WorldWideScience

Sample records for antimicrobial zinc pyrithione

  1. Zinc Pyrithione Improves the Antibacterial Activity of Silver Sulfadiazine Ointment

    Science.gov (United States)

    Blanchard, Catlyn; Brooks, Lauren; Ebsworth-Mojica, Katherine; Didione, Louis; Wucher, Benjamin; Dewhurst, Stephen; Krysan, Damian

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus are commonly associated with biofilm-associated wound infections that are recalcitrant to conventional antibiotics. As an initial means to identify agents that may have a greater propensity to improve clearance of wound-associated bacterial pathogens, we screened a Food and Drug Administration-approved drug library for members that display bactericidal activity toward 72-h-established P. aeruginosa biofilms using an adenylate kinase reporter assay for bacterial cell death. A total of 34 compounds displayed antibiofilm activity. Among these, zinc pyrithione was also shown to reduce levels of A. baumannii and S. aureus biofilm-associated bacteria and exhibited an additive effect in combination with silver sulfadiazine, a leading topical therapeutic for wound site infections. The improved antimicrobial activity of zinc pyrithione and silver sulfadiazine was maintained in an ointment formulation and led to improved clearance of P. aeruginosa, A. baumannii, and S. aureus in a murine model of wound infection. Taken together, these results suggest that topical zinc pyrithione and silver sulfadiazine combination formulations may mitigate wound-associated bacterial infections and disease progression. IMPORTANCE Topical antimicrobial ointments ostensibly mitigate bacterial wound disease and reliance on systemic antibiotics. Yet studies have called into question the therapeutic benefits of several traditional topical antibacterials, accentuating the need for improved next-generation antimicrobial ointments. Yet the development of such agents consisting of a new chemical entity is a time-consuming and expensive proposition. Considering that drug combinations are a mainstay therapeutic strategy for the treatment of other therapeutic indications, one alternative approach is to improve the performance of conventional antimicrobial ointments by the addition of a well-characterized and FDA

  2. Zinc Pyrithione Improves the Antibacterial Activity of Silver Sulfadiazine Ointment.

    Science.gov (United States)

    Blanchard, Catlyn; Brooks, Lauren; Ebsworth-Mojica, Katherine; Didione, Louis; Wucher, Benjamin; Dewhurst, Stephen; Krysan, Damian; Dunman, Paul M; Wozniak, Rachel A F

    2016-01-01

    Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus are commonly associated with biofilm-associated wound infections that are recalcitrant to conventional antibiotics. As an initial means to identify agents that may have a greater propensity to improve clearance of wound-associated bacterial pathogens, we screened a Food and Drug Administration-approved drug library for members that display bactericidal activity toward 72-h-established P. aeruginosa biofilms using an adenylate kinase reporter assay for bacterial cell death. A total of 34 compounds displayed antibiofilm activity. Among these, zinc pyrithione was also shown to reduce levels of A. baumannii and S. aureus biofilm-associated bacteria and exhibited an additive effect in combination with silver sulfadiazine, a leading topical therapeutic for wound site infections. The improved antimicrobial activity of zinc pyrithione and silver sulfadiazine was maintained in an ointment formulation and led to improved clearance of P. aeruginosa, A. baumannii, and S. aureus in a murine model of wound infection. Taken together, these results suggest that topical zinc pyrithione and silver sulfadiazine combination formulations may mitigate wound-associated bacterial infections and disease progression. IMPORTANCE Topical antimicrobial ointments ostensibly mitigate bacterial wound disease and reliance on systemic antibiotics. Yet studies have called into question the therapeutic benefits of several traditional topical antibacterials, accentuating the need for improved next-generation antimicrobial ointments. Yet the development of such agents consisting of a new chemical entity is a time-consuming and expensive proposition. Considering that drug combinations are a mainstay therapeutic strategy for the treatment of other therapeutic indications, one alternative approach is to improve the performance of conventional antimicrobial ointments by the addition of a well-characterized and FDA

  3. Pustular psoriasis and the Kobner phenomenon caused by allergic contact dermatitis from zinc pyrithione-containing shampoo.

    Science.gov (United States)

    Jo, Ju-Hyun; Jang, Ho-Sun; Ko, Hyun-Chang; Kim, Moon-Bum; Oh, Chang-Keun; Kwon, Yoo-Wook; Kwon, Kyung-Sool

    2005-03-01

    Zinc pyrithione is a shampoo ingredient that has been shown to be safe and effective for dandruff and scalp psoriasis. It is thought to decrease the cell turnover rate in hyperproliferative dermatoses such as psoriasis, and also has fungistatic and antimicrobial activity, although its exact mode of action is unknown. In psoriasis, external factors, such as trauma, infection and drugs, may provoke aggravated manifestations of psoriatic skin lesions. Rarely, irritant or allergic mechanisms are likely causes of psoriatic flare and Kobnerization. A patient had had stable psoriasis for 25 years and no any other skin disease. Within 20 days, she developed an aggravated scaly erythematous patch on the scalp, where a shampoo had been applied, and simultaneously developed pustular psoriasis on both forearms. Patch testing showed a relevant sensitization to zinc pyrithione, and we observed symptomatic aggravation by provocation testing with zinc pyrithione shampoo. We report a rare case of psoriasis aggravated by the induction of allergic contact dermatitis from zinc pyrithione after using antidandruff shampoo.

  4. Clinical Trial Of Ketoconazole 2% + Zinc Pyrithione 1% Shampoo In The Management Of Tinea Versicolor

    Directory of Open Access Journals (Sweden)

    Ramesh M

    2004-01-01

    Full Text Available An open uncontrolled trial, to assess the efficacy of ketoconazole 2%+zinc pyrithione 1% shampoo was conducted in patients with extensive tinea versicolor. The results show that this is an effective and well tolerated combination in the management of tinea versicolor.

  5. Sensitive and simultaneous quantification of zinc pyrithione and climbazole deposition from anti-dandruff shampoos onto human scalp

    NARCIS (Netherlands)

    G. Chen; M. Miao; M. Hoptroff; X. Fei; L.Z. Collins; A. Jones; H.G. Janssen

    2015-01-01

    A sensitive ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been developed and validated for simultaneous quantification of zinc pyrithione (ZPT) and climbazole (CBZ) deposited onto human scalp from anti-dandruff (AD) shampoos. Scrubbing with a buffer so

  6. The application of DP polarography for the determination of zinc and content of zinc pyrithione in anti-dandruff shampoos

    Directory of Open Access Journals (Sweden)

    Blagojević Slavica M.

    2015-01-01

    Full Text Available Commercially formulated anti-dandruff shampoos contain zinc pyrithione (ZPT as an active ingredient that has antifungal, antibacterial and anti-seborrheic properties. The determination of ZPT concentration in commercial anti-dandruff shampoos by differential pulse polarography (DPP was based on the electrochemical reduction of zinc ions in ammoniacal buffer pH 10.2, and the linear dependence of the reduction differential pulse peak current at the potential -1.33 V vs. concentration of zinc. Using the calibration curve method, it was found that the range of linearity for the determination of zinc concentration was from 1.28 x 10‒5 to 1.39 x 10-4 mol L-1 (linear regression equation: I = - 0.097 + 6.635 x 105c. Surface active ingredients and micro-components in the shampoos did not exert a polarographic interference for the determination of zinc and did not affect the indirect determination of the content of the active ingredient ZPT. The concentrations of zinc in the analyzed anti-dandruff shampoo samples were determined by the standard addition method, resulting in 4.20 x 10-2 mol L-1, 1.76 x 10-1 mol L-1 and 1.82 x 10-1 mol L-1. The results of DPP determinations of zinc and ZPT show that the content of ZPT was 0.28%, 1.15% i.e. 1.19% and was below the maximum recommended level of ZPT in anti-dandruff shampoos. This simple and sensitive differential pulse polarography method is suitable for a routine and rapid control of the active ingredient content, as well as for the quality control of anti-dandruff shampoos. [Projekat Ministarstva nauke Republike Srbije, br. 172015

  7. Antiviral activity of the zinc ionophores pyrithione and hinokitiol against picornavirus infections.

    NARCIS (Netherlands)

    Krenn, B.M.; Gaudernak, E.; Holzer, B.; Lanke, K.H.W.; Kuppeveld, F.J.M. van; Seipelt, J.

    2009-01-01

    We have discovered two metal ion binding compounds, pyrithione (PT) and hinokitiol (HK), that efficiently inhibit human rhinovirus, coxsackievirus, and mengovirus multiplication. Early stages of virus infection are unaffected by these compounds. However, the cleavage of the cellular eukaryotic trans

  8. Enhanced efficacy and sensory properties of an anti-dandruff shampoo containing zinc pyrithione and climbazole.

    Science.gov (United States)

    Turner, G A; Matheson, J R; Li, G-Z; Fei, X-Q; Zhu, D; Baines, F L

    2013-02-01

    Dandruff is a common complaint and is suffered by as much as half of the population at some time post puberty. The condition is characterized by the presence of flakes on the scalp and in the hair, and is often accompanied by itch. The most common treatment for dandruff is the use of shampoo formulations that contain fungistatic agents such as zinc pyrithione (ZPT) and octopirox. Whilst most antidandruff shampoos are effective in resolving the symptoms of dandruff these shampoos can often result in hair condition that is less than acceptable to consumers which can lead to a tendency for them to revert to use of a non-antidandruff shampoo. This can result in a rapid return of dandruff symptoms. The aim of this investigation was to study the impact of using a combination of antidandruff actives and silicones on the resolution of dandruff and to deliver superior sensory properties to the hair. We have demonstrated that shampoo containing the dual active system of ZPT/Climbazole deposits both active agents onto a model skin surface (VitroSkin) and reduces Malassezia furfur regrowth in vitro. Clinical evaluation of the dual active shampoo demonstrated superior efficacy and retained superiority during a regression phase where all subjects reverted to using a non-antidandruff shampoo. We have also demonstrated that it is possible to deposit silicone materials from antidandruff shampoo uniformly over both virgin and damaged hair fibres that results in smoother hair fibres (as evidenced by reduced dry friction). This combination of antidandruff agents and conditioning silicones delivered from a shampoo provides subjects with superior antidandruff efficacy and desired end sensory benefits ensuring compliance and longer term dandruff removal.

  9. Beneficial effect of zinc chloride and zinc ionophore pyrithione on attenuated cardioprotective potential of preconditioning phenomenon in STZ-induced diabetic rat heart.

    Science.gov (United States)

    Jamwal, Sumit; Kumar, Kushal; Reddy, B V Krishna

    2016-05-01

    Ischemic preconditioning (IPC) is well demonstrated to produce cardioprotection by phosphorylation and subsequent inactivation of glycogen synthase kinase-3β (GSk-3β) in the normal rat heart, but its effect is attenuated in the diabetic rat heart. This study was designed to investigate the effect of zinc chloride and zinc ionophore pyrithione (ZIP) on the attenuated cardioprotective potential of IPC in the diabetic rat heart. Diabetes mellitus (DM) was induced by a single intraperitoneal administration of streptozotocin (STZ) (50 mg/kg; i.p). The isolated perfused rat heart was subjected to 30 minutes of ischemia followed by 120 minutes of reperfusion. Myocardial infarct size was estimated by triphenyltetrazolium chloride (TTC) staining and cardiac injury was measured by estimating lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) in the coronary effluent. Also, GSK-3β was measured and neutrophil accumulation was measured by estimating myeloperoxidase (MPO) levels. IPC significantly decreased the myocardial infarct size, the release of LDH and CK-MB, the GSK-3β levels and the MPO levels in the normal rat heart. Pre- and post-ischemic treatment with zinc chloride and zinc ionophore pyrithione (ZIP) in the normal and diabetic rat hearts significantly decreased the myocardial infarct size, the level of CK-MB and LDH in the coronary effluent and GSK-3β and MPO levels. Our results suggest that pharmacological preconditioning with zinc chloride and ZIP significantly restored the attenuated cardioprotective potential of IPC in the diabetic rat heart. PMID:26423303

  10. The antidandruff efficacy of a shampoo containing piroctone olamine and salicylic acid in comparison to that of a zinc pyrithione shampoo.

    Science.gov (United States)

    Lodén, M; Wessman, C

    2000-08-01

    Dandruff (pityriasis capitis) is a chronic scalp condition characterized by scaling and sometimes itching and redness. Shampoos containing antifungal agents are used to control the scaling condition. In the present study, two shampoos with different actives are compared in a double-blind, randomised and bilateral study on 19 subjects. One shampoo contained piroctone olamine (0.75%) combined with salicylic acid (2%) and the other contained zinc pyrithione (1%) as active ingredient. The subjects were treated twice weekly with the shampoos for almost 4 weeks. Before each treatment the degree of dandruff was evaluated. Both shampoos were highly effective in reducing the dandruff. The combination of piroctone olamine and salicylic acid appeared to be slightly more effective than zinc pyrithione in reducing the severity and area affected by the scaling. PMID:18503415

  11. Multicenter, open-label, non-comparative study of a combination of polytar and zinc pyrithione shampoo in the management of dandruff

    Directory of Open Access Journals (Sweden)

    Sawleshwarkar Shailendra

    2004-01-01

    Full Text Available Background: Dandruff is a common condition in clinical practice. We undertook a study to evaluate the efficacy and safety of a combination of zinc pyrithione and polytar in a shampoo base for the treatment of dandruff. Methods: A combination of polytar (1% and zinc pyrithione (1% was used for 4 weeks to treat 954 patients suffering from mild to severe dandruff. Scoring of dandruff was done on a 0-10 scale for each of the 6 regions of scalp at weeks 0, 2, 4 and 6. Follow up was for 2 weeks. Results: There was consistent improvement in dandruff scores over the treatment and the follow up period. There was significant improvement in signs and symptoms such as erythema and itching, with a negligible adverse event profile. The global assessment by investigators showed good-excellent results in the majority of patients and there was high acceptability for the treatment among the patients. Conclusion: A combination shampoo of polytar (1% and zinc pyrithione (1% offers a safe and effective option in the treatment of dandruff and its associated symptoms.

  12. Sensitive and simultaneous quantification of zinc pyrithione and climbazole deposition from anti-dandruff shampoos onto human scalp.

    Science.gov (United States)

    Chen, Guoqiang; Miao, Miao; Hoptroff, Michael; Fei, Xiaoqing; Collins, Luisa Z; Jones, Andrew; Janssen, Hans-Gerd

    2015-10-15

    A sensitive ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been developed and validated for simultaneous quantification of zinc pyrithione (ZPT) and climbazole (CBZ) deposited onto human scalp from anti-dandruff (AD) shampoos. Scrubbing with a buffer solution was used as the sampling method for the extraction of ZPT and CBZ from scalp. Derivatization of ZPT was carried out prior to UHPLC-MS/MS analysis. The identification of ZPT and CBZ was performed by examining ratios of selected multiple reaction monitoring (MRM) transitions in combination with UHPLC retention times. The limit of detection for ZPT and CBZ was established to be 1 and 2ng/mL, respectively. This sensitivity enables the quantification of ZPT and CBZ at deposition levels in the low ng/cm(2) range. The method was successfully applied for the analysis of scalp buffer scrub samples from an in vivo study. The levels of ZPT and CBZ deposited on the scalp at different time points after application of the AD shampoo were measured. The results revealed that dual-active AD shampoo delivered more ZPT onto the scalp in a single wash than single active shampoo did. The amount of ZPT and CBZ retained on the scalp after AD shampoo application declined over 72h. PMID:26397749

  13. Nudging hair shedding by antidandruff shampoos. A comparison of 1% ketoconazole, 1% piroctone olamine and 1% zinc pyrithione formulations.

    Science.gov (United States)

    Piérard-Franchimont, C; Goffin, V; Henry, F; Uhoda, I; Braham, C; Piérard, G E

    2002-10-01

    Hair shedding and hair thinning have been reported to be affected by dandruff and seborrhoeic dermatitis. The present study was conducted in 150 men presenting with telogen effluvium related to androgenic alopecia associated with dandruff. They were randomly allocated to three groups receiving each one of the three shampoos in the market containing either 1% ketoconazole (KTZ), 1% piroctone olamine (PTO) or 1% zinc pyrithione (ZPT). Shampoos had to be used 2-3 times a week for 6 months. Hair shedding during shampoo was evaluated semiquantitatively. Hair density on the vertex was evaluated on photographs using a Dermaphot. Trichograms were used for determining the anagen hair percentage and the mean proximal hair shaft diameter using computerized image analysis. The sebum excretion rate (SER, mug cm(-2) h(-1)) was also measured using a Sebumeter. The three treatments cleared pruritus and dandruff rapidly. At end point, hair density was unchanged, although hair shedding was decreased (KTZ: -17.3%, PTO: -16.5%, ZPT: -10.1%) and the anagen hair percentage was increased (KTZ: 4.9%, PTO: 7.9%, ZPT: 6.8%). The effect on the mean hair shaft diameter was contrasted between the three groups of volunteers (KTZ: 5.4%, PTO: 7.7%, ZPT: -2.2%). In conclusion, telogen effluvium was controlled by KTZ, PTO and ZPT shampoos at 1% concentration. In addition, KTZ and PTO increased the mean hair shaft thickness while discretely decreasing the sebum output at the skin surface. PMID:18498517

  14. Efficacy of a piroctone olamine/climbazol shampoo in comparison with a zinc pyrithione shampoo in subjects with moderate to severe dandruff.

    Science.gov (United States)

    Schmidt-Rose, T; Braren, S; Fölster, H; Hillemann, T; Oltrogge, B; Philipp, P; Weets, G; Fey, S

    2011-06-01

    Dandruff is a chronic scalp disorder characterized by scaling and itching. A successful anti-dandruff shampoo not only has to provide superior anti-dandruff relief to ensure patient compliance. It also needs to offer excellent cosmetic and hair conditioning benefits at the same time. In this study, the efficacy of a shampoo containing 0.5% piroctone olamine and 0.45% climbazole (shampoo 1) was compared with a widely available commercial shampoo containing 1% zinc pyrithione (shampoo 2). In vitro studies investigating the anti-mycotic efficacy of a combination of 0.5% piroctone olamine and 0.45% climbazole as well as 1% zinc pyrithione were performed. To study substantivity, pig skin punches were used as a model system and a test of wet combability was performed to characterize combing ease. In vivo home-in-use studies were carried out to determine the efficacy of both shampoos to improve scalp condition and reduce itching in subjects suffering from moderate to severe dandruff. Results demonstrated a comparable anti-fungal effectiveness for 0.5% piroctone olamine plus 0.45% climbazole and 1% zinc pyrithione, respectively. Shampoo 1 showed a significantly higher anti-mycotics substantivity compared to shampoo 2. After treatment with shampoo 1, the wet combing force was significantly reduced compared with shampoo 2, suggesting a better combability following the use of shampoo 1. In an in vivo split head design study, shampoo 1 was shown to be equally effective in reducing the amount of dandruff on the scalp compared with shampoo 2. The approval rate of volunteers regarding the question 'The use of this shampoo decreases the itching of my scalp?' after a 4-week treatment with shampoo 1 equaled 90%. Overall, the shampoo formulation with 0.5% piroctone olamine and 0.45% climbazole effectively reduces the amount of dandruff and, at the same time, provides hair conditioning advantages. PMID:21272039

  15. Efficacy of a piroctone olamine/climbazol shampoo in comparison with a zinc pyrithione shampoo in subjects with moderate to severe dandruff.

    Science.gov (United States)

    Schmidt-Rose, T; Braren, S; Fölster, H; Hillemann, T; Oltrogge, B; Philipp, P; Weets, G; Fey, S

    2011-06-01

    Dandruff is a chronic scalp disorder characterized by scaling and itching. A successful anti-dandruff shampoo not only has to provide superior anti-dandruff relief to ensure patient compliance. It also needs to offer excellent cosmetic and hair conditioning benefits at the same time. In this study, the efficacy of a shampoo containing 0.5% piroctone olamine and 0.45% climbazole (shampoo 1) was compared with a widely available commercial shampoo containing 1% zinc pyrithione (shampoo 2). In vitro studies investigating the anti-mycotic efficacy of a combination of 0.5% piroctone olamine and 0.45% climbazole as well as 1% zinc pyrithione were performed. To study substantivity, pig skin punches were used as a model system and a test of wet combability was performed to characterize combing ease. In vivo home-in-use studies were carried out to determine the efficacy of both shampoos to improve scalp condition and reduce itching in subjects suffering from moderate to severe dandruff. Results demonstrated a comparable anti-fungal effectiveness for 0.5% piroctone olamine plus 0.45% climbazole and 1% zinc pyrithione, respectively. Shampoo 1 showed a significantly higher anti-mycotics substantivity compared to shampoo 2. After treatment with shampoo 1, the wet combing force was significantly reduced compared with shampoo 2, suggesting a better combability following the use of shampoo 1. In an in vivo split head design study, shampoo 1 was shown to be equally effective in reducing the amount of dandruff on the scalp compared with shampoo 2. The approval rate of volunteers regarding the question 'The use of this shampoo decreases the itching of my scalp?' after a 4-week treatment with shampoo 1 equaled 90%. Overall, the shampoo formulation with 0.5% piroctone olamine and 0.45% climbazole effectively reduces the amount of dandruff and, at the same time, provides hair conditioning advantages.

  16. Evaluation of safety and efficacy of ketoconazole 2% and zinc pyrithione 1% shampoo in patients with moderate to severe dandruff--a postmarketing study.

    Science.gov (United States)

    Saple, D G; Ravichandran, G; Desai, A

    2000-12-01

    A postmarketing study was conducted on 236 patients from 23 centres suffering from moderate to severe dandruff with a combination of ketoconazole and zinc pyrithione (1%) for a duration of 4 weeks with 2 weeks further follow-up. Scoring of dandruff was done on a 0-10 scale for each of the 6 regions of scalp at each week up to 6 weeks. The results indicate that there was a consistent improvement in dandruff scores over the treatment period and a reduction of > 90% was seen for all areas of scalp individually as well as collectively as compared to baseline. The treatment also showed significant improvement in other signs and symptoms such as erythema and itching, with a highly favourable adverse event profile. The overall assessment for global improvement by investigators showed good-excellent results with high acceptability amongst the patient population for the treatment. A combination shampoo of ketoconazole (2%) and zinc pyrithione (1%) offers a safe and effective option in the treatment of dandruff.

  17. Clinical efficacy of a new ciclopiroxolamine/zinc pyrithione shampoo in scalp seborrheic dermatitis treatment.

    Science.gov (United States)

    Lorette, Gérard; Ermosilla, Valérie

    2006-01-01

    Ciclopiroxolamine (CPO) and Zinc Pirythione (ZP) antifungals are efficient at treating scalp seborrheic dermatitis. This multicentre, single-blind, clinical study was conducted to evaluate the efficacy of a shampoo containing the 1.5% CPO/1% ZP association compared to the vehicle shampoo and to 2% ketoconazole foaming gel in the treatment of seborrheic dermatitis. In 189 patients randomised to apply 1 of the 3 products twice a week for 28 days, the global lesional score, erythema, pruritus, global efficacy, quality of life (SF12 and DLQI questionnaires) and tolerance were measured at 0, 7, 14 and 28 days. The 3 products reduced lesional score, erythema and pruritus from day 7 (p shampoo was more efficient in reducing pruritus than ketoconazole gel and vehicle (p = 0.032 and p shampoo improved all DLQI questionnaire dimensions. The CPO/ZP shampoo was as rapid and efficient as ketoconazole gel in SD treatment.

  18. Aggregate exposure modelling of zinc pyrithione in rinse-off personal cleansing products using a person-orientated approach with market share refinement.

    Science.gov (United States)

    Tozer, Sarah A; Kelly, Seamus; O'Mahony, Cian; Daly, E J; Nash, J F

    2015-09-01

    Realistic estimates of chemical aggregate exposure are needed to ensure consumer safety. As exposure estimates are a critical part of the equation used to calculate acceptable "safe levels" and conduct quantitative risk assessments, methods are needed to produce realistic exposure estimations. To this end, a probabilistic aggregate exposure model was developed to estimate consumer exposure from several rinse off personal cleansing products containing the anti-dandruff preservative zinc pyrithione. The model incorporates large habits and practices surveys, containing data on frequency of use, amount applied, co-use along with market share, and combines these data at the level of the individual based on subject demographics to better estimate exposure. The daily-applied exposure (i.e., amount applied to the skin) was 3.79 mg/kg/day for the 95th percentile consumer. The estimated internal dose for the 95th percentile exposure ranged from 0.01-1.29 μg/kg/day after accounting for retention following rinsing and dermal penetration of ZnPt. This probabilistic aggregate exposure model can be used in the human safety assessment of ingredients in multiple rinse-off technologies (e.g., shampoo, bar soap, body wash, and liquid hand soap). In addition, this model may be used in other situations where refined exposure assessment is required to support a chemical risk assessment.

  19. HPLC Determination of Zinc Pyrithione in Shampoo%高效液相色谱法测定洗发水中吡硫翁锌含量

    Institute of Scientific and Technical Information of China (English)

    顾宇翔; 翟宗德; 周泽琳; 王庆贺; 吕庆; 麦成华

    2013-01-01

    Content of zinc pyrithione in shampoo was determined by HPLC.The sample was extracted ultrasonically with a mixture of acetonitrile-methanol (9 + 1).After centrifugation,the extract was filtered on 0.45 μm filtering membrane.MG C18 (4.6 mm× 250 mm,5 μm) chromatographic column was used as stationary phase,and mixtures of the following 3 components mixed in various ratios were used as mobile phase in the gradient elution:(A) mixed solution containing 0.01 mol · L-1 KH2PO4 and 0.5 mol · L-1 EDTA; (B) acetonitrile; (C) methanol.The eluate obtained was determined with DAD at the wavelength of 272 nm.Linear relationship between values of peak area and mass concentration of zinc pyrithione was kept in the range of 3.20-200.0 mg · L-1,with detection limit (3S/N) of 0.15 g · kg-1.Using blank sample of shampoo as matrix,values of recovery found by standard addition method were in the range of 87.2 %-89.1%.,with RSD's (n=6) in the range of 2.6%-6.2%.%提出了高效液相色谱法测定洗发水中吡硫翁锌含量的方法.样品中吡硫翁锌用乙腈-甲醇(9+1)混合液超声提取,离心分离后,所得提取液过0.45 μm滤膜过滤.以MG C18色谱柱(250 mm×4.6 mm,5μm)为分离柱,以下述3种组分按不同比例配成的混合液作流动相进行梯度洗脱:组分A为含0.01 mol·L-1磷酸二氢钾和0.5 mmol·L-1 EDTA的混合溶液;组分B为乙腈;组分C为甲醇.于波长272 nm处用二极管阵列检测器检测.吡硫翁锌的质量浓度在3.20~200.0 mg·L-1范围内与其峰面积呈线性关系,方法的检出限(3S/N)为0.15 g·kg-1.以空白洗发水样品为基体,采用标准加入法做回收试验,测得回收率在87.2%~89.1%之间,测定值的相对标准偏差(n=6)在2.6%~6.2%之间.

  20. Determination of Zinc Pyrithione in Hair Care Products by HPLC-APCI-MS/MS Method%HPLC-APCI-MS/MS法测定洗护发产品中的吡硫翁锌

    Institute of Scientific and Technical Information of China (English)

    王庆贺; 周泽琳; 顾宇翔

    2012-01-01

    A method for the determination of zinc pyrithione in hair products has been developed. The shampoo sample was extracted and separated using monolithic reversed-phase silica columns, determined by APCI-MS/MS. The calibration curves of zinc pyrithione showed good linearity in range of 1 ~200 μg/mL, the detection limit of method was 0. 01%. The average recoveries ranged from 92% to 102%.%建立了洗发产品中吡硫翁锌的HPLC-APCI-MS/MS测定方法.样品经提取后,采用反相整体柱进行色谱分离,大气压化学电离串联质谱进行定性和定量检测.线性范围为1~200 μg/mL,实际样品中的最低检出限为0.01%,平均回收率为91%~105%.

  1. Antimicrobial property of zinc based nanoparticles

    Science.gov (United States)

    Chiriac, V.; Stratulat, D. N.; Calin, G.; Nichitus, S.; Burlui, V.; Stadoleanu, C.; Popa, M.; Popa, I. M.

    2016-06-01

    Pathogen bacteria strains with wide spectrum can cause serious infections with drastic damages on humans. There are studies reflecting antibacterial effect of nanoparticles type metal or metal oxides as an alternative or concurrent treatment to the diseases caused by infectious agents. Synthesised nanoparticles using different methods like sol-gel, hydrothermal or plant extraction were tested following well-established protocols with the regard to their antimicrobial activity. It was found that zinc based nanoparticles possess strong synergistic effect with commonly used antibiotics on infection tratment.

  2. An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy

    International Nuclear Information System (INIS)

    Bacterial infection is a common clinical problem. The emergence of antibiotic resistant bacteria posts a severe challenge to medical practice worldwide. Photodynamic antimicrobial chemotherapy (PACT) uses laser light at specific wavelength to activate oxygen molecule in the human tissue into reactive oxygen species as antimicrobial agent. This activation of oxygen by laser light is mediated through a photosensitizer. Two key properties for potent photosensitizer are its absorbance of light in the infrared region (630–700 nm), which promotes tissue penetration depth, and the selective accumulation on bacteria instead of human tissue. We herein report a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys)5) and its antimicrobial effects in vitro and in an animal infection model. This photosensitizer has strong capability to kill bacteria at 670 nm. Chemically, it is a water-soluble and cationic photosensitizer carrying positive charge under physiological pH, and can specifically target to bacteria which usually bears negative charges on its surface. Compared with anionic ZnPc counterparts, ZnPc-(Lys)5 shows a higher phototoxicity toward bacteria. PACT studies of ZnPc-(Lys)5 in experimental infection animal model showed a significant bacteria inhibition compared to controls, and high selectivity of ZnPc-(Lys)5 toward bacteria. These findings suggest ZnPc-(Lys)5 is a promising antimicrobial photosensitizer for the treatment of infectious diseases. - Highlights: • Photodynamic antimicrobial chemotherapy (PACT) with water-soluble zinc phthalocyanine derivative offers a promising measure to deal with antibiotic resistance of bacteria. • The use of portable LED light sources that are battery-powered and with low cost may make possible the deployment of systems that can be used for wound decontamination. • ZnPc-(Lys)5 is a potent photosensitizer for treatment of infectious diseases

  3. An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhuo, E-mail: zchen@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhou, Shanyong; Chen, Jincan [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Li, Linsen [Department of Biochemistry, Shenyang Medical College, Shenyang, Liaoning 110034 (China); Hu, Ping; Chen, Song [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Huang, Mingdong, E-mail: mhuang@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2014-08-01

    Bacterial infection is a common clinical problem. The emergence of antibiotic resistant bacteria posts a severe challenge to medical practice worldwide. Photodynamic antimicrobial chemotherapy (PACT) uses laser light at specific wavelength to activate oxygen molecule in the human tissue into reactive oxygen species as antimicrobial agent. This activation of oxygen by laser light is mediated through a photosensitizer. Two key properties for potent photosensitizer are its absorbance of light in the infrared region (630–700 nm), which promotes tissue penetration depth, and the selective accumulation on bacteria instead of human tissue. We herein report a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys){sub 5}) and its antimicrobial effects in vitro and in an animal infection model. This photosensitizer has strong capability to kill bacteria at 670 nm. Chemically, it is a water-soluble and cationic photosensitizer carrying positive charge under physiological pH, and can specifically target to bacteria which usually bears negative charges on its surface. Compared with anionic ZnPc counterparts, ZnPc-(Lys){sub 5} shows a higher phototoxicity toward bacteria. PACT studies of ZnPc-(Lys){sub 5} in experimental infection animal model showed a significant bacteria inhibition compared to controls, and high selectivity of ZnPc-(Lys){sub 5} toward bacteria. These findings suggest ZnPc-(Lys){sub 5} is a promising antimicrobial photosensitizer for the treatment of infectious diseases. - Highlights: • Photodynamic antimicrobial chemotherapy (PACT) with water-soluble zinc phthalocyanine derivative offers a promising measure to deal with antibiotic resistance of bacteria. • The use of portable LED light sources that are battery-powered and with low cost may make possible the deployment of systems that can be used for wound decontamination. • ZnPc-(Lys){sub 5} is a potent photosensitizer for treatment of infectious diseases.

  4. Burkholderia cenocepacia zinc metalloproteases influence resistance to antimicrobial peptides.

    Science.gov (United States)

    Kooi, Cora; Sokol, Pamela A

    2009-09-01

    Burkholderia cenocepacia secretes two zinc-dependent metalloproteases, designated ZmpA and ZmpB. Previously, ZmpA and ZmpB have been shown to cleave several proteins important in host defence. In this study, the ability of ZmpA and ZmpB to digest and inactivate antimicrobial peptides involved in innate immunity was examined. ZmpB but not ZmpA cleaved beta-defensin-1. ZmpA but not ZmpB cleaved the cathelicidin LL-37. Both enzymes cleaved elafin and secretory leukocyte inhibitor, which are antimicrobial peptides as well as neutrophil elastase inhibitors. Both ZmpA and ZmpB cleaved protamine, a fish antimicrobial peptide, and a zmpA zmpB mutant was more sensitive to protamine killing than the parental strain. ZmpA or ZmpB cleavage of elafin inactivated its anti-protease activity. The effect of ZmpA and ZmpB on the neutrophil proteases elastase and cathepsin G was also examined but neither enzyme was active against these host proteases. These studies suggest that ZmpA and ZmpB may influence the resistance of B. cenocepacia to host antimicrobial peptides as well as alter the host protease/anti-protease balance in chronic respiratory infections.

  5. Pyrithione-based ruthenium complexes as inhibitors of aldo-keto reductase 1C enzymes and anticancer agents.

    Science.gov (United States)

    Kljun, Jakob; Anko, Maja; Traven, Katja; Sinreih, Maša; Pavlič, Renata; Peršič, Špela; Ude, Žiga; Codina, Elisa Esteve; Stojan, Jure; Lanišnik Rižner, Tea; Turel, Iztok

    2016-08-01

    Four ruthenium complexes of clinically used zinc ionophore pyrithione and its oxygen analog 2-hydroxypyridine N-oxide were prepared and evaluated as inhibitors of enzymes of the aldo-keto reductase subfamily 1C (AKR1C). A kinetic study assisted with docking simulations showed a mixed type of inhibition consisting of a fast reversible and a slow irreversible step in the case of both organometallic compounds 1A and 1B. Both compounds also showed a remarkable selectivity towards AKR1C1 and AKR1C3 which are targets for breast cancer drug design. The organoruthenium complex of ligand pyrithione as well as pyrithione itself also displayed toxicity on the hormone-dependent MCF-7 breast cancer cell line with EC50 values in the low micromolar range. PMID:27357845

  6. Effects of metal pyrithione antifoulants on freshwater macrophyte Lemna gibba G3 determined by image analysis.

    Science.gov (United States)

    Okamura, Hideo; Togosmaa, Luvsantsend; Sawamoto, Takuya; Fukushi, Keiichi; Nishida, Tomoaki; Beppu, Toshio

    2012-05-01

    Copper pyrithione (CuPT(2)) and zinc pyrithione (ZnPT(2)) are two popular antifouling agents that prevent biofouling. Research into the environmental effects of metal pyrithiones has mainly focused on aquatic animal species such as fish and crustaceans, and little attention has been paid to primary producers. There have been few reports on residues in environmental matrices because of the high photolabile characteristics of the agents. Residue analyses and ecological effects of the metabolites and metal pyrithiones are not yet fully understood. This study was undertaken to assess the effects of CuPT(2), ZnPT(2), and six metabolites (PT(2): 2,2'-dithio-bispyridine N-oxide, PS(2): 2,2'-dithio-bispyridine, PSA: pyridine-2-sulfonic acid, HPT: 2-mercaptopyridine N-oxide, HPS: 2-mercaptopyridine, and PO: pyridine N-oxide) on a freshwater macrophyte. A 7-day static bioassay using axenic duckweed Lemna gibba G3 was performed under laboratory conditions. Toxic effects of test compounds were assessed by biomass reduction and morphological changes were determined in image analysis. Concentrations of ZnPT(2) and CuPT(2) and those of PT(2) and HPT in the medium were determined by derivatizing 2,2'-dithio-bispyridine mono-N-oxide with pyridine disulfide/ethylene diamine tetra-acetic acid reagent that was equimolar with pyrithione. The toxic intensity of the compounds was calculated from the measured concentrations after 7-day exposure. ZnPT(2), CuPT(2), PT(2), and HPT inhibited the growth of L. gibba with EC(50) ranging from 77 to 140 μg/l as calculated from the total frond number as the conventional index, whereas the other four metabolites had less effect even at 10 mg/l. The presence of the former four toxic derivatives resulted in abnormally shaped and unhealthily colored fronds, whose size was about 20% of the control fronds. EC(50), calculated from the healthy frond area determined in image analysis, ranged from 10 to 53 μg/l. Thus, image analysis as part of a duckweed

  7. The Antimicrobial Properties of Zinc-Releasing Bioceramics

    Science.gov (United States)

    He, Xin

    Up to 80% of nosocomial infections are caused by biofilm-producing bacteria such as Staphylococci and Pseudomonas aeruginosa. These types of microorganisms can become resistant to antibiotics and are difficult to eliminate. As such, there is tremendous interest in developing bioactive implant materials that can help to minimize these post- operative infections. Using water-based chemistry, we developed an economical, biodegradable and biocompatible orthopedic implant material consisting of zinc- doped hydroxyapatite (HA), which mimics the main inorganic component of the bone. Because the crystallinity of HA is typically too compact for efficient drug release, we substituted calcium ions in HA with zinc during the synthesis step to perturb the crystal structure. An added benefit is that zinc itself is a microelement of the human body with anti-inflammatory property, and we hypothesized that Zn-doped HA is an inherently antibacterial material. All HA samples were synthesized by a co-precipitation method using aqueous solutions of Zinc nitrate, Calcium Nitrate, and Ammonium Phosphate. XRD data showed that Zn was successfully incorporated into the HA. The effectiveness of Zn-doped HA against a model biofilm-forming bacterium is currently being evaluated using a wild-type strain and a streptomycin- resistant strain of Pseudomonas syringae pv. papulans (Psp) which is a plant pathogen isolated from diseased apples. Key words: Hydroxyapatite, Zinc, Citrate, Pseudomonas, Antibacterial.

  8. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property

    Science.gov (United States)

    Chauhan, Ritika; Reddy, Arpita; Abraham, Jayanthi

    2015-01-01

    The development of eco-friendly alternative to chemical synthesis of metal nanoparticles is of great challenge among researchers. The present study aimed to investigate the biological synthesis, characterization, antimicrobial study and synergistic effect of silver and zinc oxide nanoparticles against clinical pathogens using Pichia fermentans JA2. The extracellular biosynthesis of silver and zinc oxide nanoparticles was investigated using Pichia fermentans JA2 isolated from spoiled fruit pulp bought in Vellore local market. The crystalline and stable metallic nanoparticles were characterized evolving several analytical techniques including UV-visible spectrophotometer, X-ray diffraction pattern analysis and FE-scanning electron microscope with EDX-analysis. The biosynthesized metallic nanoparticles were tested for their antimicrobial property against medically important Gram positive, Gram negative and fungal pathogenic microorganisms. Furthermore, the biosynthesized nanoparticles were also evaluated for their increased antimicrobial activities with various commercially available antibiotics against clinical pathogens. The biosynthesized silver nanoparticles inhibited most of the Gram negative clinical pathogens, whereas zinc oxide nanoparticles were able to inhibit only Pseudomonas aeruginosa. The combined effect of standard antibiotic disc and biosynthesized metallic nanoparticles enhanced the inhibitory effect against clinical pathogens. The biological synthesis of silver and zinc oxide nanoparticles is a novel and cost-effective approach over harmful chemical synthesis techniques. The metallic nanoparticles synthesized using Pichia fermentans JA2 possess potent inhibitory effect that offers valuable contribution to pharmaceutical associations.

  9. Synthesis, characterization and antimicrobial applications of zinc oxide nanoparticles loaded gum acacia/poly(SA) hydrogels.

    Science.gov (United States)

    Bajpai, S K; Jadaun, Mamta; Tiwari, Seema

    2016-11-20

    In this work, zinc oxide nanoparticles were synthesized in-situ within the gum acacia/poly (acrylate) hydrogel network using hydrothermal approach. The synthesized zinc oxide nanoparticles were characterized by Surface plasmon resonance (SPR), X-Ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM). The water absorption behavior of ZnO/GA/poly(SA) hydrogels was investigated in the phosphate buffer saline (PBS) of pH 7.4 at 37°C. The water uptake data were analyzed with the help of various kinetic models. Finally, the antimicrobial action of nanocomposites was studied using E. coli as model bacteria.

  10. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection

    Science.gov (United States)

    Chen, Zhuo; Zhang, Yaxin; Wang, Dong; Li, Linsen; Zhou, Shanyong; Huang, Joy H.; Chen, Jincan; Hu, Ping; Huang, Mingdong

    2016-01-01

    Photodynamic antimicrobial chemotherapy (PACT) is an effective method for killing bacterial cells in view of the increasing problem of multiantibiotic resistance. We herein reported the PACT effect on bacteria involved in skin infections using a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-Lys). Compared with its anionic ZnPc counterpart, ZnPc-Lys showed an enhanced antibacterial efficacy in vitro and in an animal model of localized infection. Meanwhile, ZnPc-Lys was observed to significantly reduce the wound skin blood flow during wound healing, indicating an anti-inflammation activity. This study provides new insight on the mechanisms of PACT in bacterial skin infection.

  11. Synthesis, characterization and antimicrobial applications of zinc oxide nanoparticles loaded gum acacia/poly(SA) hydrogels.

    Science.gov (United States)

    Bajpai, S K; Jadaun, Mamta; Tiwari, Seema

    2016-11-20

    In this work, zinc oxide nanoparticles were synthesized in-situ within the gum acacia/poly (acrylate) hydrogel network using hydrothermal approach. The synthesized zinc oxide nanoparticles were characterized by Surface plasmon resonance (SPR), X-Ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM). The water absorption behavior of ZnO/GA/poly(SA) hydrogels was investigated in the phosphate buffer saline (PBS) of pH 7.4 at 37°C. The water uptake data were analyzed with the help of various kinetic models. Finally, the antimicrobial action of nanocomposites was studied using E. coli as model bacteria. PMID:27561472

  12. Structural and antimicrobial properties of irradiated chitosan and its complexes with zinc

    International Nuclear Information System (INIS)

    The aim of this research was to evaluate the structural and antimicrobial properties of irradiated chitosan and its complexes with zinc. Chitosan having a molecular weight (Mη) of 220 kDa was exposed to gamma rays in dry, wet and solution forms. The chitosan-zinc complexes were prepared by varying the Mη of chitosan and Zn content. Viscometeric analysis revealed a sharp decrease in the Mη of chitosan irradiated in solution form even at lower doses compared with the dry and wet forms. X-ray diffraction patterns demonstrated variation in the crystallinity of chitosan upon exposure to gamma rays. The antibacterial response of the irradiated chitosan and its complexes against gram-positive and gram-negative bacteria demonstrated wide spectrum of effective antimicrobial activities, which increased with the dose. Additionally, the complexes exhibited excellent antifungal activity with no growth of Aspergallious fumigatus and Fusarium solani even after two weeks. These results suggested that the irradiated chitosan and its complexes with Zn can be used as antimicrobial additives for various applications. - Highlights: • Gamma radiation is used to lower the molecular weight of chitosan. • The effect of environment on radiation degradation of chitosan is studied. • Its complexes with different amount of zinc are prepared and characterized. • Radiation-degraded chitosan and complexes showed good antibacterial properties

  13. Biocompatibility and antimicrobial activity of zinc(II doped hydroxyapatite, synthesized by hydrothermal method

    Directory of Open Access Journals (Sweden)

    Kojić Vesna

    2012-01-01

    Full Text Available In order to obtain multifunctional materials with good biocompatibility and antimicrobial effect, hydroxyapatite (HAp doped with Zn2+ was synthesized by hydrothermal method. Powders with different content of zinc ions were synthesized and compared with undoped HAp to investigation of Zn2+ ion influence on the antimicrobial activity of HAp. Analyses of undoped and Zn2+-doped powders before and after thermal treatment at 1200ºC were performed by SEM and XRD. Antimicrobial effects of powders were examined in relation to Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans in liquid medium. The results showed that the obtained powders have good antimicrobial activity, but higher antimicrobial activities of powders doped with Zn2+ were observed after annealing at 1200°C. For powders annealed at 1200°C in vitro biocompatibility tests MTT and DET with MRC-5 fibroblast cells in liquid medium were carried out. Based on MTT and DET tests it was shown that powders do not have a significant cytotoxic effect, which was confirmed by SEM analysis of MRC-5 fibroblast cells after theirs in vitro contact with powders. [Projekat Ministarstva nauke Republike Srbije, br. III 45019 and FP7-REGPOT-2009-1 NANOTECH FTM

  14. Zinc ascorbate has superoxide dismutase-like activity and in vitro antimicrobial activity against Staphylococcus aureus and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Iinuma K

    2012-09-01

    Full Text Available Katsuhiro Iinuma, Isami TsuboiBML General Laboratory, Kawagoe, Saitama, JapanBackground: Acne vulgaris is a common dermatological disease, and its pathogenesis is multifactorial.Objective: We examined whether the ascorbic acid derivative zinc ascorbate has superoxide dismutase (SOD-like activity. SOD is an enzyme that controls reactive oxygen species production. In addition, the in vitro antimicrobial activity of zinc ascorbate against the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Escherichia coli was tested either alone or in combination with a variety of antimicrobial agents; their fractional inhibitory concentration index was determined using checkerboard tests.Methods: The SOD-like activity was measured in comparison with other ascorbic acid derivatives (ascorbic acid, magnesium ascorbyl phosphate, and sodium ascorbyl phosphate and zinc. The antimicrobial susceptibility of twelve strains each of S. aureus and E. coli isolated from patients with dermatological infections was tested, in comparison to a type strain of S. aureus and E. coli.Results: Zinc ascorbate had significant (P < 0.001 SOD-like activity compared with other ascorbic acid derivatives and zinc. Moreover, it showed antimicrobial activity against a type strain of S. aureus and E. coli, and its concentration (0.064% and 0.128% for S. aureus and E. coli, respectively was sufficiently lower than the normal dose (5% of other ascorbic acid derivatives. Furthermore, combinations of zinc ascorbate with clindamycin, erythromycin, and imipenem against S. aureus (average fractional inhibitory concentration, 0.59–0.90, and with imipenem against E. coli (average fractional inhibitory concentration, 0.64 isolated from patients with dermatological infections showed an additive effect.Conclusions: Our results provide novel evidence that zinc ascorbate may be effective for acne treatment.Keywords: superoxide dismutase, reactive oxygen species, antimicrobial

  15. Novel Zinc(II Complexes of Heterocyclic Ligands as Antimicrobial Agents: Synthesis, Characterisation, and Antimicrobial Studies

    Directory of Open Access Journals (Sweden)

    Ramesh S. Yamgar

    2014-01-01

    Full Text Available The synthesis and antimicrobial activity of novel Zn(II metal complexes derived from three novel heterocyclic Schiff base ligands 8-[(Z-{[3-(N-methylaminopropyl]imino}methyl]-7-hydroxy-4-methyl-2H-chromen-2-one, 2-[(E-{[4-(1H-1,2,4-triazol-1-ylmethylphenyl]imino}methyl]phenol, and (4S-4-{4-[(E-(2-hydroxybenzylideneamino]benzyl}-1,3-oxazolidin-2-one have been described. These Schiff base ligands and metal complexes are characterised by spectroscopic techniques. According to these data, we propose an octahedral geometry to all the metal complexes. Antimicrobial activity of the Schiff base ligand and its metal complexes was studied against Gram negative bacteria: E. coli and Pseudomonas fluorescens, Gram positive bacteria: Staphylococcus aureus, and also against fungi, that is, C. albicans and A. niger. Some of the metal complexes show significant antifungal activity (MIC < 0.2 μg/mL. The “in vitro” data has identified [Zn(NMAPIMHMC2]·2H2O, [Zn(TMPIMP2]·2H2O, and [Zn(HBABO2]·2H2O as potential therapeutic antifungal agents against C. albicans and A. niger.

  16. Zinc ascorbate has superoxide dismutase-like activity and in vitro antimicrobial activity against Staphylococcus aureus and Escherichia coli

    OpenAIRE

    Iinuma K; Tsuboi I

    2012-01-01

    Katsuhiro Iinuma, Isami TsuboiBML General Laboratory, Kawagoe, Saitama, JapanBackground: Acne vulgaris is a common dermatological disease, and its pathogenesis is multifactorial.Objective: We examined whether the ascorbic acid derivative zinc ascorbate has superoxide dismutase (SOD)-like activity. SOD is an enzyme that controls reactive oxygen species production. In addition, the in vitro antimicrobial activity of zinc ascorbate against the Gram-positive bacterium Staphylococcus aureus and th...

  17. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivative for bacterial skin infection

    Science.gov (United States)

    Chen, Zhuo; Zhang, Yaxin; Li, Linsen; Zhou, Shanyong; Chen, Jincan; Hu, Ping; Huang, Mingdong

    2014-09-01

    Folliculitis, furunculosis and acne vulgaris are very common skin disorders of the hair follicles and are associated with large grease-producing (sebaceous) glands. Although the detailed mechanisms involved these skin disorders are not fully understood, it is believed that the bacteria Propionibacterium acnes and Staphylococcus aureus are the key pathogenic factors involved. Conventional treatments targeting the pathogenic factors include a variety of topical and oral medications such as antibiotics. The wide use of antibiotics leads to bacterial resistance, and hence there is a need for new alternatives in above bacterial skin treatment. Photodynamic antimicrobial chemotherapy (PACT) is based on an initial photosensitization of the infected area, followed by irradiation with visible light, producing singlet oxygen which is cytotoxic to bacteria. Herein we reported a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys)5) and its PACT effect for the bacteria involved in these skin infections. Our results demonstrated strong bactericidal effects of this photosensitizer on both strains of the bacteria, suggesting ZnPc-(Lys)5 as a promising antimicrobial photosensitizer for the treatment of infectious diseases caused by these bacteria.

  18. Influence of thickness and coatings morphology in the antimicrobial performance of zinc oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, P. [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimaraes (Portugal); Sampaio, P. [CBMA, University of Minho, Campus de Gualtar, 4700 Braga (Portugal); Azevedo, S. [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimaraes (Portugal); Vaz, C. [CBMA, University of Minho, Campus de Gualtar, 4700 Braga (Portugal); Espinós, J.P. [Instituto de Ciencia de Materiales de Sevilla, CSIC-University of Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla (Spain); Teixeira, V., E-mail: vasco@fisica.uminho.pt [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimaraes (Portugal); Carneiro, J.O., E-mail: carneiro@fisica.uminho.pt [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimaraes (Portugal)

    2014-07-01

    In this research work, the production of undoped and silver (Ag) doped zinc oxide (ZnO) thin films for food-packaging applications were developed. The main goal was to determine the influence of coatings morphology and thickness on the antimicrobial performance of the produced samples. The ZnO based thin films were deposited on PET (Polyethylene terephthalate) substrates by means of DC reactive magnetron sputtering. The thin films were characterized by optical spectroscopy, X-Ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Scanning Electron Microscopy (SEM). The antimicrobial performance of the undoped and Ag-doped ZnO thin films was also evaluated. The results attained have shown that all the deposited zinc oxide and Ag-doped ZnO coatings present columnar morphology with V-shaped columns. The increase of ZnO coatings thickness until 200 nm increases the active surface area of the columns. The thinner samples (50 and 100 nm) present a less pronounced antibacterial activity than the thickest ones (200–600 nm). Regarding Ag-doped ZnO thin films, it was verified that increasing the silver content decreases the growth rate of Escherichia coli and decreases the amount of bacteria cells present at the end of the experiment.

  19. Zinc

    Science.gov (United States)

    ... Consumer Datos en español Health Professional Other Resources Zinc Fact Sheet for Consumers What is zinc and what does it do? Zinc is a ... find out more about zinc? Disclaimer How much zinc do I need? The amount of zinc you ...

  20. Zinc Oxide Nanorods-Decorated Graphene Nanoplatelets: A Promising Antimicrobial Agent against the Cariogenic Bacterium Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Elena Zanni

    2016-09-01

    Full Text Available Nanomaterials are revolutionizing the field of medicine to improve the quality of life due to the myriad of applications stemming from their unique properties, including the antimicrobial activity against pathogens. In this study, the antimicrobial and antibiofilm properties of a novel nanomaterial composed by zinc oxide nanorods-decorated graphene nanoplatelets (ZNGs are investigated. ZNGs were produced by hydrothermal method and characterized through field-emission scanning electron microscopy (FE-SEM, energy-dispersive X-ray spectroscopy (EDX and X-ray diffraction (XRD techniques. The antimicrobial activity of ZNGs was evaluated against Streptococcus mutans, the main bacteriological agent in the etiology of dental caries. Cell viability assay demonstrated that ZNGs exerted a strikingly high killing effect on S. mutans cells in a dose-dependent manner. Moreover, FE-SEM analysis revealed relevant mechanical damages exerted by ZNGs at the cell surface of this dental pathogen rather than reactive oxygen species (ROS generation. In addition, inductively coupled plasma mass spectrometry (ICP-MS measurements showed negligible zinc dissolution, demonstrating that zinc ion release in the suspension is not associated with the high cell mortality rate. Finally, our data indicated that also S. mutans biofilm formation was affected by the presence of graphene-zinc oxide (ZnO based material, as witnessed by the safranin staining and growth curve analysis. Therefore, ZNGs can be a remarkable nanobactericide against one of the main dental pathogens. The potential applications in dental care and therapy are very promising.

  1. Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles

    Science.gov (United States)

    Supraja, N.; Prasad, T. N. V. K. V.; Krishna, T. Giridhara; David, E.

    2016-04-01

    Synthesis of metal nanoparticles using biological systems is an expanding research area in nanotechnology. Moreover, search for new nanoscale antimicrobials is been always attractive as they find numerous avenues for application in medicine. Biosynthesis of metallic nanoparticles is cost effective and eco-friendly compared to those of conventional methods of nanoparticles synthesis. Herein, we present the synthesis of zinc oxide nanoparticles using the stem bark extract of Boswellia ovalifoliolata, and evaluation of their antimicrobial efficacy. Stable ZnO nanoparticles were formed by treating 90 ml of 1 mM zinc nitrate aqueous solution with 10 ml of 10 % bark extract. The formation of B. ovalifoliolata bark-extract-mediated zinc oxide nanoparticles (BZnNPs) was confirmed by UV-visible spectroscopic analysis and recorded the localized surface plasmon resonance (LSPR) at 230 nm. Fourier transform infrared spectroscopic (FT-IR) analysis revealed that primary and secondary amine groups in combination with the proteins present in the bark extract are responsible for the reduction and stabilization of the BZnNPs. The morphology and crystalline phase of the nanocrystals were determined by Transmission electron microscopy (TEM). The hydrodynamic diameter (20.3 nm) and a positive zeta potential (4.8 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of BZnNPs was evaluated (in vitro) against fungi, Gram-negative, and Gram-positive bacteria using disk diffusion method which were isolated from the scales formed in drinking water PVC pipelines.

  2. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial

    International Nuclear Information System (INIS)

    Postoperative infections remain a risk factor that leads to failures in oral and maxillofacial artificial bone transplantation. This study aimed to synthesize and evaluate a novel hydroxyapatite whisker (HAPw) / nano zinc oxide (n-ZnO) antimicrobial bone restorative biomaterial. A scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) were employed to characterize and analyze the material. Antibacterial capabilities against Staphylococcus aureus, Escherichia coli, Candida albicans and Streptococcus mutans were determined by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and kinetic growth inhibition assays were performed under darkness and simulated solar irradiation. The mode of antibiotic action was observed by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The MIC and MBC were 0.078–1.250 mg ml−1 and 0.156–2.500 mg ml−1, respectively. The inhibitory function on the growth of the microorganisms was achieved even under darkness, with gram-positive bacteria found to be more sensitive than gram-negative, and enhanced antimicrobial activity was exhibited under simulated solar excitation compared to darkness. TEM and CLSM images revealed a certain level of bacterial cell membrane destruction after treatment with 1 mg ml−1 of the material for 12 h, causing the leakage of intracellular contents and bacteria death. These results suggest favorable antibiotic properties and a probable mechanism of the biomaterial for the first time, and further studies are needed to determine its potential application as a postoperative anti-inflammation method in bone transplantation. (paper)

  3. Comparative evaluation of antimicrobials for textile applications.

    Science.gov (United States)

    Windler, Lena; Height, Murray; Nowack, Bernd

    2013-03-01

    Many antimicrobial technologies are available for textiles. They may be used in many different textile applications to prevent the growth of microorganisms. Due to the biological activity of the antimicrobial compounds, the assessment of the safety of these substances is an ongoing subject of research and regulatory scrutiny. This review aims to give an overview on the main compounds used today for antimicrobial textile functionalization. Based on an evaluation of scientific publications, market data as well as regulatory documents, the potential effects of antimicrobials on the environment and on human health were considered and also life cycle perspectives were taken into account. The characteristics of each compound were summarized according to technical, environmental and human health criteria. Triclosan, silane quaternary ammonium compounds, zinc pyrithione and silver-based compounds are the main antimicrobials used in textiles. The synthetic organic compounds dominate the antimicrobials market on a weight basis. On the technical side the application rates of the antimicrobials used to functionalize a textile product are an important parameter with treatments requiring lower dosage rates offering clear benefits in terms of less active substance required to achieve the functionality. The durability of the antimicrobial treatment has a strong influence on the potential for release and subsequent environmental effects. In terms of environmental criteria, all compounds were rated similarly in effective removal in wastewater treatment processes. The extent of published information about environmental behavior for each compound varies, limiting the possibility for an in-depth comparison of all textile-relevant parameters across the antimicrobials. Nevertheless the comparative evaluation showed that each antimicrobial technology has specific risks and benefits that should be taken into account in evaluating the suitability of different antimicrobial products. The

  4. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.)

    Science.gov (United States)

    Elumalai, K.; Velmurugan, S.

    2015-08-01

    The synthesis of metal and semiconductor nanoparticles is an expanding research area due to the potential applications in the development of novel technologies. Especially, biologically synthesized nanomaterial has become an important branch of nanotechnology. The present work, described the synthesis of zinc oxide nanoparticles (ZnO NPs) using leaf aqueous extract of Azadirachta indica (L.) and its antimicrobial activities. The nanoparticles was obtain characterized by UV-Vis spectroscopy, Photoluminescence (PL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM) analysis, Energy dispersive X-ray analysis (EDAX), Field emission scanning electron microscopy (FESEM) and Atomic force microscope (AFM) analysis. In this study we also investigated antimicrobial activity of green synthesized ZnO NPs. The results depicted concentration of ZnO NPs was increased (50, 100, 200 μg/mL) and also increase in antimicrobial activities was due to the increase of H2O2 concentration from the surface of ZnO. However, green synthesized ZnO NPs was more potent than Bare ZnO and leaf of A. indica. Finally concluded the zinc oxide nanoparticles exhibited an interesting antimicrobial activity with both Gram positive and Gram negative bacterial and yeast at micromolar concentration.

  5. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Jesline, A.; John, Neetu P.; Narayanan, P. M.; Vani, C.; Murugan, Sevanan

    2015-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major nosocomial pathogens responsible for a wide spectrum of infections and the emergence of bacterial resistance to antibiotics has lead to treatment drawbacks towards large number of drugs. Formation of biofilms is the main contributing factor to antibiotic resistance. The development of reliable processes for the synthesis of zinc oxide nanoparticles is an important aspect of nanotechnology today. Zinc oxide and titanium dioxide nanoparticles comprise well-known inhibitory and bactericidal effects. Emergence of antimicrobial resistance by pathogenic bacteria is a major health problem in recent years. This study was designed to determine the efficacy of zinc and titanium dioxide nanoparticles against biofilm producing methicillin-resistant S. aureus. Biofilm production was detected by tissue culture plate method. Out of 30 MRSA isolates, 22 isolates showed strong biofilm production and 2 showed weak and moderate biofilm formation. Two strong and weak biofilm-producing methicillin-resistant S. aureus isolates were subjected to antimicrobial activity using commercially available zinc and titanium dioxide nanoparticles. Thus, the nanoparticles showed considerably good activity against the isolates, and it can be concluded that they may act as promising, antibacterial agents in the coming years.

  6. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.)

    Energy Technology Data Exchange (ETDEWEB)

    Elumalai, K. [Department of Physics, Annamalai University, Annamalai Nagar 608002 (India); Velmurugan, S., E-mail: drvelmurganphy@gmail.com [Department of Engineering Physics (FEAT), Annamalai University, Annamalai Nagar 608 002 (India)

    2015-08-01

    Graphical abstract: - Highlights: • Phenolic acid and flavonoid compounds play a major role in bioreduction reaction confirmed by FT-IR. • PL spectrum identified peaks were located in the range of the blue-violet spectrum. • XRD pattern confirmed ZnO hexagonal phase (wurtzite structure). • The result of (AFM) images depicted polycrystalline with porous nature of ZnO NPs. • Antimicrobial activities of green synthesized ZnO NPs were more potent than Bare ZnO and leaf of A. indica. - Abstract: The synthesis of metal and semiconductor nanoparticles is an expanding research area due to the potential applications in the development of novel technologies. Especially, biologically synthesized nanomaterial has become an important branch of nanotechnology. The present work, described the synthesis of zinc oxide nanoparticles (ZnO NPs) using leaf aqueous extract of Azadirachta indica (L.) and its antimicrobial activities. The nanoparticles was obtain characterized by UV–Vis spectroscopy, Photoluminescence (PL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM) analysis, Energy dispersive X-ray analysis (EDAX), Field emission scanning electron microscopy (FESEM) and Atomic force microscope (AFM) analysis. In this study we also investigated antimicrobial activity of green synthesized ZnO NPs. The results depicted concentration of ZnO NPs was increased (50, 100, 200 μg/mL) and also increase in antimicrobial activities was due to the increase of H{sub 2}O{sub 2} concentration from the surface of ZnO. However, green synthesized ZnO NPs was more potent than Bare ZnO and leaf of A. indica. Finally concluded the zinc oxide nanoparticles exhibited an interesting antimicrobial activity with both Gram positive and Gram negative bacterial and yeast at micromolar concentration.

  7. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.)

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Phenolic acid and flavonoid compounds play a major role in bioreduction reaction confirmed by FT-IR. • PL spectrum identified peaks were located in the range of the blue-violet spectrum. • XRD pattern confirmed ZnO hexagonal phase (wurtzite structure). • The result of (AFM) images depicted polycrystalline with porous nature of ZnO NPs. • Antimicrobial activities of green synthesized ZnO NPs were more potent than Bare ZnO and leaf of A. indica. - Abstract: The synthesis of metal and semiconductor nanoparticles is an expanding research area due to the potential applications in the development of novel technologies. Especially, biologically synthesized nanomaterial has become an important branch of nanotechnology. The present work, described the synthesis of zinc oxide nanoparticles (ZnO NPs) using leaf aqueous extract of Azadirachta indica (L.) and its antimicrobial activities. The nanoparticles was obtain characterized by UV–Vis spectroscopy, Photoluminescence (PL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM) analysis, Energy dispersive X-ray analysis (EDAX), Field emission scanning electron microscopy (FESEM) and Atomic force microscope (AFM) analysis. In this study we also investigated antimicrobial activity of green synthesized ZnO NPs. The results depicted concentration of ZnO NPs was increased (50, 100, 200 μg/mL) and also increase in antimicrobial activities was due to the increase of H2O2 concentration from the surface of ZnO. However, green synthesized ZnO NPs was more potent than Bare ZnO and leaf of A. indica. Finally concluded the zinc oxide nanoparticles exhibited an interesting antimicrobial activity with both Gram positive and Gram negative bacterial and yeast at micromolar concentration

  8. Comparative analysis of copper and zinc based agrichemical biocide products: materials characteristics, phytotoxicity and in vitro antimicrobial efficacy

    Directory of Open Access Journals (Sweden)

    Harikishan Kannan

    2016-07-01

    Full Text Available In the past few decades, copper based biocides have been extensively used in food crop protection including citrus, small fruits and in all garden vegetable production facilities. Continuous and rampant use of copper based biocides over decades has led to accumulation of this metal in the soil and the surrounding ecosystem. Toxic levels of copper and its derivatives in both the soil and in the run off pose serious environmental and public health concerns. Alternatives to copper are in great need for the agriculture industry to produce food crops with minimal environmental risks. A combination of copper and zinc metal containing biocide such as Nordox 30/30 or an improved version of zinc-only containing biocide would be a good alternative to copper-only products if the efficacy can be maintained. As of yet there is no published literature on the comparative study of the materials characteristics and phyto-compatibility properties of copper and zinc-based commercial products that would allow us to evaluate the advantages and disadvantages of both versions of pesticides. In this report, we compared copper hydroxide and zinc oxide based commercially available biocides along with suitable control materials to assess their efficacy as biocides. We present a detailed material characterization of the biocides including morphological studies involving electron microscopy, molecular structure studies involving X-ray diffraction, phytotoxicity studies in model plant (tomato and antimicrobial studies involving surrogate plant pathogens (Xanthomonas alfalfae subsp. citrumelonis, Pseudomonas syringae pv. syringae and Clavibacter michiganensis subsp. michiganensis. Zinc based compounds were found to possess comparable to superior antimicrobial properties while exhibiting significantly lower phytotoxicity when compared to copper based products thus suggesting their potential as an alternative.

  9. Zinc

    Science.gov (United States)

    ... women when used in the recommended daily amounts (RDA). However, zinc is POSSIBLY UNSAFE when used in ... older infants, children, and adults, Recommended Dietary Allowance (RDA) quantities of zinc have been established: infants and ...

  10. Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity

    Science.gov (United States)

    Dhillon, Gurpreet Singh; Kaur, Surinder; Brar, Satinder Kaur

    2014-06-01

    The present investigation deals with the facile synthesis and characterization of chitosan (CTS)-based zinc oxide (ZnO) nanoparticles (NPs) and their antimicrobial activities against pathogenic microorganisms. ZnO-CTS NPs were synthesized through two different methods: nano spray drying and precipitation, using various organic compounds (citric acid, glycerol, starch and whey powder) as stabilizers. Both the synthesis methods were simple and were devoid of any chemical usage. The detailed characterization of the NPs was carried out using UV-Vis spectroscopy, dynamic light scattering particle size analysis, zeta potential measurements and scanning electron microscopy, which confirmed the fabrication of NPs with different shapes and sizes. Antimicrobial assay of synthesized ZnO-CTS NPs was carried out against different pathogenic microbial strains ( Candida albicans, Micrococcus luteus and Staphylococcus aureus). The significant ( p aureus with ZnO-CTS NPs (with a concentration ranging from 0.625 to 0.156 mg/ml) as compared to control treatment. ZnO-CTS NPs also showed significant biofilm inhibition activity ( p aureus. The study demonstrated the potential of ZnO-CTS NPs as antimicrobial and antibiofilm agents.

  11. Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity.

    Science.gov (United States)

    Elumalai, K; Velmurugan, S; Ravi, S; Kathiravan, V; Ashokkumar, S

    2015-05-15

    The development of semiconductor materials made a considerable progress of catalytic technologies. In the present study, a simple and eco-friendly chemical direction for the synthesis of zinc oxide nanoparticles (ZnO NPs) using leaf extract of Moringa oleifera has been used. The prepared ZnO NPs were characterized various techniques such as UV-Vis absorption spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR) and photoluminescence spectroscopy (PL). XRD analysis revealed the wurtzite hexagonal structure of ZnO NPs. FT-IR confirmed the presence of functional groups of both leaf extract and ZnO NPs. The particles size, morphology and topography determined from FE-SEM. The intense and narrow width of zinc and oxygen have high purity and crystalline were identified using EDX. UV-Vis absorption showed the characteristic absorption peak of ZnO NPs. The results of antimicrobial activities revealed that maximum zones of inhibition was observed Gram (+ve) positive bacteria and followed by the Gram (-ve) negative bacteria and fungal at concentration of 200μg/mL of ZnO NPs.

  12. Antimicrobial Effect of Nano-Zinc Oxide and Nano-Chitosan Particles in Dental Composite Used in Orthodontics

    Directory of Open Access Journals (Sweden)

    AmirHossein Mirhashemi

    2015-10-01

    Full Text Available Background: Incidence of  white  spots due  to  demineralization of  enamel  and  gingival problems  is  an  unacceptable  result  of  orthodontic  treatment.  Plaque  accumulation  and bacterial biofilm growth are responsible for these phenomena. The resin-based dental composites used as bonding agents in orthodontics play a major role in mentioned problems. As recent researches assert the antimicrobial effects of chitosan (CS and zinc oxide (ZnO nanoparticles  (NPs,  it  seems  that  adding  these  nanoparticles  to  the  composite  can  be beneficial in reducing the number and function of microorganisms. The aim of this study was to  evaluate  the  antimicrobial  effects  of  ZnO-NP  and  CS-NP-containing  orthodontic composite.Methods: Antibacterial effectiveness of ZnO-NPs and CS-NPs was assessed in four groups against Streptococcus mutans, Streptococcus sanguis and Lactobacillus acidophilus grown both planktonic and as a biofilm on composites. One group as the unmodified control group and  three  groups  consisting  of  three  different  concentrations of  ZnO-NPs  and  CS-NPs mixture: 1%, 5% and 10% (1:1 w/w. 108 CFU/ml microorganism suspensions were provided with spectrophotometer. Biofilm formation was quantified by viable counts. Disc agar diffusion (DAD test was carried out to determine antimicrobial effects of nanoparticles by measuring the inhibition diameter on brain heart infusion agar plates. Finally,viable counts of microorganisms on days 3, 15 and 30 were collected for the antimicrobial effects of eluted components from composite discs.Results: In biofilm formation test, a reduction in bacterial counts was observed with 10% nanoparticle-containing composites compared with their unmodified counterpart. In the DAD test only 10% nanoparticle-containing specimens showed statistically significant inhibition. The only noticeable datain eluted component test was on day 30 for 10

  13. Comparative performance of a panel of commercially available antimicrobial nanocoatings in Europe

    Directory of Open Access Journals (Sweden)

    Molling JW

    2014-11-01

    Full Text Available Johan W Molling, Jacques W Seezink, Birgit EJ Teunissen, Inhua Muijrers-Chen, Paul JA Borm Zuyd University of Applied Sciences, Heerlen, the Netherlands Background: Bacterial resistance against the classic antibiotics is posing an increasing challenge for the prevention and treatment of infections in health care environments. The introduction of antimicrobial nanocoatings with active ingredients provides alternative measures for active killing of microorganisms, through a preventive hygiene approach. Purpose: The purpose of this study was to investigate the antimicrobial activity of a panel of antimicrobial coatings available on the European market. Methods: A comparative, biased selection of commercially available antimicrobial coatings was tested for antimicrobial efficiency. Suppliers were contacted to deliver their coatings on glass and/or stainless steel substrates. In total, 23 coatings from eleven suppliers were received, which were investigated for their effect on the growth of Escherichia coli, using the International Organization for Standardization (ISO 22196 protocol. Results: The majority of nanomaterial-containing coatings (n=13 contained nanosilver (n=12, while only one had photocatalytic TiO2 as the active particle. The differences in antimicrobial activity among all of the coatings, expressed as log reduction values, varied between 1.3 and 6.6, while the variation within the nanomaterial-based group was between 2.0 and 6.2. Although nanosilver coatings were on average very effective in reducing the number of viable bacteria after challenge, the strongest log reduction (6.6 was seen with a coating that has immobilized, covalently bound quaternary ammonium salt in its matrix. Besides these two compounds, coatings containing TiO2, poly(dimethylsiloxane, triclosan, or zinc pyrithione evoked 100% killing of E. coli. Conclusion: Our findings indicate that nanosilver dominates the nanoparticle-based coatings and performs adequately

  14. Comparative performance of a panel of commercially available antimicrobial nanocoatings in Europe

    Science.gov (United States)

    Molling, Johan W; Seezink, Jacques W; Teunissen, Birgit EJ; Muijrers-Chen, Inhua; Borm, Paul JA

    2014-01-01

    Background Bacterial resistance against the classic antibiotics is posing an increasing challenge for the prevention and treatment of infections in health care environments. The introduction of antimicrobial nanocoatings with active ingredients provides alternative measures for active killing of microorganisms, through a preventive hygiene approach. Purpose The purpose of this study was to investigate the antimicrobial activity of a panel of antimicrobial coatings available on the European market. Methods A comparative, biased selection of commercially available antimicrobial coatings was tested for antimicrobial efficiency. Suppliers were contacted to deliver their coatings on glass and/or stainless steel substrates. In total, 23 coatings from eleven suppliers were received, which were investigated for their effect on the growth of Escherichia coli, using the International Organization for Standardization (ISO) 22196 protocol. Results The majority of nanomaterial-containing coatings (n=13) contained nanosilver (n=12), while only one had photocatalytic TiO2 as the active particle. The differences in antimicrobial activity among all of the coatings, expressed as log reduction values, varied between 1.3 and 6.6, while the variation within the nanomaterial-based group was between 2.0 and 6.2. Although nanosilver coatings were on average very effective in reducing the number of viable bacteria after challenge, the strongest log reduction (6.6) was seen with a coating that has immobilized, covalently bound quaternary ammonium salt in its matrix. Besides these two compounds, coatings containing TiO2, poly(dimethylsiloxane), triclosan, or zinc pyrithione evoked 100% killing of E. coli. Conclusion Our findings indicate that nanosilver dominates the nanoparticle-based coatings and performs adequately. However, considering the unknowns in relation to ecotoxicological emission and effects, it needs further consideration before widespread application into different

  15. Zinc Therapy in Dermatology: A Review

    Directory of Open Access Journals (Sweden)

    Mrinal Gupta

    2014-01-01

    Full Text Available Zinc, both in elemental or in its salt forms, has been used as a therapeutic modality for centuries. Topical preparations like zinc oxide, calamine, or zinc pyrithione have been in use as photoprotecting, soothing agents or as active ingredient of antidandruff shampoos. Its use has expanded manifold over the years for a number of dermatological conditions including infections (leishmaniasis, warts, inflammatory dermatoses (acne vulgaris, rosacea, pigmentary disorders (melasma, and neoplasias (basal cell carcinoma. Although the role of oral zinc is well-established in human zinc deficiency syndromes including acrodermatitis enteropathica, it is only in recent years that importance of zinc as a micronutrient essential for infant growth and development has been recognized. The paper reviews various dermatological uses of zinc.

  16. Antimicrobial action of zinc oxide nanoparticles in combination with ciprofloxacin and ceftazidime against multidrug-resistant Acinetobacter baumannii.

    Science.gov (United States)

    Ghasemi, F; Jalal, R

    2016-09-01

    Acinetobacter baumannii is a serious concern amongst hospitalised patients worldwide and its resistance to antibiotics has emerged as a threat to public health in recent years. Metal oxide nanoparticles were found to be effective for overcoming bacterial resistance owing to their antibacterial activities. The aim of this study was to investigate the combined effects of zinc oxide nanoparticles (ZnO-NPs) and the conventional antibiotics ciprofloxacin and ceftazidime as well as their mechanisms of action against resistant A. baumannii. ZnO-NPs were prepared by the solvothermal method and were characterised by various methods. Broth microdilution and disk diffusion methods were used to determine the antibacterial activities of ciprofloxacin and ceftazidime antibiotics in the absence and presence of a subinhibitory concentration of ZnO-NPs. The mechanism of action of ZnO-NPs alone and in combination with these antibiotics was assessed by flow cytometry, DNA extraction, fluorescence and scanning electron microscopy. The results showed that the antibacterial activities of both antibiotics increased in the presence of a subinhibitory concentration of ZnO-NPs. Combination of ZnO-NPs with antibiotics increased the uptake of antibiotics and changed the bacterial cells from rod to cocci forms. Bacterial filamentation was also observed and exhibited no DNA fragmentation. In conclusion, the results of this study indicate that ZnO-NPs potentiate the antimicrobial action of ciprofloxacin and ceftazidime. A mechanism is proposed to explain this phenomenon. PMID:27530853

  17. Antimicrobial coatings based on zinc oxide and orange oil for improved bioactive wound dressings and other applications.

    Science.gov (United States)

    Rădulescu, Marius; Andronescu, Ecaterina; Cirja, Andreea; Holban, Alina Maria; Mogoantă, LaurenŢiu; Bălşeanu, Tudor Adrian; Cătălin, Bogdan; Neagu, Tiberiu Paul; Lascăr, Ioan; Florea, Denisa Alexandra; Grumezescu, Alexandru Mihai; Ciubuca, Bianca; Lazăr, Veronica; Chifiriuc, Mariana Carmen; Bolocan, Alexandra

    2016-01-01

    This work presents a novel nano-modified coating for wound dressings and other medical devices with anti-infective properties, based on functionalized zinc oxide nanostructures and orange oil (ZnO@OO). The obtained nanosurfaces were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), selected area electron diffraction (SAED), differential thermal analysis-thermogravimetry (DTA-TG), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The obtained nanocomposite coatings exhibited an antimicrobial activity superior to bare ZnO nanoparticles (NPs) and to the control antibiotic against Staphylococcus aureus and Escherichia coli, as revealed by the lower minimal inhibitory concentration values. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based, viable cell count method was used. The coated wound dressings proved to be more resistant to S. aureus microbial colonization and biofilm formation compared to the uncoated controls. These results, correlated with the good in vivo biodistribution open new directions for the design of nanostructured bioactive coating and surfaces, which can find applications in the medical field, for obtaining improved bioactive wound dressings and prosthetic devices, but also in food packaging and cosmetic industry. PMID:27151695

  18. Synthesis, Spectroscopic, and Antimicrobial Studies on Bivalent Zinc and Mercury Complexes of 2-Formylpyridine Thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2009-01-01

    Full Text Available A series of metal complexes of Zn(II and Hg(II having the general composition [M(L2]X2 [where L = 2-formylpyridine thiosemicarbazone; M = Zn(II and Hg(II; X = Cl−, NO−3 and 1/2SO42−] have been prepared and characterized by elemental chemical analysis, molar conductance, and spectral (IR and mass studies. The IR spectral data suggests the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. On the basis of spectral studies, a tetrahedral geometry has been assigned for Zn(II and Hg(II complexes. The free ligand and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties.

  19. Synthesis, Spectroscopic, and Antimicrobial Studies on Bivalent Zinc and Mercury Complexes of 2-Formylpyridine Thiosemicarbazone

    Science.gov (United States)

    Chandra, Sulekh; Parmar, Shikha; Kumar, Yatendra

    2009-01-01

    A series of metal complexes of Zn(II) and Hg(II) having the general composition [M(L)2]X2 [where L = 2-formylpyridine thiosemicarbazone; M = Zn(II) and Hg(II); X = Cl−, NO3− and 1/2SO42−] have been prepared and characterized by elemental chemical analysis, molar conductance, and spectral (IR and mass) studies. The IR spectral data suggests the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. On the basis of spectral studies, a tetrahedral geometry has been assigned for Zn(II) and Hg(II) complexes. The free ligand and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties. PMID:19421419

  20. Synthesis, Characterization and Antimicrobial Activity of Zinc Oxide Nanoparticles Synthesized From Calotropis procera

    Directory of Open Access Journals (Sweden)

    Poovizhi. J

    2015-09-01

    Full Text Available The aim of the study was to compare the yield, nature and antimicrobial activity of nanoparticles synthesized using Calotropis procera leaf extract. ZnO NPs synthesized were characterized by FTIR and SEM. It was evident from SEM images that the size of the particles obtained by biological method is ranging from 100-200 nm. Antibacterial study was carried out on human bacterial and plant bacterial pathogens and their MIC values were determined. The antibacterial activity towards human bacterial and plant pathogen showed good sensitivity towards the green synthesized ZnO NP’s at all concentrations and maximum zone of inhibition occurred at the concentration of 30μg/mL. Minimum Inhibitory concentrations of NPs against human pathogenic bacteria and plant bacterial pathogens, shows that all tested microorganisms were completely inhibited at the concentration of 50 to 12.5μg/ml of nano-ZnO. The antifungal activity of ZnO NPs against fungi shows that different concentration of ZnO nanoparticles caused significant inhibition in the spore germination.

  1. Synthesis, X-ray crystal structures and thermal analyses of some new antimicrobial zinc complexes: New configurations and nano-size structures.

    Science.gov (United States)

    Masoudiasl, A; Montazerozohori, M; Naghiha, R; Assoud, A; McArdle, P; Safi Shalamzari, M

    2016-04-01

    Some new five coordinated ZnLX2 complexes, where L is N3-Schiff base ligand obtained by condensation reaction between diethylenetriamine and (E)-3-(2-nitrophenyl)acrylaldehyde and X (Cl(-), Br(-), I(-), N3(-) and NCS(-)), were synthesized and characterized by FT-IR, (1)H and (13)CNMR, UV-visible, ESI-mass spectra and molar conductivity measurements. The structures of zinc iodide and thiocyanate complexes were determined by X-ray crystallographic analysis. The X-ray results showed that the Zn (II) center in these complexes is five-coordinated in a distorted trigonal-bipyramidal configuration. Zinc iodide and thiocyanate complexes crystallize in the monoclinic and triclinic systems with space groups of C2/c and P1- with eight and two molecules per unit cell respectively. The crystal packing of the complexes consists of intermolecular interactions such as C-H(…)O and C-H(…)I, C-H(···)S, N(…)O, together with π-π stacking and some other unexpected interactions. The mentioned interactions cause three-dimensional supramolecular structure in the solid state. Zinc complexes were also prepared in nano-structure by sonochemical method confirmed by XRD, SEM and TEM analyses. Moreover, ZnO nanoparticles were synthesized by direct thermolysis of zinc iodide complex. Furthermore, antimicrobial and thermal properties of the compounds were completely investigated. PMID:26838912

  2. Antimicrobial Polymer

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, William F. (Utica, OH); Wright, Stacy C. (Flint, MI); Taylor, Andrew C. (Ann Arbor, MI)

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  3. Effect of annealing temperature on antimicrobial and structural properties of bio-synthesized zinc oxide nanoparticles using flower extract of Anchusa italica.

    Science.gov (United States)

    Azizi, Susan; Mohamad, Rosfarizan; Bahadoran, Azadeh; Bayat, Saadi; Rahim, Raha Abdul; Ariff, Arbakariya; Saad, Wan Zuhainis

    2016-08-01

    The use of nontoxic biological compounds in the synthesis of nanomaterials is an economic and eco-friendly approach. The present work was undertaken to develop zinc oxide nanoparticles (ZnO-NPs) by a green method using simple precursor from the solution consisting of zinc acetate and the flower extract of Anchusa italica (A. italica). Effect of annealing temperature on structural and antimicrobial properties was investigated. The crystalline structure of ZnO-NPs was shown using X-ray diffraction (XRD) analysis. Transmission electron microscopy (TEM) results showed that ZnO-NPs are hexagonal in shapes with mean particle size of ~8 and ~14nm at 100°C and 200°C annealing temperatures respectively. The optical band gap was increased from 3.27eV to 3.30eV with the decreasing of the particle size. The antimicrobial activity of ZnO-NPs towards Gram positive (Bacillus megaterium and Stapphylococcus aureus) and Gram negative (Escherichia coli and Salmonella typhimurium) pathogens decreased with the increasing of the heat treating temperature. In vitro cytotoxicity studies on Vero cells, a dose dependent toxicity with non-toxic effect of concentration below 142μg/mL was shown. The results indicated that A. italica is an appropriate reaction media to prepare ZnO-NPs for cosmetic and bio-medical productions. PMID:27318600

  4. Antimycobacterial, antimicrobial, and biocompatibility properties of para-aminosalicylic acid with zinc layered hydroxide and Zn/Al layered double hydroxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2014-07-01

    Full Text Available Bullo Saifullah,1 Mohamed E El Zowalaty,2,3 Palanisamy Arulselvan,2 Sharida Fakurazi,2,4 Thomas J Webster,5,6 Benjamin M Geilich,5 Mohd Zobir Hussein1 1Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 3Department of Environmental Health, Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Saudi Arabia; 4Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 5Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA; 6Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: The treatment of tuberculosis by chemotherapy is complicated due to multiple drug prescriptions, long treatment duration, and adverse side effects. We report here for the first time an in vitro therapeutic effect of nanocomposites based on para-aminosalicylic acid with zinc layered hydroxide (PAS-ZLH and zinc-aluminum layered double hydroxides (PAS-Zn/Al LDH, against mycobacteria, Gram-positive bacteria, and Gram-negative bacteria. The nanocomposites demonstrated good antimycobacterial activity and were found to be effective in killing Gram-positive and Gram-negative bacteria. A biocompatibility study revealed good biocompatibility of the PAS-ZLH nanocomposites against normal human MRC-5 lung cells. The para-aminosalicylic acid loading was quantified with high-performance liquid chromatography analysis. In summary, the present preliminary in vitro studies are highly encouraging for further in vivo studies of PAS-ZLH and PAS-Zn/Al LDH nanocomposites to treat tuberculosis.  Keywords: Zn/Al-layered double hydroxides, zinc layered hydroxides, tuberculosis, para

  5. Antimicrobial Efficacy of Zinc Oxide Quantum Dots Against Listeria Monocytogenes, Salmonella Enteritidis and Escherichia coli O157:H7

    Science.gov (United States)

    Zinc oxide quantum dots (ZnO QDs) in a powder form, a ZnO-polystyrene (PS) film form and a polyvinylprolidone capped ZnO (ZnO-PVP) gel form were prepared and their antibacterial activities against foodborne pathogenic Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli O157:H7 in cul...

  6. Synthesis, structural characterization and biological activity of a trinuclear zinc(II) complex: DNA interaction study and antimicrobial activity

    Indian Academy of Sciences (India)

    Bhaskar Biswas; Niranjan Kole; Moumita Patra; Shampa Dutta; Mousumi Ganguly

    2013-11-01

    A trinuclear zinc(II) complex [Zn3L2(-O2CCH3)2(H2O)2]·H2O·2CH3OH (1) was synthesized from an in situ reaction between zinc acetate and a Schiff base ligand (H2L = 2-((2-hydroxyphenylimino) methyl)-6-methoxyphenol). The ligand was prepared by (1:1) condensation of ortho-vanillin and ortho-aminophenol. The ligand and zinc(II) complex were characterized by elemental analysis, Fourier Transform Infrared (FTIR), 1H-Nuclear Magnetic Resonance (NMR), UV-Vis spectroscopy, Powder X-ray Diffraction (PXRD) and thermogravimetric analysis. 1 crystallizes in P-1 space group with = 11.9241(3) Å, = 12.19746 Å, = 20.47784 Å with unit cell volume is 2674.440 (Å)3. Binding property of the complex with calf thymus DNA (CT-DNA) has been investigated using absorption and emission studies. Thermal melting and viscosity experiments were further performed to determine the mode of binding of 1 with CT-DNA. Spectroscopic and viscosity investigations revealed an intercalative binding mode of 1 with CT-DNA. The ligand and its zinc complex were screened for their biological activity against bacterial species and fungi. Activity data show that the metal complex has more antibacterial and antifungal activity than the parent Schiff base ligand and against those bacterial or fungi species.

  7. Synthesis aspects, structural, spectroscopic, antimicrobial and room temperature ferromagnetism of zinc iodide complex with Schiff based ligand

    Science.gov (United States)

    Shakila, K.; Kalainathan, S.

    2015-01-01

    In this paper, we report the successful growth of complex compound of zinc iodide with thiocarbamide by slow evaporation method. The single crystal XRD study reveals that the crystal belongs to monoclinic system with centrosymmetric space group and powder XRD analysis shows that the perfect crystalline nature of the crystal. The presence of functional group and element were confirmed from FT-IR and EDAX analysis. Optical absorbance of the grown crystal was studied by UV-Vis spectrophotometer. The optical constants were calculated from the optical absorbance data such as refractive index (n), extinction coefficient (K) and reflectance (R). The optical band gap (Eg) of thiocarbamide zinc iodide crystal is 4.22 eV. The magnetic properties of grown crystal have been determined by Vibrating Sample Magnetometry (VSM). Room temperature magnetization revealed a ferromagnetic behaviour for the grown crystal. The antibacterial and antifungal activities of the title compound were performed by well diffusion method and MIC method against the standard bacteria like Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and against fungus like Aspergillus niger, Rhizopus sps and Penicillium sps. Thermal behaviour of the crystal has been investigated using thermogravimetric analysis (TGA) and differential thermal analysis (DTA).

  8. Leaching of hydrophobic Cu and Zn from discarded marine antifouling paint residues: Evidence for transchelation of metal pyrithiones

    International Nuclear Information System (INIS)

    Leaching of Cu and Zn from a composite of discarded antifouling paint residues ([Cu] = 288 mg g-1; [Zn] = 96 mg g-1) into natural sea water has been studied over a period of 75 h. Total Cu and Zn were released according to a pseudo first-order reaction, with rate constants on the order of 0.3 and 2.5 (mg L-1)-1 h-1, respectively, and final concentrations equivalent to the dissolution of about 8 and 2% of respective concentrations in the composite. Time-distributions of hydrophobic metals, determined by solid phase extraction-methanol elution, were more complex. Net release of hydrophobic Cu was greater in the absence of light than under a sequence of light-dark cycles; however, hydrophobic Zn release was not detected under the former conditions but contributed up to 50% of total aqueous Zn when light was present. These observations are interpreted in terms of the relative thermodynamic and photolytic stabilities of biocidal pyrithione complexes. - Hydrophobic Cu and Zn leached from antifouling paint particles into sea water appear to be pyrithione complexes.

  9. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.

    Science.gov (United States)

    Demirci, Selami; Ustaoğlu, Zeynep; Yılmazer, Gonca Altın; Sahin, Fikrettin; Baç, Nurcan

    2014-02-01

    Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.

  10. Some new nano-structure zinc(II) coordination compounds of an imidazolidine Schiff base: Spectral, thermal, antimicrobial properties and DNA interaction

    Science.gov (United States)

    Montazerozohori, Morteza; Musavi, Sayed Alireza; Naghiha, Asghar; Zohour, Mostafa Montazer

    2014-08-01

    Some novel nano-sized structure zinc complexes of a new Schiff base ligand entitled as (3-nitro-benzylidene)-{2-[2-(3-nitro-phenyl)-imidazolidine-1-yl]-ethyl}-amine(L) with general formula of ZnLX2 wherein X = Cl-, Br-, I-, SCN- and N3- have been synthesized under ultrasonic conditions. The ligand and its complexes have been characterized by elemental analysis, molar conductance measurements, FT-IR, 1H and 13C NMR and UV-Visible spectroscopy. The resulting data from spectral investigation especially 1H and 13C NMR well confirmed formation of an imidazolidine ring in the ligand structure. Transmission electron microscopy (TEM) showed nano-size structures with average particle sizes of 21.80-78.10 nm for the zinc(II) Schiff base complexes. The free Schiff base and its Zn(II) complexes have been screened in vitro both for antibacterial activity against some gram-positive and gram-negative bacteria and also for antifungal activity. The metal complexes were found to be more active than the free Schiff base ligand. The results showed that ZnL(N3)2 is the most effective inhibitor against Escherichia coli, Pseudomonas aereuguinosa, Staphylococcus aureus and Candida albicans while ZnLBr2 was found to be more effective against Bacillus subtillis than other compounds. Moreover, DNA cleavage potential of all compounds with plasmid DNA was investigated. The results showed that the ligand and ZnLCl2 complex cleave DNA more efficiently than others. In final, thermal analysis of ligand and its complexes revealed that they are decomposed via 2-3 thermal steps in the range of room temperature to 1000 °C. Furthermore some activation kinetic parameters such as A, E*, ΔH*, ΔS* and ΔG* were calculated based on TG/DTA plots by use of coats - Redfern relation. Positive values of activation energy evaluated for the compounds confirmed the thermal stability of them. In addition to, the positive ΔH*, and ΔG* values suggested endothermic character for the thermal decomposition steps.

  11. Effect of Zn2+ ions on ryanodine binding to sarcoplasmic reticulum of striated muscles in the presence of pyrithione

    Institute of Scientific and Technical Information of China (English)

    Hong XIE; Ke-ying CHEN; Pei-hong ZHU

    2004-01-01

    AIM: To explore whether the differential effects of Zn2+ on ryanodine binding to the sarcoplasmic reticulum (SR)of skeletal and cardiac muscles resulted from different permeability of the SR to Zn2+. METHODS: [3H]ryanodine binding assays were performed to examine the effect of Zn2+ on ryanodine binding to the SR in the presence of pyrithione sodium (PyNa), a specific Zn2+ ionophore. RESULTS: As a control, PyNa up to 50 μmol/L did not induce any effect on ryanodine binding to the SR of cardiac muscle. But PyNa 1-100 μmol/L increased ryanodine binding in skeletal muscle with maximum binding (222.2 %+20.9 % of the control) and inhibited ryanodine binding to 50 % of the control at about 500 μrnol/L. In the presence of PyNa 10 and 50 μmol/L the dose-dependence of the effect of Zn2+ in cardiac muscle was still monophasic and not changed by PyNa, while the biphasic effect of Zn2+in skeletal muscle became monophasic. CONCLUSION: Different permeability of the SR to Zn2+ may account for the differential effects of Zn2+on ryanodine binding in skeletal and cardiac muscles. PyNa is not a strictly specific Zn2+ ionophore.

  12. Antimicrobial Pesticides

    Science.gov (United States)

    ... US EPA US Environmental Protection Agency Search Search Pesticides Share Facebook Twitter Google+ Pinterest Contact Us You are here: EPA Home » Pesticides » Antimicrobial Pesticides Antimicrobial Pesticides News and Highlights Disinfection Hierarchy Workshop - October 7 ...

  13. Antimicrobial seafood packaging: a review.

    Science.gov (United States)

    Singh, Suman; Ho Lee, Myung; Park, Lnsik; Shin, Yangjai; Lee, Youn Suk

    2016-06-01

    Microorganisms are the major cause of spoilage in most seafood products; however, only few microbes, called the specific spoilage organisms (SSOs), contribute to the offensive off-flavors associated with seafood spoilage. In food, microbial degradation manifests itself as spoilage, or changes in the sensory properties of a food product, rendering it unsuitable for human consumption. The use of antimicrobial substances can control the general microflora as well as specific microorganisms related to spoilage to provide products with higher safety and better quality. Many antimicrobial compounds have been evaluated in film structures for use in seafood, especially organic acids and their salts, enzymes, bacteriocins; some studies have considered inorganic compounds such as AgSiO2, zinc oxide, silver zeolite, and titanium oxide. The characteristics of some organic antimicrobial packaging systems for seafood and their antimicrobial efficiency in film structures are reviewed in this article. PMID:27478206

  14. Comments on "Synthesis aspects, structural, spectroscopic, antimicrobial and room temperature ferromagnetism of zinc iodide complex with Schiff based ligand" by K. Shakila and S. Kalainathan, Spectrochim. Acta 135 A (2015) 1059-1065

    Science.gov (United States)

    Srinivasan, Bikshandarkoil R.; Nadkarni, V. S.

    2016-06-01

    Shakila and Kalainathan report on the synthetic and structural aspects of a zinc iodide complex with Schiff based ligand, which exhibits room temperature ferromagnetism. In this comment, many points of criticism, concerning the characterization of this so called zinc iodide complex of Schiff based ligand are highlighted to prove that the title paper is completely erroneous.

  15. Zinc'ing down RNA polymerase I

    OpenAIRE

    Chanfreau, Guillaume F.

    2013-01-01

    Most RNA polymerases contain zinc, yet the precise function of zinc and its influence of polymerases stability are unknown. A recent study provides evidence that zinc levels control the stability of RNA polymerase I in vivo and that the enzyme might serve as a zinc reservoir for other proteins.

  16. Symptomatic zinc deficiency in experimental zinc deprivation.

    OpenAIRE

    Taylor, C M; Goode, H F; Aggett, P J; Bremner, I; Walker, B E; Kelleher, J.

    1992-01-01

    An evaluation of indices of poor zinc status was undertaken in five male subjects in whom dietary zinc intake was reduced from 85 mumol d-1 in an initial phase of the study to 14 mumol d-1. One of the subjects developed features consistent with zinc deficiency after receiving the low zinc diet for 12 days. These features included retroauricular acneform macullo-papular lesions on the face, neck, and shoulders and reductions in plasma zinc, red blood cell zinc, neutrophil zinc and plasma alkal...

  17. Antimicrobial resistance

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2014-01-01

    Antimicrobial resistance is a global public health challenge, which has accelerated by the overuse of antibiotics worldwide. Increased antimicrobial resistance is the cause of severe infections, complications, longer hospital stays and increased mortality. Overprescribing of antibiotics...... is associated with an increased risk of adverse effects, more frequent re-attendance and increased medicalization of self-limiting conditions. Antibiotic overprescribing is a particular problem in primary care, where viruses cause most infections. About 90% of all antibiotic prescriptions are issued by general...... practitioners, and respiratory tract infections are the leading reason for prescribing. Multifaceted interventions to reduce overuse of antibiotics have been found to be effective and better than single initiatives. Interventions should encompass the enforcement of the policy of prohibiting the over...

  18. Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ali Adem Bahar

    2013-11-01

    Full Text Available The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs, a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics.

  19. Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Sigrid Mayrhofer

    2011-01-01

    Full Text Available Strains of the genus Bifidobacterium are frequently used as probiotics, for which the absence of acquired antimicrobial resistance has become an important safety criterion. This clarifies the need for antibiotic susceptibility data for bifidobacteria. Based on a recently published standard for antimicrobial susceptibility testing of bifidobacteria with broth microdilution method, the range of susceptibility to selected antibiotics in 117 animal bifidobacterial strains was examined. Narrow unimodal MIC distributions either situated at the low-end (chloramphenicol, linezolid, and quinupristin/dalfopristin or high-end (kanamycin, neomycin concentration range could be detected. In contrast, the MIC distribution of trimethoprim was multimodal. Data derived from this study can be used as a basis for reviewing or verifying present microbiological breakpoints suggested by regulatory agencies to assess the safety of these micro-organisms intended for the use in probiotics.

  20. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts to select the appropriate antimicrobial ...

  1. Animation of Antimicrobial Resistance

    Science.gov (United States)

    ... Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it ... Veterinary Medicine is cited as the corporate author. Animation Animation of Antimicrobial Resistance (WMV - 19.2MB) 9: ...

  2. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... 08 Animation of Antimicrobial Resistance (text version) Arabic Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) Chinese Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) French ...

  3. Evaluation of antimicrobial effectiveness of ophthalmic drops according to the pharmacopeial tests criteria

    OpenAIRE

    N Samadi; Tarighi, P.; M.R Fazeli; H Mehrgan

    2009-01-01

    ABSTRACT Background: In this study antimicrobial effectiveness test was performed on eye-drops which had high microbial contaminations in hospital practice to find out whether their antimicrobial efficacies affect the magnitude of microbial contamination during their uses. Materials and Methods: Artificial tear, atropine sulfate, betamethasone, homatropine hydrobromide, phenylephrine hydrochloride, phenylephrine zinc, pilocarpine hydrochloride, tetracaine hydrochloride and tropicamide eye-dro...

  4. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System ... Note: If you need help accessing information in different file formats, see Instructions for Downloading ...

  5. Application of zinc oxide quantum dots in food safety

    Science.gov (United States)

    Zinc oxide quantum dots (ZnO QDs) are nanoparticles of purified powdered ZnO. The ZnO QDs were directly added into liquid foods or coated on the surface of glass jars using polylactic acid (PLA) as a carrier. The antimicrobial activities of ZnO QDs against Listeria monocytogenes, Salmonella Enteriti...

  6. Integrated criteria document Zinc

    NARCIS (Netherlands)

    Cleven RFMJ; Janus JA; Annema JA; Slooff W

    1993-01-01

    This report contains information on zinc and zinc compounds concerning standards, emissions, exposure levels and effect levels. It includes a risk evaluation and presents proposals for maximum permissible concentrations of zinc in the environment. This study indicates that the concentration of zinc

  7. Antimicrobial peptides.

    Science.gov (United States)

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  8. Zinc: the neglected nutrient.

    Science.gov (United States)

    Shambaugh, G E

    1989-03-01

    Zinc was first recognized as essential for animals at the University of Illinois School of Agriculture in 1916, when it was found that zinc-deficient baby pigs were runty, developed dermatitis on their legs, and were sterile. Zinc deficiency was first recognized in man by Dr. Ananda Prasad of Detroit 26 years ago when he measured serum and hair zinc levels in young male Egyptian dwarfs who had failed to mature and were small in stature. By simply adding zinc to their regular diet, they grew in height and became sexually mature. It is now recognized that dwarfism in males is frequent around the Mediterranean, where wheat is the staple of life and has been grown for 4,000 years on the same soil, thereby resulting in the depletion of zinc. Professor Robert Henkin first suggested that zinc deficiency might cause hearing-nerve impairment. Assay of the soft tissues of the cochlea and vestibule revealed a zinc level higher than that of any other part of the body. Previously, the eye was considered to have the highest level of zinc of any organ. To diagnose zinc deficiency clinically, we use serum zinc assays made at the Mayo Clinic Trace Element Laboratory. With zinc supplementation in patients who are marginally zinc deficient, there has been improvement in tinnitus and sensorineural hearing loss in about one-third of elderly adults. We believe zinc deficiency is one causation of presbycusis; by recognizing and correcting it, a progressive hearing loss can be arrested. PMID:2786676

  9. Zinc: the neglected nutrient.

    Science.gov (United States)

    Shambaugh, G E

    1989-03-01

    Zinc was first recognized as essential for animals at the University of Illinois School of Agriculture in 1916, when it was found that zinc-deficient baby pigs were runty, developed dermatitis on their legs, and were sterile. Zinc deficiency was first recognized in man by Dr. Ananda Prasad of Detroit 26 years ago when he measured serum and hair zinc levels in young male Egyptian dwarfs who had failed to mature and were small in stature. By simply adding zinc to their regular diet, they grew in height and became sexually mature. It is now recognized that dwarfism in males is frequent around the Mediterranean, where wheat is the staple of life and has been grown for 4,000 years on the same soil, thereby resulting in the depletion of zinc. Professor Robert Henkin first suggested that zinc deficiency might cause hearing-nerve impairment. Assay of the soft tissues of the cochlea and vestibule revealed a zinc level higher than that of any other part of the body. Previously, the eye was considered to have the highest level of zinc of any organ. To diagnose zinc deficiency clinically, we use serum zinc assays made at the Mayo Clinic Trace Element Laboratory. With zinc supplementation in patients who are marginally zinc deficient, there has been improvement in tinnitus and sensorineural hearing loss in about one-third of elderly adults. We believe zinc deficiency is one causation of presbycusis; by recognizing and correcting it, a progressive hearing loss can be arrested.

  10. Antimicrobial Drugs in Fighting against Antimicrobial Resistance.

    Science.gov (United States)

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants), the community level resistance (i.e., bilofilms and persisters) is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals. PMID:27092125

  11. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Guyue eCheng

    2016-04-01

    Full Text Available The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants, the community level resistance (i.e., bilofilms and persisters is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals.

  12. Is zinc a neuromodulator?

    Science.gov (United States)

    Kay, Alan R; Tóth, Katalin

    2008-01-01

    The vesicles of certain glutamatergic terminals in the mammalian forebrain are replete with ionic zinc. It is believed that during synaptic transmission zinc is released, binds to receptors on the pre- or postsynaptic membranes, and hence acts as a neuromodulator. Although exogenous zinc modulates a wide variety of channels, whether synaptic zinc transits across the synaptic cleft and alters the response of channels has been difficult to establish. We will review the evidence for zinc as a neuromodulator and propose diagnostic criteria for establishing whether it is indeed one. Moreover, we will delineate alternative ways in which zinc might act at synapses.

  13. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System About NARMS Bacteria (NARMS) NARMS at Work Reports ... Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance Federal, State & Local Officials Consumers Health ...

  14. Bacitracin zinc overdose

    Science.gov (United States)

    Bacitracin zinc is a medicine that is used on cuts and other skin wounds to help prevent infection. Bacitracin ... medicine that kills germs. Small amounts of bacitracin zinc are dissolved in petroleum jelly to create antibiotic ...

  15. Zinc oxide overdose

    Science.gov (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  16. Zinc and gastrointestinal disease

    Institute of Scientific and Technical Information of China (English)

    Sonja; Skrovanek; Katherine; DiGuilio; Robert; Bailey; William; Huntington; Ryan; Urbas; Barani; Mayilvaganan; Giancarlo; Mercogliano; James; M; Mullin

    2014-01-01

    This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases.

  17. ZINC ABSORPTION BY INFANTS

    Science.gov (United States)

    Zinc is a vital mineral in human nutrition, and rare cases of overt zinc deficiency are well described in term and preterm infants. A variety of methods have been developed to assess zinc absorption, retention, and balance in humans, either using mass (metabolic) balance or stable isotope-based METH...

  18. [Zinc and gastrointestinal disorders].

    Science.gov (United States)

    Higashimura, Yasuki; Takagi, Tomohisa; Naito, Yuji

    2016-07-01

    Zinc, an essential trace element, affects immune responses, skin metabolism, hormone composition, and some sensory function, so that the deficiency presents various symptoms such as immunodeficiency and taste obstacle. Further, the zinc deficiency also considers as a risk of various diseases. Recent reports demonstrated that -20% of the Japanese population was marginally zinc deficiency, and over 25% of the global population is at high risk of zinc deficiency. In gastrointestinal disorders, zinc plays an important role in the healing of mucosal and epithelial damage. In fact, polaprezinc, a chelate compound of zinc and L-carnosine, has been used for the treatment of gastric ulcer and gastritis. We describe here the therapeutic effect of zinc on gastrointestinal disorders. PMID:27455800

  19. Evaluation of antibacterial activity of zinc oxide nanoparticles synthesized using phycobilins of Anabaena variabilis NTSS17

    Directory of Open Access Journals (Sweden)

    Thangaraj Ramasamy

    2015-12-01

    Full Text Available Objective: To evaluate the antibacterial activity of zinc oxide nanoparticles synthesized using phycobilins of Anabaena variabilis NTSS17. Methods: The cyanobacterial isolate was collected from paddy field and morphologically identified as Anabaena variabilis NTSS17, that produces a pigment i.e. phycobiliproteins. The biosynthesized zinc nanoparticles were characterized by different spectroscopic and analytical techniques such as UV-visible spectrophotometer, Fourier transform infrared spectroscopy and X-ray diffraction which confirmed the formation of zinc nanoparticles. Results: Antibacterial activity of zinc oxide nanoparticles was examined against Escherichia coli, Rhodococcus rhodochrous and Pseudomonas aeruginosa. The maximum zone of inhibition occurred at 5 mg/1000 mL concentration of zinc oxide nanoparticles. Conclusions: Due to potent antimicrobial and intrinsic properties of zinc oxide, it can be actively used for biomedical applications.

  20. New Collagen-Dextran-Zinc Oxide Composites for Wound Dressing

    Directory of Open Access Journals (Sweden)

    Georgeta Păunica-Panea

    2016-01-01

    Full Text Available The goal of this paper was the design, development, and characterization of some new composites, based on collagen and dextran as natural polymers and zinc oxide as antimicrobial, to be used in wound healing. Collagen hydrogels with various concentrations of dextran and zinc oxide were investigated in terms of rheological analysis. The spongious composites, obtained by freeze-drying of hydrogels, were evaluated by morphology (SEM, water uptake, and biological (enzymatic biodegradation analysis. All the results were strongly influenced by the nature and concentration of composite components. Based on the performances of the hydrogels, stationary rheometry, porous structure, morphology, and biological behavior, the antimicrobial spongious composite based on collagen and dextran with 50% ZnO were the most promising for future applications in wound dressing and a biomaterial with high potential in skin regeneration.

  1. Improved zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  2. Chelators for investigating zinc metalloneurochemistry.

    Science.gov (United States)

    Radford, Robert J; Lippard, Stephen J

    2013-04-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals of hippocampal mossy fiber buttons.

  3. Zinc deficiency and eating disorders.

    Science.gov (United States)

    Humphries, L; Vivian, B; Stuart, M; McClain, C J

    1989-12-01

    Decreased food intake, a cyclic pattern of eating, and weight loss are major manifestations of zinc deficiency. In this study, zinc status was evaluated in 62 patients with bulimia and 24 patients with anorexia nervosa. Forty percent of patients with bulimia and 54% of those with anorexia nervosa had biochemical evidence of zinc deficiency. The authors suggest that for a variety of reasons, such as lower dietary intake of zinc, impaired zinc absorption, vomiting, diarrhea, and binging on low-zinc foods, patients with eating disorders may develop zinc deficiency. This acquired zinc deficiency could then add to the chronicity of altered eating behavior in those patients. PMID:2600063

  4. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  5. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    Introduction: A frightening increase in the number of isolated multidrug resistant bacterial strains linked to the decline in novel antimicrobial drugs entering the market is a great cause for concern. Cationic antimicrobial peptides (AMPs) have lately been introduced as a potential new class of ...

  6. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) Chinese Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) ... FEAR Act Site Map Transparency Website Policies U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver ...

  7. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts to select the appropriate antimicrobial for treatment. Accordingly, efforts are underway in both veterinary and human medicine to preserve the effectiveness of these drugs. ...

  8. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials

    Directory of Open Access Journals (Sweden)

    Nurit Beyth

    2015-01-01

    Full Text Available Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The present review discusses the activities of nanoparticles as an antimicrobial means, their mode of action, nanoparticle effect on drug-resistant bacteria, and the risks attendant on their use as antibacterial agents. Factors contributing to nanoparticle performance in the clinical setting, their unique properties, and mechanism of action as antibacterial agents are discussed in detail.

  9. Daya antibakteri penambahan Propolis pada zinc oxide eugenol dan zinc oxide terhadap kuman campur gigi molar sulung non vital (The antibacterial effect of propolis additional to zinc oxide eugenol and zinc oxide on polybacteria of necrotic primary molar

    Directory of Open Access Journals (Sweden)

    Yemy Ameliana

    2014-12-01

    Full Text Available Background: Materials commonly used for root canal filling of primary teeth is zinc oxide eugenol. Eugenol has some disadvantages that can irritate the periapical tissues, has the risk of disturbing the growth and development of permanent tooth buds, and has a narrow antibacterial spectrum. Studies showed that propolis at concentration of 20 % has antibacterial activity against Staphylococcus aureus. Purpose: The purpose of this study was to examine the antimicrobial activity of root canal pastes with the additional of propolis additional to zinc oxide eugenol (ZOEP and to zinc oxide (ZOP. Methods: Polybacteria cultures collected from root canals of necrotic primary molar from 5 children patients who received root canal treatment. The bacteria were grown in BHI Broth, and inoculated into Muller Hinton Agar media. The agar plates was divided into 3 areas, and one well was made at each area. The first well filled with ZOE as a control, second well filled with ZOEP and the third well filled with ZOP, then incubated for 24 hour at 370 C. Antimicrobial activity was determined by measuring the diameters of inhibition zones of polybacteria growth. The data were statistically analyzed by independent T-test. Results: The pasta mixture of zinc oxide propolis had the strongest antibacterial activity against polybacteria of necrotic primary molar, followed by zinc oxide eugenol propolis paste, and zinc oxide eugenol paste. There were significant differences of inhibition zones between ZOE, ZOEP and ZOP (p<0,05. Conclusion: The study suggested that the additional of propolis to zinc oxide paste could increase the antimicrobial effect against root canal polybacteria of necrotic primary molar.Latar belakang: Bahan yang sering digunakan untuk pengisian saluran akar gigi sulung adalah zinc oxide eugenol. Eugenol memiliki beberapa kekurangan yaitu dapat mengiritasi jaringan periapikal, beresiko mengganggu pertumbuhan dan perkembangan benih gigi permanen pengganti

  10. Zinc Oxide Nanoparticles for Revolutionizing Agriculture: Synthesis and Applications

    Directory of Open Access Journals (Sweden)

    Sidra Sabir

    2014-01-01

    Full Text Available Nanotechnology is the most innovative field of 21st century. Extensive research is going on for commercializing nanoproducts throughout the world. Due to their unique properties, nanoparticles have gained considerable importance compared to bulk counterparts. Among other metal nanoparticles, zinc oxide nanoparticles are very much important due to their utilization in gas sensors, biosensors, cosmetics, drug-delivery systems, and so forth. Zinc oxide nanoparticles (ZnO NPs also have remarkable optical, physical, and antimicrobial properties and therefore have great potential to enhance agriculture. As far as method of formation is concerned, ZnO NPs can be synthesized by several chemical methods such as precipitation method, vapor transport method, and hydrothermal process. The biogenic synthesis of ZnO NPs by using different plant extracts is also common nowadays. This green synthesis is quite safe and ecofriendly compared to chemical synthesis. This paper elaborates the synthesis, properties, and applications of zinc oxide nanoparticles.

  11. Analysis of zinc borates

    International Nuclear Information System (INIS)

    Methods for analyzing zinc borates: B2O3 determination in the presence of zinc ions and determination of zinc in the presence of borates are developed. Distributing effect of zinc in alcalometrical determination of B2O3 is removed using either its binding cationite KU-2 in H-form in hydrochloric acid medium or using complexone 3 masking. In the first case the results are underestimated, in the second one - are overestimated. When analyzing Zn the complexonometrical titration with sodium teraborate is carried out. Borate ions don't affect the accuracy of determination. Zinc borate samples of 0.1-0.15 g in dimesion are recommended according to the method suggested

  12. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    medicine to combat drug-resistant superbugs, fungi, viruses, parasites, or cancer. Alternatively, multiple factors (e.g., albumin, arginine, butyrate, calcium, cyclic AMP, isoleucine, short-chain fatty acids, UV B light, vitamin D, and zinc are able to induce the expression of antimicrobial peptides, opening new avenues to the development of anti-infectious drugs.

  13. Novel zinc alginate hydrogels prepared by internal setting method with intrinsic antibacterial activity.

    Science.gov (United States)

    Straccia, Maria Cristina; d'Ayala, Giovanna Gomez; Romano, Ida; Laurienzo, Paola

    2015-07-10

    In this paper, a controlled gelation of alginate was performed for the first time using ZnCO3 and GDL. Uniform and transparent gels were obtained and investigated as potential wound dressings. Homogeneity, water content, swelling capability, water evaporation rate, stability in normal saline solution, mechanical properties and antibacterial activity were assessed as a function of zinc concentration. Gelation rate increased at increasing zinc content, while a decrease in water uptake and an improvement of stability were found. Release of zinc in physiological environments showed that concentration of zinc released in solution lies below the cytotoxicity level. Hydrogels showed antimicrobial activity against Escherichia coli. The hydrogel with highest zinc content was stabilized with calcium by immersion in a calcium chloride solution. The resulting hydrogel preserved homogeneity and antibacterial activity. Furthermore, it showed even an improvement of stability and mechanical properties, which makes it suitable as long-lasting wound dressing.

  14. Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae

    OpenAIRE

    MacDiarmid, Colin W; Gaither, L.Alex; Eide, David

    2000-01-01

    All cells regulate their intracellular zinc levels. In yeast, zinc uptake is mediated by Zrt1p and Zrt2p, which belong to the ZIP family of metal transporters. Under zinc limitation, ZRT1 and ZRT2 transcription is induced by the Zap1p transcriptional activator. We describe here a new component of zinc homeostasis, vacuolar zinc storage, that is also regulated by Zap1p. Zinc-replete cells accumulate zinc in the vacuole via the Zrc1p and Cot1p transporters. Our results indicate that another zin...

  15. Zinc sulphate in rheumatoid arthritis

    OpenAIRE

    Mattingly, P. C.; Mowat, A G

    1982-01-01

    To assess the antirheumatic activity of zinc sulphate, 27 patients with active rheumatoid arthritis took part in a 6-month, randomised, double-blind, between-group trial of oral zinc sulphate versus placebo. Twelve patients on zinc and 9 on placebo completed the trial, but no significant antirheumatic activity of zinc sulphate was demonstrated.

  16. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    International Nuclear Information System (INIS)

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08–5.30 mg cadmium, 1.1–32.0 mg chrome, 22.4–3387.6 mg copper, <2.0–26.7 mg lead, <0.01–0.11 mg mercury, 3.1–97.3 mg nickel and 93.0–8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against β-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against β-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  17. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzel, Christina S., E-mail: Christina.Hoelzel@wzw.tum.de [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mueller, Christa [Institute for Agroecology, Organic Farming and Soil Protection, Bavarian State Research Center for Agriculture (LfL), Lange Point 12, 85354 Freising (Germany); Harms, Katrin S. [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mikolajewski, Sabine [Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 4, 85354 Freising (Germany); Schaefer, Stefanie; Schwaiger, Karin; Bauer, Johann [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany)

    2012-02-15

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  18. Evaluation of antibacterial activity of zinc oxide nanoparticles synthesized using phycobilins of Anabaena variabilisNTSS17

    Institute of Scientific and Technical Information of China (English)

    Thangaraj Ramasamy; Santhoshkumar Subramaniyam; Dhanasekaran Dharumadurai; Kala Karuppannan; Alharbi Naiyf Sultan; Arunachalam Chinnathambi; Ali Alharbi Sulaiman; Thajuddin Nooruddin

    2015-01-01

    Objective:To evaluate the antibacterial activity of zinc oxide nanoparticles synthesized using phycobilins ofAnabaenavariabilis NTSS17. Methods:The cyanobacterial isolate was collected from paddy field and morphologically identified asAnabaenavariabilis NTSS17, that produces a pigmenti.e. phycobiliproteins. The biosynthesized zinc nanoparticles were characterized by different spectroscopic and analytical techniques such as UV-visible spectrophotometer, Fourier transform infrared spectroscopy and X-ray diffraction which confirmed the formation of zinc nanoparticles. Results: Antibacterial activity of zinc oxide nanoparticles was examined againstEscherichia coli,Rhodococcus rhodochrous andPseudomonas aeruginosa. The maximum zone of inhibition occurred at 5 mg/1 000 mL concentration of zinc oxide nanoparticles. Conclusions:Due to potent antimicrobial and intrinsic properties of zinc oxide, it can be actively used for biomedical applications.

  19. Zinc metabolism in thyroid disease.

    OpenAIRE

    Nishi, Y.; Kawate, R.; Usui, T

    1980-01-01

    This study was designed to evaluate the zinc metabolism in adults of both sexes with thyroid disease. Plasma and erythrocyte zinc concentration and urinary zinc excretion were investigated. The mean concentration of plasma zinc in hypothyroid patients and in euthyroid patients, previously either hyperthyroid or hypothyroid, was lower than that of control subjects, whereas no statistically significant differences were observed in plasma zinc values between hyperthyroid patients and control sub...

  20. Zinc bioavailability and homeostasis1234

    OpenAIRE

    Hambidge, K Michael; Miller, Leland V; Westcott, Jamie E; Sheng, Xiaoyang; Krebs, Nancy F.

    2010-01-01

    Zinc has earned recognition recently as a micronutrient of outstanding and diverse biological, clinical, and global public health importance. Regulation of absorption by zinc transporters in the enterocyte, together with saturation kinetics of the absorption process into and across the enterocyte, are the principal means by which whole-body zinc homeostasis is maintained. Several physiologic factors, most notably the quantity of zinc ingested, determine the quantity of zinc absorbed and the e...

  1. Pharmacogenomics of antimicrobial agents.

    Science.gov (United States)

    Aung, Ar Kar; Haas, David W; Hulgan, Todd; Phillips, Elizabeth J

    2014-01-01

    Antimicrobial efficacy and toxicity varies between individuals owing to multiple factors. Genetic variants that affect drug-metabolizing enzymes may influence antimicrobial pharmacokinetics and pharmacodynamics, thereby determining efficacy and/or toxicity. In addition, many severe immune-mediated reactions have been associated with HLA class I and class II genes. In the last two decades, understanding of pharmacogenomic factors that influence antimicrobial efficacy and toxicity has rapidly evolved, leading to translational success such as the routine use of HLA-B*57:01 screening to prevent abacavir hypersensitivity reactions. This article examines recent advances in the field of antimicrobial pharmacogenomics that potentially affect treatment efficacy and toxicity, and challenges that exist between pharmacogenomic discovery and translation into clinical use.

  2. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts ... Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance Federal, State & Local Officials Consumers Health ...

  3. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... issue of antimicrobial resistance is that the subject material appears abstract and is complex. This video was ... can develop and spread. All FDA CVM produced material may be copied, reproduced, and distributed as long ...

  4. Antimicrobial resistance in wildlife

    OpenAIRE

    Vittecoq, M.; Godreuil, S.; Prugnolle, Franck; Durand, P.; Brazier, L; Renaud, N; Arnal, A.; Aberkane, S.; Jean-Pierre, H.; Gauthier-Clerc, M; Thomas, F.; Renaud, F.

    2016-01-01

    The spread of antimicrobial resistance is of major concern for human health and leads to growing economic costs. While it is increasingly hypothesized that wildlife could play an important role in antimicrobial-resistant bacteria dynamics, empirical data remain scarce. The present work builds on a systematic review of the available data in order to highlight the main information we have and to suggest research pathways that should be followed if we aim to fill the gaps in our current knowledg...

  5. Antimicrobial compounds in tears.

    Science.gov (United States)

    McDermott, Alison M

    2013-12-01

    The tear film coats the cornea and conjunctiva and serves several important functions. It provides lubrication, prevents drying of the ocular surface epithelia, helps provide a smooth surface for refracting light, supplies oxygen and is an important component of the innate defense system of the eye providing protection against a range of potential pathogens. This review describes both classic antimicrobial compounds found in tears such as lysozyme and some more recently identified such as members of the cationic antimicrobial peptide family and surfactant protein-D as well as potential new candidate molecules that may contribute to antimicrobial protection. As is readily evident from the literature review herein, tears, like all mucosal fluids, contain a plethora of molecules with known antimicrobial effects. That all of these are active in vivo is debatable as many are present in low concentrations, may be influenced by other tear components such as the ionic environment, and antimicrobial action may be only one of several activities ascribed to the molecule. However, there are many studies showing synergistic/additive interactions between several of the tear antimicrobials and it is highly likely that cooperativity between molecules is the primary way tears are able to afford significant antimicrobial protection to the ocular surface in vivo. In addition to effects on pathogen growth and survival some tear components prevent epithelial cell invasion and promote the epithelial expression of innate defense molecules. Given the protective role of tears a number of scenarios can be envisaged that may affect the amount and/or activity of tear antimicrobials and hence compromise tear immunity. Two such situations, dry eye disease and contact lens wear, are discussed here.

  6. Zinc in diet

    Science.gov (United States)

    Symptoms of zinc deficiency include: Frequent infections Hypogonadism in males Loss of hair Poor appetite Problems with the sense of taste Problems with the sense of smell Skin sores Slow growth Trouble seeing ...

  7. Zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  8. Control of zinc transfer between thionein, metallothionein, and zinc proteins

    OpenAIRE

    Jacob, Claus; Maret, Wolfgang; Vallee, Bert L.

    1998-01-01

    Metallothionein (MT), despite its high metal binding constant (KZn = 3.2 × 1013 M−1 at pH 7.4), can transfer zinc to the apoforms of zinc enzymes that have inherently lower stability constants. To gain insight into this paradox, we have studied zinc transfer between zinc enzymes and MT. Zinc can be transferred in both directions—i.e., from the enzymes to thionein (the apoform of MT) and from MT to the apoenzymes. Agents that mediate or enhance zinc transfer have be...

  9. Treatment of zinc deficiency without zinc fortification

    Institute of Scientific and Technical Information of China (English)

    Donald OBERLEAS; Barbara F. HARLAND

    2008-01-01

    Zinc (Zn) deficiency in animals became of interest until the 1950s. In this paper, progresses in researches on physi-ology of Zn deficiency in animals, phytate effect on bioavailability of Zn, and role of phytase in healing Zn deficiency of animals were reviewed. Several studies demonstrated that Zn is recycled via the pancreas; the problem of Zn deficiency was controlled by Zn homeostasis. The endogenous secretion of Zn is considered as an important factor influencing Zn deficiency, and the critical molar ratio is 10. Phytate (inositol hexaphosphate) constituted up to 90% of the organically bound phosphorus in seeds. Great improvement has been made in recent years on isolating and measuring phytate, and its structure is clear. Phytate is considered to reduce Zn bioavailability in animal. Phytase is the enzyme that hydrolyzes phytate and is present in yeast, rye bran, wheat bran, barley, triticale, and many bacteria and fungi. Zinc nutrition and bioavailability can be enhanced by addition of phytase to animal feeds. Therefore, using phytase as supplements, the most prevalent Zn deficiency in animals may be effectively corrected without the mining and smelting of several tons of zinc daily needed to correct this deficiency by fortification worldwide.

  10. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    OpenAIRE

    Veldkamp, T; Diepen, van, F.N.J.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Livestock Research to determine the bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens. A precise estimate of the bioavailability of zinc sources is required both for fulf...

  11. Chronic venous leg ulcers – role of topical zinc

    Directory of Open Access Journals (Sweden)

    Maher SF

    2015-06-01

    Full Text Available Sara F Maher Physical Therapy Program, Department of Healthcare Sciences, Wayne State University, Detroit, MI, USA Abstract: Topical zinc has been used in the treatment of wounds for over 3,000 years, and is reported to have antiseptic, astringent, anti-inflammatory, antimicrobial, and wound healing properties. Fourteen studies were identified and reviewed, to assess the efficacy of this treatment modality as either a bandage or skin protectant in the treatment of venous ulcers. The authors of three studies reported improved healing time or success rate in wounds treated with zinc-based products. However, the authors of one study attributed the faster healing rate mainly to the extra compression (that improved venous blood return, delivered by the non-elastic paste bandage, and not by the zinc oxide alone. The quality of evidence is fair, as 50% of the studies were conducted prior to 2000 and 50% of the studies utilized fewer than 45 patients randomized to two or more groups. Other treatments have been reported to be more cost-effective than zinc, including hydrocolloids, four-layer compression systems, and CircAid Thera-boots. Finally, zinc was reported to be less comfortable, less easy to use, and caused increased pain, in comparison to other products on the market. This literature review, therefore, demonstrated that current evidence is insufficient to determine the effectiveness of zinc-based products in the treatment of venous wounds. Future research is needed focusing on larger, high-quality trials with an emphasis on quality of life issues and cost-effectiveness of treatment. Keywords: chronic wounds, leg ulcers, venous insufficiency, topical zinc

  12. Role of H2O2 in the oxidative effects of zinc exposure in human airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Phillip A. Wages

    2014-01-01

    Full Text Available Human exposure to particulate matter (PM is a global environmental health concern. Zinc (Zn2+ is a ubiquitous respiratory toxicant that has been associated with PM health effects. However, the molecular mechanism of Zn2+ toxicity is not fully understood. H2O2 and Zn2+ have been shown to mediate signaling leading to adverse cellular responses in the lung and we have previously demonstrated Zn2+ to cause cellular H2O2 production. To determine the role of Zn2+-induced H2O2 production in the human airway epithelial cell response to Zn2+ exposure. BEAS-2B cells expressing the redox-sensitive fluorogenic sensors HyPer (H2O2 or roGFP2 (EGSH in the cytosol or mitochondria were exposed to 50 µM Zn2+ for 5 min in the presence of 1 µM of the zinc ionophore pyrithione. Intracellular H2O2 levels were modulated using catalase expression either targeted to the cytosol or ectopically to the mitochondria. HO-1 mRNA expression was measured as a downstream marker of response to oxidative stress induced by Zn2+ exposure. Both cytosolic catalase overexpression and ectopic catalase expression in mitochondria were effective in ablating Zn2+-induced elevations in H2O2. Compartment-directed catalase expression blunted Zn2+-induced elevations in cytosolic EGSH and the increased expression of HO-1 mRNA levels. Zn2+ leads to multiple oxidative effects that are exerted through H2O2-dependent and independent mechanisms.

  13. Antimicrobials, stress and mutagenesis.

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    2014-10-01

    Full Text Available Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes whereas antibiotics are mostly employed by microorganisms. As antimicrobial peptides (AMPs mostly target the cell wall, a microbial 'Achilles heel', it has been proposed that bacterial resistance evolution is very unlikely and hence AMPs are ancient 'weapons' of multicellular organisms. Here we provide a new hypothesis to explain the widespread distribution of AMPs amongst multicellular organism. Studying five antimicrobial peptides from vertebrates and insects, we show, using a classic Luria-Delbrück fluctuation assay, that cationic antimicrobial peptides (AMPs do not increase bacterial mutation rates. Moreover, using rtPCR and disc diffusion assays we find that AMPs do not elicit SOS or rpoS bacterial stress pathways. This is in contrast to the main classes of antibiotics that elevate mutagenesis via eliciting the SOS and rpoS pathways. The notion of the 'Achilles heel' has been challenged by experimental selection for AMP-resistance, but our findings offer a new perspective on the evolutionary success of AMPs. Employing AMPs seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs.

  14. Zinc and its deficiency diseases.

    Science.gov (United States)

    Evans, G W

    1986-01-01

    The pervasive role of zinc in the metabolic function of the body results from its function as a cofactor of a multitude of enzymes. Zinc is found in every tissue in the body, and because zinc metalloenzymes are found in every known class of enzymes, the metal has a function in every conceivable type of biochemical pathway. Symptoms resulting from zinc deficiency are as diverse as the enzymes with which the metal is associated. If chronic, severe, and untreated, zinc deficiency can be fatal. Less drastic symptoms include infections, hypogonadism, weight loss, emotional disturbance, dermatitis, alopecia, impaired taste acuity, night blindness, poor appetite, delayed wound healing, and elevated blood ammonia levels. Many symptoms of zinc deficiency result from poor diet consumption, but often the most severe symptoms result from other factors including excessive alcohol use, liver diseases, malabsorption syndromes, renal disease, enteral or parenteral alimentation, administration of sulfhydryl-containing drugs, and sickle cell disease. The most severe symptoms of zinc deficiency occur in young children affected with the autosomal-recessive trait, acrodermatitis enteropathica. This disease results in decreased synthesis of picolinic acid which causes an impaired ability to utilize zinc from common food. Because simple laboratory analyses are often not reliable in determining zinc nutriture of a patient, those symptoms caused by suspected zinc deficiency are best verified by the oral administration of zinc dipicolinate. This zinc compound is efficacious and safe and would provide an accurate means of identifying symptoms that do result from zinc deficiency. PMID:3514057

  15. General principles of antimicrobial therapy.

    Science.gov (United States)

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community.

  16. General principles of antimicrobial therapy.

    Science.gov (United States)

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community. PMID:21282489

  17. Antimicrobial stewardship: Limits for implementation

    NARCIS (Netherlands)

    Sinha, Bhanu

    2014-01-01

    Antibiotic stewardship programme (ASP) is a multifaceted approach to improve patients' clinical outcomes, prevent the emergence of antimicrobial resistance, and reduce hospital costs by prudent and focused antimicrobial use. Development of local treatment guidelines according to local ecology, rapid

  18. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains.

    OpenAIRE

    Vallee, B L; Coleman, J E; Auld, D S

    1991-01-01

    We now recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have be...

  19. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  20. Non-thermal plasma technology for the development of antimicrobial surfaces: a review

    Science.gov (United States)

    Nikiforov, Anton; Deng, Xiaolong; Xiong, Qing; Cvelbar, U.; DeGeyter, N.; Morent, R.; Leys, Christophe

    2016-05-01

    Antimicrobial coatings are in high demand in many fields including the biomaterials and healthcare sectors. Within recent progress in nanoscience and engineering at the nanoscale, preparation of nanocomposite films containing metal nanoparticles (such as silver nanoparticles, copper nanoparticles, zinc oxide nanoparticles) is becoming an important step in manufacturing biomaterials with high antimicrobial activity. Controlled release of antibiotic agents and eliminating free nanoparticles are of equal importance for engineering antimicrobial nanocomposite materials. Compared to traditional chemical ‘wet’ methods, plasma deposition and plasma polymerization are promising approaches for the fabrication of nanocomposite films with the advantages of gas phase dry processes, effective use of chemicals and applicability to various substrates. In this article, we present a short overview of state-of-the-art engineering of antimicrobial materials based on the use of non-thermal plasmas at low and atmospheric pressure.

  1. Antimicrobial Graft Copolymer Gels.

    Science.gov (United States)

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  2. Clinical manifestations of zinc deficiency.

    Science.gov (United States)

    Prasad, A S

    1985-01-01

    The essentiality of zinc for humans was recognized in the early 1960s. The causes of zinc deficiency include malnutrition, alcoholism, malabsorption, extensive burns, chronic debilitating disorders, chronic renal diseases, following uses of certain drugs such as penicillamine for Wilson's disease and diuretics in some cases, and genetic disorders such as acrodermatitis enteropathica and sickle cell disease. In pregnancy and during periods of growth the requirement of zinc is increased. The clinical manifestations in severe cases of zinc deficiency include bullous-pustular dermatitis, alopecia, diarrhea, emotional disorder, weight loss, intercurrent infections, hypogonadism in males; it is fatal if unrecognized and untreated. A moderate deficiency of zinc is characterized by growth retardation and delayed puberty in adolescents, hypogonadism in males, rough skin, poor appetite, mental lethargy, delayed wound healing, taste abnormalities, and abnormal dark adaptation. In mild cases of zinc deficiency in human subjects, we have observed oligospermia, slight weight loss, and hyperammonemia. Zinc is a growth factor. Its deficiency adversely affects growth in many animal species and humans. Inasmuch as zinc is needed for protein and DNA synthesis and for cell division, it is believed that the growth effect of zinc is related to its effect on protein synthesis. Whether or not zinc is required for the metabolism of somatomedin needs to be investigated in the future. Testicular functions are affected adversely as a result of zinc deficiency in both humans and experimental animals. This effect of zinc is at the end organ level; the hypothalamic-pituitary axis is intact in zinc-deficient subjects. Inasmuch as zinc is intimately involved in cell division, its deficiency may adversely affect testicular size and thus affect its functions. Zinc is required for the functions of several enzymes and whether or not it has an enzymatic role in steroidogenesis is not known at present

  3. Zinc biofortification of cereals

    DEFF Research Database (Denmark)

    Palmgren, Michael; Clemens, Stephan; Williams, Lorraine E.;

    2008-01-01

    The goal of biofortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. Cereals serve as the main staple food for a large proportion of the world population but have the shortcoming, from a nutrition perspective, of being low in zinc...... and other essential nutrients. Major bottlenecks in plant biofortification appear to be the root-shoot barrier and - in cereals - the process of grain filling. New findings demonstrate that the root-shoot distribution of zinc is controlled mainly by heavy metal transporting P1B-ATPases and the metal...... tolerance protein (MTP) family. A greater understanding of zinc transport is important to improve crop quality and also to help alleviate accumulation of any toxic metals....

  4. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    NARCIS (Netherlands)

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Live

  5. Zinc Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Erdal Doğan

    2014-01-01

    Full Text Available Zinc phosphide has been used widely as a rodenticide. Upon ingestion, it gets converted to phosphine gas in the body, which is subsequently absorbed into the bloodstream through the stomach and the intestines and gets captured by the liver and the lungs. Phosphine gas produces various metabolic and nonmetabolic toxic effects. Clinical symptoms are circulatory collapse, hypotension, shock symptoms, myocarditis, pericarditis, acute pulmonary edema, and congestive heart failure. In this case presentation, we aim to present the intensive care process and treatment resistance of a patient who ingested zinc phosphide for suicide purposes.

  6. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs ref

  7. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs refer

  8. Protection against zinc toxicity by metallothionein and zinc transporter 1

    OpenAIRE

    Palmiter, Richard D.

    2004-01-01

    Cells protect themselves from zinc toxicity by inducing proteins such as metallothionein (MT) that bind it tightly, by sequestering it in organelles, or by exporting it. In this study, the interplay between zinc binding by MT and its efflux by zinc transporter 1 (ZnT1) was examined genetically. Inactivation of the Znt1 gene in baby hamster kidney (BHK) cells that do not express their Mt genes results in a zinc-sensitive phenotype and a high level of “free” zinc. Restoration of Mt gene express...

  9. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... En Español Search FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, ... Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of ...

  10. Antimicrobial properties of berries

    OpenAIRE

    Puupponen-Pimiä, Riitta

    2007-01-01

    Berries, especially their antimicrobial properties, have been studied intensively at VTT over the past ten years in several research projects. In these in vitro studies phenolic berry extracts of common Nordic berries selectively inhibited the growth of harmful bacteria and human intestinal pathogens, without affecting the growth of beneficial lactic acid bacteria.

  11. Antimicrobial activity of different endodontic sealers: An in vitro evaluation

    Directory of Open Access Journals (Sweden)

    Saha S

    2010-01-01

    Full Text Available Background: Microbes are considered as the primary etiological agents in endodontic diseases. The ways of reducing these agents are root canal debridement, antimicrobial irrigants, and antibacterial filling materials. But the complexity of the pulp canal system presents a problem for chemomechanical preparation. One of the factors determining the success of endodontic treatment is the sealing material with a potent bactericidal effect. Aim: The aim of the present study was to assess the antimicrobial activity of endodontic sealers of different bases - in vitro. Materials and Method: The antimicrobial activity of three root canal sealers (endomethasone, AH 26, and apexit was evaluated against seven strains of bacteria at various time intervals using the agar diffusion test. The freshly mixed sealers were placed in prepared wells of agar plates inoculated with the test microorganisms. The plates were incubated for 24, 48, 72 hours, and 7 and 15 days. The mean zones of inhibition were measured. Statistical Analysis: All statistical analysis was performed using the SPSS 13 statistical software version. The analysis of variance (ANOVA, post-hoc Bonferroni test, and paired t test were performed to reveal the statistical significance. Results: Statistically significant zones of bacterial growth inhibition were observed in descending order of antimicrobial activity: endomethasone, AH 26, and apexit. Conclusion: Zinc oxide eugenol based root canal sealer produced largest inhibitory zones followed in decreasing order by epoxy resin based sealer and least by calcium hydroxide based root canal sealer.

  12. Effects of Dietary Anti-Microbial Peptides and Coated Zinc Oxide on Growth Performance and Serum Biochemical Indices of Weaning Piglets%饲粮添加复合抗菌肽与包被氧化锌对断奶仔猪生长性能及血清生化指标的影响

    Institute of Scientific and Technical Information of China (English)

    李方方; 苏航; 张勇; 况应谷; 高原; 孟玲; 郭福来; 朱宇旌

    2015-01-01

    This experiment was conducted to investigate the effects of dietary anti-microbial peptides ( C-AMPs) and coated zinc oxide ( C-ZnO) on growth performances, serum biochemical indices, nutrient ap-parent digestibility and feacal microflora of weaning piglets. A total of 160 large white piglets with body weight of (6.98±0.05) kg were randomly allotted to 4 groups with 4 replicates per group and 10 piglets per replicate. The four groups were fed the basal diet, the basal diet+0.5 mg/kg C-AMPs ( C-AMPs group) , the basal diet+1 800 mg/kg C-ZnO ( C-ZnO group ) and the basal diet+0. 5 mg/kg C-AMPs+1 800 mg/kg C-ZnO ( C-AMPs+C-ZnO group) . The trial lasted for 28 days. The results showed as follows:1) compared with the control group, dietary supplemented with C-AMPs and C-ZnO or two together, the average daily gain and av-erage daily feed intake significantly increased ( P<0.05 or P<0.01) , the diarrhea rate of weaning piglets signif-icantly reduced ( P<0.01) . 2) Compared with the control group, dietary supplemented with C-AMPs and C-ZnO significantly increased serum growth hormone content (P<0.05), significantly decreased serum alkaline phosphatase activity (P<0.05); dietary supplemented with both C-AMPs and C-ZnO significantly increased the content of immunoglobulin G, growth hormone, interleukin 2 and interleukin 6 in serum ( P<0.01) , dieta-ry supplemented with C-AMPs significantly increased serum CSF-Ab content (P<0.01). 3) Compared with the control group, dietary supplemented with C-ZnO significantly increased the apparent digestibility of crude protein, ether extract and organism matter (P<0.05). 4) Compared with the control group, dietary supple-mented with C-AMPs and C-ZnO or two together significantly reduced the number of E.coli in excrement (P<0.01), but the number of Bifidobacterium significant increased (P<0.01). The results indicate that supple-mentation of C-AMPs and C-ZnO in the diet can improve the growth performance and nutrient apparent digesti

  13. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  14. Triclosan antimicrobial polymers

    Science.gov (United States)

    Petersen, Richard C.

    2016-01-01

    Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and the polymer chains increase both the mechanical properties of polymer toughness and strength that are enhanced even better through secondary bonding relationships. Further, polymer blend compatibilization is considered due to similar molecular relationships and polarities. With compatibilization of triclosan in polymers a more uniform stability for nonpolar triclosan in the polymer solid state is retained by the antimicrobial for extremely low release with minimum solubility into aqueous solution. As a result, triclosan is projected for long extended lifetimes as an antimicrobial polymer additive. Further, triclosan rapid alternating ether bond rotations disrupt secondary bonding between chain monomers in the resin state to reduce viscosity and enhance polymer blending. Thus, triclosan is considered for a polymer additive with multiple properties to be an antimicrobial with additional benefits as a nonpolar toughening agent and a hydrophobic wetting agent. The triclosan material relationships with alternating ether bond rotations are described through a complete different form of medium by comparisons with known antimicrobial properties that upset bacterial cell membranes through rapid fluctuating mechanomolecular energies. Also, triclosan bond entanglements with secondary bonding can produce structural defects in weak bacterial lipid membranes requiring pliability that can then interfere with cell division. Regarding applications with polymers, triclosan can be incorporated by mixing into a resin system before cure, melt mixed with thermoplastic polymers that set on cooling

  15. Studies on nanocrystalline zinc coating

    Indian Academy of Sciences (India)

    H B Muralidhara; Y Arthoba Naik

    2008-08-01

    Nano zinc coatings were deposited on mild steel by electrodeposition. The effect of additive on the morphology of crystal size on zinc deposit surface and corrosion properties were investigated. Corrosion tests were performed for dull zinc deposits and bright zinc deposits in aqueous NaCl solution (3.5 wt.%) using electrochemical measurements. The results showed that addition of additive in the deposition process of zinc significantly increased the corrosion resistance. The surface morphology of the zinc deposits was studied by scanning electron microscopy (SEM). The preferred orientation and average size of the zinc electrodeposited particles were obtained by X-ray diffraction analysis. The particles size was also characterized by TEM analysis.

  16. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  17. Antimicrobial peptides in Echinoderms

    Directory of Open Access Journals (Sweden)

    C Li

    2010-05-01

    Full Text Available Antimicrobial peptides (AMPs are important immune effector molecules for invertebrates, including echinoderms, which lack a vertebrate-type adaptive immune system. Here we summarize the knowledge of such peptides in echinoderms. Strongylocins are a novel family of cysteine-rich AMPs, recently identified in the sea urchins, Strongylocentrotus droebachiensis and S. purpuratus. Although these molecules present diverse amino acid sequences, they share an identical cysteine arrangement pattern, dissimilar to other known AMPs. A family of heterodimeric AMPs, named centrocins, are also present in S. droebachiensis. Lysozymes and fragments of larger proteins, such as beta-thymocins, actin, histone 2A and filamin A have also been shown to display antimicrobial activities in echinoderms. Future studies on AMPs should be aimed in revealing how echinoderms use these AMPs in the immune response against microbial pathogens.

  18. Does the oral zinc tolerance test measure zinc absorption

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi /sup 65/ZnCl/sub 2/ and a non-absorbed marker, /sup 51/CrCl/sub 3/, dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with /sup 65/Zn and /sup 51/Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and /sup 65/Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and /sup 65/Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption.

  19. Pinacol Coupling Reactions Catalyzed by Active Zinc

    Institute of Scientific and Technical Information of China (English)

    Hui ZHAO; Wei DENG; Qing Xiang GUO

    2005-01-01

    Pinacol coupling reactions catalyzed by active zinc revealed high activity and extensive suitability. The efficiency of the reaction was improved apparently owing to decreasing reductive potential of zinc. In addition, the results indicated that the zinc activity has a direct relation to the coupling reactivity compared to untreated zinc or other general active zinc.

  20. 21 CFR 73.1991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc... indirect process whereby zinc metal isolated from the zinc-containing ore is vaporized and then...

  1. [Neruda and antimicrobial resistance].

    Science.gov (United States)

    Cotera, Alejandro

    2011-07-01

    Antimicrobial resistance has been a problem in medicine, since their incorporation to clinical practice. Numerous papers have been written on the subject. The analysis of two poems by Pablo Neruda "How much does a man live" and "Larynx", included in the volume "Estravagario" and published for the first time in 1957 and 1958, give us an incredible revelation about the concept of resistance. In these poems aureomycin, the first antimicrobial of the family of tetracyclines, was included as a poetic figure and the therapeutic action of antimicrobials was described. "Never so much bugs died I tons of them fell I but the few that remained olive I manifested their perversity". These writings incorporated novel concepts, even for physicians of that time and described the closeness of death that a patient may perceive during the course of a given disease. The capacity of Pablo Neruda to extract the essence of situations and to anticipate to conditions that only years later became clinically relevant problems, is noteworthy.

  2. DNA extraction by zinc.

    OpenAIRE

    Kejnovský, E; Kypr, J

    1997-01-01

    A fast, very simple and efficient method of DNA extraction is described which takes advantage of DNA sedimentation induced by millimolar concentrations of ZnCl2. The zinc-induced sedimentation is furthermore strongly promoted by submillimolar phosphate anion concentrations. Within 90% of DNA irrespective of whether a plasmid DNA or short oligonucleotides are the extracted material. The method works with plasmid DNA and oligonucleotide concentrations as low as 100 ng/ml and 10 microg/ml, respe...

  3. DMPD: Zinc in human health: effect of zinc on immune cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18385818 Zinc in human health: effect of zinc on immune cells. Prasad AS. Mol Med. ...2008 May-Jun;14(5-6):353-7. (.png) (.svg) (.html) (.csml) Show Zinc in human health: effect of zinc on immun...e cells. PubmedID 18385818 Title Zinc in human health: effect of zinc on immune cells. Authors Prasad AS. Pu

  4. Antimicrobial Drugs in the Home

    Centers for Disease Control (CDC) Podcasts

    2006-10-19

    Survey participants in the United Kingdom admitted keeping leftover antimicrobial drugs for future use and taking them without medical advice. Dr. J. Todd Weber, director of CDC's Office of Antimicrobial Resistance, advises against the practice, which can be dangerous and can promote antimicrobial drug resistance.  Created: 10/19/2006 by Emerging Infectious Diseases.   Date Released: 10/26/2006.

  5. Functional finishing in cotton fabrics using zinc oxide nanoparticles

    Indian Academy of Sciences (India)

    A Yadav; Virendra Prasad; A A Kathe; Sheela Raj; Deepti Yadav; C Sundaramoorthy; N Vigneshwaran

    2006-11-01

    Nanotechnology, according to the National Nanotechnology Initiative (NNI), is defined as utilization of structure with at least one dimension of nanometer size for the construction of materials, devices or systems with novel or significantly improved properties due to their nano-size. The nanostructures are capable of enhancing the physical properties of conventional textiles, in areas such as anti-microbial properties, water repellence, soil-resistance, anti-static, anti-infrared and flame-retardant properties, dyeability, colour fastness and strength of textile materials. In the present work, zinc oxide nanoparticles were prepared by wet chemical method using zinc nitrate and sodium hydroxide as precursors and soluble starch as stabilizing agent. These nanoparticles, which have an average size of 40 nm, were coated on the bleached cotton fabrics (plain weave, 30 s count) using acrylic binder and functional properties of coated fabrics were studied. On an average of 75%, UV blocking was recorded for the cotton fabrics treated with 2% ZnO nanoparticles. Air permeability of the nano-ZnO coated fabrics was significantly higher than the control, hence the increased breathability. In case of nano-ZnO coated fabric, due to its nano-size and uniform distribution, friction was significantly lower than the bulk-ZnO coated fabric as studied by Instron® Automated Materials Testing System. Further studies are under way to evaluate wash fastness, antimicrobial properties, abrasion properties and fabric handle properties.

  6. Depleted zinc: Properties, application, production

    International Nuclear Information System (INIS)

    The addition of ZnO, depleted in the Zn-64 isotope, to the water of boiling water nuclear reactors lessens the accumulation of Co-60 on the reactor interior surfaces, reduces radioactive wastes and increases the reactor service-life because of the inhibitory action of zinc on inter-granular stress corrosion cracking. To the same effect depleted zinc in the form of acetate dihydrate is used in pressurized water reactors. Gas centrifuge isotope separation method is applied for production of depleted zinc on the industrial scale. More than 20 years of depleted zinc application history demonstrates its benefits for reduction of NPP personnel radiation exposure and combating construction materials corrosion.

  7. Depleted zinc: Properties, application, production.

    Science.gov (United States)

    Borisevich, V D; Pavlov, A V; Okhotina, I A

    2009-01-01

    The addition of ZnO, depleted in the Zn-64 isotope, to the water of boiling water nuclear reactors lessens the accumulation of Co-60 on the reactor interior surfaces, reduces radioactive wastes and increases the reactor service-life because of the inhibitory action of zinc on inter-granular stress corrosion cracking. To the same effect depleted zinc in the form of acetate dihydrate is used in pressurized water reactors. Gas centrifuge isotope separation method is applied for production of depleted zinc on the industrial scale. More than 20 years of depleted zinc application history demonstrates its benefits for reduction of NPP personnel radiation exposure and combating construction materials corrosion.

  8. Chloroquine is a zinc ionophore.

    Directory of Open Access Journals (Sweden)

    Jing Xue

    Full Text Available Chloroquine is an established antimalarial agent that has been recently tested in clinical trials for its anticancer activity. The favorable effect of chloroquine appears to be due to its ability to sensitize cancerous cells to chemotherapy, radiation therapy, and induce apoptosis. The present study investigated the interaction of zinc ions with chloroquine in a human ovarian cancer cell line (A2780. Chloroquine enhanced zinc uptake by A2780 cells in a concentration-dependent manner, as assayed using a fluorescent zinc probe. This enhancement was attenuated by TPEN, a high affinity metal-binding compound, indicating the specificity of the zinc uptake. Furthermore, addition of copper or iron ions had no effect on chloroquine-induced zinc uptake. Fluorescent microscopic examination of intracellular zinc distribution demonstrated that free zinc ions are more concentrated in the lysosomes after addition of chloroquine, which is consistent with previous reports showing that chloroquine inhibits lysosome function. The combination of chloroquine with zinc enhanced chloroquine's cytotoxicity and induced apoptosis in A2780 cells. Thus chloroquine is a zinc ionophore, a property that may contribute to chloroquine's anticancer activity.

  9. Zinc In CCl4 Toxicity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To investigate the protective effect of zinc in CCl4-induced hepatotoxicity. Methods Rats were treated with zinc acetate for four days. The zinc doses were 5 mg Zn/kg and 10 mg Zn/kg body weight respectively. Two groups of the zinc acetate-treated rats were later challenged with a single dose of CCl4 (1.5 mL/kg body weight). Results Compared to control animals, the plasma of rats treated with CCl4 showed hyperbilirubinaemia, hypoglycaemia, hypercreatinaemia and hypoproteinaemia. When the animals were however supplemented with zinc in form of zinc acetate before being dosed with CCl4, the 5 mg Zn/kg body weight of zinc acetate reversed the hypoproteinaemia induced by CCl4, whereas the 10mg Zn/kg body weight of zinc acetate reversed the hypoglycaemia, hyperbilimbinaemia and hypercreatinaemia induced by CCl4. Conclusion The 10mug Zn/kg body weight of zinc acetate is more consistent in protecting against CCl4 hepatotoxicity. The possible mechanisms of protection are highlighted.

  10. Antibacterial and antifungal activity of zinc(II complexes with some 2-methylbenzimidazole derivatives

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2005-01-01

    Full Text Available Zinc(II chloride reacts with 2-methylbenzimidazole derivatives to give complexes of the formula ZnL2Cl2-nH2O, where L=2-methylbenzimidazole l-benzyl-2-methylbenzimida-zole and l-(4-methylbenzyl-2-methylbenzimidazole n=0, 0.5 or 1. All the ligands and their zinc(II complexes were evaluated for their in vitro antimicrobial activity against Pseudomonas aeruginosa Bacillus sp., Staphylococcus aureus, Sarcina lutea and Candida pseudotropicalis. It was found that the majority of the investigated compounds displayed in vitro antimicrobial activity against very persistent microorganisms, except for the starting ligand, 2-methylbenzimidazole and its zinc(II complex which were active only against gram-negative bacteria. None of the compounds was significantly effective against Candida pseudotropicalis, except for l-(4-methylbenzyl-2-methylbenzimidazoleandits complex, which very slightly or slightly inhibited the yeast growth. The minimum inhibitory concentration (MIC was determined for all the ligands and their complexes. The effect of ligand and complex structure on the antimicrobial activity was discussed.

  11. Reduced leucocyte zinc in liver disease.

    OpenAIRE

    Keeling, P W; Jones, R.B.; Hilton, P J; Thompson, R P

    1980-01-01

    The zinc content of peripheral blood leucocytes has been measured in normal controls and in three groups of patients with liver disease. A significant reduction in leucocyte zinc, but not erythrocyte zinc, was observed in patients with primary biliary cirrhosis, alcoholic cirrhosis, and active chronic hepatitis. It is suggested that the nucleated tissues of some patients with liver disease are therefore zinc deficient, and that leucocyte zinc may prove of value in the assessment of the zinc s...

  12. Toxicokinetics of zinc oxide nanoparticles in rats

    Science.gov (United States)

    Chung, H. E.; Yu, J.; Baek, M.; Lee, J. A.; Kim, M. S.; Kim, S. H.; Maeng, E. H.; Lee, J. K.; Jeong, J.; Choi, S. J.

    2013-04-01

    Zinc oxide (ZnO) nanoparticle have been extensively applied to diverse industrial fields because they possess UV light absorption, catalytic, semi-conducting, and magnetic characteristics as well as antimicrobial property. However, up to date, toxicological effects of ZnO nanoparticles in animal models have not been completely determined. Moreover, little information is available about kinetic behaviors of ZnO nanoparticles in vivo, which will be crucial to predict their potential chronic toxicity after long-term exposure. The aim of this study was, therefore, to evaluate the pharmacokinetics and toxicokinetics of ZnO nanoparticles after single-dose and repeated dose 90-day oral administration in male and female rats, respectively. The blood samples were collected following administration of three different doses (125, 250, and 500 mg/kg) and ZnO concentration was assessed by measuring zinc level with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The result showed that the plasma ZnO concentration significantly increased in a dose-dependent manner, but decreased within 24 h after single-dose oral administration up to 500 mg/kg, without any significant difference between gender. However, when repeated dose 90-day oral toxicity study was performed, the elevated plasma concentrations did not return to normal control levels in all the cases, indicating their toxicity potential. These findings suggest that repeated oral exposure to ZnO nanoparticles up to the dose of 125 mg/kg could accumulate in the systemic circulation, thereby implying that the NOAEL values could be less than 125 mg/kg via oral intake.

  13. Toxicokinetics of zinc oxide nanoparticles in rats

    International Nuclear Information System (INIS)

    Zinc oxide (ZnO) nanoparticle have been extensively applied to diverse industrial fields because they possess UV light absorption, catalytic, semi-conducting, and magnetic characteristics as well as antimicrobial property. However, up to date, toxicological effects of ZnO nanoparticles in animal models have not been completely determined. Moreover, little information is available about kinetic behaviors of ZnO nanoparticles in vivo, which will be crucial to predict their potential chronic toxicity after long-term exposure. The aim of this study was, therefore, to evaluate the pharmacokinetics and toxicokinetics of ZnO nanoparticles after single-dose and repeated dose 90-day oral administration in male and female rats, respectively. The blood samples were collected following administration of three different doses (125, 250, and 500 mg/kg) and ZnO concentration was assessed by measuring zinc level with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The result showed that the plasma ZnO concentration significantly increased in a dose-dependent manner, but decreased within 24 h after single-dose oral administration up to 500 mg/kg, without any significant difference between gender. However, when repeated dose 90-day oral toxicity study was performed, the elevated plasma concentrations did not return to normal control levels in all the cases, indicating their toxicity potential. These findings suggest that repeated oral exposure to ZnO nanoparticles up to the dose of 125 mg/kg could accumulate in the systemic circulation, thereby implying that the NOAEL values could be less than 125 mg/kg via oral intake.

  14. Inhibitory zinc-enriched terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Danscher, G; Jo, S M; Varea, E;

    2001-01-01

    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution...

  15. Uptake and partitioning of zinc in Lemnaceae.

    Science.gov (United States)

    Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John

    2011-11-01

    Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility. PMID:21755349

  16. Antimicrobial susceptibilities of Clostridium difficile.

    OpenAIRE

    Shuttleworth, R; Taylor, M.; Jones, D M

    1980-01-01

    The antimicrobial susceptibilities of 78 strains of Clostridium difficile isolated from patients with and without gastrointestinal symptoms were determined and compared. Strains from patients with symptoms were more likely to show resistance to antibiotics. The antimicrobial susceptibilities of toxigenic and non-toxigenic strains were found to be similar.

  17. Engineering Antimicrobials Refractory to Resistance

    Science.gov (United States)

    Multi-drug resistant superbugs are a persistent problem in modern health care, demonstrating the need for a new class of antimicrobials that can address this concern. Triple-acting peptidoglycan hydrolase fusions are a novel class of antimicrobials which have qualities well suited to avoiding resis...

  18. Zinc Oxide Nanophotonics

    Science.gov (United States)

    Choi, Sumin; Aharonovich, Igor

    2015-12-01

    The emerging field of nanophotonics initiated a dedicated study of single photon sources and optical resonators in new class of materials. One such material is zinc oxide (ZnO) that has been long considered only for classical light-emitting applications. However, it recently showed promise for quantum photonics technologies. In this review, we highlight the recent advances in studying single emitters in ZnO, engineering of optical cavities and practical nanophotonics devices including nanolasers and electrically triggered devices. We finalize with an outlook at this promising area, as well as provide perspectives and open questions in solid state nanophotonics employing ZnO.

  19. Nanostructures of zinc oxide

    Directory of Open Access Journals (Sweden)

    Zhong Lin Wang

    2004-06-01

    Full Text Available Zinc oxide (ZnO is a unique material that exhibits semiconducting, piezoelectric, and pyroelectric multiple properties. Using a solid-vapor phase thermal sublimation technique, nanocombs, nanorings, nanohelixes/nanosprings, nanobows, nanobelts, nanowires, and nanocages of ZnO have been synthesized under specific growth conditions. These unique nanostructures unambiguously demonstrate that ZnO is probably the richest family of nanostructures among all materials, both in structures and properties. The nanostructures could have novel applications in optoelectronics, sensors, transducers, and biomedical science because it is bio-safe.

  20. How to fight antimicrobial resistance.

    Science.gov (United States)

    Foucault, Cédric; Brouqui, Philippe

    2007-03-01

    Antimicrobial misuse results in the development of resistance and superbugs. Over recent decades, resistance has been increasing despite continuing efforts to control it, resulting in increased mortality and cost. Many authorities have proposed local, regional and national guidelines to fight against this phenomenon, and the usefulness of these programmes has been evaluated. Multifaceted intervention seems to be the most efficient method to control antimicrobial resistance. Monitoring of bacterial resistance and antibiotic use is essential, and the methodology has now been homogenized. The implementation of guidelines and infection control measures does not control antimicrobial resistance and needs to be reinforced by associated measures. Educational programmes and rotation policies have not been evaluated sufficiently in the literature. Combination antimicrobial therapy is inefficient in controlling antimicrobial resistance.

  1. Danxia Zinc Smelter started construction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Zinc smelting project of Danxia Smelting Plant has a total investment of about RMB 4 billion, which is designed by Changsha Engineering & Research Institute of Nonferrous Metallurgy and planned to be implemented in three stages. The first stage 100,000 tons of electrolytic zinc improvement work is planned to be completed by the end of 2008. The second and third stages

  2. Evaluation of antimicrobial and antibiofilm activity of electron beam irradiated endodontic sealer

    International Nuclear Information System (INIS)

    The complete disinfection of root canal is achieved by endodontic instrumentation, irrigation and medications followed by complete filling of the canal space by appropriate sealer. However careful cleaning and shaping of the canal system do not assure the complete eradication of microorganisms from tubular or lateral canals. Therefore, to avoid the possible growth of microorganisms, the filling endodontic material should have good antimicrobial effect on the pathogens causing root canal failure or pulpo-periapical pathosis. Zinc Oxide- Eugenol (ZOE) is the most commonly used filling material in endodontics. Electron beam (e-beam) radiation is a form of ionizing radiation known to induce physiochemical and biological changes in the irradiated substances. Hence, the present study was carried out to evaluate the effect of e-beam radiation on antimicrobial property of ZOE sealer against root canal pathogens like Enterococcus faecalis, Streptococcus mutans, Staphylococcus aureus and Candida albicans. The homogenous paste of Zinc oxide and Eugenol prepared by mixing at the ratio of 3:1 was loaded into the sterile molds of 6 mm diameter. After complete drying of paste, discs were aseptically separated from the mould. The prepared discs were subjected to e-beam irradiation of 250 Gy, 500 Gy, 750 Gy and 1000 Gy at Microtron Centre, Mangalore University. Antimicrobial and antibiofilm properties of control and irradiated sealer were determined by well diffusion method and growing the biofilm according to O'Toole method, respectively. The antimicrobial effect was observed only against S.aureus and C. albicans in non-irradiated ZOE. The ZOE sealer irradiated at 1000 Gy showed the significantly increased (P<0.001) antimicrobial effect against S. aureus and C. albicans. However, the substantially increased antibiofilm activity against C.albicans was noticed in the ZOE irradiated at 250 Gy. This study showed that e-beam irradiation at 1000 Gy and 250 Gy were found to be optimum

  3. Antimicrobial activity of antiproteinases.

    Science.gov (United States)

    Sallenave, J M

    2002-04-01

    Low-molecular-mass neutrophil elastase inhibitors have been shown to be important in the control of lung inflammation. In addition to inhibiting the enzyme neutrophil elastase, these low-molecular-mass compounds (10 kDa) have been shown to have other activities. For example, secretory leucocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor/SKALP (skin-derived antileucoproteinase)/elafin have also been shown to have "defensin"-like antimicrobial activities. Indeed, these inhibitors have antimicrobial properties in vitro against bacteria, fungi and, potentially, HIV. In addition, we have shown, using an adenovirus-mediated gene transfer overexpression strategy, that elafin is also active against Pseudomonas aeruginosa infection in mice in vivo. The mechanism of action is currently under investigation. In addition to these direct or indirect effects on microbes, it has been shown that lipopolysaccharide is able to up-regulate SPLI production in macrophages in vitro, and that the addition of recombinant SLPI to human monocytes or the transfection of macrophages with SPLI can down-regulate pro-inflammatory mediators such as tumour necrosis factor, presumably to limit self-damaging excessive inflammation. Using viral gene transfer vectors, we are currently investigating the potential of these inhibitors in various models of inflammation in vivo. PMID:12023836

  4. Nano structure zinc (II) Schiff base complexes of a N3-tridentate ligand as new biological active agents: Spectral, thermal behaviors and crystal structure of zinc azide complex

    Science.gov (United States)

    Montazerozohori, M.; Mojahedi Jahromi, S.; Masoudiasl, A.; McArdle, P.

    2015-03-01

    In this work, synthesis of some new five coordinated zinc halide/pseudo-halide complexes of a N3-tridentate ligand is presented. All complexes were subjected to spectroscopic and physical methods such as FT-IR, UV-visible, 1H and 13C NMR spectra, thermal analyses and conductivity measurements for identification. Based on spectral data, the general formula of ZnLX2 (X = Cl-, Br-, I-, SCN- and N3-) was proposed for the zinc complexes. Zinc complexes have been also prepared in nano-structure sizes under ultrasonic irradiation. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied for confirmation of nano-structure character for the complexes. Among the complexes, zinc azide complex structure was analyzed by X-ray crystallography. This complex crystallizes as a triplet in trigonal system with space group of P31. The coordination sphere around the zinc center is well shown as a distorted trigonal bipyramidal with three nitrogen atoms from Schiff base ligand and two terminal azide nitrogen atoms attached to zinc ion. Various intermolecular interactions such as Nsbnd H⋯N, Csbnd H⋯N and Csbnd H⋯π hydrogen bonding interactions stabilize crystalline lattice so that they causes a three dimensional supramolecular structure for the complex. In vitro screening of the compounds for their antimicrobial activities showed that ZnLI2, ZnL(N3)2, ZnLCl2 and ZnL(NCS)2 were found as the most effective compound against bacteria of Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli respectively. Also ZnLI2 and ZnLCl2 complexes were found more effective against two selected fungi than others. Finally, thermal behaviors of the zinc complexes showed that they are decomposed via 2-4 thermal steps from room temperature up to 1000 °C.

  5. Antimicrobial applications of nanotechnology: methods and literature

    Directory of Open Access Journals (Sweden)

    Seil JT

    2012-06-01

    Full Text Available Justin T Seil, Thomas J WebsterLaboratory for Nanomedicine Research, School of Engineering, Brown University, Providence, RI, USAAbstract: The need for novel antibiotics comes from the relatively high incidence of bacterial infection and the growing resistance of bacteria to conventional antibiotics. Consequently, new methods for reducing bacteria activity (and associated infections are badly needed. Nanotechnology, the use of materials with dimensions on the atomic or molecular scale, has become increasingly utilized for medical applications and is of great interest as an approach to killing or reducing the activity of numerous microorganisms. While some natural antibacterial materials, such as zinc and silver, possess greater antibacterial properties as particle size is reduced into the nanometer regime (due to the increased surface to volume ratio of a given mass of particles, the physical structure of a nanoparticle itself and the way in which it interacts with and penetrates into bacteria appears to also provide unique bactericidal mechanisms. A variety of techniques to evaluate bacteria viability, each with unique advantages and disadvantages, has been established and must be understood in order to determine the effectiveness of nanoparticles (diameter ≤100 nm as antimicrobial agents. In addition to addressing those techniques, a review of select literature and a summary of bacteriostatic and bactericidal mechanisms are covered in this manuscript.Keywords: nanomaterial, nanoparticle, nanotechnology, bacteria, antibacterial, biofilm

  6. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  7. [Antimicrobial susceptibility in Chile 2012].

    Science.gov (United States)

    Cifuentes-D, Marcela; Silva, Francisco; García, Patricia; Bello, Helia; Briceño, Isabel; Calvo-A, Mario; Labarca, Jaime

    2014-04-01

    Bacteria antimicrobial resistance is an uncontrolled public health problem that progressively increases its magnitude and complexity. The Grupo Colaborativo de Resistencia, formed by a join of experts that represent 39 Chilean health institutions has been concerned with bacteria antimicrobial susceptibility in our country since 2008. In this document we present in vitro bacterial susceptibility accumulated during year 2012 belonging to 28 national health institutions that represent about 36% of hospital discharges in Chile. We consider of major importance to report periodically bacteria susceptibility so to keep the medical community updated to achieve target the empirical antimicrobial therapies and the control measures and prevention of the dissemination of multiresistant strains.

  8. Antimicrobial properties of hemoglobin.

    Science.gov (United States)

    Sheshadri, Preethi; Abraham, Jayanthi

    2012-12-01

    Hemoglobin consists of a heme containing component and a globin unit. It exists as a tetramer with 2 α subunits and 2 β subunits in adults and with 2 α subunits and 2 γ chains in infants. On proteolytic cleavage, hemoglobin breaks down to produce many biologically active compounds, among which are hemocidins, those which exhibit antimicrobial property. The generation of these peptides does not depend on the blood group, Rhesus factor, age and sex of the healthy donors. The microbicidal activity has been observed against a variety of gram positive and Gram-negative bacteria, and against filamentous fungi, yeast and even certain parasites. The discovery of hemocidins opens a new field for research into the details of the peptides acting as second line of defence in boosting the innate immune system of the organisms.

  9. Evaluation Physical Characteristics and Comparison Antimicrobial and Anti-Inflammation Potentials of Dental Root Canal Sealers Containing Hinokitiol In Vitro

    OpenAIRE

    Yin-Hua Shih; Dan-Jae Lin; Kuo-Wei Chang; Shih-Min Hsia; Shun-Yao Ko; Shyh-Yuan Lee; Shui-Sang Hsue; Tong-Hong Wang; Yi-Ling Chen; Tzong-Ming Shieh

    2014-01-01

    Hinokitiol displays potent antimicrobial activity. It has been used in toothpaste and oral-care gel to improve the oral lichen planus and reduce halitosis. The aim of this study was to evaluate the antimicrobial activity of 3 different dental root canal sealers with hinokitiol (sealers+H) and their physical and biological effects. AH Plus (epoxy amine resin-based, AH), Apexit Plus (calcium-hydroxide-based, AP), and Canals (zinc-oxide-eugenol-based, CA), were used in this study. The original A...

  10. Zinc and cadmium monosalicylates

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K. (Moskovskij Khimiko-Tekhnologicheskij Inst. (USSR))

    1984-06-01

    Zinc and cadmium monosalicylates of the composition MSal, where M-Zn or Cd, Sal - twice deprotonated residue of salicylic acid O-HOC/sub 6/H/sub 4/COOH (H/sub 2/Sal), are singled out and characterized. When studying thermograms, thermogravigrams, IR absorption spectra, roentgenograms of cadmium salicylate compounds (Cd(OC/sub 6/H/sub 4/COO) and products of their thermal transformations, the processes of thermal decomposition of the compounds have been characterized. The process of cadmium monosalicylate decomposition takes place in one stage. Complete loss of salicylate acido group occurs in the range of 320-460 deg. At this decomposition stage cadmium oxide is formed. A supposition is made that cadmium complex has tetrahedral configuration, at that, each salicylate group plays the role of tetradentate-bridge ligand. The compound evidently has a polymer structure.

  11. Zinc Oxide Nanoparticle Photodetector

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available A zinc oxide (ZnO nanoparticle photodetector was fabricated using a simple method. Under a 5 V applied bias, its dark current and photocurrent were 1.98×10-8 and 9.42×10-7 A, respectively. In other words, a photocurrent-to-dark-current contrast ratio of 48 was obtained. Under incident light at a wavelength of 375 nm and a 5 V applied bias, the detector’s measured responsivity was 3.75 A/W. The transient time constants measured during the turn-ON and turn-OFF states were τON=204 s and τOFF=486 s, respectively.

  12. Zinc finger proteins in cancer progression

    OpenAIRE

    Jen, Jayu; Wang, Yi-Ching

    2016-01-01

    Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer...

  13. Sorbitol dehydrogenase is a zinc enzyme.

    OpenAIRE

    Jeffery, J; Chesters, J; C. Mills; P.J. Sadler; Jörnvall, H

    1984-01-01

    Evidence is given that tetrameric sorbitol dehydrogenase from sheep liver contains one zinc atom per subunit, most probably located at the active site, and no other specifically bound zinc or iron atom. In alcohol dehydrogenases that are structurally related to sorbitol dehydrogenase, more than one zinc atom per subunit can complicate investigations of zinc atom function. Therefore, sorbitol dehydrogenase will be particularly valuable for defining the precise roles of zinc in alcohol and poly...

  14. Maternal Zinc Intakes and Homeostatic Adjustments during Pregnancy and Lactation

    OpenAIRE

    Janet C. King; Carmen Marino Donangelo

    2012-01-01

    Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing the dietary zinc intake, along with making homeostatic adjustments in zinc utilization. Potential homeostatic adjustments include changes in circulating zinc, increased zinc absorption, decreased zinc losses, and changes in whole body zinc kinetics. Although severe zinc deficiency during pregnancy has devastating e...

  15. Automation of antimicrobial activity screening.

    Science.gov (United States)

    Forry, Samuel P; Madonna, Megan C; López-Pérez, Daneli; Lin, Nancy J; Pasco, Madeleine D

    2016-03-01

    Manual and automated methods were compared for routine screening of compounds for antimicrobial activity. Automation generally accelerated assays and required less user intervention while producing comparable results. Automated protocols were validated for planktonic, biofilm, and agar cultures of the oral microbe Streptococcus mutans that is commonly associated with tooth decay. Toxicity assays for the known antimicrobial compound cetylpyridinium chloride (CPC) were validated against planktonic, biofilm forming, and 24 h biofilm culture conditions, and several commonly reported toxicity/antimicrobial activity measures were evaluated: the 50 % inhibitory concentration (IC50), the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Using automated methods, three halide salts of cetylpyridinium (CPC, CPB, CPI) were rapidly screened with no detectable effect of the counter ion on antimicrobial activity. PMID:26970766

  16. Evaluation and comparison of zinc absorption level from 2-Alkyle 3-Hydroxy pyranon-zinc complexes and zinc sulfate in rat in vivo

    OpenAIRE

    Badii Akbar; Nekouei Niloufar; Mostafavi Abolfazl; Saghaei Lofollah; Khodarahmi Qadam Ali; Valadian Soheyla

    2013-01-01

    Background: Although zinc sulfate has been used to improve disorders originated from zinc deficiency, its low compliance is due to gastrointestinal complications; therefore, other zinc compounds have been suggested as replacers for zinc deficient people. The objective of this study was to evaluate and compare the absorption of ethyl and methyl zinc-maltol with that of zinc sulfate to substitute zinc sulfate with those complexes. Materials and Methods: After five weeks of being fed by zinc...

  17. Human Antimicrobial Peptides and Proteins

    OpenAIRE

    Guangshun Wang

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified ...

  18. Antimicrobials for bacterial bioterrorism agents.

    Science.gov (United States)

    Sarkar-Tyson, Mitali; Atkins, Helen S

    2011-06-01

    The limitations of current antimicrobials for highly virulent pathogens considered as potential bioterrorism agents drives the requirement for new antimicrobials that are suitable for use in populations in the event of a deliberate release. Strategies targeting bacterial virulence offer the potential for new countermeasures to combat bacterial bioterrorism agents, including those active against a broad spectrum of pathogens. Although early in the development of antivirulence approaches, inhibitors of bacterial type III secretion systems and cell division mechanisms show promise for the future.

  19. Antimicrobial drugs for treating cholera

    OpenAIRE

    Leibovici-Weissman, Ya'ara; Neuberger, Ami; Bitterman, Roni; Sinclair, David; Salam, Mohammed Abdus; Paul, Mical

    2014-01-01

    Background Cholera is an acute watery diarrhoea caused by infection with the bacterium Vibrio cholerae, which if severe can cause rapid dehydration and death. Effective management requires early diagnosis and rehydration using oral rehydration salts or intravenous fluids. In this review, we evaluate the additional benefits of treating cholera with antimicrobial drugs. Objectives To quantify the benefit of antimicrobial treatment for patients with cholera, and determine whether there are diffe...

  20. Zinc toxicology following particulate inhalation.

    Science.gov (United States)

    Cooper, Ross G

    2008-04-01

    The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl(2) inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection. PMID:20040991

  1. Zinc toxicology following particulate inhalation

    Directory of Open Access Journals (Sweden)

    Cooper Ross

    2008-01-01

    Full Text Available The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl 2 inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection.

  2. Zinc transporter expression profiles in the rat prostate following alterations in dietary zinc

    OpenAIRE

    Song, Yang; Elias, Valerie; Wong, Carmen P.; Scrimgeour, Angus G.; Ho, Emily

    2009-01-01

    Zinc plays important roles in numerous cellular activities and physiological functions. Intracellular zinc levels are strictly maintained by zinc homeostatic mechanisms. Zinc concentrations in the prostate are the highest of all soft tissues and could be important for prostate health. However, the mechanisms by which the prostate maintains high zinc levels are still unclear. In addition, the response of the prostate to alterations in dietary zinc is unknown. The current study explored cellula...

  3. Chloroquine Is a Zinc Ionophore

    OpenAIRE

    Jing Xue; Amanda Moyer; Bing Peng; Jinchang Wu; Hannafon, Bethany N.; Wei-Qun Ding

    2014-01-01

    Chloroquine is an established antimalarial agent that has been recently tested in clinical trials for its anticancer activity. The favorable effect of chloroquine appears to be due to its ability to sensitize cancerous cells to chemotherapy, radiation therapy, and induce apoptosis. The present study investigated the interaction of zinc ions with chloroquine in a human ovarian cancer cell line (A2780). Chloroquine enhanced zinc uptake by A2780 cells in a concentration-dependent manner, as assa...

  4. Biokompatibilitas Semen Zinc Oxide Eugenol

    OpenAIRE

    Trisna Wahyudi

    2008-01-01

    Bahan kedokteran gigi hams memenuhi syarat biokompatibilitas yang dapat diterima tubuh atau dengan kata lain tidak membahayakan dalam penggunaannya. Idealnya bahan yang diletakkan dalam rongga mulut tidak membahayakan jaringan pulpa dan jaringan lunak rongga mulut, tidak mengandung bahan toksik yang mampu berdifusi dan dapat diabsorpsi ke dalam sistem sirkulasi tubuh yang akhirya menyebabkan reaksi toksik yang sistemik. Semen zinc oxide eugenol dengan kandungan utamanya zinc oxide dan e...

  5. Editorial of the Special Issue Antimicrobial Polymers

    Directory of Open Access Journals (Sweden)

    Iolanda Francolini

    2013-09-01

    Full Text Available The special issue “Antimicrobial Polymers” includes research and review papers concerning the recent advances on preparation of antimicrobial polymers and their relevance to industrial settings and biomedical field. Antimicrobial polymers have recently emerged as promising candidates to fight microbial contamination onto surfaces thanks to their interesting properties. In this special issue, the main strategies pursued for developing antimicrobial polymers, including polymer impregnation with antimicrobial agents or synthesis of polymers bearing antimicrobial moieties, were discussed. The future application of these polymers either in industrial or healthcare settings could result in an extremely positive impact not only at the economic level but also for the improvement of quality of life.

  6. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance.

    Science.gov (United States)

    Maddox, T W; Clegg, P D; Williams, N J; Pinchbeck, G L

    2015-11-01

    Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections. While the epidemiology of antimicrobial resistance in bacteria from man has been studied extensively, less work has been undertaken in companion animals, particularly horses. Methicillin-resistant Staphylococcus aureus has been identified as a cause of infections, with a low prevalence of nasal carriage by horses in the community but higher for hospitalised horses. Molecular characterisation has shown methicillin-resistant Staphylococcus aureus strains either to be predominantly of types associated with horses or of sequence type ST398. Antimicrobial-resistant Escherichia coli (including multidrug-resistant and extended spectrum β-lactamase-producing isolates) have caused infections and been documented in faecal carriage by horses, with many significant resistance mechanisms identified. More sporadic reports and molecular characterisation exist for resistance in other bacteria such as enterococci, Salmonella, Acinetobacter and Pseudomonas species. Limited work has been undertaken evaluating risk factors and much of the epidemiology of antimicrobial resistance in bacteria from horses remains to be determined.

  7. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance.

    Science.gov (United States)

    Maddox, T W; Clegg, P D; Williams, N J; Pinchbeck, G L

    2015-11-01

    Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections. While the epidemiology of antimicrobial resistance in bacteria from man has been studied extensively, less work has been undertaken in companion animals, particularly horses. Methicillin-resistant Staphylococcus aureus has been identified as a cause of infections, with a low prevalence of nasal carriage by horses in the community but higher for hospitalised horses. Molecular characterisation has shown methicillin-resistant Staphylococcus aureus strains either to be predominantly of types associated with horses or of sequence type ST398. Antimicrobial-resistant Escherichia coli (including multidrug-resistant and extended spectrum β-lactamase-producing isolates) have caused infections and been documented in faecal carriage by horses, with many significant resistance mechanisms identified. More sporadic reports and molecular characterisation exist for resistance in other bacteria such as enterococci, Salmonella, Acinetobacter and Pseudomonas species. Limited work has been undertaken evaluating risk factors and much of the epidemiology of antimicrobial resistance in bacteria from horses remains to be determined. PMID:26084443

  8. Antimicrobial Peptides from Plants

    Science.gov (United States)

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  9. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  10. Antimicrobial peptides in annelids

    Directory of Open Access Journals (Sweden)

    A Tasiemski

    2008-06-01

    Full Text Available Gene encoded antimicrobial peptides (AMPs are widely distributed among living organisms including plants, invertebrates and vertebrates. They constitute important effectors of the innate immune response by exerting multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells influencing diverse processes such as cytokine release, cell proliferation, angiogenesis, wound healing, chemotaxis and immune induction. In invertebrates, most of the data describe the characterization and/or the function of AMPs in the numerically and economically most representative group which are arthropods. Annelids are among the first coelomates and are therefore of special phylogenetic interest. Compared to other invertebrate groups, data on annelid’s immunity reveal heavier emphasis on the cellular than on the humoral response suggesting that immune defense of annelids seems to be principally developed as cellular immunity.This paper gives an overview of the variety of AMPs identified in the three classes of annelids, i.e. polychaetes, oligochaetes and achaetes. Their functions, when they have been studied, in the humoral or cellular response of annelids are also mentioned.

  11. Antimicrobial peptides in crustaceans

    Directory of Open Access Journals (Sweden)

    RD Rosa

    2010-11-01

    Full Text Available Crustaceans are a large and diverse invertebrate animal group that mounts a complex and efficient innate immune response against a variety of microorganisms. The crustacean immune system is primarily related to cellular responses and the production and release of important immune effectors into the hemolymph. Antimicrobial proteins and/or peptides (AMPs are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, 15 distinct AMP families are currently recognized, although the great majority (14 families comes from members of the order Decapoda. Crustacean AMPs are generally cationic, gene-encoded molecules that are mainly produced by circulating immune-competent cells (hemocytes or are derived from unrelated proteins primarily involved in other biological functions. In this review, we tentatively classified the crustacean AMPs into four main groups based on their amino acid composition, structural features and multi-functionality. We also attempted to summarize the current knowledge on their implication both in an efficient response to microbial infections and in crustacean survival.

  12. Enhanced Antimicrobial Activity Of Antibiotics Mixed With Metal Nanoparticles

    Science.gov (United States)

    Kumar, Sandeep; Kumar, Neeraj; Bhanjana, Gaurav; Thakur, Rajesh; Dilbaghi, Neeraj

    2011-12-01

    Current producers of antimicrobial technology have a long lasting, environmentally safe, non-leaching, water soluble solution that will eventually replace all poisons and heavy metals. The transition metal ions inevitably exist as metal complexes in biological systems by interaction with the numerous molecules possessing groupings capable of complexation or chelation. Nanoparticles of metal oxides offer a wide variety of potential applications in medicine due to the unprecedented advances in nanobiotechnology research. the bacterial action of antibiotics like penicillin, erythryomycin, ampicillin, streptomycin, kanamycin etc. and that of a mixture of antibiotics and metal and metal oxide nanoparticles like zinc oxide, zirconium, silver and gold on microbes was examined by the agar-well-diffusion method, enumeration of colony-forming units (CFU) and turbidimetry.

  13. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide 1 2 3

    OpenAIRE

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F

    2013-01-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate give...

  14. Antimicrobial resistance in Scandinavia after ban of antimicrobial growth promoters.

    Science.gov (United States)

    Bengtsson, Björn; Wierup, Martin

    2006-01-01

    The banned use of antimicrobial growth promoters resulted in a considerably decreased use of antimicrobials in food animal production in Sweden (65%), Denmark (47%), Norway (40%) and Finland (27%). The current prevalence of antimicrobial resistance in animal bacterial populations is also considerably lower than in some other countries in the EU. In the swine production, no or limited effect was found in the finisher production (>25 to 30 kg). Temporary negative effects occurred during the post weaning period (7-30 kg). In Denmark, the cost of production from birth to slaughter per pig produced increased by approximately 1.0 euro with a high variability between pig producers. In the broiler production the termination had no significant negative effect on animal health and welfare or on production economy.

  15. Low Stress Mechanical Properties of Plasma-Treated Cotton Fabric Subjected to Zinc Oxide-Anti-Microbial Treatment

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2013-01-01

    Full Text Available Cotton fabrics are highly popular because of their excellent properties such as regeneration, bio-degradation, softness, affinity to skin and hygroscopic properties. When in contact with the human body, cotton fabrics offer an ideal environment for microbial growth due to their ability to retain oxygen, moisture and warmth, as well as nutrients from spillages and body sweat. Therefore, an anti-microbial coating formulation (Microfresh and Microban together with zinc oxide as catalyst was developed for cotton fabrics to improve treatment effectiveness. In addition, plasma technology was employed in the study which roughened the surface of the materials, improving the loading of zinc oxides on the surface. In this study, the low stress mechanical properties of plasma pre-treated and/or anti-microbial-treated cotton fabric were studied. The overall results show that the specimens had improved bending properties when zinc oxides were added in the anti-microbial coating recipe. Also, without plasma pre-treatment, anti-microbial-treatment of cotton fabric had a positive effect only on tensile resilience, shear stress at 0.5° and compressional energy, while plasma-treated specimens had better overall tensile properties even after anti-microbial treatment.

  16. Antimicrobial activities of squalamine mimics.

    Science.gov (United States)

    Kikuchi, K; Bernard, E M; Sadownik, A; Regen, S L; Armstrong, D

    1997-07-01

    We investigated the antimicrobial properties of compounds with structural features that were designed to mimic those of squalamine, an antibiotic isolated from the stomach of the dogfish shark. The mimics, like squalamine, are sterol-polyamine conjugates. Unlike squalamine, the mimics were simple to prepare, at high yield, from readily available starting materials. Several squalamine mimics showed activity against gram-negative rods, gram-positive cocci including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and fungi. Some had little or no hemolytic activity. The hydrophobicity of the sterol backbone and the length and the cationic charge of the side chains appeared to be critical determinants of activity. One of the squalamine mimics, SM-7, was bactericidal against Escherichia coli, Pseudomonas aeruginosa, and S. aureus; its activity was decreased by divalent or monovalent cations and by bovine serum albumin. Subinhibitory concentrations of SM-7 markedly enhanced the antimicrobial activity of rifampin against gram-negative rods. These results suggest that the compounds may disrupt an outer membrane of gram-negative rods. Squalamine mimics are a new class of broad-spectrum antimicrobial agents. The antagonism of their activity by serum and albumin and their hemolytic properties may limit their use as systemic agents. The squalamine mimics, because of their potencies, broad spectra of antimicrobial activity, and potential for systemic toxicity, appear to be good candidates for development as topical antimicrobial agents. PMID:9210661

  17. Zn(2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture.

    Directory of Open Access Journals (Sweden)

    Aartjan J W te Velthuis

    Full Text Available Increasing the intracellular Zn(2+ concentration with zinc-ionophores like pyrithione (PT can efficiently impair the replication of a variety of RNA viruses, including poliovirus and influenza virus. For some viruses this effect has been attributed to interference with viral polyprotein processing. In this study we demonstrate that the combination of Zn(2+ and PT at low concentrations (2 µM Zn(2+ and 2 µM PT inhibits the replication of SARS-coronavirus (SARS-CoV and equine arteritis virus (EAV in cell culture. The RNA synthesis of these two distantly related nidoviruses is catalyzed by an RNA-dependent RNA polymerase (RdRp, which is the core enzyme of their multiprotein replication and transcription complex (RTC. Using an activity assay for RTCs isolated from cells infected with SARS-CoV or EAV--thus eliminating the need for PT to transport Zn(2+ across the plasma membrane--we show that Zn(2+ efficiently inhibits the RNA-synthesizing activity of the RTCs of both viruses. Enzymatic studies using recombinant RdRps (SARS-CoV nsp12 and EAV nsp9 purified from E. coli subsequently revealed that Zn(2+ directly inhibited the in vitro activity of both nidovirus polymerases. More specifically, Zn(2+ was found to block the initiation step of EAV RNA synthesis, whereas in the case of the SARS-CoV RdRp elongation was inhibited and template binding reduced. By chelating Zn(2+ with MgEDTA, the inhibitory effect of the divalent cation could be reversed, which provides a novel experimental tool for in vitro studies of the molecular details of nidovirus replication and transcription.

  18. Pseudomonas aeruginosa capability to recruit zinc under conditions of limited metal availability is affected by inactivation of the ZnuABC transporter

    Science.gov (United States)

    D'Orazio, Melania; Mastropasqua, Maria Chiara; Cerasi, Mauro; Pacello, Francesca; Consalvo, Ada; Chirullo, Barbara; Mortensen, Brittany; Skaar, Eric P.; Ciavardelli, Domenico; Pasquali, Paolo; Battistoni, Andrea

    2015-01-01

    The ability of a large number of bacterial pathogens to multiply in the infected host and cause disease is dependent on their ability to express high affinity zinc importers. In many bacteria ZnuABC, a transporter of the ABC family, plays a central role in the process of zinc uptake in zinc poor environments, including the tissues of the infected host. To initiate an investigation into the relevance of the zinc uptake apparatus for Pseudomonas aeruginosa pathogenicity, we have generated a znuA mutant in the PA14 strain. We have found that this mutant strain displays a limited growth defect in zinc depleted media. The znuA mutant strain is more sensitive than the wild type strain to calprotectin-mediated growth inhibition, but both the strains are highly resistant to this zinc sequestering antimicrobial protein. Moreover, intracellular zinc content is not evidently affected by inactivation of the ZnuABC transporter. These findings suggest that P. aeruginosa is equipped with redundant mechanisms for the acquisition of zinc that might favor P. aeruginosa colonization of environments containing low levels of this metal. Nonetheless, deletion of znuA affects alginate production, reduces the activity of extracellular zinc-containing proteases, including LasA, LasB and Protease IV, and decreases the ability of P. aeruginosa to disseminate during systemic infections. These results indicate that efficient zinc acquisition is critical for the expression of various virulence features typical of P. aeruginosa and that ZnuABC also plays an important role in zinc homeostasis in this microorganism. PMID:25751674

  19. Antimicrobial resistance of thermophilic Campylobacter

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Engberg, J.

    2001-01-01

    Campylobacter has become the leading cause of zoonotic enteric infections in developed and developing countries world-wide. Antimicrobial resistance has emerged among Campylobacter mainly as a consequence of the use of antimicrobial agents in food animal production. Resistance to drugs of choice...... for the treatment of infections, macrolides and fluoroquinolones has emerged as a clinical problem and interventions to reduce this are recommended. Resistance to fluoroquinolones and macrolides is mediated by chromosomal mutations. Resistance to other relevant antimicrobial agents, mediated by...... acquired resistance genes, has not become widespread so far. However, resistance genes originating from both Gram-positive and Gram-negative bacterial species have been found, showing the potential for acquired resistance to emerge in Campylobacter....

  20. High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available Zinc ions highly concentrate in hippocampus and play a key role in modulating spatial learning and memory. At a time when dietary fortification and supplementation of zinc have increased the zinc consuming level especially in the youth, the toxicity of zinc overdose on brain function was underestimated. In the present study, weaning ICR mice were given water supplemented with 15 ppm Zn (low dose, 60 ppm Zn (high dose or normal lab water for 3 months, the behavior and brain zinc homeostasis were tested. Mice fed high dose of zinc showed hippocampus-dependent memory impairment. Unexpectedly, zinc deficiency, but not zinc overload was observed in hippocampus, especially in the mossy fiber-CA3 pyramid synapse. The expression levels of learning and memory related receptors and synaptic proteins such as NMDA-NR2A, NR2B, AMPA-GluR1, PSD-93 and PSD-95 were significantly decreased in hippocampus, with significant loss of dendritic spines. In keeping with these findings, high dose intake of zinc resulted in decreased hippocampal BDNF level and TrkB neurotrophic signaling. At last, increasing the brain zinc level directly by brain zinc injection induced BDNF expression, which was reversed by zinc chelating in vivo. These results indicate that zinc plays an important role in hippocampus-dependent learning and memory and BDNF expression, high dose supplementation of zinc induces specific zinc deficiency in hippocampus, which further impair learning and memory due to decreased availability of synaptic zinc and BDNF deficit.

  1. Zinc Plating Industry Drives Zinc Consumption by Power Grids, Railways and Highways

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>On the afternoon of June 30, at the Chengdu Lead and Zinc Summit, more than 150 partici-pants voted for the product they felt drives zinc consumption the most. 48% went for zinc plat-ing products, 16% voted for zinc oxide,

  2. Bio-inspired nanomaterials and their applications as antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Smita Sachin Zinjarde

    2012-01-01

    Full Text Available In the recent decades, the interdisciplinary field of nanotechnology has expanded extensively. A variety of nanoparticles (NPs have been used for a number of specialized applications. In this era facing a major problem of microorganisms developing antibiotic resistance, NPs are a lucrative option. Most physical and chemical processes of NP synthesis are associated with drawbacks and bio-inspired NPs have now become popular. This review summarizes the recent developments on the biosynthesis, characterization, and applications of NPs with particular reference to their use as antimicrobial agents. Reviewed here is the synthesis of gold and silver NPs (AgNPs by a variety of biological forms and biomolecules as well as their effectiveness toward different fungal and bacterial pathogens. The use of gold NPs (bio-inspired by plants, fungi, and bacteria and AgNPs, synthesized by carbohydrates (of plant, animal, and microbial origin, plant parts (bark, callus, leaves, peels, and tubers, fungi, and bacteria have been highlighted. In addition, the use of zinc oxide NPs (although not bio-inspired as novel antimicrobial agents have also been discussed.

  3. Uses of antimicrobial genes from microbial genome

    Science.gov (United States)

    Sorek, Rotem; Rubin, Edward M.

    2013-08-20

    We describe a method for mining microbial genomes to discover antimicrobial genes and proteins having broad spectrum of activity. Also described are antimicrobial genes and their expression products from various microbial genomes that were found using this method. The products of such genes can be used as antimicrobial agents or as tools for molecular biology.

  4. Zinc, aging, and immunosenescence: an overview

    Directory of Open Access Journals (Sweden)

    Ángel Julio Romero Cabrera

    2015-02-01

    Full Text Available Zinc plays an essential role in many biochemical pathways and participates in several cell functions, including the immune response. This review describes the role of zinc in human health, aging, and immunosenescence. Zinc deficiency is frequent in the elderly and leads to changes similar to those that occur in oxidative inflammatory aging (oxi-inflamm-aging and immunosenescence. The possible benefits of zinc supplementation to enhance immune function are discussed.

  5. Zinc: an essential but elusive nutrient123

    OpenAIRE

    Janet C. King

    2011-01-01

    Zinc is essential for multiple aspects of metabolism. Physiologic signs of zinc depletion are linked with diverse biochemical functions rather than with a specific function, which makes it difficult to identify biomarkers of zinc nutrition. Nutrients, such as zinc, that are required for general metabolism are called type 2 nutrients. Protein and magnesium are examples of other type 2 nutrients. Type 1 nutrients are required for one or more specific functions: examples include iron, vitamin A,...

  6. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    Science.gov (United States)

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health. PMID:27455817

  7. Zinc metalloproteins as medicinal targets.

    Science.gov (United States)

    Anzellotti, A I; Farrell, N P

    2008-08-01

    Zinc bioinorganic chemistry has emphasized the role of the metal ion on the structure and function of the protein. There is, more recently, an increasing appreciation of the role of zinc proteins in a variety of human diseases. This critical review, aimed at both bioinorganic and medicinal chemists, shows how apparently widely-diverging diseases share the common mechanistic approaches of targeting the essential function of the metal ion to inhibit activity. Protein structure and function is briefly summarized in the context of its clinical relevance. The status of current and potential inhibitors is discussed along with the prospects for future developments (162 references).

  8. Zinc supplementation in children with cystic fibrosis

    Science.gov (United States)

    Cystic fibrosis (CF) leads to malabsorption of macro- and micronutrients. Symptomatic zinc deficiency has been reported in CF but little is known about zinc homeostasis in children with CF. Zinc supplementation (Zn suppl) is increasingly common in children with CF but it is not without theoretcial r...

  9. Acquired Zinc Deficiency in an Adult Female

    OpenAIRE

    Mohanan Saritha; Divya Gupta; Laxmisha Chandrashekar; Devinder M Thappa; Nachiappa G Rajesh

    2012-01-01

    Acrodermatitis enteropathica is an autosomal recessive inherited disorder of zinc absorption. Acquired cases are reported occasionally in patients with eating disorders or Crohn′s disease. We report a 24-year-old housewife with acquired isolated severe zinc deficiency with no other comorbidities to highlight the rare occurrence of isolated nutritional zinc deficiency in an otherwise normal patient.

  10. 21 CFR 182.8991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc oxide. 182.8991 Section 182.8991 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is generally recognized as safe when used...

  11. 21 CFR 73.2991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in identity and specifications to the requirements of §...

  12. 21 CFR 582.5991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is...

  13. Prevalence of Zinc Deficiency by “ Zinc Taste Test” in Pre School Children in Yazd.

    OpenAIRE

    Gh Maleki; A Mosavi; R Fallah; Z Eslami; M Sadr-Bafghi; F Mirnaseri; S Akhavan Karbasi; M Golestan

    2004-01-01

    Introduction: Zinc deficiency is a health problem in many communities, especially among children because of growth spurt. Zinc deficiency can cause;growth limitation, delay in sexuel maturity, behavior disorders and abnormalities of immune system,susceptibility to respiratory and gasterointestinal infections and impairment of taste and smell perception. Material and Method: One of the methods of assessment the zinc defeciency is “ Zinc taste test” using zinc sulfate solution 0.1% , this test ...

  14. Zinc ions in the endocrine andexocrine pancreas of zinc deficient rats

    OpenAIRE

    Søndergaard, L.G.; M Stoltenberg; Doering, P.; Flyvbjerg, A.; Rungby, J

    2006-01-01

    Objective: Zinc deficiency is a problem world-wide. Zinc and insulin are intimately related, and a reduced zinc intake may affect glucose metabolism. The present study investigates how subclinical zinc deficiency in rats affects glucose metabolism and zinc distribution in the pancreas. Methods: Glucose metabolism was evaluated by blood-glucose, serum insulin, homeostasis model assessment (HOMA), and intraperitoneal glucose tolerance tests. Immersion zincsulphid...

  15. Zinc oxide nanorods

    Science.gov (United States)

    Chik, Hope Wuming

    Non-lithographic, bottom-up techniques have been developed to advance the state of the art and contribute to the development of new material structures, fabrication methods, devices, and applications using the Zinc Oxide material system as a demonstration vehicle. The novel low temperature catalytic vapour-liquid-solid growth process developed is technologically simple, inexpensive, and a robust fabrication technique offering complete control over the physical dimensions of the nanorod such as its diameter and length, and over the positioning of the nanorods for site-selective growth. By controlling the distribution of the Au catalysts with the use of a self-organized anodized aluminum oxide nanopore membrane as a template, we have been able to synthesize highly ordered, hexagonally packed, array of ZnO nanorods spanning a large area. These nanorods are single crystal, hexagonally shaped, indicative of the wurtzite structure, and are vertically aligned to the substrate. By pre-patterning the template, arbitrary nanorod patterns can be formed. We have also demonstrated the assembly of the nanorods into functional devices using controlled methods that are less resource intensive, easily scalable, and adaptable to other material systems, without resorting to the manipulation of each individual nanostructures. Examples of these devices include the random network device that exploits the common attributes of the nanorods, and those formed using an external field to control the nanorod orientation. Two and three terminal device measurements show that the as-grown nanorods are n-type doped, and that by controlling the external optical excitation and its test environment, the photoconductivity can be altered dramatically. Self assemble techniques such as the spontaneous formation of nanodendrites into complex networks of interconnects were studied. Controlled formation of interconnects achieved by controlling the placement of the catalyst is demonstrated by growing the

  16. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Perez Espitia, Paula Judith; Ferreira Soares, Nilda de Fatima, E-mail: nfsoares1@gmail.com [Department of Food Technology, Federal University of Vicosa (Brazil); Teofilo, Reinaldo F. [Federal University of Vicosa, Department of Chemistry (Brazil); Vitor, Debora M.; Reis Coimbra, Jane Selia dos; Andrade, Nelio Jose de [Department of Food Technology, Federal University of Vicosa (Brazil); Sousa, Frederico B. de; Sinisterra, Ruben D. [Federal University of Minas Gerais, Department of Chemistry (Brazil); Medeiros, Eber Antonio Alves [Department of Food Technology, Federal University of Vicosa (Brazil)

    2013-01-15

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na{sub 4}P{sub 2}O{sub 7}), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  17. Investigation of the potential antimicrobial efficacy of sealants used in HVAC systems.

    Science.gov (United States)

    Foarde, K K; VanOsdell, D W; Menetrez, M Y

    2001-08-01

    Recent experiments confirm field experience that duct cleaning alone may not provide adequate protection from regrowth of fungal contamination on fiberglass duct liner (FGDL). Current recommendations for remediation of fungally contaminated fiberglass duct materials specify complete removal of the materials. But removal of contaminated materials can be extremely expensive. Therefore, a common practice in the duct-cleaning industry is the postcleaning use of antimicrobial surface coatings with the implication that they may contain or limit regrowth. Little information is available on the efficacy of these treatments. This paper describes a study to evaluate whether three commercially available antimicrobial coatings, placed on a cleaned surface that 1 year previously had been actively growing microorganisms, would be able to prevent regrowth. The three coatings contained different active antimicrobial compounds. All three of the coatings were designed for use on heating, ventilation, and air conditioning (HVAC) system components or interior surfaces of lined and unlined duct systems. Coating I was a polyacrylate copolymer containing zinc oxide and borates. Coating II was an acrylic coating containing decabromodiphenyl oxide and antimony trioxide. Coating III was an acrylic primer containing a phosphated quaternary amine complex. The study included field and laboratory assessments. The three treatments were evaluated in an uncontrolled field setting in an actual duct system. The laboratory study broadened the field study to include a range of humidities under controlled conditions. Both static and dynamic chamber laboratory experiments were performed. The results showed that two of the three antimicrobial coatings limited the regrowth of fungal contamination, at least in the short term (the 3-month time span of the study); the third did not. Before use in the field, testing of the efficacy of antimicrobial coatings under realistic use conditions is recommended

  18. Antimicrobial Polymers with Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Humberto Palza

    2015-01-01

    Full Text Available Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms.

  19. Antimicrobial activity of Securidaca longipedunculata.

    Science.gov (United States)

    Ajali, U; Chukwurah, B K C

    2004-11-01

    The folk herbal uses of Securidaca longipedunculata in the treatment of diarrhea, boils, gonorrhea, and cough prompted phytochemical analyses and antimicrobial activity screening of extracts of the root. Some flavonoids isolated showed activity against many micro-organisms. These flavonoids were isolated using chromatographic methods. PMID:15636189

  20. Helical Antimicrobial Sulfono- {gamma} -AApeptides

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaqiong; Wu, Haifan; Teng, Peng; Bai, Ge; Lin, Xiaoyang; Zuo, Xiaobing; Cao, Chuanhai; Cai, Jianfeng

    2015-06-11

    Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, are more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.

  1. Antimicrobial Activity of Resveratrol Analogues

    Directory of Open Access Journals (Sweden)

    Malik Chalal

    2014-06-01

    Full Text Available Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew. Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold. The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups and antimicrobial activity.

  2. Electrospun antimicrobial hybrid mats: Innovative packaging material for meat and meat-products.

    Science.gov (United States)

    Amna, Touseef; Yang, Jieun; Ryu, Kyeong-Seon; Hwang, I H

    2015-07-01

    To prevent the development and spread of spoilage/pathogenic microorganisms via meat foodstuffs, antimicrobial nanocomposite packaging can serve as a potential alternative. The objective of this study was to develop a new class of antimicrobial hybrid packaging mat composed of biodegradable polyurethane supplemented with virgin olive oil and zinc oxide via electrospinning. Instead of mixing antimicrobial compounds directly with food, incorporation in packaging materials allows the functional effect at food surfaces where microbial activity is localized. The nanofibers were characterized by SEM, EDX, XRD and TEM. The antibacterial activity was tested against two common foodborne pathogens viz., Staphylococcus aureus and Salmonella typhimurium. The present results indicated that incorporation of olive oil in the polymer affected morphology of PU nanofibers and nanocomposite packaging were able to inhibit growth of pathogens. Thus; as-spun mat can be used as prospective antimicrobial packaging, which potentially reduces contamination of meat/meat-products. Moreover, introduced biodegradable packaging for meat products could serve to replace PVC films and simultaneously help to protect natural environment.

  3. Electrospun antimicrobial hybrid mats: Innovative packaging material for meat and meat-products.

    Science.gov (United States)

    Amna, Touseef; Yang, Jieun; Ryu, Kyeong-Seon; Hwang, I H

    2015-07-01

    To prevent the development and spread of spoilage/pathogenic microorganisms via meat foodstuffs, antimicrobial nanocomposite packaging can serve as a potential alternative. The objective of this study was to develop a new class of antimicrobial hybrid packaging mat composed of biodegradable polyurethane supplemented with virgin olive oil and zinc oxide via electrospinning. Instead of mixing antimicrobial compounds directly with food, incorporation in packaging materials allows the functional effect at food surfaces where microbial activity is localized. The nanofibers were characterized by SEM, EDX, XRD and TEM. The antibacterial activity was tested against two common foodborne pathogens viz., Staphylococcus aureus and Salmonella typhimurium. The present results indicated that incorporation of olive oil in the polymer affected morphology of PU nanofibers and nanocomposite packaging were able to inhibit growth of pathogens. Thus; as-spun mat can be used as prospective antimicrobial packaging, which potentially reduces contamination of meat/meat-products. Moreover, introduced biodegradable packaging for meat products could serve to replace PVC films and simultaneously help to protect natural environment. PMID:26139931

  4. Combating Antimicrobial Resistance in Foodborne Microorganisms.

    Science.gov (United States)

    Lai, Edward P C; Iqbal, Zafar; Avis, Tyler J

    2016-02-01

    This review addresses an important public health hazard affecting food safety. Antimicrobial agents are used in foods to reduce or eliminate microorganisms that cause disease. Many traditional organic compounds, novel synthetic organic agents, natural products, peptides, and proteins have been extensively studied for their effectiveness as antimicrobial agents against foodborne Campylobacter spp., Escherichia coli, Listeria spp. and Salmonella. However, antimicrobial resistance can develop in microorganisms, enhancing their ability to withstand the inhibiting or killing action of antimicrobial agents. Knowledge gaps still exist with regard to the actual chemical and microbiological mechanisms that must be identified to facilitate the search for new antimicrobial agents. Technical implementation of antimicrobial active packing films and coatings against target microorganisms must also be improved for extended product shelf life. Recent advances in antimicrobial susceptibility testing can provide researchers with new momentum to pursue their quest for a resistance panacea.

  5. Zinc dyshomeostasis during polymicrobial sepsis in mice involves zinc transporter Zip14 and can be overcome by zinc supplementation.

    Science.gov (United States)

    Wessels, Inga; Cousins, Robert J

    2015-11-01

    Integrity of the immune system is particularly dependent on the availability of zinc. Recent data suggest that zinc is involved in the development of sepsis, a life-threatening systemic inflammation with high death rates, but with limited therapeutic options. Altered cell zinc transport mechanisms could contribute to the inflammatory effects of sepsis. Zip14, a zinc importer induced by proinflammatory stimuli, could influence zinc metabolism during sepsis and serve as a target for therapy. Using cecal ligation-and-puncture (CLP) to model polymicrobial sepsis, we narrowed the function of ZIP14 to regulation of zinc homeostasis in hepatocytes, while hepatic leukocytes were mostly responsible for driving inflammation, as shown by higher expression of IL-1β, TNFα, S100A8, and matrix metalloproteinase-8. Using Zip14 knockout (KO) mice as a novel approach, we found that ablation of Zip14 produced a delay in development of leukocytosis, prevented zinc accumulation in the liver, altered the kinetics of hypozincemia, and drastically increased serum IL-6, TNFα, and IL-10 concentrations following CLP. Hence, this model revealed that the zinc transporter ZIP14 is a component of the pathway for zinc redistribution that contributes to zinc dyshomeostasis during polymicrobial sepsis. In contrast, using the identical CLP model, we found that supplemental dietary zinc reduced the severity of sepsis, as shown by amelioration of cytokines, calprotectins, and blood bacterial loads. We conclude that the zinc transporter ZIP14 influences aspects of the pathophysiology of nonlethal polymicrobial murine sepsis induced by CLP through zinc delivery. The results are promising for the use of zinc and its transporters as targets for future sepsis therapy.

  6. Serum thymulin in human zinc deficiency.

    OpenAIRE

    Prasad, A S; Meftah, S; J. Abdallah; Kaplan, J.; Brewer, G J; Bach, J F; Dardenne, M

    1988-01-01

    The activity of thymulin (a thymic hormone) is dependent on the presence of zinc in the molecule. We assayed serum thymulin activity in three models of mildly zinc-deficient (ZD) human subjects before and after zinc supplementation: (a) two human volunteers in whom a specific and mild zinc deficiency was induced by dietary means; (b) six mildly ZD adult sickle cell anemia (SCA) subjects; and (c) six mildly ZD adult non-SCA subjects. Their plasma zinc levels were normal and they showed no over...

  7. The structure of bright zinc coatings

    Directory of Open Access Journals (Sweden)

    MIODRAG STOJANOVIC

    2000-11-01

    Full Text Available The structures of bright zinc coatings obtained from acid sulfate solutions in the presence of dextrin/salicyl aldehyde mixture were examined. It was shown by the STM technique that the surfaces of bright zinc coatings are covered by hexagonal zinc crystals, the tops of planes of which are flat and mutually parallel and which exhibit smoothness on the atomic level. X-Ray diffraction (XRD analysis of the bright zinc coatings showed that the zinc crystallites are oriented in the (110 plane only.

  8. Molybdate based passivation of zinc

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Bech-Nielsen, Gregers; Møller, Per

    1997-01-01

    In order to reduce corrosion rates, zinc plated parts are usually chromated. Recently chromates have caused increasingly environmental concern, for both allergic effects among workers touching chro-mated parts and toxic effects on fish, plants and bacteria. A molybdate based alternative has been...

  9. Zinc-The key to preventing corrosion

    Science.gov (United States)

    Kropschot, S.J.; Doebrich, Jeff L.

    2011-01-01

    Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.

  10. Separation of Zinc from High Iron-Bearing Zinc Calcines by Reductive Roasting and Leaching

    Science.gov (United States)

    Peng, Bing; Peng, Ning; Min, Xiao-Bo; Liu, Hui; Li, Yanchun; Chen, Dong; Xue, Ke

    2015-09-01

    This paper focuses on the selective leaching of zinc from high iron-bearing zinc calcines. The FactSage 6.2 program was used for the thermodynamic analysis of the selective reduction and leaching, and the samples reduced by carbon and carbon monoxide were subjected to acid leaching for the separation of zinc from iron. It is shown that the generation of ferrous oxide should be avoided by modifying V CO ( P CO/( P CO + )) in the roasting process prior to the selective leaching of zinc. Gaseous roasting-leaching has a higher efficiency in the separation of zinc from iron than carbothermic reduction-leaching. The conversion of the zinc ferrite in high iron-bearing zinc calcines to zinc oxide and magnetite has been demonstrated by x-ray diffraction (XRD) and magnetic hysteresis loop characterization. This gaseous roast-leach process is technically feasible to separate zinc from iron without an iron precipitation process.

  11. Recovery of zinc from low-grade zinc oxide ores by solvent extraction

    Institute of Scientific and Technical Information of China (English)

    覃文庆; 蓝卓越; 黎维中

    2003-01-01

    The recovery of zinc from low-grade zinc oxide ores with solvent extraction-electrowinning technique was investigated by using D2EHPA as extractant and 260# kerosene as diluent. The results show that it is possible to selectively leach zinc from the ores by heap leaching. The zinc concentration of leach solution in the first leaching cycle is 32.57 g/L, and in the sixteenth cycle the zinc concentration is 8.27g/L after solvent extraction. The leaching solution is subjected to solvent extraction, scrubbing and selective stripping for enrichment of zinc and removal of impurities. The pregnant zinc sulfate solution produced from the stripping cycle is suitable for zinc electrowinning.Extra-pure zinc metal was obtained in the electrowinning test under conventional conditions.

  12. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

    Science.gov (United States)

    Wilson, Rebecca L.; Grieger, Jessica A.; Bianco-Miotto, Tina; Roberts, Claire T.

    2016-01-01

    Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW); and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status. PMID:27754451

  13. Survival in amoeba--a major selection pressure on the presence of bacterial copper and zinc resistance determinants? Identification of a "copper pathogenicity island".

    Science.gov (United States)

    Hao, Xiuli; Lüthje, Freja L; Qin, Yanan; McDevitt, Sylvia Franke; Lutay, Nataliya; Hobman, Jon L; Asiani, Karishma; Soncini, Fernando C; German, Nadezhda; Zhang, Siyu; Zhu, Yong-Guan; Rensing, Christopher

    2015-07-01

    The presence of metal resistance determinants in bacteria usually is attributed to geological or anthropogenic metal contamination in different environments or associated with the use of antimicrobial metals in human healthcare or in agriculture. While this is certainly true, we hypothesize that protozoan predation and macrophage killing are also responsible for selection of copper/zinc resistance genes in bacteria. In this review, we outline evidence supporting this hypothesis, as well as highlight the correlation between metal resistance and pathogenicity in bacteria. In addition, we introduce and characterize the "copper pathogenicity island" identified in Escherichia coli and Salmonella strains isolated from copper- and zinc-fed Danish pigs.

  14. Zinc and Manduca sexta hemocyte functions

    Directory of Open Access Journals (Sweden)

    Elizabeth Willott

    2002-03-01

    Full Text Available Two metalloproteases have recently been linked to the immune response in Lepidoptera. In addition, zinc is highly important in many mammalian immune-related functions. Because of these, we investigated the effect of zinc and two zinc-protease inhibitors on Manduca sexta hemocyte behavior in vitro. Plasmatocytes were significantly more elongated in Grace's medium supplemented with 100 µm zinc chloride than in the absence of zinc. To test whether zinc-dependent proteases were responsible for the increased length seen in the presence of zinc, we tested two zinc-protease inhibitors, phosphoramidon and bestatin. Each resulted in decreased plasmatocyte length compared to the control, but the distributions of lengths differed with each inhibitor. Each inhibitor also affected plasmatocyte network formation in vitro. This work suggests (1 that at least two different zinc proteases are involved in the cellular defense response of M. sexta, and (2 that zinc should be included in media used for in vitro studies of the immune response.

  15. Cholic acid derivatives: novel antimicrobials.

    Science.gov (United States)

    Savage, P B; Li, C

    2000-02-01

    Mimics of squalamine and polymyxin B (PMB) have been prepared from cholic acid in hope of finding new antimicrobial agents. The squalamine mimics include the polyamine and sulphate functionalities found in the parent antibiotic, however, the positions relative to the steroid nucleus have been exchanged. The PMB mimics include the conservation of functionality among the polymyxin family of antibiotics, the primary amine groups and a hydrophobic chain. Although the squalamine and PMB mimics are morphologically dissimilar, they display similar activities. Both are simple to prepare and demonstrate broad spectrum antimicrobial activity against Gram-negative and Gram-positive organisms. Specific examples may be inactive alone, yet effectively permeabilise the outer membranes of Gram-negative bacteria rendering them sensitive to hydrophobic antibiotics. Problems associated with some of the squalamine and PMB mimics stem from their haemolytic activity and interactions with serum proteins, however, examples exist without these side effects which can sensitise Gram-negative bacteria to hydrophobic antibiotics. PMID:11060676

  16. Antimicrobial peptides in the brain.

    Science.gov (United States)

    Su, Yanhua; Zhang, Kai; Schluesener, Hermann J

    2010-10-01

    Antimicrobial peptides (AMPs) are an evolutionarily conserved component of the innate immune system of many species. The brain is an immunologically privileged organ but can produce a robust immune response against pathogens and cell debris, promoting rapid and efficient clearance. AMPs may be critically involved in the innate immune system of the brain. Though the mechanisms of AMPs' action in the brain still need further elucidation, many studies have shown that AMPs are multifunctional molecules in the brain. In addition to antimicrobial action, they take part in congenital and adaptive immune reactions (immunoregulation), function as signaling molecules in tissue repair, inflammation and other important processes through different mechanisms, and they might, in addition, become diagnostic markers of brain disease.

  17. A European study on the relationship between antimicrobial use and antimicrobial resistance

    NARCIS (Netherlands)

    Bronzwaer, SLAM; Cars, O; Buchholz, U; Molstad, S; Goettsch, W; Veldhuijzen, IK; Kool, JL; Sprenger, MJW; Degener, JE

    2002-01-01

    In Europe, antimicrobial resistance has been monitored since 1998 by the European Antimicrobial Resistance Surveillance System (EARSS). We examined the relationship between penicillin nonsusceptibility of invasive isolates of Streptococcus pneumoniae and antibiotic sales. Information was collected o

  18. The Current Trend of China’s Zinc Consumption

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> According to estimations of zinc consumptionby China’s major zinc consumption industries,the growth rate of China’s actual zinc con-sumption in the period 1998-2002 was 10.2percent.Of China’s total zinc consumption inyear 2002,galvanizing zinc made 36 percent,

  19. Antimicrobial activities of squalamine mimics.

    OpenAIRE

    Kikuchi, K.; Bernard, E M; Sadownik, A; Regen, S L; Armstrong, D

    1997-01-01

    We investigated the antimicrobial properties of compounds with structural features that were designed to mimic those of squalamine, an antibiotic isolated from the stomach of the dogfish shark. The mimics, like squalamine, are sterol-polyamine conjugates. Unlike squalamine, the mimics were simple to prepare, at high yield, from readily available starting materials. Several squalamine mimics showed activity against gram-negative rods, gram-positive cocci including methicillin-resistant Staphyl...

  20. Antimicrobial hydrogels for the treatment of infection.

    Science.gov (United States)

    Veiga, Ana Salomé; Schneider, Joel P

    2013-11-01

    The increasing prevalence of microbial infections, especially those associated with impaired wound healing and biomedical implant failure has spurred the development of new materials having antimicrobial activity. Hydrogels are a class of highly hydrated material finding use in diverse medical applications such as drug delivery, tissue engineering, as wound fillers, and as implant coatings, to name a few. The biocompatible nature of many gels make them a convenient starting platform to develop selectively active antimicrobial materials. Hydrogels with antimicrobial properties can be obtained through the encapsulation or covalent immobilization of known antimicrobial agents, or the material itself can be designed to possess inherent antimicrobial activity. In this review we present an overview of antimicrobial hydrogels that have recently been developed and when possible provide a discussion relevant to their mechanism of action.

  1. Collagen-like antimicrobial peptides.

    Science.gov (United States)

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  2. MiniZinc with Strings

    OpenAIRE

    Amadini, Roberto; Flener, Pierre; Pearson, Justin; Scott, Joseph D.; Stuckey, Peter J.; Tack, Guido

    2016-01-01

    Strings are extensively used in modern programming languages and constraints over strings of unknown length occur in a wide range of real-world applications such as software analysis and verification, testing, model checking, and web security. Nevertheless, practically no CP solver natively supports string constraints. We introduce string variables and a suitable set of string constraints as builtin features of the MiniZinc modelling language. Furthermore, we define an interpreter for convert...

  3. The Zinc Transporter Zip5 (Slc39a5) Regulates Intestinal Zinc Excretion and Protects the Pancreas against Zinc Toxicity

    OpenAIRE

    Jim Geiser; Robert C De Lisle; Andrews, Glen K.

    2013-01-01

    BACKGROUND: ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. METHODS/PRINCIPAL FINDINGS:...

  4. Antimicrobial technology in orthopedic and spinal implants

    Science.gov (United States)

    Eltorai, Adam EM; Haglin, Jack; Perera, Sudheesha; Brea, Bielinsky A; Ruttiman, Roy; Garcia, Dioscaris R; Born, Christopher T; Daniels, Alan H

    2016-01-01

    Infections can hinder orthopedic implant function and retention. Current implant-based antimicrobial strategies largely utilize coating-based approaches in order to reduce biofilm formation and bacterial adhesion. Several emerging antimicrobial technologies that integrate a multidisciplinary combination of drug delivery systems, material science, immunology, and polymer chemistry are in development and early clinical use. This review outlines orthopedic implant antimicrobial technology, its current applications and supporting evidence, and clinically promising future directions. PMID:27335811

  5. Antimicrobial activity of Argemone ochroleuca Sweet (Chicalote)

    OpenAIRE

    Francisco Daniel REYES; Celia Jimena PEÑA; Canales, Margarita; Jiménez, Manuel; Samuel MERÁZ; Tzasna HERNANDEZ

    2011-01-01

    Argemone ochroleuca Sweet (Papaveraceae) is used to treat eye infection, respiratory and dermatological disorders in Tepotzotlán, State of México (México). The aim of this work was to investigate antimicrobial activity of hexane, ethyl acetate and methanol extracts from aerial parts of A. ochroleuca. The antimicrobial activity was evaluated against thirteen bacteria and nine fungal strains. Only methanol extract showed antimicrobial activity. S. aureus (MIC= 125 ¿g/mL) and C. neoformans (MIC=...

  6. Antimicrobial stewardship in small animal veterinary practice

    DEFF Research Database (Denmark)

    Guardabassi, Luca; Prescott, John F

    2015-01-01

    Despite the increasing recognition of the critical role for antimicrobial stewardship in preventing the spread of multidrug-resistant bacteria, examples of effective antimicrobial stewardship programs are rare in small animal veterinary practice. This article highlights the basic requirements...... for establishing stewardship programs at the clinic level. The authors provide suggestions and approaches to overcome constraints and to move from theoretic concepts toward implementation of effective antimicrobial stewardship programs in small animal clinics....

  7. Insect inducible antimicrobial peptides and their applications.

    Science.gov (United States)

    Ezzati-Tabrizi, Reyhaneh; Farrokhi, Naser; Talaei-Hassanloui, Reza; Alavi, Seyed Mehdi; Hosseininaveh, Vahid

    2013-12-01

    Antimicrobial peptides (AMPs) are found as important components of the innate immune system (host defense) of all invertebrates. These peptides can be constitutively expressed or induced in response to microbial infections. Indeed, they vary in their amino acid sequences, potency and antimicrobial activity spectra. The smaller AMPs act greatly by disrupting the structure or function of microbial cell membranes. Here, the insect innate immune system with emphasis on inducible antimicrobial peptide properties against microbial invaders has been discussed.

  8. BWR radiation buildup control with ionic zinc

    International Nuclear Information System (INIS)

    In 1983 a hypothesis was disclosed which suggested that the presence of ionic zinc in the reactor water of the BWR could reduce radiation buildup. This hypothesis was developed from correlations of plant data, and subsequently, from laboratory experiments which demonstrated clearly that ionic zinc inhibits the corrosion of stainless steel. The benefits of zinc addition have been measured at the Vallecitos Nuclear Center under and EPRI/GE project. Experimentation and analyses have been performed to evaluate the impact of intentional zinc addition on the IGSCC characteristics of primary system materials and on the performance of the nuclear fuel. It has been concluded that no negative effects are expected. The author conclude that the intentional addition of ionic zinc to the BWR reactor water at a concentration of approximately 10 ppb will provide major benefits in controlling the Co-60 buildup on primary system stainless steel surfaces. The intentional addition of zinc is now a qualified technique for use in BWRs

  9. Antimicrobial Resistance: Is the World UNprepared?

    Science.gov (United States)

    2016-09-01

    Long Blurb: On September 21st 2016 the United Nations General Assembly convenes in New York, United States to tackle a looming and seemingly inevitable global challenge with the potential to threaten the health and wellbeing of all people: antimicrobial resistance. In an Editorial, the PLOS Medicine Editors reflect on the challenge of coordinating the response to antimicrobial resistance in order to ensure the viability of current antimicrobials and the development of new therapies against resistant pathogens. Short Blurb: In this month's Editorial, the PLOS Medicine Editors reflect on the upcoming United Nations General Assembly meeting which convenes to discuss the global challenge of antimicrobial resistance. PMID:27618631

  10. Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth.

    Science.gov (United States)

    McGuffie, Matthew J; Hong, Jin; Bahng, Joong Hwan; Glynos, Emmanouil; Green, Peter F; Kotov, Nicholas A; Younger, John G; VanEpps, J Scott

    2016-01-01

    Despite a decade of engineering and process improvements, bacterial infection remains the primary threat to implanted medical devices. Zinc oxide nanoparticles (ZnO-NPs) have demonstrated antimicrobial properties. Their microbial selectivity, stability, ease of production, and low cost make them attractive alternatives to silver NPs or antimicrobial peptides. Here we sought to (1) determine the relative efficacy of ZnO-NPs on planktonic growth of medically relevant pathogens; (2) establish the role of bacterial surface chemistry on ZnO-NP effectiveness; (3) evaluate NP shape as a factor in the dose-response; and (4) evaluate layer-by-layer (LBL) ZnO-NP surface coatings on biofilm growth. ZnO-NPs inhibited bacterial growth in a shape-dependent manner not previously seen or predicted. Pyramid shaped particles were the most effective and contrary to previous work, larger particles were more effective than smaller particles. Differential susceptibility of pathogens may be related to their surface hydrophobicity. LBL ZnO-NO coatings reduced staphylococcal biofilm burden by >95%. From the Clinical Editor: The use of medical implants is widespread. However, bacterial colonization remains a major concern. In this article, the authors investigated the use of zinc oxide nanoparticles (ZnO-NPs) to prevent bacterial infection. They showed in their experiments that ZnO-NPs significantly inhibited bacterial growth. This work may present a new alternative in using ZnO-NPs in medical devices. PMID:26515755

  11. Synthesis and spectral characterization of Zn(II) microsphere series for antimicrobial application

    Science.gov (United States)

    Singh, Ajay K.; Pandey, Sarvesh K.; Pandey, O. P.; Sengupta, S. K.

    2014-09-01

    Microsphere series have been synthesized by reacting zinc(II) acetate dihydrate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole/oxadiazole/triazole with salicylaldehyde. Elemental analysis suggests that the complexes have 1:2 and 1:1 stoichiometry of the type [Zn(L)2(H2O)2] and [Zn(L‧)(H2O)2]; LH = Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thia/oxadiazole with salicylaldehyde; L‧H2 = Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1,2,4-triazole and salicylaldehyde and were characterized by elemental analyses, IR, 1H NMR and 13C NMR spectral data. Scanning electron microscopy (SEM) showed that synthesized materials have microsphere like structure and there EDX analysis comparably matches with elemental analysis. For the antimicrobial application Schiff bases and their zinc(II) complexes were screened for four bacteria e.g. Bacillus subtilis, Pseudomonas aeruginosa, Salmonella typhi, Streptococcus pyogenes and four fungi e.g. Cyrtomium falcatum, Aspergillus niger, Fusarium oxysporium and Curvularia pallescence by the reported method. Schiff base and Zn(II) compounds showed significant antimicrobial activities. However, activities increase upon chelation. Thermal analysis (TGA) data of compound (10) showed its stability up to 300 °C.

  12. Consequence of irrigation with arsenic and zinc contaminated water on accumulation of zinc in radishes plant

    Directory of Open Access Journals (Sweden)

    Hossein Banejad

    2014-10-01

    Conclusion: It was found that zinc concentration in radish roots, tubers, and leafs is correlated with the concentration of zinc in water. Moreover, there was a competition between the absorption of zinc and arsenic in plants. With increasing arsenic in irrigation water, transition of Zn was reduced to aerial part.

  13. Zinc oxide varistor; Sanka aen barisuta

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, H.

    2000-01-01

    Characteristics of zinc oxide varistors, applications to electronic equipment protection and to power arrester are explained. Zinc oxide varistors were invented in Japan, which function by ceramics boundary phenomena and are applied to various fields from power plants to houses. Zinc oxide varistors protect electronic equipment from malfunctions and destructions by surge voltage, accordingly have spread rapidly. Protection performance of the power arresters has been improved by development of zinc oxide varistors for electric power, and power arresters came to be used to protect electric lines all over the world. (NEDO)

  14. Evolution of zinc morphology during continuous electrodeposition

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The morphology evolution of zinc continuous electrodeposits with nano-sized crystals on the ferrite substrate has been studied by in-situ scanning tunnel spectroscopy (STM). It is found that the morphology of zinc electrodeposits varies from initial granules with a size of about 30 nm to layered platelets with increasing deposition time. Meanwhile, the crystal structure of the zinc electrodeposits is identified to be hexagonal η-phase by X-ray diffraction. The orientation relationship between zinc crystals and the substrate surface can be interpreted in terms of the misfit and the atomic correspondence of the interphase boundary between the η-phase deposits and α-Fe substrate.

  15. Zinc absorption in inflammatory bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Kertesz, A.; Bondy, D.C.

    1986-07-01

    Zinc absorption was measured in 29 patients with inflammatory bowel disease and a wide spectrum of disease activity to determine its relationship to disease activity, general nutritional state, and zinc status. Patients with severe disease requiring either supplementary oral or parenteral nutrition were excluded. The mean 65ZnCl2 absorption, in the patients, determined using a 65Zn and 51Cr stool-counting test, 45 +/- 17% (SD), was significantly lower than the values, 54 +/- 16%, in 30 healthy controls, P less than 0.05. Low 65ZnCl2 absorption was related to undernutrition, but not to disease activity in the absence of undernutrition or to zinc status estimated by leukocyte zinc measurements. Mean plasma zinc or leukocyte zinc concentrations in patients did not differ significantly from controls, and only two patients with moderate disease had leukocyte zinc values below the 5th percentile of normal. In another group of nine patients with inflammatory bowel disease of mild-to-moderate severity and minimal nutritional impairment, 65Zn absorption from an extrinsically labeled turkey test meal was 31 +/- 10% compared to 33 +/- 7% in 17 healthy controls, P greater than 0.1. Thus, impairment in 65ZnCl2 absorption in the patients selected for this study was only evident in undernourished persons with moderate or severe disease activity, but biochemical evidence of zinc deficiency was uncommon, and clinical features of zinc depletion were not encountered.

  16. [Zinc in patients with anorexia nervosa].

    Science.gov (United States)

    Røijen, S B; Worsaae, U; Zlotnik, G

    1991-03-01

    In a multicenter study, the relation between zinc status and anorexia nervosa was studied in 18 patients (15 females and 3 males in the age range of 11 to 25 years). Analysis of plasma zinc (by atomic absorption), plasma albumin (by electro-immuno diffusion method) and sense of taste (comparing quinine, zinc sulfate and water solutions), showed no significant abnormalities. Thus, the investigation does not support the hypothesis, that zinc status plays a significant role in the symptomatology of anorexia nervosa. PMID:2008719

  17. Zinc transporter expression in zebrafish (Danio rerio) during development☆

    OpenAIRE

    Ho, Emily; Dukovcic, Stephanie; Hobson, Brad; Wong, Carmen P.; Miller, Galen; Hardin, Karin; TRABER, MARET G.; Tanguay, Robert L.

    2011-01-01

    Zinc is a micronutrient important in several biological processes including growth and development. We have limited knowledge on the impact of maternal zinc deficiency on zinc and zinc regulatory mechanisms in the developing embryo due to a lack of in vivo experimental models that allow us to directly study the effects of maternal zinc on embryonic development following implantation. To overcome this barrier, we have proposed to use zebrafish as a model organism to study the impact of zinc du...

  18. Histidine Protects Against Zinc and Nickel Toxicity in Caenorhabditis elegans

    OpenAIRE

    Murphy, John T; Bruinsma, Janelle J.; Schneider, Daniel L.; Sara Collier; James Guthrie; Asif Chinwalla; J David Robertson; Elaine R Mardis; Kerry Kornfeld

    2011-01-01

    Author Summary Zinc is an essential nutrient that is critical for human health. However, excess zinc can cause toxicity, indicating that regulatory mechanisms are necessary to maintain homeostasis. The analysis of mechanisms that promote zinc homeostasis can elucidate fundamental regulatory processes and suggest new approaches for treating disorders of zinc metabolism. To discover genes that modulate zinc tolerance, we screened for C. elegans mutants that were resistant to zinc toxicity. Here...

  19. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: Importance of zinc ions

    NARCIS (Netherlands)

    Brun, N.R.; Lenz, M.; Wehrli, B.; Fent, K.

    2014-01-01

    The increasing use of zinc oxide nanoparticles (nZnO) and their associated environmental occurrence make it necessary to assess their potential effects on aquatic organisms. Upon water contact, nZnO dissolve partially to zinc (Zn(II)). To date it is not yet completely understood, whether effects of

  20. Effects of leachate from crumb rubber and zinc in green roofs on the survival, growth, and resistance characteristics of Salmonella enterica subsp. enterica serovar Typhimurium.

    Science.gov (United States)

    Crampton, Mollee; Ryan, Allayna; Eckert, Cori; Baker, Katherine H; Herson, Diane S

    2014-05-01

    The use of green roofs is a growing practice worldwide, particularly in densely populated areas. In an attempt to find new methods for recycling crumb rubber, incorporation of crumb rubber into artificial medium for plant growth in green roofs and similar engineered environments has become an attractive option for the recycling of waste tires. Though this approach decreases waste in landfills, there are concerns about the leaching of zinc and other heavy metals, as well as nutrient and organic compounds, into the environment. The present study analyzed the impact of leachate from crumb rubber and zinc on the growth and viability of Salmonella enterica subsp. enterica serovar Typhimurium. Zinc was chosen for further studies since it has been previously implicated with other biological functions, including biofilm formation, motility, and possible cross-resistance to antimicrobial agents. The study showed that Salmonella can colonize crumb rubber and that crumb rubber extract may provide nutrients that are usable by this bacterium. Salmonella strains with reduced susceptibility (SRS) to zinc were obtained after subculturing in increasing concentrations of zinc. The SRS exhibited differences in gene expression of flux pump genes zntA and znuA compared to that of the parent when exposed to 20 mM added zinc. In biofilm formation studies, the SRS formed less biofilm but was more motile than the parental strain.

  1. Effects of leachate from crumb rubber and zinc in green roofs on the survival, growth, and resistance characteristics of Salmonella enterica subsp. enterica serovar Typhimurium.

    Science.gov (United States)

    Crampton, Mollee; Ryan, Allayna; Eckert, Cori; Baker, Katherine H; Herson, Diane S

    2014-05-01

    The use of green roofs is a growing practice worldwide, particularly in densely populated areas. In an attempt to find new methods for recycling crumb rubber, incorporation of crumb rubber into artificial medium for plant growth in green roofs and similar engineered environments has become an attractive option for the recycling of waste tires. Though this approach decreases waste in landfills, there are concerns about the leaching of zinc and other heavy metals, as well as nutrient and organic compounds, into the environment. The present study analyzed the impact of leachate from crumb rubber and zinc on the growth and viability of Salmonella enterica subsp. enterica serovar Typhimurium. Zinc was chosen for further studies since it has been previously implicated with other biological functions, including biofilm formation, motility, and possible cross-resistance to antimicrobial agents. The study showed that Salmonella can colonize crumb rubber and that crumb rubber extract may provide nutrients that are usable by this bacterium. Salmonella strains with reduced susceptibility (SRS) to zinc were obtained after subculturing in increasing concentrations of zinc. The SRS exhibited differences in gene expression of flux pump genes zntA and znuA compared to that of the parent when exposed to 20 mM added zinc. In biofilm formation studies, the SRS formed less biofilm but was more motile than the parental strain. PMID:24584242

  2. Antimicrobial resistance in Dschang, Cameroon

    Directory of Open Access Journals (Sweden)

    Fusi-Ngwa Catherine Kesah

    2013-01-01

    Full Text Available Background: Health-care-associated and community infections remain problematic in most of Africa where the increasing incidences of diseases, wars, poverty, malnutrition, and general environmental deterioration have led to the gradual collapse of the health-care system. Detection of antimicrobial resistance (AMR remains imperative for the surveillance purposes and optimal management of infectious diseases. This study reports the status of AMR in pathogens in Dschang. Materials and Methods: From May 2009 to March 2010, the clinical specimens collected at two hospitals were processed accorded to the standard procedures. Antibiotic testing was performed by E test, and antimycotics by disc-agar diffusion, as recommended by the Clinical and Laboratory Standards Institute on pathogens comprising Staphylococcus aureus (100 strains, Enterococcus faecalis (35, Klebsiella pneumoniae (75, Escherichia coli (50, Proteus mirabilis (30, Pseudomonas aruginosa (50, Acinetobacter species (20, and Candida albicans (150 against common antimicrobials. Results: There was no vancomycin resistance in the cocci, the minimum inhibitory concentration for 90% of these strains MIC 90 was 3 μg/ml, methicillin-resistant S. aureus (MRSA was 43%, benzyl penicillin 89% resistance in S. aureus as opposed to 5.7% in E. faecalis. Low resistance (<10% was recorded to cefoxitin, cefotaxime, and nalidixic acid (MIC 90 3-8 μg/ml against the coliforms, and to ticarcillin, aztreonam, imipenem, gentamicin, and ciprofloxacin among the non-enterobacteria; tetracycline, amoxicillin, piperacillin, and chloramphenicol were generally ineffective. Resistance rates to fluconazole, clotrimazole, econazole, and miconazole were <55% against C. albicans. The pathogens tested exhibited multidrug-resistance. Conclusion: The present findings were intended to support antimicrobial stewardship endeavors and empiric therapy. The past, present, and the future investigations in drug efficacy will continue

  3. Antimicrobial edible films and coatings.

    Science.gov (United States)

    Cagri, Arzu; Ustunol, Zeynep; Ryser, Elliot T

    2004-04-01

    Increasing consumer demand for microbiologically safer foods, greater convenience, smaller packages, and longer product shelf life is forcing the industry to develop new food-processing, cooking, handling, and packaging strategies. Nonfluid ready-to-eat foods are frequently exposed to postprocess surface contamination, leading to a reduction in shelf life. The food industry has at its disposal a wide range of nonedible polypropylene- and polyethylene-based packaging materials and various biodegradable protein- and polysaccharide-based edible films that can potentially serve as packaging materials. Research on the use of edible films as packaging materials continues because of the potential for these films to enhance food quality, food safety, and product shelf life. Besides acting as a barrier against mass diffusion (moisture, gases, and volatiles), edible films can serve as carriers for a wide range of food additives, including flavoring agents, antioxidants, vitamins, and colorants. When antimicrobial agents such as benzoic acid, sorbic acid, propionic acid, lactic acid, nisin, and lysozyme have been incorporated into edible films, such films retarded surface growth of bacteria, yeasts, and molds on a wide range of products, including meats and cheeses. Various antimicrobial edible films have been developed to minimize growth of spoilage and pathogenic microorganisms, including Listeria monocytogenes, which may contaminate the surface of cooked ready-to-eat foods after processing. Here, we review the various types of protein-based (wheat gluten, collagen, corn zein, soy, casein, and whey protein), polysaccharide-based (cellulose, chitosan, alginate, starch, pectin, and dextrin), and lipid-based (waxes, acylglycerols, and fatty acids) edible films and a wide range of antimicrobial agents that have been or could potentially be incorporated into such films during manufacture to enhance the safety and shelf life of ready-to-eat foods. PMID:15083740

  4. Antimicrobial and biofilm inhibiting diketopiperazines.

    Science.gov (United States)

    de Carvalho, M P; Abraham, W-R

    2012-01-01

    Diketopiperazines are the smallest cyclic peptides known. 90% of Gram-negative bacteria produce diketopiperazines and they have also been isolated from Gram-positive bacteria, fungi and higher organisms. Biosynthesis of cyclodipeptides can be achieved by dedicated nonribosomal peptide synthetases or by a novel type of synthetases named cyclopeptide synthases. Since the first report in 1924 a large number of bioactive diketopiperazines was discovered spanning activities as antitumor, antiviral, antifungal, antibacterial, antiprion, antihyperglycemic or glycosidase inhibitor agents. As infections are of increasing concern for human health and resistances against existing antibiotics are growing this review focuses on the antimicrobial activities of diketopiperazines. The antibiotic bicyclomycin is a diketopiperazine and structure activity studies revealed the unique nature of this compound which was finally developed for clinical applications. The antimicrobial activities of a number of other diketopiperazines along with structure activity relationships are discussed. Here a special focus is on the activity-toxicity problem of many compounds setting tight limitations to their application as drugs. Not only these classical antimicrobial activities but also proposed action in modulating bacterial communication as a new target to control biofilms will be evaluated. Pathogens organized in biofilms are difficult to eradicate because of the increase of their tolerance for antibiotics for several orders. Diketopiperazines were reported to modulate LuxR-mediated quorum-sensing systems of bacteria, and they are considered to influence cell-cell signaling offering alternative ways of biofilm control by interfering with microbial communication. Concluding the review we will finally discuss the potential of diketopiperazines in the clinic to erase biofilm infections.

  5. Antimicrobial edible films and coatings.

    Science.gov (United States)

    Cagri, Arzu; Ustunol, Zeynep; Ryser, Elliot T

    2004-04-01

    Increasing consumer demand for microbiologically safer foods, greater convenience, smaller packages, and longer product shelf life is forcing the industry to develop new food-processing, cooking, handling, and packaging strategies. Nonfluid ready-to-eat foods are frequently exposed to postprocess surface contamination, leading to a reduction in shelf life. The food industry has at its disposal a wide range of nonedible polypropylene- and polyethylene-based packaging materials and various biodegradable protein- and polysaccharide-based edible films that can potentially serve as packaging materials. Research on the use of edible films as packaging materials continues because of the potential for these films to enhance food quality, food safety, and product shelf life. Besides acting as a barrier against mass diffusion (moisture, gases, and volatiles), edible films can serve as carriers for a wide range of food additives, including flavoring agents, antioxidants, vitamins, and colorants. When antimicrobial agents such as benzoic acid, sorbic acid, propionic acid, lactic acid, nisin, and lysozyme have been incorporated into edible films, such films retarded surface growth of bacteria, yeasts, and molds on a wide range of products, including meats and cheeses. Various antimicrobial edible films have been developed to minimize growth of spoilage and pathogenic microorganisms, including Listeria monocytogenes, which may contaminate the surface of cooked ready-to-eat foods after processing. Here, we review the various types of protein-based (wheat gluten, collagen, corn zein, soy, casein, and whey protein), polysaccharide-based (cellulose, chitosan, alginate, starch, pectin, and dextrin), and lipid-based (waxes, acylglycerols, and fatty acids) edible films and a wide range of antimicrobial agents that have been or could potentially be incorporated into such films during manufacture to enhance the safety and shelf life of ready-to-eat foods.

  6. Synthesis and antimicrobial activity of squalamine analogue.

    Science.gov (United States)

    Kim, H S; Choi, B S; Kwon, K C; Lee, S O; Kwak, H J; Lee, C H

    2000-08-01

    Synthesis and antimicrobial activity of squalamine analogue 2 are reported. The synthesis of 2 was accomplished from bisnoralcohol 3. The spermidine moiety was introduced via reductive amination of an appropriately functionalized 3beta-aminosterol with spermidinyl aldehyde 17 utilizing sodium triacetoxyborohydride as the reducing agent. Compound 2 shows weaker antimicrobial activity than squalamine. PMID:11003150

  7. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  8. Sixty years of antimicrobial use in animals

    DEFF Research Database (Denmark)

    Guardabassi, Luca

    2013-01-01

    This, the last in our series of feature articles celebrating 125 years of Veterinary Record, aims to provide an overview of antimicrobial use in animals. Starting with a journey through the history of antimicrobial use in animals, Luca Guardabassi gives his opinion on the current zoonotic risks...

  9. [Antimicrobial sensitive of Morganella morganii].

    Science.gov (United States)

    Zalas-Wiecek, Patrycja; Michalska, Anna; Sielska, Barbara; Gospodarek, Eugenia

    2011-01-01

    The aim of this study was the evaluation of the antimicrobial sensitive of Morganella morganii rods isolated from clinical samples. This study included 50 of M. morganii strains isolated in the Clinical Microbiology Department of dr. A. Jurasz University Hospital in 2008-2009. All of strains were sensitive to carbapenems (imipenem, meropenem, ertapenem, doripenem) and piperacillin/tazobactam and most of them to beta-lactam antibiotics, aminoglycosides and fluorochinolons. Resistance to tetracyclines demonstrated 38,0% strains and to doxycycline - 40,0%. One out of 6 strains isolated from urine samples were sensitive to nitrofurantoin. Extended Spectrum Beta-Lactamases were produced by 5 (10,0%) strains.

  10. Antimicrobial Resistance in the Environment.

    Science.gov (United States)

    Williams, Maggie R; Stedtfeld, Robert D; Guo, Xueping; Hashsham, Syed A

    2016-10-01

    This review summarizes important publications from 2015 pertaining to the occurrence of antimicrobial resistance (AMR) in the environment. Emphasis is placed on sources of antibiotic resistance in the aquatic environment including wastewater treatment plants, hospitals, and agriculture, treatment and mitigation techniques, and surveillance and analysis methodologies for characterizing abundance data. As such, this review is organized into the following sections: i) occurrence of AMR in the environment, including surface waters, aquaculture, and wastewater ii) treatment technologies, and iii) technologies for rapid surveillance of AMR, iv) transmission between matrices, v) databases and analysis methods, and vi) gaps in AMR understanding. PMID:27620115

  11. Solubilization and Transformation of Insoluble Zinc Compounds by Fungi Isolated from a Zinc Mine

    Directory of Open Access Journals (Sweden)

    Thanawat Sutjaritvorakul

    2013-07-01

    Full Text Available Fungi were isolated from zinc-containing rocks and mining soil. They were screened for the ability to solubilize and transform three insoluble zinc compounds: ZnO, Zn3(PO4, and ZnCO3. Fungi were plated on potato dextrose agar (PDA medium which was supplemented with 0.5% (w/v of insoluble zinc compounds. Of the strains tested, four fungal isolates showed the highest efficiency for solubilizing all the insoluble zinc compounds, producing clearing zone diameters > 40 mm. These were identified as a Phomopsis spp., Aspergillus sp.1, Aspergillus sp.2, and Aspergillus niger. Zinc oxide was the most easily solubilized compound and it was found that 87%, 52%, and 61% of the tested fungi (23 isolates were able to solubilize zinc oxide, zinc phosphate, and zinc carbonate, respectively. Precipitation of zinc-containing crystals was observed in zinc oxide-containing agar medium underneath colonies of Aspergillus sp.1, and these were identified as zinc oxalate. It is suggested that these kinds of fungi have the potential application in bioremediation practices for heavy metal contaminated soils.

  12. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    Directory of Open Access Journals (Sweden)

    Cuong D. Tran

    2015-05-01

    Full Text Available It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease.

  13. Clinical Aspects of Trace Elements: Zinc in Human Nutrition - Assessment of Zinc Status

    Directory of Open Access Journals (Sweden)

    Michelle M Pluhator

    1996-01-01

    Full Text Available Because the limiting and vulnerable zinc pool has not been identified, it becomes a challenge to determine which of the many zinc pools is most susceptible to deficiency. As a consequence, defining and assessing zinc status in the individual patient is a somewhat uncertain process. Laboratory analysis of zinc status is difficult because no single biochemical criterion can reliably reflect zinc body stores. Many indexes have been examined in the hopes of discovering a method for the assessment of zinc nutriture. None of the methods currently used can be wholeheartedly recommended because they are fraught with problems that affect their use and interpretation. However, these methods remain in use for clinical and research purposes, though their benefits and drawbacks must always be acknowledged. Until an acceptable method of analysis is discovered, clinicians must rely for confirmation of zinc deficiency on a process of supplementing with zinc and observing the patient’s response. The main indexes (plasma/serum, erythrocyte, leukocyte, neutrophil, urine, hair and salivary zinc levels, taste acuity and oral zinc tolerance tests, and measurement of metallothionein levels are reviewed. Measurement of plasma or erythrocyte metallothionein levels shows promise as a future tool for the accurate determination of zinc status.

  14. Methods of Antimicrobial Coating of Diverse Materials

    Science.gov (United States)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of coating diverse substrate materials with antimicrobial agents have been developed. Originally intended to reduce health risks to astronauts posed by pathogenic microorganisms that can grow on surfaces in spacecraft, these methods could also be used on Earth for example, to ensure sterility of surgical inserts and other medical equipment. The methods involve, generally, chemical preparation of substrate surfaces to enable attachment of antimicrobial molecules to the substrate surfaces via covalent bonds. Substrate materials that have been treated successfully include aluminum, glass, a corrosion-resistant nickel alloy, stainless steel, titanium, and poly(tetrafluoroethylene). Antimicrobial agents that have been successfully immobilized include antibiotics, enzymes, bacteriocins, bactericides, and fungicides. A variety of linkage chem istries were employed. Activity of antimicrobial coatings against gram-positive bacteria, gram-negative bacteria, and fungi was demonstrated. Results of investigations indicate that the most suitable combination of antimicrobial agent, substrate, and coating method depends upon the intended application.

  15. Antimicrobial Peptides: Multifunctional Drugs for Different Applications

    Directory of Open Access Journals (Sweden)

    Lea-Jessica Albrecht

    2012-02-01

    Full Text Available Antimicrobial peptides (APs are an important part of the innate immune system in epithelial and non-epithelial surfaces. So far, many different antimicrobial peptides from various families have been discovered in non-vertebrates and vertebrates. They are characterized by antibiotic, antifungal and antiviral activities against a variety of microorganisms. In addition to their role as endogenous antimicrobials, APs participate in multiple aspects of immunity. They are involved in septic and non-septic inflammation, wound repair, angiogenesis, regulation of the adaptive immune system and in maintaining homeostasis. Due to those characteristics AP could play an important role in many practical applications. Limited therapeutic efficiency of current antimicrobial agents and the emerging resistance of pathogens require alternate antimicrobial drugs. The purpose of this review is to highlight recent literature on functions and mechanisms of APs. It also shows their current practical applications as peptide therapeutics and bioactive polymers and discusses the possibilities of future clinical developments.

  16. Antimicrobial peptides important in innate immunity.

    Science.gov (United States)

    Cederlund, Andreas; Gudmundsson, Gudmundur H; Agerberth, Birgitta

    2011-10-01

    Antimicrobial peptides are present in all walks of life, from plants to animals, and they are considered to be endogenous antibiotics. In general, antimicrobial peptides are determinants of the composition of the microbiota and they function to fend off microbes and prevent infections. Antimicrobial peptides eliminate micro-organisms through disruption of their cell membranes. Their importance in human immunity, and in health as well as disease, has only recently been appreciated. The present review provides an introduction to the field of antimicrobial peptides in general and discusses two of the major classes of mammalian antimicrobial peptides: the defensins and the cathelicidins. The review focuses on their structures, their main modes of action and their regulation.

  17. Effect of consuming zinc-fortified bread on serum zinc and iron status of zinc-deficient women: A double blind, randomized clinical trial

    OpenAIRE

    Akbar Badii; Niloufar Nekouei; Mohammad Fazilati; Mohammad Shahedi; Sajad Badiei

    2012-01-01

    After iron deficiency, zinc deficiency is the major micronutrient deficiency in developing countries, and staple food fortification is an effective strategy to prevent and improve it among at-risk-populations. No action has been taken to reduce zinc deficiency via flour fortification so far in Iran, and little is known about the influence of zinc fortification of flour on serum zinc and the iron status, and also about the optimum and effective amount of zinc compound that is used in food fort...

  18. 21 CFR 558.78 - Bacitracin zinc.

    Science.gov (United States)

    2010-04-01

    ... citations affecting § 558.78, see the List of CFR Sections Affected, which appears in the Finding Aids... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Bacitracin zinc. 558.78 Section 558.78 Food and... in Animal Feeds § 558.78 Bacitracin zinc. (a) Specifications. Type A medicated articles...

  19. Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture.

    Science.gov (United States)

    Swain, P; Nayak, S K; Sasmal, A; Behera, T; Barik, S K; Swain, S K; Mishra, S S; Sen, A K; Das, J K; Jayasankar, P

    2014-09-01

    The emergence of diseases and mortalities in aquaculture and development of antibiotics resistance in aquatic microbes, has renewed a great interest towards alternative methods of prevention and control of diseases. Nanoparticles have enormous potential in controlling human and animal pathogens and have scope of application in aquaculture. The present investigation was carried out to find out suitable nanoparticles having antimicrobial effect against aquatic microbes. Different commercial as well as laboratory synthesized metal and metal oxide nanoparticles were screened for their antimicrobial activities against a wide range of bacterial and fungal agents including certain freshwater cyanobacteria. Among different nanoparticles, synthesized copper oxide (CuO), zinc oxide (ZnO), silver (Ag) and silver doped titanium dioxide (Ag-TiO2) showed broad spectrum antibacterial activity. On the contrary, nanoparticles like Zn and ZnO showed antifungal activity against fungi like Penicillium and Mucor species. Since CuO, ZnO and Ag nanoparticles showed higher antimicrobial activity, they may be explored for aquaculture use.

  20. Optimizing antimicrobial therapy in critically ill patients

    Directory of Open Access Journals (Sweden)

    Vitrat V

    2014-10-01

    Full Text Available Virginie Vitrat,1 Serge Hautefeuille,2 Cécile Janssen,1 David Bougon,2 Michel Sirodot,2 Leonardo Pagani1,3 1Antimicrobial Stewardship Program, Infectious Diseases Unit, 2Intensive Care Unit, Annecy-Genevois Hospital Center (CHANGE, Annecy, France; 3Infectious Diseases Unit, Bolzano Central Hospital, Bolzano, Italy Abstract: Critically ill patients with infection in the intensive care unit (ICU would certainly benefit from timely bacterial identification and effective antimicrobial treatment. Diagnostic techniques have clearly improved in the last years and allow earlier identification of bacterial strains in some cases, but these techniques are still quite expensive and not readily available in all institutions. Moreover, the ever increasing rates of resistance to antimicrobials, especially in Gram-negative pathogens, are threatening the outcome for such patients because of the lack of effective medical treatment; ICU physicians are therefore resorting to combination therapies to overcome resistance, with the direct consequence of promoting further resistance. A more appropriate use of available antimicrobials in the ICU should be pursued, and adjustments in doses and dosing through pharmacokinetics and pharmacodynamics have recently shown promising results in improving outcomes and reducing antimicrobial resistance. The aim of multidisciplinary antimicrobial stewardship programs is to improve antimicrobial prescription, and in this review we analyze the available experiences of such programs carried out in ICUs, with emphasis on results, challenges, and pitfalls. Any effective intervention aimed at improving antibiotic usage in ICUs must be brought about at the present time; otherwise, we will face the challenge of intractable infections in critically ill patients in the near future. Keywords: ICU, antimicrobial therapies, antimicrobial stewardship, pharmacokinetics, pharmacodynamics, antimicrobial resistance, early diagnosis

  1. An Injectable Hydrogel as Bone Graft Material with Added Antimicrobial Properties

    Science.gov (United States)

    Tommasi, Giacomo; Perni, Stefano

    2016-01-01

    Currently, the technique which provides the best chances for a successful bone graft, is the use of bone tissue from the same patient receiving it (autograft); the main limitations are the limited availability and the risks involved in removing living bone tissue, for example, explant site pain and morbidity. Allografts and xenografts may overcome these limitations; however, they increase the risk of rejection. For all these reasons the development of an artificial bone graft material is particularly important and hydrogels are a promising alternative for bone regeneration. Gels were prepared using 1,4-butanediol diacrylate as crosslinker and alpha tricalciumphosphate; ZnCl2 and SrCl2 were added to the aqueous phase. MTT results demonstrated that the addition of strontium had a beneficial effect on the osteoblast cells density on hydrogels, and zinc instead did not increase osteoblast proliferation. The amount of calcium produced by the osteoblast cells quantified through the Alizarin Red protocol revealed that both strontium and zinc positively influenced the formation of calcium; furthermore, their effect was synergistic. Rheology properties were used to mechanically characterize the hydrogels and especially the influence of crosslinker's concentration on them, showing the hydrogels presented had extremely good mechanical properties. Furthermore, the antimicrobial activity of strontium and zinc in the hydrogels against methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis was determined. PMID:27174392

  2. Malnutrition and a rash: think zinc.

    Science.gov (United States)

    Roberts, C M L; Martin-Clavijo, A; Winston, A P; Dharmagunawardena, B; Gach, J E

    2007-11-01

    Endemic zinc deficiency is recognised to be a common and serious problem in developing countries. However, it may be seen in routine practice in the UK, and can be easily overlooked. Malnutrition from any cause in conjunction with an undiagnosed cutaneous problem should alert the clinician to the diagnosis. Investigations may be unreliable, and if in doubt, a therapeutic trial of zinc supplementation is indicated. We present three cases of malnourished patients, in whom zinc deficiency was diagnosed after the development of cutaneous features. The malnutrition resulted from alcoholism in two cases and anorexia nervosa in the third. The heterogeneity of underlying causes of zinc deficiency is discussed, along with its effects, treatment and zinc homeostasis. PMID:17953634

  3. AMPA receptor inhibition by synaptically released zinc.

    Science.gov (United States)

    Kalappa, Bopanna I; Anderson, Charles T; Goldberg, Jacob M; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-12-22

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses.

  4. Role of zinc in pediatric diarrhea

    Directory of Open Access Journals (Sweden)

    Chaitali Bajait

    2011-01-01

    Full Text Available Zinc supplementation is a critical new intervention for treating diarrheal episodes in children. Recent studies suggest that administration of zinc along with new low osmolarity oral rehydration solutions / salts (ORS, can reduce the duration and severity of diarrheal episodes for up to three months. The World Health Organization (WHO and UNICEF recommend daily 20 mg zinc supplements for 10 - 14 days for children with acute diarrhea, and 10 mg per day for infants under six months old, to curtail the severity of the episode and prevent further occurrences in the ensuing -two to three months, thereby decreasing the morbidity considerably. This article reviews the available evidence on the efficacy and safety of zinc supplementation in pediatric diarrhea and convincingly concludes that zinc supplementation has a beneficial impact on the disease outcome.

  5. Abundance of zinc ions in synaptic terminals of mocha mutant mice: zinc transporter 3 immunohistochemistry and zinc sulphide autometallography.

    Science.gov (United States)

    Stoltenberg, Meredin; Nejsum, Lene N; Larsen, Agnete; Danscher, Gorm

    2004-02-01

    The mocha mouse is an autosomal recessive pigment mutant on mouse chromosome 10 caused by a deletion in the gene for the delta subunit of the adaptor-like complex AP-3. Based on zinc transporter 3 (ZnT3) immunohistochemistry, zinc TSQ fluorescence and a modified Timm method, previous studies found a lack of histochemically-detectable zinc and a substantial reduction in the ZnT3 immunoreactivity. It has, therefore, been suggested that the mocha mouse could serve as a model for studies of the significance of zinc ions in zinc-enriched (ZEN) neurons. We have chosen the mocha-zinc-model in a study of the significance of ZEN neurons in hypoxia-caused damage in mouse brain. In order to establish that the model was either void of zinc ions or had a significantly decreased level of zinc ions in their ZEN terminals, we repeated the studies that had lead to the above assumption, the only methodology difference being that we used the zinc specific Neo-Timm method instead of the Timm method applied in the original study. We found that, although the ZnS autometallography (AMG) technique revealed a reduction in staining intensity as compared to the littermate controls, there were still plenty of zinc ions in the ZEN terminals, in particular visible in telencephalic structures like neocortex and hippocampus. At ultrastructural levels the zinc ions were found in a pool of vesicles of the ZEN terminals as in the control animals, but additionally zinc ions could be traced in ZEN neuronal somata in the neocortex and hippocampus. The mossy fibres in the hippocampus of mocha mice also bind with TSQ, though less than in the controls. We found ZnS AMG grains in ZEN neuronal somata, which were also immunoreactive for ZnT3. Our study confirmed the decreased ZnT3 immunoreactivity in ZEN terminals of the mocha mouse found in the original study. Based on these findings, we suggest that the mocha mouse may not be an ideal model for studies of the histochemically-detectable zinc ion pool of the

  6. Antimicrobial Peptides: Versatile Biological Properties

    Directory of Open Access Journals (Sweden)

    Muthuirulan Pushpanathan

    2013-01-01

    Full Text Available Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries.

  7. Antimicrobial outcomes in plasma medicine

    Science.gov (United States)

    Ryan, Thomas P.; Stalder, Kenneth R.; Woloszko, Jean

    2015-03-01

    Plasma is referred to as the fourth state of matter and is frequently generated in the environment of a strong electric field. The result consists of highly reactive species--ions, electrons, reactive atoms and molecules, and UV radiation. Plasma Medicine unites a number of fields, including Physics, Plasma Chemistry, Cell Biology, Biochemistry, and Medicine. The treatment modality utilizes Cold Atmospheric Plasma (CAP), which is able to sterilize and treat microbes in a nonthermal manner. These gas-based plasma systems operate at close to room temperature and atmospheric pressure, making them very practical for a range of potential treatments and are highly portable for clinical use throughout the health care system. The hypothesis is that gas based plasma kills bacteria, fungus, and viruses but spares mammalian cells. This paper will review systematic work which shows examples of systems and performance in regards to antimicrobial effects and the sparing of mammalian cells. The mechanism of action will be discussed, as well as dosing for the treatment of microbial targets, including sterilization processes, another important healthcare need. In addition, commercial systems will be overviewed and compared, along with evidence-based, patient results. The range of treatments cover wound treatment and biofilms, as well as antimicrobial treatment, with little chance for resistance and tolerance, as in drug regimens. Current clinical studies include applications in dentistry, food treatment, cancer treatment, wound treatment for bacteria and biofilms, and systems to combat health care related infections.

  8. Antimicrobial peptides in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    A Bogaerts

    2010-01-01

    Full Text Available The nematode Caenorhabditis elegans is one of the most successful model species for experimental research because of its sequenced genome, the versatile genetic toolkit and the straightforward breeding among others. In natural conditions however, this tiny worm is constantly surrounded by micro-organisms, simultaneously a source of indispensable nutrition and inevitable pathogens. Lacking an adaptive immune system, the worm solely relies on its innate immune defence to cope with its challenging life style. Hence C. elegans is an excellent model to gain more insight in innate immunity, which is remarkably preserved between invertebrate and vertebrate animals. The innate defence consists of receptors to detect potential pathogens, a complex network of signalling pathways and last but not least, effector molecules to abolish harmful microbes. In this review, we focus on the antimicrobial peptides, a vital subgroup of effector molecules. We summarise the current knowledge of the different families of C. elegans antimicrobial peptides, comprising NLPs, caenacins, ABFs, caenopores, and a recently discovered group with antifungal activity among which thaumatin-like proteins.

  9. Primary chemistry response to initial zinc injection

    International Nuclear Information System (INIS)

    As of June 2009, fifty-seven pressurized water reactor (PWR) units were adding zinc to their primary coolant systems. This represents about 22% of the world's PWR units. Zinc injection is used in at least six different countries and in essentially all major Nuclear Steam Supply System (NSSS) designs. Plant-specific strategies for injection of zinc are now tailored with respect to concentrations, injection location, injection timing, and monitoring protocols. At least 14 additional plants are expected to begin zinc injection within the next two years and many more plants are investigating options for injecting zinc. A principal concern regarding the plant response to initial injection is that dissolved zinc will interact with ex-core oxide films in a manner that causes a release of nickel to the primary coolant system. It is possible that nickel released by this mechanism could deposit in the core and challenge fuel performance. In this work primary system chemistry data (principally nickel concentrations and radiocobalt activities) were evaluated for the cycles in which zinc was first injected. Assessments included comparisons of concentrations and activities before and after zinc injection as well as comparison of these periods to similar times in previous cycles. The mass of nickel released during shutdown, an imperfect indicator of the mass deposited on the fuel during the cycle, was also assessed. While the analyses presented in this work are not a complete analysis of plant response to zinc injection (for example, direct observations of surface film modification were not included) they represent a significant addition to the understanding of the way in which zinc interacts with the PWR primary system. (author)

  10. Zinc abundances of planetary nebulae

    CERN Document Server

    Smith, Christina L; Dinerstein, Harriet L

    2014-01-01

    Zinc is a useful surrogate element for measuring Fe/H as, unlike iron, it is not depleted in the gas phase media. Zn/H and O/Zn ratios have been derived using the [Zn IV] emission line at 3.625um for a sample of nine Galactic planetary nebulae, seven of which are based upon new observations using the VLT. Based on photoionization models, O/O++ is the most reliable ionisation correction factor for zinc that can readily be determined from optical emission lines, with an estimated accuracy of 10% or better for all targets in our sample. The majority of the sample is found to be sub-solar in [Zn/H]. [O/Zn] in half of the sample is found to be consistent with Solar within uncertainties, whereas the remaining half are enhanced in [O/Zn]. [Zn/H] and [O/Zn] as functions of Galactocentric distance have been investigated and there is little evidence to support a trend in either case.

  11. Thermodynamic Modeling of Zinc Speciation in Electric Arc Furnace Dust

    Science.gov (United States)

    Pickles, Chris A.

    2011-04-01

    The remelting of automobile scrap, containing galvanized steel, in an electric arc furnace (EAF) results in the generation of a dust, which contains considerable amounts of zinc and other metals. Typically, the amount of zinc is of significant commercial value, but the recovery of this metal can be hindered by the varied speciation of zinc. The majority of the zinc exists as zincite (ZnO) and zinc ferrite (ZnFe2O4) or ferritic spinels ((Zn x Mn y Fe1-x-y )Fe2O4), but other zinccontaining species such as zinc chloride, zinc hydroxide chlorides, hydrated zinc sulphates and zinc silicates have also been identified. There is a scarcity of research literature on the thermodynamic aspects of the formation of these zinc-containing species, in particular, the minor zinc-containing species. Therefore, in this study, the equilibrium module of HSC Chemistry® 6.1 was utilized to calculate the types and the amounts of the zinc-containing species. The variables studied were: the gas composition, the temperature and the dust composition. At high temperatures, zincite forms via the reaction of zinc vapour with oxygen gas and the zinc-manganese ferrites form as a result of the reaction of iron-manganese particles with zinc vapour and oxygen. At intermediate temperatures, zinc sulphates are produced through the reaction of zinc oxide and sulphur dioxide gas. As room temperature is approached, zinc chlorides and fluorides form by the reaction of zinc oxide with hydrogen chloride and hydrogen fluoride gases, respectively. Zinc silicate likely forms via the high temperature reaction of zinc vapour and oxygen with silica. In the presence of excess water and as room temperature is approached, the zinc sulphates, chlorides and fluorides can become hydrated.

  12. Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells

    DEFF Research Database (Denmark)

    Nygaard, Sanne Bjørn; Larsen, Agnete; Knuhtsen, Astrid;

    2014-01-01

    BACKGROUND: Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets. Zinc-transporting proteins (zinc-regulated transporter, iron......-regulated transporter-like proteins [ZIPs] and zinc transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis. The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells. RESULTS: Using INS-1E...... cells, we found that zinc supplementation and zinc chelation had significant effects on insulin content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion. Insulin content was reduced by zinc chelation with N,N,N',N-tektrakis(2-pyridylmethyl...

  13. Antimicrobial use in long-term-care facilities

    NARCIS (Netherlands)

    Nicolle, LE; Bentley, DW; Garibaldi, R; Neuhaus, EG; Smith, PW

    2000-01-01

    There is intense antimicrobial use in long-term-care facilities (LTCFs), and studies repeatedly document that much of this use is inappropriate. The current crisis in antimicrobial resistance, which encompasses the LTCF, heightens concerns of antimicrobial use. Attempts to improve antimicrobial use

  14. Serum zinc levels in gestational diabetes

    Directory of Open Access Journals (Sweden)

    Rahimi Sharbaf F

    2008-12-01

    Full Text Available "nBackground: Maternal zinc deficiency during pregnancy has been related to adverse pregnancy outcomes. Most studies in which pregnant women have been supplemented with zinc to examine its effects on the outcome of the pregnancy have been carried out in industrialized countries and the results have been inconclusive. It has been shown that women with gestational diabetes (GDM have lower serum zinc levels than healthy pregnant women, and higher rates of macrosomia. Zinc is required for normal glucose metabolism, and strengthens the insulin-induced transportation of glucose into cells by its effect on the insulin signaling pathway. The purpose of this study was to assess the serum zinc levels of GDM patients and evaluate the effect of zinc supplementation. "nMethods: In the first stage of this prospective controlled study, we enrolled 70 women who were 24-28 weeks pregnant at the Prenatal Care Center of Mirza Kochak Khan Hospital, Tehran, Iran. The serum zinc level of each subject was determined. In the second stage, among these 70 subjects, the diabetics receiving insulin were divided into two groups, only one of which received a zinc supplement and the other group was the control group. Birth weight of neonates and insulin dosages were recorded. "nResults: The mean serum zinc level in the GDM group was lower than that of the control group (94.83 vs. 103.49mg/dl, respectively and the mean birth weight of neonates from the GDM women who received the zinc supplement was lower than that of the control group (3849g vs. 4136g. The rate of macrosomia was lower in the zinc supplemented group (20% vs. 53%. The mean of increase of insulin after receiving the zinc supplement was lower (8.4u vs. 13.53. "nConclusion: Maternal insulin resistance is associated with the accumulation of maternal fat tissue during early stages of pregnancy and greater fetoplacental nutrient availability in later stages, when 70% of fetal growth occurs, resulting in macrosomia. In

  15. Synthesis, Spectroscopic, and Antimicrobial Studies on Bivalent Zinc and Mercury Complexes of 2-Formylpyridine Thiosemicarbazone

    OpenAIRE

    Yatendra Kumar; Shikha Parmar; Sulekh Chandra

    2009-01-01

    A series of metal complexes of Zn(II) and Hg(II) having the general composition [ M ( L ) 2 ] X 2 [where L = 2-formylpyridine thiosemicarbazone; M = Zn(II) and Hg(II); X = C l − , N O − 3 and 1 / 2 S O 4 2 − ] have been prepared and characterized by elemental chemical analysis, molar conductance, and spectral (IR and mass) studies. The IR spectral data suggests the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. On the basis of spectral studies, a tetr...

  16. Danish Integrated Antimicrobial Resistance Monitoring and Research Program

    Science.gov (United States)

    Heuer, Ole E.; Emborg, Hanne-Dorthe; Bagger-Skjøt, Line; Jensen, Vibeke F.; Rogues, Anne-Marie; Skov, Robert L.; Agersø, Yvonne; Brandt, Christian T.; Seyfarth, Anne Mette; Muller, Arno; Hovgaard, Karin; Ajufo, Justin; Bager, Flemming; Aarestrup, Frank M.; Frimodt-Møller, Niels; Wegener, Henrik C.; Monnet, Dominique L.

    2007-01-01

    Resistance to antimicrobial agents is an emerging problem worldwide. Awareness of the undesirable consequences of its widespread occurrence has led to the initiation of antimicrobial agent resistance monitoring programs in several countries. In 1995, Denmark was the first country to establish a systematic and continuous monitoring program of antimicrobial drug consumption and antimicrobial agent resistance in animals, food, and humans, the Danish Integrated Antimicrobial Resistance Monitoring and Research Program (DANMAP). Monitoring of antimicrobial drug resistance and a range of research activities related to DANMAP have contributed to restrictions or bans of use of several antimicrobial agents in food animals in Denmark and other European Union countries. PMID:18217544

  17. Recent Advances in Antimicrobial Polymers: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Keng-Shiang Huang

    2016-09-01

    Full Text Available Human safety and well-being is threatened by microbes causing numerous infectious diseases resulting in a large number of deaths every year. Despite substantial progress in antimicrobial drugs, many infectious diseases remain difficult to treat. Antimicrobial polymers offer a promising antimicrobial strategy for fighting pathogens and have received considerable attention in both academic and industrial research. This mini-review presents the advances made in antimicrobial polymers since 2013. Antimicrobial mechanisms exhibiting either passive or active action and polymer material types containing bound or leaching antimicrobials are introduced. This article also addresses the applications of these antimicrobial polymers in the medical, food, and textile industries.

  18. Antimicrobial activity of new porphyrins of synthetic and natural origin

    Science.gov (United States)

    Gyulkhandanyan, Grigor V.; Ghazaryan, Robert K.; Paronyan, Marina H.; Ulikhanyan, Ghukas I.; Gyulkhandanyan, Aram G.; Sahakyan, Lida A.

    2012-03-01

    Antimicrobial photodynamic inactivation has been successfully used against Gram (+) microorganisms, but most of the photosensitizers (PSs) on Gram (-) bacteria acts weakly. PSs are the natural or synthetic origin dyes, mainly porphyrins. We have synthesized more than 100 new cationic porphyrins and metalloporphyrins with different functional groups (hydroxyethyl, butyl, allyl, methallyl) and metals (cobalt, iron, copper, zinc, silver and other); from the nettle have also been purified pheophytin (a+b) and pheophytin (a) and have synthesized their Ag-and Zn-metalloporphyrins. It was found that in the dark (cytotoxic) mode, the most highly efficiency against microorganisms showed Agmetalloporphyrins of both types of porphyrins (synthetic and natural). Metalloporphyrin of natural origin Ag-pheophytin (a + b) is a strong antibacterial agent and causes 100% death as the Gram (+) microorganisms (St. aureus and MRSA) and the Gram (-) microorganisms (E.coli and Salmonella). It is established that for the destruction of Gram (+) and Gram (-) microorganisms in photodynamic mode cationic water-soluble synthetic metalloporphyrins, especially Zn-TBut4PyP, many times more effective than pheophytins. In vivo conditions on mice established that the best therapeutic activity against various strains of the microorganism St. aureus has the synthetic metalloporphyrin Ag-TBut4PyP. It is significantly more efficient than known drug "Chlorophyllipt" (2.5-3 times) and leads the survival rate of animals up to 50-60%.

  19. 21 CFR 172.399 - Zinc methionine sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc methionine sulfate. 172.399 Section 172.399... CONSUMPTION Special Dietary and Nutritional Additives § 172.399 Zinc methionine sulfate. Zinc methionine...-methionine in purified water. (b) The additive meets the following specifications: Zinc content—19 to...

  20. Overview of Inherited Zinc Deficiency in Infants and Children.

    Science.gov (United States)

    Kambe, Taiho; Fukue, Kazuhisa; Ishida, Riko; Miyazaki, Shiho

    2015-01-01

    Zinc nutrition is of special practical importance in infants and children. Poor zinc absorption causes zinc deficiency, which leads to a broad range of consequences such as alopecia, diarrhea, skin lesions, taste disorders, loss of appetite, impaired immune function and neuropsychiatric changes and growth retardation, thus potentially threatening life in infants and children. In addition to dietary zinc deficiency, inherited zinc deficiency, which rarely occurs, is found during the infant stage and early childhood. Recent molecular genetic studies have identified responsible genes for two inherited zinc deficiency disorders, acrodermatitis enteropathica (AE) and transient neonatal zinc deficiency (TNZD), clarifying the pathological mechanisms. Both of these zinc deficiencies are caused by mutations of zinc transporters, although the mechanisms are completely different. AE is an autosomal recessive disorder caused by mutations of the ZIP4 gene, consequently resulting in defective absorption of zinc in the small intestine. In contrast, TNZD is a disorder caused by mutations of the ZnT2 gene, which results in low zinc breast milk in the mother, consequently causing zinc deficiency in the breast-fed infant. In both cases, zinc deficiency symptoms are ameliorated by a daily oral zinc supplementation for the patients. Zinc is definitely one of the key factors for the healthy growth of infants and children, and thus zinc nutrition should receive much attention. PMID:26598882

  1. Zinc-enriched boutons in rat spinal cord

    DEFF Research Database (Denmark)

    Schrøder, H D; Danscher, G; Jo, S M;

    2000-01-01

    The rat spinal cord reveals a complex pattern of zinc-enriched (ZEN) boutons. As a result of in vivo exposure to selenide ions, nanosized clusters of zinc selenide are created in places where zinc ions are present, including the zinc-containing synaptic vesicles of ZEN boutons. The clusters can...

  2. Oral zinc supplementation in anorexia nervosa.

    Science.gov (United States)

    Safai-Kutti, S

    1990-01-01

    There is evidence to suggest that zinc (Zn) deficiency may be involved in the pathogenesis of anorexia nervosa (AN). In an open study of 20 females, aged 14-26 years, afflicted with AN the effect of oral zinc supplementation was investigated. In each case the diagnosis of AN was based on the criteria of DSM-III-R. After a careful history, complete physical examination and laboratory screening the subjects were started on 45-90 mg of Zn2+, as zinc sulfate, (SolvezinkR, Tika, Sweden) per day. During a follow-up period of 8-56 months 17 patients increased their body weight by more than 15%. The maximum gradual weight gain of 57% was encountered in one patient after 24 months of zinc therapy. The most rapid weight gain was recorded in a patient who increased her body weight by 24% over a period of 3 months. After the institution of zinc, weight loss was not registered in any of our patients. In 13 subjects the menstruation returned 1-17 months after the initiation of zinc therapy. None of our patients developed bulimia. The design of an ongoing multicenter placebo-controlled clinical trial of zinc supplementation to patients with AN is described. PMID:2291418

  3. The role of zinc in liver cirrhosis.

    Science.gov (United States)

    Grüngreiff, Kurt; Reinhold, Dirk; Wedemeyer, Heiner

    2016-01-01

    Zinc is an essential trace element playing fundamental roles in cellular metabolism. It acts mostly by binding a wide range of proteins, thus affecting a broad spectrum of biological processes, which include cell division, growth and differentiation. Zinc is critical to a large number of structural proteins, enzymatic processes, and transcription factors. Zinc deficiency can result in a spectrum of clinical manifestations, such as poor of appetite, loss of body hair, altered taste and smell, testicular atrophy, cerebral and immune dysfunction, and diminished drug elimination capacity. These are common symptoms in patients with chronic liver diseases, especially liver cirrhosis. The liver is the main organ responsible for the zinc metabolism which can be affected by liver diseases. On the other hand, zinc deficiency may alter hepatocyte functions and also immune responses in inflammatory liver diseases. Liver cirrhosis represents the most advanced stage of chronic liver diseases and is the common outcome of chronic liver injury. It is associated with energy malnutrition, with numerous metabolic disorders, such as hypoalbuminemia, with imbalance between branched-chain amino acids and aromatic amino acids, and with reduced zinc serum concentrations. All these processes can influence the clinical outcome of patients, such ascites, hepatic encephalopathy and hepatocellular carcinoma. In the present review, we summarize the emerging evidence on the pitoval role of zinc in the pathogenesis of liver cirrhosis. PMID:26626635

  4. Revisiting zinc passivation in alkaline solutions

    International Nuclear Information System (INIS)

    Highlights: • Zinc passive films were characterised by electrochemical tests coupled with cross sectional FIB-SEM. • Passive layers at pH > 12 comprised of an outer precipitated layer and inner compact oxide. • The electrolyte pH influences the nature/stability of the outer precipitated layer and this impacts the passive state on zinc. • The precipitated layers on zinc at pH 12 support cathode reactions and catalyse oxide growth. -- Abstract: Passive films nominally consist of an inner compact oxide and the outer precipitated layer. In the case of zinc (Zn), the outer layer is mainly precipitated ZnO/Zn(OH)2. Electrolyte pH controls the stability of the outer precipitated layer. In a pH 13 solution, formation of soluble Zn(OH)3− and Zn(OH)42− phases render the precipitated layer unstable increasing zinc corrosion, whereas at pH 12, the precipitated layer (ZnO/Zn(OH)2) is more stable making it an effective anodic barrier upon zinc. These precipitated oxides formed at pH 12 support cathodic reactions on their surface which in turn catalyse further oxide growth by a cathodically driven process. Focused ion beam-scanning electron microscopy (FIB-SEM) was used to support some of the electrochemical assertions, revealing the form and morphology of the passive layers that grow upon zinc exposed to alkaline solutions

  5. ZINC MITIGATION INTERIM REPORT - THERMODYNAMIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.

    2010-12-17

    An experimental program was initiated in order to develop and validate conditions that will effectively trap Zn vapors that are released during extraction. The proposed work is broken down into three tasks. The first task is to determine the effectiveness of various pore sizes of filter elements. The second task is to determine the effect of filter temperature on zinc vapor deposition. The final task is to determine whether the zinc vapors can be chemically bound. The approach for chemically binding the zinc vapors has two subtasks, the first is a review of literature and thermodynamic calculations and the second is an experimental approach using the best candidates. This report details the results of the thermodynamic calculations to determine feasibility of chemically binding the zinc vapors within the furnace module, specifically the lithium trap (1). A review of phase diagrams, literature, and thermodynamic calculations was conducted to determine if there are suitable materials to capture zinc vapor within the lithium trap of the extraction basket. While numerous elements exist that form compounds with zinc, many of these also form compounds with hydrogen or the water that is present in the TPBARs. This relatively comprehensive review of available data indicates that elemental cobalt and copper and molybdenum trioxide (MoO3) may have the requisite properties to capture zinc and yet not be adversely affected by the extraction gases and should be considered for testing.

  6. Non-Chromate Passivation of Zinc

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Bech-Nielsen, G.

    1993-01-01

    After extensive research and development a method for passivation of electroplated zinc has been optimised to provide the best corrosion resistance. This optimisation has lead to two different treatments both based on mo-lybdate and phosphate (from this point forward referred to as MolyPhos). The......After extensive research and development a method for passivation of electroplated zinc has been optimised to provide the best corrosion resistance. This optimisation has lead to two different treatments both based on mo-lybdate and phosphate (from this point forward referred to as Moly......Phos). The treatments are within the same concentration region, and they have a mutual pat-ent pending. Although some tests still need to be conducted, the following aspects are clear at the present time: The general appearance of the passivated zinc surface is very similar to a standard yellow chromate treatment....... There is no known environmental or health risk involved using the treatments mentioned above. All components used in the baths are non toxic compared to Cr(VI). Alloy coatings such as zinc/nickel, zinc/cobalt, zinc/tin and all types of pure zinc coating (from cyanide, acidic or alkaline baths) have been treated...

  7. Antimicrobial Activity of Drosera rotundifolia L.

    Directory of Open Access Journals (Sweden)

    Miroslava Kačániová

    2014-11-01

    Full Text Available Droseracae spp. is widely used in folk medicine. In the present study, the antimicrobial activities of the four Drosera rotundifolia L. (D8.11, D15.12, 18.10, 8.11 samples were investigated. The antimicrobial activities were determined by using agar disc diffusion method against grampositive bacteria (Bacillus thurigiensis, Staphylococcus aureus, Listeria monocytogenes and gramnegative bacteria (Yersinia enterocolitica, Salmonella enteritidis.  The results of the disk diffusion method showed very different activity against all tested strains of microorganisms. The best antimicrobial activity of ethanolic extract Drosera rotundifolia L. against Salmonella enteritidis was found at Drosera rotundifolia (D8.11.

  8. [Antimicrobial peptide in dentisty. Literature review].

    Science.gov (United States)

    Sato, F Simain; Rompen, E; Heinen, E

    2009-12-01

    The use of antimicrobial substances has contributed to the development of multiple antimicrobial resistances (1), challenging the pharmaceutical industry to develop with new, innovative, and effective molecules. Discovered around 1980, molecules called natural antimicrobial peptides (AMPs) appear to hold great potential for the treatment of infections. These cationic peptides are able to stop the bacterial development and to control infections. The purpose of this review is to help improve the understanding of the way AMPs operate in the context of the development of new cures against viruses, bacteria, and mushrooms found in the human body in general and in the oral cavity in particular. PMID:20143750

  9. Antimicrobial Stewardship: The Need to Cover All Bases

    OpenAIRE

    N Deborah Friedman

    2013-01-01

    Increasing antimicrobial resistance has necessitated an approach to guide the use of antibiotics. The necessity to guide antimicrobial use via stewardship has never been more urgent. The decline in anti-infective innovation and the failure of currently available antimicrobials to treat some serious infections forces clinicians to change those behaviors that drive antimicrobial resistance. The majority of antimicrobial stewardship (AMS) programs function in acute-care hospitals, however, hospi...

  10. Implication of zinc excess on soil health.

    Science.gov (United States)

    Wyszkowska, Jadwiga; Boros-Lajszner, Edyta; Borowik, Agata; Baćmaga, Małgorzata; Kucharski, Jan; Tomkiel, Monika

    2016-01-01

    This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl - 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn(2+) kg(-1) in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn(2+) kg(-1).

  11. Transcriptional Response of Escherichia coli to External Zinc

    OpenAIRE

    Yamamoto, Kaneyoshi; Ishihama, Akira

    2005-01-01

    Transcriptional response of Escherichia coli to extracellular zinc was studied using DNA microarray and S1 mapping assays. Addition of external zinc induced the expression of zinc exporter ZntA and inhibited the expression of zinc importer ZnuC. In the continuous presence of zinc, ZnuC repression took place at lower zinc concentrations than ZntA induction. The microarray assay indicated that the addition of excess external zinc induces the expression of many genes that are organized in the re...

  12. Transient partial growth hormone deficiency due to zinc deficiency.

    Science.gov (United States)

    Nishi, Y; Hatano, S; Aihara, K; Fujie, A; Kihara, M

    1989-04-01

    We present here a 13-year-old boy with partial growth hormone deficiency due to chronic mild zinc deficiency. When zinc administration was started, his growth rate, growth hormone levels, and plasma zinc concentrations increased significantly. His poor dietary intake resulted in chronic mild zinc deficiency, which in turn could be the cause of a further loss of appetite and growth retardation. There was also a possibility of renal zinc wasting which may have contributed to zinc deficiency. Zinc deficiency should be carefully ruled out in patients with growth retardation. PMID:2708733

  13. Decomposition of zinc ferrite from waste streams of steelmaking

    OpenAIRE

    Tauriainen, M. (Miia)

    2015-01-01

    The goal of this study was to compare different methods to decompose the zinc ferrite from the waste streams of steel making. The samples were acquired from SSAB Raahe blast furnace and converter flue gas scrubbers and Outokumpu Tornio Works bag filters EAF1, EAF3, AOD and CRK. Sludges and dusts contain significant amounts of zinc in form of zinc oxide and zinc ferrite. Zinc ferrite is highly stable compound which makes recovery of the zinc difficult. The zinc could be recovered and recycled ...

  14. Antimicrobial dihydroisocoumarins from Crassocephalum biafrae.

    Science.gov (United States)

    Tabopda, Turibio K; Fotso, Gislain W; Ngoupayo, Joseph; Mitaine-Offer, Anne-Claire; Ngadjui, Bonaventure T; Lacaille-Dubois, Marie-Aleth

    2009-09-01

    Bioassay-guided fractionation of the CHCl (3)-soluble extract of the stem bark of Crassocephalum biafrae (Asteraceae) resulted in the isolation of three new dihydroisocoumarins, named biafraecoumarins A ( 1), B ( 2), and C ( 3); two known triterpenes ( 4 and 5); and a known ceramide ( 6). The structures of the new compounds were established as 7-but-15-enyl-6,8-dihydroxy-3( R)-penta-9,11-dienylisochroman-1-one ( 1), 7-butyl-6,8-dihydroxy-3( R)-penta-9,11-dienylisochroman-1-one ( 2), and 7-butyl-6,8-dihydroxy-3( R)-pent-10-enylisochroman-1-one ( 3) using spectroscopic data. Compounds 1- 3 exhibit low to significant antimicrobial activities against Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Pseudomonas picketti, Trichphyton longifusus, Aspergillus flavus, Microsporum canis, Fusarium solani, Candida albicans, and Candida glabrata. PMID:19350487

  15. Antimicrobial activity of benzylisoquinoline alkaloids.

    Science.gov (United States)

    Villar, A; Mares, M; Rios, J L; Canton, E; Gobernado, M

    1987-04-01

    The antimicrobial in vitro activity of 14 benzylisoquinoline alkaloids was investigated by agar diffusion and agar dilution methods against several genera of microorganisms that included Streptococcus, Staphylococcus, Bacillus, Lysteria, Escherichia, Salmonella, Klebsiella, Pseudomonas, Enterobacter, Serratia, Shigella, Mycobacterium and Candida. Anolobine was the most active compound against grampositive bacteria with MIC90 between 12 and 50 mg/l; less active were anonaine, lysicamine and liriodenine. All the alkaloids of the noraporphine and oxoaporphine groups, with the exception of isopiline, showed activity against Mycobacterium phlei (MIC 6-25 mg/l). Candida albicans ATCC26555 was inhibited by anonaine, nornantenine and xylopine (MIC 3-12 mg/l). None of the alkaloids tested had a significant activity against gramnegative rods. The action against susceptible microorganisms was bactericidal. PMID:3615557

  16. Antimicrobial activities of Barringtonia acutangula.

    Science.gov (United States)

    Rahman, M Mukhlesur; Polfreman, David; MacGeachan, Jodie; Gray, Alexander I

    2005-06-01

    Crude extracts and VLC fractions from the stem bark of Barringtonia acutangula (L.) Gaertn (Fam. Lecythidaceae) were screened for their antimicrobial activities against two Gram-positive bacteria, two Gram-negative bacteria and two fungi using a microdilution titre assay. Among the crude extracts, petroleum ether extract showed good activity against all test organisms. The VLC fraction PE 16 was found to be very effective against Bacillus subtilis (MIC=25 microg/ml) and Aspergillus niger (MIC=12.5 microg/ml). The activities were compared to standard antibiotics-kanamycin and fluconazole. The major compound from PE16 was identified as 12, 20(29)-lupadien-3-ol by NMR spectroscopy. PMID:16114086

  17. Antimicrobial peptides of multicellular organisms

    Science.gov (United States)

    Zasloff, Michael

    2002-01-01

    Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?

  18. Photocatalytic and antimicrobial Ag/ZnO nanocomposites for functionalization of textile fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Ibănescu, Mariana [Centre of Nanostructures and Functional Materials-CNMF, Faculty of Materials and Environment Engineering, “Dunărea de Jos” University of Galaţi, 111 Domnească Street, 800201 Galaţi (Romania); Muşat, Viorica, E-mail: viorica.musat@ugal.ro [Centre of Nanostructures and Functional Materials-CNMF, Faculty of Materials and Environment Engineering, “Dunărea de Jos” University of Galaţi, 111 Domnească Street, 800201 Galaţi (Romania); Textor, Torsten [Deutsches Textilforschungszentrum Nord-West gGmbH, DTNW, Adlerstr. 1, 47798 Krefeld (Germany); CENIDE, Center for Nanointegration Duisburg-Essen (Germany); Badilita, Viorel [National R and D Institute for Non-ferrous and Rare Metals Nanostructured Materials Laboratory, Ilfov (Romania); Mahltig, Boris [Niederrhein University of Applied Sciences, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany)

    2014-10-15

    Highlights: • Higher silver doping smaller nanoparticles size and weaker agglomeration. • Higher silver concentration higher optical absorbance and band gap energy. • Small amouts of silver have considerably increased the antimicobial activity. • The photocatalytic activity is consistent with the increase of antimicrobial activity. - Abstract: The utilization of ZnO nanoparticles with photocatalytic and antimicrobial activity for textile treatment has received much attention in recent years. Since silver is a well-known but more expensive antibacterial material, it is of interest to study the extent to which a small amount of silver increases the photocatalytic and antimicrobial activity of the less expensive zinc oxide nanoparticles. This paper reports on the preparation of Ag/ZnO composite nanoparticles by reducing silver on the surface of commercial ZnO nanoparticles dispersed in isopropanol. Crystalline structure, particle size and band gap energy of as-prepared composite nanoparticles were investigated by X-ray diffraction and UV–Vis absorption measurements. Long term stable sols of ZnO and Ag/ZnO nanoparticles were prepared and applied as liquid coating agent for textile treatment, in combination with inorganic–organic hybrid polymer binder sols prepared from the precursors 3-glycidyloxypropyltrimethoxysilane (GPTMS) and tetraethoxysilane (TEOS). The coating process was carried out on cotton fabrics and cotton/polyester blended fabrics using the pad–dry–cure method. The photocatalytic activity of the nanoparticles, as prepared or applied on textile fabrics, was studied through the degradation of the dye methylene blue (MB) in water under the UV irradiation. The antimicrobial activity of the nanoparticles applied on textile fabrics, was tested against the Gram-negative bacterium Escherichia coli and Gram-positive Micrococcus luteus.

  19. Optimizing antimicrobial therapy in children.

    Science.gov (United States)

    Long, Sarah S

    2016-07-01

    Management of common infections and optimal use of antimicrobial agents are presented, highlighting new evidence from the medical literature that enlightens practice. Primary therapy of staphylococcal skin abscesses is drainage. Patients who have a large abscess (>5 cm), cellulitis or mixed abscess-cellulitis likely would benefit from additional antibiotic therapy. When choosing an antibiotic for outpatient management, the patient, pathogen and in vitro drug susceptibility as well as tolerability, bioavailability and safety characteristics of antibiotics should be considered. Management of recurrent staphylococcal skin and soft tissue infections is vexing. Focus is best placed on reducing density of the organism on the patient's skin and in the environment, and optimizing a healthy skin barrier. With attention to adherence and optimal dosing, acute uncomplicated osteomyelitis can be managed with early transition from parenteral to oral therapy and with a 3-4 week total course of therapy. Doxycycline should be prescribed when indicated for a child of any age. Its use is not associated with dental staining. Azithromycin should be prescribed for infants when indicated, whilst being alert to an associated ≥2-fold excess risk of pyloric stenosis with use under 6 weeks of age. Beyond the neonatal period, acyclovir is more safely dosed by body surface area (not to exceed 500 mg/m(2)/dose) than by weight. In addition to the concern of antimicrobial resistance, unnecessary use of antibiotics should be avoided because of potential later metabolic effects, thought to be due to perturbation of the host's microbiome. PMID:27263076

  20. Antimicrobial peptides in human sepsis

    Directory of Open Access Journals (Sweden)

    Lukas eMartin

    2015-08-01

    Full Text Available Nearly 100 years ago, antimicrobial peptides (AMPs were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP 1-3 and human beta-defensins (HBDs 1-3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP -1-3 and HBD-2 in sepsis. The bactericidal/permeability increasing protein (BPI attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP-1-3, lactoferrin, BPI and heparin-binding protein (HBP are increased in sepsis. Human lactoferrin peptide 1-11 (hLF 1-11 possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin (talactoferrin alpha, TLF has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide (LPS. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe

  1. Preparation of zinc oxide particles by using layered basic zinc acetate as a precursor

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lanqin, E-mail: lanqin_tang@ycit.edu.cn [College of Chemical and Biological Engineering, Yancheng Institute of Technology, 9 Yingbin Avenue, Yancheng 224051 (China); College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ding, Xuefeng; Zhao, Xu; Wang, Zichen; Zhou, Bing [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A simple aqueous solution process has been applied to prepare zinc oxide particles. Black-Right-Pointing-Pointer This novel method exempts traditional calcinations. Black-Right-Pointing-Pointer Various zinc oxide particles are obtained. - Abstract: TEA and NaOH are applied to transform layered basic zinc acetate into zinc oxide particles by a simple aqueous solution process (<100 Degree-Sign C). Zinc oxide with different morphologies, including dumbbells, earthnuts, ellipsoids and hexagonal pillars, are obtained by carefully controlling the amounts of sodium hydroxide, triethanolamine, and reaction temperature. Field emission scanning electron microscope images, X-ray powder diffraction patterns, X-ray photoelectron spectroscopy spectra and room-temperature photoluminescence spectra are used to characterize final products. Furthermore, a possible growth mechanism is discussed in this paper. This easy procedure for zinc oxide fabrication offers the possibility of a generalized approach to the production of metal oxide with tunable morphology.

  2. Clinical Aspects of Trace Elements: Zinc in Human Nutrition – Zinc Deficiency and Toxicity

    Directory of Open Access Journals (Sweden)

    Michelle M Pluhator

    1996-01-01

    Full Text Available Available evidence suggests that trace elements, such as zinc, once thought to have no nutritional relevance, are possibly deficient in large sections of the human population. Conditioned deficiencies have been reported to result from malabsorption syndromes, acrodermatitis enteropathica, alcoholism, gastrointestinal disease, thermal injury, chronic diseases (eg, diabetes, sickle cell anemia, and in total parenteral nutrition therapy. Awareness that patients with these problems are at risk has led health professionals to focus increasingly on the importance of zinc therapy in the prevention and treatment of deficiency. More recently zinc toxicity and its role in human nutrition and well-being have come under investigation. Reports have focused on the role of zinc toxicity in causes of copper deficiency, changes in the immune system and alterations in blood lipids. As the numerous challenges presented by the study of zinc in human nutrition are met, more appropriate recommendations for dietary and therapeutic zinc intake are being made.

  3. Zinc Deficiency in Humans and its Amelioration

    OpenAIRE

    Yashbir Singh Shivay

    2015-01-01

    Zinc (Zn) deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in ...

  4. BIOLEACHING OF ZINC: ECO FRIENDLY MINING

    OpenAIRE

    Rashmi Mishra

    2016-01-01

    The research work presented in this paper is on a Biomining The estimated annual demand for zinc in India is approximately 2.41 lakh tones; against this, the present installed capacity in the country for zinc ingots is 1.49 lakh tonnes only. There is, thus still a wide gap in the demand and supply of this metal in the country. Leaching zinc from the waste and low grade ore is required to meet the demand, but is not being explored because of the expensive measures and pollution hazards. Biolea...

  5. Effect of Prenatal Zinc Supplementation on Birthweight

    OpenAIRE

    Saaka, Mahama; Oosthuizen, Jacques; Beatty, Shelley

    2009-01-01

    Although iron and zinc deficiencies are known to occur together and also appear to be high in Ghana, a few supplementation studies addressed this concurrently in pregnancy. In a double-blind, randomized controlled trial, 600 pregnant women in Ghana were randomly assigned to receive either a combined supplement of 40 mg of zinc as zinc gluconate and 40 mg of iron as ferrous sulphate or 40 mg of elemental iron as ferrous sulphate. Overall, there was no detectable difference in the mean birthwei...

  6. Spectrophotometric determination of zinc in impure solutions

    International Nuclear Information System (INIS)

    A dithizone colorimetric method is described for determining zinc concentrations of 0.001 to 5 g/l in aqueous solutions from Rio Tinto Mines, containing copper, iron and other impurities. Citrate, cyanide and bis-2hydroxyethyl)-dithiocarbamate are added to the aqueous sample of masking several metals, and zinc is extracted at pH 5 with a solution of dithizone in carbon tetrachloride. Excess of dithizone is removed with sodium sulphide, and optical density of zinc dithionate in organic solution is measured at 5.35 nm. Calibration curves obey Beer's law up to 0.5 micro Zn/ml. (Author) 5 refs

  7. Cadmium zinc telluride spectral modeling

    International Nuclear Information System (INIS)

    Cadmium zinc telluride (CZT) detectors are the highest resolution room temperature gamma-ray detectors available for isotopic analysis. As with germanium detectors, accurate isotopic analysis using spectra requires peak deconvolution. The CZT peak shapes are asymmetric, with a long low energy tail. The asymmetry is a result of the physics of the electron/hole transport in the semiconductor. An accurate model of the physics of the electron/hole transport through an electric field will allow the parameterization of the peak shapes as a function of energy. In turn this leads to the ability to perform accurate spectral deconvolution and therefore accurate isotopic analysis. The model and the peak-shape parameterization as a function of energy will be presented

  8. An antimicrobial stewardship program reduces antimicrobial therapy duration and hospital stay in surgical wards.

    Science.gov (United States)

    Güerri-Fernández, R; Villar-García, J; Herrera-Fernández, S; Trenchs-Rodríguez, M; Fernández-Morato, J; Moro, L; Sancho, J; Grande, L; Clará, A; Grau, S; Horcajada, J P

    2016-06-01

    We report a quasi-experimental study of the implementation of an antimicrobial stewardship program in two surgical wards, with a pre-intervention period with just assessment of prescription and an intervention period with a prospective audit on antibiotic prescription model. There was a significant reduction of length of stay and the total days of antimicrobial administration. There were no differences in mortality between groups. The antimicrobial stewardship program led to the early detection of inappropriate empirical antibiotic treatment and was associated with a significant reduction in length of stay and the total duration of antimicrobial therapy. PMID:27167764

  9. Distribution of zinc in vineyard areas treated with zinc containing phytopharmaceuticals:

    OpenAIRE

    Kerin, Danimir; Weingerl, Vesna

    2000-01-01

    Zinc concentration in vineyard soil is, in general, increased markedly by the long term application of zinc containing fungicides. The most significant source of Zn are nowadays dithiocarbamate based fungicides, e.g. Antracol. The concentration of total zinc and EDTA and ammonium lactate (AL) extractable Zn in soils are evaluated together with the concentration of Zn in different inorganic fertilizers and in fungicides. the results of the study indicate in the observed vineyard areas a long t...

  10. Zinc in growth and development and spectrum of human zinc deficiency.

    Science.gov (United States)

    Prasad, A S

    1988-10-01

    Growth retardation is seen in experimental animals as a result of severe dietary restriction of several essential trace elements. However, in humans, the effect of zinc deficiency is most pronounced. Growth failure and hypogonadism in males, related to a deficiency of zinc, have been recognized in many developing countries. A mild deficiency of zinc, affecting growth and development in children and adolescents, has been reported from developed countries as well. Zinc deficiency in humans may manifest as severe, moderate, or mild. The manifestations of severe zinc deficiency include bullous pustular dermatitis, alopecia, diarrhea, emotional disorder, weight loss, intercurrent infections due to cell-mediated immune dysfunctions, hypogonadism in males, neurosensory disorders, and problems with healing of ulcers. This condition can be fatal. A moderate level of zinc deficiency has been reported in a variety of conditions. Clinical manifestations include growth retardation and male hypogonadism in adolescence, rough skin, poor appetite, mental lethargy, delayed wound healing, cell-mediated immune dysfunctions, and abnormal neurosensory changes. A mild level of zinc deficiency may manifest with decreased serum testosterone level and oligospermia in males, decreased lean body mass, hyper-ammonemia, neurosensory changes, anergy, decreased serum thymulin activity, and decreased IL-2 activity. Although the clinical aspects of severe and moderate levels of zinc deficiency are well known, the recognition of mild levels of zinc deficiency has been difficult. Currently plasmas zinc appears to be the most widely used parameter for assessment of human zinc status, and it is known to be decreased in cases of severe and moderate deficiency of zinc.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3053862

  11. Zinc supplementation reduced DNA breaks in Ethiopian women

    OpenAIRE

    Joray, Maya L.; Yu, Tian-Wei; Ho, Emily; Clarke, Stephen L.; Stanga, Zeno; Gebreegziabher, Tafere; Hambidge, K. Michael; Stoecker, Barbara J

    2014-01-01

    Assessment of zinc status remains a challenge largely because serum/plasma zinc may not accurately reflect an individual’s zinc status. The comet assay, a sensitive method capable of detecting intracellular DNA strand breaks, may serve as a functional biomarker of zinc status. We hypothesized that effects of zinc supplementation on intracellular DNA damage could be assessed from samples collected in field studies in Ethiopia using the comet assay. Forty women, from villages where reported con...

  12. Dietary Zinc and Prostate Cancer in the TRAMP Mouse Model

    OpenAIRE

    Prasad, Ananda S; Mukhtar, Hasan; Beck, Frances W.J.; Adhami, Vaqar M.; Siddiqui, Imtiaz A.; Din, Maria; Hafeez, Bilal B.; KUCUK, Omer

    2010-01-01

    Circumstantial evidence indicates that zinc may have an important role in the prostate. Total zinc levels in the prostate are 10 times higher than in other soft tissues. Zinc concentrations in prostate epithethial cancer cells are decreased significantly. Zinc supplementation for prevention and treatment of prostate cancer in humans has yielded controversial results. No studies have been reported in animal models to show the effect of zinc supplementation on prevention of prostate cancer, thu...

  13. Comparison of effect of zinc-enriched pod of Phaseolus vulgaris and inner rice husk composts with zinc sulphate and zinc 14% chelate on zinc availability in maize plant in a calcareous soil

    OpenAIRE

    Rasouli, Mrs. Shabnam; Azizi, Prof. Pirouz; Forghani, Dr. Akbar; Asghar Zade, Dr. Ahmad

    2008-01-01

    Mixtures of Zn salts and organic matter have been used successfully in controlling zinc deficiency in various crops. The aim of the present study was to optimize the effectiveness, on zinc availability in maize, of natural organic substances by enriching them with zinc sulfate. For this purpose pod of Phaseolus vulgaris and inner rice husk, as abundant organic wastes in the north of Iran, were incubated with increasing quantities of zinc sulphate. The effect of these zinc-enriched composts, z...

  14. Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus

    OpenAIRE

    Lu, Qiping; Haragopal, Hariprakash; Slepchenko, Kira G.; Stork, Christian; Li, Yang V

    2016-01-01

    Zinc (Zn2+) is required for numerous cellular functions. As such, the homeostasis and distribution of intracellular zinc can influence cellular metabolism and signaling. However, the exact distribution of free zinc within live cells remains elusive. Previously we showed the release of zinc from thapsigargin/IP3-sensitive endoplasmic reticulum (ER) storage in cortical neurons. In the present study, we investigated if other cellular organelles also contain free chelatable zinc and function as o...

  15. Suppressing the dendritic growth of zinc in an ionic liquid containing cationic and anionic zinc complexes for battery applications.

    Science.gov (United States)

    Liu, Zhen; Pulletikurthi, Giridhar; Lahiri, Abhishek; Cui, Tong; Endres, Frank

    2016-05-10

    Metallic zinc is a promising negative electrode for high energy rechargeable batteries due to its abundance, low-cost and non-toxic nature. However, the formation of dendritic zinc and low Columbic efficiency in aqueous alkaline solutions during charge/discharge processes remain a great challenge. Here we demonstrate that the dendritic growth of zinc can be effectively suppressed in an ionic liquid electrolyte containing highly concentrated cationic and anionic zinc complexes obtained by dissolving zinc oxide and zinc trifluoromethylsulfonate in a protic ionic liquid, 1-ethylimidazolium trifluoromethylsulfonate. The presence of both cationic and anionic zinc complexes alters the interfacial structure at the electrode/electrolyte interface and influences the nucleation and growth of zinc, leading to compact, homogeneous and dendrite-free zinc coatings. This study also provides insights into the development of highly concentrated metal salts in ionic liquids as electrolytes to deposit dendrite-free zinc as an anode material for energy storage applications. PMID:27080261

  16. Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women

    Directory of Open Access Journals (Sweden)

    Karen Lim

    2015-04-01

    Full Text Available Iron and zinc are found in similar foods and absorption of both may be affected by food compounds, thus biochemical iron and zinc status may be related. This cross-sectional study aimed to: (1 describe dietary intakes and biochemical status of iron and zinc; (2 investigate associations between dietary iron and zinc intakes; and (3 investigate associations between biochemical iron and zinc status in a sample of premenopausal women aged 18–50 years who were recruited in Melbourne and Sydney, Australia. Usual dietary intakes were assessed using a 154-item food frequency questionnaire (n = 379. Iron status was assessed using serum ferritin and hemoglobin, zinc status using serum zinc (standardized to 08:00 collection, and presence of infection/inflammation using C-reactive protein (n = 326. Associations were explored using multiple regression and logistic regression. Mean (SD iron and zinc intakes were 10.5 (3.5 mg/day and 9.3 (3.8 mg/day, respectively. Median (interquartile range serum ferritin was 22 (12–38 μg/L and mean serum zinc concentrations (SD were 12.6 (1.7 μmol/L in fasting samples and 11.8 (2.0 μmol/L in nonfasting samples. For each 1 mg/day increase in dietary iron intake, zinc intake increased by 0.4 mg/day. Each 1 μmol/L increase in serum zinc corresponded to a 6% increase in serum ferritin, however women with low serum zinc concentration (AM fasting < 10.7 μmol/L; AM nonfasting < 10.1 μmol/L were not at increased risk of depleted iron stores (serum ferritin <15 μg/L; p = 0.340. Positive associations were observed between dietary iron and zinc intakes, and between iron and zinc status, however interpreting serum ferritin concentrations was not a useful proxy for estimating the likelihood of low serum zinc concentrations and women with depleted iron stores were not at increased risk of impaired zinc status in this cohort.

  17. Saccharomyces cerevisiae Vacuole in Zinc Storage and Intracellular Zinc Distribution▿ ‡

    OpenAIRE

    Simm, Claudia; Lahner, Brett; Salt, David; LeFurgey, Ann; Ingram, Peter; Yandell, Brian; Eide, David J.

    2007-01-01

    Previous studies of the yeast Saccharomyces cerevisiae indicated that the vacuole is a major site of zinc storage in the cell. However, these studies did not address the absolute level of zinc that was stored in the vacuole nor did they examine the abundances of stored zinc in other compartments of the cell. In this report, we describe an analysis of the cellular distribution of zinc by use of both an organellar fractionation method and an electron probe X-ray microanalysis. With these method...

  18. Dealing with antimicrobial resistance - the Danish experience

    DEFF Research Database (Denmark)

    Bager, Flemming; Aarestrup, Frank Møller; Wegener, Henrik Caspar

    2000-01-01

    Following the discovery in 1994 and 1995 that use of the glycopeptide antimicrobial avoparcin for growth promotion was associated with the occurrence of vancomycin resistant Enterococcus faecium in food animals and in food, the Danish Minister of Food, Agriculture and Fisheries banned the use...... of avoparcin in May 1995. The ban was later extended by the European Commission to include all EU member states. In May 1999, the EU Scientific Steering Committee recommended that use for growth promotion of antimicrobials, which are or may be used in human or veterinary medicine should be phased out as soon...... on the prudent use of antimicrobials in order to reduce the development of resistance without compromising therapeutic efficacy. Our experience with avoparcin shows that a restrictive policy on the use of antimicrobials can curb the development of resistance. However, the occurrence and persistence of specific...

  19. Antimicrobial susceptibility pattern of Helicobacter suis strains.

    Science.gov (United States)

    Vermoote, Miet; Pasmans, Frank; Flahou, Bram; Van Deun, Kim; Ducatelle, Richard; Haesebrouck, Freddy

    2011-12-15

    Helicobacter suis is a very fastidious porcine gastric pathogen, which is also considered to be of zoonotic importance. In vitro antimicrobial susceptibility cannot be determined using standard assays, as this agent only grows in a biphasic medium with an acidic pH. Therefore, a combined agar and broth dilution method was used to analyse the activity of nine antimicrobial agents against nine H. suis isolates. After 48 h microaerobic incubation, minimal inhibitory concentrations (MICs) were determined by software-assisted calculation of bacterial growth. Only for enrofloxacin a bimodal distribution of MICs was demonstrated, indicating acquired resistance in one strain, which showed an AGT→AGG (Ser→Arg) substitution at codon 99 of gyrA. In conclusion, the assay developed here is suitable for determination of the antimicrobial susceptibility of H. suis isolates, although activity of acid sensitive antimicrobial agents may be higher than predicted from MIC endpoints. PMID:21733643

  20. ANTIMICROBIAL ACTIVITY OF LACTIC ACID BACTERIAL ISOLATES

    Directory of Open Access Journals (Sweden)

    Utkarsha S. Shivsharan

    2013-08-01

    Full Text Available Micro-organisms have tendency to produce antimicrobial substances which show biological activity against other kind of micro-organisms. This phenomenon of bacterial antagonism is observed in lactic acid bacteria with competitive advantages. The lactic acid bacteria are commonly present in many fermented products, fruits and milk products. The variety of antimicrobial substances produced by lactic acid bacteria showing good inhibition capacity include production of lactic acid, acetic acid, hydrogen peroxide, carbon dioxide, diacetyl and bacteriocin. Bacteriocins produced by lactic acid bacteria are the subject of intense research because of their antimicrobial activity against food born bacteria such as Listeria monocytogenes, staphylococcus aureus, Bacillus cereus, Clostridium botulinum and several others .Bacteriocins may be bacteriostatic or bactericidal with narrow or broad range of activity. The main of the study was to study the antimicrobial activity of such lactic acid bacterial isolates.

  1. Antimicrobial activity of UMFix tissue fixative

    OpenAIRE

    Cleary, T J; Morales, A. R.; Nadji, M.; Nassiri, M.; Vincek, V.

    2005-01-01

    Aims: The aim of this study was to determine the antimicrobial effects of UMFix, an alcohol based tissue fixative, on various microorganisms. The UMFix solution was compared with 10% neutral buffered formalin.

  2. SecA inhibitors: next generation antimicrobials

    Institute of Scientific and Technical Information of China (English)

    Weixuan Chen; Arpana Chaudhary; Jianmei Cui; Jinshan Jin; Yinghsin Hsieh; Hsiuchin Yang; Yingju Huang; Phang C. Tai; Binghe Wang

    2012-01-01

    Health problems caused by bacterial infection have become a major public health concern in recent years due to the widespread emergence of drug-resistant bacterial strains.Therefore,the need for the development of new types of antimicrobial agents,especially those with a novel mechanism of action,is urgent.SecA,one of the key components of the secretion (Sec) pathway,is a new promising target for antimicrobial agent design.In recent years,promising leads targeting SecA have been identified and the feasibility of developing antimicrobial agents through the inhibition of SecA has been demonstrated.We hope this review will help stimulate more research in this area so that new antimicrobials can be obtained by targeting SecA.

  3. Antimicrobial-Coated Granules for Disinfecting Water

    Science.gov (United States)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of preparing antimicrobialcoated granules for disinfecting flowing potable water have been developed. Like the methods reported in the immediately preceding article, these methods involve chemical preparation of substrate surfaces (in this case, the surfaces of granules) to enable attachment of antimicrobial molecules to the surfaces via covalent bonds. A variety of granular materials have been coated with a variety of antimicrobial agents that include antibiotics, bacteriocins, enzymes, bactericides, and fungicides. When employed in packed beds in flowing water, these antimicrobial-coated granules have been proven effective against gram-positive bacteria, gram-negative bacteria, fungi, and viruses. Composite beds, consisting of multiple layers containing different granular antimicrobial media, have proven particularly effective against a broad spectrum of microorganisms. These media have also proven effective in enhancing or potentiating the biocidal effects of in-line iodinated resins and of very low levels of dissolved elemental iodine.

  4. Statistical metamodeling for revealing synergistic antimicrobial interactions.

    Science.gov (United States)

    Chen, Hsiang Chia; Chen, Chia Hsiang; Gau, Vincent; Zhang, Donna D; Liao, Joseph C; Wang, Fei-Yue; Wong, Pak Kin

    2010-01-01

    Many bacterial pathogens are becoming drug resistant faster than we can develop new antimicrobials. To address this threat in public health, a metamodel antimicrobial cocktail optimization (MACO) scheme is demonstrated for rapid screening of potent antibiotic cocktails using uropathogenic clinical isolates as model systems. With the MACO scheme, only 18 parallel trials were required to determine a potent antimicrobial cocktail out of hundreds of possible combinations. In particular, trimethoprim and gentamicin were identified to work synergistically for inhibiting the bacterial growth. Sensitivity analysis indicated gentamicin functions as a synergist for trimethoprim, and reduces its minimum inhibitory concentration for 40-fold. Validation study also confirmed that the trimethoprim-gentamicin synergistic cocktail effectively inhibited the growths of multiple strains of uropathogenic clinical isolates. With its effectiveness and simplicity, the MACO scheme possesses the potential to serve as a generic platform for identifying synergistic antimicrobial cocktails toward management of bacterial infection in the future. PMID:21124958

  5. Statistical metamodeling for revealing synergistic antimicrobial interactions.

    Directory of Open Access Journals (Sweden)

    Hsiang Chia Chen

    Full Text Available Many bacterial pathogens are becoming drug resistant faster than we can develop new antimicrobials. To address this threat in public health, a metamodel antimicrobial cocktail optimization (MACO scheme is demonstrated for rapid screening of potent antibiotic cocktails using uropathogenic clinical isolates as model systems. With the MACO scheme, only 18 parallel trials were required to determine a potent antimicrobial cocktail out of hundreds of possible combinations. In particular, trimethoprim and gentamicin were identified to work synergistically for inhibiting the bacterial growth. Sensitivity analysis indicated gentamicin functions as a synergist for trimethoprim, and reduces its minimum inhibitory concentration for 40-fold. Validation study also confirmed that the trimethoprim-gentamicin synergistic cocktail effectively inhibited the growths of multiple strains of uropathogenic clinical isolates. With its effectiveness and simplicity, the MACO scheme possesses the potential to serve as a generic platform for identifying synergistic antimicrobial cocktails toward management of bacterial infection in the future.

  6. Antimicrobial activity of some Iranian medicinal plants

    Directory of Open Access Journals (Sweden)

    Ghasemi Pirbalouti Abdollah

    2010-01-01

    Full Text Available The major aim of this study was to determine the antimicrobial activity of the extracts of eight plant species which are endemic in Iran. The antimicrobial activities of the extracts of eight Iranian traditional plants, including Hypericum scabrum, Myrtus communis, Pistachia atlantica, Arnebia euchroma, Salvia hydrangea, Satureja bachtiarica, Thymus daenensis and Kelussia odoratissima, were investigated against Escherichia coli O157:H7, Bacillus cereus, Listeria monocytogenes and Candida albicans by agar disc diffusion and serial dilution assays. Most of the extracts showed a relatively high antimicrobial activity against all the tested bacteria and fungi. Of the plants studied, the most active extracts were those obtained from the essential oils of M. communis and T. daenensis. The MIC values for active extract and essential oil ranged between 0.039 and 10 mg/ml. It can be said that the extract and essential oil of some medicinal plants could be used as natural antimicrobial agents in food preservation. .

  7. Substaniation of antimicrobial dressings use in surgery

    Directory of Open Access Journals (Sweden)

    Paliy G.K.

    2014-06-01

    Full Text Available Antimicrobial materials incorporate in their structure modern antiseptics, which have the ability of dischargeng in the environment and provide death of opportunistic microorganisms. The results of the research of antimicrobial qualities of modern dressings, which include decamethoxine, chlorhexidine digluconate, furagin are shown. It was found that strains of Staphylococcus spp., Escherichia spp., Pseudomonas spp. are of high sensitivity to decamethoxin in dressing materials in comparison with textile materials, finished with chlorhexidine digluconate, furagin. The kinetics of decamethoxin release from antimicrobial materials is presented in the article. It was proven, that the release of decametoxin from antimicrobial materials in the environment occurs due to the diffusion and hydrolytic destruction of polymers in aqueous phase, which continues during 15 days.

  8. Zinc and its importance for human health: An integrative review.

    Science.gov (United States)

    Roohani, Nazanin; Hurrell, Richard; Kelishadi, Roya; Schulin, Rainer

    2013-02-01

    Since its first discovery in an Iranian male in 1961, zinc deficiency in humans is now known to be an important malnutrition problem world-wide. It is more prevalent in areas of high cereal and low animal food consumption. The diet may not necessarily be low in zinc, but its bio-availability plays a major role in its absorption. Phytic acid is the main known inhibitor of zinc. Compared to adults, infants, children, adolescents, pregnant, and lactating women have increased requirements for zinc and thus, are at increased risk of zinc depletion. Zinc deficiency during growth periods results in growth failure. Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency. Clinical diagnosis of marginal Zn deficiency in humans remains problematic. So far, blood plasma/serum zinc concentration, dietary intake, and stunting prevalence are the best known indicators of zinc deficiency. Four main intervention strategies for combating zinc deficiency include dietary modification/diversification, supplementation, fortification, and bio-fortification. The choice of each method depends on the availability of resources, technical feasibility, target group, and social acceptance. In this paper, we provide a review on zinc biochemical and physiological functions, metabolism including, absorption, excretion, and homeostasis, zinc bio-availability (inhibitors and enhancers), human requirement, groups at high-risk, consequences and causes of zinc deficiency, evaluation of zinc status, and prevention strategies of zinc deficiency.

  9. Zinc and its importance for human health: An integrative review

    Directory of Open Access Journals (Sweden)

    Nazanin Roohani

    2013-01-01

    Full Text Available Since its first discovery in an Iranian male in 1961, zinc deficiency in humans is now known to be an important malnutrition problem world-wide. It is more prevalent in areas of high cereal and low animal food consumption. The diet may not necessarily be low in zinc, but its bio-availability plays a major role in its absorption. Phytic acid is the main known inhibitor of zinc. Compared to adults, infants, children, adolescents, pregnant, and lactating women have increased requirements for zinc and thus, are at increased risk of zinc depletion. Zinc deficiency during growth periods results in growth failure. Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency. Clinical diagnosis of marginal Zn deficiency in humans remains problematic. So far, blood plasma/serum zinc concentration, dietary intake, and stunting prevalence are the best known indicators of zinc deficiency. Four main intervention strategies for combating zinc deficiency include dietary modification/diversification, supplementation, fortification, and bio-fortification. The choice of each method depends on the availability of resources, technical feasibility, target group, and social acceptance. In this paper, we provide a review on zinc biochemical and physiological functions, metabolism including, absorption, excretion, and homeostasis, zinc bio-availability (inhibitors and enhancers, human requirement, groups at high-risk, consequences and causes of zinc deficiency, evaluation of zinc status, and prevention strategies of zinc deficiency.

  10. Antimicrobial activity of amazonian medicinal plants

    OpenAIRE

    Oliveira, Amanda A; Segovia, Jorge FO; Sousa, Vespasiano YK; Mata, Elida CG; Gonçalves, Magda CA; Bezerra, Roberto M; Junior, Paulo OM; Kanzaki, Luís IB

    2013-01-01

    Objectives The aqueous extracts of currently utilized Amazonian medicinal plants were assayed in vitro searching for antimicrobial activity against human and animal pathogenic microorganisms. Methods Medium resuspended lyophilized aqueous extracts of different organs of Amazonian medicinal plants were assayed by in vitro screening for antimicrobial activity. ATCC and standardized microorganisms obtained from Oswaldo Cruz Foundation/Brazil were individually and homogeneously grown in agar plat...

  11. Antimicrobial Activity of Drosera rotundifolia L.

    OpenAIRE

    Miroslava Kačániová; Dominika Ďurechová; Nenad Vuković; Attila Kántor; Jana Petrová; Lukáš Hleba; Alexander Vatľák

    2014-01-01

    Droseracae spp. is widely used in folk medicine. In the present study, the antimicrobial activities of the four Drosera rotundifolia L. (D8.11, D15.12, 18.10, 8.11) samples were investigated. The antimicrobial activities were determined by using agar disc diffusion method against grampositive bacteria (Bacillus thurigiensis, Staphylococcus aureus, Listeria monocytogenes) and gramnegative bacteria (Yersinia enterocolitica, Salmonella enteritidis).  The results of the disk diffusion method show...

  12. Phytochemical and Antimicrobial Studies of Chlorophytum borivilianum

    OpenAIRE

    Guno Sindhu Chakraborthy; Vidhu Aeri

    2009-01-01

    Extracts of leaves and stems of Chlorophytum borivilianum were subjected to preliminary phytochemical screening and in-vitro antimicrobial studies. The results of the preliminary investigation revealed the presence of alkaloids, glycosides, steroidal nucleus, saponins and tannins in both parts. The methanolic extract of leaf and stems part were investigated for antimicrobial activity using agar disc diffusion method. Six clinical strains of human pathogenic microorganisms, comprising 3 Gram +...

  13. Optimizing antimicrobial therapy in critically ill patients

    OpenAIRE

    Pagani, Leonardo

    2014-01-01

    Virginie Vitrat,1 Serge Hautefeuille,2 Cécile Janssen,1 David Bougon,2 Michel Sirodot,2 Leonardo Pagani1,3 1Antimicrobial Stewardship Program, Infectious Diseases Unit, 2Intensive Care Unit, Annecy-Genevois Hospital Center (CHANGE), Annecy, France; 3Infectious Diseases Unit, Bolzano Central Hospital, Bolzano, Italy Abstract: Critically ill patients with infection in the intensive care unit (ICU) would certainly benefit from timely bacterial identification and effective antimicrobi...

  14. Optimizing antimicrobial therapy in critically ill patients

    OpenAIRE

    Vitrat V; Hautefeuille S; Janssen C; Bougon D; Sirodot M; Pagani L

    2014-01-01

    Virginie Vitrat,1 Serge Hautefeuille,2 Cécile Janssen,1 David Bougon,2 Michel Sirodot,2 Leonardo Pagani1,3 1Antimicrobial Stewardship Program, Infectious Diseases Unit, 2Intensive Care Unit, Annecy-Genevois Hospital Center (CHANGE), Annecy, France; 3Infectious Diseases Unit, Bolzano Central Hospital, Bolzano, Italy Abstract: Critically ill patients with infection in the intensive care unit (ICU) would certainly benefit from timely bacterial identification and effective antimicrobial t...

  15. The antimicrobial activity of Physalis peruviana L.

    OpenAIRE

    Göztok, Ferda; Zengin, Fikriye

    2013-01-01

    In this study, the antimicrobial activity of Physalis peruviana L. was investigated. The antimicrobial activity was evaluated according to the microdilution method by using Bacillus megaterium DMS 32, Pseudomonas aeruginosa DMS 50071, Escherichia coli ATCC 25922, Klebsiella pneumoniae FMC 5, Proteus vulgaris FMC 1, Enterobacter aeregenes CCM 2531, Candida albicans FMC 17, Candida globrata ATCC 66032, Candida tropicalis ATCC 13803, Trichophyton sp. and Epidermaphyton sp. In the end of experim...

  16. Antimicrobial activity of Aspilia latissima (Asteraceae)

    OpenAIRE

    Souza, Jeana M.E.; Chang, Marilene R.; Brito, Daniela Z.; Katyuce S. Farias; Damasceno-Junior, Geraldo A.; Izabel C.C. Turatti; Norberto P. Lopes; Santos, Edson A.; Carollo, Carlos A.

    2015-01-01

    Abstract We evaluated the antimicrobial activity of Aspilia latissima - an abundant plant from the Brazilian Pantanal region - against Candida albicans, Candida parapsilosis, Candida krusei, Candida tropicalis, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli and Staphylococcus aureus. The crude extracts and fractions showed activity in all tested microorganisms. The chloroform fraction of the leaves and roots showed the most antimicrobial activity against S. aureus, with an MI...

  17. Antimicrobial Effects of Honey on Bacillus Cereus

    OpenAIRE

    This paper should be cited as: Javadzadeh M, Najafi M, Rezaei M, Dastoor M, Behzadi AS, Amiri A . [ Antimicrobial Effects of Honey on Bacillus Cereus ]. MLJ. 201 4 ; 8 ( 2 ): 55 - 61 [Article in Persian] Javadzadeh, M. (MSc; M Najafi; Rezaei, M. (MSc; Dastoor, M. (BSc; Behzadi, AS. (MSc; Amiri, A. (MSc

    2014-01-01

    Background and Objective: Honey is a healthy and nutritious food that has been used for a long time as a treatment for different diseases. One of the applied properties of honey is its antimicrobial effect, which differs between different types of honey due to variation of phenolic and antioxidant compositions. This study aimed to assess antimicrobial effect of honey on Bacillus cereus, considering its chemical properties. Material and Methods: Three samples of honey (A1 and A2 of Khorasan Ra...

  18. Mechanism of action of cyclic antimicrobial peptides

    OpenAIRE

    Díaz i Cirac, Anna

    2011-01-01

    This PhD thesis is the result of the combination of experimental and computational techniques with the aim of understanding the mechanism of action of de novo cyclic decapeptides with high antimicrobial activity. By experimental techniques the influence of the replacement of the phenylalanine for tryptophan residue in their antimicrobial activity was tested and the stability in human serum was also analyzed, in order to evaluate their potential therapeutic application as antitumor agents. ...

  19. Sorption of zinc on human teeth

    International Nuclear Information System (INIS)

    Zinc containing dental amalgams are sometimes used as fillings by dentists. The freshly mixed mass of the amalgam alloy and liquid mercury packed or condensed into a prepared tooth cavity. Zinc has been included in amalgams alloys up to 2% as an aid in manufacturing by helping to produce clean sound castings of the ingots. Although such restorations have a relatively long service life, they are subject to corrosion and galvanic action, thus releasing metallic products into the oral environment. The aim of this paper is to investigate the uptake (sorption) of Zinc ionic species on human teeth using the radioactive tracer technique. For this purpose the isotope Zn-65 produced from pile-irradiation of zinc metal was used. The various liquids studied were drinking water (tap water), tea, coffee, red tea and chicken soup. Sorption was studied through immersion of a single human tooth (extracted) in each of these liquids

  20. Zinc-induced protection against cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Early, J.L.; Schnell, R.C.

    1978-02-01

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  1. Sealed Cylindrical Silver/Zinc Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — RBC Technologies has significanly improved the cycle life and wet life of silver/zinc battery technology through novel separator and anode formulations. This...

  2. Determination of activable isotopic tracers of zinc by neutron activation analysis for study of bioavailability of zinc

    International Nuclear Information System (INIS)

    A procedure of pre-irradiation concentration of zinc in fecal samples using anion exchanger was developed for the study of the bioavailability of zinc by neutron activation analysis. The mass ratios between 70Zn and 68Zn, or 64Zn and their contents between natural zinc and enriched zinc are used to calculate the bioavailability of zinc when the abundance of the isotope 70Zn is not high enough. (author) 9 refs.; 1 fig.; 2 tabs

  3. A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator

    OpenAIRE

    Bird, Amanda J.; Zhao, Hui; Luo, Huan; Jensen, Laran T.; Srinivasan, Chandra; Evans-Galea, Marguerite; Winge, Dennis R.; Eide, David J.

    2000-01-01

    The Zap1 transcriptional activator of Saccharomyces cerevisiae controls zinc homeostasis. Zap1 induces target gene expression in zinc-limited cells and is repressed by high zinc. One such target gene is ZAP1 itself. In this report, we examine how zinc regulates Zap1 function. First, we show that transcriptional autoregulation of Zap1 is a minor component of zinc responsiveness; most regulation of Zap1 activity occurs post-translationally. Secondly, nuclear localization of Zap1 does not change...

  4. Effectiveness of zinc fortified drinking water on zinc intake, status and morbidity of rural Kenyan pre-school children

    OpenAIRE

    Kujinga-Chopera, P.

    2016-01-01

    Background: Zinc deficiency is considered a significant public health problem in preschool children in Africa together with infections such as diarrhea, which further deplete the body of zinc. Young children are more vulnerable to zinc deficiency due to increased requirements and frequent infections. Zinc fortified water is one way of improving zinc intake and reducing diarrheal infections in such vulnerable groups. Vestergaard Frandsen has developed a point-of-use device capable of purifying...

  5. Chronic treatment with zinc and antidepressants induces enhancement of presynaptic/extracellular zinc concentration in the rat prefrontal cortex

    OpenAIRE

    Sowa-Kućma, Magdalena; Kowalska, Magdalena; Szlósarczyk, Marek; Gołembiowska, Krystyna; Opoka, Włodzimierz; Baś, Bogusław; Pilc, Andrzej; Nowak, Gabriel

    2010-01-01

    Zinc exhibits antidepressant-like activity in preclinical tests/models. Moreover, zinc homeostasis is implicated in the pathophysiology of affective disorders. The aim of the present study was to examine the effect of chronic zinc, citalopram and imipramine intraperitoneal administration on the presynaptic and extracellular zinc concentration in the rat prefrontal cortex and hippocampus. We used two methods: zinc–selenium histochemistry (which images the pool of presynaptic-vesicle zinc) and ...

  6. Zinc involvement in opioid addiction and analgesia – should zinc supplementation be recommended for opioid-treated persons?

    OpenAIRE

    Ciubotariu, Diana; Ghiciuc, Cristina Mihaela; Lupușoru, Cătălina Elena

    2015-01-01

    Introduction Zinc chelators were shown to facilitate some opioid-withdrawal signs in animals. Zinc deficiency, which affects more than 15 % the world’s population, is also common among opioid consumers and opioid-treated animals exhibit misbalances of zinc distribution. Aim The present study focuses on how zinc ions interfere with opioid dependence/addiction and analgesia, trying to preliminary discuss if zinc supplementation in opioid-users should be recommended in order to reduce the risk o...

  7. The antimicrobial possibilities of green tea

    Directory of Open Access Journals (Sweden)

    Wanda C Reygaert

    2014-08-01

    Full Text Available Green tea is a popular drink, especially in Asian countries, although its popularity continues to spread across the globe. The health benefits of green tea, derived from the leaves of the Camellia sinensis plant, have been studied for many years. Fairly recently, researchers have begun to look at the possibility of using green tea in antimicrobial therapy, and the potential prevention of infections. The particular properties of catechins found in the tea have shown promise for having antimicrobial effects. There are four main catechins (polyphenols found in green tea: (--epicatechin (EC, (--epicatechin-3-gallate (ECG, (--epigallocatechin (EGC, and (--epigallocatechin-3-gallate (EGCG. Three of these, ECG, EGC, and EGCG have been shown to have antimicrobial effects against a variety of organisms. These catechins have exhibited a variety of antimicrobial mechanisms. The results of studies on the antimicrobial effects of green tea have shown that the potential for preventive and therapeutic purposes is present. Further data collection on studies performed with human consumption during the course of infections, and studies on the occurrence of infections in populations that consume regular amounts of green tea will be necessary to complete the picture of its antimicrobial possibilities.

  8. Clinical impact of antimicrobial resistance in animals.

    Science.gov (United States)

    Vaarten, J

    2012-04-01

    It is almost impossible to imagine veterinary medicine today without the use of antimicrobials. Shortly after their discovery, antimicrobials found their way into the veterinary world. They have brought many benefits for the health and welfare of both animals and people, such as the lessening of pain and suffering, reduction in shedding of (zoonotic) bacteria and the containment of potentially large-scale epidemics. Indirectly, they also contribute to food security, protection of livelihoods and animal resources, and poverty alleviation. Given the broad range of animal species under veterinary care and the enormous variety of infectious agents, a complete range of antimicrobials is needed in veterinary medicine. Losing products, either through the occurrence of resistance or through a prohibition on their use, will have serious consequences for the health and welfare of all animals. It will also seriously affect people who depend on these animals. It is a great challenge to everyone involved to stop the growing trend of antimicrobial resistance and to safeguard the effectiveness of antimicrobials for the future. Transparent and responsible use of antimicrobials, together with continuous monitoring and surveillance of the occurrence of resistance, are key elements of any strategy. The current situation also urges us to re-think unsustainable practices and to work on the development of alternatives, in the interests of the health and welfare of both animals and people. PMID:22849278

  9. Optimizing antimicrobial therapy in critically ill patients.

    Science.gov (United States)

    Vitrat, Virginie; Hautefeuille, Serge; Janssen, Cécile; Bougon, David; Sirodot, Michel; Pagani, Leonardo

    2014-01-01

    Critically ill patients with infection in the intensive care unit (ICU) would certainly benefit from timely bacterial identification and effective antimicrobial treatment. Diagnostic techniques have clearly improved in the last years and allow earlier identification of bacterial strains in some cases, but these techniques are still quite expensive and not readily available in all institutions. Moreover, the ever increasing rates of resistance to antimicrobials, especially in Gram-negative pathogens, are threatening the outcome for such patients because of the lack of effective medical treatment; ICU physicians are therefore resorting to combination therapies to overcome resistance, with the direct consequence of promoting further resistance. A more appropriate use of available antimicrobials in the ICU should be pursued, and adjustments in doses and dosing through pharmacokinetics and pharmacodynamics have recently shown promising results in improving outcomes and reducing antimicrobial resistance. The aim of multidisciplinary antimicrobial stewardship programs is to improve antimicrobial prescription, and in this review we analyze the available experiences of such programs carried out in ICUs, with emphasis on results, challenges, and pitfalls. Any effective intervention aimed at improving antibiotic usage in ICUs must be brought about at the present time; otherwise, we will face the challenge of intractable infections in critically ill patients in the near future. PMID:25349478

  10. Understanding the mechanisms and drivers of antimicrobial resistance.

    Science.gov (United States)

    Holmes, Alison H; Moore, Luke S P; Sundsfjord, Arnfinn; Steinbakk, Martin; Regmi, Sadie; Karkey, Abhilasha; Guerin, Philippe J; Piddock, Laura J V

    2016-01-01

    To combat the threat to human health and biosecurity from antimicrobial resistance, an understanding of its mechanisms and drivers is needed. Emergence of antimicrobial resistance in microorganisms is a natural phenomenon, yet antimicrobial resistance selection has been driven by antimicrobial exposure in health care, agriculture, and the environment. Onward transmission is affected by standards of infection control, sanitation, access to clean water, access to assured quality antimicrobials and diagnostics, travel, and migration. Strategies to reduce antimicrobial resistance by removing antimicrobial selective pressure alone rely upon resistance imparting a fitness cost, an effect not always apparent. Minimising resistance should therefore be considered comprehensively, by resistance mechanism, microorganism, antimicrobial drug, host, and context; parallel to new drug discovery, broad ranging, multidisciplinary research is needed across these five levels, interlinked across the health-care, agriculture, and environment sectors. Intelligent, integrated approaches, mindful of potential unintended results, are needed to ensure sustained, worldwide access to effective antimicrobials. PMID:26603922

  11. An autopsy case of zinc chloride poisoning.

    Science.gov (United States)

    Kondo, Takeshi; Takahashi, Motonori; Watanabe, Seiya; Ebina, Masatomo; Mizu, Daisuke; Ariyoshi, Koichi; Asano, Migiwa; Nagasaki, Yasushi; Ueno, Yasuhiro

    2016-07-01

    Ingestion of large amounts of zinc chloride causes corrosive gastroenteritis with vomiting, abdominal pain, and diarrhea. Some individuals experience shock after ingesting large amounts of zinc chloride, resulting in fatality. Here, we present the results of an administrative autopsy performed on a 70-year-old man who ingested zinc chloride solution and died. After drinking the solution, he developed vomiting, abdominal pain, and diarrhea, and called for an ambulance. Except for tachycardia, his vital signs were stable at presentation. However, he developed hypotension and severe metabolic acidosis and died. The patient's blood zinc concentration on arrival was high at 3030μg/dL. Liver cirrhosis with cloudy yellow ascites was observed, however, there were no clear findings of gastrointestinal perforation. The gastric mucosa was gray-brown, with sclerosis present in all gastric wall layers. Zinc staining was strongly positive in all layers. There was almost no postmortem degeneration of the gastric mucosal epithelium, and hypercontracture of the smooth muscle layer was observed. Measurement of the zinc concentration in the organs revealed the highest concentration in the gastric mucosa, followed by the pancreas and spleen. Clinically, corrosive gastroenteritis was the cause of death. However, although autopsy revealed solidification in the esophagus and gastric mucosa, there were no findings in the small or large intestine. Therefore, metabolic acidosis resulting from organ damage was the direct cause of death. PMID:27497327

  12. Usage of antimicrobials and occurrence of antimicrobial resistance among bacteria from mink

    DEFF Research Database (Denmark)

    Pedersen, Karl; Hammer, Anne Sofie; Sørensen, Charlotte Mark;

    2009-01-01

    The usage of antimicrobials for treatment of mink and the occurrence of antimicrobial resistance among the most important bacterial pathogens in mink was investigated. The aim of the study was to provide data, which may serve as a basis for the formulation of recommendations for prudent Use...

  13. Zinc Addition and its Challenge in Chinese NPP

    International Nuclear Information System (INIS)

    For primary water stress corrosion cracking mitigation and plant dose rates reduction, soluble zinc acetate will be added to reactor coolant in some new Chinese nuclear power plants in the next several years. In the nuclear power plant with zinc addition to reactor coolant, the effects of zinc on fuel cladding corrosion, fuel with sub-cooled nucleate boiling and corrosion product transport must be taken into account, and zinc implementation risk must be assessed. In order to deal with the challenge caused by zinc addition, some research, such as effect of zinc concentration on primary water stress corrosion cracking in reactor coolant system materials and analysis of corrosion product ion in reactor coolant, are being performed in China. Additionally, a zinc implementation risk assessment procedure will be developed for nuclear power plants. In the paper, the background and benefit/challenge of zinc addition are briefly described, and the work in hand for zinc addition is also summarized. (author)

  14. Zinc as an appetite stimulator - the possible role of zinc in the progression of diseases such as cachexia and sarcopenia.

    Science.gov (United States)

    Suzuki, Hajime; Asakawa, Akihiro; Li, Jiang B; Tsai, Minglun; Amitani, Haruka; Ohinata, Kousaku; Komai, Michio; Inui, Akio

    2011-09-01

    Zinc is required by humans and animals for many physiological functions, such as growth, immune function, and reproduction. Zinc deficiency induces a number of physiological problems, including anorexia, growth retardation, dermatitis, taste disorder, and hypogonadism. Although it is clear that zinc deficiency produces specific and profound anorexia in experimental animals, the connection between zinc deficiency and anorexia is less certain. We were the first to show that orally, but not intraperitoneally, administered zinc rapidly stimulates food intake through orexigenic peptides coupled to the afferent vagus nerve using rats during early-stage zinc deficiency without decreased zinc concentrations in plasma and tissues. We confirmed that a zinc-sufficient diet containing zinc chloride acutely stimulated food intake after short-term zinc deprivation. We also found that orally administered zinc sulfate increased the expression of NPY and orexin mRNA after administration. Using vagotomized rats, we tested whether the increase in food intake after oral administration of zinc was mediated by the vagus nerve. In sham-operated rats, the oral administration of zinc stimulated food intake, whereas zinc and saline administrations did not exhibit differing effects in vagotomized rats. We conclude that zinc stimulates food intake in short-term zinc-deficient rats through the afferent vagus nerve with subsequent effects on hypothalamic peptides associated with food intake regulation. In this review, we describe recent research investigating the roles of zinc as an appetite stimulator in food intake regulation, along with research about hypothalamus, ghrelin, leptin and zinc receptor, and clinical application about anorexia nervosa, cachexia and sarcopenia. The article also presents some promising patents on zinc. PMID:21846317

  15. Serum and semen zinc levels in normozoospermic and oligozoospermic men

    Energy Technology Data Exchange (ETDEWEB)

    Madding, C.I.; Jacob, M.; Ramsay, V.P.; Sokol, R.Z.

    1986-01-01

    We studied 11 unselected men who presented to a Reproductive Endocrinology Clinic with histories of infertility and low sperm counts. Reproductive hormones and semen und serum zinc levels were measured. All men had semen analyses performed on at least three separate occasions. A similar set of laboratory evaluations were performed on 11 other men who had normal semen analyses and no history of infertility. No abnormalities of reproductive hormones were found in either group. Mean serum zinc levels were significantly lower in the infertile men. Mean semen zinc levels were not significantly different. There was no correlation between serum and semen zinc levels in either group. A significant correlation was found between sperm count and semen zinc in the volunteers with normal counts, but not in the oligozoospermic men. The results obtained in this study suggest that lowered serum zinc is more common than formerly appreciated in unselected patients with infertility. The high level of zinc found in semen is due primarily to the secretions of the prostate gland and reflects prostatic stores. Serum zinc is thought to be a reasonable indicator of zinc status. The lack of correlation between serum zinc and semen zinc found in our study suggests that mild zinc deficiency may lower serum zinc while the larger prostatic zinc stores remain unaffected.

  16. Zinc deficiency among a healthy population in Baghdad, Iraq

    International Nuclear Information System (INIS)

    To determine the prevalence of zinc deficiency and the current zinc status among a sample selected from the healthy population in Baghdad, Iraq. We carried out a community-based study in Baghdad City, Iraq from November through June 2002. We selected a sample of 2090 healthy subjects (aged 1 month to 85 years). We used a pre-tested questionnaire, designed to obtain information on gender, birth dates, height, weight, residence, habitual food consumption patterns, and social status. We performed laboratory assessment of serum zinc level, dietary assessment of food frequency and usual zinc intake. We considered subjects with serum zinc concentration of /-7.7 to 12.3 umol/l mild to moderately zinc deficient. The prevalence of zinc deficiency among the studied sample was 2.7%. We found mild to moderate zinc deficiency among 55.7% of the study sample. Dietary zinc intake assessment showed that 74.8% of the studied sample consumed less than the recommended intake, and in 62.3%, the intakes were deficient and grossly deficient. Mean daily zinc ranged from 5.2 mg in children to 8.5 mg in adults. We observed a high prevalence of mild to moderate zinc deficiency, with inadequate dietary zinc intake among a considerable proportion of the studied sample. Zinc supplementation may be an effective public health intervention means to improve the zinc status of the population. (author)

  17. Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics

    Directory of Open Access Journals (Sweden)

    Ziwei Liu

    2013-01-01

    Full Text Available Chitosan (CS is a linear polysaccharide with good biodegradability, biocompatibility and antimicrobial activity, which makes it potentially useful for biomedical applications, including an antimicrobial agent either alone or blended with other polymers. However, the poor solubility of CS in most solvents at neutral or high pH substantially limits its use. Quaternary ammonium CS, which was prepared by introducing a quaternary ammonium group on a dissociative hydroxyl group or amino group of the CS, exhibited improved water solubility and stronger antibacterial activity relative to CS over an entire range of pH values; thus, this quaternary modification increases the potential biomedical applications of CS in the field of anti-infection. This review discusses the current findings on the antimicrobial properties of quaternized CS synthesized using different methods and the mechanisms of its antimicrobial actions. The potential antimicrobial applications in the orthopedic field and perspectives regarding future studies in this field are also considered.

  18. Signal Amplification of Bioassay Using Zinc Nanomaterials

    Science.gov (United States)

    Cowles, Chad L.

    An emerging trend in the analytical detection sciences is the employment of nanomaterials for bioassay signal transduction to identify analytes critical to public health. These nanomaterials have been specifically investigated for applications which require identification of trace levels of cells, proteins, or other molecules that can have broad ranging impacts to human health in fields such as clinical diagnostics, environmental monitoring, food and drink control, and the prevention of bioterrorism. Oftentimes these nanoparticle-based signal transduction or amplification approaches offer distinct advantages over conventional methods such as increased sensitivity, rapidity, or stability. The biological application of nanoparticles however, does suffer from drawbacks that have limited more widespread adoption of these techniques. Some of these drawbacks are, high cost and toxicity, arduous synthesis methods, functionalization and bioconjugation challenges, and laboratory disposal and environmental hazard issues, all of which have impeded the progression of this technology in some way or another. This work aims at developing novel techniques that offer solutions to a number of these hurdles through the development of new nanoparticle-based signal transduction approaches and the description of a previously undescribed nanomaterial. Zinc-based nanomaterials offer the opportunity to overcome some of the limitations that are encountered when other nanomaterials are employed for bioassay signal transduction. On the other hand, the biological application of zinc nanomaterials has been difficult because in general their fluorescence is in the blue range and the reported quantum yields are usually too low for highly sensitive applications. The advantages of using zinc nanomaterials for biological applications, such as reduced toxicity, simple synthesis, low cost, and straightforward functionalization strategies contribute to the research interest in their application as

  19. Treatment of Wilson's disease with zinc. I. Oral zinc therapy regimens.

    Science.gov (United States)

    Hill, G M; Brewer, G J; Prasad, A S; Hydrick, C R; Hartmann, D E

    1987-01-01

    The standard therapy for preventing copper accumulation in Wilson's disease, D-penicillamine, has been a life-saving drug, but it has many side effects and some patients are completely intolerant. We have been using oral zinc as another approach to the therapy for Wilson's disease, with copper balance studies as the key initial assessment of the adequacy of a given dose or regimen of zinc therapy. We earlier reported that an intensive regimen of zinc (zinc taken every 4 hr) was effective in controlling copper balance. We have now shown with balance studies that a simplified zinc therapy regimen of 50 mg zinc taken 3 times per day is effective in controlling copper balance. Preliminary work presented here with other simplified regimens also indicate their effectiveness. These studies increase the data base, in terms of copper balance, for zinc therapy of Wilson's disease, and expand the dose range and regimens of zinc which have been shown to control copper balance. PMID:3570163

  20. Effect of zinc from zinc sulfate on trace mineral concentrations of milk in Varamini ewes

    NARCIS (Netherlands)

    Zali, A.; Ganjkhanlou, M.

    2009-01-01

    This study was conducted to evaluate the effect of feeding supplemental zinc (zinc sulfate) in different levels (15, 30, or 45 mg/kg) on trace mineral concentrations in milk of ewes. Thirty lactating Varaminni ewes were assigned to three experimental groups according to their live body weights, milk

  1. Microwave Synthesis of Zinc Hydroxy Sulfate Nanoplates and Zinc Oxide Nanorods in the Classroom

    Science.gov (United States)

    Dziedzic, Rafal M.; Gillian-Daniel, Anne Lynn; Peterson, Greta M.; Martínez-Herna´ndez, Kermin J.

    2014-01-01

    In this hands-on, inquiry-based lab, high school and undergraduate students learn about nanotechnology by synthesizing their own nanoparticles in a single class period. This simple synthesis of zinc oxide nanorods and zinc hydroxy sulfate nanoplates can be done in 15 min using a household microwave oven. Reagent concentration, reaction…

  2. Oral administration of antimicrobials increase antimicrobial resistance in E. coli from chicken--a systematic review.

    Science.gov (United States)

    Simoneit, C; Burow, E; Tenhagen, B-A; Käsbohrer, A

    2015-01-01

    Antimicrobials play an important role in animal and human health care. It was the aim of this systematic review to assess the effects of oral administration of antimicrobials on the development of antimicrobial resistance (AMR) in Escherichia coli (E. coli) from chickens. Moreover, the effects of the administration of more than one antimicrobial and of different dosages were studied. Literature was searched in November 2012 from the electronic databases ISI Web of Science, PubMed, Scopus and a national literature database (DIMDI) as well as the database ProQuest LLC. The search was updated in March 2014. Original studies describing a treatment (A) and a control group of either non-treatment (C) or initial value (0) and determining AMR in E. coli at different sample points (SP) were included. The literature search resulted in 35 full text articles on the topic, seven (20%) of which contained sufficient information on the administered antimicrobial and the impact of treatment on AMR. Most papers described the use of more than one antimicrobial, several dosages, controls (non-treatment or pre-treatment) and measured AMR at different SPs leading to a total of 227 SPs on the impact of the use of antimicrobials on AMR in chickens. 74% of the SPs (168/227) described a higher AMR-rate in E. coli from treated animals than from controls. After the administration of a single antimicrobial, AMR increased at 72% of the SPs. Administration of more than one antimicrobial increased AMR at 82% of the SPs. Higher dosages were associated with similar or higher AMR rates. The limited number of studies for each antimicrobial agent and the high variability in the resistance effect call for more well designed studies on the impact of oral administration on AMR development and spread. PMID:25433717

  3. Growth of zinc oxide nanostructures

    Indian Academy of Sciences (India)

    K Sreenivas; Sanjeev Kumar; Jaya Choudhury; Vinay Gupta

    2005-11-01

    Zinc oxide (ZnO) nanowhiskers have been prepared using a multilayer ZnO(50 nm)/Zn(20 nm)/ZnO(2 m) structure on a polished stainless steel (SS) substrate by high rate magnetron sputtering. The formation of uniformly distributed ZnO nanowhiskers with about 20 nm dia. and 2 to 5 m length was observed after a post-deposition annealing of the prepared structure at 300–400 ° C. An array of highly -axis oriented ZnO columns (70–300 nm in dia. and up to 10 m long) were grown on Si substrates by pulsed laser deposition (PLD) at a high pressure (1 Torr), and Raman studies showed the activation of surface phonon modes. The nanosized powder (15–20 nm) and nanoparticle ZnO films on glass substrate were also prepared by a chemical route. Nanowhiskers showed enhanced UV light detection characteristics, and the chemically prepared ZnO nanoparticle films exhibited good sensing properties for alcohol.

  4. A new zinc binding fold underlines the versatility of zinc binding modules in protein evolution.

    Science.gov (United States)

    Sharpe, Belinda K; Matthews, Jacqueline M; Kwan, Ann H Y; Newton, Anthea; Gell, David A; Crossley, Merlin; Mackay, Joel P

    2002-05-01

    Many different zinc binding modules have been identified. Their abundance and variety suggests that the formation of zinc binding folds might be relatively common. We have determined the structure of CH1(1), a 27-residue peptide derived from the first cysteine/histidine-rich region (CH1) of CREB binding protein (CBP). This peptide forms a highly ordered zinc-dependent fold that is distinct from known folds. The structure differs from a subsequently determined structure of a larger region from the CH3 region of CBP, and the CH1(1) fold probably represents a nonphysiologically active form. Despite this, the fold is thermostable and tolerant to both multiple alanine mutations and changes in the zinc-ligand spacing. Our data support the idea that zinc binding domains may arise frequently. Additionally, such structures may prove useful as scaffolds for protein design, given their stability and robustness.

  5. Selective Acidic Leaching of Spent Zinc-Carbon Batteries Followed by Zinc Electrowinning

    Science.gov (United States)

    Shalchian, Hossein; Rafsanjani-Abbasi, Ali; Vahdati-Khaki, Jalil; Babakhani, Abolfazl

    2015-02-01

    In this work, a selective acidic leaching procedure was employed for recycling zinc from spent zinc-carbon batteries. Leaching experiments were carried out in order to maximize zinc recovery and minimize manganese recovery in diluted sulfuric acid media. Response surface methodology and analysis of variance were employed for experimental design, data analysis, and leaching optimization. The experimental design has 28 experiments that include 24 main runs and four replicate in center point. The optimal conditions obtained from the selective acidic leaching experiments, were sulfuric acid concentration of 1 pct v/v, leaching temperature of 343 K (70 °C), pulp density of 8 pct w/v, and stirring speed of 300 rpm. The results show that the zinc and manganese recoveries after staged selective leaching are about 92 and 15 pct, respectively. Finally, metallic zinc with purity of 99.9 pct and electrolytic manganese dioxide were obtained by electrowinning.

  6. Durability of doped zinc oxide/silver/doped zinc oxide low emissivity coatings in humid environment

    Energy Technology Data Exchange (ETDEWEB)

    Ando, E. [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama 221-8755 (Japan)], E-mail: eiichi-ando@agc.co.jp; Miyazaki, M. [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama 221-8755 (Japan)

    2008-05-30

    The relationship between internal stress of doped zinc oxide films and durability of doped zinc oxide/silver/doped zinc oxide low emissivity (low-e) coatings in humid environment was investigated. Aluminum, titanium, tin, chromium, silicon, gallium, magnesium, boron, barium, and calcium were chosen as a doping element in sputtering targets. Ratios of dopant/zinc in the oxide targets were 4/96-5/95 at.%. Films were formed by radio frequency sputtering. Doping of barium and calcium to the zinc oxide film led to a large increase in the internal stress. Doping of the other elements resulted in decreasing the internal stress. It was concluded that durability of the low-e coatings in humid environment closely correlated with the internal stress of the oxide layers.

  7. Selective removal of iron contaminations from zinc-chloride melts by cementation with zinc

    Science.gov (United States)

    Devilee, R. A.; van Sandwijk, A.; Reuter, M. A.

    1999-08-01

    An investigation into the cementation of iron chloride from a zinc-chloride melt at 400 °C has been carried out with zinc powder. The variables studied include preparation of the chloride melt and the amount of zinc added. The effect of lead, copper, and cadmium on cementation of iron has also been investigated. According to the results, it is possible to reduce the iron concentration in zinc-chloride melts to 20 ppm with a small excess of zinc. The preparation of the melt proved to be very important. Insufficient purification of the melt with respect to oxides, hydroxides, and water resulted in a low reaction rate and high residual iron concentration.

  8. Zinc enrichment of whole potato tuber by vacuum impregnation

    OpenAIRE

    Erihemu; Hironaka, Kazunori; Koaze, Hiroshi; Oda, Yuji; SHIMADA, Kenichiro

    2013-01-01

    Zinc is a nutritionally essential truce element, and thus zinc deficiency (ZD) severely affects human health. More than 25% of the world’s population is at risk of ZD. This study was initiated to examine the use of the vacuum impregnation (VI) technique for enriching zinc content of whole potatoes; the effect of vacuum time, restoration time, steam-cooking and storage at 4 °C on the zinc content of VI whole potatoes was evaluated. Whole potato tubers were immersed in a 9 g/100 g zinc (zinc gl...

  9. Zinc Regulation of Aminopeptidase B Involved in Neuropeptide Production

    OpenAIRE

    Hwang, Shin-Rong; Hook, Vivian

    2008-01-01

    Aminopeptidase B (AP-B) is a metallopeptidase that removes basic residues from the N-termini of neuropeptide substrates in secretory vesicles. This study assessed zinc regulation of AP-B activity, since secretory vesicles contain endogenous zinc. AP-B was inhibited by zinc at concentrations typically present in secretory vesicles. Zinc effects were dependent on concentration, incubation time, and the molar ratio of zinc to enzyme. AP-B activity was recovered upon removal of zinc. AP-B with zi...

  10. Zinc Fortification Decreases ZIP1 Gene Expression of Some Adolescent Females with Appropriate Plasma Zinc Levels

    Directory of Open Access Journals (Sweden)

    Rosa O. Méndez

    2014-06-01

    Full Text Available Zinc homeostasis is achieved after intake variation by changes in the expression levels of zinc transporters. The aim of this study was to evaluate dietary intake (by 24-h recall, absorption, plasma zinc (by absorption spectrophotometry and the expression levels (by quantitative PCR, of the transporters ZIP1 (zinc importer and ZnT1 (zinc exporter in peripheral white blood cells from 24 adolescent girls before and after drinking zinc-fortified milk for 27 day. Zinc intake increased (p < 0.001 from 10.5 ± 3.9 mg/day to 17.6 ± 4.4 mg/day, and its estimated absorption from 3.1 ± 1.2 to 5.3 ± 1.3 mg/day. Mean plasma zinc concentration remained unchanged (p > 0.05 near 150 µg/dL, but increased by 31 µg/dL (p < 0.05 for 6/24 adolescents (group A and decreased by 25 µg/dL (p < 0.05 for other 6/24 adolescents (group B. Expression of ZIP1 in blood leukocytes was reduced 1.4-fold (p < 0.006 in group A, while for the expression of ZnT1 there was no difference after intervention (p = 0.39. An increase of dietary zinc after 27-days consumption of fortified-milk did not increase (p > 0.05 the plasma level of adolescent girls but for 6/24 participants from group A in spite of the formerly appropriation, which cellular zinc uptake decreased as assessed by reduction of the expression of ZIP1.

  11. Transport of Zinc Oxide Nanoparticles in a Simulated Gastric Environment

    Science.gov (United States)

    Mayfield, Ryan T.

    Recent years have seen a growing interest in the use of many types of nano sized materials in the consumer sector. Potential uses include encapsulation of nutrients, providing antimicrobial activity, altering texture, or changing bioavailability of nutrients. Engineered nanoparticles (ENP) possess properties that are different than larger particles made of the same constituents. Properties such as solubility, aggregation state, and toxicity can all be changed as a function of size. The gastric environment is an important area for study of engineered nanoparticles because of the varied physical, chemical, and enzymatic processes that are prevalent there. These all have the potential to alter those properties of ENP that make them different from their bulk counterparts. The Human Gastric Simulator (HGS) is an advanced in vitro model that can be used to study many facets of digestion. The HGS consists of a plastic lining that acts as the stomach cavity with two sets of U-shaped arms on belts that provide the physical forces needed to replicate peristalsis. Altering the position of the arms or changing the speed of the motor which powers them allows one to tightly hone and replicate varied digestive conditions. Gastric juice, consisting of salts, enzymes, and acid levels which replicate physiological conditions, is introduced to the cavity at a controllable rate. The release of digested food from the lumen of simulated stomach is controlled by a peristaltic pump. The goal of the HGS is to accurately and repeatedly simulate human digestion. This study focused on introducing foods spiked with zinc oxide ENP and bulk zinc oxide into the HGS and then monitoring how the concentration of each changed at two locations in the HGS over a two hour period. The two locations chosen were the highest point in the lumen of the stomach, which represented the fundus, and a point just beyond the equivalent of the pylorus, which represented the antrum of the stomach. These points were

  12. Evaluation of antimicrobial properties of cork.

    Science.gov (United States)

    Gonçalves, Filipa; Correia, Patrícia; Silva, Susana P; Almeida-Aguiar, Cristina

    2016-02-01

    Cork presents a range of diverse and versatile properties making this material suitable for several and extremely diverse industrial applications. Despite the wide uses of cork, its antimicrobial properties and potential applications have deserved little attention from industry and the scientific community. Thus, the main purpose of this work was the evaluation of the antibacterial properties of cork, by comparison with commercially available antimicrobial materials (Ethylene-Vinyl Acetate copolymer and a currently used antimicrobial commercial additive (ACA)), following the previous development and optimization of a method for such antimicrobial assay. The AATCC 100-2004 standard method, a quantitative procedure developed for the assessment of antimicrobial properties in textile materials, was used as reference and optimized to assess cork antibacterial activity. Cork displayed high antibacterial activity against Staphylococcus aureus, with a bacterial reduction of almost 100% (96.93%) after 90 minutes of incubation, similar to the one obtained with ACA. A more reduced but time-constant antibacterial action was observed against Escherichia coli (36% reduction of the initial number of bacterial colonies). To complement this study, antibacterial activity was further evaluated for a water extract of cork and an MIC of 6 mg mL(-1) was obtained against the reference strain S. aureus.

  13. Antimicrobial cyclic peptides for plant disease control.

    Science.gov (United States)

    Lee, Dong Wan; Kim, Beom Seok

    2015-03-01

    Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources.

  14. Antimicrobial Cyclic Peptides for Plant Disease Control

    Directory of Open Access Journals (Sweden)

    Dong Wan Lee

    2015-03-01

    Full Text Available Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources.

  15. An institutional review of antimicrobial stewardship interventions.

    Science.gov (United States)

    Cao, Henry; Phe, Kady; Laine, Gregory A; Russo, Hannah R; Putney, Kimberly S; Tam, Vincent H

    2016-09-01

    In order to combat increasing rates of bacterial resistance, many institutions have implemented antimicrobial stewardship programmes (ASPs) to improve antibiotic use. To ascertain the potential impact of our stewardship programme at Baylor St Luke's Medical Center (Houston, TX), antimicrobial-related interventions were analysed over a 4-year period. ASP recommendations related to antimicrobial therapy from 2009 to 2012 were retrieved from the hospital electronic database and were retrospectively reviewed. The number of interventions for each time period was adjusted to the hospital census data. The interventions were randomly assessed and categorised for clinical significance based on established institutional guidelines. In total, 14654 non-duplicate antimicrobial therapy interventions were retrieved, of which 11874 (81.0%) were audited for accuracy. Approximately 13 interventions were made per 1000 patient-days, but there were no significant patterns observed regarding the number of interventions performed from month to month (range 8-21). The most frequent types of interventions were related to inappropriate dosing (39.0%), antimicrobial selection (20.5%) and drug allergy (13.0%). Serious adverse drug events (ADEs) were potentially avoided in 20.7% of all interventions. Cumulative potential cost avoidance was more than US$6.5 million. In our institution, proper drug and dose selection were the major components of the ASP. Without focusing solely on reduction of drug acquisition costs, implementation of an ASP could still be cost effective by improving the quality of patient care and avoiding ADEs with serious consequences. PMID:27530844

  16. Antimicrobial Ionic Liquids with Fumarate Anion

    Directory of Open Access Journals (Sweden)

    Biyan He

    2013-01-01

    Full Text Available The shortage of new antimicrobial drugs and increasing resistance of microbe to antimicrobial agents have been of some concern. The formulation studies of new antibacterial and antifungal agents have been an active research field. Ionic liquids are known as designed liquids with controllable physical/chemical/biological properties and specific functions, which have been attracting considerable interest over recent years. However, no attention has been made towards the preparation of ionic liquids with antimicrobial activities. In this paper, a new class of ionic liquids (ILs with fumarate anion was synthesized by neutralization of aqueous 1-butyl-3-methylimidazolium hydroxide with equimolar monoester fumarate and characterized using NMR and thermal gravimetric analysis. The ILs are soluble in water and polar organic solvents and also soluble in the common ILs. The antimicrobial activities of the ILs are more active than commercially available potassium sorbate and are greatly affected by the alkyl chain length. The significant antimicrobial properties observed in this research suggest that the ILs may have potential applications in the modern biotechnology.

  17. Antimicrobial Activity of Carbon-Based Nanoparticles

    Directory of Open Access Journals (Sweden)

    Solmaz Maleki Dizaj

    2015-03-01

    Full Text Available Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs (especially single-walled carbon nanotubes (SWCNTs and graphene oxide (GO nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery.

  18. [Antimicrobial properties of antiseptic composite with prolonged action].

    Science.gov (United States)

    Paliĭ, G K; Nazarchuk, A A; Paliĭ, D V; Nazarchuk, G G; Gonchar, O O; Sukhliak, V V; Trofimenko, Iu Iu; Zadereĭ, N V; Stukan, O K

    2013-01-01

    Antimicrobial properties of a composite based on decamethoxine and modified polysaccharides (carboxymethylamylum, oxyethyl-cellulose) were studied. The composite was shown to have high antimicrobial activity against grampositive and gramnegative bacteria under different conditions of the experiment.

  19. Zinc Leaching from Tire Crumb Rubber

    Science.gov (United States)

    Rhodes, E. P.; Ren, J.; Mays, D. C.

    2010-12-01

    Recent estimates indicate that more than 2 billion scrap tires are currently stockpiled in the United States and approximately 280 million more tires are added annually. Various engineering applications utilize recycled tires in the form of shredded tire crumb rubber. However, the use of tire crumb rubber may have negative environmental impacts, especially when the rubber comes into contact with water. A review of the literature indicates that leaching of zinc from tire crumb rubber is the most significant water quality concern associated with using this material. Zinc is generally used in tire manufacturing, representing approximately 1.3% of the final product by mass. This study will report results from the U.S. Environmental Protection Agency’s (EPA’s) Synthetic Precipitation Leaching Procedure, batch leaching tests, and column leaching tests performed to quantify the process by which zinc leaches from tire crumb rubber into water. Results are interpreted with a first-order kinetic attachment/detachment model, implemented with the U.S. Agricultural Research Service software HYDRUS-1D, in order to determine the circumstances when zinc leaching from tire crumb rubber would be expected to comply with the applicable discharge limits. One potential application for recycled tires is replacing sand with tire crumb rubber in granular media filters used for stormwater pollution control. For this to be a viable application, the total zinc in the stormwater discharge must be below the EPA’s benchmark value of 0.117 mg/L.

  20. Use and Misuse of Antimicrobial Drugs in Poultry and Livestock: Mechanisms of Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Toni Poole* and Cynthia Sheffield

    2013-07-01

    Full Text Available Food safety begins on the farm with management practices that contribute to an abundant, safe, and affordable food supply. To attain this goal antimicrobials have been used in all stages of food animal production in the United States and elsewhere around the world at one time or another. Among food–production animals antimicrobials are used for growth promotion, disease prophylaxis or disease treatment, and are generally administered to the entire flock or herd. Over many decades bacteria have become resistant to multiple antimicrobial classes in a cumulative manner. Bacteria exhibit a number of well characterized mechanisms of resistance to antimicrobials that include: 1 modification of the antimicrobial; 2 alteration of the drug target; 3 decreased access of drug to target; and 4 implementation of an alternative metabolic pathway not affected by the drug. The mechanisms of resistance are complex and depend on the type of bacterium involved (e.g. Gram–positive or Gram–negative and the class of drug. Some bacterial species have accumulated resistance to nearly all antimicrobial classes due to a combination of intrinsic and acquired processes. This has and will continue to lead to clinical failures of antimicrobial treatment in both human and animal medicine.

  1. Food Animals and Antimicrobials: Impacts on Human Health

    OpenAIRE

    Marshall, Bonnie M.; Levy, Stuart B.

    2011-01-01

    Summary: Antimicrobials are valuable therapeutics whose efficacy is seriously compromised by the emergence and spread of antimicrobial resistance. The provision of antibiotics to food animals encompasses a wide variety of nontherapeutic purposes that include growth promotion. The concern over resistance emergence and spread to people by nontherapeutic use of antimicrobials has led to conflicted practices and opinions. Considerable evidence supported the removal of nontherapeutic antimicrobial...

  2. EMERGING ANTIMICROBIAL RESISTANCE IN HOSPITAL A THREAT TO PUBLIC HEALTH

    OpenAIRE

    Vichal Rastogi; Pankaj Kumar Mishra; Shalini Bhatia

    2013-01-01

    Background: Antimicrobial resistance(AMR) threatens the health of many throughout the world, since both old and new infectious diseases remain a formidable public health threat. When pathogenic microorganisms can multiply beyond some critical mass in the face of invading antimicrobials, treatment outcome is compromised. This phenomenon is referred as antimicrobial resistance (AMR). Objective: This retrospective study was conducted to assess the overall antimicrobial resistance in bacteri...

  3. Antimicrobial Stewardship for a Geriatric Behavioral Health Population

    OpenAIRE

    Kristen Ellis; Georgina Rubal-Peace; Victoria Chang; Eva Liang; Nicolas Wong; Stephanie Campbell

    2016-01-01

    Antimicrobial resistance is a growing public health concern. Antimicrobial stewardship and multi-disciplinary intervention can prevent inappropriate antimicrobial use and improve patient care. Special populations, especially older adults and patients with mental health disorders, can be particularly in need of such intervention. The purpose of this project was to assess the impact of pharmacist intervention on appropriateness of antimicrobial prescribing on a geriatric psychiatric unit (GPU)....

  4. Dosage Effect of Zinc Glycine Chelate on Zinc Metabolism and Gene Expression of Zinc Transporter in Intestinal Segments on Rat.

    Science.gov (United States)

    Huang, Danping; Hu, Qiaoling; Fang, Shenglin; Feng, Jie

    2016-06-01

    Zinc plays an essential role in various fundamental biological processes. The focus of this research was to investigate the dosage effect of zinc glycine chelate (Zn-Gly) on zinc metabolism and the gene expression of zinc transporters in intestinal segments. A total of 30 4-week-old SD rats were randomized into five treatment groups. The basal diets for each group were supplemented with gradient levels of Zn (0, 30, 60, 90, and 180 mg/kg) from Zn-Gly. After 1-week experiment, the results showed that serum and hepatic zinc concentration were elevated linearly with supplemental Zn levels from 0 to 180 mg Zn/kg. Serum Cu-Zn SOD activities resulted in a significant (P < 0.01) quadratic response and reached the peak when fed 60 mg Zn/kg. There were linear responses to the addition of Zn-Gly from 0 to 180 mg Zn/kg on Cu-Zn SOD and AKP activities in the liver. In the duodenum, MT1 mRNA was upregulated with the increasing dietary Zn-Gly levels and reached the peak of 180 mg Zn/kg (P < 0.05). Zip4 mRNA expression was downregulated with the increasing zinc levels (P < 0.05) in both duodenum and jejunum. In the jejunum, Zip5 mRNA expression in 60 mg Zn/kg was higher compared with other groups (P < 0.05). ZnT1 mRNA in duodenum was numerically increased with the rising levels of zinc content and was significantly higher (P < 0.05) with 180 mg Zn/kg. In the duodenum, adding 60 or 90 mg Zn/kg increased PepT1 expression, but in the jejunum, 60 mg Zn/kg did not differ from 0 added Zn. In summary, there is a dose-dependent effect of dietary Zn-Gly on serum and hepatic zinc levels and the activities of Cu-Zn SOD and AKP on rats. Dietary Zn-Gly has a certain effect on MT1, Zip4, Zip5, and ZnT1 expression, which expressed differently in intestinal segments with different levels of Zn-Gly load. Besides, Zn-Gly also could regulate PepT1 expression in intestinal segments.

  5. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuping; Zhang, Chiqian [Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE (United States); Parker, David B. [USDA Meat Animal Research Center, Clay Center, NE (United States); Snow, Daniel D. [Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, NE (United States); Zhou, Zhi [Department of Civil and Environmental Engineering, National University of Singapore (Singapore); Li, Xu, E-mail: xuli@unl.edu [Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE (United States)

    2013-10-01

    Livestock manure treatment and storage structures are potential environmental sources of antimicrobials and antimicrobial resistance genes (ARGs). In this study, the occurrence of antimicrobials and ARGs was investigated in the water and the sludge compartments of beef cattle storage ponds and swine lagoons. Analysis was focused on two families of antimicrobials (sulfonamide and tetracycline) and the corresponding ARGs (sul1, sul2, tetO, tetQ and tetX). Results showed that the pseudo-partitioning coefficients of tetracyclines were higher than those of sulfonamides, suggesting different distributions of these two classes of antimicrobials between water and sludge. The ARGs tested were detected in nearly all ponds and lagoons, with the highest relative abundance in sul2 at 6.3 × 10{sup −1} copies per 16S rRNA gene. A positive correlation was observed between total sul genes and total sulfonamides in water while the correlation was negative in sludge. No significant correlation was found between total tet genes and total tetracyclines in either water or sludge, but significant correlations were observed for certain individual tet genes. Ammonia concentrations strongly correlated with all ARGs except tetX. This study provided quantitative information on the occurrence of antimicrobials and ARGs in the liquid and solid compartments of typical manure treatment and storage structures. - Highlights: • Partitioning of antimicrobials between water and sludge is compound specific. • Antimicrobial resistance genes occurred in both water and sludge. • The ARG abundance varied more substantially in swine lagoons than in cattle ponds. • Correlations between ARGs and antimicrobials are system dependent.

  6. Pro-Moieties of Antimicrobial Peptide Prodrugs

    Directory of Open Access Journals (Sweden)

    Eanna Forde

    2015-01-01

    Full Text Available Antimicrobial peptides (AMPs are a promising class of antimicrobial agents that have been garnering increasing attention as resistance renders many conventional antibiotics ineffective. Extensive research has resulted in a large library of highly-active AMPs. However, several issues serve as an impediment to their clinical development, not least the issue of host toxicity. An approach that may allow otherwise cytotoxic AMPs to be used is to deliver them as a prodrug, targeting antimicrobial activity and limiting toxic effects on the host. The varied library of AMPs is complemented by a selection of different possible pro-moieties, each with their own characteristics. This review deals with the different pro-moieties that have been used with AMPs and discusses the merits of each.

  7. The Antimicrobial Activity of Porphyrin Attached Polymers

    Science.gov (United States)

    Thompson, Lesley

    2008-03-01

    We are interested in testing the antimicrobial activity of a porphyrin that is attached to a polymer. The porphyrin (5-(4-carboxyphenyl)-10,15,20-tris-(4-pryridyl)) was synthesized from methyl 4-formyl benzoate, 4-pyridinecarboxaldehyde, and pyrrole and attached to a copolymer of polystyrene/poly(vinyl benzyl chloride), which was synthesized by free radical polymerization. The antimicrobial activity of the polymer-attached porphyrin was then determined for gram-negative E. Coli grown to 0.80 OD. In this procedure, glass slides were coated with polymer-attached porphyrin via dip-coating, and the E. Coli bacteria were plated in Luria Broth media. The plates were subsequently exposed to light overnight before they were incubated as porphyrins act as photo-sensitizers when irradiated with light. The polymer-attached porphyrin did exhibit antimicrobial activity and parameters that affect its efficiency will be discussed.

  8. Development of antimicrobial optimum glass ionomer

    International Nuclear Information System (INIS)

    The use of glass ionomer for restorations in dentistry for lower income population is a well established practice in public clinics of Brazil. However the average price of this kind of material and its low durability still have a negative impact on public health for being imported and frequently replaced it becomes expensive for the manufacturers and for public agencies. In glass ionomer the main antimicrobial agent is fluoride, which is released gradually. The material used for filling provides an average life of five years and its durability can be increased if the ionomer contains other oligodynamic elements. It was formulated, merged a new optimized glass ionomer which was characterized by X-ray diffraction, ion measurement and antimicrobial activity. This new product showed promising results, that pointed structural stability an increase of antimicrobial efficiency. (author)

  9. ANTIMICROBIAL ACTIVITY OF FICUS GLOMERATA LINN. BARK

    Directory of Open Access Journals (Sweden)

    Jagtap Supriya G.

    2012-05-01

    Full Text Available Ficus glomerata Linn. (Moraceae, commonly known as Ficus racemosa. A large deciduous tree distributed all over India and Ceylon, found throughout the year, grows in evergreen forest, moist localities, along the sides of ravines and banks of streams. Gular (Ficus glomerata Linn. is well known, commonly used plant in various disorders. It has been traditionally claimed to be useful in asthmatic condition, as an antitussive and anti-inflammatory. Successive soxhlet extractions of dried powdered bark were carried out using petroleum ether and methanol as a solvent. The antimicrobial activity of the extracts were tested in vitro against two different bacterial species Bacillus substilis and Escherichia coli by cup plate diffusion method were used in this investigation. The results of antimicrobial activity revealed that methanolic extract showed good activity as compared to petroleum ether extract. Methanolic extract is more potent towards gram - positive bacteria. The antimicrobial activities of the extracts were compared with standard antibiotics.

  10. Antimicrobial peptides in innate immune responses.

    Science.gov (United States)

    Sørensen, Ole E; Borregaard, Niels; Cole, Alexander M

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain diseases like Crohn's disease and atopic dermatitis. AMPs are attractive candidates for development of novel antibiotics due to their in vivo activity profile and some peptides may serve as templates for further drug development.

  11. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...... diseases like Crohn's disease and atopic dermatitis. AMPs are attractive candidates for development of novel antibiotics due to their in vivo activity profile and some peptides may serve as templates for further drug development Udgivelsesdato: 2008...

  12. Properties of Zip4 accumulation during zinc deficiency and its usefulness to evaluate zinc status: a study of the effects of zinc deficiency during lactation.

    Science.gov (United States)

    Hashimoto, Ayako; Nakagawa, Miki; Tsujimura, Natsuki; Miyazaki, Shiho; Kizu, Kumiko; Goto, Tomoko; Komatsu, Yusuke; Matsunaga, Ayu; Shirakawa, Hitoshi; Narita, Hiroshi; Kambe, Taiho; Komai, Michio

    2016-03-01

    Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely. PMID:26702153

  13. Properties of Zip4 accumulation during zinc deficiency and its usefulness to evaluate zinc status: a study of the effects of zinc deficiency during lactation.

    Science.gov (United States)

    Hashimoto, Ayako; Nakagawa, Miki; Tsujimura, Natsuki; Miyazaki, Shiho; Kizu, Kumiko; Goto, Tomoko; Komatsu, Yusuke; Matsunaga, Ayu; Shirakawa, Hitoshi; Narita, Hiroshi; Kambe, Taiho; Komai, Michio

    2016-03-01

    Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely.

  14. The immune system and the impact of zinc during aging

    Directory of Open Access Journals (Sweden)

    Haase Hajo

    2009-06-01

    Full Text Available Abstract The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence.

  15. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement.

    Science.gov (United States)

    Horiuchi, Shinya; Hiasa, Masahiro; Yasue, Akihiro; Sekine, Kazumitsu; Hamada, Kenichi; Asaoka, Kenzo; Tanaka, Eiji

    2014-01-01

    Recently, zinc-releasing bioceramics have been the focus of much attention owing to their bone-forming ability. Thus, some types of zinc-containing calcium phosphate (e.g., zinc-doped tricalcium phosphate and zinc-substituted hydroxyapatite) are examined and their osteoblastic cell responses determined. In this investigation, we studied the effects of zinc calcium phosphate (ZCP) derived from zinc phosphate incorporated into calcium phosphate cement (CPC) in terms of its setting reaction and MC3T3-E1 osteoblast-like cell responses. Compositional analysis by powder X-ray diffraction analysis revealed that HAP crystals were precipitated in the CPC containing 10 or 30wt% ZCP after successfully hardening. However, the crystal growth observed by scanning electron microscopy was delayed in the presence of additional ZCP. These findings indicate that the additional zinc inhibits crystal growth and the conversion of CPC to the HAP crystals. The proliferation of the cells and alkaline phosphatase (ALP) activity were enhanced when 10wt% ZCP was added to CPC. Taken together, ZCP added CPC at an appropriate fraction has a potent promotional effect on bone substitute biomaterials. PMID:24090874

  16. Nutritional assessment methods for zinc supplementation in prepubertal non-zinc-deficient children

    Directory of Open Access Journals (Sweden)

    Márcia Marília Gomes Dantas Lopes

    2015-10-01

    Full Text Available Background: Zinc is an essential nutrient that is required for numerous metabolic functions, and zinc deficiency results in growth retardation, cell-mediated immune dysfunction, and cognitive impairment. Objective: This study evaluated nutritional assessment methods for zinc supplementation in prepubertal non-zinc-deficient children. Design: We performed a randomised, controlled, triple-blind study. The children were divided into a control group (10% sorbitol, n=31 and an experimental group (10 mg Zn/day, n=31 for 3 months. Anthropometric and dietary assessments as well as bioelectrical measurements were performed in all children. Results: Our study showed (1 an increased body mass index for age and an increased phase angle in the experimental group; (2 a positive correlation between nutritional assessment parameters in both groups; (3 increased soft tissue, and mainly fat-free mass, in the body composition of the experimental group, as determined using bioelectrical impedance vector analysis; (4 increased consumption of all nutrients, including zinc, in the experimental group; and (5 an increased serum zinc concentration in both groups (p<0.0001. Conclusions: Given that a reference for body composition analysis does not exist for intervention studies, longitudinal studies are needed to investigate vector migration during zinc supplementation. These results reinforce the importance of employing multiple techniques to assess the nutritional status of populations.

  17. Zinc Extraction from Zinc Plants Residue Using Selective Alkaline Leaching and Electrowinning

    Science.gov (United States)

    Ashtari, Pedram; Pourghahramani, Parviz

    2015-10-01

    Annually, a great amount of zinc plants residue is produced in Iran. One of them is hot filter cake (known as HFC) which can be used as a secondary resource of zinc, cobalt and manganese. Unfortunately, despite its heavy metal content, the HFC is not treated. For the first time, zinc was selectively leached from HFC employing alkaline leaching. Secondly, leaching was optimized to achieve maximum recovery using this method. Effects of factors like NaOH concentration (C = 3, 5, 7 and 9 M), temperature (T = 50, 70, 90 and 105 °C), solid/liquid ratio (weight/volume, S/L = 1/10 and 1/5 W/V) and stirring speed (R = 500 and 800 rpm) were studied on HFC leaching. L16 orthogonal array (OA, two factors in four levels and two factors in two levels) was applied to determine the optimum condition and the most significant factor affecting the overall zinc extraction. As a result, maximum zinc extraction was 83.4 %. Afterwards, a rough test was conducted for zinc electrowinning from alkaline solution according to the common condition available in literature by which pure zinc powder (99.96 %) was successfully obtained.

  18. Selective extraction of zinc from sulfate leach solution of zinc ore

    Institute of Scientific and Technical Information of China (English)

    覃文庆; 蓝卓越; 黎维中; 邱冠周

    2003-01-01

    Selective extraction of zinc from sulfate leach solution of zinc ore was studied.D2EHPA dissolved in260# kerosene was used as extractant.The pH-extraction isotherms show the extraction order of D2EHPA for metals is Fe3+>Zn2+>Ca2+>Al3+>Mn2+>Cu2+>Cd2+>Co2+>Ni2+>Mg2+(pH0.5).This confirms that Fe3+ ispreferentially extracted before the extraction of zinc.Extraction experiments were carried out with varying the extractant content,equilibration time,aqueous pH and phase ratio,and the solvent extraction of zinc with sodium saltof D2EHPA were also investigated.Some impurity co-extracted into the zinc loaded organic phase was efficiently removed by scrub,and the Fe3+ was hardly stripped from organic phase by sulfuric acid,hence zinc was separatedfrom Fe3+ by selective stripping.A pregnant zinc sulfate solution with low contaminants was obtained by selectivesolvent extraction.

  19. Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds

    Directory of Open Access Journals (Sweden)

    Mohandas A

    2015-10-01

    Full Text Available Annapoorna Mohandas,* Sudheesh Kumar PT,* Biswas Raja, Vinoth-Kumar Lakshmanan, Rangasamy Jayakumar Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, India *These authors contributed equally to this work Abstract: Alginate hydrogel/zinc oxide nanoparticles (nZnO composite bandage was developed by freeze-dry method from the mixture of nZnO and alginate hydrogel. The developed composite bandage was porous with porosity at a range of 60%–70%. The swelling ratios of the bandages decreased with increasing concentrations of nZnO. The composite bandages with nZnO incorporation showed controlled degradation profile and faster blood clotting ability when compared to the KALTOSTAT® and control bandages without nZnO. The prepared composite bandages exhibited excellent antimicrobial activity against Escherichia coli, Staphylococcus aureus, Candida albicans, and methicillin resistant S. aureus (MRSA. Cytocompatibility evaluation of the prepared composite bandages done on human dermal fibroblast cells by Alamar assay and infiltration studies proved that the bandages have a non-toxic nature at lower concentrations of nZnO whereas slight reduction in viability was seen with increasing nZnO concentrations. The qualitative analysis of ex-vivo re-epithelialization on porcine skin revealed keratinocyte infiltration toward wound area for nZnO alginate bandages. Keywords: alginate, hydrogel, ZnO nanoparticle, hemostatic, antimicrobial activity, wound healing

  20. EFFECT OF METAL OXIDE ON ANTI-MICROBIAL FINISHING OF COTTON FABRIC

    Directory of Open Access Journals (Sweden)

    Yin Ling Lam,

    2012-07-01

    Full Text Available Cellulosic fibres provide a very agreeable environment for growth of bacteria due to large surfaces with high moisture absorbability. Therefore, the demand for an anti-microbial finish as an effective means of preventing disease transmission is high; it inhibits growth of or kills microorganisms on textile fabrics. This paper reports results of experiments where silver oxide (Ag2O or zinc oxide (ZnO was used as a catalyst with the halogenated phenoxy compound (Microfresh, MF and a binder (Microban, MB on cotton fabrics to improve treatment effectiveness and minimize its side effects. Anti-microbial-treated fabrics showed some new characteristic peaks in chemical structure as evaluated by Fourier Transform Infrared Spectroscopy. In an anti-microbial test, it was found that anti-bacterial activity increased as MF-MB chemical agents were applied to the fabrics. A noticeable result was that the metal oxide catalyst had a significant effect on enhancing the performance. Surface morphology of anti-microbial-treated cotton specimens showed roughened and wrinkled fabric surface with high deposition of the finishing agent, which had a lower breaking load and tearing strength resulting from side effects of the acidic treatment. However, the addition of the Ag2O catalyst was able to compensate for the reduction in tensile and tearing strength, and it is considered harmless for human skin.

  1. Antimicrobial resistance in commensal Escherichia coli in veal calves is associated with antimicrobial drug use.

    Science.gov (United States)

    Bosman, A B; Wagenaar, J A; Stegeman, J A; Vernooij, J C M; Mevius, D J

    2014-09-01

    The aim of this study was to determine the association between farm management factors, including antimicrobial drug usage, and resistance in commensal Escherichia coli isolates from the faeces of white veal calves. Ninety E. coli isolates from one pooled sample per farm (n = 48) were tested for their phenotypical resistance against amoxicillin, tetracycline, cefotaxime, ciprofloxacin and trimethoprim/sulfamethoxazole (TMP/SMX). Logistic regression analysis revealed the following risk factors (P 40 ADD/pc, tetracyclines (tetracycline, OR 13·1; amoxicillin, OR 6·5). In this study antimicrobial resistance in commensal E. coli was mainly associated with antimicrobial drug use. PMID:24152540

  2. Antimicrobials in animal agriculture: parables and policy.

    Science.gov (United States)

    Scott, H M; Midgley, G; Loneragan, G H

    2015-04-01

    In addition to the scientific, economic, regulatory and other policy factors that impact on antimicrobial decision-making in different jurisdictions around the world, there exist ethical, social and cultural bases for the contemporary use of these products in animal agriculture. Thus, the use of the word 'parable' to describe the contemporary moral stories that help to guide ethical antimicrobial use practices and broader policy decisions in animal agriculture is appropriate. Several of these stories reflect difficult decisions that arise from conflicting moral imperatives (i.e. both towards animal welfare and towards human health). Understanding the factors that combine to define the past and present paradigms of antimicrobial usage is crucial to mapping a path forward. There exist barriers, as well as opportunities, for advancing scenarios for reducing antimicrobial usage under a variety of voluntary, regulatory and legal policy frameworks. Any new approaches will ideally be structured to extend the use of present-day antimicrobials into the future, to provide novel alternatives for regulating any newly introduced antimicrobial products so as to maximize their useful life span and to ensure the optimal use of these products in animal agriculture to protect not only the health of animals and the interests of animal health/agriculture stakeholders, but also the human health and the interests of the public at large. A full range of policy approaches, which span the realm from strictly enforced regulations and laws to voluntary guidelines and compliance, should be explored with respect to their risks and benefits in a variety of worldwide settings and in full consideration of a range of stakeholder values.

  3. Prospects of zinc nano oxide application in the treatment of purulent wounds

    Directory of Open Access Journals (Sweden)

    Popadyuk O.Ya.

    2015-03-01

    Full Text Available Surgical infection is a difficult problem in modern medical practice. Prevalence of surgical infection, new strains of microorganisms and their resistance to antibiotics, poor outcomes of wound treatment, lack of sensitivity of microorganisms to commonly used antiseptics necessitate the search for the new methods and means of treatment in wound surgery. This article provides an overview of domestic and foreign literature on the possibility of solving the problem of effective local treatment of purulent wounds through the study and implementation of nanotechnology in modern medicine. Researchers around the world are beginning to use nanoparticles and developments of nanotechnology in various fields of science and medicine to synthesize new drugs and vaccines, including zinc nano oxide usage as a highly effective local antiseptic that is non-toxic to the cells of the human body at very low, concentrations but with sufficient antibacterial action. Small sizes and large surface area relatively to volume increases efficiency of interaction of nanoparticles with germs and makes it probable a wide range of antimicrobial activity. Nanoparticles on metals base due to their biological and physical-chemical properties are perspective antibacterial agents and may be used to solve many problems in nanomedicine and surgery in particular. Study and application of zinc nano oxide in preparations of multidirectional local action will ensure high effective defense against pathogenic microorganisms in the wound.

  4. Book review: Current perspectives on zinc deposits

    Science.gov (United States)

    Kelley, Karen D.

    2016-01-01

    This book, published in 2015 by the Irish Association for Economic Geology (IAEG), is a compilation of papers and abstracts written by selected authors who attended the ZINC 2010 Conference in Cork, Ireland. Unlike most books produced each decade by the IAEG, which are focused primarily on achievements of the Irish and European mineral sectors, this book has a global perspective of a single commodity—zinc. As stated in the Preface, the theme of the conference and book was quite relevant for the IAEG because Ireland has the highest concentration of zinc per square kilometer on the planet. The book contains 7 full papers and 5 extended abstracts by keynote speakers, followed by 17 extended abstracts by other presenters, plus an Appendix (reprint) of a previously published paper.

  5. Effect of zinc on Entamoeba histolytica pathogenicity.

    Science.gov (United States)

    Vega Robledo, G B; Carrero, J C; Ortiz-Ortiz, L

    1999-06-01

    The present study analyzes the effects of zinc on Entamoeba histolytica activity and on its pathogenicity. Metal activity was evaluated in vitro with regard to the parasite's viability, replication, and adhesion to epithelial cells and in vivo with regard to its pathogenicity. The results obtained in vitro show that zinc at 1.0 mM concentration does not affect amebic viability; however, it does decrease amebic replication and adhesion (P vivo studies performed on a model of experimental liver abscess in the hamster indicate that the intraperitoneal administration of a single dose of zinc at 48 h after the intrahepatic inoculation of amebic trophozoites significantly inhibits (P vivo as manifested by inhibition of amebic pathogenicity.

  6. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    Science.gov (United States)

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.

  7. Study on indium leaching from mechanically activated hard zinc residue

    OpenAIRE

    Yao J.H.; Li X.H.; Li Y.W.

    2011-01-01

    In this study, changes in physicochemical properties and leachability of indium from mechanically activated hard zinc residue by planetary mill were investigated. The results showed that mechanical activation increased specific surface area, reaction activity of hard zinc residue, and decreased its particle size, which had a positive effect on indium extraction from hard zinc residue in hydrochloric acid solution. Kinetics of indium leaching from unmilled and activated hard zinc residue...

  8. Zinc supplementation, production and quality of coffee beans

    OpenAIRE

    Herminia Emilia Prieto Martinez; Yonara Poltronieri; Adriana Farah; Daniel Perrone

    2013-01-01

    Besides its importance in the coffee tree nutrition, there is almost no information relating zinc nutrition and bean quality. This work evaluated the effect of zinc on the coffee yield and bean quality. The experiment was conducted with Coffea arabica L. in "Zona da Mata" region, Minas Gerais, Brazil. Twelve plots were established at random with 4 competitive plants each. Treatments included plants supplemented with zinc (eight plots) and control without zinc supplementation (four plots). Pla...

  9. Laser droplet welding of zinc coated steel sheets

    OpenAIRE

    Jerič, Anže; Grabec, Igor; Govekar, Edvard

    2015-01-01

    The weldability of zinc coated steel sheets is often compromised by weld seam defects caused by rapid zinc vaporisation and burned-off zinc. Owing to this, welded seams usually remain unprotected from corrosion and are accompanied by undesirable porosity. In this paper, the laser droplet generation process and its application to laser droplet welding of zinc coated steel sheets are described. The influences of laser droplet generation and welding process control parameters on the properties o...

  10. Zinc concentration and survival in rats infected with Salmonella typhimurium.

    OpenAIRE

    Tocco-Bradley, R; Kluger, M J

    1984-01-01

    Percent survival was measured in male rats injected intravenously with live Salmonella typhimurium when plasma and tissue zinc levels were manipulated. Alzet pumps implanted intraperitoneally infused zinc gluconate or sodium gluconate (controls) from the onset of infection to 72 h postinfection. Plasma and tissue zinc levels were manipulated by infusing (i) 180 micrograms of Zn per h to achieve supranormal plasma and tissue zinc concentrations, (ii) 120 micrograms of Zn per h to prevent the i...

  11. ZnO and TiO{sub 2} nanoparticles as novel antimicrobial agents for oral hygiene: a review

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shams Tabrez, E-mail: shamsalig75@gmail.com; Al-Khedhairy, Abdulaziz A. [King Saud University, Department of Zoology, College of Science (Saudi Arabia); Musarrat, Javed [AMU, Department of Agricultural Microbiology, Faculty of Agricultural Sciences (India)

    2015-06-15

    Oral cavity is inhabited by more than 25,000 different bacterial phylotypes; some of them cause systemic infections in addition to dental and periodontal diseases. Emergence of multiple antibiotic resistance among these bacteria necessitates the development of alternative antimicrobial agents that are safe, stable, and relatively economic. This review focuses on the significance of metal oxide nanoparticles, especially zinc oxide and titanium dioxide nanoparticles as supplementary antimicrobials for controlling oral infections and biofilm formation. Indeed, the ZnO NPs and TiO{sub 2} NPs have exhibited significant antimicrobial activity against oral bacteria at concentrations which is not toxic in in vivo toxicity assays. These nanoparticles are being produced at an industrial scale for use in a variety of commercial products including food products. Thus, the application of ZnO and TiO{sub 2} NPs as nanoantibiotics for the development of mouthwashes, dental pastes, and other oral hygiene materials is envisaged. It is also suggested that these NPs could serve as healthier, innocuous, and effective alternative for controlling both the dental biofilms and oral planktonic bacteria with lesser side effects and antibiotic resistance.

  12. ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review

    International Nuclear Information System (INIS)

    Oral cavity is inhabited by more than 25,000 different bacterial phylotypes; some of them cause systemic infections in addition to dental and periodontal diseases. Emergence of multiple antibiotic resistance among these bacteria necessitates the development of alternative antimicrobial agents that are safe, stable, and relatively economic. This review focuses on the significance of metal oxide nanoparticles, especially zinc oxide and titanium dioxide nanoparticles as supplementary antimicrobials for controlling oral infections and biofilm formation. Indeed, the ZnO NPs and TiO2 NPs have exhibited significant antimicrobial activity against oral bacteria at concentrations which is not toxic in in vivo toxicity assays. These nanoparticles are being produced at an industrial scale for use in a variety of commercial products including food products. Thus, the application of ZnO and TiO2 NPs as nanoantibiotics for the development of mouthwashes, dental pastes, and other oral hygiene materials is envisaged. It is also suggested that these NPs could serve as healthier, innocuous, and effective alternative for controlling both the dental biofilms and oral planktonic bacteria with lesser side effects and antibiotic resistance

  13. Evaluation of pH, calcium ion release and antimicrobial activity of a new calcium aluminate cement

    Directory of Open Access Journals (Sweden)

    Fernanda de Carvalho Panzeri Pires-de-Souza

    2013-07-01

    Full Text Available This study evaluated the pH, calcium ion release and antimicrobial activity of EndoBinder (EB, containing different radiopacifiers: bismuth oxide (Bi2O3, zinc oxide (ZnO or zirconium oxide (ZrO2, in comparison to MTA. For pH and calcium ion release tests, 5 specimens per group (n = 5 were immersed into 10 mL of distilled and deionized water at 37°C. After 2, 4, 12, 24, 48 h; 7, 14 and 28 days, the pH was measured and calcium ion release quantified in an atomic absorption spectrophotometer. For antimicrobial activity, the cements were tested against S. aureus, E. coli, E. faecalis and C. albicans, in triplicate. MTA presented higher values for pH and calcium ion release than the other groups, however, with no statistically significant difference after 28 days (p > 0.05; and the largest inhibition halos for all strains, with no significant difference (E. coli and E. faecalis for pure EB and EB + Bi2O3 (p > 0.05. EB presented similar performance to that of MTA as regards pH and calcium ion release; however, when ZnO and ZrO2 were used, EB did not present antimicrobial activity against some strains.

  14. Antimicrobial hasubanalactam alkaloid from Stephania glabra.

    Science.gov (United States)

    Semwal, Deepak Kumar; Rawat, Usha

    2009-03-01

    A novel hasubanalactam alkaloid, named glabradine, has been isolated from the tubers of Stephania glabra, together with three known quaternary protoberberine alkaloids, palmatine, dehydrocorydalmine and stepharanine. The structure of glabradine was assigned as 7-O-demethyl-N,O-dimethyloxostephinine, by means of rigorous spectroscopic analysis including 2 D NMR measurements. It was evaluated for antimicrobial activity against Staphylococcus aureus, S. mutans, Microsporum gypseum, M. canis and Trichophyton rubrum and displayed potent antimicrobial activity superior to those of novobiocin and erythromycin used as positive controls. PMID:19148860

  15. Antimicrobial Stewardship for the Infection Control Practitioner.

    Science.gov (United States)

    Nagel, Jerod L; Kaye, Keith S; LaPlante, Kerry L; Pogue, Jason M

    2016-09-01

    Antibiotic misuse is a serious patient safety concern and a national public health priority. Years of indiscriminant antibiotic use has promoted selection for antibiotic resistant bacteria and Clostridium difficile This crisis has led to clinicians being faced with managing untreatable infections, often in the most vulnerable patient populations. This review summarizes the goals of antimicrobial stewardship programs, the essential members needed to initiate a program, various antimicrobial stewardship strategies, the role of the infection control practitioner in stewardship, barriers to its implementation and maintenance, approaches to measure the impact of a program, and the steps needed to initiate a program. PMID:27515147

  16. Platelets: at the nexus of antimicrobial defence.

    Science.gov (United States)

    Yeaman, Michael R

    2014-06-01

    Platelets have traditionally been viewed as fragmentary mediators of coagulation. However, recent molecular and cellular evidence suggests that they have multiple roles in host defence against infection. From first-responders that detect pathogens and rapidly deploy host-defence peptides, to beacons that recruit and enhance leukocyte functions in the context of infection, to liaisons that facilitate the T cell-B cell crosstalk that is required in adaptive immunity, platelets represent a nexus at the intersection of haemostasis and antimicrobial host defence. In this Review, I consider recent insights into the antimicrobial roles of platelets, which are mediated both directly and indirectly to integrate innate and adaptive immune responses to pathogens.

  17. Octenidine dihydrochloride: chemical characteristics and antimicrobial properties.

    Science.gov (United States)

    Assadian, Ojan

    2016-03-01

    The empiric use of antibiotics is being restricted due to the spread of antimicrobial resistance. However, topical antiseptics are less likely to induce resistance, owing to their unspecific mode of action and the high concentrations in which they can be used. One such antiseptic, octenidine dihydrochloride (OCT), can be used either prophylactically or therapeutically on the skin, mucosa and wounds. Evidence to support its use comes from in-vitro, animal and clinical studies on its safety, tolerability and efficacy. This article summarises the physical, chemical and antimicrobial properties of OCT in the context of wound care. PMID:26949863

  18. Antimicrobial coatings — obtaining and characterization

    Indian Academy of Sciences (India)

    Cornelia Guran; Alexandra Pica; Denisa Ficai; Anton Ficai; Cezar Comanescu

    2013-04-01

    In this paper, we present inorganic–organic hybrid coatings with polymer matrix (water soluble) that contain silver nanoparticles (AgNPs). The structure and morphology of coating materials were determined by infrared spectroscopy (FT–IR) and scanning electron microscopy (SEM). Therefore, the antimicrobial activities and mechanisms of coatings for several pathogenic bacteria (Bacilius cereus and Staphylococcus aureus) were investigated. It was demonstrated that the obtained material with silver nanoparticles keep their antimicrobial effect even if they are subjected to several cycles of washing with water and detergent.

  19. Deficiencia de zinc y sus implicaciones funcionales

    Directory of Open Access Journals (Sweden)

    ROSADO JORGE L

    1998-01-01

    Full Text Available El presente trabajo tiene por objeto revisar los aspectos teóricos y los estudios realizados en México que sugieren la existencia de la deficiencia moderada de zinc en niños de población rural, así como algunas de las consecuencias de dicha deficiencia en la salud. El zinc es un nutrimento indispensable para el organismo de los humanos y juega un papel importante en una serie de procesos metabólicos: participa en el sitio catalítico de varios sistemas enzimáticos; participa como ion estructural en membranas biológicas, y guarda una estrecha relación con la síntesis de proteínas, entre otras cosas. Es por esto que la deficiencia de zinc está asociada con consecuencias importantes en la salud y la funcionalidad de los individuos, especialmente durante las primeras etapas de la vida. De relevancia para México es la existencia de una deficiencia moderada de zinc en los niños y las consecuencias que ésta pueda tener en la salud de los mismos. Los estudios realizados sugieren que la deficiencia moderada de zinc se presenta asociada con la ingestión de dietas basadas en alimentos de origen vegetal, las cuales contienen cantidades importantes de inhibidores de la absorción de zinc. Este tipo de dietas se consume habitualmente en las zonas rurales y en la población marginal de las ciudades en el país. Entre las consecuencias más importantes de esta deficiencia se encontró un aumento en la presencia de enfermedades infecciosas, especialmente de diarrea, y posibles alteraciones en el desarrollo de la capacidad cognoscitiva.

  20. Historical variations in the isotopic composition of atmospheric zinc deposition from a zinc smelter

    OpenAIRE

    Sonke, J. E.; Sivry, Y.; Viers, J.; Freydier, R.; Dejonghe, L; André, L.; Aggarwal, J. K.; Fontan, F.; Dupré, Bernard (collab.)

    2008-01-01

    In order to test the usefulness of stable zinc isotopes as an atmospheric source tracer, we analyzed the zinc isotopic composition of two sediment cores, taken at 1 km distance of the former zinc smelter in Lommel, Belgium. The peat bog lake sediments accumulate mainly atmospheric particles, have high organic matter contents (12-60 wt.%), are anoxic and highly contaminated with heavy metals (up to 4.7 wt.% Zn, and 1.1 wt.% Pb) with a sulfide mineralogical control on mobility. Down core variat...

  1. Zinc Biofortification of Rice in China: A Simulation of Zinc Intake with Different Dietary Patterns

    OpenAIRE

    Zumin Shi; Rita Wegmueller; Jinkou Zhao; Kok, Frans J.; Minghao Zhou; Baojun Yuan; Xiaoqun Pan; Yue Dai; Alida Melse-Boonstra; Yu Qin

    2012-01-01

    A cross-sectional survey of 2819 adults aged 20 years and above was undertaken in 2002 in Jiangsu Province. Zinc intake was assessed using a consecutive 3-day 24-h dietary recall method. Insufficient and excess intake was determined according to the Chinese Dietary Recommended Intakes. Four distinct dietary patterns were identified namely “traditional”, “macho”, “sweet tooth”, and “healthy”. Intake of zinc from biofortified rice was simulated at an intermediate zinc concentration (2.7 mg/100 ...

  2. Zinc Biofortification of Rice in China: A stimulation of zinc intake with different dietary patterns

    OpenAIRE

    Qin, Y.; Boonstra, A.; B. Yuan; Pan, X; Dai, Yue

    2012-01-01

    A cross-sectional survey of 2819 adults aged 20 years and above was undertaken in 2002 in Jiangsu Province. Zinc intake was assessed using a consecutive 3-day 24-h dietary recall method. Insufficient and excess intake was determined according to the Chinese Dietary Recommended Intakes. Four distinct dietary patterns were identified namely “traditional”, “macho”, “sweet tooth”, and “healthy”. Intake of zinc from biofortified rice was simulated at an intermediate zinc concentration (2.7 mg/100 ...

  3. Determination of zinc contents in vegetables

    International Nuclear Information System (INIS)

    Zinc content of three groups of vegetables (roots and tuber, leaves and fruits) collected from local markets was determined and are reported here. The determination was made by Atomic Absorption Spectrophotometer. The results obtained show that the zinc content of different vegetables ranged from 6.26-36.80 ppm, 8.80-70-70 ppm and 7.20-35.10 ppm for roots and tubers, fruits of vegetables respectively on dry weight basis. Generally, the values obtained in majority are not above, the maximum permissible limits. (author)

  4. Luminescence investigation of zinc molybdate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' ev, Andrey [Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University (Russian Federation); Kamenskikh, Irina; Kolobanov, Vitaly; Savon, Alexander [Synchrotron Radiation Laboratory, Physics Faculty, Moscow State University (Russian Federation); Mikhailin, Vitaly [Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University (Russian Federation); Synchrotron Radiation Laboratory, Physics Faculty, Moscow State University (Russian Federation); Ivleva, Ludmila; Voronina, Irina; Berezovskaya, Ludmila [A. M. Prokhorov General Physics Institute of RAS, Moscow (Russian Federation); Spassky, Dmitry

    2009-07-15

    Zinc molybdate is considered as an alternative to the sheelite-type molybdate crystals for cryogenic scintillating bolometers. We report the results of the first investigation of the luminescent properties of bulk ZnMoO{sub 4} single crystals grown by Czochralski method. The temperature dependence of the luminescence intensity under different excitation energies was studied, optical characteristics of zinc molybdate are presented. The potential of ZnMoO{sub 4} single crystal as a scintillating material at low temperature is demonstrated. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Zinc oxide interdigitated electrode for biosensor application

    Science.gov (United States)

    Sin L., L.; Arshad, M. K. Md.; Fathil, M. F. M.; Adzhri, R.; M. Nuzaihan M., N.; Ruslinda, A. R.; Gopinath, Subash C. B.; Hashim, U.

    2016-07-01

    In biosensors, zinc oxide (ZnO) thin film plays a crucial role in term of stability, sensitivity, biocompatibility and low cost. Interdigitated electrode (IDE) design is one of the device architecture in biosensor for label free, stability and sensitivity. In this paper, we discuss the fabrication of zinc oxide deposited on the IDE as a transducer for sensing of biomolecule. The formation of APTES had increase the performance of the surface functionalization..Furthermore we extend the discuss on the surface functionalization process which is utilized for probe attachment onto the surface of biosensor through surface immobilization process, thus enables the sensing of biomolecules for biosensor application.

  6. The importance of zinc on osteoporotic bones

    Energy Technology Data Exchange (ETDEWEB)

    Lima, I.; Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mail: ricardo@lin.ufrj.br; inaya@lin.ufrj.br; Anjos, M.J. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: marcelin@lin.ufrj.br; Farias, M.L.F. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Hospital Universitario. Servico de Endocrinologia]. E-mail: fleiuss@hucff.ufrj.br; Rosenthal, D. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho. Lab. de Fisiologia Endocrina]. E-mail: doris@biof.ufrj.br

    2007-07-01

    Zinc is an essential element that can be found in bones, such as calcium and phosphorus. It seems to have effects on growth, bone turnover and mineralization making its relationship with bones still opening. The goal of this study is, by XRF analysis, characterized bone samples, with and without pathology, in the trabecular region. For that purpose, it was used an XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results show that the profile of the zinc distribution and its concentration on femoral heads are strongly related to the associated pathology. (author)

  7. Efficacy of highly bioavailable zinc from fortified water

    NARCIS (Netherlands)

    Galetti, Valeria; Kujinga, Prosper; Mitchikpè, C.E.S.; Zeder, Christophe; Tay, Fabian; Tossou, Félicien; Hounhouigan, Joseph D.; Zimmermann, Michael B.; Moretti, Diego

    2015-01-01

    Background: Zinc deficiency and contaminated water are major contributors to diarrhea in developing countries. Food fortification with zinc has not shown clear benefits, possibly because of low zinc absorption from inhibitory food matrices. We used a novel pointof-use water ultrafiltration device

  8. Crosstalk between Zinc Status and Giardia Infection: A New Approach

    Directory of Open Access Journals (Sweden)

    Humberto Astiazarán-García

    2015-06-01

    Full Text Available Zinc supplementation has been shown to reduce the incidence and prevalence of diarrhea; however, its anti-diarrheal effect remains only partially understood. There is now growing evidence that zinc can have pathogen-specific protective effects. Giardiasis is a common yet neglected cause of acute-chronic diarrheal illness worldwide which causes disturbances in zinc metabolism of infected children, representing a risk factor for zinc deficiency. How zinc metabolism is compromised by Giardia is not well understood; zinc status could be altered by intestinal malabsorption, organ redistribution or host-pathogen competition. The potential metal-binding properties of Giardia suggest unusual ways that the parasite may interact with its host. Zinc supplementation was recently found to reduce the rate of diarrhea caused by Giardia in children and to upregulate humoral immune response in Giardia-infected mice; in vitro and in vivo, zinc-salts enhanced the activity of bacitracin in a zinc-dose-dependent way, and this was not due to zinc toxicity. These findings reflect biological effect of zinc that may impact significantly public health in endemic areas of infection. In this paper, we shall explore one direction of this complex interaction, discussing recent information regarding zinc status and its possible contribution to the outcome of the encounter between the host and Giardia.

  9. Hemimorphite Ores: A Review of Processing Technologies for Zinc Extraction

    Science.gov (United States)

    Chen, Ailiang; Li, Mengchun; Qian, Zhen; Ma, Yutian; Che, Jianyong; Ma, Yalin

    2016-10-01

    With the gradual depletion of zinc sulfide ores, exploration of zinc oxide ores is becoming more and more important. Hemimorphite is a major zinc oxide ore, attracting much attention in the field of zinc metallurgy although it is not the major zinc mineral. This paper presents a critical review of the treatment for extraction of zinc with emphasis on flotation, pyrometallurgical and hydrometallurgical methods based on the properties of hemimorphite. The three-dimensional framework structure of hemimorphite with complex linkage of its structural units lead to difficult desilicification before extracting zinc in the many metallurgical technologies. It is found that the flotation method is generally effective in enriching zinc minerals from hemimorphite ores into a high-grade concentrate for recovery of zinc. Pure zinc can be produced from hemimorphite or/and willemite with a reducing reagent, like methane or carbon. Leaching reagents, such as acid and alkali, can break the complex structure of hemimorphite to release zinc in the leached solution without generation of silica gel in the hydrometallurgical process. For optimal zinc extraction, combing flotation with pyrometallurgical or hydrometallurgical methods may be required.

  10. Reinvestigation of growth of 'L-valine zinc sulphate' crystal.

    Science.gov (United States)

    Srinivasan, Bikshandarkoil R; Jyai, Rita N

    2014-01-01

    A reinvestigation of the growth of l-valine zinc sulphate crystal is reported. The slow evaporation of an aqueous solution containing l-valine and zinc sulphate heptahydrate results in the fractional crystallization of l-valine and not the organic inorganic hybrid nonlinear optical l-valine zinc sulphate crystal, as reported by Puhal Raj and Ramachandra Raja (2012).

  11. Zinc oxide's hierarchical nanostructure and its photocatalytic properties

    DEFF Research Database (Denmark)

    Kanjwal, Muzafar Ahmed; Sheikh, Faheem A.; Barakat, Nasser A. M.;

    2012-01-01

    In this study, a new hierarchical nanostructure that consists of zinc oxide (ZnO) was produced by the electrospinning process followed by a hydrothermal technique. First, electrospinning of a colloidal solution that consisted of zinc nanoparticles, zinc acetate dihydrate and poly(vinyl alcohol...

  12. Serum zinc and pneumonia in nursing home elderly

    Science.gov (United States)

    Zinc plays an important role in immune function. The association between serum zinc and pneumonia in the elderly has not been studied. The study aim is to determine if serum zinc concentrations in nursing home elderly are associated with incidence and duration of pneumonia, total and duration of ant...

  13. Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration.

    Directory of Open Access Journals (Sweden)

    M Indriati Hood

    Full Text Available Acinetobacter baumannii is an important nosocomial pathogen that accounts for up to 20 percent of infections in intensive care units worldwide. Furthermore, A. baumannii strains have emerged that are resistant to all available antimicrobials. These facts highlight the dire need for new therapeutic strategies to combat this growing public health threat. Given the critical role for transition metals at the pathogen-host interface, interrogating the role for these metals in A. baumannii physiology and pathogenesis could elucidate novel therapeutic strategies. Toward this end, the role for calprotectin- (CP-mediated chelation of manganese (Mn and zinc (Zn in defense against A. baumannii was investigated. These experiments revealed that CP inhibits A. baumannii growth in vitro through chelation of Mn and Zn. Consistent with these in vitro data, Imaging Mass Spectrometry revealed that CP accompanies neutrophil recruitment to the lung and accumulates at foci of infection in a murine model of A. baumannii pneumonia. CP contributes to host survival and control of bacterial replication in the lung and limits dissemination to secondary sites. Using CP as a probe identified an A. baumannii Zn acquisition system that contributes to Zn uptake, enabling this organism to resist CP-mediated metal chelation, which enhances pathogenesis. Moreover, evidence is provided that Zn uptake across the outer membrane is an energy-dependent process in A. baumannii. Finally, it is shown that Zn limitation reverses carbapenem resistance in multidrug resistant A. baumannii underscoring the clinical relevance of these findings. Taken together, these data establish Zn acquisition systems as viable therapeutic targets to combat multidrug resistant A. baumannii infections.

  14. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; van Dorsselaer, Alain; Rabilloud, Thierry

    2014-05-01

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate

  15. Molecular target of synthetic antimicrobial oligomer in bacterial membranes

    Science.gov (United States)

    Yang, Lihua; Gordon, Vernita; Som, Abhigyan; Cronan, John; Tew, Gregory; Wong, Gerard

    2008-03-01

    Antimicrobial peptides comprises a key component of innate immunity for a wide range of multicellular organisms. It has been shown that natural antimicrobial peptides and their synthetic analogs have demonstrated broad-spectrum antimicrobial activity via permeating bacterial membranes selectively. Synthetic antimicrobials with tunable structure and toxicological profiles are ideal for investigations of selectivity mechanisms. We investigate interactions and self-assembly using a prototypical family of antimicrobials based on phenylene ethynylene. Results from synchrotron small angle x-ray scattering (SAXS) results and in vitro microbicidal assays on genetically modified `knock-out' bacteria will be presented.

  16. Evaluation of Fatty Acid Composition, Antioxidant and Antimicrobial Activity, Mineral Composition and Calorie Values of Some Nuts and Seeds from Turkey

    Directory of Open Access Journals (Sweden)

    Fatma Gülay Kırbaşlar

    2012-07-01

    Full Text Available The samples of the hazelnut, peanut, pistachio, almond, walnut, chestnut, pumpkin seed and sunflower seed were collected from Turkey. The fatty acid compositions of Turkish nut and seed oils were analyzed by Gas Chromatography (GC were determined. The antioxidant activity of the samples was assessed by 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging capacity assay toward BHT and Vitamin C. Retinol and a -tocopherol were analyzed using High-Pressure Liquid Chromatography with UV Detector (HPLC-UV. The antimicrobial and antifungal activities of Turkish nut and seeds were evaluated using the disk diffusion method toward 9 bacteria and 5 yeasts. The nut and seeds showed strong antimicrobial activity against the test organisms. Spectroscopic determination of minerals (Calcium, magnesium, potassium, sodium, iron, copper, manganese, selenium, zinc, chromium, aluminum of nuts and seeds was performed with inductively coupled plasma-atomic emission spectrometer (ICP-AES. The calorie values of samples were measured using a Bomb Calorimeter.

  17. Zinc Blotting Assay for Detection of Zinc-Binding Prolamin in Barley (Hordeum vulgare) Grain

    DEFF Research Database (Denmark)

    Uddin, Mohammad Nasir; Langkilde, Ane; Vincze, Éva

    2014-01-01

    In plants, zinc is commonly found bound to proteins. In barley (Hordeum vulgare), major storage proteins are alcohol-soluble prolamins known as hordeins, and some of them have the potential to bind or store zinc. 65Zn overlay and blotting techniques have been widely used for detecting zinc...

  18. Effectiveness of zinc fortified drinking water on zinc intake, status and morbidity of rural Kenyan pre-school children

    NARCIS (Netherlands)

    Kujinga-Chopera, P.

    2016-01-01

    Background: Zinc deficiency is considered a significant public health problem in preschool children in Africa together with infections such as diarrhea, which further deplete the body of zinc. Young children are more vulnerable to zinc deficiency due to increased requirements and fr

  19. Construction and application of a zinc-specific biosensor for assessing the immobilization and bioavailability of zinc in different soils

    International Nuclear Information System (INIS)

    The inducibility and specificity of different czcRS operons in Pseudomonas putida X4 were studied by lacZ gene fusions. The data of β-glycosidase activity confirmed that the czcR3 promoter responded quantitatively to zinc. A zinc-specific biosensor, P. putida X4 (pczcR3GFP), was constructed by fusing a promoterless enhanced green fluorescent protein (egfp) gene with the czcR3 promoter in the chromosome of P. putida X4. In water extracts of four different soils amended with zinc, the reporter strain detected about 90% of the zinc content of the samples. Both the bioavailability assessment and the sequential extraction analysis demonstrated that the immobilization of zinc was highly dependent on the physico-chemical properties of soils. The results also showed that the lability of zinc decreased over time. It is concluded that the biosensor constitutes an alternative system for the convenient evaluation of zinc toxicity in the environment. - Highlights: ► A zinc-specific bacterial biosensor was developed. ► Four spiked soils were used to test the application of this biosensor. ► The bioavailable zinc in soil-water extracts decreased due to aging. ► The immobilization and speciation of zinc were highly dependent on the soil type. - The immobilization and bioavailability of zinc in soil were investigated as a function of soil type and aging by a newly constructed zinc-specific biosensor coupled with chemical analysis.

  20. The Limiting Phenomena at the Anode of the Electrowinning of Zinc from Zinc Chloride in a Molten Chloride Electrolyte

    NARCIS (Netherlands)

    Lans, S.C.

    2004-01-01

    The objective of this research is to investigate the possibilities and technological viability for the electrowinning of zinc from zinc chloride. This research contributes to development of an alternative process, because it provides: ⢠A clear understanding and overview of the present zinc industr

  1. Thermodynamics and kinetics of extracting zinc from zinc oxide ore by the ammonium sulfate roasting method

    Science.gov (United States)

    Sun, Yi; Shen, Xiao-yi; Zhai, Yu-chun

    2015-05-01

    Thermodynamic analyses and kinetic studies were performed on zinc oxide ore treatment by (NH4)2SO4 roasting technology. The results show that it is theoretically feasible to realize a roasting reaction between the zinc oxide ore and (NH4)2SO4 in a temperature range of 573-723 K. The effects of reaction temperature and particle size on the extraction rate of zinc were also examined. It is found that a surface chemical reaction is the rate-controlling step in roasting kinetics. The calculated activation energy of this process is about 45.57 kJ/mol, and the kinetic model can be expressed as follows: 1 - (1 - α)1/3 = 30.85 exp(-45.57/ RT)· t. An extraction ratio of zinc as high as 92% could be achieved under the optimum conditions.

  2. Electrochemical assessing corrosion inhibiting effects of zinc aluminum polyphosphate (ZAPP) as a modified zinc phosphate pigment

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, R. [Polymer Engineering Department, AmirKabir University of Technology, P.O. Box 15875-413, Tehran (Iran, Islamic Republic of); Attar, M.M. [Polymer Engineering Department, AmirKabir University of Technology, P.O. Box 15875-413, Tehran (Iran, Islamic Republic of)], E-mail: attar@cic.aut.ac.ir

    2008-07-20

    Undesirable anti-corrosion performance of zinc phosphate pigment, the classical chromate replacement, has led researchers to take modification into account. Polyphosphate-based anti-corrosion pigments as a result of modification of zinc orthophosphate have been found to function much more efficiently. This study aimed to evaluate performance of steel samples immersed in 3.5% NaCl aqueous solution-containing zinc aluminum polyphosphate (ZAPP) pigment extract compared to those involving conventional zinc phosphate (ZP) pigment extract and also no pigment (blank) using electrochemical tests such as electrochemical impedance spectroscopy (EIS) and linear polarization (LP) as well as surface analysis. Impedance spectra and polarization curves revealed two different trends, showing the superiority of ZAPP pigment. Based on the results of scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), presence of a precipitated layer on the surface was confirmed when steel sample was immersed into the solution-containing ZAPP.

  3. Influence of concentration of zinc ions on electrocrystallization process of zinc

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao

    2005-01-01

    Cyclic voltammetry, chronoamperometry and scanning electron microscopy were employed to study the influence of Zn2+ ion concentration in electrolyte solutions on zinc electroplating process. The results show that, at high overpotentials, the nucleation of zinc is instantaneous, and nuclear density increases with the overpotentials increasing. While at low overpotentials, the zinc may be preferentially electrodeposited on surface inhomogeneities such as emergence points of edge, screw dislocations, atomic disorder, kink sites, or monoatomic steps, and no distinguished nucleation current can be observed. The major dissolution peak in cyclic voltammogram drifts positively due to the change of the rate-determining step of zinc electroplating processes from diffusion to the electrochemical reaction with the increase of Zn2+ ion concentration.

  4. Antimicrobial peptides in echinoderm host defense.

    Science.gov (United States)

    Li, Chun; Blencke, Hans-Matti; Haug, Tor; Stensvåg, Klara

    2015-03-01

    Antimicrobial peptides (AMPs) are important effector molecules in innate immunity. Here we briefly summarize characteristic traits of AMPs and their mechanisms of antimicrobial activity. Echinoderms live in a microbe-rich marine environment and are known to express a wide range of AMPs. We address two novel AMP families from coelomocytes of sea urchins: cysteine-rich AMPs (strongylocins) and heterodimeric AMPs (centrocins). These peptide families have conserved preprosequences, are present in both adults and pluteus stage larvae, have potent antimicrobial properties, and therefore appear to be important innate immune effectors. Strongylocins have a unique cysteine pattern compared to other cysteine-rich peptides, which suggests a novel AMP folding pattern. Centrocins and SdStrongylocin 2 contain brominated tryptophan residues in their native form. This review also includes AMPs isolated from other echinoderms, such as holothuroidins, fragments of beta-thymosin, and fragments of lectin (CEL-III). Echinoderm AMPs are crucial molecules for the understanding of echinoderm immunity, and their potent antimicrobial activity makes them potential precursors of novel drug leads. PMID:25445901

  5. [Application on food preservative of antimicrobial peptides].

    Science.gov (United States)

    Zhao, Hongyan; Mu, Yu; Zhao, Baohua

    2009-07-01

    Antimicrobial peptides are an integral component of the innate immune system, it can counteract outer membrane pathogen such as bacteria, fungi, viruses, protozoan and so on. Owing to the sterilization and innocuity, it has the potential to be crude food preservative. In this paper the uses of antibacterial peptides in the food preservative were analyzed.

  6. Antimicrobial activity of mangrove plant (Lumnitzera littorea)

    Institute of Scientific and Technical Information of China (English)

    Shahbudin Saad; Muhammad Taher; Deny Susanti; Haitham Qaralleh; Nurul Afifah Binti Abdul Rahim

    2011-01-01

    Objective:To investigate the antimicrobial activities ofn-hexane, ethyl acetate and methanol extracts of the leaves ofLumnitzera littorea (L. littorea) against six human pathogenic microbes. Methods: The antimicrobial activity was evaluated using disc diffusion and microdilution methods.Results:The antimicrobial activities of the crude extracts were increased with increasing the concentration. It is clear thatn-hexane extract was the most effective extract. Additionally, Gram positiveBacillus cereus (B. cereus) appear to be the most sensitive strain whilePseudomonas aeruginosa (P. aeruginosa) and the yeast strains (Candida albicans (C. albicans) andCryptococcus neoformans (C. neoformans)) appear to be resistance to the tested concentrations since no inhibition zone was observed. The inhibition of microbial growth at concentration as low as0.04 mg/mL indicated the potent antimicrobial activity ofL. littorea extracts.Conclusions:The obtained results are considered sufficient for further study to isolate the compounds responsible for the activity and suggesting the possibility of finding potent antibacterial agents fromL. littorea extracts.

  7. Antimicrobial resistant bacteria in the food chain

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar

    2003-01-01

    Antimicrobials are used for treatment and prevention of disease in food animals and as feed additives for growth promotion. All uses lead to the development of resistant bacteria, some of which are pathogenic to humans. Current main concerns are with resistance in Salmonella and Campylobacter...

  8. Using C. elegans for antimicrobial drug discovery

    Science.gov (United States)

    Desalermos, Athanasios; Muhammed, Maged; Glavis-Bloom, Justin; Mylonakis, Eleftherios

    2011-01-01

    Introduction The number of microorganism strains with resistance to known antimicrobials is increasing. Therefore, there is a high demand for new, non-toxic and efficient antimicrobial agents. Research with the microscopic nematode Caenorhabditis elegans can address this high demand for the discovery of new antimicrobial compounds. In particular, C. elegans can be used as a model host for in vivo drug discovery through high-throughput screens of chemical libraries. Areas covered This review introduces the use of substitute model hosts and especially C. elegans in the study of microbial pathogenesis. The authors also highlight recently published literature on the role of C. elegans in drug discovery and outline its use as a promising host with unique advantages in the discovery of new antimicrobial drugs. Expert opinion C. elegans can be used, as a model host, to research many diseases, including fungal infections and Alzheimer’s disease. In addition, high-throughput techniques, for screening chemical libraries, can also be facilitated. Nevertheless, C. elegans and mammals have significant differences that both limit the use of the nematode in research and the degree by which results can be interpreted. That being said, the use of C. elegans in drug discovery still holds promise and the field continues to grow, with attempts to improve the methodology already underway. PMID:21686092

  9. The quest for optimal antimicrobial therapy

    NARCIS (Netherlands)

    Mol, Petrus Gerardus Maria

    2005-01-01

    Since the discovery of sulphonam ides and penicillin in the 1930's, and their widespread use in clinical practice during World War II a plethora of new antimicrobial agents have entered the market. Initial optim ism has faded that these new drugs would eliminate infectious diseases as killer disease

  10. Health council report 'Antimicrobial growth promoters'.

    NARCIS (Netherlands)

    Goettsch, W; Degener, JE

    1999-01-01

    The Health Council of the Netherlands has issued a report on the risk of development of resistance among bacteria as result of the use of antibiotics as growth promotors in livestock farming. The committee appointed by the Health Council conclude that the use of antimicrobial growth promotors contri

  11. ANTIMICROBIAL EFFECT OF A DENTAL VARNISH, INVITRO

    NARCIS (Netherlands)

    PETERSSON, LG; EDWARDSSON, S; ARENDS, J

    1992-01-01

    The effects of a polymer based antimicrobial releasing varnish Cervitec(R) were investigated against different grampositive and gramnegative bacterial strains as well as a yeast using the agar diffusion inhibitory test (ADT-test in vitro). As positive controls a 1 % chlorhexidine gel and 1 % aqueous

  12. Phytoaccumulation of antimicrobials by hydroponic Cucurbita pepo.

    Science.gov (United States)

    Aryal, Niroj; Reinhold, Dawn

    2013-01-01

    Consumer use of antimicrobial-containing products continuously introduces triclocarban and triclosan into the environment. Triclocarban and triclosan adversely affect plants and animals and have the potential to affect human health. Research examined the phytoaccumulation of triclocarban and triclosan by pumpkin (Cucurbita pepo cultivar Howden) and zucchini (Cucurbita pepo cultivar Gold Rush) grown hydroponically. Pumpkin and zucchini were grown in nutrient solution spiked with 0.315 microg/mL triclocarban and 0.289 microg/mL triclosan for two months. Concentrations of triclocarban and triclosan in nutrient solutions were monitored weekly. At the end of the trial, roots and shoots were analyzed for triclocarban and triclosan. Research demonstrated that pumpkin and zucchini accumulated triclocarban and triclosan. Root accumulation factors were 1.78 and 0.64 and translocation factors were 0.001 and 0.082 for triclocarban and triclosan, respectively. The results of this experiment were compared with a previous soil column study that represented environmentally relevant exposure of antimicrobials from biosolids and had similar root mass. Plants were not as efficient in removing triclocarban and triclosan in hydroponic systems as in soil systems. Shoot concentrations of antimicrobials were the same or lower in hydroponic systems than in soil columns, indicating that hydroponic system does not overpredict the concentrations of antimicrobials.

  13. Computer-Aided Design of Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Hancock, Robert E.W.; Jenssen, Håvard

    2010-01-01

    An increasing number of reported cases of drug resistant Staphylococcus aureus and Pseudomonas aeruginosa, demonstrate the urgent need for new therapeutics that are effective against such and other multi-drug resistant bacteria. Antimicrobial peptides have for two decades now been looked upon as...

  14. Minimal inhibitory concentrations of modern topical antimicrobials

    Directory of Open Access Journals (Sweden)

    T. N. Vorontsova

    2014-01-01

    Full Text Available Aim. To measure minimal inhibitory concentration (MIC values for modern topical antimicrobials against common ocular pathogens.Methods.Antimicrobials most commonly used in ophthalmology (fluoroquinolones and aminoglycosides are dose-dependent drugs, i.e., the rate of microbial death increases in direct proportion to their concentrations. To determine MICs, we applied Hi Comb MIC Test (E-test. 105 patients aged 2 months through 7 years which were diagnosed with various inflammatory disorders of anterior segment were  xamined. MIC values for most commonly used antimicrobials, i.e., ciprofloxacin / Cipromed (Sentiss Pharma, Gurgaon, India, ofloxacin / Floxal (Baush & Lomb, Rochester, New-York, levofloxacin / Signicef (Sentiss Pharma, Gurgaon, India, moxifloxacin / Vigamox (Alcon, Fort Worth, Texas, gatifloxacin / Zymar (Allergan, Irvine, California, and tobramycin / Tobrex (Alcon, Fort Worth, Texas, were measured.Results. The analysis revealed that the most effective antibacterial drug against microbial isolates in children (i.e., Staphylococci spp. was levofloxacin. MIC for this agent against Streptococci spp. and Gram-negative microbes was low as well. Moxifloxacin is preferred for the treatment of ocular inflammation provoked by Streptococci spp. as MIC of this antimicrobial against Streptococci spp. was the lowest. MIC of ciprofloxacin against Gram-negative flora was the lowest. These data demonstrate generally recognized high efficacy of this drug. MIC value for tobramycin against all bacterial isolates was the highest.

  15. Use of Biopolymers in Antimicrobial Food Packaging

    Science.gov (United States)

    Recent outbreaks of foodborne illness and food recalls continue to push for innovative ways to inhibit microbial growth in foods. As an additional hurdle to food processes, antimicrobial food packaging can play an important role in reducing the risk of pathogen contamination of processed foods. In...

  16. Antimicrobiële eiwitten in speeksel

    NARCIS (Netherlands)

    W. van 't Hof; E.C.I. Veerman

    2014-01-01

    Speeksel bevat verschillende eiwitten en peptiden met antimicrobiële eigenschappen. In kwantitatief opzicht de belangrijkste zijn: Daarnaast bevat speeksel ook bacteriebindende eiwitten, onder andere immuunglobulinen, die hun kolonisatie in de mond remmen. Lysozym: breekt mureïne in de celwand af en

  17. Antimicrobial peptides in echinoderm host defense.

    Science.gov (United States)

    Li, Chun; Blencke, Hans-Matti; Haug, Tor; Stensvåg, Klara

    2015-03-01

    Antimicrobial peptides (AMPs) are important effector molecules in innate immunity. Here we briefly summarize characteristic traits of AMPs and their mechanisms of antimicrobial activity. Echinoderms live in a microbe-rich marine environment and are known to express a wide range of AMPs. We address two novel AMP families from coelomocytes of sea urchins: cysteine-rich AMPs (strongylocins) and heterodimeric AMPs (centrocins). These peptide families have conserved preprosequences, are present in both adults and pluteus stage larvae, have potent antimicrobial properties, and therefore appear to be important innate immune effectors. Strongylocins have a unique cysteine pattern compared to other cysteine-rich peptides, which suggests a novel AMP folding pattern. Centrocins and SdStrongylocin 2 contain brominated tryptophan residues in their native form. This review also includes AMPs isolated from other echinoderms, such as holothuroidins, fragments of beta-thymosin, and fragments of lectin (CEL-III). Echinoderm AMPs are crucial molecules for the understanding of echinoderm immunity, and their potent antimicrobial activity makes them potential precursors of novel drug leads.

  18. Antimicrobial Peptides in Innate Immunity against Mycobacteria.

    Science.gov (United States)

    Shin, Dong-Min; Jo, Eun-Kyeong

    2011-10-01

    Antimicrobial peptides/proteins are ancient and naturallyoccurring antibiotics in innate immune responses in a variety of organisms. Additionally, these peptides have been recognized as important signaling molecules in regulation of both innate and adaptive immunity. During mycobacterial infection, antimicrobial peptides including cathelicidin, defensin, and hepcidin have antimicrobial activities against mycobacteria, making them promising candidates for future drug development. Additionally, antimicrobial peptides act as immunomodulators in infectious and inflammatory conditions. Multiple crucial functions of cathelicidins in antimycobacterial immune defense have been characterized not only in terms of direct killing of mycobacteria but also as innate immune regulators, i.e., in secretion of cytokines and chemokines, and mediating autophagy activation. Defensin families are also important during mycobacterial infection and contribute to antimycobacterial defense and inhibition of mycobacterial growth both in vitro and in vivo. Hepcidin, although its role in mycobacterial infection has not yet been characterized, exerts antimycobacterial effects in activated macrophages. The present review focuses on recent efforts to elucidate the roles of host defense peptides in innate immunity to mycobacteria.

  19. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties.

    Science.gov (United States)

    Dastjerdi, Roya; Montazer, Majid

    2010-08-01

    Textiles can provide a suitable substrate to grow micro-organisms especially at appropriate humidity and temperature in contact to human body. Recently, increasing public concern about hygiene has been driving many investigations for anti-microbial modification of textiles. However, using many anti-microbial agents has been avoided because of their possible harmful or toxic effects. Application of inorganic nano-particles and their nano-composites would be a good alternative. This review paper has focused on the properties and applications of inorganic nano-structured materials with good anti-microbial activity potential for textile modification. The discussed nano-structured anti-microbial agents include TiO(2) nano-particles, metallic and non-metallic TiO(2) nano-composites, titania nanotubes (TNTs), silver nano-particles, silver-based nano-structured materials, gold nano-particles, zinc oxide nano-particles and nano-rods, copper nano-particles, carbon nanotubes (CNTs), nano-clay and its modified forms, gallium, liposomes loaded nano-particles, metallic and inorganic dendrimers nano-composite, nano-capsules and cyclodextrins containing nano-particles. This review is also concerned with the application methods for the modification of textiles using nano-structured materials. PMID:20417070

  20. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons.

    Science.gov (United States)

    Zhang, Yuping; Zhang, Chiqian; Parker, David B; Snow, Daniel D; Zhou, Zhi; Li, Xu

    2013-10-01

    Livestock manure treatment and storage structures are potential environmental sources of antimicrobials and antimicrobial resistance genes (ARGs). In this study, the occurrence of antimicrobials and ARGs was investigated in the water and the sludge compartments of beef cattle storage ponds and swine lagoons. Analysis was focused on two families of antimicrobials (sulfonamide and tetracycline) and the corresponding ARGs (sul1, sul2, tetO, tetQ and tetX). Results showed that the pseudo-partitioning coefficients of tetracyclines were higher than those of sulfonamides, suggesting different distributions of these two classes of antimicrobials between water and sludge. The ARGs tested were detected in nearly all ponds and lagoons, with the highest relative abundance in sul2 at 6.3×10(-1) copies per 16S rRNA gene. A positive correlation was observed between total sul genes and total sulfonamides in water while the correlation was negative in sludge. No significant correlation was found between total tet genes and total tetracyclines in either water or sludge, but significant correlations were observed for certain individual tet genes. Ammonia concentrations strongly correlated with all ARGs except tetX. This study provided quantitative information on the occurrence of antimicrobials and ARGs in the liquid and solid compartments of typical manure treatment and storage structures. PMID:23838056