a pro-drug, which is converted to the more active trivalent form (Sb(III)). However, sensitivity to trivalent antimony varies among different Leishmania species. In general, Leishmania species causing cutaneous leishmaniasis (CL) are more sensitive to Sb(III) than the species responsible for visceral leishmaniasis (VL). Leishmania aquaglyceroporin (AQP1) facilitates the adventitious passage of antimonite down a concentration gradient. In this study, we show that Leishmania species causing CL accumulate more antimonite, and therefore exhibit higher sensitivity to antimonials, than the species responsible for VL. This species-specific differential sensitivity to antimonite is directly proportional to the expression levels of AQP1 mRNA. We show that the stability of AQP1 mRNA in different Leishmania species is regulated by their respective 3’-untranslated regions. The differential regulation of AQP1 mRNA explains the distinct antimonial sensitivity of each species. PMID:25714343

  1. Theoretical and experimental studies for selective removal of antimony from zircaloy using thiourea grafted polystyrene adsorbent. Contributed Paper MS-01

    International Nuclear Information System (INIS)

    Arora, Jyotsna S.; Gaikar, Vilas G.

    2014-01-01

    During the dissolution step in nuclear fuel reprocessing, hulls consisting of essentially zircaloy clad are produced as high active solid waste. For recovery and reuse of zircaloy from this solid waste, 58 Co and 125 Sb which are present as the activation products of cobalt and tin in zircaloy tubes need to be separated. The present work involves selective sorption of antimony on thiourea grafted polymeric adsorbent in the presence of cobalt and zirconium. The effect of pH for the optimum uptake of antimony ions was studied. Since the variation in pH influences the antimony species formed in the solution, density functional theoretical (DFT) studies were performed in order to understand the complexation of the metal species with the grafted adsorbent at the molecular level. The highest occupied molecular orbital (HOMO) of the adsorbent which is located on S atom of loaded thiourea interacts with lowest unoccupied molecular orbital (LUMO) of Sb(V). The grafted adsorbent exhibits higher interaction with antimony species as compared to cobalt and zirconium. The metal-S bond distances are in good agreement with the XRD values for similar systems. Including the effect of solvation model helps in validation of simulation results with experimental adsorption data suggesting the application of thiourea grafted adsorbent for antimony separation. (author)

  2. Influence of antimony on the elctrochemical behaviour and the structure of the lead dioxide active mass of lead/acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, D. (Central Lab. of Electrochemical Power Sources, Bulgarian Academy of Sciences, Sofia (Bulgaria)); Dakhouche, A. (Central Lab. of Electrochemical Power Sources, Bulgarian Academy of Sciences, Sofia (Bulgaria)); Rogachev, T. (Central Lab. of Electrochemical Power Sources, Bulgarian Academy of Sciences, Sofia (Bulgaria))

    1993-01-29

    The effect of antimony on the formation of the skeleton structure of tubular electrodes filled with lead dioxide active mass (PAM) is investigated. Antimony is added as ions to the solution, as Sb[sub 2]O[sub 3] or Sb[sub 2]O[sub 5] to PAM, or as an additive to the electrode spine alloy. The effect of antimony on the crystallinity of PAM particles and agglomerates is examined. It is established that antimony increases the capacity of tubular powder electrodes when added either to the alloy or as antimony oxide to the PAM. It accelerates the processes of formation of the PAM skeleton structure and decreases the crystallinity of PAM particles and agglomerates. These effects of antimony are explained based on the concept of a gel-crystal structure for the PAM. Antimony improves the electron conductivity of gel zones. Its effect depends on the type and valency of the antimony ions, and on the density of the PAM. (orig.)

  3. Recoil distance lifetime measurements in 122,124Xe

    Science.gov (United States)

    Govil, I. M.; Kumar, A.; Iyer, H.; Li, H.; Garg, U.; Ghugre, S. S.; Johnson, T.; Kaczarowski, R.; Kharraja, B.; Naguleswaran, S.; Walpe, J. C.

    1998-02-01

    Lifetimes of the lower-excited states in 122,124Xe are measured using the recoil-distance Doppler-shift technique. The reactions 110Pd(16O,4n)122Xe and 110Pd(18O,4n)124Xe at a beam energy of 66 MeV were used for this experiment. The lifetimes of the 2+, 4+, 6+, and 8+ states of the ground state band were extracted using the computer code LIFETIME including the corrections due to the side feeding and the nuclear deorientation effects. The lifetime of the 2+ state in 122Xe agrees with the recoil distance method (RDM) measurements but for the 124Xe it does not agree with the RDM measurements but agrees with the Coulomb-excitation experiment. The measured B(E2) values for both the nuclei are compared with the standard algebraic and the multishell models.

  4. Verification of the ASTM G-124 Purge Equation

    Science.gov (United States)

    Robbins, Katherine E.; Davis, Samuel Eddie

    2009-01-01

    ASTM G-124 seeks to evaluate combustion characteristics of metals in high-purity (greater than 99%) oxygen atmospheres. ASTM G-124 provides the following equation to determine the minimum number of purges required to reach this level of purity in a test chamber: n = -4/log10(Pa/Ph), where "n" is the total number of purge cycles required, Ph is the absolute pressure used for the purge on each cycle and Pa is the atmospheric pressure or the vent pressure. The origin of this equation is not known and has been the source of frequent questions as to its accuracy and reliability. This paper shows the derivation of the G-124 purge equation, and experimentally explores the equation to determine if it accurately predicts the number of cycles required.

  5. Leachability of antimony from energy ashes. Total contents, leachability and remedial suggestions; Lakning av antimon fraan energiaskor. Totalhalter, lakbarhet samt foerslag till aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Baeckstroem, Mattias [Oerebro Univ. (Sweden)

    2006-01-15

    In the current project total concentrations for antimony in 31 energy ashes have been compiled. The average concentration of antimony in boiler fly ash and grate boiler fly ash is 192 and 1,140 mg/kg, respectively. The corresponding antimony concentrations for boiler ashes and grate bottom ashes are 86,5 and 61,8 mg/kg, respectively. Multivariate calculations clearly pointed out waste as the major source for antimony in ashes. The difference between total antimony concentration in fly ash and bottom ash is greatest for grate boilers, in average 18 times higher in the fly ash. The difference for CFB/BFB-boilers is only slightly more than 2. However, based on amount, 75% of the total antimony inventory is recovered in the fly ashes for both CFB/BFB and grate boilers. Eleven (eight of which were bottom ashes) out of the 31 samples exceeded the guidelines for inert waste. It is clear that the higher ionic strength in the solutions from the fly ashes contribute to decrease the solubility for critical minerals retaining antimony. In addition, the fly ashes have considerably larger effective surface able to sorb trace elements. A clear and positive covariance was discovered between aluminium and antimony. Furthermore, it was noted that antimony showed no typical anionic behaviour despite the fact that it according to the geochemical calculations should be present as SbO{sub 3}{sup -}. At L/S 10, a maximum of 1% of the total antimony concentration is leached. This should be compared to chloride that had 94% of the total concentration leached at L/S 10. There was no correlation between the leached antimony concentrations and the total antimony concentrations. The sequential extractions also suggest a low leachability for antimony from the ashes. In average only 9,6% is released at pH 7, 7,3% at pH 5, 3,6% during reducing conditions and 3,2% during oxidising conditions. In total, only 24% of the total antimony concentrations is released during the four extraction steps. The

  6. I-124 production using nanomaterials and its biodistribution in animals

    International Nuclear Information System (INIS)

    Braghirolli, Ana Maria Silveira

    2014-01-01

    Iodine-124 is a positron emitter with physical half-life of 4.2 days. Its decay occurs by positron emission (23.3%) and electron capture (76.7%). Their physical and chemical characteristics make it an attractive isotope for medical applications. The development of new imaging techniques, improvements in Positron Emission Tomography (PET), the development of new detectors and computational methods of signal processing, open new perspectives for its application. The increasing use of PET technology in medical oncology, pharmacokinetics and drug metabolism, make the radiopharmaceuticals labeled with 124 I a tool of great interest and usefulness. The use of 124 I - labeled molecules stands out particularly due to the convenient half-life of 124 I. This feature enables diagnostic imaging in PET centers far away from the radionuclides producing center. Within this context, this work presents a method for the production and separation of 124 I. This method is innovative and pioneering in the country. It is based on the development and use of nanostructured targets of nat TeO 2 . These targets are irradiated in a charged particles accelerator, with variable energy, the IEN's CV-28 cyclotron. The irradiations are performed with 24 MeV, initial energy, proton beams. In the preparation of nanoparticulated targets the highlight was the simplicity of the method that uses the sol-gel technique for obtaining nanoparticles, TeCl 4 as precursor and water as solvent. The produced 124 I was separated from the target material by dry distillation and trapped in a NaOH solution (0.02 M), in an automated system. The thick target yield was 6.81 MBq/μAh, and the synthesis yield was 90%. The 124 I obtained was then used in preliminary biodistribution studies. These studies were performed on a micro PET, model Lab PET 4 of the CDTN, in Swiss type mice. The results of the application of Na 124 I showed high quality PET imaging of the thyroid, with the maximum uptake at 6 h after

  7. Synthesis, characterization and single crystal X-ray analysis of chlorobis(N,N-dimethyldithiocarbamato-S,S′antimony(III

    Directory of Open Access Journals (Sweden)

    H.P.S. Chauhan

    2015-07-01

    Full Text Available The title compound chlorobis(N,N-dimethyldithiocarbamato-S,S′antimony(III has been prepared in distilled acetonitrile and characterized by physicochemical [melting point and molecular weight determination, elemental analysis (C, H, N, S & Sb], spectral [FT–IR, far IR, NMR (1H & 13C] studies. The crystal and molecular structure was further confirmed using single crystal X-ray diffraction analysis which features a five-coordinate geometry for antimony(III within a ClS4 donor set. The distortion in the co-planarity of ClSbS3 evidences the stereochemical influence exerts by the lone pair of electrons on antimony(III. Two centrosymmetrically related molecule held together via C–H···Cl secondary interaction result in molecular aggregation of the compound.

  8. Selective liquid-liquid extraction of antimony(III from hydrochloric acid media by N-n-octylaniline in xylene

    Directory of Open Access Journals (Sweden)

    M. A. ANUSE

    2004-04-01

    Full Text Available N-n-Octylaniline in xylene was used for the extraction separation of antimony(III from hydrochloric acid media. Antimony(III was extracted quantitatively with 10 mL 4 % N-n-octylaniline in xylene. It was stripped from the organic phase with 0.5 M ammonia and estimated photometrically by the iodide method. The effect of metal ion, acid, reagent concentration and various foreign ions was investigated. The method affords binary and ternary separation of antimony(III from tellurium(IV, selenium(IV, lead(II, bismuth(III, tin(IV, germanium(IV, copper(II, gold(III, iron(III and zinc(II. The method is applicable for the analysis of synthetic mixtures, alloys and semiconductor thin films. It is fast, accurate and precise.

  9. Antimony Adsorption from Zarshouran Gold Mineral Processing Plant Wastewater by Nano Zero Valent Iron Coated on Bentonite

    Directory of Open Access Journals (Sweden)

    nader nosrati

    2015-03-01

    Full Text Available The effluent from Zarshouran gold mineral processing plant contains high quantities of arsenic, antimony, mercury, and bismuth. These metals and metalloids are soluble in water and very toxic when they enter the environment. Their solubility in water causes the polluted area to extend beyond their point of origin. In this article, different methods of antimony removal from water and wastewater were reviewed and the zero-valent iron nanoparticles coated on Bentonite were selected as an effective and low cost material for removing antimony from wastewater. For the purposes of this study, zero-valent iron nanoparticles of 40-100 nanometers in size were synthesized by dropwise addition of sodium borohydride solution to an Iron (III aqueous solution at  ambient temperature and mixed with nitrogen gas. To avoid particle agglomeration and to enhance the product’s environmentally safe application, the  nanoparticles were coated on Bentonite and characterized by SEM/EDAX and BET. The experiments were carried out by intense mixing of the adsorbent with 10ml of real/synthtic wastewater samples in 20ml bottles.  The effects of pH, contact time, temperature, and adsorbent dosage on antimony removal efficiency were investigated under intense mixing using a magnetic mixer. Finally, the effluents were filtered upon completion of the experiments and used for atomic adsorption analysis. The results of the experiments showed that the adsorption isotherms of the synthesized nanoparticles obeyed the Langmuir and Freundlich models. The experiments carried out on real samples showed that antimony adsorption capacity for B-nZVI was 2.6 mg/g of the adsorbent and that the highest antimony removal efficiency was 99.56%.

  10. One-Step Extraction of Antimony in Low Temperature from Stibnite Concentrate Using Iron Oxide as Sulfur-Fixing Agent

    Directory of Open Access Journals (Sweden)

    Yun Li

    2016-07-01

    Full Text Available A new process for one-step extraction of antimony in low temperature from stibnite concentrate by reductive sulfur-fixation smelting in sodium molten salt, using iron oxide as sulfur-fixing agent, was presented. The influences of molten salt addition and composition, ferric oxide dosage, smelting temperature and duration on extraction efficiency of antimony were investigated in details, respectively. The optimum conditions were determined as follows: 1.0 time stoichiometric requirement (α of mixed sodium salt (αsalt = 1.0, WNaCl:Wsalt = 40%, αFe2O3 = 1.0, Wcoke:Wstibnite = 40%, where W represents weight, smelting at 850 °C (1123 K for 60 min. Under the optimum conditions, the direct recovery rate of antimony can reach 91.48%, and crude antimony with a purity of 96.00% has been achieved. 95.31% of sulfur is fixed in form of FeS in the presence of iron oxide. Meanwhile, precious metals contained in stibnite concentrate are enriched and recovered comprehensively in crude antimony. In comparison to traditional antimony pyrometallurgical process, the smelting temperature of present process is reduced from 1150–1200 °C (1423–1473 K to 850–900 °C (1123–1173 K. Sulfur obtained in stibnite is fixed in FeS which avoids SO2 emission owing to the sulfur-fixing agent. Sodium salt can be regenerated and recycled in smelting system when the molten slag is operated to filter solid residue. The solid residue is subjected to mineral dressing operation to obtain iron sulfide concentrate which can be sold directly or roasted to regenerate into iron oxide.

  11. Nanoscaled hydrated antimony (V oxide as a new approach to first-line antileishmanial drugs

    Directory of Open Access Journals (Sweden)

    Franco AMR

    2016-12-01

    Full Text Available Antonia MR Franco,1 Iryna Grafova,2 Fabiane V Soares,1,3 Gennaro Gentile,4 Claudia DC Wyrepkowski,1,3 Marcos A Bolson,5 Ézio Sargentini Jr,5 Cosimo Carfagna,4 Markku Leskelä,2 Andriy Grafov2 1Laboratory of Leishmaniasis and Chagas Disease, National Institute of Amazonian Research (INPA, Manaus, Amazonas, Brazil; 2Department of Chemistry, University of Helsinki, Helsinki, Finland; 3Multi-Institutional Post-Graduate Program in Biotechnology, Federal University of Amazonas, Manaus, Amazonas, Brazil; 4Institute for Polymers, Composites, and Biomaterials, National Research Council, Pozzuoli, Naples Province, Italy; 5Laboratory of Environmental Chemistry, National Institute of Amazonian Research (INPA, Manaus, Amazonas, Brazil Background: Coordination compounds of pentavalent antimony have been, and remain, the first-line drugs in leishmaniasis treatment for >70 years. Molecular forms of Sb (V complexes are commercialized as sodium stibogluconate (Pentostam® and meglumine antimoniate (MA (Glucantime®. Ever-increasing drug resistance in the parasites limits the use of antimonials, due to the low drug concentrations being administered against high parasitic counts. Sb5+ toxicity provokes severe side effects during treatment. To enhance therapeutic potency and to increase Sb (V concentration within the target cells, we decided to try a new active substance form, a hydrosol of Sb2O5⋅nH2O nanoparticles (NPs, instead of molecular drugs. Methodology/principal findings: Sb2O5⋅nH2O NPs were synthesized by controlled SbCl5 hydrolysis in a great excess of water. Sb2O5⋅nH2O phase formation was confirmed by X-ray diffraction. The surface of Sb (V NPs was treated with ligands with a high affinity for target cell membrane receptors. The mean particle size determined by dynamic light scattering and transmission electron microscopy was ~35–45 nm. In vitro tests demonstrated a 2.5–3 times higher antiparasitic activity of Sb (V nanohybrid hydrosols

  12. Role of efflux pumps and intracellular thiols in natural antimony resistant isolates of Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Smita Rai

    Full Text Available BACKGROUND: In view of the recent upsurge in the phenomenon of therapeutic failure, drug resistance in Leishmania, developed under natural field conditions, has become a great concern yet little understood. Accordingly, the study of determinants of antimony resistance is urgently warranted. Efflux transporters have been reported in Leishmania but their role in clinical resistance is still unknown. The present study was designed to elucidate the mechanism of natural antimony resistance in L. donovani field isolates by analyzing the functionality of efflux pump(s and expression profiles of known genes involved in transport and thiol based redox metabolism. METHODOLOGY/PRINCIPAL FINDINGS: We selected 7 clinical isolates (2 sensitive and 5 resistant in addition to laboratory sensitive reference and SbIII resistant mutant strains for the present study. Functional characterization using flow cytometry identified efflux pumps that transported substrates of both P-gp and MRPA and were inhibited by the calmodulin antagonist trifluoperazine. For the first time, verapamil sensitive efflux pumps for rhodamine 123 were observed in L. donovani that were differentially active in resistant isolates. RT-PCR confirmed the over-expression of MRPA in isolates with high resistance index only. Resistant isolates also exhibited consistent down regulation of AQP1 and elevated intracellular thiol levels which were accompanied with increased expression of ODC and TR genes. Interestingly, γ-GCS is not implicated in clinical resistance in L. donovani isolates. CONCLUSIONS/SIGNIFICANCE: Here we demonstrate for the first time, the role of P-gp type plasma membrane efflux transporter(s in antimony resistance in L. donovani field isolates. Further, decreased levels of AQP1 and elevated thiols levels have emerged as biomarkers for clinical resistance.

  13. Development and pharmacokinetic of antimony encapsulated in liposomes of phosphatidylserine using radioisotopes in experimental leishmaniasis

    International Nuclear Information System (INIS)

    Borborema, Samanta Etel Treiger

    2010-01-01

    Leishmaniasis are a complex of parasitic diseases caused by intra macrophage protozoa of the genus Leishmania, and is fatal if left untreated. Pentavalent antimonials, though toxic and their mechanism of action being unclear, remain the first-line drugs for treatment. Effective therapy could be achieved by delivering antileishmanial drugs to these sites of infection. Liposomes are phospholipid vesicles that promote improvement in the efficacy and action of drugs in target cell. Liposomes are taken up by the cells of mononuclear phagocytic system (MPS). The purpose of this study was to develop a preparation of meglumine antimonate encapsulated in liposomes of phosphatidylserine and to study its pharmacokinetic in healthy mice to establish its metabolism and distribution. Quantitative analysis of antimony from liposomes demonstrated that Neutron Activation Analysis was the most sensitive technique with almost 100 % of accuracy. All liposome formulations presented a mean diameter size of 150 nm. The determination of IC 50 in infected macrophage showed that liposome formulations were between 10 - 63 fold more effective than the free drug, indicating higher selectivity index. By fluorescence microscopy, an increased uptake of fluorescent-liposomes was seen in infected macrophages during short times of incubation compared with non-infected macrophages. Biodistribution studies showed that meglumine antimonate irradiated encapsulated in liposomes of phosphatidylserine promoted a targeting of antimony for MPS tissues and maintained high doses in organs for a prolonged period. In conclusion, these data suggest that meglumine antimonate encapsulated in liposomes showed higher effectiveness than the non-liposomal drug against Leishmania infection. The development of liposome formulations should be a new alternative for the chemotherapy of infection diseases, especially Leishmaniasis, as they are used to sustain and target pharmaceuticals to the local of infection. (author)

  14. Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species.

    Science.gov (United States)

    Andrade, Juvana M; Baba, Elio H; Machado-de-Avila, Ricardo A; Chavez-Olortegui, Carlos; Demicheli, Cynthia P; Frézard, Frédéric; Monte-Neto, Rubens L; Murta, Silvane M F

    2016-08-01

    Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (Sb(III)) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased Sb(III) susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to Sb(III) exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, Sb(III)-sodium nitrate or Sb(III)-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of Sb(III) alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to Sb(III) and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated Sb(III) susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and Sb(III). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Field-portable-XRF reveals the ubiquity of antimony in plastic consumer products.

    Science.gov (United States)

    Turner, Andrew; Filella, Montserrat

    2017-04-15

    Very little systematic information exists on the occurrence and concentrations of antimony (Sb) in consumer products. In this study, a Niton XL3t field-portable-X-ray fluorescence (FP-XRF) spectrometer was deployed in situ and in the laboratory to provide quantitative information on Sb dissipated in plastic items and fixtures (including rubber, textile and foamed materials) from the domestic, school, vehicular and office settings. The metalloid was detected in 18% of over 800 measurements performed, with concentrations ranging from about 60 to 60,000μgg -1 . The highest concentrations were encountered in white, electronic casings and in association with similar concentrations of Br, consistent with the use of antimony oxides (e.g. Sb 2 O 3 ) as synergistic flame retardants. Concentrations above 1000μgg -1 , and with or without Br, were also encountered in paints, piping and hosing, adhesives, whiteboards, Christmas decorations, Lego blocks, document carriers, garden furniture, upholstered products and interior panels of private motor vehicles. Lower concentrations of Sb were encountered in a wide variety of items but its presence (without Br) in food tray packaging, single-use drinks bottles, straws and small toys were of greatest concern from a human health perspective. While the latter observations are consistent with the use of antimony compounds as catalysts in the production of polyethylene terephthalate, co-association of Sb and Br in many products not requiring flame retardancy suggests that electronic casings are widely recycled. Further research is required into the mobility of Sb when dissipated in new, recycled and aged polymeric materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Dual mode antimony electrode for simultaneous measurements of PO2 and pH.

    Science.gov (United States)

    Sjöberg, F; Nilsson, G

    2000-01-01

    In biomedical research and clinical medicine there is a demand for potent sensors to measure the components that make up blood gas analyses. Today, as when the electrochemical PO2, PCO2 and pH electrodes were first introduced, these measurements are usually made with the same type of sensor technology. The aims of the present study were, firstly, to find out whether the platinum cathode in the Clark electrode can be replaced by antimony for oxygen measurements (amperometry (A)); secondly, whether, during oxygen measurements, the inherent corrosion potential of the antimony metal can be used for measurement of pH in the same measurement area (potentiometry (P)). An electrode of purified, crystallographically orientated monocrystalline antimony (COMA) connected to a reference electrode (silver-silver chloride) was used for the P measurements. Measurements of A (at -900 mV) and P were made in an aqueous environment regulated for oxygen, pH, and temperature. Reproducible oxygen sensitivities of 0.925 nA/% oxygen (2% CV (coefficient of variation)) (A), 10.7 mV/% (P), and 0.7 mV/% (P) were found in the oxygen range: 0-21%, <5%, and above 5%, respectively. The pH sensitivity was 57 mV/pH unit (P). Oxygen and pH measurements were less accurate at oxygen concentrations close to 0%. Both the oxygen and pH part of the composite electrode signal can be identified by this dual mode technique (A and P). The sensor seems to be promising as it provides measurements of two separate variables (oxygen and pH) and also has the desirable characteristics of a solid state sensor.

  17. Influence of nanosized inclusions on the room temperature thermoelectrical properties of a p-type bismuth–tellurium–antimony alloy

    International Nuclear Information System (INIS)

    Bernard-Granger, Guillaume; Addad, Ahmed; Navone, Christelle; Soulier, Mathieu; Simon, Julia; Szkutnik, Pierre-David

    2012-01-01

    Transmission electron microscopy observations and thermoelectrical property measurements (electrical conductivity, Seebeck coefficient and thermal conductivity) at room temperature have been completed on two fully dense polycrystalline p-type bismuth–tellurium–antimony alloy samples. It is shown that the presence of antimony oxide-based nanosized inclusions (controlled as to volume fraction and size distribution), homogeneously dispersed in the surrounding matrix leads to a dimensionless figure of merit (ZT) of ∼1.3 at room temperature. For comparison, when such inclusions are missing the ZT value is only 0.6.

  18. Synthesis, characterization and electrochemical performances of new antimony-containing graphite compounds used as anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Dailly, A.; Willmann, P.; Billaud, D.

    2002-01-01

    Graphite intercalation intercalated with metal alloys able to alloy reversibly lithium constitute a large set of new anodic materials for lithium-ion batteries of significantly improved reversible capacities. Especially, graphite intercalated with cesium-antimony alloys can be used as materials for anodes in lithium-ion batteries. Electrochemical insertion of lithium in such chemically modified precursors shows that lithium both intercalates in the empty van der Waals spaces of graphite and alloys reversibly with antimony. The total electrochemical reversible capacities, measured between 0 and 2 V vs Li + /Li, close to 700 mAh g -1 have been currently obtained

  19. Isospin Character of the Pygmy Dipole Resonance in Sn-124

    NARCIS (Netherlands)

    Endres, J.; Litvinova, E.; Savran, D.; Butler, P. A.; Harakeh, M. N.; Harissopulos, S.; Herzberg, R. -D.; Kruecken, R.; Lagoyannis, A.; Pietralla, N.; Ponomarev, V. Yu; Popescu, L.; Ring, P.; Scheck, M.; Sonnabend, K.; Stoica, V. I.; Wörtche, H. J.; Zilges, A.

    2010-01-01

    The pygmy dipole resonance has been studied in the proton-magic nucleus Sn-124 with the (alpha, alpha'gamma) coincidence method at E-alpha = 136 MeV. The comparison with results of photon-scattering experiments reveals a splitting into two components with different structure: one group of states

  20. 9 CFR 124.32 - APHIS action on petition.

    Science.gov (United States)

    2010-01-01

    ... Diligence Petitions § 124.32 APHIS action on petition. (a) Within 90 days after APHIS receives a petition... diligence during the regulatory review period. APHIS will publish its determination in the Federal Register... due diligence petition without considering the merits of the petition if: (1) The petition is not...

  1. 9 CFR 124.31 - Applicant response to petition.

    Science.gov (United States)

    2010-01-01

    ... Diligence Petitions § 124.31 Applicant response to petition. (a) The applicant may file with APHIS a written... the petition, but shall be limited to the issue of whether the applicant acted with due diligence... application, the due diligence petition, and APHIS records. ...

  2. 13 CFR 124.103 - Who is socially disadvantaged?

    Science.gov (United States)

    2010-01-01

    ..., employment and business history, where applicable, to see if the totality of circumstances shows disadvantage... nonprofessional or non-business fields. (C) Business history. SBA considers such factors as unequal access to... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Who is socially disadvantaged? 124...

  3. 33 CFR 157.124 - COW tank washing machines.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false COW tank washing machines. 157... OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.124 COW tank washing machines. (a) COW machines must be permanently mounted in each cargo tank. (b...

  4. 42 CFR 417.124 - Administration and management.

    Science.gov (United States)

    2010-10-01

    ... program, administrative and management aspects of the HMO. (3) At a minimum, management by an executive... Administration and management. (a) General requirements. Each HMO must have administrative and managerial... 42 Public Health 3 2010-10-01 2010-10-01 false Administration and management. 417.124 Section 417...

  5. 15 CFR 12.4 - Report to the Congress.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Report to the Congress. 12.4 Section....4 Report to the Congress. Whenever the Secretary publishes a final determination under § 12.3(b)(4) or § 12.3(c)(5), he shall promptly report such determination to the Congress with a statement of the...

  6. 27 CFR 28.124 - Consignment, shipment, and delivery.

    Science.gov (United States)

    2010-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Withdrawal of Wine Without Payment of... Bonded Warehouse, or Transportation to a Manufacturing Bonded Warehouse § 28.124 Consignment, shipment, and delivery. The consignment, shipment, and delivery of wines withdrawn without payment of tax under...

  7. Paired and Interacting Galaxies: International Astronomical Union Colloquium No. 124

    Science.gov (United States)

    Sulentic, Jack W. (Editor); Keel, William C. (Editor); Telesco, C. M. (Editor)

    1990-01-01

    The proceedings of the International Astronomical Union Colloquium No. 124, held at the University of Alabama at Tuscaloosa, on December 4 to 7, are given. The purpose of the conference was to describe the current state of theoretical and observational knowledge of interacting galaxies, with particular emphasis on galaxies in pairs.

  8. 40 CFR 49.124 - Rule for limiting visible emissions.

    Science.gov (United States)

    2010-07-01

    ...% opacity limit. (3) The visible emissions from an oil-fired boiler or solid fuel-fired boiler that... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Rule for limiting visible emissions. 49... Application to Indian Reservations in Epa Region 10 § 49.124 Rule for limiting visible emissions. (a) What is...

  9. Determination of arsenic, selenium and antimony by neutron activation analysis. Application to hair samples

    International Nuclear Information System (INIS)

    Das, H.A.; Hoede, D.; Nieuwendijk, B.J.T.; Sloot, H.A. van der; Teunissen, G.J.A.; Woittiez, J.R.W.

    1983-04-01

    A fast rabbit system for instrumental activation analysis with reactor neutrons is described. Its use in the determination of selenium in hair is discussed. A survey is given of the correction factors which are inherent to the use of short-lived radionuclides. An alternative to INAA is NAA based on the separation of arsenic, selenium and antimony by hydride evaporation and adsorption to active carbon. Data for some Standard Reference Materials are given. This work was done under research contract 2440/RI/RB with the IAEA

  10. Some organoperoxo complexes of antimony, niobium and tantalum and their oxidation properties

    International Nuclear Information System (INIS)

    Tarafder, M.T.H.

    1999-05-01

    Several novel organoperoxo complexes of Nb(V), Ta(V) and Sb(V) have been synthesized and characterized. The complexes have the compositions [M(O 2 ) 2 L Cl] and [M(O 2 ) 2 L'] [L = monodentate and bidentate, neutral ligand; L' = bidentate, uninegative ligand]. These complexes are very reactive to both organic and inorganic substrates. Niobium and tantalum complexes were found to oxidize phosphines and arsines to their oxides. These also oxidize olefins to epoxides under stoichiometric conditions while under catalytic conditions, ring opening of the epoxides occur producing α-hydroxyketone when the substrate is trans-stilbene. The antimony complexes are decidedly inert towards oxidation. (author)

  11. 78 FR 59679 - Antimony Trioxide TSCA Chemical Risk Assessment; Notice of Public Meetings and Opportunity To...

    Science.gov (United States)

    2013-09-27

    ...EPA's contractor, The Scientific Consulting Group (SCG), Inc., has identified a panel of scientific experts to conduct a peer review of EPA's draft Toxic Substances Control Act (TSCA) chemical risk assessment, ``TSCA Workplan Chemical Risk Assessment for Antimony Trioxide.'' EPA will hold three peer review meetings by web connect and teleconference. EPA invites the public to register to attend the meetings as observers and/or speakers providing oral comments during any or all of the peer review meetings as discussed in this notice. The public may also provide comment on whether they believe the appearance of conflict of interest exists for any proposed peer review panel expert.

  12. Polymorphism and properties of Bi{sub 2}WO{sub 6} doped with pentavalent antimony

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonova, E.P.; Belov, D.A. [M.V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Gagor, A.B.; Pietraszko, A.P. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-950 Wrocław (Poland); Alekseeva, O.A. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 119333 Moscow (Russian Federation); Voronkova, V.I., E-mail: voronk@polly.phys.msu.ru [M.V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation)

    2014-04-05

    Highlights: • The limit of Bi{sub 2}W{sub 1−x}Sb{sub x}O{sub 6−y} solid solutions is at x = 0.05. • Bi{sub 2}W{sub 1−x}Sb{sub x}O{sub 6−y} does not fully transform into high-temperature monoclinic phase. • Sb{sup 5+} has a weak effect on the temperatures of the ferroelectric transitions. • γ→γ{sup ‴} transition near 650 °C was observed as strong permittivity peak at 0.01–8 Hz. • The conductivity of Bi{sub 2}W{sub 0.96}Sb{sub 0.04}O{sub 6−y} at 800 °C reaches 0.02 S/cm. -- Abstract: Antimony-containing solid solutions isostructural with bismuth tungstate, Bi{sub 2}WO{sub 6}, have been prepared in air as polycrystalline samples by solid-state reactions and as single crystals by unseeded flux growth. The antimony in the solid solutions is in a pentavalent state and substitutes for tungsten in the structure of Bi{sub 2}WO{sub 6}. The Bi{sub 2}W{sub 1−x}Sb{sub x}O{sub 6−y} solid solutions have been shown to exist in the composition range 0 ⩽ x ⩽ 0.05. We have examined the effect of Sb{sup 5+} doping on the polymorphism and properties of Bi{sub 2}WO{sub 6}. In contrast to undoped Bi{sub 2}WO{sub 6}, antimony-substituted bismuth tungstate does not completely transform into its high-temperature, monoclinic phase at 960 °C and remains two-phase up to temperatures approaching its melting point. Antimony substitution for tungsten has a weak effect on the temperatures of the ferroelectric phase transitions. Heterovalent substitution of Sb{sup 5+} for W{sup 6+} is accompanied by the formation of extra oxygen vacancies and an increase in the electrical conductivity of the solid solutions by one to two orders of magnitude relative to undoped Bi{sub 2}WO{sub 6}.

  13. Separation of antimony from synthetic cloth. Application in forensic science using neutron activation analysis

    International Nuclear Information System (INIS)

    Bhadkambekar, C.A.; Swain, K.K.; Kayasth, S.R.; Mukherjee, T.

    2005-01-01

    A simple ion-exchange separation procedure was developed for selective removal of antimony from synthetic cloth to facilitate determination of several trace elements frequently used to identify gunshot residues by neutron activation analysis. Radiotracers of Sb, Ba, Cu, Co, As, Zn, Hg and Ag were employed to optimize the developed procedure. The method involves the quantitative retention of the above elements, except of Sb, from 0.2M ammonium carbonate solution using Chelex 100 resin and subsequent quantitative elution of the elements of interest with 2M nitric acid for gamma-ray spectrometry. The procedure was tested by simulated gunshot residues. (author)

  14. Dehydrogenation of Ethylbenzene with Carbon Dioxide as Soft Oxidant over Supported Vanadium-Antimony Oxide Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Do Young; Vislovskiy, Vladislav P.; Yoo, Jin S.; Chang, Jong San [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Park, Sang Eon [Inha University, Incheon (Korea, Republic of); Park, Min Seok [Mongolia International University, Ulaanbaatar (Mongolia)

    2005-11-15

    This work presents that carbon dioxide, which is a main contributor to the global warming effect, could be utilized as a selective oxidant in the oxidative dehydrogenation of ethylbenzene. The dehydrogenation of ethylbenzene over alumina-supported vanadium-antimony oxide catalyst has been studied under different atmospheres such as inert nitrogen, steam, oxygen or carbon dioxide as diluent or oxidant. Among them, the addition of carbon dioxide gave the highest styrene yield (up to 82%) and styrene selectivity (up to 97%) along with stable activity. Carbon dioxide could play a beneficial role of a selective oxidant in the improvement of the catalytic behavior through the oxidative pathway.

  15. Structural and optical study on antimony-silicate glasses doped with thulium ions.

    Science.gov (United States)

    Dorosz, D; Zmojda, J; Kochanowicz, M; Miluski, P; Jelen, P; Sitarz, M

    2015-01-05

    Structural, spectroscopic and thermal properties of SiO₂-Al₂O₃-Sb₂O₃-Na₂O glass system doped with 0.2 mol% Tm₂O₃ have been presented. Synthesis of antimony-silicate glasses with relatively low phonon energy (600 cm(-1), which implicates a small non-radiative decay rate) was performed by conventional high-temperature melt-quenching methods. The effect of SiO₂/Sb₂O₃ ratio in fabricated Tm(3+) doped glass on thermal, structural and luminescence properties was investigated. On the basis of structural investigations decomposition of absorption bands in the infrared FTIR region was performed, thus determining that antimony ions are the only glass-forming ions, setting up the lattice of fabricated glasses. Luminescence band at the wavelength of 1.8 μm corresponding to (3)F₄→(3)H₆ transition in thulium ions was obtained under 795 nm laser pumping. It was observed that combination of relatively low phonon energy and greater separation of optically active centers in the fabricated glasses influenced in decreasing the luminescence intensity at 1800 nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium

    Directory of Open Access Journals (Sweden)

    Rajmund Michalski

    2012-01-01

    Full Text Available Due to the fact that metals and metalloids have a strong impact on the environment, the methods of their determination and speciation have received special attention in recent years. Arsenic, antimony, and thallium are important examples of such toxic elements. Their speciation is especially important in the environmental and biomedical fields because of their toxicity, bioavailability, and reactivity. Recently, speciation analytics has been playing a unique role in the studies of biogeochemical cycles of chemical compounds, determination of toxicity and ecotoxicity of selected elements, quality control of food products, control of medicines and pharmaceutical products, technological process control, research on the impact of technological installation on the environment, examination of occupational exposure, and clinical analysis. Conventional methods are usually labor intensive, time consuming, and susceptible to interferences. The hyphenated techniques, in which separation method is coupled with multidimensional detectors, have become useful alternatives. The main advantages of those techniques consist in extremely low detection and quantification limits, insignificant interference, influence as well as high precision and repeatability of the determinations. In view of their importance, the present work overviews and discusses different hyphenated techniques used for arsenic, antimony, and thallium species analysis, in different clinical, environmental and food matrices.

  17. Effect of indium and antimony doping in SnS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chaki, Sunil H., E-mail: sunilchaki@yahoo.co.in; Chaudhary, Mahesh D.; Deshpande, M.P.

    2015-03-15

    Highlights: • Single crystals growth of pure SnS, indium doped SnS and antimony doped SnS by direct vapour transport (DVT) technique. • Doping of In and Sb occurred in SnS single crystals by cation replacement. • The replacement mechanism ascertained by EDAX, XRD and substantiated by Raman spectra analysis. • Dopants concentration affects the optical energy bandgap. • Doping influences electrical transport properties. - Abstract: Single crystals of pure SnS, indium (In) doped SnS and antimony (Sb) doped SnS were grown by direct vapour transport (DVT) technique. Two doping concentrations of 5% and 15% each were employed for both In and Sb dopants. Thus in total five samples were studied viz., pure SnS (S1), 5% In doped SnS (S2), 15% In doped SnS (S3), 5% Sb doped SnS (S4) and 15% Sb doped SnS (S5). The grown single crystal samples were characterized by evaluating their surface microstructure, stoichiometric composition, crystal structure, Raman spectroscopy, optical and electrical transport properties using appropriate techniques. The d.c. electrical resistivity and thermoelectric power variations with temperature showed semiconducting and p-type nature of the as-grown single crystal samples. The room temperature Hall Effect measurements further substantiated the semiconducting and p-type nature of the as-grown single crystal samples. The obtained results are deliberated in detail.

  18. Effect of electronic contribution on temperature-dependent thermal transport of antimony telluride thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won-Yong; Park, No-Won [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Hong, Ji-Eun [Department of Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoon, Soon-Gil, E-mail: sgyoon@cnu.ac.kr [Department of Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Koh, Jung-Hyuk [School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Sang-Kwon, E-mail: sangkwonlee@cau.ac.kr [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2015-01-25

    Highlights: • We investigated thermal transport of the antimony telluride thin films. • The contribution of the electronic thermal conductivity increased up to ∼77% at 300 K. • We theoretically analyze and explain the high contribution of electronic component. - Abstract: We study the theoretical and experimental characteristics of thermal transport of 100 nm and 500 nm-thick antimony telluride (Sb{sub 2}Te{sub 3}) thin films prepared by radio frequency magnetron sputtering. The thermal conductivity was measured at temperatures ranging from 20 to 300 K, using four-point-probe 3-ω method. Out-of-plane thermal conductivity of the Sb{sub 2}Te{sub 3} thin film was much lesser in comparison to the bulk material in the entire temperature range, confirming that the phonon- and electron-boundary scattering are enhanced in thin films. Moreover, we found that the contribution of the electronic thermal conductivity (κ{sub e}) in total thermal conductivity (κ) linearly increased up to ∼77% at 300 K with increasing temperature. We theoretically analyze and explain the high contribution of electronic component of thermal conductivity towards the total thermal conductivity of the film by a modified Callaway model. Further, we find the theoretical model predictions to correspond well with the experimental results.

  19. Growth of antimony doped P-type zinc oxide nanowires for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong Lin; Pradel, Ken

    2016-09-27

    In a method of growing p-type nanowires, a nanowire growth solution of zinc nitrate (Zn(NO.sub.3).sub.2), hexamethylenetetramine (HMTA) and polyethylenemine (800 M.sub.w PEI) is prepared. A dopant solution to the growth solution, the dopant solution including an equal molar ration of sodium hydroxide (NaOH), glycolic acid (C.sub.2H.sub.4O.sub.3) and antimony acetate (Sb(CH.sub.3COO).sub.3) in water is prepared. The dopant solution and the growth solution combine to generate a resulting solution that includes antimony to zinc in a ratio of between 0.2% molar to 2.0% molar, the resulting solution having a top surface. An ammonia solution is added to the resulting solution. A ZnO seed layer is applied to a substrate and the substrate is placed into the top surface of the resulting solution with the ZnO seed layer facing downwardly for a predetermined time until Sb-doped ZnO nanowires having a length of at least 5 .mu.m have grown from the ZnO seed layer.

  20. Towards a standard protocol for antimony intralesional infiltration technique for cutaneous leishmaniasis treatment

    Directory of Open Access Journals (Sweden)

    Rosiana Estéfane da Silva

    Full Text Available BACKGROUND Despite its recognised toxicity, antimonial therapy continues to be the first-line drug for cutaneous leishmaniasis (CL treatment. Intralesional administration of meglumine antimoniate (MA represents an alternative that could reduce the systemic absorption of the drug and its side effects. OBJECTIVES This study aims to validate the standard operational procedure (SOP for the intralesional infiltration of MA for CL therapy as the first step before the assessment of efficacy and safety related to the procedure. METHODS The SOP was created based on 21 trials retrieved from the literature, direct monitoring of the procedure and consultation with experts. This script was submitted to a formal computer-aided inspection to identify readability, clarity, omission, redundancy and unnecessary information (content validation. For criterion and construct validations, the influence of critical condition changes (compliance with the instructions and professional experience on outcome conformity (saturation status achievement, tolerability (pain referred and safety (bleeding were assessed. FINDINGS The median procedure length was 12 minutes and in 72% of them, patients classified the pain as mild. The bleeding was also classified as mild in 96.6% of the procedures. Full compliance with the SOP was observed in 66% of infiltrations. Despite this, in 100% of the inspected procedures, lesion saturation was observed at the end of infiltration, which means that it tolerates some degree of modification in its execution (robustness without prejudice to the result. CONCLUSIONS The procedure is reproducible and can be used by professionals without previous training with high success and safety rates.

  1. Towards a standard protocol for antimony intralesional infiltration technique for cutaneous leishmaniasis treatment.

    Science.gov (United States)

    Silva, Rosiana Estéfane da; Carvalho, Janaína de Pina; Ramalho, Dario Brock; Senna, Maria Camilo Ribeiro De; Moreira, Hugo Silva Assis; Rabello, Ana; Cota, Erika; Cota, Gláucia

    2018-02-01

    BACKGROUND Despite its recognised toxicity, antimonial therapy continues to be the first-line drug for cutaneous leishmaniasis (CL) treatment. Intralesional administration of meglumine antimoniate (MA) represents an alternative that could reduce the systemic absorption of the drug and its side effects. OBJECTIVES This study aims to validate the standard operational procedure (SOP) for the intralesional infiltration of MA for CL therapy as the first step before the assessment of efficacy and safety related to the procedure. METHODS The SOP was created based on 21 trials retrieved from the literature, direct monitoring of the procedure and consultation with experts. This script was submitted to a formal computer-aided inspection to identify readability, clarity, omission, redundancy and unnecessary information (content validation). For criterion and construct validations, the influence of critical condition changes (compliance with the instructions and professional experience) on outcome conformity (saturation status achievement), tolerability (pain referred) and safety (bleeding) were assessed. FINDINGS The median procedure length was 12 minutes and in 72% of them, patients classified the pain as mild. The bleeding was also classified as mild in 96.6% of the procedures. Full compliance with the SOP was observed in 66% of infiltrations. Despite this, in 100% of the inspected procedures, lesion saturation was observed at the end of infiltration, which means that it tolerates some degree of modification in its execution (robustness) without prejudice to the result. CONCLUSIONS The procedure is reproducible and can be used by professionals without previous training with high success and safety rates.

  2. Early Cutaneous Leishmaniasis Patients Infected With Leishmania braziliensis Express Increased Inflammatory Responses After Antimony Therapy.

    Science.gov (United States)

    Costa, Rúbia S; Carvalho, Lucas P; Campos, Taís M; Magalhães, Andréa S; Passos, Sara T; Schriefer, Albert; Silva, Juliana A; Lago, Ednaldo; Paixão, Camilla S; Machado, Paulo; Scott, Phillip; Carvalho, Edgar M

    2018-02-14

    Early cutaneous leishmaniasis (ECL) is characterized by a nonulcerated papular lesion and illness duration less than 30 days. Approximately 4 weeks later, the cutaneous leishmaniasis (CL) ulcers appear. We were surprised to find that failure after antimony therapy (Sb5) is higher in ECL than CL. We hypothesize that the inflammatory response in ECL patients may increase during Sb5 therapy, which leads to treatment failure. A cohort of 44 ECL patients infected by Leishmania braziliensis was established to evaluate the response to Sb5 and to compare immunologic responses in ECL patients with CL and healthy subjects. A hierarchical clustering based on cytokine levels showed a weak positive correlation between proinflammatory cytokine levels and those patients that failed Sb5 treatment. Although Sb5 therapy decreased interferon-γ and tumor necrosis factor levels in CL patients, we were surprised to find that an increase in these cytokines was observed in ECL patients. Moreover, interleukin (IL)-10 was less able to down-modulate immune responses in ECL. The enhanced production of proinflammatory cytokines, due in part to the decreased ability of IL-10 to down-modulate immune response during therapy in ECL, promotes the development and persistence of leishmania ulcer despite antimony therapy. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  3. Determination of Trace Antimony (III by Adsorption Voltammetry at Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    Nongyue He

    2005-05-01

    Full Text Available This work presents a sensitive method for the determination of trace antimonybased on the antimony-pyrogallol red (PGR adsorption at a carbon paste electrode (CPE.The optimal conditions were to use an electrode containing 25% paraffin oil and 75%high purity graphite powder as working electrode, a 0.10 mol/L HCl solution containing3.0×10-5 mol/L PGR as accumulation medium and a 0.20 mol/L HCl solution aselectrolyte with an accumulation time of 150 s and a reduction time of 60 s at -0.50 Vfollowed with a sweep from -0.50 V to 0.20 V. The mechanism of the electrode reactionwas discussed. Interferences of other metal ions were studied as well. The detection limitwas 1×10-9 mol/L. The linear range was from 2.0×10-9 mol/L to 5.0×10-7 mol/L.Application of the proposed method to the determination of antimony in water andhuman hair samples gave good results.

  4. Leaching of the antimony and accompanying of elements Sb2S3 in the alkaline medium

    Directory of Open Access Journals (Sweden)

    Dagmar Remeteiová

    2007-06-01

    Full Text Available This paper presents results of the laboratory investigation of alkaline leaching of stibnite that is an important mineral occuring in the antimony-bearing raw materials. The following components were present in stibnite: Sb2S3, SiO2, ZnS, FeS2. The aim of this study was to establish the effect of composition of the aqueous alkaline leaching medium (1 % NaOH, 1 % NaOH + 1 % Na2S2O3, 1 % NaOH + 1 % Na2S on the recoveries of Sb, Fe, Pb, Zn, Cu, Ni and Hg. The antimony recoveries in the leaching solutions NaOH and NaOH + Na2S2O3 solutions were lower in comparison with the leaching in NaOH + Na2S. The Fe, Pb, Zn recoveries in alkaline solutions were found to decrease in the following order: Fe, Pb, Zn. The mercury recovery in the leaching test with the solution containing 1 % NaOH+1 % Na2S was 3,7 %.

  5. Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors.

    Science.gov (United States)

    Guo, Xuejun; Wang, Kunpeng; He, Mengchang; Liu, Ziwei; Yang, Hailin; Li, Sisi

    2014-07-01

    A large amount of solid waste has been produced by the antimony smelting process in the "World Capital of Antimony", Xikuangshan area in China. This study comprehensively investigated the physical and chemical characteristics of the various solid wastes, as well as the leaching behavior of the solid wastes, which included water-quenched slag, arsenic-alkali residue, desulfurized slag and blast furnace dust. These four types of waste were enriched in a variety of heavy metals and metalloids and more specifically with As and Sb levels up to 8.6 × 10⁴ and 3.16×10⁵ mg/kg, respectively, in arsenic-alkali residue. For desulfurized slag and water-quenched slag, the leaching concentration of Sb significantly exceeded the acceptable limits during the leaching tests using the toxicity characteristic leaching procedure and the synthetic precipitation leaching procedure. In addition, As leaching in arsenic-alkali residue was extraordinarily hazardous, being three orders of magnitude higher than the regulatory level of As. According to the results of the extraction tests, all the tested wastes were classified as hazardous waste. Copyright © 2014. Published by Elsevier B.V.

  6. High levels of antimony in dust from e-waste recycling in southeastern China

    International Nuclear Information System (INIS)

    Bi, Xiangyang; Li, Zhonggen; Zhuang, Xiaochun; Han, Zhixuan; Yang, Wenlin

    2011-01-01

    Environmental contamination due to uncontrolled e-waste recycling is an emerging global issue. Antimony (Sb) is a toxic element used in semiconductor components and flame retardants for circuit board within electronic equipment. When e-waste is recycled, Sb is released and contaminates the surrounding environment; however, few studies have characterized the extent of this problem. In this study, we investigated Sb and arsenic (As) distributions in indoor dust from 13 e-waste recycling villages in Guiyu, Guangdong Province, southeastern China. Results revealed significantly elevated concentrations of Sb (6.1-232 mg/kg) in dust within all villages, which were 3.9-147 times higher than those from the non e-waste sites, indicating e-waste recycling was an important source of Sb pollution. On the contrary, As concentrations (5.4-17.7 mg/kg) in e-waste dusts were similar to reference values from the control sites. Therefore, dusts emitted from e-waste recycling may be characterized by high Sb/As ratios, which may help identify the contamination due to the e-waste recycling activities. - Highlights: → Antimony and arsenic concentrations in dust from e-waste recycling were investigated. → E-waste recycling is an important emerging source of Sb pollution. → Sb/As ratios may help identify the e-waste contamination.

  7. High levels of antimony in dust from e-waste recycling in southeastern China

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Xiangyang, E-mail: bixy@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Faculty of Earth Science, China University of Geosciences, Wuhan 430074 (China); Li, Zhonggen [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Zhuang, Xiaochun [Faculty of Materials Science and Chemical Engineering, China University of Geosciences, Wuhan 430074 (China); Han, Zhixuan [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Faculty of Earth Science, China University of Geosciences, Wuhan 430074 (China); Yang, Wenlin [Faculty of Earth Science, China University of Geosciences, Wuhan 430074 (China)

    2011-11-01

    Environmental contamination due to uncontrolled e-waste recycling is an emerging global issue. Antimony (Sb) is a toxic element used in semiconductor components and flame retardants for circuit board within electronic equipment. When e-waste is recycled, Sb is released and contaminates the surrounding environment; however, few studies have characterized the extent of this problem. In this study, we investigated Sb and arsenic (As) distributions in indoor dust from 13 e-waste recycling villages in Guiyu, Guangdong Province, southeastern China. Results revealed significantly elevated concentrations of Sb (6.1-232 mg/kg) in dust within all villages, which were 3.9-147 times higher than those from the non e-waste sites, indicating e-waste recycling was an important source of Sb pollution. On the contrary, As concentrations (5.4-17.7 mg/kg) in e-waste dusts were similar to reference values from the control sites. Therefore, dusts emitted from e-waste recycling may be characterized by high Sb/As ratios, which may help identify the contamination due to the e-waste recycling activities. - Highlights: {yields} Antimony and arsenic concentrations in dust from e-waste recycling were investigated. {yields} E-waste recycling is an important emerging source of Sb pollution. {yields} Sb/As ratios may help identify the e-waste contamination.

  8. A Black Phosphate Conversion Coating on Steel Surface Using Antimony(III)-Tartrate as an Additive

    Science.gov (United States)

    Li, Feng; Wang, Guiping

    2016-05-01

    A novel black phosphate conversion coating was formed on steel surface through a Zn-Mn phosphating bath containing mainly ZnO, H3PO4, Mn(H2PO4)2, and Ca(NO3)2, where antimony(III)-tartrate was used as the blackening agent of phosphatization. The surface morphology and composition of the coating were characterized by scanning electron microscopy, energy dispersion spectroscopy, and x-ray photoelectron spectroscopy. Corrosion resistance of the coating was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy. The pH value of the solution had significant influence on the formation and corrosion resistance of the coating. The experimental results indicated that the Sb plays a vital role in the blackening of phosphate conversion coating. The optimal concentration of antimony(III)-tartrate in the phosphating bath used in this experiment was 1.0 g L-1, as higher values reduced the corrosion resistance of the coating. In addition, by saponification and oil seals, the corrosion duration of the black phosphate coating in a copper sulfate spot test can be as long as 20 min.

  9. Effect of antimony incorporation on structural properties of CuInS{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabeh, M., E-mail: mohamedbenrabeh@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Chaglabou, N., E-mail: nadia_chaglabou@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia); Kanzari, M., E-mail: Mounir.Kanzari@ipeit.rnu.t [Laboratoire de Photovoltaique et Materiaux Semi-Conducteurs - ENIT BP 37, Le belvedere, 1002 Tunis (Tunisia)

    2010-02-15

    CuInS{sub 2} (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS{sub 2} phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  10. Effect of antimony incorporation on structural properties of CuInS2 crystals

    International Nuclear Information System (INIS)

    Ben Rabeh, M.; Chaglabou, N.; Kanzari, M.

    2010-01-01

    CuInS 2 (CIS) single crystals doped with 1, 2, 3 and 4 atomic percent (at.%) of antimony (Sb) were grown by the horizontal Bridgman method. The effect of Sb doping on the structural properties of CIS crystal was studied by means of X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and PL measurements. X-ray diffraction data suggests that the doping of Sb in the CIS single crystals does not affect the tetragonal (chalcopyrite) crystal structure and exhibited a (1 1 2) preferred orientation. In addition, with increasing Sb concentration, the X-ray diffraction analysis show that Sb doped CIS crystals are more crystallized and the diffraction peaks of the CuInS 2 phase were more pronounced in particular the (1 1 2) plane. EDAX study revealed that Sb atoms can occupy the indium site and/or occupying the sulfur site to make an acceptor. PL spectra of undoped and Sb doped CIS crystals show two emission peaks at 1.52 and 1.62 eV, respectively which decreased with increasing atomic percent antimony. Sb doped CIS crystals show p-type conductivity.

  11. Major activated corrosion products cobalt, silver and antimony in the primary coolant of PWR power plants

    International Nuclear Information System (INIS)

    Xu Mingxia

    2012-01-01

    The production of the major activated corrosion products such as cobalt, silver and antimony in the primary coolant of PWR power plants and the impacts on the increase of the dose rates caused by these corrosion products during the shutdown are described in the paper. Investigating the corrosion product behavior during the operation and shutdown periods aims at detecting the appearance of these radiological pollutants in the early time and searching relevant solutions that may enable eventually to decrease the dose rate. The solutions may include: Replacing critical material in the primary system's equipment and components, which contact with primary coolant circuit to possibly limit the source term, Elaborating strictly the specific chemical and shutdown procedure to optimize the purification capacity and to minimize the over-contaminations; Improving purification techniques according to the real operation circumstance, and limiting the impacts of these pollutants. It is obvious in the real practices that implementing appropriate solution will be benefit to decrease or limit the pollutants species like cobalt, silver and antimony. (author)

  12. Thermodynamic properties of liquid silver-antimony alloys determined from emf measurements

    International Nuclear Information System (INIS)

    Krzyzak, Agnieszka; Fitzner, Krzysztof

    2004-01-01

    The thermodynamic properties of the liquid Ag-Sb alloys were determined using solid oxide galvanic cells with zirconia electrolyte. The emfs of the cells:Ag x Sb (1-x), Sb 2 O 3 /O 2- /airwere measured in the temperatures range 950-1100K in the whole range of the alloy compositions.First, the Gibbs free energy of formation of liquid Sb 2 O 3 from pure elements was derived:ΔG o f(Sb2O3) (J/mol)=-687100+243.23T.Next, the activities of antimony were measured as a function of the alloy compositions, x. Redlich-Kister polynomial expansion was used to describe the thermodynamic properties of the liquid phase. From the model equations the limiting value of the logarithm of activity coefficient of antimony in silver was obtained as a function of temperature:lnγ Sb 0 =-3812.5/T+0.4112.The obtained results were compared with the experimental values reported in the literature

  13. Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium

    Science.gov (United States)

    Michalski, Rajmund; Szopa, Sebastian; Jabłońska, Magdalena; Łyko, Aleksandra

    2012-01-01

    Due to the fact that metals and metalloids have a strong impact on the environment, the methods of their determination and speciation have received special attention in recent years. Arsenic, antimony, and thallium are important examples of such toxic elements. Their speciation is especially important in the environmental and biomedical fields because of their toxicity, bioavailability, and reactivity. Recently, speciation analytics has been playing a unique role in the studies of biogeochemical cycles of chemical compounds, determination of toxicity and ecotoxicity of selected elements, quality control of food products, control of medicines and pharmaceutical products, technological process control, research on the impact of technological installation on the environment, examination of occupational exposure, and clinical analysis. Conventional methods are usually labor intensive, time consuming, and susceptible to interferences. The hyphenated techniques, in which separation method is coupled with multidimensional detectors, have become useful alternatives. The main advantages of those techniques consist in extremely low detection and quantification limits, insignificant interference, influence as well as high precision and repeatability of the determinations. In view of their importance, the present work overviews and discusses different hyphenated techniques used for arsenic, antimony, and thallium species analysis, in different clinical, environmental and food matrices. PMID:22654649

  14. Synthesis of Antimony Doped Tin Oxide and its Use as Electrical Humidity Sensor

    Directory of Open Access Journals (Sweden)

    B. C. Yadav

    2008-05-01

    Full Text Available In this paper we report the humidity sensitive electrical properties of antimony doped tin oxide. Antimony has been doped within SnO2 in the ratio 1:1. The pellet has been made by hydraulic pressing machine at pressure 30 MPa and room temperature 24°C. This pellet, has been annealed at 200ºC, 300ºC, 400ºC, 500ºC and 600ºC successively for 3 hrs and after each step annealing, observations were taken. It has been observed, as Relative Humidity (%RH increases, there is decrease in the resistivity of pellet for the entire range of RH i.e. from 10% to 95%. Linear decrease is observed for the range of RH from 10% to 85% for annealing temperature 200ºC and 300ºC, from 10% to 60% for annealing temperature 400ºC and from 10% to 30% for annealing temperature 500ºC and 600ºC respectively. Scanning electron micrographs show the surface morphology and X-ray diffraction reveals the nanostructure of sensing element. Results have been found reproducible with hysterisis of ± 2% after 3 months.

  15. Antimony trioxide-induced apoptosis is dependent on SEK1/JNK signaling.

    Science.gov (United States)

    Mann, Koren K; Davison, Kelly; Colombo, Myrian; Colosimo, April L; Diaz, Zuanel; Padovani, Alessandra M S; Guo, Qi; Scrivens, P James; Gao, Wenli; Mader, Sylvie; Miller, Wilson H

    2006-01-05

    Very little is known concerning the toxicity of antimony, despite its commercial use as a flame retardant and medical use as a treatment for parasitic infections. Our previous studies show that antimony trioxide (Sb(2)O(3)) induces growth inhibition in patient-derived acute promyelocytic leukemia (APL) cell lines, a disease in which a related metal, arsenic trioxide (As(2)O(3)), is used clinically. However, signaling pathways initiated by Sb(2)O(3) treatment remain undefined. Here, we show that Sb(2)O(3) treatment of APL cells is associated with increased apoptosis as well as differentiation markers. Sb(2)O(3)-induced reactive oxygen species (ROS) correlated with increased apoptosis. In addition, when we decreased the buffering capacity of the cell by depleting glutathione, ROS production and apoptosis was enhanced. Arsenic-resistant APL cells with increased glutathione levels exhibited increased cross-resistance to Sb(2)O(3). Based on studies implicating c-jun kinase (JNK) in the mediation of the response to As(2)O(3), we investigated the role for JNK in Sb(2)O(3)-induced apoptosis. Sb(2)O(3) activates JNK and its downstream target, AP-1. In fibroblasts with a genetic deletion in SEK1, an upstream regulator of JNK, Sb(2)O(3)-induced growth inhibition as well as JNK activation was decreased. These data suggest roles for ROS and the SEK1/JNK pathway in the cytotoxicity associated with Sb(2)O(3) exposure.

  16. Sulfur redox chemistry governs diurnal antimony and arsenic cycles at Champagne Pool, Waiotapu, New Zealand

    Science.gov (United States)

    Ullrich, Maria K.; Pope, James G.; Seward, Terry M.; Wilson, Nathaniel; Planer-Friedrich, Britta

    2013-07-01

    Champagne Pool, a sulfidic hot spring in New Zealand, exhibits distinct diurnal variations in antimony (Sb) and arsenic (As) concentrations, with daytime high and night-time low concentrations. To identify the underlying mobilization mechanisms, five sites along the drainage channel of Champagne Pool were sampled every 2 h during a 24 h period. Temporal variations in elemental concentrations and Sb, As, and sulfur (S) speciation were monitored in the discharging fluid. Total trace element concentrations in filtered and unfiltered samples were analyzed using ICP-MS, and Sb, As and S species were determined by IC-ICP-MS. Sulfur speciation in the drainage channel was dominated by thiosulfate and sulfide at night, while sulfate dominated during the day. The distinct diurnal changes suggest that the transformations are caused by phototrophic sulfur-oxidizing bacteria. These bacteria metabolize thiosulfate and sulfide in daylight to form sulfate and, as suggested by modeling with PhreeqC, elemental sulfur. Sulfide consumption during the day results in undersaturation of antimony sulfides, which triggers the additional release of dissolved Sb. For As, diurnal cycles were much more pronounced in speciation than in total concentrations, with di- and trithioarsenate forming at night due to excess sulfide, and monothioarsenate forming from arsenite and elemental sulfur during the day. Sulfur speciation was thus found to control Sb and As in terms of both solubility and speciation.

  17. Speciation analysis of antimony in extracts of size-classified volcanic ash by HPLC-ICP-MS.

    Science.gov (United States)

    Miravet, R; López-Sánchez, J F; Rubio, R; Smichowski, P; Polla, G

    2007-03-01

    Although there is concern about the presence of toxic elements and their species in environmental matrices, for example water, sediment, and soil, speciation analysis of volcanic ash has received little attention. Antimony, in particular, an emerging element of environmental concern, has been less studied than other potentially toxic trace elements. In this context, a study was undertaken to assess the presence of inorganic Sb species in ash emitted from the Copahue volcano (Argentina). Antimony species were extracted from size-classified volcanic ash (<36 microm, 35-45 microm, 45-150 microm, and 150-300 microm) by use of 1 mol L(-1) citrate buffer at pH 5. Antimony(III) and (V) in the extracts were separated and quantified by high-performance liquid chromatography combined on-line with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Antimony species concentrations (microg g(-1)) in the four fractions varied from 0.14 to 0.67 for Sb(III) and from 0.02 to 0.03 for Sb(V). The results reveal, for the first time, the occurrence of both inorganic Sb species in the extractable portion of volcanic ash. Sb(III) was always the predominant species.

  18. Glass and antimony electrodes for long-term pH monitoring: a dynamic in vitro comparison

    NARCIS (Netherlands)

    Geus, W. P.; Smout, A. J.; Kooiman, J. C.; Lamers, C. B.; Gues, J. W.

    1995-01-01

    OBJECTIVE: To compare the performance of combined glass microelectrodes with monocrystalline and polycrystalline antimony electrodes with external reference in a 24-h dynamic in vitro study. DESIGN AND METHODS: In an artificial stomach, the pH of the contents titrated from pH1-7 and back by NaOH and

  19. Ambulatory oesophageal pH monitoring: a comparison between antimony, ISFET, and glass pH electrodes

    NARCIS (Netherlands)

    Hemmink, Gerrit J. M.; Weusten, Bas L. A. M.; Oors, Jac; Bredenoord, Albert J.; Timmer, Robin; Smout, André J. P. M.

    2010-01-01

    BACKGROUND AND AIM: Ambulatory oesophageal pH-impedance monitoring is a widely used test to evaluate patients with reflux symptoms. Several types of pH electrodes are available: antimony, ion sensitive field effect transistor (ISFET), and glass electrodes. These pH electrodes have not been compared

  20. Zinc depletion promotes apoptosis-like death in drug-sensitive and antimony-resistance Leishmania donovani.

    Science.gov (United States)

    Saini, Shalini; Bharati, Kavita; Shaha, Chandrima; Mukhopadhyay, Chinmay K

    2017-09-05

    Micronutrients are essential for survival and growth for all the organisms including pathogens. In this manuscript, we report that zinc (Zn) chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethylenediamine (TPEN) affects growth and viability of intracellular pathogen Leishmania donovani (LD) by a concentration and time dependent manner. Simultaneous addition of zinc salt reverses the effect of TPEN. Further experiments provide evidence of apoptosis-like death of the parasite due to Zn-depletion. TPEN treatment enhances caspase-like activity suggesting increase in apoptosis-like events in LD. Specific inhibitors of cathepsin B and Endoclease G block TPEN-induced leishmanial death. Evidences show involvement of reactive oxygen species (ROS) potentially of extra-mitochondrial origin in TPEN-induced LD death. Pentavalent antimonials remained the prime source of treatment against leishmaniasis for several decades; however, antimony-resistant Leishmania is now common source of the disease. We also reveal that Zn-depletion can promote apoptosis-like death in antimony-resistant parasites. In summary, we present a new finding about the role of zinc in the survival of drug sensitive and antimony-resistant LD.

  1. Direct separation of arsenic and antimony oxides by high-temperature filtration with porous FeAl intermetallic.

    Science.gov (United States)

    Zhang, Huibin; Liu, Xinli; Jiang, Yao; Gao, Lin; Yu, Linping; Lin, Nan; He, Yuehui; Liu, C T

    2017-09-15

    A temperature-controlled selective filtration technology for synchronous removal of arsenic and recovery of antimony from the fume produced from reduction smelting process of lead anode slimes was proposed. The chromium (Cr) alloyed FeAl intermetallic with an asymmetric pore structure was developed as the high-temperature filter material after evaluating its corrosive resistance, structural stability and mechanical properties. The results showed that porous FeAl alloyed with 20wt.% Cr had a long term stability in a high-temperature sulfide-bearing environment. The separation of arsenic and antimony trioxides was realized principally based on their disparate saturated vapor pressures at specific temperature ranges and the asymmetric membrane of FeAl filter elements with a mean pore size of 1.8μm. Pilot-scale filtration tests showed that the direct separation of arsenic and antimony can be achieved by a one-step or two-step filtration process. A higher removal percentage of arsenic can reach 92.24% at the expense of 6∼7% loss of antimony in the two-step filtration process at 500∼550°C and 300∼400°C. The FeAl filters had still good permeable and mechanical properties with 1041h of uninterrupted service, which indicates the feasibility of this high-temperature filtration technology. Copyright © 2017. Published by Elsevier B.V.

  2. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  3. Enhanced electrochemical stability of carbon-coated antimony nanoparticles with sodium alginate binder for sodium-ion batteries

    Directory of Open Access Journals (Sweden)

    Jianmin Feng

    2018-04-01

    Full Text Available The poor cycling stability of antimony during a repeated sodium ion insertion and desertion process is the key issue, which leads to an unsatisfactory application as an anode material in a sodium-ion battery. Addressed at this, we report a facile two-step method to coat antimony nanoparticles with an ultrathin carbon layer of few nanometers (denoted Sb@C NPs for sodium-ion battery anode application. This carbon layer could buffer the volume change of antimony in the charge-discharge process and improve the battery cycle performance. Meanwhile, this carbon coating could also enhance the interfacial stability by firmly connecting the sodium alginate binders through its oxygen-rich surface. Benefitted from these advantages, an improved initial discharge capacity (788.5 mA h g−1 and cycling stability capacity (553 mA h g−1 after 50 times cycle have been obtained in a battery using Sb@C NPs as anode materials at 50 mA g−1. Keywords: Sodium-ion battery, Antimony, Sodium alginate, Liquid-phase reduction, Carbon coating

  4. Comparative phytotoxicity of methylated and inorganic arsenic- and antimony species to Lemna minor, Wolffia arrhiza and Selenastrum capricornutum

    NARCIS (Netherlands)

    Duester, L.; van der Geest, H.G.; Moelleken, S.; Hirner, A.V.; Kueppers, K.

    2011-01-01

    The alkylation of metalloids through the transfer of methyl groups is an important factor in the biogeochemical cycling of elements like arsenic and antimony. In the environment, many different organic and inorganic forms of these elements can therefore be found in soils, sediments or organisms.

  5. Diffuse x-ray scattering and transmission electron microscopy study of defects in antimony-implanted silicon

    Science.gov (United States)

    Takamura, Y.; Marshall, A. F.; Mehta, A.; Arthur, J.; Griffin, P. B.; Plummer, J. D.; Patel, J. R.

    2004-04-01

    Ion implantation followed by laser annealing has been used to create supersaturated and electrically active concentrations of antimony in silicon. Upon subsequent thermal annealing, however, these metastable dopants deactivate towards the equilibrium solubility limit. In this work, the formation of inactive antimony structures has been studied with grazing incidence diffuse x-ray scattering, and transmission electron microscopy, and the results are correlated to previous high-resolution x-ray diffraction data. We find that at a concentration of 6.0×1020 cm-3, small, incoherent clusters of radius 3-4 Å form during annealing at 900 °C. At a higher concentration of 2.2×1021 cm-3, deactivation at 600 °C occurs through the formation of small, antimony aggregates and antimony precipitates. The size of these precipitates from diffuse x-ray scattering is roughly 15 Å in radius for anneal times from 15 to 180 seconds. This value is consistent with the features observed in high-resolution and mass contrast transmission electron microscopy images. The coherent nature of the aggregates and precipitates causes the expansion of the surrounding silicon matrix as the deactivation progresses. In addition, the sensitivity of the diffuse x-ray scattering technique has allowed us to detect the presence of small clusters of radius ˜2 Å in unprocessed Czochralski silicon wafers. These defects are not observed in floating zone silicon wafers, and are tentatively attributed to thermal donors.

  6. Health and ecological risk assessment of heavy metals pollution in an antimony mining region: a case study from South China.

    Science.gov (United States)

    Fei, Jiang-Chi; Min, Xiao-Bo; Wang, Zhen-Xing; Pang, Zhi-Hua; Liang, Yan-Jie; Ke, Yong

    2017-12-01

    In recent years, international research on the toxicity of the heavy metal, antimony, has gradually changed focus from early medical and pharmacological toxicology to environmental toxicology and ecotoxicology. However, little research has been conducted for sources identification and risk management of heavy metals pollution by long-term antimony mining activities. In this study, a large number of investigations were conducted on the temporal and spatial distribution of antimony and related heavy metal contaminants (lead, zinc, and arsenic), as well as on the exposure risks for the population for the Yuxi river basin in the Hunan province, China. The scope of the investigations included mine water, waste rock, tailings, agricultural soil, surface water, river sediments, and groundwater sources of drinking water. Health and ecological risks from exposure to heavy metal pollution were evaluated. The main pollution sources of heavy metals in the Yuxi River basin were analyzed. Remediation programs and risk management strategies for heavy metal pollution were consequently proposed. This article provides a scientific basis for the risk assessment and management of heavy metal pollution caused by antimony basin ore mining.

  7. [Hydrogen bis(1,2,4-triazole] 1,2,4-triazolium bis(3-carboxy-4-hydroxybenzenesulfonate 1,2,4-triazole disolvate

    Directory of Open Access Journals (Sweden)

    Ming-qiang Qiu

    2010-08-01

    Full Text Available The title compound, C2H4N3+·[H(C2H3N32]+·2C7H5O6S−·2C2H3N3, consists of two types of 1,2,4-triazole monocation, one protonated at the 2-site lying across a twofold axis and the other protonated at the 4-site with the H atom disordered over a center of symmetry, a 5-sulfosalicylate anion and a neutral 1,2,4-triazole molecule. The component ions are linked into a three-dimensional network by a combination of N—H...O, N—H...N, O—H...O, O—H...N, C—H...O and C—H...N hydrogen bonds. In addition, benzene–benzene π–π interactions of 3.942 (2 Å [interplanar spacing = 3.390 (2 Å] and C—O...π (3.331 Å interactions are observed.

  8. 1+ collective states of 124Cs and 126Cs nuclei

    International Nuclear Information System (INIS)

    Ivanova, S.P.; Kuliev, A.A.; Salamov, D.I.

    1977-01-01

    Within the framework of the random phase approximation β-decay properties of the 1 + states of 124 Cs and 126 Cs have been investigated. Greatly collectivized 1 + states in odd-odd nuclei are produced by the spin-dependent charge-exchange nucleon interaction. For numerical calculations the scheme of single-particle levels in the deformed Saxon-Woods potential has been used

  9. [Infecting glial cells with antimony resistant Leishmania tropica: A new ex-vivo model].

    Science.gov (United States)

    Zorbozan, Orçun; Harman, Mehmet; Evren, Vedat; Erdoğan, Mümin Alper; Kılavuz, Aslı; Tunalı, Varol; Çavuş, İbrahim; Yılmaz, Özlem; Özbilgin, Ahmet; Turgay, Nevin

    2018-01-01

    Leishmaniasis is a vector-borne zoonotic disease that shows different clinical features like cutaneous, mucocutaneous, visceral and viscerotropic forms. The protocols used in the treatment of leishmaniasis are toxic and have many limitations during administration. One of the limitations of treatment is the resistance against the protocols in practice. There is also a need to define new treatment options especially for resistant patients. Ex-vivo models using primary cell cultures may be a good source for evaluating new drug options in patients with antimony resistance, in addition to in-vitro and in-vivo studies. In this study, it was aimed to define a new ex-vivo culture model to evaluate treatment options in patients with cutaneous leishmaniasis who did not respond to treatment. In our experimental model of ex-vivo infection, Leishmania tropica promastigotes isolated from a case previously diagnosed with cutaneous leishmaniasis were used. The primary astroglial cell culture used for the ex-vivo model was prepared from 2-3 days old neonatal Sprague Dawley rat brains under sterile conditions by the modification McCarthy's method. The astroglia cells, which reached sufficient density, were infected with antimony resistant L.tropica promastigotes. After 24 hours of incubation, the supernatant on the cells were collected, the cell culture plate was dried at room temperature, then fixed with methyl alcohol and stained with Giemsa to search for L.tropica amastigotes. Amastigotes were intensely observed in glia cells in primary cell cultures infected with L.tropica promastigotes. No promastigotes were seen on Giemsa stained preparations of the precipitates prepared from the bottom sediment after the centrifugation of the liquid medium removed from the infected plates. In this study, promastigotes from a cutaneous leishmaniasis patient unable to respond to pentavalent antimony therapy were shown to infect rat glia cells and converted to amastigote form. This amastigote

  10. Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings

    International Nuclear Information System (INIS)

    Cai, Fei; Ren, Jinghua; Tao, Shu; Wang, Xilong

    2016-01-01

    Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10–26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration. - Highlights: • Sb(V) caused lipid peroxidation and increased iron plaque formation at root surface. • The iron plaque may suppress uptake of Sb by rice. • Cultivars

  11. Regioselectivity in the Thermal Rearrangement of Unsymmetrical 4-Methyl-4H-1,2,4-triazoles to 1-Methyl-1H-1,2,4-triazoles

    Directory of Open Access Journals (Sweden)

    Per H.J. Carlsen

    2001-11-01

    Full Text Available The rearrangement of 4-methyl-3,5-diaryl-4H-1,2,4-triazoles to the corresponding 1-methyl-3,5-diaryl-1H-1,2,4-triazoles showed regioselectivity comparable to that observed for the alkylation of 3,5-diaryl-1H-1,2,4-triazoles. This lends support to a proposed mechanism for the rearrangement that involves consecutive nucleophilic displacements steps.

  12. 13 CFR 124.106 - When do disadvantaged individuals control an applicant or Participant?

    Science.gov (United States)

    2010-01-01

    ... Hawaiian Organizations, and for CDC-owned concerns.) Disadvantaged individuals managing the concern must... Hawaiian Organizations, or Community Development Corporations (CDCs). (See §§ 124.109, 124.110, and 124.111... right to cause a change in the control or management of the applicant concern does not in itself...

  13. The Effect of Adding Antimony Trioxide (Sb2O3 ‎On A.C Electrical Properties of (PVA-PEG Films

    Directory of Open Access Journals (Sweden)

    Akeel Shakir Alkelaby

    2017-12-01

    Full Text Available In this work, many samples have been prepared by adding Antimony Trioxide (Sb2O3 to the polyvinyl alcohol-poly ethylene glycol (PVA-PEG. The effect of the Sb2O3 added as a filler with different weight percentages on the A.C electrical properties have been investigated. The samples were prepared as films by solution cast technique. The experimental results of the A.C electrical properties show that the dielectric constant increase with the increasing frequency of applied electrical field and concentration of the Antimony Trioxide. Dielectric loss decrease with the increasing the frequency, while it increases with the increase of the concentration of the Antimony Trioxide. The A.C electrical conductivity increase with increasing the Antimony Trioxide contain and frequency for the composition.

  14. Toxicity Assessments of Antimony, Barium, Beryllium, and Manganese for Development of Ecological Soil Screening Levels (ECO-SSL) Using Earthworm (Eisenia Fetida) Benchmark Values

    National Research Council Canada - National Science Library

    Simini, Michael

    2002-01-01

    ... soil that supports relatively high bioavailability of barium (Ba), beryllium (Be), manganese (Mn), and antimony (Sb). For the metals tested, cocoon production was a more sensitive endpoint than was survival...

  15. Improved Long-Term Stability of Transparent Conducting Electrodes Based on Double-Laminated Electrosprayed Antimony Tin Oxides and Ag Nanowires

    Directory of Open Access Journals (Sweden)

    Koo B.-R.

    2017-06-01

    Full Text Available We fabricated double-laminated antimony tin oxide/Ag nanowire electrodes by spin-coating and electrospraying. Compared to pure Ag nanowire electrodes and single-laminated antimony tin oxide/Ag nanowire electrodes, the double-laminated antimony tin oxide/Ag nanowire electrodes had superior transparent conducting electrode performances with sheet resistance ~19.8 Ω/□ and optical transmittance ~81.9%; this was due to uniform distribution of the connected Ag nanowires because of double lamination of the metallic Ag nanowires without Ag aggregation despite subsequent microwave heating at 250°C. They also exhibited excellent and superior long-term chemical and thermal stabilities and adhesion to substrate because double-laminated antimony tin oxide thin films act as the protective layers between Ag nanowires, blocking Ag atoms penetration.

  16. The system analysis of temperature and melting enthalpy of intermetallic compounds of antimony-lanthanoids system of Sb Ln, Sb2Ln composition

    International Nuclear Information System (INIS)

    Badalova, M.A.; Chamanova, M.; Dodkhoev, E.S.; Badalov, A.; Abdusalyamova, M.N.

    2015-01-01

    Present article is devoted to system analysis of temperature and melting enthalpy of intermetallic compounds of antimony-lanthanoids system of Sb Ln, Sb 2 Ln composition. The melting enthalpy was estimated. The temperature value was determined.

  17. First-principles study of antimony doping effects on the iron-based superconductor CaFe(SbxAs1−x)2

    International Nuclear Information System (INIS)

    Nagai, Yuki; Nakamura, Hiroki; Machida, Masahiko; Kuroki, Kazuhiko

    2015-01-01

    We study antimony doping effects on the iron-based superconductor CaFe(Sb x As 1−x ) 2 by using the first-principles calculation. The calculations reveal that the substitution of a doped antimony atom into As of the chainlike As layers is more stable than that into FeAs layers. This prediction can be checked by experiments. Our results suggest that doping homologous elements into the chainlike As layers, which only exist in the novel 112 system, is responsible for rising up the critical temperature. We discuss antimony doping effects on the electronic structure. It is found that the calculated band structures with and without the antimony doping are similar to each other within our framework. (author)

  18. First-Principles Study of Antimony Doping Effects on the Iron-Based Superconductor CaFe(SbxAs1-x)2

    Science.gov (United States)

    Nagai, Yuki; Nakamura, Hiroki; Machida, Masahiko; Kuroki, Kazuhiko

    2015-09-01

    We study antimony doping effects on the iron-based superconductor CaFe(SbxAs1-x)2 by using the first-principles calculation. The calculations reveal that the substitution of a doped antimony atom into As of the chainlike As layers is more stable than that into FeAs layers. This prediction can be checked by experiments. Our results suggest that doping homologous elements into the chainlike As layers, which only exist in the novel 112 system, is responsible for rising up the critical temperature. We discuss antimony doping effects on the electronic structure. It is found that the calculated band structures with and without the antimony doping are similar to each other within our framework.

  19. Study on Stereochemical Activity of Lone Pair Electrons in Sulfur and Halogen Coordinated Antimony(III) Complexes by 121Sb Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Ohyama, Ryuhichi; Takahashi, Masashi; Takeda, Masuo

    2005-01-01

    We have measured 121 Sb Moessbauer spectra at 20 K for 52 compounds of antimony(III). An Sb(III) atom with the electron configuration [Kr] 4d 10 5s 2 has a lone pair electrons. The stereochemical property of the lone pair has been found to depend very much on the kinds of atoms surrounding the antimony atom and the configurations of the coordinating atoms.

  20. Efficacy of pentavalent antimoniate intralesional infiltration therapy for cutaneous leishmaniasis: A systematic review.

    Directory of Open Access Journals (Sweden)

    Nayara Castelano Brito

    Full Text Available The mainstays of cutaneous leishmaniasis (CL treatment, in several world regions, are pentavalent antimony (Sbv compounds administered parenterally, despite their recognized toxicity, which requires frequent laboratory monitoring and complicates their use in areas with scarce infrastructure. As result of these drawbacks, the WHO Expert Committee on leishmaniasis has expanded the recommendations for the use of local therapies, including Sbv intralesional infiltration (IL-Sbv, as CL therapy alternatives even in the New World. However, the efficacy of these approaches has never been compiled. The aim of this study was to critically and systematically assess the efficacy of IL-Sbv for CL treatment.The PRISMA guidelines for systematic reviews and the Cochrane manual were followed. The sources used were the MEDLINE and LILACS databases and the International Clinical Trials Registry Platform of the World Health Organization. The outcome of interest was a clinical cure, defined as complete re-epithelialization of all lesions. The IL-Sbv pooled cure rate was estimated for several subgroups and direct comparisons were performed when possible.Thirty nine articles (40 studies involving 5679 patients treated with IL-Sbv infiltration were included. In direct comparison, only three studies involving 229 patients compared IL-Sbv infiltration versus placebo and no difference was observed (OR: 1,9; 95%IC 0,93 to 3,82 based on cure rate 69.6% (95%CI 17.6-96.1% and 83,2% (95%CI 66-92.7% for placebo and IL-Sbv, respectively. In an alternative and non-comparative analysis, gathering all study arms using the intervention, the pooled IL-Sbv efficacy rate was 75% (95%CI 68-81%. In the Old World, the observed overall IL-Sbv efficacy rate was 75% (95%CI 66-82%, and the cure rates were significantly higher with sodium stibogluconate (SSG than with meglumine antimoniate (MA: 83% (95%CI 75-90% versus 68% (95%CI 54-79%, p = 0.03. Studies directly comparing IL-Sbv with topical

  1. Mid-infrared optical properties of chalcogenide glasses within tin-antimony-selenium ternary system.

    Science.gov (United States)

    Lin, Ruiqiang; Chen, Feifei; Zhang, Xiaoyu; Huang, Yicong; Song, Baoan; Dai, Shixun; Zhang, Xianghua; Ji, Wei

    2017-10-16

    In this work, we investigated the mid-infrared (MIR) optical properties of selenide (Se-based) chalcogenide glasses (ChGs) within an As- and Ge-free system, namely the environment-friendly and low-cost tin-antimony-selenium (Sn-Sb-Se, SSS) ternary system, which has not been systematically studied to the best of our knowledge. As compared to ChGs within those conventional Se-based systems, SSS ChGs were found to exhibit extended infrared transmittance range as well as larger linear refractive index (n 0 ). Femtosecond Z-scan measurements show the presence of evident three-photon absorption from Urbach absorption of the SSS ChGs at MIR wavelength, which resonantly enhanced the nonlinear refractive behavior and resulted in large nonlinear refractive index (n 2 ).

  2. Concerted Electrodeposition and Alloying of Antimony on Indium Electrodes for Selective Formation of Crystalline Indium Antimonide.

    Science.gov (United States)

    Fahrenkrug, Eli; Rafson, Jessica; Lancaster, Mitchell; Maldonado, Stephen

    2017-09-19

    The direct preparation of crystalline indium antimonide (InSb) by the electrodeposition of antimony (Sb) onto indium (In) working electrodes has been demonstrated. When Sb is electrodeposited from dilute aqueous electrolytes containing dissolved Sb 2 O 3 , an alloying reaction is possible between Sb and In if any surface oxide films are first thoroughly removed from the electrode. The presented Raman spectra detail the interplay between the formation of crystalline InSb and the accumulation of Sb as either amorphous or crystalline aggregates on the electrode surface as a function of time, temperature, potential, and electrolyte composition. Electron and optical microscopies confirm that under a range of conditions, the preparation of a uniform and phase-pure InSb film is possible. The cumulative results highlight this methodology as a simple yet potent strategy for the synthesis of intermetallic compounds of interest.

  3. REDOX BEHAVIOR AND DIFFUSIVITY OF ANTIMONY AND CERIUM ION IN ALKALI ALKALINE EARTH SILICATE GLASS MELTS

    Directory of Open Access Journals (Sweden)

    K. D. Kim

    2010-03-01

    Full Text Available Redox behavior and diffusivity of antimony and cerium ion in alkali alkaline earth silicate CRT (Cathode Ray Tube model glass melts were studied by means of square wave voltammetry under the frequency range of 5-1000 Hz and in the temperature range of 800-1400°C. According to voltammogram, peaks due to Sb³⁺/Sb⁰ were positioned in the negative potential region while peaks due to Sb⁵⁺/Sb³⁺ and Ce⁴⁺/Ce³⁺ were found in the positive potential region. By using some equations, correlation for peak potential versus temperature and peak current versus reciprocal frequency was examined, respectively. Their correlation showed a linear relation in the applied temperature and frequency range. Based on the linear relationship, thermodynamic and kinetic properties for each redox reaction were suggested.

  4. Synthesis and antileishmanial activity of antimony (V) complexes of hydroxypyranone and hydroxypyridinone ligands.

    Science.gov (United States)

    Sheikhmoradi, Vafa; Saberi, Sedigheh; Saghaei, Lotfollah; Pestehchian, Nader; Fassihi, Afshin

    2018-04-01

    A novel series of antimony (V) complexes with the hydroxypyranone and hydroxypyridinone ligands were synthesized and characterized by 1 HNMR, FT-IR and electron spin ionization mass spectroscopic (ESI-MS) techniques. The synthesis process involved protection of hydroxyl group followed by the reaction of the intermediate with primary amines and finally deprotection. All compounds were evaluated for in vitro activities against the amastigote and promastigote forms of Leishmania major . Most of the synthesized compounds exhibited good antileishmanial activity against both forms of L. major . IC 50 values of the most active compounds; 9d , 9d and 9e , after 24, 48 and 72 h against amastigote model were 15, 12.5 and 5.5 μg/mL, respectively. 9e , 11 and 9e inhibited the promastigote form of parasite after 24, 48 and 72 h with IC 50 values of 10, 2 and 1 μg/mL, respectively.

  5. Properties of antimony doped ZnO thin films deposited by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Sadananda Kumar, N., E-mail: sadanthara@gmail.com; Bangera, Kasturi V.; Shivakumar, G. K. [National Institute of Technology Karnataka, Surathkal, Thin Films Laboratory, Department of Physics (India)

    2015-07-15

    Antimony (Sb) doped zinc oxide (ZnO) thin films were deposited on the glass substrate at 450°C using spray pyrolysis technique. Effect of Sb doping on surface morphology structural, optical and electrical properties were studied. X-ray diffraction (XRD) analysis showed that both the undoped and doped ZnO thin films are polycrystalline in nature with (101) preferred orientation. SEM analysis showed a change in surface morphology of Sb doped ZnO thin films. Doping results in a marked increase in conductivity without affecting the transmittance of the films. ZnO films prepared with 3 at % Sb shows the lowest resistivity of 0.185 Ohm cm with a Hall mobility of 54.05 cm{sup 2} V{sup –1} s{sup –1}, and a hole concentration of 6.25 × 10{sup 17} cm{sup –3}.

  6. Antimony Complexes for Electrocatalysis: Activity of a Main-Group Element in Proton Reduction.

    Science.gov (United States)

    Jiang, Jianbing; Materna, Kelly L; Hedström, Svante; Yang, Ke R; Crabtree, Robert H; Batista, Victor S; Brudvig, Gary W

    2017-07-24

    Main-group complexes are shown to be viable electrocatalysts for the H 2 -evolution reaction (HER) from acid. A series of antimony porphyrins with varying axial ligands were synthesized for electrocatalysis applications. The proton-reduction catalytic properties of TPSb(OH) 2 (TP=5,10,15,20-tetra(p-tolyl)porphyrin) with two axial hydroxy ligands were studied in detail, demonstrating catalytic H 2 production. Experiments, in conjunction with quantum chemistry calculations, show that the catalytic cycle is driven via the redox activity of both the porphyrin ligand and the Sb center. This study brings insight into main group catalysis and the role of redox-active ligands during catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evaluations of antimony and strontium interaction in an Al–Si–Cu–Zn die cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Farahany, Saeed, E-mail: saeedfarahany@gmail.com; Idris, Mohd Hasbullah; Ourdjini, Ali

    2014-05-01

    Graphical abstract: - Highlights: • Probable interactions between Sb and Sr in a complex Al–Si alloy were evaluated. • Sequence of addition did not affect thermal and microscopical characteristics. • Threshold ratio for the Sb and Sr interaction is proposed. - Abstract: The interaction between antimony and strontium in an ADC12 die casting alloy is investigated comprehensively by using a computer aided cooling curve thermal analysis coupled with microstructure inspection. The results of the thermal analysis show significant changes in Al–Si eutectic reaction based on different concentrations of Sb and Sr. Sb reduces the efficiency of Sr in modifying the eutectic Si. Based upon the data obtained in this study, the threshold Sr/Sb ratio should exceed about 0.5 in order to obtain fully modified structure. Moreover, a pre-eutectic reaction of Al{sub 2}Si{sub 2}Sr intermetallic was detected for high concentrations of Sr.

  8. Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate-citrate combustion method

    International Nuclear Information System (INIS)

    Zhang Jianrong; Gao Lian

    2004-01-01

    Antimony-doped tin oxide (ATO) nanoparticles having rutile structure have been synthesized by the combustion method using citric acid (CA) as fuel and nitrate as an oxidant, the metal sources were granulated tin and Sb 2 O 3 . The influence of citric acid (fuel) to metal ratio on the average crystallite size, specific surface area and morphology of the nanoparticles has been investigated. X-ray diffraction showed the tin ions were reduced to elemental tin during combustion reaction. The average ATO crystallite size increased with the increase of citric acid (fuel). Powder morphology and the comparison of crystallite size and grain size shows that the degree of agglomeration of the powder decreased with an increase of the ratio. The highest specific surface area was 37.5 m 2 /g when the citric acid to tin ratio was about 6

  9. Determination of arsenic antimony and selenium in water by neutron activation and coprecipitation with bismuth sulfide

    International Nuclear Information System (INIS)

    Bertini, L.M.; Cohen, I.M.

    1984-01-01

    A method was developed for determination of arsenic, antimony and selenium in water samples, based on neutron activation and separation by coprecipitation with bismuth sulfide. Experiments performed with the aid of radioactive tracers proved that As(III), Sb(III) and Se, either as Se(IV) or Se(VI), were quantitatively coprecipitated in 1.2 N HCl, provided they were present in masses larger than 10 ng, 50 ng, and 20 ng, respectively; 24 Na and 82 Br were collected at minimum percentages (0.5 and 2) when using hold-back carriers, whereas no appreciable coprecipitation of 32 P was observed. Interferences by other trace elements were also investigated, finding that they were negligible in most of the cases. The method was applied to the analysis of underground water samples from the province of Cordoba (Republica Argentina). The characteristics of this method and the results are discussed. 12 references, 2 tables

  10. Bismuth and antimony-based oxyhalides and chalcohalides as potential optoelectronic materials

    Science.gov (United States)

    Ran, Zhao; Wang, Xinjiang; Li, Yuwei; Yang, Dongwen; Zhao, Xin-Gang; Biswas, Koushik; Singh, David J.; Zhang, Lijun

    2018-03-01

    In the last decade the ns2 cations (e.g., Pb2+ and Sn2+)-based halides have emerged as one of the most exciting new classes of optoelectronic materials, as exemplified by for instance hybrid perovskite solar absorbers. These materials not only exhibit unprecedented performance in some cases, but they also appear to break new ground with their unexpected properties, such as extreme tolerance to defects. However, because of the relatively recent emergence of this class of materials, there remain many yet to be fully explored compounds. Here, we assess a series of bismuth/antimony oxyhalides and chalcohalides using consistent first principles methods to ascertain their properties and obtain trends. Based on these calculations, we identify a subset consisting of three types of compounds that may be promising as solar absorbers, transparent conductors, and radiation detectors. Their electronic structure, connection to the crystal geometry, and impact on band-edge dispersion and carrier effective mass are discussed.

  11. Microbial diversity and community structure in an antimony-rich tailings dump.

    Science.gov (United States)

    Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Xiao, Qingxiang; Sun, Weimin

    2016-09-01

    To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus, Limnobacter, Nocardioides, Lysobacter, Phormidium, and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter, are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities.

  12. Synthesis and optical properties of antimony oxide glasses doped with holmium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Raghunatha, S.; Eraiah, B., E-mail: eraiah@rediffmail.com [Department of physics, Bangalore University, Bengaluru – 560 056. India (India)

    2016-05-06

    Holmium doped lithium-antimony-lead borate glasses having 1 mol% AgNO{sub 3} with composition 50B{sub 2}O{sub 3}-20PbO-25Sb{sub 2}O{sub 3}-5Li{sub 2}O have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses. The optical direct band gap energies were found to be in the range of 3.10 eV to 3.31 eV and indirect band gap energies were found to be in the range of 2.28 eV to 3.00 eV. The refractive indexes have been calculated by using Lorentz-Lorenz formula and the calculated values in the range of 2.31 to 2.37.

  13. Novel antimony doped tin oxide/carbon aerogel as efficient electrocatalytic filtration membrane

    Directory of Open Access Journals (Sweden)

    Zhimeng Liu

    2016-05-01

    Full Text Available A facile method was developed to prepare antimony doped tin oxide (Sb-SnO2/carbon aerogel (CA for use as an electrocatalytic filtration membrane. The preparation process included synthesis of a precursor sol, impregnation, and thermal decomposition. The Sb-SnO2, which was tetragonal in phase with an average crystallite size of 10.8 nm, was uniformly distributed on the CA surface and firmly attached via carbon-oxygen-tin chemical bonds. Preliminary filtration tests indicated that the Sb-SnO2/CA membrane had a high rate of total organic carbon removal for aqueous tetracycline owing to its high current efficiency and electrode stability.

  14. Successful treatment of feline leishmaniosis using a combination of allopurinol and N-methyl-glucamine antimoniate

    Directory of Open Access Journals (Sweden)

    Maria Alexandra Basso

    2016-02-01

    Full Text Available Case summary This work describes the diagnosis and successful treatment of a 2-year-old domestic cat infected with Leishmania species and presenting fever, and ulcerative and nodular skin lesions after being treated for pyodermatitis for 1 year without clinical improvement. After anamnesis the cat was submitted to a complete clinical examination. Blood was collected for determination of haematological and biochemical parameters, detection of feline leukaemia virus (FeLV, feline immunodeficiency virus (FIV, feline coronavirus (FCoV and Leishmania amastigotes. Fine-needle aspiration puncture from the skin nodules was also performed. After definitive diagnosis the animal was treated and followed up over a 2 year period. The animal tested negative for FIV-specific antibodies, FeLV antigen and feline coronavirus RNA. Leishmania amastigotes in the skin nodules were confirmed by cytology and molecular diagnosis. Treatment was initiated with allopurinol, resulting in a slight clinical improvement. Thus, N-methyl-glucamine antimoniate was added and administered for 30 days, with complete closure of the ulcerative lesions in the hindlimbs requiring a surgical approach. Close monitoring of the patient in the following 24 months indicated that combined therapy was safe and clinical cure was achieved without further relapses or side effects. Relevance and novel information Considering the increasing number of feline leishmaniosis cases and the inconsistent results of most therapeutic protocols described in the literature, the use of new approaches, especially in refractory cases, is essential. Although the use of allopurinol and N-methyl-glucamine antimoniate is off-label in cats, in this case the combination treatment was followed by an extensive analytical monitoring, supporting their safety and effectiveness.

  15. Optical properties of Eu{sup 3+}-doped antimony-oxide-based low phonon disordered matrices

    Energy Technology Data Exchange (ETDEWEB)

    Som, Tirtha; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.i [Glass Technology Laboratory, Glass Division, Central Glass and Ceramic Research Institute (Council of Scientific and Industrial Research), 196 Raja S C Mullick Road, Kolkata 700032 (India)

    2010-01-27

    A new series of monolithic Eu{sub 2}O{sub 3}-doped high antimony oxide (40-80 mol%) content disordered matrices (glasses) of low phonon energy (about 600 cm{sup -1}) in the K{sub 2}O-B{sub 2}O{sub 3}-Sb{sub 2}O{sub 3} (KBS) system was prepared by the melt-quench technique. Infrared reflection spectroscopy was used to establish the low phonon energy of the glasses. Amorphicity and devitrification of the glasses were confirmed by x-ray diffraction analysis. UV-vis absorption spectra of Eu{sup 3+} have been measured and the band positions have been justified with quantitative calculation of the nephelauxetic parameter and covalent bonding characteristics of the host. These Eu{sub 2}O{sub 3}-doped glasses upon excitation at 393 nm radiation exhibit six emission bands in the range 500-750 nm due to their low phonon energy. Of these, the magnetic dipole {sup 5}D{sub 0} -> {sup 7}F{sub 1} transition shows small Stark splitting while the electric dipole {sup 5}D{sub 0}->{sup 7}F{sub 2} transition undergoes remarkable Stark splitting into two components. They have been explained by the crystal field effect. The Judd-Ofelt parameters, {Omega}{sub t{sub =2,4,6}}, were also evaluated and the change of {Omega}{sub t} with the glass composition was correlated with the asymmetric effect at Eu{sup 3+} ion sites and the fundamental properties like covalent character and optical basicity. We are the first to report the spectroscopic properties of the Eu{sup 3+} ion in KBS low phonon antimony glasses.

  16. MiR-124 suppresses cell proliferation in hepatocellular carcinoma by targeting PIK3CA

    International Nuclear Information System (INIS)

    Lang, Qingbo; Ling, Changquan

    2012-01-01

    Highlights: ► PIK3CA is a novel target of miR-124 in HepG2 cells. ► MiR-124 suppresses cell proliferation by downregulating PIK3CA expression. ► MiR-124 regulates the PI3K/Akt pathway in HepG2 cells. ► MiR-124 overexpression inhibits the tumorigenesis in nude mice. -- Abstract: MicroRNAs (miRNAs) have crucial roles in the development and progression of human cancers, including hepatocellular carcinoma (HCC). Recent studies have shown that microRNA-124 (miR-124) was downregulated in HCC; however, the underlying mechanisms by which miR-124 suppresses tumorigenesis in HCC are largely unknown. In this study, we report that phosphoinositide 3-kinase catalytic subunit alpha (PIK3CA) is a novel target of miR-124 in HepG2 cells. Overexpression of miR-124 resulted in decreased expression of PIK3CA at both mRNA and protein levels. We found that miR-124 overexpression markedly suppressed cell proliferation by inducing G1-phase cell-cycle arrest in vitro. Consistent with the restoring miR-124 expression, PIK3CA knockdown suppressed cell proliferation, whereas overexpression of PIK3CA abolished the suppressive effect of miR-124. Mechanistic studies showed that miR-124-mediated reduction of PIK3CA resulted in suppression of PI3K/Akt pathway. The expressions of Akt and mTOR, key components of the PI3K/Akt pathway, were all downregulated. Moreover, we found overexpressed miR-124 effectively repressed tumor growth in xenograft animal experiments. Taken together, our results demonstrate that miR-124 functions as a growth-suppressive miRNA and plays an important role in inhibiting the tumorigenesis through targeting PIK3CA.

  17. Neurophysiological defects and neuronal gene deregulation in Drosophila mir-124 mutants.

    Directory of Open Access Journals (Sweden)

    Kailiang Sun

    2012-02-01

    Full Text Available miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124-expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology.

  18. Differential pulse polarographic determination of trace antimony in standard biological samples after preconcentration using 2-nitroso-1-naphthol-4-sulfonic acid

    International Nuclear Information System (INIS)

    Taher, M. A.

    2003-01-01

    A highly selective, rapid and economical differential polarographic method has been developed for the determination of trace amounts of antimony in various standard alloys and biological samples after of its 2-naphthol-4 sulfonic acid tetradecyl dimethylbenzylammonium chloride on microcrystalline naphthalene in the ph range of 7.5-11.0. After filtration, the solid mass is shaken with 8-10 ml of 1 M hydrochloric acid (with preconcentration factor of 10) and antimony is determined by differential pulse polarography. Antimony can alternatively be quantitatively absorbed on 2-nitroso-1-naphthol-4-sulfonic acid tetradecyl dimethylbenzylammonium-naphthalene absorbed packed in a column (with preconcentration factor of 30) and determined similarly. In this case, 1.5 μg of antimony can be concentrated in a column from 300 ml of aqueous sample, where its concentration is as low as 5 ng/ml. Characterization of the electro active process included an examination of the degree of reversibility. The results show that the irreversibility of antimony. Various parameters such as the effect of ph, volume of aqueous phase, HCl concentration, reagent concentration, naphthalene concentration, shaking time and interference of a number of metal ions on the determination of antimony have been studied in detail to optimize the conditions for determination in standard alloys and standard biological samples

  19. Low concentrations of antimony impair DNA damage signaling and the repair of radiation-induced DSB in HeLa S3 cells.

    Science.gov (United States)

    Koch, Barbara; Maser, Elena; Hartwig, Andrea

    2017-12-01

    Antimony is utilized in a large variety of industrial applications, leading to significant environmental and occupational exposure. Mainly based on animal experiments, the IARC and MAK Commission have classified antimony and its inorganic compounds as Group 2B or 2 carcinogens, respectively. However, the underlying mode(s) of action are still largely unknown. In the present study, we investigated the impact of non-cytotoxic up to cytotoxic concentrations of SbCl 3 on DNA DSB repair and cell cycle control in HeLa S3 cells. We induced DSB by γ-irradiation and analyzed inhibitory actions of antimony on potential molecular targets of the DSB repair machinery. Antimony disturbed cell cycle control, affecting phosphorylation of Chk1. Furthermore, the repair of DSB was impaired in the presence of antimony, as monitored by pulsed-field gel electrophoresis and γH2AX foci formation of cells in G1 and G2 phase. Specifically, BRCA1 and RAD51 were identified as molecular targets. Our results point towards an interference with both non-homologous end-joining (NHEJ) and homologous recombination (HR), and inhibitory effects may be explained by interactions with critical cysteine groups; this needs to be further investigated. Altogether, the results provide further evidence for the impairment of DNA repair processes as one underlying mechanism in antimony-induced carcinogenicity.

  20. Decreased antimony uptake and overexpression of genes of thiol metabolism are associated with drug resistance in a canine isolate of Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Verónica Gómez Pérez

    2016-08-01

    Full Text Available Visceral leishmaniasis (VL caused by the protozoan parasite Leishmania infantum, is one of the most important zoonotic diseases affecting dogs and humans in the Mediterranean area. The presence of infected dogs as the main reservoir host of L. infantum is regarded as the most significant risk for potential human infection. We have studied the susceptibility profile to antimony and other anti-leishmania drugs (amphotericin B, miltefosine, paromomycin in Leishmania infantum isolates extracted from a dog before and after two therapeutic interventions with meglumine antimoniate (subcutaneous Glucantime®, 100 mg/kg/day for 28 days. After the therapeutic intervention, these parasites were significantly less susceptible to antimony than pretreatment isolate, presenting a resistance index of 6-fold to SbIII for promastigotes and >3-fold to SbIII and 3-fold to SbV for intracellular amastigotes. The susceptibility profile of this resistant L. infantum line is related to a decreased antimony uptake due to lower aquaglyceroporin-1 expression levels. Additionally, other mechanisms including an increase in thiols and overexpression of enzymes involved in thiol metabolism, such as ornithine decarboxylase, trypanothione reductase, mitochondrial tryparedoxin and mitochondrial tryparedoxin peroxidase, could contribute to the resistance as antimony detoxification mechanisms. A major contribution of this study in a canine L. infantum isolate is to find an antimony-resistant mechanism similar to that previously described in other human clinical isolates.

  1. Nuclear Structure of 124Xe Studied with β+/EC-Decay

    Science.gov (United States)

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.

    The nuclear structure of 124Xe was investigated using γ-ray spectroscopy following the β+/EC-decay of 124Cs. A very high-statistics data set was collected and γγ coincidence data was analyzed, greatly adding to the 124Xe level scheme. A new decay branch from the high-spin isomer of 124Cs was observed as well as weak E2 transitions into excited 0+ states in 124Xe. B(E2) transition strengths of such low-spin transitions are very important in determining collective properties, which are currently poorly characterized in the region of neutron-deficient xenon isotopes.

  2. Remediation of antimony-rich mine waters: Assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor.

    Science.gov (United States)

    Sun, Weimin; Xiao, Enzong; Kalin, Margarete; Krumins, Valdis; Dong, Yiran; Ning, Zengping; Liu, Tong; Sun, Min; Zhao, Yanlong; Wu, Shiliang; Mao, Jianzhong; Xiao, Tangfu

    2016-08-01

    An on-site field-scale bioreactor for passive treatment of antimony (Sb) contamination was installed downstream of an active Sb mine in Southwest China, and operated for one year (including a six month monitoring period). This bioreactor consisted of five treatment units, including one pre-aerobic cell, two aerobic cells, and two microaerobic cells. With the aerobic cells inoculated with indigenous mine water microflora, the bioreactor removed more than 90% of total soluble Sb and 80% of soluble antimonite (Sb(III)). An increase in pH and decrease of oxidation-reduction potential (Eh) was also observed along the flow direction. High-throughput sequencing of the small subunit ribosomal RNA (SSU rRNA) gene variable (V4) region revealed that taxonomically diverse microbial communities developed in the bioreactor. Metal (loid)-oxidizing bacteria including Ferrovum, Thiomonas, Gallionella, and Leptospirillum, were highly enriched in the bioreactor cells where the highest total Sb and Sb(III) removal occurred. Canonical correspondence analysis (CCA) indicated that a suite of in situ physicochemical parameters including pH and Eh were substantially correlated with the overall microbial communities. Based on an UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree and PCoA (Principal Coordinates Analysis), the microbial composition of each cell was distinct, indicating these in situ physicochemical parameters had an effect in shaping the indigenous microbial communities. Overall, this study was the first to employ a field-scale bioreactor to treat Sb-rich mine water onsite and, moreover, the findings suggest the feasibility of the bioreactor in removing elevated Sb from mine waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. 2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-[124I]iodouracil ([124I]FIAU)

    International Nuclear Information System (INIS)

    Chae, Min Jeong; Lee, Tae Sup; Kim, June Youp

    2008-01-01

    The HSV1-tk gene has been extensively studied as a type of reporter gene. In hepatocellular carcinoma (HCC), only a small proportion of patients are eligible for surgical resection and there is limitation in palliative options. Therefore, there is a need for the develoopement of new treatment modalities and gene therapy is a leading candidate. In the present study, we investigated the usefulness of substrate, 2'-fluoro-2'-deoxy-1-β -D-arabino-furanosyl-5-[ 124/125 I]iodo- uracil ([ 124/125 I]FIAU) as a non-invasive imaging agent for HSV1-tk gene therapy in hepatoma model using small animal PET. With the Morris hepatoma MCA cell line and MCA-tk cell line which was transduced with the HSV1-tk gene, in vitro uptake and correlation study between [ 125 I]FIAU uptake according to increasing numeric count of percentage of MCA-tk cell were performed. The biodistribution data and small animal PET images with [ 124 I]FIAU were obtained with Balb/c-nude mice bearing both MCA and MCA-tk tumors. Specific accumulation of [ 125 I]FIAU was observed in MCA-tk cells but uptake was low in MCA cells. Uptake in MCA-tk cells was 15 times higher than that of MCA cells at 480 min. [ 125 I]FIAU uptake was linearly correlated (R2=0.964, p=0.01) with increasing percentage of MCA-tk numeric cell count. Biodistribution results showed that [ 125 I]FIAU was mainly excreted via the renal system in the early phase. Ratios of MCA-tk tumor to blood acting were 10, 41, and 641 at 1 h, 4 h, and 24 h post-injection, respectively. The maximum ratio of MCA-tk to MCA tumor was 192.7 at 24 h. Ratios of MCA-tk tumor to liver were 13.8, 66.8, and 588.3 at 1 h, 4 h, and 24 h, respectively. On small aninal PET, [ 124 I]FIAU accumulated in substantial higher levels in MCA-tk tumor and liver than MCA tumor. FIAU shows selective accumulation to HSV1-tk expressing hepatoma cell tumors with minimal uptake in normal liver. Therefore, radiolabelled FIAU is expected to be a useful substrate for non-invasive imaging

  4. MicroRNA-124 (MiR-124 Inhibits Cell Proliferation, Metastasis and Invasion in Colorectal Cancer by Downregulating Rho-Associated Protein Kinase 1(ROCK1

    Directory of Open Access Journals (Sweden)

    Liqing Zhou

    2016-05-01

    Full Text Available Background/Aims: MiR-124 inhibits neoplastic transformation, cell proliferation, and metastasis and downregulates Rho-associated protein kinase (ROCK1 in Colorectal Cancer (CRC. The aim of this study was to further investigate the roles and interactions of ROCK1 and miR-124 and the effects of knockdown of ROCK1and MiR-124 in human Colorectal Cancer (CRC. Methods: Three Colorectal cancer cell lines (HCT116, HT29 and SW620 and one Human Colonic Mucosa Epithelial cell line (NCM460 were studied. The protein expression of ROCK1 was examined by Western-blot and qRT-PCR were performed to examine the expression levels of ROCK1 mRNA and miR-124. Furthermore, We performed transfection of cancer cell line (SW620 with pre-miR-124(mimics, anti-miR-124(inhibitor, ROCK1 siRNA and the control, then observed the affects of ROCK1 protein expression by westen-blot, cell proliferation by EDU (5-ethynyl-2'deoxyuridine assay and expression levels of ROCK1mRNA by qRT-PCR . A soft agar formation assay, Migration and invasion assays were used to determine the effect of regulation of miR-124 and ROCK1, and survivin on the transformation and invasion capability of colorectal cancer cell. Results: MiR-124 expression was significantly downregulated in CRC cell lines compare to normal (P 0.05. ROCK1 mRNA was unaltered in cells transfected with miR-124 mimic and miR-124 inhibitor, compared to normal controls. There was a significant reduction in ROCK1 protein in cells transfected with miR-124 mimic and a significant increase in cells transfected with miR-124 inhibitor (P Conclusions: In conclusion, our results demonstrated that miR-124 not only promoted cancer cell hyperplasia and significantly associated with CRC metastasis and progression, but also downregulated ROCK1 protein expression. More importantly, increased ROCK1 expression or inhibited miR-124 expression may constitute effective new therapeutic strategies for the treatment of renal cancer in the future.

  5. Cyanide and antimony thermodynamic database for the aqueous species and solids for the EPA-MINTEQ geochemical code

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1989-05-01

    Thermodynamic data for aqueous species and solids that contain cyanide and antimony were tabulated from several commonly accepted, published sources of thermodynamic data and recent journal article. The review does not include gases or organic complexes of either antimony or cyanide, nor does the review include the sulfur compounds of cyanide. The basic thermodynamic data, ΔG/sub f,298//sup o/, ΔH/sub f,298//sup o/, and S/sub f//sup o/ values, were chosen to represent each solid phase and aqueous species for which data were available in the appropriate standard state. From these data the equilibrium constants (log K/sub r,298//sup o/) and enthalpies of reaction (ΔH/sub r,298//sup o/) at 298 K (25/degree/C) were calculated for reactions involving the formation of these aqueous species and solids from the basic components. 34 refs., 14 tabs

  6. Synthesis and characterization of tin and antimony based composites derived by mechanochemical in situ reduction of oxides

    International Nuclear Information System (INIS)

    Patel, P.; Roy, S.; Kim, I.L.-Seok; Kumta, P.N.

    2004-01-01

    Composites consisting of tin and silicon dioxide or antimony and silicon dioxide were synthesized using high energy mechanical milling. The composites were made by the reactive milling of SnO or Sb 2 O 3 with pure Si, resulting in the oxidation of silicon and the reduction of the metal oxides. The minimum time required to complete the reaction for the tin system was 170 min, while the minimum time for the antimony system was 230 min. X-ray diffraction and infrared spectroscopy were used to determine the phases present in the composites. In addition, scanning electron microscopy, along with energy dispersive X-ray analysis (EDX), was used to characterize the microstructure and composition of the resultant material

  7. Effect of antimony, bismuth and calcium addition on corrosion and electrochemical behaviour of AZ91 magnesium alloy

    International Nuclear Information System (INIS)

    Zhou Wei; Aung, Naing Naing; Sun Yangshan

    2009-01-01

    This study investigated the effect of antimony, bismuth and calcium addition on the corrosion and electrochemical behaviour of AZ91 magnesium alloy in 3.5% NaCl solution. Techniques including constant immersion, electrochemical potentiodynamic polarisation, scanning electron microscopy (SEM), energy dispersed spectroscopy (EDS) and X-ray diffraction (XRD) were used to characterise electrochemical and corrosion properties and surface topography. It was found that corrosion attack occurred preferentially on Mg 3 Bi 2 and Mg 3 Sb 2 particles while Mg 17 Al 8 Ca 0.5 and Mg 2 Ca phases showed no detrimental effect on corrosion. Combined addition of small amounts of bismuth and antimony to the AZ91 alloy resulted in significant increase in corrosion rate

  8. First report of the use of meglumine antimoniate for treatment of canine leishmaniasis in a pregnant dog.

    Science.gov (United States)

    Spada, Eva; Proverbio, Daniela; Groppetti, Debora; Perego, Roberta; Grieco, Valeria; Ferro, Elisabetta

    2011-01-01

    Canine leishmaniasis during pregnancy is rarely reported, even in countries where the infection in dogs is endemic. The authors report a case of a 4 yr old bitch with leishmaniasis treated with meglumine antimoniate during pregnancy. The pregnancy and delivery were normal and the bitch presented improvement of the infection during treatment. Three puppies died within 2 days of birth and tested negative via real-time PCR for L. infantum. The two surviving puppies were followed clinically, serologically, and by real-time PCR until 1 yr of age with no evidence of congenital leishmaniasis. L. infantum DNA was detected with real-time PCR analysis of uterine tissue from the bitch at the time of ovariohysterectomy. PCR analysis was performed after an ovariohysterectomy of the bitch that was performed two months after parturition. Meglumine antimoniate use in the pregnant bitch may have prevented vertical transmission of leishmaniasis.

  9. Total β-decay energies and masses of tin, antimony and tellurium isotopes in the vicinity of 50132Sn82

    International Nuclear Information System (INIS)

    Lund, E.; Aleklett, K.; Rudstam, G.

    1977-01-01

    Experimental β-decay energies for short-lived isotopes of tin, antimony and tellurium are presented. Mass-separated sources were produced at the on-line isotope separator OSIRIS. By applying β-γ coincidence methods, total β-decay energies have been determined for the following nuclides: 127-131 Sn, 128 130 131 134 Sb and 134 135 Te. The atomic mass excess has been derived for these nuclei, and comparisons are made with mass formula predictions. (Auth.)

  10. Potentiometric stripping analysis of antimony based on carbon paste electrode modified with hexathia crown ether and rice husk

    International Nuclear Information System (INIS)

    Gadhari, Nayan S.; Sanghavi, Bankim J.; Srivastava, Ashwini K.

    2011-01-01

    Highlights: → Potentiometric stripping analysis (PSA) employed for the determination of antimony. → Hexathia-18C6 and rice husk modified carbon paste electrode developed for the analysis. → Lowest detection limit obtained for the determination of Sb(III) using PSA. → Analysis of Sb in pharmaceutical formulations, human hair, blood serum, urine and sea water. → Rice husk used as a modifier for the first time in electrochemistry. - Abstract: An electrochemical method based on potentiometric stripping analysis (PSA) employing a hexathia 18C6 (HT18C6) and rice husk (RH) modified carbon paste electrode (HT18C6-RH-CPE) has been proposed for the subnanomolar determination of antimony. The characterization of the electrode surface has been carried out by means of scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy and chronocoulometry. By employing HT18C6-RH-CPE, a 12-fold enhancement in the PSA signal (dt/dE) was observed as compared to plain carbon paste electrode (PCPE). Under the optimized conditions, dt/dE (s V -1 ) was proportional to the Sb(III) concentration in the range of 1.42 x 10 -8 to 6.89 x 10 -11 M (r = 0.9944) with the detection limit (S/N = 3) of 2.11 x 10 -11 M. The practical analytical utilities of the modified electrode were demonstrated by the determination of antimony in pharmaceutical formulations, human hair, sea water, urine and blood serum samples. The prepared modified electrode showed several advantages, such as simple preparation method, high sensitivity, very low detection limit and excellent reproducibility. Moreover, the results obtained for antimony analysis in commercial and real samples using HT18C6-RH-CPE and those obtained by inductively coupled plasma-atomic emission spectrometry (ICP-AES) are in agreement at the 95% confidence level.

  11. Potentiometric stripping analysis of antimony based on carbon paste electrode modified with hexathia crown ether and rice husk

    Energy Technology Data Exchange (ETDEWEB)

    Gadhari, Nayan S.; Sanghavi, Bankim J. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India); Srivastava, Ashwini K., E-mail: aksrivastava@chem.mu.ac.in [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098 (India)

    2011-10-03

    Highlights: {yields} Potentiometric stripping analysis (PSA) employed for the determination of antimony. {yields} Hexathia-18C6 and rice husk modified carbon paste electrode developed for the analysis. {yields} Lowest detection limit obtained for the determination of Sb(III) using PSA. {yields} Analysis of Sb in pharmaceutical formulations, human hair, blood serum, urine and sea water. {yields} Rice husk used as a modifier for the first time in electrochemistry. - Abstract: An electrochemical method based on potentiometric stripping analysis (PSA) employing a hexathia 18C6 (HT18C6) and rice husk (RH) modified carbon paste electrode (HT18C6-RH-CPE) has been proposed for the subnanomolar determination of antimony. The characterization of the electrode surface has been carried out by means of scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy and chronocoulometry. By employing HT18C6-RH-CPE, a 12-fold enhancement in the PSA signal (dt/dE) was observed as compared to plain carbon paste electrode (PCPE). Under the optimized conditions, dt/dE (s V{sup -1}) was proportional to the Sb(III) concentration in the range of 1.42 x 10{sup -8} to 6.89 x 10{sup -11} M (r = 0.9944) with the detection limit (S/N = 3) of 2.11 x 10{sup -11} M. The practical analytical utilities of the modified electrode were demonstrated by the determination of antimony in pharmaceutical formulations, human hair, sea water, urine and blood serum samples. The prepared modified electrode showed several advantages, such as simple preparation method, high sensitivity, very low detection limit and excellent reproducibility. Moreover, the results obtained for antimony analysis in commercial and real samples using HT18C6-RH-CPE and those obtained by inductively coupled plasma-atomic emission spectrometry (ICP-AES) are in agreement at the 95% confidence level.

  12. Miltefosine and antimonial drug susceptibility of Leishmania Viannia species and populations in regions of high transmission in Colombia.

    Directory of Open Access Journals (Sweden)

    Olga Lucía Fernández

    2014-05-01

    Full Text Available Pentavalent antimonials have been the first line treatment for dermal leishmaniasis in Colombia for over 30 years. Miltefosine is administered as second line treatment since 2005. The susceptibility of circulating populations of Leishmania to these drugs is unknown despite clinical evidence supporting the emergence of resistance.In vitro susceptibility was determined for intracellular amastigotes of 245 clinical strains of the most prevalent Leishmania Viannia species in Colombia to miltefosine (HePC and/or meglumine antimoniate (Sb(V; 163, (80% were evaluated for both drugs. Additionally, susceptibility to Sb(V was examined in two cohorts of 85 L. V. panamensis strains isolated between 1980-1989 and 2000-2009 in the municipality of Tumaco. Susceptibility to each drug differed among strains of the same species and between species. Whereas 68% of L. V. braziliensis strains presented in vitro resistance to HePC, 69% were sensitive to Sb(V. Resistance to HePC and Sb(V occurred respectively, in 20% y 21% of L. panamensis strains. Only 3% of L. V. guyanensis were resistant to HePC, and none to Sb(V. Drug susceptibility differed between geographic regions and time periods. Subpopulations having disparate susceptibility to Sb(V were discerned among L. V. panamensis strains isolated during 1980-1990 in Tumaco where resistant strains belonged to zymodeme 2.3, and sensitive strains to zymodeme 2.2.Large scale evaluation of clinical strains of Leishmania Viannia species demonstrated species, population, geographic, and epidemiologic differences in susceptibility to meglumine antimoniate and miltefosine, and provided baseline information for monitoring susceptibility to these drugs. Sensitive and resistant clinical strains within each species, and zymodeme as a proxy marker of antimony susceptibility for L. V. panamensis, will be useful in deciphering factors involved in susceptibility and the distribution of sensitive and resistant populations.

  13. The Influence of Remelting on the Properties of AlSi6Cu4 Alloy Modified by Antimony

    OpenAIRE

    Medlen D.; Bolibruchova D.

    2012-01-01

    The paper deals with the problem of multiple remelting influence on AlSi6Cu4 alloy modified by antimony on chosen mechanical characteristics, microstructure and gas content. This foundry alloy is used mostly in automotive industry. Foundry Aluminum-Silicon alloys are also used in number of industrial weight sensitive applications because of their low weight and very good castability and good mechanical properties. Modifiers are usually added to molten aluminum-silicon alloys to refine the eut...

  14. Evaluation of potential dietary toxicity of heavy metals in some common Nigerian beverages: A look at antimony, tin and mercury

    Directory of Open Access Journals (Sweden)

    I.I. Roberts

    2011-11-01

    Full Text Available There is currently little information on the composition of heavy metals in beverages imported and locally produced in Nigeria. The study quantitatively determined the composition of antimony (Sb, tin (Sn and mercury (Hg in 50 different beverage samples and evaluated the extent of violation of guideline values. Analysis of the beverage samples for the presence of Sb, Sn, and Hg was carried out using an atomic absorption spectrophotometer (AAS 929. The mean values detected for mercury, tin and antimony (±SE in fruit juices and soft drinks were 2.39±0.25, 3.66±0.22 and 0.49±0.048 μg/l; 2.93±0.34, 3.60±0.46 and 0.49±0.10 μg/l in dairy drinks and 0.94±0.02, 4.34±0.48 and 0.48±0.05 μg/l in bottled water samples respectively. While antimony detected in all products was below guideline values, mercury and tin were above the acceptable levels established by the World Health Organization, United States Environmental Protection Agency and European Union in most samples tested.

  15. Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy.

    Science.gov (United States)

    Ji, Ying; Sarret, Géraldine; Schulin, Rainer; Tandy, Susan

    2017-12-01

    Antimony (Sb) is a contaminant of increased prevalence in the environment, but there is little knowledge about the mechanisms of its uptake and translocation within plants. Here, we applied for the synchrotron based X-ray absorption near-edge structure (XANES) spectroscopy to analyze the speciation of Sb in roots and shoots of rye grass (Lolium perenne L. Calibra). Seedlings were grown in nutrient solutions to which either antimonite (Sb(III)), antimonate (Sb(V)) or trimethyl-Sb(V) (TMSb) were added. While exposure to Sb(III) led to around 100 times higher Sb accumulation in the roots than the other two treatments, there was no difference in total Sb in the shoots. Antimony taken up in the Sb(III) treatment was mainly found as Sb-thiol complexes (roots: >76% and shoots: 60%), suggesting detoxification reactions with compounds such as glutathione and phytochelatins. No reduction of accumulated Sb(V) was found in the roots, but half of the translocated Sb was reduced to Sb(III) in the Sb(V) treatment. Antimony accumulated in the TMSb treatment remained in the methylated form in the roots. By synchrotron based XANES spectroscopy, we were able to distinguish the major Sb compounds in plant tissue under different Sb treatments. The results help to understand the translocation and transformation of different Sb species in plants after uptake and provide information for risk assessment of plant growth in Sb contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Study of radiation damage restoration and antimony ions redistribution in Si(1 0 0) and Si(1 1 1) crystals

    CERN Document Server

    Labbani, R; Chafi, Z

    2002-01-01

    In this work, we study the radiation damage restoration and antimony ions redistribution into and oriented silicon substrates. The samples are implanted with antimony to a dose of 5x10 sup 1 sup 4 Sb sup + cm sup - sup 2 at 60 keV energy, then annealed under oxygen atmosphere at 900 deg. C, 30 min. The thin layer of SiO sub 2 (which is formed on Si surface by dry oxidation and expected to prevent any loss of Sb sup + dopant during Si recovery) is removed by a 10% HF solution. The specimens are analyzed by H sup + Rutherford Backscattering Spectrometry operating at 0.3 MeV energy in both random and channelling modes. The values of the projected range, R sub p , the standard deviation, DELTA R sub p , and the dose of antimony ions, which are estimated with a simple program, are in agreement with tabulated ones. It is also shown that the surface damage restoration is better for Si(1 0 0) samples than for Si(1 1 1) ones, in other words, the radiation damage is more significant in Si(1 1 1) substrates. Moreover,...

  17. Determination of antimony compounds in waters and juices using ion chromatography-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Lin, Ya-An; Jiang, Shiuh-Jen; Sahayam, A C

    2017-09-01

    A method was developed by coupling ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS) for the speciation of antimony. In this study, antimony species such as antimonite [Sb(III)], antimonate [Sb(V)] and trimethyl antimony(V) (TMeSb) were separated in less than 8min using anion exchange chromatography with a Hamilton PRP-X100 column as the stationary phase. Mobile phase A was 20mmolL -1 ethylenediaminetetraacetic acid (EDTA), 2mmolL -1 potassium hydrogen phthalate (KHP) in 1% v/v methanol (pH 5.5) and 20mmolL -1 EDTA, 2mmolL -1 KHP, 40mmolL -1 (NH 4 ) 2 CO 3 in 1% v/v methanol (pH 9.0) formed mobile phase B. Detection limits and relative standard deviations (RSD) were 0.012-0.032ngmL -1 and 2.2-2.8% respectively. This method was applied to bottled waters and fruit juices purchased in Kaohsiung, Taiwan. In water samples, Sb(V) was the major species where as in juices organometallic Sb species were also present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Treatment of acute cutaneous leishmaniasis with intralesional injection of meglumine antimoniate: comparison of conventional technique with mesotherapy gun.

    Science.gov (United States)

    Kashani, Mansour Nassiri; Sadr, Bardia; Nilforoushzadeh, Mohammad Ali; Arasteh, Mahfar; Babakoohi, Shahab; Firooz, Alireza

    2010-09-01

    The gold standard treatment of Old World leishmaniasis, a common tropical parasitic infestation, is intralesional meglumine antimoniate injection. Mesotherapy is a new minimally invasive method of administration of variable substances to the skin. Comparison of the efficacy and adverse effects of treatment of leishmaniasis with intralesional injection of meglumine antimoniate using conventional method and mesotherapy method. Eighty-five patients with proven leishmaniasis were recruited and randomly treated by one of the two methods, either by conventional injection or by mesotherapy administration weekly. Lesion characteristics were evaluated at every treatment session as well as 1 week, 1 month and 3 months after cessation of treatment. The improvement in lesions was similar in both groups, while it was noted sooner in mesotherapy group with less amount of drug usage (P = 0.005 and 0.016 respectively). Also, patients treated with mesotherapy experienced less pain severity (P = 0.005). Mesotherapy is a safe and effective method of meglumine antimoniate injection for the treatment of cutaneous leishmaniasis and is less painful. © 2010 The International Society of Dermatology.

  19. [Distributions and influencing factors of total dissolved inorganic antimony in the coastal area of Zhejiang and Fujian].

    Science.gov (United States)

    Zhang, Xu-Zhou; Ren, Jing-Ling; Liu, Zong-Guang; Fan, Xiao-Peng; Liu, Cheng-Gang; Wu, Ying

    2014-02-01

    Antimony has been ubiquitously present in the aquatic environment as a toxic and rare metalloid element. The contamination of antimony and its compounds in the environment is increasingly severe, so it has been received extensive attention by the international scientific community. The cruise was carried out in the coastal area of Zhejiang and Fujian provinces in the East China Sea (ECS) in May 2008. The concentrations of total dissolved inorganic antimony (TDISb) were measured by Hydride Generation-Atomic Fluorescence (HG-AFS). The concentration ranges of TDISb in the surface and bottom layer were 0.68-5.64 nmol x L(-1) and 0.71-5.25 nmol x L(-1) with averages of 2.25 and 1.79 nmol x L(-1), respectively. The concentration of TDISb in the study area was lower than the environmental quality standards for surface water of China and drinking water standards of World Health Organization (about 41.08 nmol x L(-1)), indicating that it remained at the pristine level. The concentration of TDISb decreased gradually from the coastal area to the central ECS shelf with higher concentration in the surface layer than the bottom. Water mass mixing, adsorption/desorption behavior on the surface of the suspended particulate matters (SPM) and biological activities were the main influence factors of TDISb biogeochemistry in the study area.

  20. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area

    International Nuclear Information System (INIS)

    Okkenhaug, Gudny; Zhu Yongguan; Luo Lei; Lei Ming; Li Xi; Mulder, Jan

    2011-01-01

    Here, we present one of the first studies investigating the mobility, solubility and the speciation-dependent in-situ bioaccumulation of antimony (Sb) in an active Sb mining area (Xikuangshan, China). Total Sb concentrations in soils are high (527-11,798 mg kg -1 ), and all soils, including those taken from a paddy field and a vegetable garden, show a high bioavailable Sb fraction (6.3-748 mg kg -1 ), dominated by Sb(V). Elevated concentrations in native plant species (109-4029 mg kg -1 ) underpin this. Both chemical equilibrium studies and XANES data suggest the presence of Ca[Sb(OH) 6 ] 2 , controlling Sb solubility. A very close relationship was found between the citric acid extractable Sb in plants and water or sulfate extractable Sb in soil, indicating that citric acid extractable Sb content in plants may be a better predictor for bioavailable Sb in soil than total acid digestible Sb plant content. - Highlights: → Antimony (Sb) in soils from an active Sb mining area is highly bioavailable. → Sb occurs mainly as Sb(V) in Sb mining impacted soils and plants. → Sb solubility in Sb mining impacted soils is governed by Ca[Sb(OH) 6 ] 2 . → Citric acid extractable Sb in plants and bioavailable Sb in soils are strongly correlated. - Antimony (Sb) in soils from an active Sb mining area is highly bioavailable and controlled by the solubility of calcium antimonate.

  1. Antimony speciation analysis in sediment reference materials using high-performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Potin-Gautier, M.; Pannier, F.; Quiroz, W.; Pinochet, H.; Gregori, I. de

    2005-01-01

    This work presents the development of suitable methodologies for determination of the speciation of antimony in sediment reference samples. Liquid chromatography with a post-column photo-oxidation step and hydride generation atomic fluorescence spectrometry as detection system is applied to the separation and determination of Sb(III), Sb(V) and trimethylantimony species. Post-column decomposition and hydride generation steps were studied for sensitive detection with the AFS detector. This method was applied to investigate the conditions under which speciation analysis of antimony in sediment samples can be carried out. Stability studies of Sb species during the extraction processes of solid matrices, using different reagents solutions, were performed. Results demonstrate that for the extraction yield and the stability of Sb species in different marine sediment extracts, citric acid in ascorbic acid medium was the best extracting solution for antimony speciation analysis in this matrix (between 55% and 65% of total Sb was recovered from CRMs, Sb(III) being the predominant species). The developed method allows the separation of the three compounds within 6 min with detection limits of 30 ng g -1 for Sb(III) and TMSbCl2 and 40 ng g -1 for Sb(V) in sediment samples

  2. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts.

    Science.gov (United States)

    Wang, Daren; Zhang, Hui; Li, Min; Frid, Maria G; Flockton, Amanda R; McKeon, B Alexandre; Yeager, Michael E; Fini, Mehdi A; Morrell, Nicholas W; Pullamsetti, Soni S; Velegala, Sivareddy; Seeger, Werner; McKinsey, Timothy A; Sucharov, Carmen C; Stenmark, Kurt R

    2014-01-03

    Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti-miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract-binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3' untranslated region of polypyrimidine tract-binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly

  3. Evaluation of {sup 124}I PET/CT and {sup 124}I PET/MRI in the management of patients with differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dercle, Laurent; Deandreis, Desiree; Terroir, Marie; Leboulleux, Sophie; Lumbroso, Jean; Schlumberger, Martin [Institut Gustave Roussy and University Paris Saclay, Department of Nuclear Medicine and Endocrine Oncology, Villejuif Cedex (France)

    2016-06-15

    The work of Binse and colleagues points out that there are probably some research perspectives for the use of {sup 124}I PET/ CT and PET/MRI in patients with DTC. It shows that there is no substantial advantage of {sup 124}I PET/MRI over {sup 124}I PET/CT for the detection of tumour lesions in the neck when using similar PET devices. It confirms the superiority of {sup 124}I PET over CT and MRI for the detection of iodine-positive lesions. It demonstrates that the use of a more sensitive PET device and a longer acquisition time leads to the detection of more lesions. {sup 124}I PET is a promising research tool for pretherapy dosimetry, the evaluation of response to {sup 131}I treatment and the staging of recurrent or residual disease. The recognized advantages of MRI are the evaluation of aerodigestive tract lesions and suprahyoid region lesions. The coregistration of MRI and {sup 124}I PET/CT might thus be more convenient than {sup 124}I PET/ MRI (shorter time of acquisition, better cost-effectiveness and more accurate attenuation correction). The benefits of these procedures in terms of patient outcome, and for the clinician and the healthcare system remain to be determined.

  4. MicroRNA-124 inhibits the progression of adjuvant-induced arthritis in rats.

    Science.gov (United States)

    Nakamachi, Yuji; Ohnuma, Kenichiro; Uto, Kenichi; Noguchi, Yoriko; Saegusa, Jun; Kawano, Seiji

    2016-03-01

    MicroRNAs (miRNAs) are small endogenous, non-coding RNAs that act as post-transcriptional regulators. We analysed the in vivo effect of miRNA-124 (miR-124, the rat analogue of human miR-124a) on adjuvant-induced arthritis (AIA) in rats. AIA was induced in Lewis rats by injecting incomplete Freund's adjuvant with heat-killed Mycobacterium tuberculosis. Precursor (pre)-miR-124 was injected into the right hind ankle on day 9. Morphological changes in the ankle joint were assessed by micro-CT and histopathology. Cytokine expression was examined by western blotting and real-time RT-PCR. The effect of miR-124 on predicted target messenger RNAs (mRNAs) was examined by luciferase reporter assays. The effect of pre-miR-124 or pre-miR-124a on the differentiation of human osteoclasts was examined by tartrate-resistant acid phosphatase staining. We found that miR-124 suppressed AIA in rats, as demonstrated by decreased synoviocyte proliferation, leucocyte infiltration and cartilage or bone destruction. Osteoclast counts and expression level of receptor activator of the nuclear factor κB ligand (RANKL), integrin β1 (ITGB1) and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) were reduced in AIA rats treated with pre-miR-124. Luciferase analysis showed that miR-124 directly targeted the 3'UTR of the rat NFATc1, ITGB1, specificity protein 1 and CCAAT/enhancer-binding protein α mRNAs. Pre-miR-124 also suppressed NFATc1 expression in RAW264.7 cells. Both miR-124 and miR-124a directly targeted the 3'-UTR of human NFATc1 mRNA, and both pre-miR-124 and pre-miR-124a suppressed the differentiation of human osteoclasts. We found that miR-124 ameliorated AIA by suppressing critical prerequisites for arthritis development, such as RANKL and NFATc1. Thus, miR-124a is a candidate for therapeutic use for human rheumatoid arthritis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada

    International Nuclear Information System (INIS)

    Fawcett, Skya E.; Jamieson, Heather E.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2015-01-01

    Highlights: • Antimony and arsenic were speciated in sediments and pore waters near Giant Mine. • Sediments will continue to be a source of arsenic and antimony to overlying water. • Aquatic vegetation traps contaminated sediment and takes up antimony and arsenic. - Abstract: Elevated levels of arsenic (As) and antimony (Sb) in water and sediments are legacy residues found downstream from gold-mining activities at the Giant Mine in Yellowknife, Northwest Territories (NWT), Canada. To track the transport and fate of As and Sb, samples of mine-waste from the mill, and surface water, sediment, pore-water, and vegetation downstream of the mine were collected. Mine waste, pore-water, and sediment samples were analyzed for bulk chemistry, and aqueous and solid-state speciation. Sediment and vegetation chemistry were evaluated using scanning electron microscope imaging, synchrotron-based element mapping and electron microprobe analysis. The distributions of As and Sb in sediments were similar, yet their distributions in the corresponding pore-waters were mostly dissimilar, and the mobility of As was greater than that of Sb. Competition for sorption sites is the most likely cause of elevated Sb concentrations in relatively oxidized pore-water and surface water. The aqueous and solid-state speciation of As and Sb also differed. In pore-water, As(V) dominated in oxidizing environments and As(III) in reducing environments. In contrast, the Sb(V) species dominated in all but one pore-water sample, even under reducing conditions. Antimony(III) appears to preferentially precipitate or adsorb onto sulfides as evidenced by the prevalence of an Sb(III)-S secondary solid-phase and the lack of Sb(III)(aq) in the deeper zones. The As(V)–O solid phase became depleted with depth below the sediment–water interface, and the Sb(V)–O phase persisted under relatively reducing conditions. In the surficial zone at a site populated by Equisetum fluviatile (common horsetail), As and

  6. The electronic structure of the antimony chalcogenide series: Prospects for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Carey, John J.; Allen, Jeremy P. [School of Chemistry and CRANN, Trinity College Dublin, Dublin 2 (Ireland); Scanlon, David O. [University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Watson, Graeme W., E-mail: watsong@tcd.ie [School of Chemistry and CRANN, Trinity College Dublin, Dublin 2 (Ireland)

    2014-05-01

    In this study, density functional theory is used to evaluate the electronic structure of the antimony chalcogenide series. Analysis of the electronic density of states and charge density shows that asymmetric density, or ‘lone pairs’, forms on the Sb{sup III} cations in the distorted oxide, sulphide and selenide materials. The asymmetric density progressively weakens down the series, due to the increase in energy of valence p states from O to Te, and is absent for Sb{sub 2}Te{sub 3}. The fundamental and optical band gaps were calculated and Sb{sub 2}O{sub 3}, Sb{sub 2}S{sub 3} and Sb{sub 2}Se{sub 3} have indirect band gaps, while Sb{sub 2}Te{sub 3} was calculated to have a direct band gap at Γ. The band gaps are also seen to reduce from Sb{sub 2}O{sub 3} to Sb{sub 2}Te{sub 3}. The optical band gap for Sb{sub 2}O{sub 3} makes it a candidate as a transparent conducting oxide, while Sb{sub 2}S{sub 3} and Sb{sub 2}Se{sub 3} have suitable band gaps for thin film solar cell absorbers. - Graphical abstract: A schematic illustrating the interaction between the Sb{sup III} cations and the chalcogenide anions and the change in their respective energy levels down the series. - Highlights: • The electronic structure of the antimony chalcogenide series is modelled using DFT. • Asymmetric density is present on distorted systems and absent on the symmetric telluride system. • Asymmetric density is formed from the mixing of Sb 5s and anion p states, where the anti-bonding combination is stabilised by the Sb 5p states. • The asymmetric density weakens down the series due to the increase in energy of chalcogenide p states. • The increase in energy of the anion p states reduces the fundamental and optical band gaps.

  7. Preparation of antimony sulfide semiconductor nanoparticles by pulsed laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ren-De, E-mail: son003@sekisui.com [Research & Development Institute, High Performance Plastics Company, Sekisui Chemical Co., Ltd. 2-1 Hyakuyama, Shimamoto-Cho, Mishima-Gun, Osaka, 618-0021 (Japan); Tsuji, Takeshi [Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu-Cho, Matsue, 690-8504 (Japan)

    2015-09-01

    Highlights: • Pulsed laser ablation in liquid (LAL) was applied to prepare antimony sulfide nanoparticles (Sb{sub 2}S{sub 3} NPs). • Sb{sub 2}S{sub 3} NPs with a stoichiometric composition were successfully prepared by LAL in water without using any surfactants or capping agents. • Thus-prepared Sb{sub 2}S{sub 3} NPs showed low-temperature crystallization and melting at a temperature low as 200 °C. • The NPs-coated Sb{sub 2}S{sub 3} thin film showed comparable semiconductor properties (carrier mobility and carrier density) to the vacuum deposited one. • Byproducts such as CS{sub 2}, CH{sub 4} and CO were detected by GC-MS analysis when LAL was performed in organic solvent. • The LAL-induced decomposition mechanism of Sb{sub 2}S{sub 3} and organic solvents was discussed based on the GC-MS results. - Abstract: In this paper, we report on the synthesis of antimony sulfide (Sb{sub 2}S{sub 3}) semiconductor nanoparticles by pulsed laser ablation in liquid without using any surfactants or capping agents. Different results were obtained in water and organic solvents. In the case of water, Sb{sub 2}S{sub 3} nanoparticles with chemical compositions of stoichiometry were successfully prepared when laser irradiation was performed under the condition with the dissolved oxygen removed by argon gas bubbling. It was shown that thus-obtained Sb{sub 2}S{sub 3} nanoparticles exhibit features of not only low-temperature crystallization but also low-temperature melting at a temperature as low as 200 °C. Nanoparticle-coated Sb{sub 2}S{sub 3} thin films were found to show good visible light absorption and satisfying semiconductor properties (i.e., carrier mobility and density), which are essential for photovoltaic application. On the other hand, in the case of organic solvents (e.g., acetone, ethanol), such unexpected byproducts as CS{sub 2}, CO and CH{sub 4} were detected from the reaction system by GC-MS analysis, which suggests that both Sb{sub 2}S{sub 3} and organic

  8. 29 CFR 780.124 - Raising of fur-bearing animals.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Raising of fur-bearing animals. 780.124 Section 780.124... General Scope of Agriculture Raising of Livestock, Bees, Fur-Bearing Animals, Or Poultry § 780.124 Raising of fur-bearing animals. (a) The term “fur-bearing animals” has reference to animals which bear fur of...

  9. 124Iodine: A Longer-Life Positron Emitter Isotope—New Opportunities in Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Giuseppe Lucio Cascini

    2014-01-01

    Full Text Available 124Iodine (124I with its 4.2 d half-life is particularly attractive for in vivo detection and quantification of longer-term biological and physiological processes; the long half-life of 124I is especially suited for prolonged time in vivo studies of high molecular weight compounds uptake. Numerous small molecules and larger compounds like proteins and antibodies have been successfully labeled with 124I. Advances in radionuclide production allow the effective availability of sufficient quantities of 124I on small biomedical cyclotrons for molecular imaging purposes. Radioiodination chemistry with 124I relies on well-established radioiodine labeling methods, which consists mainly in nucleophilic and electrophilic substitution reactions. The physical characteristics of 124I permit taking advantages of the higher PET image quality. The availability of new molecules that may be targeted with 124I represents one of the more interesting reasons for the attention in nuclear medicine. We aim to discuss all iodine radioisotopes application focusing on 124I, which seems to be the most promising for its half-life, radiation emissions, and stability, allowing several applications in oncological and nononcological fields.

  10. The tumor suppressor role of miR-124 in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Shuo Geng

    Full Text Available MicroRNAs have crucial roles in development and progression of human cancers, including osteosarcoma. Recent studies have shown that miR-124 was down-regulated in many cancers; however, the role of miR-124 in osteosarcoma development is unknown. In this study, we demonstrate that expression of miR-124 is significantly downregulated in osteosarcoma tissues and cell lines, compared to the adjacent tissues. The expression of miR-124 in the metastases osteosarcoma tissues was lower than that in non- metastases tissues. We identified and confirmed Rac1 as a novel, direct target of miR-124 using prediction algorithms and luciferase reporter gene assays. Overexpression of miR-124 suppressed Rac1 protein expression and attenuated cell proliferation, migration, and invasion and induced apoptosis in MG-63 and U2OS in vitro. Moreover, overexpression of Rac1 in miR-124-transfected osteosarcoma cells effectively rescued the inhibition of cell invasion caused by miR-124. Therefore, our results demonstrate that miR-124 is a tumor suppressor miRNA and suggest that this miRNA could be a potential target for the treatment of osteosarcoma in future.

  11. Influence of film thickness on structural, optical, and electrical properties of spray deposited antimony doped SnO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Abhijit A., E-mail: aay_physics@yahoo.co.in

    2015-09-30

    Transparent conducting antimony doped SnO{sub 2} thin films with varying thickness were deposited by chemical spray pyrolysis technique from non-aqueous solvent Propan-2-ol. The effect of film thickness on the properties of antimony doped SnO{sub 2} thin films have been studied. X-ray diffraction measurements showed tetragonal crystal structure of as-deposited antimony doped SnO{sub 2} films irrespective of film thickness. The surface morphology of antimony doped SnO{sub 2} thin film is spherical with the continuous distribution of grains. Electrical and optical properties were investigated by Hall Effect and optical measurements. The average optical transmittance of films decreased from 89% to 73% within the visible range (350–850 nm) with increase in film thickness. The minimum value of sheet resistance observed is 4.81 Ω/cm{sup 2}. The lowest resistivity found is 3.76 × 10{sup −4} Ω cm at 660 nm film thickness. - Highlights: • Effect of film thickness on the properties of antimony doped SnO{sub 2} thin films • Crystalline size in the range of 34–37 nm • Average transmittance decreased from 89% to 73% in the visible region. • Minimum sheet resistance of 4.81 Ω/cm{sup 2} • Lowest resistivity is found to be 3.76 × 10{sup −4} Ω cm at 660 nm film thickness.

  12. Chronic exposure to arsenic in drinking water can lead to resistance to antimonial drugs in a mouse model of visceral leishmaniasis.

    Science.gov (United States)

    Perry, Meghan R; Wyllie, Susan; Raab, Andrea; Feldmann, Joerg; Fairlamb, Alan H

    2013-12-03

    The Indian subcontinent is the only region where arsenic contamination of drinking water coexists with widespread resistance to antimonial drugs that are used to treat the parasitic disease visceral leishmaniasis. We have previously proposed that selection for parasite resistance within visceral leishmaniasis patients who have been exposed to trivalent arsenic results in cross-resistance to the related metalloid antimony, present in the pentavalent state as a complex in drugs such as sodium stibogluconate (Pentostam) and meglumine antimonate (Glucantime). To test this hypothesis, Leishmania donovani was serially passaged in mice exposed to arsenic in drinking water at environmentally relevant levels (10 or 100 ppm). Arsenic accumulation in organs and other tissues was proportional to the level of exposure and similar to that previously reported in human liver biopsies. After five monthly passages in mice exposed to arsenic, isolated parasites were found to be completely refractory to 500 μg · mL(-1) Pentostam compared with the control passage group (38.5 μg · mL(-1)) cultured in vitro in mouse peritoneal macrophages. Reassessment of resistant parasites following further passage for 4 mo in mice without arsenic exposure showed that resistance was stable. Treatment of infected mice with Pentostam confirmed that resistance observed in vitro also occurred in vivo. We conclude that arsenic contamination may have played a significant role in the development of Leishmania antimonial resistance in Bihar because inadequate treatment with antimonial drugs is not exclusive to India, whereas widespread antimonial resistance is.

  13. Carbon nanotubes modified with antimony nanoparticles: A novel material for electrochemical sensing

    International Nuclear Information System (INIS)

    Moraes, Fernando C.; Cesarino, Ivana; Cesarino, Vivian; Mascaro, Lucia H.; Machado, Sergio A.S.

    2012-01-01

    Highlights: ► A novel material for the electrochemical sensing was developed. ► Sensor based CNTs modified with Sb-nanoparticles was characterised and applied. ► The proposed sensor was suitable and sensitive for the determination of bisphenol A. - Abstract: In this study, a novel material for the electrochemical determination of bisphenol A using a nanocomposite based on multi-walled carbon nanotubes modified with antimony nanoparticles has been investigated. The morphology, structure, and electrochemical performance of the nanocomposite electrodes were characterised by field emission gun scanning electron microscopy, energy-dispersive X-ray spectroscopy, and cyclic voltammetry. A scan rate study and electrochemical impedance spectroscopy showed that the bisphenol A oxidation product is adsorbed on nanocomposite electrode surface. Differential pulse voltammetry in phosphate buffer solution at pH 6, allowed the development of a method to determine bisphenol A levels in the range of 0.5–5.0 μmol L −1 , with a detection limit of 5.24 nmol L −1 (1.19 μg L −1 ).

  14. Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.

    Science.gov (United States)

    Suehiro, Satoshi; Horita, Keisuke; Yuasa, Masayoshi; Tanaka, Tooru; Fujita, Katsuhiko; Ishiwata, Yoichi; Shimanoe, Kengo; Kida, Tetsuya

    2015-08-17

    The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy. The morphology, crystal phase, and electronic structure were significantly dependent on the chemical composition in the CAS system. Devices were fabricated using particulate films consisting of CAS NCs prepared by spin coating without a high-temperature treatment. The CAS NC-based devices exhibited a diode-like current-voltage characteristic when coupled with an n-type CdS layer. In particular, the CuSbS2 NC devices exhibited photovoltaic responses under simulated sunlight, demonstrating its applicability for use in solution-processed solar cells.

  15. Intrinsic and extrinsic diffusion of phosphorus, arsenic, and antimony in germanium

    International Nuclear Information System (INIS)

    Brotzmann, Sergej; Bracht, Hartmut

    2008-01-01

    Diffusion experiments of phosphorus (P), arsenic (As), and antimony (Sb) in high purity germanium (Ge) were performed at temperatures between 600 and 920 deg. C. Secondary ion mass spectrometry and spreading resistance profiling were applied to determine the concentration profiles of the chemically and electrically active dopants. Intrinsic and extrinsic doping conditions result in a complementary error function and box-shaped diffusion profiles, respectively. These profiles demonstrate enhanced dopant diffusion under extrinsic doping. Accurate modeling of dopant diffusion is achieved on the basis of the vacancy mechanism taking into account singly negatively charged dopant-vacancy pairs and doubly negatively charged vacancies. The activation enthalpy and pre-exponential factor for dopant diffusion under intrinsic condition were determined to 2.85 eV and 9.1 cm 2 s -1 for P, 2.71 eV and 32 cm 2 s -1 for As, and 2.55 eV and 16.7 cm 2 s -1 for Sb. With increasing atomic size of the dopants the activation enthalpy decreases. This is attributed to differences in the binding energy of the dopant-vacancy pairs

  16. Synthesis and characterization of copper antimony tin sulphide thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Ali, N., E-mail: nisar.ali@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Department of Physics, Govt. Post Graduate Jehanzeb College Saidu Sharif, Swat, 19200 (Pakistan); Hussain, A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Ahmed, R., E-mail: rashidahmed@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Wan Shamsuri, W.N. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Fu, Y.Q., E-mail: richard.fu@northumbria.ac.uk [Department of Physics and Electrical Engineering, Faculty of Engineering & Environment, University of Northumbria, Newcastle upon Tyne, NE1 8ST (United Kingdom)

    2016-12-30

    Highlights: • A new and novel material for solar cell applications is demonstrated as a replacement for toxic and expansive compounds. • The materials used in this compound are abundant and low cost. • Compound exhibit unusual optical and electrical properties. • The band gap was found to be comparable with that of GaAs. - Abstract: Low price thin film modules based on Copper antimony tin sulphide (CATS) are introduced for solar harvesting to compete for the already developed compound semiconductors. Here, CATS thin films were deposited on soda lime glass by thermal evaporation technique followed by a rapid thermal annealing in an argon atmosphere. From Our XRD analysis, it was revealed that the annealed samples were poly-crystalline and their crystallinity was improved with increasing annealing temperature. The constituent elements and their corresponding chemical states were identified using X-ray photoelectron spectroscopy. The obtained optical band gap of 1.4 eV for CATS thin film is found nearly equal to GaAs – one of the highly efficient thin film material for solar cell technology. Furthermore, our observed good optical absorbance and low transmittance for the annealed CATS thin films in the visible region of light spectrum assured the aptness of the CATS thin films for solar cell applications.

  17. Safety and efficacy of miltefosine monotherapy and pentoxifylline associated with pentavalent antimony in treating mucosal leishmaniasis.

    Science.gov (United States)

    Ventin, Fernanda; Cincurá, Carolina; Machado, Paulo Roberto Lima

    2018-03-01

    Mucosal Leishmaniasis (ML) is a difficult to treat and severe form of Leishmaniasis. In general, more than 40% of subjects with ML have therapeutic failure upon the use of pentavalent antimony (Sb v ) at 20mg/kg/day during 30 days. Additionally, Sb v is a toxic drug that requires parenteral administration, and many patients will need several courses to be cured. In cases that cannot be treated or cured by Sb v , the alternative is amphotericin B, another toxic and parenteral drug. As a consequence, many ML patients will be cured only after years of disease and may present several morbidities due to the aggressiveness of the disease or toxicity related to the treatment. Areas covered: We aimed to review clinical trials with Miltefosine or Sb v associated with pentoxifylline in the treatment of ML. Expert commentary: There are few studies to define more effective and safer therapy in mucosal disease caused by Leishmania, with an urgent need to supporting and funding well designed trials. Miltefosine monotherapy, as well as pentoxifylline combined with Sb v are promising therapeutic approaches to increase the cure rate of this neglected disease.

  18. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots.

    Science.gov (United States)

    Zhang, Jian; Yang, Ying; Deng, Hui; Farooq, Umar; Yang, Xiaokun; Khan, Jahangeer; Tang, Jiang; Song, Haisheng

    2017-09-26

    Colloidal quantum dots (QDs) of lead halide perovskite have recently received great attention owing to their remarkable performances in optoelectronic applications. However, their wide applications are hindered from toxic lead element, which is not environment- and consumer-friendly. Herein, we utilized heterovalent substitution of divalent lead (Pb 2+ ) with trivalent antimony (Sb 3+ ) to synthesize stable and brightly luminescent Cs 3 Sb 2 Br 9 QDs. The lead-free, full-inorganic QDs were fabricated by a modified ligand-assisted reprecipitation strategy. A photoluminescence quantum yield (PLQY) was determined to be 46% at 410 nm, which was superior to that of other reported halide perovskite QDs. The PL enhancement mechanism was unraveled by surface composition derived quantum-well band structure and their large exciton binding energy. The Br-rich surface and the observed 530 meV exciton binding energy were proposed to guarantee the efficient radiative recombination. In addition, we can also tune the inorganic perovskite QD (Cs 3 Sb 2 X 9 ) emission wavelength from 370 to 560 nm via anion exchange reactions. The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.

  19. Capacity extended bismuth-antimony cathode for high-performance liquid metal battery

    Science.gov (United States)

    Dai, Tao; Zhao, Yue; Ning, Xiao-Hui; Lakshmi Narayan, R.; Li, Ju; Shan, Zhi-wei

    2018-03-01

    Li-Bi based liquid metal batteries (LMBs) have attracted interest due to their potential for solving grid scale energy storage problems. In this study, the feasibility of replacing the bismuth cathode with a bismuth-antimony alloy cathode in lithium based LMBs is investigated. The influence of the Bi:Sb ratio on voltage characteristics is evaluated via the constant current discharge method and electrochemical titration. On observing the cross section of the electrode at various stages of discharge, it is determined that both Sb and Bi form solid intermetallics with Li on the cathode. Additionally, the addition of Bi not only reduces the melting temperature of the Bi:Sb intermetallic but also actively contributes to the electrode capacity. Thereafter, a Li|LiCl-LiF|Sb-Bi liquid metal battery with 3 A h nameplate capacity, assembled and cycled at 1 C rate, is found to possess a stable capacity for over 160 cycles. The overall performance of this battery is discussed in the context of cost effectiveness, energy and coulombic efficiencies.

  20. Assessment and distribution of antimony in soils around three coal mines, Anhui, China

    Science.gov (United States)

    Qi, C.; Liu, Gaisheng; Kang, Y.; Lam, P.K.S.; Chou, C.

    2011-01-01

    Thirty-three soil samples were collected from the Luling, Liuer, and Zhangji coal mines in the Huaibei and Huainan areas of Anhui Province, China. The samples were analyzed for antimony (Sb) by inductively coupled plasmaoptical emission spectrometry (ICP-OES) method. The average Sb content in the 33 samples was 4 mg kg-1, which is lower than in coals from this region (6.2 mg kg-1). More than 75% of the soils sampled showed a significant degree of Sb pollution (enrichment factors [EFs] 5-20). The soils collected near the gob pile and coal preparation plant were higher in Sb content than those collected from residential areas near the mines. The gob pile and tailings from the preparation plant were high in mineral matter content and high in Sb. They are the sources of Sb pollution in surface soils in the vicinity of coal mines. The spatial dispersion of Sb in surface soil in the mine region shows that Sb pollution could reach out as far as 350 m into the local environment conditions. Crops in rice paddies may adsorb some Sb and reduce the Sb content in soils from paddyfields. Vertical distribution of Sb in two soil profiles indicates that Sb is normally relatively immobile in soils. ?? 2011 Air & Waste Management Association.

  1. Silver antimony Ohmic contacts to moderately doped n-type germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, D. C. S.; Gallacher, K.; Millar, R.; Paul, D. J., E-mail: Douglas.Paul@glasgow.ac.uk [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT (United Kingdom); MacLaren, I. [SUPA School of Physics and Astronomy, University of Glasgow, Kelvin Building, University Avenue, Glasgow G12 8QQ (United Kingdom); Myronov, M.; Leadley, D. R. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2014-04-21

    A self doping contact consisting of a silver/antimony alloy that produces an Ohmic contact to moderately doped n-type germanium (doped to a factor of four above the metal-insulator transition) has been investigated. An evaporation of a mixed alloy of Ag/Sb (99%/1%) onto n-Ge (N{sub D}=1×10{sup 18} cm{sup −3}) annealed at 400 °C produces an Ohmic contact with a measured specific contact resistivity of (1.1±0.2)×10{sup −5} Ω-cm{sup 2}. It is proposed that the Ohmic behaviour arises from an increased doping concentration at the Ge surface due to the preferential evaporation of Sb confirmed by transmission electron microscope analysis. It is suggested that the doping concentration has increased to a level where field emission will be the dominate conduction mechanism. This was deduced from the low temperature electrical characterisation of the contact, which exhibits Ohmic behaviour down to a temperature of 6.5 K.

  2. Phase diagram of antimony up to 31 GPa and 835 K

    Science.gov (United States)

    Coleman, A. L.; Stevenson, M.; McMahon, M. I.; Macleod, S. G.

    2018-04-01

    X-ray powder diffraction experiments using resistively heated diamond anvil cells have been conducted in order to establish the phase behavior of antimony up to 31 GPa and 835 K. The dip in the melting curve at 5.7 GPa and 840 K is identified as the triple point between the Sb-I, incommensurate Sb-II, and liquid phases. No evidence of the previously reported simple cubic phase was observed. Determination of the phase boundary between Sb-II and Sb-III suggests the existence of a second triple point in the region of 13 GPa and 1200 K. The incommensurate composite structure of Sb-II was found to remain ordered to the highest temperatures studies—no evidence of disordering of the guest-atom chains was observed. Indeed, the modulation reflections that arise from interactions between the host and guest subsystems were found to be present to the highest temperatures, suggesting such interactions remain relatively strong in Sb even in the presence of increased thermal motion. Finally, we show that the incommensurately modulated structure recently reported as giving an improved fit to diffraction data from incommensurate Ba-IV can be rejected as the structure of Sb-II using a simple density argument.

  3. Bacterial community profile of contaminated soils in a typical antimony mining site.

    Science.gov (United States)

    Wang, Ningning; Zhang, Suhuan; He, Mengchang

    2018-01-01

    The soils around the world's largest antimony mine have been contaminated by high concentrations of Sb and As, which might influence microbial diversity in the surrounding soils. The ecological effects of bioavailable Sb and As on the composition and diversity of microbial community in soils remain unknown. In this study, the relative abundance, taxonomic diversity and composition of bacterial community in soils from a typical Sb mine area, and the relationship between the bacterial community and bioavailable concentrations as well as environmental factors have been investigated comprehensively using high-throughput sequencing (HTS) and diffusive gradients in thin films (DGT). The results indicated that Proteobacteria, Acidobacteria, Chloroflexi, Bacteroidetes, Actinobacteria, Gemmatimonadetes, and Cyanobacteria were the dominant bacterial populations at phylum level in all soil samples, accounting for more than 80% of the bacteria sequenced. The abundance and diversity of bacterial community vary along a metal contamination gradient. Redundancy discriminate analysis (RDA) revealed that 74.74% of bacterial community variation in the contaminated soils was explained by six environmental factors (pH, Sb DGT , As DGT , potential ecological risk index (RI), TC, TN), among which pH, Sb DGT , and As DGT were dominant factors influencing the composition and diversity of bacteria. This study contributes to our understanding of microbial diversity in a local ecosystem and introduces the option of studying bioavailable Sb and As using DGT.

  4. Adsorption combined with superconducting high gradient magnetic separation technique used for removal of arsenic and antimony.

    Science.gov (United States)

    Qi, Zenglu; Joshi, Tista Prasai; Liu, Ruiping; Li, Yiran; Liu, Huijuan; Qu, Jiuhui

    2018-02-05

    Manganese iron oxide (MnFe 2 O 4 ), an excellent arsenic(As)/antimony(Sb) removal adsorbent, is greatly restricted for the solid-liquid separation. Through the application of superconducting high gradient magnetic separation (HGMS) technique, we herein constructed a facility for the in situ solid-liquid separation of micro-sized MnFe 2 O 4 adsorbent in As/Sb removal process. To the relative low initial concentration 50.0μgL -1 , MnFe 2 O 4 material sorbent can still decrease As or Sb below US EPA's drinking water standard limit. The separation of MnFe 2 O 4 was mainly relied on the flow rate and the amount of steel wools in the HGMS system. At a flow rate 1Lmin -1 and 5% steel wools filling rate, the removal efficacies of As and Sb in natural water with the system were achieved to be 94.6% and 76.8%, respectively. At the meantime, nearly 100% micro-sized MnFe 2 O 4 solid in the continuous field was readily to be separated via HGMS system. In a combination with the experiment results and finite element simulation, the separation was seemed to be independent on the magnetic field intensity, and the maximum separation capacities in various conditions were well predicted using the Thomas model (R 2 =0.87-0.99). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Synthesis of Water-Soluble Antimony Sulfide Quantum Dots and Their Photoelectric Properties.

    Science.gov (United States)

    Zhu, Jiang; Yan, Xuelian; Cheng, Jiang

    2018-01-15

    Antimony sulfide (Sb 2 S 3 ) has been applied in photoelectric devices for a long time. However, there was lack of information about Sb 2 S 3 quantum dots (QDs) because of the synthesis difficulties. To fill this vacancy, water-soluble Sb 2 S 3 QDs were prepared by hot injection using hexadecyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) mixture as anionic-cationic surfactant, alkanol amide (DEA) as stabilizer, and ethylenediaminetetraacetic acid (EDTA) as dispersant. Photoelectric properties including absorbing and emission were characterized by UV-Vis-IR spectrophotometer and photoluminescence (PL) spectroscopic technique. An intensive PL emission at 880 nm was found, indicating Sb 2 S 3 QDs have good prospects in near-infrared LED and near-infrared laser application. Sb 2 S 3 QD thin films were prepared by self-assembly growth and then annealed in argon or selenium vapor. Their band gaps (E g s) were calculated according to transmittance spectra. The E g of Sb 2 S 3 QD thin film has been found to be tunable from 1.82 to 1.09 eV via annealing or selenylation, demonstrating the good prospects in photovoltaic application.

  6. Prediction of arsenic and antimony transporter major intrinsic proteins from the genomes of crop plants.

    Science.gov (United States)

    Azad, Abul Kalam; Ahmed, Jahed; Alum, Md Asraful; Hasan, Md Mahbub; Ishikawa, Takahiro; Sawa, Yoshihiro

    2018-02-01

    Major intrinsic proteins (MIPs), commonly known as aquaporins, transport water and non-polar small solutes. Comparing the 3D models and the primary selectivity-related motifs (two Asn-Pro-Ala (NPA) regions, the aromatic/arginine (ar/R) selectivity filter, and Froger's positions (FPs)) of all plant MIPs that have been experimentally proven to transport arsenic (As) and antimony (Sb), some substrate-specific signature sequences (SSSS) or specificity determining sites (SDPs) have been predicted. These SSSS or SDPs were determined in 543 MIPs found in the genomes of 12 crop plants; the As and Sb transporters were predicted to be distributed in noduline-26 like intrinsic proteins (NIPs), and every plant had one or several As and Sb transporter NIPs. Phylogenetic grouping of the NIP subfamily based on the ar/R selectivity filter and FPs were linked to As and Sb transport. We further determined the group-wise substrate selectivity profiles of the NIPs in the 12 crop plants. In addition to two NPA regions, the ar/R filter, and FPs, certain amino acids especially in the pore line, loop D, and termini contribute to the functional distinctiveness of the NIP groups. Expression analysis of transcripts in different organs indicated that most of the As and Sb transporter NIPs were expressed in roots. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A Dealloying Synthetic Strategy for Nanoporous Bismuth-Antimony Anodes for Sodium Ion Batteries.

    Science.gov (United States)

    Gao, Hui; Niu, Jiazheng; Zhang, Chi; Peng, Zhangquan; Zhang, Zhonghua

    2018-04-24

    Metal-based anodes have recently aroused much attention in sodium ion batteries (SIBs) owing to their high theoretical capacities and low sodiation potentials. However, their progresses are prevented by the inferior cycling performance caused by severe volumetric change and pulverization during the (de)sodiation process. To address this issue, herein an alloying strategy was proposed and nanoporous bismuth (Bi)-antimony (Sb) alloys were fabricated by dealloying of ternary Mg-based precursors. As an anode for SIBs, the nanoporous Bi 2 Sb 6 alloy exhibits an ultralong cycling performance (10 000 cycles) at 1 A/g corresponding to a capacity decay of merely 0.0072% per cycle, due to the porous structure, alloying effect and proper Bi/Sb atomic ratio. More importantly, a (de)sodiation mechanism ((Bi,Sb) ↔ Na(Bi,Sb) ↔ Na 3 (Bi,Sb)) is identified for the discharge/charge processes of Bi-Sb alloys by using operando X-ray diffraction and density functional theory calculations.

  8. Leaching of Antimony (Sb)from Municipal Solid Waste Incineration (MSWI) Residues

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Inga

    2004-07-01

    The mobility of antimony (Sb) in municipal solid waste incineration (MSWI) residues often exceeds the limit values stipulated by the European Union. As an ash treatment by washing is conceivable, this work investigated the Sb release from Swedish bottom ash and fly ash when mixed with water. The leaching experiments revealed the factors significantly (a = 0.05) affecting Sb release from the ashes. The following factors were investigated: Liquid to solid ratio (L/S), time, pH, carbonation (treatment with CO{sub 2}), ultrasonics and temperature. The data were evaluated using multiple linear regression (MLR). The impact of the factors could be quantified. The maximum Sb release calculated was 13 mg/kg DM for bottom ash and 51 mg/kg DM for fly ash. The derived models explained the observed data well. Nevertheless, the calculated values were subject to a high uncertainty. For bottom ash, a lowering of the Sb total content of approximately 22% could be achieved. If this also involves a sufficient lowering of the Sb mobility to meet EU limit values could not yet be assessed. Chemical equilibrium calculations were performed to explain the empirical results. However, no solid phases controlling Sb release from the ashes could be identified.

  9. Pure antimony film as saturable absorber for Q-switched erbium-doped fiber laser

    Science.gov (United States)

    Rahman, M. F. A.; Zhalilah, M. Z.; Latiff, A. A.; Rosol, A. H. A.; Lokman, M. Q.; Bushroa, A. R.; Dimyati, K.; Harun, S. W.

    2018-04-01

    This paper reports on the use of Antimony (Sb) polymer film to generate stable Q-switching pulses in Erbium-doped fiber laser (EDFL) cavity. The SA is fabricated by coating a thin layer of Sb on a polyvinyl alcohol (PVA) film through physical vapour deposition (PVD) process. A 1 × 1 mm area of the film SA is cut and integrated into between two fiber ferrules inside the laser cavity for intra-cavity loss modulation. Self-starting and stable Q-switched pulses are obtained within a pump power range from 60 to 142 mW. Within this range, the repetition rate increases from 70.82 to 98.04 kHz, while pulse width decreases from 7.42 to 5.36 μs. The fundamental frequency signal-to-noise ratio of the pulse signal is 74 dB, which indicates the excellent stability of the pulses. The maximum output power and pulse energy are 8.45 mW and 86.19 nJ, respectively. Our demonstration shows that Sb film SA capable of generating stable pulses train operating at 1.55-micron region.

  10. Effects of antimony trisulfide (Sb2S3) on sliding friction of automotive brake friction materials

    Science.gov (United States)

    Lee, Wan Kyu; Rhee, Tae Hee; Kim, Hyun Seong; Jang, Ho

    2013-09-01

    The effect of antimony trisulfide (Sb2S3) on the tribological properties of automotive brake friction materials was investigated using a Krauss type tribometer and a 1/5 scale dynamometer with a rigid caliper. Results showed that Sb2S3 improved fade resistance by developing transfer films on the disc surface at elevated temperatures. On the other hand, the rubbing surfaces of the friction material exhibited contact plateaus with a broader height distribution when it contained Sb2S3, indicating fewer contact junctions compared to the friction material with graphite. The friction material with Sb2S3 also exhibited a lower stick-slip propensity than the friction material with graphite. The improved fade resistance with Sb2S3 is attributed to its lubricating capability sustained at high temperatures, while the lower stick-slip propensity of the friction material with Sb2S3 is associated with the slight difference between its static and kinetic coefficients of friction and high normal stiffness.

  11. Partitioning geochemistry of arsenic and antimony, El Tatio Geyser Field, Chile

    Energy Technology Data Exchange (ETDEWEB)

    Landrum, J.T. [Department of Geological Sciences, The University of Texas, Austin, TX 78759 (United States); Bennett, P.C., E-mail: pbennett@mail.utexas.edu [Department of Geological Sciences, University of Texas, Austin, TX 78759 (United States); Engel, A.S. [Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803 (United States); Alsina, M.A.; Pasten, P.A. [Departamento de Ingenieria Hidraulica y Ambiental, Pontificia Universidad Catolica de Chile, Santiago (Chile); Milliken, K. [Department of Geological Sciences, University of Texas, Austin, TX 78759 (United States)

    2009-04-15

    The abundance of As and Sb in aqueous, mineral and biological reservoirs was examined at El Tatio Geyser Field, a unique hydrothermal basin located in the Atacama Desert region of Chile. Here the concentration of total As and Sb in hydrothermal springs and discharge streams are the highest reported for a natural surface water, and the geyser basin represents a significant source of toxic elements for downstream users across Region II, Chile. The geyser waters are near neutral Na:Cl type with {approx}0.45 and 0.021 mmol L{sup -1} total As and Sb, respectively, primarily in the reduced (III) redox state at the discharge with progressive oxidation downstream. The ferric oxyhydroxides associated with the microbial mats and some mineral precipitates accumulate substantial As that was identified as arsenate by XAS analysis (>10 wt% in the mats). This As is easily mobilized by anion exchange or mild dissolution of the HFO, and the ubiquitous microbial mats represent a significant reservoir of As in this system. Antimony, in contrast, is not associated with the mineral ferric oxides or the biomats, but is substantially enriched in the silica matrix of the geyserite precipitates, up to 2 wt% as Sb{sub 2}O{sub 3}. Understanding the mobility and partitioning behavior of these metalloids is critical for understanding their eventual impact on regional water management.

  12. Agglomeration during wet milling of LAST (lead-antimony-silver-tellurium) powders

    International Nuclear Information System (INIS)

    Hall, B.D.; Case, E.D.; Ren, F.; Johnson, J.R.; Timm, E.J.

    2009-01-01

    LAST (lead-antimony-silver-tellurium) compounds comprise a family of semiconducting materials with good thermoelectric properties. However, the as-cast form of LAST exhibits large grain size and hence low mechanical strength. Powder processing can produce a fine powder particle size that enhances fracture strength, however the powders tend to agglomerate if the individual powder diameters are less than a few microns across. Dry milling or wet milling (hexane additions of 0 cm 3 and 10 cm 3 ) produced hard agglomerates roughly 40 μm in diameter while wet milling with hexane additions of 25 cm 3 , 30 cm 3 or 50 cm 3 resulted in small, porous agglomerates roughly 20 μm in diameter. Thus, by adjusting the amount of milling liquid used while milling LAST powders, one can shift from hard to soft agglomerates, where the literature shows that soft agglomerates are less harmful to the final, sintered product. Also, in agreement with the results from the literature on other materials, wet milling of LAST powders produced smaller particle sizes but required longer times to reach the grindability limit

  13. Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications

    Science.gov (United States)

    Ganguly, Shreyashi; Zhou, Chen; Morelli, Donald; Sakamoto, Jeffrey; Uher, Ctirad; Brock, Stephanie L.

    2011-12-01

    Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi 2- xSb xTe 3) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi 2- xSb xTe 3 matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties.

  14. Cost-effectiveness analysis of thermotherapy versus pentavalent antimonials for the treatment of cutaneous leishmaniasis.

    Science.gov (United States)

    Cardona-Arias, Jaiberth Antonio; López-Carvajal, Liliana; Tamayo Plata, Mery Patricia; Vélez, Iván Darío

    2017-05-01

    The treatment of cutaneous leishmaniasis is toxic, has contraindications, and a high cost. The objective of this study was to estimate the cost-effectiveness of thermotherapy versus pentavalent antimonials for the treatment of cutaneous leishmaniasis. Effectiveness was the proportion of healing and safety with the adverse effects; these parameters were estimated from a controlled clinical trial and a meta-analysis. A standard costing was conducted. Average and incremental cost-effectiveness ratios were estimated. The uncertainty regarding effectiveness, safety, and costs was determined through sensitivity analyses. The total costs were $66,807 with Glucantime and $14,079 with thermotherapy. The therapeutic effectiveness rates were 64.2% for thermotherapy and 85.1% for Glucantime. The average cost-effectiveness ratios ranged between $721 and $1275 for Glucantime and between $187 and $390 for thermotherapy. Based on the meta-analysis, thermotherapy may be a dominant strategy. The excellent cost-effectiveness ratio of thermotherapy shows the relevance of its inclusion in guidelines for the treatment. © 2017 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  15. Antimony leaching release from brake pads: Effect of pH, temperature and organic acids.

    Science.gov (United States)

    Hu, Xingyun; He, Mengchang; Li, Sisi

    2015-03-01

    Metals from automotive brake pads pollute water, soils and the ambient air. The environmental effect on water of antimony (Sb) contained in brake pads has been largely untested. The content of Sb in one abandoned brake pad reached up to 1.62×10(4) mg/kg. Effects of initial pH, temperature and four organic acids (acetic acid, oxalic acid, citric acid and humic acid) on Sb release from brake pads were studied using batch reactors. Approximately 30% (97 mg/L) of the total Sb contained in the brake pads was released in alkaline aqueous solution and at higher temperature after 30 days of leaching. The organic acids tested restrained Sb release, especially acetic acid and oxalic acid. The pH-dependent concentration change of Sb in aqueous solution was best fitted by a logarithmic function. In addition, Sb contained in topsoil from land where brake pads were discarded (average 9×10(3) mg/kg) was 3000 times that in uncontaminated soils (2.7±1 mg/kg) in the same areas. Because potentially high amounts of Sb may be released from brake pads, it is important that producers and environmental authorities take precautions. Copyright © 2015. Published by Elsevier B.V.

  16. Template-assisted fabrication of tin and antimony based nanowire arrays

    Science.gov (United States)

    Zaraska, Leszek; Kurowska, Elżbieta; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-10-01

    Antimony nanowires with diameters ranging from 35 nm to 320 nm were successfully prepared by simple, galvanostatic electrodeposition inside the pores of anodic alumina membranes from a citrate based electrolyte. The use of the potassium antimonyl tartrate electrolyte for electrodeposition results in the formation of Sb/Sb2O3 nanowires. The structural features of the nanowire arrays were investigated by FE-SEM, and the nanowire composition was confirmed by EDS and XRD measurements. A distinct peak at about 27.5° in the XRD pattern recorded for nanowires formed in the tartrate electrolyte was attributed to the presence of co-deposited Sb2O3. Three types of dense arrays of Sn-SnSb nanowires with diameters ranging from 82 nm to 325 nm were also synthesized by DC galvanostatic electrodeposition into the anodic aluminum oxide (AAO) membranes for the first time. Only Sn and SnSb peaks appeared in the XRD pattern and both phases seem to have a relatively high degree of crystallinity. The influence of current density applied during electrodeposition on the composition of nanowires was investigated. It was found that the Sb content in fabricated nanowires decreases with increasing current density. The diameters of all synthesized nanowires roughly correspond to the dimensions of the nanochannels of AAO templates used for electrodeposition.

  17. Facile synthesis of antimony-doped tin oxide nanoparticles by a polymer-pyrolysis method

    International Nuclear Information System (INIS)

    Li, Yuan-Qing; Wang, Jian-Lei; Fu, Shao-Yun; Mei, Shi-Gang; Zhang, Jian-Min; Yong, Kang

    2010-01-01

    In this article, antimony-doped tin oxide (ATO) nanoparticles was synthesized by a facile polymer-pyrolysis method. The pyrolysis behaviors of the polymer precursors prepared via in situ polymerization of metal salts and acrylic acid were analyzed by simultaneous thermogravimetric and differential scanning calorimetry (TG-DSC). The structural and morphological characteristics of the products were studied by powder X-ray diffraction (XRD) and transmission electron microscope (TEM). The results reveal that the ATO nanoparticles calcined at 600 o C show good crystallinity with the cassiterite structure and cubic-spherical like morphology. The average particle size of ATO decreases from 200 to 15 nm as the Sb doping content increases from 5 mol% to 15 mol%. Electrical resistivity measurement shows that the resistivity for the 10-13 mol% Sb-doped SnO 2 nanoparticles is reduced by more than three orders compared with the pure SnO 2 nanoparticles. In addition, due to its versatility this polymer-pyrolysis method can be extended to facile synthesis of other doped n-type semiconductor, such as In, Ga, Al doped ZnO, Sn doped In 2 O 3 .

  18. Catalytic properties of a titanium-antimony oxide system in oxidative ammonolysis of propylene

    Energy Technology Data Exchange (ETDEWEB)

    Zenkovets, G.A.; Tarasova, D.V.; Andrushkevich, T.V.; Aleshina, G.I.; Nikoro, T.A.; Ravilov, R.G.

    1979-03-01

    The catalytic properties of titanium-antimony oxide system in oxidative ammonolysis of propylene at 450/sup 0/C depended both on the catalyst and the reactant compositions. Stable and high (75-80Vertical Bar3<) selectivities for acrylonitrile and high activities were observed over catalysts containing 5-60 mole Vertical Bar3< Sb/sub 2/O/sub 4/ with 2Vertical Bar3< propylene and 3Vertical Bar3< ammonia in air at Vertical Bar3; 70Vertical Bar3< conversions. The selectivities of the catalysts for acetonitrile and acrolein did not exceed 5 and 1Vertical Bar3<, respectively. At high ammonia and propylene contents in the reaction mixture and over individual TiO/sub 2/ or Sb/sub 2/O/sub 4/ catalysts, the reaction selectivity shifted toward deep oxidation products. These findings were attributed to the reducing effect of propylene and ammonia at high concentrations on the active components of the catalyst, a solid solution of Sb in TiO/sub 2/ containing 5-7 mole Vertical Bar3< of Sb/sub 2/O/sub 4/ and a chemical compound with TiSb/sub 2/O/sub 6/ composition.

  19. Spark Plasma Sintering and Densification Mechanisms of Antimony-Doped Tin Oxide Nanoceramics

    Directory of Open Access Journals (Sweden)

    Junyan Wu

    2013-01-01

    Full Text Available Densification of antimony-doped tin oxide (ATO ceramics without sintering aids is very difficult, due to the volatilization of SnO2, formation of deleterious phases above 1000°C, and poor sintering ability of ATO particles. In this paper, monodispersed ATO nanoparticles were synthesized via sol-gel method, and then ATO nanoceramics with high density were prepared by spark plasma sintering (SPS technology using the as-synthesized ATO nanoparticles without the addition of sintering aids. The effect of Sb doping content on the densification was investigated, and the densification mechanisms were explored. The results suggest that ATO nanoparticles derived from sol-gel method show good crystallinity with a crystal size of 5–20 nm and Sb is incorporated into the SnO2 crystal structure. When the SPS sintering temperature is 1000°C and the Sb doping content is 5 at.%, the density of ATO nanoceramics reaches a maximum value of 99.2%. Densification mechanisms are explored in detail.

  20. Stepwise mechanism of oxidative ammonolysis of propane to acrylonitrile over gallium-antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Osipova, Z.G.; Sokolovskii, V.D.

    1979-03-01

    The stepwise mechanism of oxidative ammonolysis of propane to acrylonitrile over gallium-antimony oxide catalysts GaSb/sub 19/O/sub x/, GaSb/sub 3/Ni/sub 1.5/0/sub x/, and GaSb/sub 2.5/Ni/sub 1.5/PW/sub 0//sub 0.25/O/sub x/ was studied at 450/sup 0/ and 550/sup 0/C by introducing alternating pulses of 0.5Vertical Bar3< propane/0.6Vertical Bar3< ammonia/helium (to reduce the steady-state catalytic surface) and 0.5Vertical Bar3< propane/0.6Vertical Bar3< ammonia/1.86Vertical Bar3< oxygen/helium mixtures into a fluidized-bed catalytic reactor. Over all the catalysts studied, the rates of acrylonitrile formation during the two types of pulses were very similar, but carbon dioxide was formed much faster during the reducing pulses, particularly at 450/sup 0/C. These findings suggested that acrylonitrile is formed by a stepwise redox mechanism involving consecutive interaction of propane and ammonia with the surface oxygen of the catalysts and oxidation of the reduced catalyst surface by gas-phase oxygen. The formation of carbon dioxide proceeds by both stepwise and associative mechanisms, the latter being more important at higher temperatures. The results are similar to published results for ammoxidation of propylene and olefins.