WorldWideScience

Sample records for antimicrobial resistant bacteria

  1. Antimicrobial resistant bacteria in the food chain

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar

    2003-01-01

    Antimicrobials are used for treatment and prevention of disease in food animals and as feed additives for growth promotion. All uses lead to the development of resistant bacteria, some of which are pathogenic to humans. Current main concerns are with resistance in Salmonella and Campylobacter...

  2. Antimicrobial resistance in aerobic bacteria isolated from oral ...

    African Journals Online (AJOL)

    ... varied antimicrobial susceptibility patterns. The oral cavities of hunting dogs are laden with multi-drug resistant bacteria of significant public health importance that could be transferred to humans through contaminated hunted games and bite wound. Keywords: Aerobic bacteria, Antimicrobial resistance, Dogs, Oral cavity, ...

  3. Frequency and antimicrobial resistance of aerobic bacteria isolated ...

    African Journals Online (AJOL)

    This study was carried out to evaluate the frequency of occurrence and antimicrobial resistance of aerobic bacteria isolated from surgical sites in human and animal patients in Nsukka, southeast Nigeria. Wound swabs from 132 patients (96 humans and 36 animals) were cultured for bacterial isolation. Antimicrobial ...

  4. Antimicrobial resistance in aerobic bacteria isolated from oral ...

    African Journals Online (AJOL)

    This study reinforces the need for dog bite wound microbial culture and antimicrobial sensitivity test as isolates showed varied antimicrobial susceptibility patterns. The oral cavities of hunting dogs are laden with multi-drug resistant bacteria of significant public health importance that could be transferred to humans through ...

  5. How Fitness Reduced, Antimicrobial Resistant Bacteria Survive and Spread

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Nielsen, Søren Saxmose; Toft, Nils

    2014-01-01

    More than 30% of E. coli strains sampled from pig farms in Denmark over the last five years were resistant to the commonly used antimicrobial tetracycline. This raises a number of questions: How is this high level sustained if resistant bacteria have reduced growth rates? Given that there are mul...

  6. Antimicrobial-resistant bacteria in wild game in Slovenia

    Science.gov (United States)

    Križman, M.; Kirbiš, A.; Jamnikar-Ciglenečki, U.

    2017-09-01

    Wildlife is usually not exposed to clinically-used antimicrobial agents but can acquire antimicrobial resistance throughout contact with humans, domesticated animals and environments. Samples of faeces from intestines (80 in total) were collected from roe deer (52), wild boars (11), chamois (10) red deer (6) and moufflon (1). After culture on ChromID extended spectrum β-lactamase (ESBL) plates to select for growth of ESBL-producing bacteria, 25 samples produced bacterial colonies for further study. Six species of bacteria were identified from the 25 samples: Stenotrophomonas maltophilia, Serratia fonticola, Stenotrophomonas nitritireducens, Enterococcus faecium, Enterococcus faecalis and Escherichia coli. Two ESBL enzymes were amplified from group TEM and three from group CTX-M-1. Undercooked game meat and salami can be a source of resistant bacteria when animals are not eviscerated properly.

  7. Marine echinoderms as reservoirs of antimicrobial resistant bacteria

    Directory of Open Access Journals (Sweden)

    Catarina Marinho

    2014-06-01

    Full Text Available Echinoderms are benthic animals that play an important ecological role in marine communities occupying diverse trophic levels in the marine food chains. The majority of echinoderms feed on small particles of edible matter, although they can eat many kinds of food (Clark, 1968. Although, some echinoderms species has been facing an emerging demand for human consumption, particularly in Asian and Mediterranean cuisine, where these animals can be eaten raw (Kelly, 2005; Micael et al., 2009. Echinoderms own an innate immune mechanism that allows them to defend themselves from high concentrations of bacteria, viruses and fungus they are often exposed, on marine sediment (Janeway and Medzhitov, 1998, Cooper, 2003. The most frequent genera of gut bacteria in echinoderms are Vibrio, Pseudomonas, Flavobacterium, and Aeromonas; nevertheless Enterococcus spp. and Escherichia coli are also present (Harris, 1993; Marinho et al., 2013. Moreover, fecal resistant bacteria found in the aquatic environment might represent an index of marine pollution (Foti et al., 2009, Kummerer, 2009. Several studies had been lead in order to identify environmental reservoirs for antibiotic-resistant bacteria in populations of fish, echinoderms and marine mammals, and they all support the thesis that these animals may serve as reservoirs since they had acquired resistant microbial species (Johnson et al., 1998, Marinho et al., 2013, Miranda and Zemelman, 2001. However, to our knowledge, there are only available in bibliography one study of antimicrobial resistant bacteria isolated from marine echinoderms (Marinho et al., 2013, which stats that their provenience in this environment is still unclear. Antimicrobial resistance outcomes from the intensive use of antimicrobial drugs in human activities associated with various mechanisms for bacteria genetic transfer (Barbosa and Levy, 2000, Coque et al., 2008. Antibiotic-resistant bacteria enter into water environments where they are

  8. Antimicrobial resistance among pathogenic bacteria from mink (Neovison vison) in Denmark

    DEFF Research Database (Denmark)

    Nikolaisen, Nanett Kvist; Lassen, Desireé Corvera Kløve; Chriél, Mariann

    2017-01-01

    of antimicrobial resistance among pathogenic bacteria isolated from Danish mink during the period 2014-2016. The aim of this investigation was to provide data on antimicrobial resistance and consumption, to serve as background knowledge for new veterinary guidelines for prudent and optimal antimicrobial usage...... and macrolides. Conclusions: The study showed that antimicrobial resistance was common in most pathogenic bacteria from mink, in particular hemolytic E. coli. There is a need of guidelines for prudent use of antimicrobials for mink....

  9. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: The missing link between consumption and resistance in veterinary medicine

    DEFF Research Database (Denmark)

    Garcia-Migura, Lourdes; Hendriksen, Rene S.; Fraile, Lorenzo

    2014-01-01

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents...... antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite...

  10. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts to select the appropriate antimicrobial ...

  11. Antimicrobial Resistance Trend of Bacteria from Clinical Isolates: An ...

    African Journals Online (AJOL)

    For decades, antimicrobials have proven useful for the treatment of bacterial infections. However, the immergence of antimicrobial resistance has become a major challenge to public health in many countries. The aim of this study was to investigate the antimicrobial susceptibility of bacterial isolates from clinical sources.

  12. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... CVM) produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, ...

  13. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, ...

  14. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing ... CVM) produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over ...

  15. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine.

    Science.gov (United States)

    Garcia-Migura, Lourdes; Hendriksen, Rene S; Fraile, Lorenzo; Aarestrup, Frank M

    2014-05-14

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1 kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite the withdrawn of a specific antimicrobial from "on farm" use, persistence over the years of bacteria resistant to this particular antimicrobial agent, was still observed. There were also differences in trends of resistance associated to specific animal species. In order to correlate the use of antimicrobial agents to the presence of resistance, surveillance of antimicrobial consumption by animal species should be established. Subsequently, intervention strategies could be designed to minimize the occurrence of resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter

    DEFF Research Database (Denmark)

    Li, Lili; Olsen, Rikke Heidemann; Ye, Lei

    2016-01-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bac......The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram......-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across.......6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor– encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance...

  17. Antimicrobial resistance determinants among anaerobic bacteria isolated from footrot.

    Science.gov (United States)

    Lorenzo, María; García, Nuria; Ayala, Juan Alfonso; Vadillo, Santiago; Píriz, Segundo; Quesada, Alberto

    2012-05-25

    Antibiotic resistance has been evaluated among 36 Gram negative and anaerobic bacilli (10 Bacteroides, 11 Prevotella, 7 Porphyromonas and 8 Fusobacterium strains) isolated from clinical cases of caprine and ovine footrot (necrotic pododermatitis). The initial analysis on this bacterial consortium evaluates the relationships existing among antimicrobial resistance determinants, phenotype expression and mobilization potential. The Bacteroides strains were generally resistant to penicillins, first-generation cephalosporins, tetracycline and erythromycin, and expressed low level of β-lactamase activity. The main determinants found among the Bacteroides strains were cepA and tetQ genes, conferring resistance to β-lactams and tetracycline, respectively. A general susceptibility to β-lactams was shown for most Prevotella, Porphyromonas and Fusobacterium strains, where none of the β-lactamase genes described in Bacteroides was detected. Resistance to tetracycline and/or erythromycin was found among the three bacterial groups. Although tetQ genes were detected for several Prevotella and Porphyromonas strains, a unique ermF positive was revealed among Prevotella strains. The expression of resistance markers was not related with the polymorphism of their coding sequences. However, the finding of sequence signatures for conjugative transposons in the vicinities of tetQ and ermF suggests a mobilization potential that might have contributed to the spread of antimicrobial resistance genes. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Duration of colonization with antimicrobial-resistant bacteria after ICU discharge

    NARCIS (Netherlands)

    Haverkate, Manon R; Derde, Lennie P G; Brun-Buisson, Christian; Bonten, Marc J M; Bootsma, Martin C J|info:eu-repo/dai/nl/304830305

    PURPOSE: Readmission of patients colonized with antimicrobial-resistant bacteria (AMRB) is important in the nosocomial dynamics of AMRB. We assessed the duration of colonization after discharge from the intensive care unit (ICU) with highly resistant Enterobacteriaceae (HRE), methicillin-resistant

  19. European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections

    DEFF Research Database (Denmark)

    Marques, Cátia; Gama, Luís Telo; Belas, Adriana

    2016-01-01

    for fluoroquinolone-resistant Proteus spp. isolated from companion animals from Belgium. CONCLUSIONS: This work brings new insights into the current status of antimicrobial resistance in bacteria isolated from companion animals with UTI in Europe and reinforces the need for strategies aiming to reduce resistance....

  20. Usage of antimicrobials and occurrence of antimicrobial resistance among bacteria from mink

    DEFF Research Database (Denmark)

    Pedersen, Karl; Hammer, Anne Sofie; Sørensen, Charlotte Mark

    2009-01-01

    , whereas resistance to other antimicrobials was rare. All P aeruginosa were sensitive to gentamicin and colistin and sensitive or intermediate to enrofloxacin. whereas most isolates were resistant to all other antimicrobials. All P. multocida and haemolytic streptococci were sensitive to penicillin...

  1. Occurrence of antimicrobial resistance in bacteria from diagnostic samples from dogs

    DEFF Research Database (Denmark)

    Pedersen, Karl; Pedersen, Kristina; Jensen, Helene

    2007-01-01

    Pseudomonas aeruginosa, 25 Pasteurella multocida, 29 Proteus spp. and 449 Escherichia coli isolates from clinical submissions from dogs were determined by a broth-dilution method for determination of minimal inhibitory concentration. Data for consumption of antimicrobials were retrieved from Vet....... intermedius and Proteus isolates. Conclusions: This investigation provided data on occurrence of antimicrobial resistance in important pathogenic bacteria from dogs, which may be useful for the small animal practitioner. Resistance was low to the compounds that were most often used, but unfortunately...

  2. Ecological aspects of the antimicrobial resistence in bacteria of importance to humn infections

    OpenAIRE

    Meirelles-Pereira,Frederico de; Pereira,Angela de Meirelles Santos; Silva,Márcio Cataldo Gomes da; Gonçalves,Verônica Dias; Brum,Paulo Roberto; Castro,Almeida Ribeiro de; Pereira,Alexandre Adler; Esteves,Francisco de Assis; Pereira,José Augusto Adler

    2002-01-01

    In view of the intimate relationship of humans with coastal lagoons (used for recreation, tourism, water supply, etc.), the discharge of domestic effluents may lead to the establishment of routes of dissemination of pathogenic microorganisms, including microorganisms carrying genes for resistance to antimicrobials, through the surrounding human communities. The objective of the present investigation was to relate the presence of antimicrobial-resistant bacteria to the environmental characteri...

  3. [Markers of antimicrobial drug resistance in the most common bacteria of normal facultative anaerobic intestinal flora].

    Science.gov (United States)

    Plavsić, Teodora

    2011-01-01

    Bacteria of normal intestinal flora are frequent carriers of markers of antimicrobial drug resistance. Resistance genes may be exchanged with other bacteria of normal flora as well as with pathogenic bacteria. The increase in the number of markers of resistance is one of the major global health problems, which induces the emergence of multi-resistant strains. The aim of this study is to confirm the presence of markers of resistance in bacteria of normal facultative anaerobic intestinal flora in our region. The experiment included a hundred fecal specimens obtained from a hundred healthy donors. A hundred bacterial strains were isolated (the most numerous representatives of the normal facultative-anaerobic intestinal flora) by standard bacteriological methods. The bacteria were cultivated on Endo agar and SS agar for 24 hours at 37 degrees C. Having been incubated, the selected characteristic colonies were submitted to the biochemical analysis. The susceptibility to antimicrobial drugs was tested by standard disc diffusion method, and the results were interpreted according to the Standard of Clinical and Laboratory Standards Institute 2010. The marker of resistance were found in 42% of the isolated bacteria. The resistance was the most common to ampicillin (42% of isolates), amoxicillin with clavulanic acid (14% of isolates), cephalexin (14%) and cotrimoxazole (8%). The finding of 12 multiresistant strains (12% of isolates) and resistance to ciprofloxacin were significant. The frequency of resistance markers was statistically higher in Klebsiella pneumoniae compared to Escherichia coli of normal flora. The finding of a large number of markers of antimicrobial drug resistance among bacteria of normal intestinal flora shows that it is necessary to begin with systematic monitoring of their antimicrobial resistance because it is an indicator of resistance in the population.

  4. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter.

    Science.gov (United States)

    Li, Lili; Heidemann Olsen, Rikke; Ye, Lei; Yan, He; Nie, Qing; Meng, Hecheng; Shi, Lei

    2016-04-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across species, genes conferring antimicrobial resistance were observed with the following frequencies: blaTEM, 40.7%; blaCMY-2, 15.2%; blaCTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%; tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial resistance genes were found in new carriers: blaTEM in Lactococcus garvieae, Myroides odoratimimus, Aeromonas hydrophila, Staphylococcus sciuri, Raoultella terrigena, Macrococcus caseolyticus, Acinetobacter ursingii, Sphingobacterium sp., and Oceanobacillus sp.; blaCMY-2 in Lactococcus lactis, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, and Myroides phaeus; tet(L) in M. caseolyticus; sul1 in Vibrio cincinnatiensis; sul2 in Acinetobacter bereziniae, Acinetobacter johnsonii, and V. cincinnatiensis; and the class 1 integron and gene cassette aadA2 in V. cincinnatiensis. Approximately 6.6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor- encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies.

  5. Antimicrobial resistance and susceptibility testing of anaerobic bacteria.

    Science.gov (United States)

    Schuetz, Audrey N

    2014-09-01

    Infections due to anaerobic bacteria can be severe and life-threatening. Susceptibility testing of anaerobes is not frequently performed in laboratories, but such testing is important to direct appropriate therapy. Anaerobic resistance is increasing globally, and resistance trends vary by geographic region. An overview of a variety of susceptibility testing methods for anaerobes is provided, and the advantages and disadvantages of each method are reviewed. Specific clinical situations warranting anaerobic susceptibility testing are discussed. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections

    NARCIS (Netherlands)

    Marques, Cátia; Gama, Luís Telo; Belas, Adriana; Bergström, Karin; Beurlet, Stéphanie; Briend-Marchal, Alexandra; Broens, Els M|info:eu-repo/dai/nl/314627723; Costa, Marta; Criel, Delphine; Damborg, Peter; van Dijk, Marloes A M|info:eu-repo/dai/nl/413392058; van Dongen, A.M.|info:eu-repo/dai/nl/097672637; Dorsch, Roswitha; Espada, Carmen Martin; Gerber, Bernhard; Kritsepi-Konstantinou, Maria; Loncaric, Igor; Mion, Domenico; Misic, Dusan; Movilla, Rebeca; Overesch, Gudrun; Perreten, Vincent; Roura, Xavier; Steenbergen, Joachim; Timofte, Dorina; Wolf, Georg; Zanoni, Renato Giulio; Schmitt, Sarah; Guardabassi, Luca; Pomba, Constança

    2016-01-01

    BACKGROUND: There is a growing concern regarding the increase of antimicrobial resistant bacteria in companion animals. Yet, there are no studies comparing the resistance levels of these organisms in European countries. The aim of this study was to investigate geographical and temporal trends of

  7. Presence of antimicrobial resistance in coliform bacteria from hatching broiler eggs with emphasis on ESBL/AmpC-producing bacteria.

    Science.gov (United States)

    Mezhoud, H; Chantziaras, I; Iguer-Ouada, M; Moula, N; Garmyn, A; Martel, A; Touati, A; Smet, A; Haesebrouck, F; Boyen, F

    2016-08-01

    Antimicrobial resistance is recognized as one of the most important global health challenges. Broilers are an important reservoir of antimicrobial resistant bacteria in general and, more particularly, extended-spectrum β-lactamases (ESBL)/AmpC-producing Enterobacteriaceae. Since contamination of 1-day-old chicks is a potential risk factor for the introduction of antimicrobial resistant Enterobacteriaceae in the broiler production chain, the presence of antimicrobial resistant coliform bacteria in broiler hatching eggs was explored in the present study. Samples from 186 hatching eggs, collected from 11 broiler breeder farms, were inoculated on MacConkey agar with or without ceftiofur and investigated for the presence of antimicrobial resistant lactose-positive Enterobacteriaceae, particularly, ESBL/AmpC-producers. Escherichia coli and Enterobacter cloacae were obtained from the eggshells in 10 out of 11 (10/11) sampled farms. The majority of the isolates were recovered from crushed eggshells after external decontamination suggesting that these bacteria are concealed from the disinfectants in the egg shell pores. Antimicrobial resistance testing revealed that approximately 30% of the isolates showed resistance to ampicillin, tetracycline, trimethoprim and sulphonamides, while the majority of isolates were susceptible to amoxicillin-clavulanic acid, nitrofurantoin, aminoglycosides, florfenicol, neomycin and apramycin. Resistance to extended-spectrum cephalosporins was detected in eight Enterobacteriaceae isolates from five different broiler breeder farms. The ESBL phenotype was confirmed by the double disk synergy test and blaSHV-12, blaTEM-52 and blaACT-39 resistance genes were detected by PCR. This report is the first to present broiler hatching eggs as carriers and a potential source of ESBL/AmpC-producing Enterobacteriaceae for broiler chicks.

  8. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Palloma Rodrigues Marinho

    2009-08-01

    Full Text Available Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3 isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  9. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria.

    Science.gov (United States)

    Marinho, Palloma Rodrigues; Moreira, Ana Paula Barbosa; Pellegrino, Flávia Lúcia Piffano Costa; Muricy, Guilherme; Bastos, Maria do Carmo de Freire; Santos, Kátia Regina Netto dos; Giambiagi-deMarval, Marcia; Laport, Marinella Silva

    2009-08-01

    Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  10. Antimicrobial resistance in Gram-positive bacteria from Timorese River Buffalo (Bubalus bubalis) skin microbiota.

    Science.gov (United States)

    Oliveira, Manuela; Monteiro, José L; Rana, Sílvia; Vilela, Cristina L

    2010-06-01

    The Timorese River Buffalo (Bubalus bubalis) plays a major role in the East Timor economy, as it is an important source of animal protein in human nutrition. They are widely spread throughout the country and are in direct contact with the populations. In spite of this proximity, information on their microbiota is scarce. This work aimed at characterizing the skin microbiota of the East Timorese River Buffalo and its antimicrobial resistance profile. Skin swab samples were taken from 46 animals in surveys conducted in three farms located in "Suco de Nairete", Lospalos district, during July and August 2006. Bacteria were isolated and identified according to conventional microbiological procedures. A total of 456 isolates were obtained, including Gram-positive (n = 243) and Gram-negative (n = 213) bacteria. Due to their importance as potential pathogens and as vehicles for antimicrobial resistance transmission, Gram-positive cocci (n = 27) and bacilli (n = 77) isolates were further characterized, and their antimicrobial resistance profile determined by the disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. This study shows the high bacterial diversity of B. bubalis skin microbiota, representing an important first step towards understanding its importance and epidemiologic role in animal health. It also points out the potential role of these animals as vectors of antimicrobial resistant bacteria dissemination and the importance of antimicrobial resistance monitoring in developing countries.

  11. ANTIMICROBIAL RESISTANCE AMONG ENTERIC BACTERIA ISOLATED FROM HUMAN AND ANIMAL WASTES AND IMPACTED SURFACE WATERS: COMPARISON WITH NARMS FINDINGS

    Science.gov (United States)

    Human infection with bacteria exhibiting mono or multiple antimicrobial resistance (MAR) has been a growing problem in the US, and studies have implicated livestock as a source of MAR bacteria primarily through foodborne transmission routes. However, waterborne transmission of...

  12. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria.

    Science.gov (United States)

    Arzanlou, Mohsen; Chai, Wern Chern; Venter, Henrietta

    2017-02-28

    Gram-negative bacteria are responsible for a large proportion of antimicrobial-resistant infections in humans and animals. Among this class of bacteria are also some of the most successful environmental organisms. Part of this success is their adaptability to a variety of different niches, their intrinsic resistance to antimicrobial drugs and their ability to rapidly acquire resistance mechanisms. These mechanisms of resistance are not exclusive and the interplay of several mechanisms causes high levels of resistance. In this review, we explore the molecular mechanisms underlying resistance in Gram-negative organisms and how these different mechanisms enable them to survive many different stress conditions. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  13. Antimicrobial resistance, heavy metal resistance and integron content in bacteria isolated from a South African tilapia aquaculture system.

    Science.gov (United States)

    Chenia, Hafizah Y; Jacobs, Anelet

    2017-11-21

    Antibacterial compounds and metals co-select for antimicrobial resistance when bacteria harbour resistance genes towards both types of compounds, facilitating the proliferation and evolution of antimicrobial and heavy metal resistance. Antimicrobial and heavy metal resistance indices of 42 Gram-negative bacteria from a tilapia aquaculture system were determined to identify possible correlations between these phenotypes. Agar dilution assays were carried out to determine susceptibility to cadmium, copper, lead, mercury, chromate and zinc, while susceptibility to 21 antimicrobial agents was investigated by disk diffusion assays. Presence of merA, the mercury resistance gene, was determined by dot-blot hybridizations and PCR. Association of mercury resistance with integrons and transposon Tn21 was also investigated by PCR. Isolates displayed a high frequency of antimicrobial (erythromycin: 100%; ampicillin: 85%; trimethoprim: 78%) and heavy metal (Zn2+: 95%; Cd2+: 91%) resistance. No correlation was established between heavy metal and multiple antibiotic resistance indices. Significant positive correlations were observed between heavy metal resistance profiles, indices, Cu2+ and Cr3+ resistance with erythromycin resistance. Significant positive correlations were observed between merA (24%)/Tn21 (24%) presence and heavy metal resistance profiles and indices; however, significant negative correlations were obtained between integron-associated qacE∆1 (43%) and sulI (26%) gene presence and heavy metal resistance indices. Heavy metal and antimicrobial agents co-select for resistance, with fish-associated, resistant bacteria demonstrating simultaneous heavy metal resistance. Thus, care should be taken when using anti-fouling heavy metals as feed additives in aquaculture facilities.

  14. Occurrence of antimicrobial resistance in bacteria from diagnostic samples from dogs.

    Science.gov (United States)

    Pedersen, Karl; Pedersen, Kristina; Jensen, Helene; Finster, Kai; Jensen, Vibeke F; Heuer, Ole E

    2007-10-01

    To study the occurrence of antimicrobial resistance among common bacterial pathogens from dogs and relate resistance patterns to data on consumption of antimicrobials. The antimicrobial susceptibility patterns of 201 Staphylococcus intermedius, 37 Streptococcus canis, 39 Pseudomonas aeruginosa, 25 Pasteurella multocida, 29 Proteus spp. and 449 Escherichia coli isolates from clinical submissions from dogs were determined by a broth-dilution method for determination of minimal inhibitory concentration. Data for consumption of antimicrobials were retrieved from VetStat, a national database for reporting antimicrobial prescriptions. The majority of the antimicrobials prescribed for dogs were broad-spectrum compounds, and extended-spectrum penicillins, cephalosporins and sulphonamides + trimethoprim together accounted for 81% of the total amount used for companion animals. Resistance to cephalosporins and amoxicillin with clavulanic acid was very low for all bacterial species examined, except for P. aeruginosa, and resistance to sulphonamides and trimethoprim was low for most species. Among the S. intermedius isolates, 60.2% were resistant to penicillin, 30.2% to fusidic acid and 27.9% to macrolides. Among E. coli isolates, the highest level of resistance was recorded for ampicillin, sulphonamides, trimethoprim, tetracyclines and streptomycin. Certain differences in resistance patterns between isolates from different sites or organs were noticed for E. coli, S. intermedius and Proteus isolates. This investigation provided data on occurrence of antimicrobial resistance in important pathogenic bacteria from dogs, which may be useful for the small animal practitioner. Resistance was low to the compounds that were most often used, but unfortunately, these compounds were broad-spectrum. Data on resistance and usage may form a background for the establishment of a set of recommendations for prudent use of antimicrobials for companion animals.

  15. Antimicrobial Use for and Resistance of Zoonotic Bacteria Recovered from Nonhuman Primates.

    Science.gov (United States)

    Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Bower, Julie K; Rinaldi, William J; Plauche, Gail B; Habing, Gregory G

    2017-02-01

    As a growing threat to human and animal health, antimicrobial resistance (AMR) has become a central public-health topic. Largescale surveillance systems, such as the National Antimicrobial Resistance Monitoring System (NARMS), are now established to monitor and provide guidance regarding AMR, but comprehensive literature on AMR among NHP is sparse. This study provides data regarding current antimicrobial use strategies and the prevalence of AMR in zoonotic bacteria recovered from NHP within biomedical research institutions. We focused on 4 enteric bacteria: Shigella flexneri, Yersinia enterocolitica, Y. pseudotuberculosis, and Campylobacter jejuni. Fifteen veterinarians, 7 biomedical research institutions, and 4 diagnostic laboratories participated, providing susceptibility test results from January 2012 through April 2015. Veterinarians primarily treated cases caused by S. flexneri, Y. enterocolitica, and Y. pseudotuberculosis with enrofloxacin but treated C. jejuni cases with azithromycin and tylosin. All isolates were susceptible to the associated primary antimicrobial but often showed resistance to others. Specifically, S. flexneri isolates frequently were resistant to erythromycin (87.5%), doxycycline (73.7%), and tetracycline (38.3%); Y. enterocolitica isolates to ampicillin (100%) and cefazolin (93.6%); and C. jejuni isolates to methicillin (99.5%) and cephalothin (97.5%). None of the 58 Y. pseudotuber-culosis isolates was resistant to any tested antimicrobial. Notably, resistance patterns were not shared between this study's NHP isolates and human isolates presented by NARMS. Our findings indicate that zoonotic bacteria from NHP diagnostic samples are broadly susceptible to the antimicrobials used to treat the clinical infections. These results can help veterinarians ensure effective antimicrobial therapy and protect staff by minimizing occupational risk.

  16. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... search Popular ... produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will ...

  17. [Analysis on the antimicrobial resistance of lactic acid bacteria isolated from the yogurt sold in China].

    Science.gov (United States)

    Fan, Qin; Liu, Shuliang; Li, Juan; Huang, Tingting

    2012-05-01

    To analyze the antimicrobial susceptibility of lactic acid bacteria (LAB) from yogurt, and to provide references for evaluating the safety of LAB and screening safe strains. The sensitivity of 43 LAB strains, including 14 strains of Streptococcus thermophilus, 12 strains of Lactobacillus acidophilus, 9 strains of Lactobacillus bulgaricus and 8 strains of Bifidobacterium, to 22 antibiotics were tested by agar plate dilution method. All 43 LAB strains were resistant to trimethoprim, nalidixic acid, ciprofloxacin, lomefloxacin, danofloxacin and polymyxin E. Their resistances to kanamycin, tetracycline, clindamycin, doxycycline and cephalothin were varied. The sensitivity to other antibiotics were sensitive or moderate. All isolates were multidrug-resistant. The antimicrobial resistance of tested LAB strains was comparatively serious, and continuously monitoring their antimicrobial resistance and evaluating their safety should be strengthened.

  18. Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    1999-01-01

    Antimicrobial agents are used in food animals for therapy and prophylaxis of bacterial infections and in feed to promote growth. The use of antimicrobial agents for food animals may cause problems in the therapy of infections by selecting for resistance among bacteria pathogenic for animals...... animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimens to limit the development of resistance is incomplete. Surveillance programmes monitoring the occurrence and development of resistance and consumption...... or humans. The emergence of resistant bacteria and resistance genes following the use of antimicrobial agents is relatively well documented and it seems evident that all antimicrobial agents will select for resistance. However, current knowledge regarding the occurrence of antimicrobial resistance in food...

  19. Antimicrobial Resistance

    Science.gov (United States)

    ... least 10 countries (Australia, Austria, Canada, France, Japan, Norway, Slovenia, South Africa, Sweden and the United Kingdom ... plan Global report on surveillance Country situation analysis Policy to combat antimicrobial resistance More on antimicrobial resistance ...

  20. Antimicrobial Resistance

    Science.gov (United States)

    ... can prevent and manage antimicrobial resistance. It is collaborating with partners to strengthen the evidence base and ... on the global action plan. WHO has been leading multiple initiatives to address antimicrobial resistance: World Antibiotic ...

  1. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... proliferates among bacteria. Over time, the use of antimicrobial drugs will result in the development of resistant strains ... bacteria, complicating clinician's efforts to select the appropriate ... and human medicine to preserve the effectiveness of these drugs. One ...

  2. Frequency of resistance in obligate anaerobic bacteria isolated from dogs, cats, and horses to antimicrobial agents.

    Science.gov (United States)

    Lawhon, S D; Taylor, A; Fajt, V R

    2013-11-01

    Clinical specimens from dogs, cats, and horses were examined for the presence of obligate anaerobic bacteria. Of 4,018 specimens cultured, 368 yielded 606 isolates of obligate anaerobic bacteria (248 from dogs, 50 from cats, and 308 from horses). There were 100 specimens from 94 animals from which only anaerobes were isolated (25 dogs, 8 cats, and 61 horses). The most common sites tested were abdominal fluid (dogs and cats) and intestinal contents (horses). The most common microorganism isolated from dogs, cats, and horses was Clostridium perfringens (75, 13, and101 isolates, respectively). The MICs of amoxicillin with clavulanate, ampicillin, chloramphenicol, metronidazole, and penicillin were determined using a gradient endpoint method for anaerobes. Isolates collected at necropsy were not tested for antimicrobial susceptibility unless so requested by the clinician. There were 1/145 isolates tested that were resistant to amoxicillin-clavulanate (resistance breakpoint ≥ 16/8 μg/ml), 7/77 isolates tested were resistant to ampicillin (resistance breakpoint ≥ 2 μg/ml), 4/242 isolates tested were resistant to chloramphenicol (resistance breakpoint ≥ 32 μg/ml), 12/158 isolates tested were resistant to clindamycin (resistance breakpoint ≥ 8 μg/ml), 10/247 isolates tested were resistant to metronidazole (resistance breakpoint ≥ 32 μg/ml), and 54/243 isolates tested were resistant to penicillin (resistance breakpoint ≥ 2 μg/ml). These data suggest that anaerobes are generally susceptible to antimicrobial drugs in vitro.

  3. Isolation and partial characterization of soils actinomycetes with antimicrobial activity against multidrug-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Romina Belén Parada

    2017-07-01

    Full Text Available Two hundred and thirty four actinobacteria strains were isolated from Argentinian and Peruvian soil in order to evaluate the antimicrobial activity against multidrug resistant bacteria On the basis of their antagonist activity against methicillin-resistant Staphylococcus aureus (MRSA and two vancomycin-resistant Enterococcus (EVR-Van A and  EVR Van B,13 strains were selected. The presence of NRPS, PKS-I and PKS-II genes were also investigated by PCR techniques. Among the 13 selected actinobacteria, strain AC69C displayed the higher activity in diffusion tests in solid medium and was further evaluated for the production of antagonist metabolites in liquid media. The best results were obtained using fermentation broth with carbohydrates, when starch and glucose were used in combination. Antimicrobial activities of 640 arbitrary units (AU, 320 AU, 320 AU and 80 AU were obtained against EVR-Van A, EVR-Van B, Listeria monocytogenes ATCC7644 and MRSA, respectively. PCR amplification of 16S rRNA gene and subsequent phylogenetic analysis of AC69C strain displayed a 100 % homology with Streptomyces antibioticus NRRL B-1701. It was not possible to establish a correlation between the amplified genes and antimicrobial activity of the 13 selected strains. The results of this work show the wide distribution of actinobacteria in soil and the importance of the isolation of strain to screen novel active metabolites against multidrug resistant bacteria of clinical origin.

  4. Exploring Post-Treatment Reversion of Antimicrobial Resistance in Enteric Bacteria of Food Animals as a Resistance Mitigation Strategy.

    Science.gov (United States)

    Volkova, Victoriya V; KuKanich, Butch; Riviere, Jim E

    2016-11-01

    Antimicrobial drug use in food animals is associated with an elevation in relative abundance of bacteria resistant to the drug among the animal enteric bacteria. Some of these bacteria are potential foodborne pathogens. Evidence suggests that at least in the enteric nontype-specific Escherichia coli, after treatment the resistance abundance reverts to the background pre-treatment levels, without further interventions. We hypothesize that it is possible to define the distribution of the time period after treatment within which resistance to the administered drug, and possibly other drugs in case of coselection, in fecal bacteria of the treated animals returns to the background pre-treatment levels. Furthermore, it is possible that a novel resistance mitigation strategy for microbiological food safety could be developed based on this resistance reversion phenomenon. The strategy would be conceptually similar to existing antimicrobial drug withdrawal periods, which is a well-established and accepted mitigation strategy for avoiding violative drug residues in the edible products from the treated animals. For developing resistance-relevant withdrawals, a mathematical framework can be used to join the necessary pharmacological, microbiological, and animal production components to project the distributions of the post-treatment resistance reversion periods in the production animal populations for major antimicrobial drug classes in use. The framework can also help guide design of empirical studies into the resistance-relevant withdrawal periods and development of mitigation approaches to reduce the treatment-associated elevation of resistance in animal enteric bacteria. We outline this framework, schematically and through exemplar equations, and how its components could be formulated.

  5. The prevalence of pathogenic bacteria and antimicrobial resistance in milk of Ettawa Grade goat

    Directory of Open Access Journals (Sweden)

    A. Andriani

    2018-05-01

    Full Text Available Ettawa Grade (PE are potentially developed goats to produce milk and meat. Milk is food of animal that is rich in nutrients, but it is a perishable food easily contaminated by microorganisms. Contaminated pathogenic bacteria in milk can decrease the quality and has an organoleptic effect on milk, as well as endangers human health. Milk contaminated with bacteria antimicrobial resistance (AMR in which is resistant to antibiotics, may adversely affect the response to treatment with antibiotics in humans when suffering from infectious diseases and using antibiotics in therapy. In this study Ettawa Grade's samples of fresh milk and other dairy products were taken from some of the goat farms in Yogyakarta Sleman district. The samples were tested for the presence of pathogenic bacteria and for its resistance to several kinds of antibiotics. In this study 35 Ettawa Grade's samples of fresh milk and other dairy products (fresh milk, milk powder, ice cream, and yoghurt were taken from some of the goat farms in Sleman district-Yogyakarta. The samples were tested for the presence of pathogenic bacteria and for its resistance to several kinds of antibiotics. The result of the prevalence of pathogenic bacteria in goat fresh milk and other dairy products was 15% Escherichia coli and had multi resistance to multiple antibiotics, namely ampicillin, colistin sulphate, cefixime, kanamycin, oxytetracycline, tetracycline and sulfonamide.

  6. Overcoming Antimicrobial Resistance in Bacteria Using Bioactive Magnetic Nanoparticles and Pulsed Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Vitalij Novickij

    2018-01-01

    Full Text Available Nisin is a known bacteriocin, which exhibits a wide spectrum of antimicrobial activity, while commonly being inefficient against Gram-negative bacteria. In this work, we present a proof of concept of novel antimicrobial methodology using targeted magnetic nisin-loaded nano-carriers [iron oxide nanoparticles (NPs (11–13 nm capped with citric, ascorbic, and gallic acids], which are activated by high pulsed electric and electromagnetic fields allowing to overcome the nisin-resistance of bacteria. As a cell model the Gram-positive bacteria Bacillus subtilis and Gram-negative Escherichia coli were used. We have applied 10 and 30 kV cm-1 electric field pulses (100 μs × 8 separately and in combination with two pulsed magnetic field protocols: (1 high dB/dt 3.3 T × 50 and (2 10 mT, 100 kHz, 2 min protocol to induce additional permeabilization and local magnetic hyperthermia. We have shown that the high dB/dt pulsed magnetic fields increase the antimicrobial efficiency of nisin NPs similar to electroporation or magnetic hyperthermia methods and a synergistic treatment is also possible. The results of our work are promising for the development of new methods for treatment of the drug-resistant foodborne pathogens to minimize the risks of invasive infections.

  7. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture.

    Science.gov (United States)

    Tomova, Alexandra; Ivanova, Larisa; Buschmann, Alejandro H; Rioseco, Maria Luisa; Kalsi, Rajinder K; Godfrey, Henry P; Cabello, Felipe C

    2015-10-01

    Antimicrobials are heavily used in Chilean salmon aquaculture. We previously found significant differences in antimicrobial-resistant bacteria between sediments from an aquaculture and a non-aquaculture site. We now show that levels of antimicrobial resistance genes (ARG) are significantly higher in antimicrobial-selected marine bacteria than in unselected bacteria from these sites. While ARG in tetracycline- and florfenicol-selected bacteria from aquaculture and non-aquaculture sites were equally frequent, there were significantly more plasmid-mediated quinolone resistance genes per bacterium and significantly higher numbers of qnrB genes in quinolone-selected bacteria from the aquaculture site. Quinolone-resistant urinary Escherichia coli from patients in the Chilean aquacultural region were significantly enriched for qnrB (including a novel qnrB gene), qnrS, qnrA and aac(6')-1b, compared with isolates from New York City. Sequences of qnrA1, qnrB1 and qnrS1 in quinolone-resistant Chilean E. coli and Chilean marine bacteria were identical, suggesting horizontal gene transfer between antimicrobial-resistant marine bacteria and human pathogens. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Antimicrobial resistance

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2014-01-01

    Antimicrobial resistance is a global public health challenge, which has accelerated by the overuse of antibiotics worldwide. Increased antimicrobial resistance is the cause of severe infections, complications, longer hospital stays and increased mortality. Overprescribing of antibiotics......-the-counter sale of antibiotics, the use of antimicrobial stewardship programmes, the active participation of clinicians in audits, the utilization of valid rapid point-of-care tests, the promotion of delayed antibiotic prescribing strategies, the enhancement of communication skills with patients with the aid...

  9. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Wu X

    2017-03-01

    Full Text Available Xiaozhe Wu,1 Zhan Li,1 Xiaolu Li,2,3 Yaomei Tian,1 Yingzi Fan,1 Chaoheng Yu,1 Bailing Zhou,1 Yi Liu,4 Rong Xiang,5 Li Yang1 1State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 2International Center for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 3Department of Plastic and Burn Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 4Department of Microbial Examination, Sichuan Center for Disease Control and Prevention, Chengdu, 5Nankai University School of Medicine, Tianjin, People’s Republic of China Abstract: Antibiotic-resistant bacteria present a great threat to public health. In this study, the synergistic effects of antimicrobial peptides (AMPs and antibiotics on several multidrug-resistant bacterial strains were studied, and their synergistic effects on azithromycin (AZT-resistance genes were analyzed to determine the relationships between antimicrobial resistance and these synergistic effects. A checkerboard method was used to evaluate the synergistic effects of AMPs (DP7 and CLS001 and several antibiotics (gentamicin, vancomycin [VAN], AZT, and amoxicillin on clinical bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli. The AZT-resistance genes (ermA, ermB, ermC, mefA, and msrA were identified in the resistant strains using quantitative polymerase chain reaction. For all the clinical isolates tested that were resistant to different antibiotics, DP7 had high antimicrobial activity (≤32 mg/L. When DP7 was combined with VAN or AZT, the effect was most frequently synergistic. When we studied the resistance genes of the AZT-resistant isolates, the synergistic effect of DP7–AZT occurred most frequently in highly resistant strains or strains carrying more than two AZT-resistance genes. A transmission electron microscopic analysis of the S. aureus

  10. NethMap 2017: Consumption of antimicrobial agents and antimicrobial resistance among medically important bacteria in the Netherlands / MARAN 2017: Monitoring of antimicrobial resistance and antibiotic usage in animals in the Netherlands in 2016

    NARCIS (Netherlands)

    de Greeff SC; Mouton JW; ZIA; I&V

    2017-01-01

    The number of bacteria that are resistant to antimicrobials is increasing worldwide. In the Netherlands, the number of resistant bacteria that can cause infections in humans has remained broadly stable. Nevertheless there is cause for concern and caution. Compared to 2015, in 2016 more 'outbreaks'

  11. Ecological aspects of the antimicrobial resistence in bacteria of importance to humn infections

    Directory of Open Access Journals (Sweden)

    Meirelles-Pereira Frederico de

    2002-01-01

    Full Text Available In view of the intimate relationship of humans with coastal lagoons (used for recreation, tourism, water supply, etc., the discharge of domestic effluents may lead to the establishment of routes of dissemination of pathogenic microorganisms, including microorganisms carrying genes for resistance to antimicrobials, through the surrounding human communities. The objective of the present investigation was to relate the presence of antimicrobial-resistant bacteria to the environmental characteristics of three coastal lagoons, comparing the results with those from hospital sewage. Of the lagoons evaluated, two (Geribá and Imboassica receive domestic sewage discharge, and the other (Cabiúnas is still in a natural state. We isolated in a culture medium containing 32 ¼ µg/ml of Cephalothin, fecal coliforms (E. coli, non-fecal coliforms (Klebsiella, Enterobacter, Serratia, and Citrobacter, non-glucose-fermenting Gram-negative bacilli, and Aeromonas sp. In cultures from the hospital drain we found strains showing numerous markers for resistance to most of the 11 antimicrobials tested. On the other hand, in cultures from Cabiúnas and Imboassica lagoons, we found strains showing resistance only to antibiotics frequently observed in non-selective situations (considered as "common" markers. The capacity for dilution in the ecosystem, and salinity appeared related with the occurrence of multi-resistant bacterial strains. The intensity of recent fecal contamination was not shown to be associated with the numbers and types of markers found.

  12. Agriculture and food animals as a source of antimicrobial-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Economou V

    2015-04-01

    Full Text Available Vangelis Economou,1 Panagiota Gousia2 1Department of Hygiene and Technology of Food of Animal Origin, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece; 2Food-Water Microbiology Unit, Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece Abstract: One of the major breakthroughs in the history of medicine is undoubtedly the discovery of antibiotics. Their use in animal husbandry and veterinary medicine has resulted in healthier and more productive farm animals, ensuring the welfare and health of both animals and humans. Unfortunately, from the first use of penicillin, the resistance countdown started to tick. Nowadays, the infections caused by antibiotic-resistant bacteria are increasing, and resistance to antibiotics is probably the major public health problem. Antibiotic use in farm animals has been criticized for contributing to the emergence of resistance. The use and misuse of antibiotics in farm animal settings as growth promoters or as nonspecific means of infection prevention and treatment has boosted antibiotic consumption and resistance among bacteria in the animal habitat. This reservoir of resistance can be transmitted directly or indirectly to humans through food consumption and direct or indirect contact. Resistant bacteria can cause serious health effects directly or via the transmission of the antibiotic resistance traits to pathogens, causing illnesses that are difficult to treat and that therefore have higher morbidity and mortality rates. In addition, the selection and proliferation of antibiotic-resistant strains can be disseminated to the environment via animal waste, enhancing the resistance reservoir that exists in the environmental microbiome. In this review, an effort is made to highlight the various factors that contribute to the emergence of antibiotic resistance in farm animals and to

  13. Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites.

    Science.gov (United States)

    Shah, Syed Q A; Cabello, Felipe C; L'abée-Lund, Trine M; Tomova, Alexandra; Godfrey, Henry P; Buschmann, Alejandro H; Sørum, Henning

    2014-05-01

    Antimicrobial resistance (AR) detected by disc diffusion and antimicrobial resistance genes detected by DNA hybridization and polymerase chain reaction with amplicon sequencing were studied in 124 marine bacterial isolates from a Chilean salmon aquaculture site and 76 from a site without aquaculture 8 km distant. Resistance to one or more antimicrobials was present in 81% of the isolates regardless of site. Resistance to tetracycline was most commonly encoded by tetA and tetG; to trimethoprim, by dfrA1, dfrA5 and dfrA12; to sulfamethizole, by sul1 and sul2; to amoxicillin, by blaTEM ; and to streptomycin, by strA-strB. Integron integrase intl1 was detected in 14 sul1-positive isolates, associated with aad9 gene cassettes in two from the aquaculture site. intl2 Integrase was only detected in three dfrA1-positive isolates from the aquaculture site and was not associated with gene cassettes in any. Of nine isolates tested for conjugation, two from the aquaculture site transferred AR determinants to Escherichia coli. High levels of AR in marine sediments from aquaculture and non-aquaculture sites suggest that dispersion of the large amounts of antimicrobials used in Chilean salmon aquaculture has created selective pressure in areas of the marine environment far removed from the initial site of use of these agents. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... bacteria. Over time, the use of antimicrobial drugs will result in the development of resistant strains of ... and other key audiences. We hope this animation will make the concept more understandable to non-scientists ...

  15. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts ... Inspections & Compliance Federal, State & Local Officials Consumers Health Professionals Science & Research Industry Scroll back to top Popular ...

  16. Antimicrobial-resistant bacteria in a general intensive care unit in Saudi Arabia

    International Nuclear Information System (INIS)

    Nermin K. Saeed; Abdulmageed M. Kambal; Noura A. El-Khizzi

    2010-01-01

    To assess the prevalence of multi-drug resistant (MDR) bacteria causing infections in patients at the intensive care units (ICUs) of Riyadh Military Hospital (RMH), as well as their antimicrobial resistance patterns for one year. A retrospective, cohort investigation was performed. Laboratory records from January to December 2009 were studied for the prevalence of MDR Gram-negative and Gram-positive bacteria and their antimicrobial resistance in ICU patients from RMH, Riyadh, Kingdom of Saudi Arabia. A total of 1210 isolates were collected from various specimens such as: respiratory (469), blood (400), wound/tissue (235), urinary (56), nasal swabs (35), and cerebro-spinal fluid (15). Regardless of the specimen, there was a high rate of nosocomial MDR organisms isolated from patients enrolled in the General ICU (GICU) in Riyadh. Acinetobacter baumannii (A. baumannii) comprised 40.9%, Klebsiella pneumonia (K. pneumonia) - 19.4%, while Pseudomonas aeruginosa (P. aeruginosa) formed 16.3% of these isolates. The P. aeruginosa, A. baumannii, K. pneumoniae, Escherichia coli, Staphylococcus aureus (methycillin sensitive and methycillin resistant), and Staphylococccus coagulase negative are the most common isolates recovered from clinical specimens in the GICU of RMH. Respiratory tract specimens represented nearly 39% of all the specimens collected in the ICU. The most common MDR organisms isolated in this unit were A. baumannii, and K. pneumoniae (Author).

  17. Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact.

    Science.gov (United States)

    Mukerji, Shewli; O'Dea, Mark; Barton, Mary; Kirkwood, Roy; Lee, Terence; Abraham, Sam

    2017-02-28

    Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... of Animation of Antimicrobial Resistance More in Antimicrobial ... Antimicrobial Resistance Monitoring System About NARMS 2015 NARMS Integrated ...

  19. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture

    DEFF Research Database (Denmark)

    Noor Uddin, Gazi Md; Larsen, Marianne Halberg; Christensen, Henrik

    2015-01-01

    Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance...... in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic....... used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have...

  20. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Pin it Email Print The Food and Drug Administration's (FDA's) Center for Veterinary Medicine (CVM) produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will result in ...

  1. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria.

    Science.gov (United States)

    Chung, Pooi Yin; Khanum, Ramona

    2017-08-01

    Bacterial resistance to commonly used drugs has become a global health problem, causing increased infection cases and mortality rate. One of the main virulence determinants in many bacterial infections is biofilm formation, which significantly increases bacterial resistance to antibiotics and innate host defence. In the search to address the chronic infections caused by biofilms, antimicrobial peptides (AMP) have been considered as potential alternative agents to conventional antibiotics. Although AMPs are commonly considered as the primitive mechanism of immunity and has been extensively studied in insects and non-vertebrate organisms, there is now increasing evidence that AMPs also play a crucial role in human immunity. AMPs have exhibited broad-spectrum activity against many strains of Gram-positive and Gram-negative bacteria, including drug-resistant strains, and fungi. In addition, AMPs also showed synergy with classical antibiotics, neutralize toxins and are active in animal models. In this review, the important mechanisms of action and potential of AMPs in the eradication of biofilm formation in multidrug-resistant pathogen, with the goal of designing novel antimicrobial therapeutics, are discussed. Copyright © 2017. Published by Elsevier B.V.

  2. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... video) Animation of Antimicrobial Resistance (text version) Arabic Translation of Animation of Antimicrobial Resistance Chinese Translation of Animation of Antimicrobial Resistance French Translation of ...

  3. Antimicrobial Activity of Some Medicinal Plant Extracts against Multidrug Resistant Bacteria

    Directory of Open Access Journals (Sweden)

    Majid Masoumian

    2017-11-01

    Full Text Available Background: Nowadays, it is necessary to discover new and efficient antifungal or antimicrobial drugs because of increasing drug resistance organisms. Using medicinal plants for natural treatment of diseases caused by bacterial origin has mainly been considered. Objectives: In this study, the impacts of antimicrobial medicinal plants extract were compared based on four bacteria in vitro. Methods: In this experimental study, disc diffusion assay and the minimum inhibitory concentration (MIC method were used to investigate the antibacterial effects of selected plant extract elicited by two different solvent on S. aureus, E. coli, P. aeruginosa and S. enteric. Data were analyzed with a statistical software program (SPSS 16. Results: The hydro-alcoholic extract of Myrtus communis (myrtle and water extract of Cinnamomun zeylanicum (cinnamon were the most active extracts screened for antimicrobial activities against different four bacteria as tested organisms. The diameter of inhibition zones ranged from 23 to 28 mm. Comparison of the antibacterial effect of plant extracts and commercial drug revealed that the size of inhibition zone of penicillin against Staphylococcus aureus bacterium was larger than the plant extracts. However, myrtle extract at the minimum inhibitory concentration (MIC of 30 mg/mL showed more powerful antibacterial activity compared to the other extracts and even penicillin. Petroselinum crispum (parsley, Nerium oleander (Oleander and Glycyrihiza glabra (licorice were found to have the least effect on the tested bacteria. Conclusions: In the present study, plant extracts with different compounds showed antibacterial activity (especially myrtle and cinnamon. Hence, they can be used as new source for antibacterial substances.

  4. Veterinary drug usage and antimicrobial resistance in bacteria of animal origin

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    2005-01-01

    In the production of food animals, large amounts of antimicrobial agents are used for therapy and prophylaxis of bacterial infections and in feed to promote growth. There are large variations in the amounts of antimicrobial agents used to produce the same amount of meat among the different Europe...... monitoring the occurrence and development of resistance and consumption of antimicrobial agents are strongly desirable, as is research into the most appropriate ways to use antimicrobial agents in veterinary medicine....

  5. Motuporamine Derivatives as Antimicrobial Agents and Antibiotic Enhancers against Resistant Gram-Negative Bacteria.

    Science.gov (United States)

    Borselli, Diane; Blanchet, Marine; Bolla, Jean-Michel; Muth, Aaron; Skruber, Kristen; Phanstiel, Otto; Brunel, Jean Michel

    2017-02-01

    Dihydromotuporamine C and its derivatives were evaluated for their in vitro antimicrobial activities and antibiotic enhancement properties against Gram-negative bacteria and clinical isolates. The mechanism of action of one of these derivatives, MOTU-N44, was investigated against Enterobacter aerogenes by using fluorescent dyes to evaluate outer-membrane depolarization and permeabilization. Its efficiency correlated with inhibition of dye transport, thus suggesting that these molecules inhibit drug transporters by de-energization of the efflux pump rather than by direct interaction of the molecule with the pump. This suggests that depowering the efflux pump provides another strategy to address antibiotic resistance. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Consumer Exposure to Antimicrobial Resistant Bacteria From Food at Swiss Retail Level

    Directory of Open Access Journals (Sweden)

    Christoph Jans

    2018-03-01

    Full Text Available Background: Antimicrobial resistance (AMR in bacteria is an increasing health concern. The spread of AMR bacteria (AMRB between animals and humans via the food chain and the exchange of AMR genes requires holistic approaches for risk mitigation. The AMRB exposure of humans via food is currently only poorly understood leaving an important gap for intervention design.Method: This study aimed to assess AMRB prevalence in retail food and subsequent exposure of Swiss consumers in a systematic literature review of data published between 1996 and 2016 covering the Swiss agriculture sector and relevant imported food.Results: Data from 313 out of 9,473 collected studies were extracted yielding 122,438 food samples and 38,362 bacteria isolates of which 30,092 samples and 8,799 isolates were AMR positive. A median AMRB prevalence of >50% was observed for meat and seafood harboring Campylobacter, Enterococcus, Salmonella, Escherichia coli, Listeria, and Vibrio spp. and to a lesser prevalence for milk products harboring starter culture bacteria. Gram-negative AMRB featured predominantly AMR against aminoglycosides, cephalosporins, fluoroquinolones, penicillins, sulfonamides, and tetracyclines observed at AMR exposures scores of levels 1 (medium and 2 (high for Campylobacter, Salmonella, E. coli in meat as well as Vibrio and E. coli in seafood. Gram-positive AMRB featured AMR against glycoproteins, lincosamides, macrolides and nitrofurans for Staphylococcus and Enterococcus in meat sources, Staphylococcus in seafood as well as Enterococcus and technologically important bacteria (incl. starters in fermented or processed dairy products. Knowledge gaps were identified for AMR prevalence in dairy, plant, fermented meat and novel food products and for the role of specific indicator bacteria (Staphylococcus, Enterococcus, starter culture bacteria and their mobile genetic elements in AMR gene transfer.Conclusion: Raw meat, milk, seafood, and certain fermented dairy

  7. Consumer Exposure to Antimicrobial Resistant Bacteria From Food at Swiss Retail Level

    Science.gov (United States)

    Jans, Christoph; Sarno, Eleonora; Collineau, Lucie; Meile, Leo; Stärk, Katharina D. C.; Stephan, Roger

    2018-01-01

    Background: Antimicrobial resistance (AMR) in bacteria is an increasing health concern. The spread of AMR bacteria (AMRB) between animals and humans via the food chain and the exchange of AMR genes requires holistic approaches for risk mitigation. The AMRB exposure of humans via food is currently only poorly understood leaving an important gap for intervention design. Method: This study aimed to assess AMRB prevalence in retail food and subsequent exposure of Swiss consumers in a systematic literature review of data published between 1996 and 2016 covering the Swiss agriculture sector and relevant imported food. Results: Data from 313 out of 9,473 collected studies were extracted yielding 122,438 food samples and 38,362 bacteria isolates of which 30,092 samples and 8,799 isolates were AMR positive. A median AMRB prevalence of >50% was observed for meat and seafood harboring Campylobacter, Enterococcus, Salmonella, Escherichia coli, Listeria, and Vibrio spp. and to a lesser prevalence for milk products harboring starter culture bacteria. Gram-negative AMRB featured predominantly AMR against aminoglycosides, cephalosporins, fluoroquinolones, penicillins, sulfonamides, and tetracyclines observed at AMR exposures scores of levels 1 (medium) and 2 (high) for Campylobacter, Salmonella, E. coli in meat as well as Vibrio and E. coli in seafood. Gram-positive AMRB featured AMR against glycoproteins, lincosamides, macrolides and nitrofurans for Staphylococcus and Enterococcus in meat sources, Staphylococcus in seafood as well as Enterococcus and technologically important bacteria (incl. starters) in fermented or processed dairy products. Knowledge gaps were identified for AMR prevalence in dairy, plant, fermented meat and novel food products and for the role of specific indicator bacteria (Staphylococcus, Enterococcus), starter culture bacteria and their mobile genetic elements in AMR gene transfer. Conclusion: Raw meat, milk, seafood, and certain fermented dairy products

  8. Risk assessment of antimicrobial usage in Danish pig production on the human exposure to antimicrobial resistant bacteria from pork

    DEFF Research Database (Denmark)

    Struve, Tina

    to antimicrobials are influenced by the use of antimicrobial agents, and the prudence of antimicrobial use have been emphasized since the Swann report in 1969 recommended that antibiotics used in human medicine should not be used as growth promoters in food-producing animals. In 2007, the World Health Organisation...... the human exposure to cephalosporin resistance from pork purchased in retail shops was assessed using different scenarios for the amount of antimicrobial used in the primary production. Also, farm-related factors affecting the antimicrobial usage were investigated as a part of this thesis. The thesis...... producing E. coli through the purchase of pork chops Objective 3: Identification of management factors in the Danish finishing pig production important for antimicrobial usage In Objective 1, the occurrence (presence/non-presence) of ESC producing E. coli in samples from healthy pigs at slaughter...

  9. Antimicrobial resistance in bacteria from breeding dogs housed in kennels with differing neonatal mortality and use of antibiotics.

    Science.gov (United States)

    Milani, C; Corrò, M; Drigo, M; Rota, A

    2012-10-01

    This work examines the antimicrobial resistance of potentially pathogenic bacteria (Staphylococcus pseudintermedius, Streptococcus canis, Escherichia coli) found in the vaginal tract in prepartum mammary secretions and postpartum milk of bitches housed in breeding kennels (N = 20; 92 bitches). The kennels were divided into three categories: no routine antimicrobial administration around parturition (category 1); routine administration of one antibiotic around parturition (category 2); routine administration of multiple antimicrobials around parturition (category 3). Bacteriological cultures and antibiotic susceptibility tests were performed on vaginal specimens, prepartum mammary secretions, and postpartum milk. Stillbirths and neonatal deaths were recorded for each whelping and analyzed as "within-litter stillbirths" and "within-litter neonatal deaths" according to kennel category, by Pearson χ(2) test and the Kruskal-Wallis nonparametric test, respectively. The frequency of isolation and antimicrobial resistance of bacteria were analyzed according to kennel category by Pearson χ(2) test. Kennel category was not significantly associated with differing numbers of stillbirths or neonatal death events, nor was the frequency of isolation of potentially pathogenic bacteria in the three kennel categories significantly different. Kennel category 3 had a significantly higher frequency of isolation of multiresistant gram-positive bacterial strains. Our results show that intense administration of antibiotics to breeding bitches does not effectively reduce neonatal mortality; on the contrary, it induces multiresistance in potentially pathogenic bacteria. Breeders and veterinarians should be aware of the risk of selecting pathogenic bacteria by uncontrolled treatment in prepartum bitches. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Resistance profiles to antimicrobial agents in bacteria isolated from acute endodontic infections: systematic review and meta-analysis.

    Science.gov (United States)

    Lang, Pauline M; Jacinto, Rogério C; Dal Pizzol, Tatiane S; Ferreira, Maria Beatriz C; Montagner, Francisco

    2016-11-01

    Infected root canal or acute apical abscess exudates can harbour several species, including Fusobacterium, Porphyromonas, Prevotella, Parvimonas, Streptococcus, Treponema, Olsenella and not-yet cultivable species. A systematic review and meta-analysis was performed to assess resistance rates to antimicrobial agents in clinical studies that isolated bacteria from acute endodontic infections. Electronic databases and the grey literature were searched up to May 2015. Clinical studies in humans evaluating the antimicrobial resistance of primary acute endodontic infection isolates were included. PRISMA guidelines were followed. A random-effect meta-analysis was employed. The outcome was described as the pooled resistance rates for each antimicrobial agent. Heterogeneity and sensitivity analyses were performed. Subgroup analyses were conducted based upon report or not of the use of antibiotics prior to sampling as an exclusion factor (subgroups A and B, respectively). Data from seven studies were extracted. Resistance rates for 15 different antimicrobial agents were evaluated (range, 3.5-40.0%). Lower resistance rates were observed for amoxicillin/clavulanic acid and amoxicillin; higher resistance rates were detected for tetracycline. Resistance rates varied according to previous use of an antimicrobial agent as demonstrated by the subgroup analyses. Heterogeneity was observed for the resistance profiles of penicillin G in subgroup A and for amoxicillin, clindamycin, metronidazole and tetracycline in subgroup B. Sensitivity analyses demonstrated that resistance rates changed for metronidazole, clindamycin, tetracycline and amoxicillin. These findings suggest that clinical isolates had low resistance to β-lactams. Further well-designed studies are needed to clarify whether the differences in susceptibility among the antimicrobial agents may influence clinical responses to treatment. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights

  11. Zinc and copper in animal feed – development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin

    Directory of Open Access Journals (Sweden)

    Siamak Yazdankhah

    2014-09-01

    Full Text Available Farmed animals such as pig and poultry receive additional Zn and Cu in their diets due to supplementing elements in compound feed as well as medical remedies. Enteral bacteria in farmed animals are shown to develop resistance to trace elements such as Zn and Cu. Resistance to Zn is often linked with resistance to methicillin in staphylococci, and Zn supplementation to animal feed may increase the proportion of multiresistant E. coli in the gut. Resistance to Cu in bacteria, in particular enterococci, is often associated with resistance to antimicrobial drugs like macrolides and glycopeptides (e.g. vancomycin. Such resistant bacteria may be transferred from the food-producing animals to humans (farmers, veterinarians, and consumers. Data on dose-response relation for Zn/Cu exposure and resistance are lacking; however, it seems more likely that a resistance-driven effect occurs at high trace element exposure than at more basal exposure levels. There is also lack of data which could demonstrate whether Zn/Cu-resistant bacteria may acquire antibiotic resistance genes/become antibiotics resistant, or if antibiotics-resistant bacteria are more capable to become Zn/Cu resistant than antibiotics-susceptible bacteria. Further research is needed to elucidate the link between Zn/Cu and antibiotic resistance in bacteria.

  12. Duration of colonization with antimicrobial-resistant bacteria after ICU discharge.

    Science.gov (United States)

    Haverkate, Manon R; Derde, Lennie P G; Brun-Buisson, Christian; Bonten, Marc J M; Bootsma, Martin C J

    2014-04-01

    Readmission of patients colonized with antimicrobial-resistant bacteria (AMRB) is important in the nosocomial dynamics of AMRB. We assessed the duration of colonization after discharge from the intensive care unit (ICU) with highly resistant Enterobacteriaceae (HRE), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant enterococci (VRE). Data were obtained from a cluster-randomized trial in 13 ICUs in 8 European countries (MOSAR-ICU trial, 2008-2011). All patients were screened on admission and twice weekly for AMRB. All patients colonized with HRE, MRSA, or VRE and readmitted to the same ICU during the study period were included in the current analysis. Time between discharge and readmission was calculated, and the colonization status at readmission was assessed. Because of interval-censored data, a maximum likelihood analysis was used to calculate the survival function, taking censoring into account. A nonparametric two-sample test was used to test for differences in the survival curves. The MOSAR-ICU trial included 14,390 patients, and a total of 64,997 cultures were taken from 8,974 patients admitted for at least 3 days. One hundred twenty-five unique patients had 141 episodes with AMRB colonization and at least 1 readmission. Thirty-two patients were colonized with two or more AMRBs. Median times until clearance were 4.8 months for all AMRB together, 1.4 months for HRE, <1 month for MRSA, and 1.5 months for VRE. There were no significant differences between the survival curves. Fifty percent of the patients had lost colonization when readmitted 2 or more months after previous ICU discharge.

  13. Resistance to antimicrobial agents used for animal therapy in pathogenic , zoonotic and indicator bacteria isolated from different food animals in Denmark: A baseline study for the Danish Integrated Antimicrobial Resistance Monitoring Programme (DANMAP)

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Bager, Flemming; Jensen, N. E.

    1998-01-01

    was found. The occurrence of resistance varied by animal origin and bacterial species. In general, resistance was observed more frequently among isolates from pigs than from cattle and broilers. The association between the occurrence of resistance and the consumption of the antimicrobial is discussed......, as is the occurrence of resistance in other countries. The results of this study show the present level of resistance to antimicrobial agents among a number of bacterial species isolated from food animals in Denmark. Thus, the baseline for comparison with future prospective studies has been established, enabling......This study describes the establishment and first results of a continuous surveillance system of antimicrobial resistance among bacteria isolated from pigs, cattle and broilers in Denmark. The three categories of bacteria tested were: 1) indicator bacteria (Escherichia coli, Enterococcus faecalis...

  14. Antimicrobial-resistant Gram-negative bacteria in febrile neutropenic patients with cancer: current epidemiology and clinical impact.

    Science.gov (United States)

    Trecarichi, Enrico M; Tumbarello, Mario

    2014-04-01

    In the recent years, several studies involving cancer patients have demonstrated a clear trend in the epidemiology of bacterial infections showing a shift in the prevalence from Gram-positive to Gram-negative bacteria and the extensive emergence of antimicrobial-resistant strains among Gram-negatives isolated from the blood. The aim of this systematic review was to examine the recent trends in epidemiology and antimicrobial resistance in Gram-negatives recovered from neutropenic cancer patients, with particular emphasis on the impact of antimicrobial resistance on the clinical outcome of severe infections caused by such microorganisms. Overall, from 2007 to date, the rate of Gram-negative bacteria recovery ranged from 24.7 to 75.8% (mean 51.3%) in cancer patient cohorts. Escherichia coli represented the most common species (mean frequency of isolation 32.1%) among the Gram-negatives, followed by Pseudomonas aeruginosa (mean frequency of isolation 20.1%). An increasing frequency of Acinetobacter spp. and Stenotrophomonas maltophilia was also reported. Increased rates of multidrug-resistant Gram-negative strains have been highlighted among Enterobacteriaceae and nonfermenting Gram-negative rods, despite discontinuation of fluoroquinolone-based antibacterial prophylaxis for neutropenic patients. In addition, antimicrobial resistance and/or the inadequacy of empirical antibiotic treatment have been frequently linked to a worse outcome in cancer patients with bloodstream infections caused by Gram-negative isolates. Sound knowledge of the local distribution of pathogens and their susceptibility patterns and prompt initiation of effective antimicrobial treatment for severe infections caused by Gram-negative bacteria are essential in cancer patients.

  15. Animation of Antimicrobial Resistance

    Science.gov (United States)

    ... Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin ...

  16. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin ...

  17. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System ... If you need help accessing information in different file formats, see Instructions for Downloading ...

  18. The attribution of human infections with antimicrobial resistant Salmonella bacteria in Denmark to sources of animal origin

    DEFF Research Database (Denmark)

    Hald, Tine; Lo Fo Wong, Danilo M. A.; Aarestrup, Frank Møller

    2007-01-01

    Based on the Danish Salmonella surveillance in 2000-2001, we developed a mathematical model for quantifying the contribution of each major animal-food sources to human salmonellosis caused by antimicrobial resistant bacteria. Domestic food products accounted for 53.1% of all cases, mainly caused......, but infections with multidrug- and quinolone-resistant isolates were more commonly caused by imported food products and travelling, emphasizing the need for a global perspective on food safety and antimicrobial usage....... by table eggs (37.6%). A large proportion (19%) of cases were travel related, while 18% could not be associated with any source. Imported food products accounted for 9.5% of all cases; the most important source being imported chicken. Multidrug and quinolone resistance was rarely found in cases acquired...

  19. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    Science.gov (United States)

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  20. Virulence and antimicrobial resistance of common urinary bacteria from asymptomatic students of Niger Delta University, Amassoma, Bayelsa State, Nigeria

    Directory of Open Access Journals (Sweden)

    Adebola Onanuga

    2016-01-01

    Full Text Available Background: Asymptomatic bacteriuria frequently occurs among all ages with the possibility of developing into urinary tract infections, and the antimicrobial resistance patterns of the etiologic organisms are essential for appropriate therapy. Thus, we investigated the virulence and antimicrobial resistance patterns of common urinary bacteria in asymptomatic students of Niger Delta University, Amassoma, Bayelsa State, Nigeria in a cross-sectional study. Materials and Methods: Clean catch mid-stream early morning urine samples collected from 200 asymptomatic University students of aged ranges 15–30 years were cultured, screened and common bacteria were identified using standard microbiological procedures. The isolates were screened for hemolysin production and their susceptibility to antibiotics was determined using standard disc assay method. Results: A total prevalence rate of 52.0% significant bacteriuria was detected and it was significantly higher among the female with a weak association (χ2 = 6.01, phi = 0.173, P = 0.014. The Klebsiella pneumoniae and Staphylococcus aureus isolates were most frequently encountered among the isolated bacteria and 18 (12.7% of all the bacterial isolates produced hemolysins. All the bacterial isolates exhibited 50–100% resistance to the tested beta-lactam antibiotics, tetracycline and co-trimoxazole. The isolated bacteria were 85-100% multi-drug resistant. However, most of the isolates were generally susceptible to gentamicin and ofloxacin. The phenotypic detection of extended-spectrum beta-lactamases was 9 (9.6% among the tested Gram-negative bacterial isolates. Conclusions: The observed high proportions of multidrug resistant urinary bacteria among asymptomatic University students call for the need of greater control of antibiotic use in this study area.

  1. Resistance of Causing Bacteria of Bovine Mastitis in Regard to Common Antimicrobials

    Directory of Open Access Journals (Sweden)

    Darío Martínez Pacheco

    2013-05-01

    Full Text Available The bacteria develop resistence against to the common antimicrobians, which is a limitant in the control and treatment of infectious diseases. In the sistems of production of bovine milk, one problem that affects the quantity and quality of the produced milk, is the mastitis, which in most cases has a bacterian origen. Addition to correct milking routine is used many antibacterial agents that for pharmacokinetics and pharmacodynamics reasons are the first selection for this disease. Some cases the use of antibacterial agents is effective, while in other cases do not, due to the development of bacterial resistence. Recently, it has been possible to identify different mechanisms of resistence developed by bacteria. This has allowed pharmacology researchers to create new drugs or to modify existing, seeking to decrease the inefficacy caused by the mutation of the bacteria as an adaptative response mechanism. Therefore,the objective of this review is to offer an updated document on resistance mechanisms identified.

  2. Microbiota and anthropic interference on antimicrobial resistance profile of bacteria isolated from Brazilian maned-wolf (Chrysocyon brachyurus

    Directory of Open Access Journals (Sweden)

    Olney Vieira-da-Motta

    2013-12-01

    Full Text Available Both the study of Brazilian wild mammal fauna and the conditions that foster the preservation of endangered species, such as Brazilian Maned-wolf (Chrysocyon brachyurus, in wild life are of extreme importance. In order to study the resistance profile of microbiota bacterial colonizing Brazilian Maned-wolf, this work investigated samples from eight male captive and free roaming animals originating from different Brazilian geographical regions. Samples for microbiological purposes were collected with swabs and kept in appropriate transport medium. Using routine microbiological techniques, the isolated bacteria were tested toward antimicrobial drugs by the agar disk diffusion method. Results showed that all samples from wild animals were sensitive toward all drugs tested. Conversely, the resistance profile of bacteria isolated from captive animals varied among strains and animal body site location. Escherichia coli samples from prepuce, anus and ear showed multi-resistance toward at least four drugs, especially against erythromycin and tetracycline, followed by Proteus mirabilis and P. vulgaris strains isolated from anus and ear. Among Gram-positive bacteria, strains of coagulase-negative staphylococci showed multi-resistance mainly toward erythromycin and amoxicillin. The work discusses these findings and suggests that profile of multi-resistance bacteria from captive subjects may be attributed to direct contact with human or through lifestyle factors such as feeding, predation or contact of animals with urban animals such as birds, rodents, and insects from surrounding environments.

  3. Microbiota and anthropic interference on antimicrobial resistance profile of bacteria isolated from Brazilian Maned-wolf (Chrysocyon brachyurus).

    Science.gov (United States)

    Vieira-da-Motta, Olney; Eckhardt-de-Pontes, Luiz Antonio; Petrucci, Melissa Paes; dos Santos, Israel Pereira; da Cunha, Isabel Candia Nunes; Morato, Ronaldo Gonçalves

    2013-12-01

    Both the study of Brazilian wild mammal fauna and the conditions that foster the preservation of endangered species, such as Brazilian Maned-wolf (Chrysocyon brachyurus), in wild life are of extreme importance. In order to study the resistance profile of microbiota bacterial colonizing Brazilian Maned-wolf, this work investigated samples from eight male captive and free roaming animals originating from different Brazilian geographical regions. Samples for microbiological purposes were collected with swabs and kept in appropriate transport medium. Using routine microbiological techniques, the isolated bacteria were tested toward antimicrobial drugs by the agar disk diffusion method. Results showed that all samples from wild animals were sensitive toward all drugs tested. Conversely, the resistance profile of bacteria isolated from captive animals varied among strains and animal body site location. Escherichia coli samples from prepuce, anus and ear showed multi-resistance toward at least four drugs, especially against erythromycin and tetracycline, followed by Proteus mirabilis and P. vulgaris strains isolated from anus and ear. Among Gram-positive bacteria, strains of coagulase-negative staphylococci showed multi-resistance mainly toward erythromycin and amoxicillin. The work discusses these findings and suggests that profile of multi-resistance bacteria from captive subjects may be attributed to direct contact with human or through lifestyle factors such as feeding, predation or contact of animals with urban animals such as birds, rodents, and insects from surrounding environments.

  4. Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against co-trimoxazol-resistant bacteria strains.

    Science.gov (United States)

    Konaté, Kiessoun; Hilou, Adama; Mavoungou, Jacques François; Lepengué, Alexis Nicaise; Souza, Alain; Barro, Nicolas; Datté, Jacques Y; M'batchi, Bertrand; Nacoulma, Odile Germaine

    2012-02-24

    The increased resistance of microorganisms to the currently used antimicrobials has lead to the evaluation of other agents that might have antimicrobial activity. Medicinal plants are sources of phytochemicals which are able to initiate different biological activities including antimicrobials In vitro antibacterial (MIC, MBC and time-kill studies) of polyphenol-rich fractions from Sida alba L. (Malvaceae) was assessed using ten bacteria strains (Gram-negative and Gram-positive). All test bacteria were susceptible to the polyphenol-rich fractions. Time-kill results showed that after 5 h exposition there was no viable microorganism in the initial inoculum and the effect of polyphenol-rich fractions was faster on Enterococcus faecalis (Gram-positive bacterium) comparatively to the other bacteria strains. The data analysis indicates that the tested of polyphenol-rich fractions has significant effects when compared with the standard antibiotic. These results therefore justify the traditional use of sida alba L., alone or in combination with other herbs to treat bacterial infections.

  5. Antimicrobial Resistance Profiles of Bacteria Isolated from the Nasal Cavity of Camels in Samburu, Nakuru, and Isiolo Counties of Kenya

    Directory of Open Access Journals (Sweden)

    J. M. Mutua

    2017-01-01

    Full Text Available This study was designed to determine antimicrobial resistance profiles of bacteria isolated from the nasal cavity of healthy camels. A total of 255 nasal samples (swabs were collected in Isiolo, Samburu, and Nakuru counties, Kenya, from which 404 bacterial isolates belonging to various genera and species were recovered. The bacterial isolates included Bacillus (39.60%, coagulase-negative Staphylococcus (29.95%, Streptococcus species other than Streptococcus agalactiae (25.74%, coagulase-positive Staphylococcus (3.96%, and Streptococcus agalactiae (0.74%. Isolates were most susceptible to Gentamicin (95.8%, followed by Tetracycline (90.5%, Kanamycin and Chloramphenicol (each at 85.3%, Sulphamethoxazole (84.2%, Co-trimoxazole (82.1%, Ampicillin (78.9%, and finally Streptomycin (76.8%. This translated to low resistance levels. Multidrug resistance was also reported in 30.5% of the isolates tested. Even though the antibiotic resistance demonstrated in this study is low, the observation is significant, since the few resistant normal flora could be harboring resistance genes which can be transferred to pathogenic bacteria within the animal, to other animals’ bacteria and, most seriously, to human pathogens.

  6. A new methodology to assess antimicrobial resistance of bacteria in coastal waters; pilot study in a Mediterranean hydrosystem

    Science.gov (United States)

    Almakki, Ayad; Estèves, Kevin; Vanhove, Audrey S.; Mosser, Thomas; Aujoulat, Fabien; Marchandin, Hélène; Toubiana, Mylène; Monfort, Patrick; Jumas-Bilak, Estelle; Licznar-Fajardo, Patricia

    2017-10-01

    The global resistome of coastal waters has been less studied than that of other waters, including marine ones. Here we develop an original method for characterizing the antimicrobial resistance of bacterial communities in coastal waters. The method combines the determination of a new parameter, the community Inhibitory Concentration (c-IC) of antibiotics (ATBs), and the description of the taxonomic richness of the resistant bacteria. We test the method in a Mediterranean hydrosystem, in the Montpellier region, France. Three types of waters are analyzed: near coastal river waters (Lez), lagoon brackish waters (Mauguio), and lake freshwaters (Salagou). Bacterial communities are grown in vitro in various conditions of temperature, salinity, and ATB concentrations. From these experiments, we determine the concentrations of ATB that decrease the bacterial community abundance by 50% (c-IC50) and by 90% (c-IC90). In parallel, we determine the taxonomic repertory of the resistant growing bacteria communities (repertory of Operational Taxonomic Units [OTU]). Temperature and salinity influence the abundance of the cultivable bacteria in presence of ATBs and hence the c-ICs. Very low ATB concentrations can decrease the bacterial abundance significantly. Beside a few ubiquitous genera (Bacillus, Pseudomonas, Shewanella, Vibrio), most resistant OTUs are specific of a type of water. In brackish water, resistant OTUs are more diverse and their community structure less vulnerable to ATBs than those in freshwater. We anticipate that c-IC measurement combined with taxonomic description can be applied to any littoral region to characterize the resistant bacterial communities in the coastal waters. This would help us to evaluate the vulnerability of aquatic ecosystems to antimicrobial pressure.

  7. The effects of tertiary wastewater treatment on the prevalence of antimicrobial resistant bacteria

    DEFF Research Database (Denmark)

    Guardabassi, L.; Wong, Danilo Lo Fo; Dalsgaard, A.

    2002-01-01

    and anaerobically digested sludge by bacteriological counts on media selective for coliforms (MacConkey agar) and Acinetobacter spp. (Baumann agar). In addition, the level of antimicrobial susceptibility was determined by the disc-diffusion method in 442 Acinetobacter isolates identified by colony hybridisation......-resistant presumptive coliforms and Acinetobacter spp. in treated sewage and digested sludge were not significantly higher compared with raw sewage. On the contrary at one plant, statistically significant decreases were observed in the prevalence of ampicillin-resistant presumptive Acinetobacter spp. (p = 0.......0188) following sewage treatment, and in the prevalence of either ampicillin-resistant presumptive Acinetobacter spp. (p = 0.0013) or ampicillin- and gentamicin-resistant presumptive coliforms (p = 0.0273 and p = 0.0186) following sludge treatment. The results obtained by bacteriological counts were confirmed...

  8. Antimicrobial activity of silver nanoparticles synthesized using honey and gamma radiation against silver-resistant bacteria from wounds and burns

    Science.gov (United States)

    Hosny, A. M. S.; Kashef, M. T.; Rasmy, S. A.; Aboul-Magd, D. S.; El-Bazza, Z. E.

    2017-12-01

    Silver nanoparticles (AgNPs) are promising antimicrobial agents for treatment of wounds and burns. We synthesized AgNPs using honey at different pH values or with different gamma irradiation doses. The resulting nanoparticles were characterized by UV-vis spectroscopy, TEM, DLS and FTIR. Their antimicrobial activity, against standard bacterial strains and silver-resistant clinical isolates from infected wounds and burns, was evaluated in vitro through determination of their minimum inhibitory concentration (MIC). AgNPs prepared using 30 g of honey exposed to 5 kGy gamma radiation had the best physical characters regarding stability and uniformity of particle size and shape. They recorded the lowest MIC values against both the standard and silver-resistant isolates. In conclusion, honey and gamma radiation can be used in synthesis of highly stable pure AgNPs, without affecting the physico-chemical and antimicrobial activity of honey. This offered an advantage in terms of inhibition of silver-resistant bacteria isolates.

  9. Control of the development and prevalence of antimicrobial resistance in bacteria of food animal origin in Japan: a new approach for risk management of antimicrobial veterinary medicinal products in Japan.

    Science.gov (United States)

    Asai, Tetsuo; Hiki, Mototaka; Ozawa, Manao; Koike, Ryoji; Eguchi, Kaoru; Kawanishi, Michiko; Kojima, Akemi; Endoh, Yuuko S; Hamamoto, Shuichi; Sakai, Masato; Sekiya, Tatsuro

    2014-03-01

    Antimicrobial agents are essential for controlling bacterial disease in food-producing animals and contribute to the stable production of safe animal products. The use of antimicrobial agents in these animals affects the emergence and prevalence of antimicrobial resistance in bacteria isolated from animals and animal products. As disease-causing bacteria are often transferred from food-producing animals to humans, the food chain is considered a route of transmission for the resistant bacteria and/or resistance genes. The Food Safety Commission of Japan (FSC) has been assessing the risk posed to human health by the transmission of antimicrobial-resistant bacteria from livestock products via the food chain. In addition to the FSC's risk assessments, the Japanese Ministry of Agriculture, Forestry and Fisheries has developed risk-management guidelines to determine feasible risk-management options for the use of antimicrobial veterinary medicinal products during farming practices. This report includes information on risk assessment and novel approaches for risk management of antimicrobial veterinary medicinal products for mitigating the risk of development and prevalence of antimicrobial resistance in bacteria originating from food-producing animals in Japan.

  10. Postoperative Nosocomial Infections and Antimicrobial Resistance ...

    African Journals Online (AJOL)

    Postoperative Nosocomial Infections and Antimicrobial Resistance Pattern of Bacteria Isolates among Patients Admitted at Felege Hiwot Referral Hospital, Bahirdar, ... Wound swab and venous blood samples were collected and processed for bacterial isolation and antimicrobial susceptibility testing following standard ...

  11. Antimicrobial susceptibility profiles of gram-negative bacteria causing infections collected across India during 2014–2016: Study for monitoring antimicrobial resistance trend report

    Directory of Open Access Journals (Sweden)

    Balaji Veeraraghavan

    2018-01-01

    Full Text Available Background: The emergence of antibiotic resistance among bacterial pathogens in the hospital and community has increased the concern to the health-care providers due to the limited treatment options. Surveillance of antimicrobial resistance (AMR in frequently isolated bacterial pathogens causing severe infections is of great importance. The data generated will be useful for the clinicians to decide empiric therapy on the local epidemiological resistance profile of the antimicrobial agents. This study aims to monitor the distribution of bacterial pathogen and their susceptibility pattern to the commonly used antimicrobial agents. Materials and Methods: This study includes Gram-negative bacilli collected from intra-abdominal, urinary tract and respiratory tract infections during 2014–2016. Isolates were collected from seven hospitals across India. All the study isolates were characterised up to species level, and minimum inhibitory concentration was determined for a wide range of antimicrobials included in the study panel. The test results were interpreted as per standard Clinical Laboratory Standards Institute guidelines. Results: A total of 2731 isolates of gram-negative bacteria were tested during study period. The most frequently isolated pathogens were 44% of Escherichia coli (n = 1205 followed by 25% of Klebsiella pneumoniae (n = 676 and 11% of Pseudomonas aeruginosa (n = 308. Among the antimicrobials tested, carbapenems were the most active, followed by amikacin and piperacillin/tazobactam. The rate of extended-spectrum beta-lactamase (ESBL-positive isolates were ranged from 66%–77% in E. coli to 61%–72% in K. pneumoniae, respectively. Overall, colistin retains its activity in > 90% of the isolates tested and appear promising. Conclusion: Increasing rates of ESBL producers have been noted, which is alarming. Further, carbapenem resistance was also gradually increasing, which needs much attention. Overall, this study data show that

  12. Antimicrobial (Drug) Resistance

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Antimicrobial (Drug) Resistance Go to Information for Researchers ► Credit: ... and infectious diseases. Why Is the Study of Antimicrobial (Drug) Resistance a Priority for NIAID? Over time, ...

  13. Development of a miniaturised microarray-based assay for the rapid identification of antimicrobial resistance genes in Gram-negative bacteria

    DEFF Research Database (Denmark)

    Batchelor, Miranda; Hopkins, Katie L; Liebana, Ernesto

    2008-01-01

    We describe the development of a miniaturised microarray for the detection of antimicrobial resistance genes in Gram-negative bacteria. Included on the array are genes encoding resistance to aminoglycosides, trimethoprim, sulphonamides, tetracyclines and beta-lactams, including extended-spectrum ...

  14. Scoping review to identify potential non-antimicrobial interventions to mitigate antimicrobial resistance in commensal enteric bacteria in North American cattle production systems.

    Science.gov (United States)

    Murphy, C P; Fajt, V R; Scott, H M; Foster, M J; Wickwire, P; McEwen, S A

    2016-01-01

    A scoping review was conducted to identify modifiable non-antimicrobial factors to reduce the occurrence of antimicrobial resistance in cattle populations. Searches were developed to retrieve peer-reviewed published studies in animal, human and in vitro microbial populations. Citations were retained when modifiable non-antimicrobial factors or interventions potentially associated with antimicrobial resistance were described. Studies described resistance in five bacterial genera, species or types, and 40 antimicrobials. Modifiable non-antimicrobial factors or interventions ranged widely in type, and the depth of evidence in animal populations was shallow. Specific associations between a factor or intervention with antimicrobial resistance in a population (e.g. associations between organic systems and tetracycline susceptibility in E. coli from cattle) were reported in a maximum of three studies. The identified non-antimicrobial factors or interventions were classified into 16 themes. Most reported associations between the non-antimicrobial modifiable factors or interventions and antimicrobial resistance were not statistically significant (P > 0·05 and a confidence interval including 1), but when significant, the results were not consistent in direction (increase or decrease in antimicrobial resistance) or magnitude. Research is needed to better understand the impacts of promising modifiable factors or interventions on the occurrence of antimicrobial resistance before any recommendations can be offered or adopted.

  15. Antimicrobial Resistance

    Science.gov (United States)

    ... past two decades due to the increase in immunocompromised and elderly patients, increasing use of invasive indwelling ... aureus developing resistance to vancomycin, a very powerful antibiotic prescribed for the most intractable bacterial infections. In ...

  16. Endophthalmitis caused by gram-positive bacteria resistant to vancomycin: Clinical settings, causative organisms, antimicrobial susceptibilities, and treatment outcomes

    Directory of Open Access Journals (Sweden)

    Hegde Sharat Shivaramaiah

    2018-06-01

    Full Text Available Purpose: To report the clinical settings, causative organisms, antimicrobial susceptibilities, and treatment outcomes of patients with endophthalmitis caused by gram-positive bacteria resistant to vancomycin. Methods: Retrospective case series of all patients with culture-proven endophthalmitis caused by gram-positive bacteria resistant to vancomycin between January 2010 and December 2016 in LV Prasad Eye Institute, Visakhapatnam, India. Results: The current study included 14 patients. The clinical settings were post-cataract surgery in 8/14 (57.1% and open globe injury in 6/14 (42.8%. Primary intervention for all patients included tap and intravitreal antibiotic injection. During subsequent follow-up, pars plana vitrectomy was performed in 6 patients and one patient underwent penetrating keratoplasty. Mean number of intravitreal antibiotic injections performed were 3.4 per patient. The most common organisms isolated were coagulase-negative Staphylococci in 6/14 (42.8%, Staphylococcus aureus in 5/14 (35.7%, Streptococcus sp in 2/14 (14.2% and Bacillus sp in 1/14 (7.14%. In addition to vancomycin, resistance to multiple drugs (three or more groups of antibiotics was found in all 14 cases. Antimicrobial susceptibility results showed susceptibility to amikacin in 7/14 (50.0%, gatifloxacin in 6/14 (42.8%, moxifloxacin in 3/13 (23.0%, cefazoline in 5/14 (35.7%, cefuroxime in 3/14 (21.4%, ciprofloxacin in 2/14 (14.2% and linezolid in 5/5 (100%. The mean duration of follow-up was 30.7 weeks (6 weeks–90 weeks. At last follow-up, visual acuity (VA of 20/200 or better was recorded in 7/14 (50% and VA < 5/200 occurred in 7/14 (50%. Conclusion and importance: Antimicrobial susceptibility testing may help in selection of suitable antimicrobial agents for repeat intravitreal injection. Inspite of retreatment with intravitreal antibiotics, these patients generally had poor VA outcomes. Keywords: Coagulase-negative Staphylococci, Endophthalmitis

  17. Occurrence of antimicrobial resistance among bacterial pathogens and indicator bacteria in pigs in different European countries from year 2002 – 2004: the ARBAO-II study

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Mevius, Dik J; Schroeter, Andreas

    2008-01-01

    Background: The project "Antibiotic resistance in bacteria of animal origin - II" (ARBAO-II) was funded by the European Union (FAIR5-QLK2-2002-01146) for the period 2003-05. The aim of this project was to establish a program for the continuous monitoring of antimicrobial susceptibility...... of pathogenic and indicator bacteria from food animals using validated and harmonised methodologies. In this report the first data on the occurrence of antimicrobial resistance among bacteria causing infections in pigs are reported. Methods: Susceptibility data from 17,642 isolates of pathogens and indicator...... susceptible to all drugs tested with the exceptions of a low frequency of resistance to tetracycline and trimethoprim - sulphonamide. Data for S. suis were obtained from six countries. In general, a high level of resistance to tetracycline (48.0 - 92.0%) and erythromycin (29.1 - 75.0%) was observed in all...

  18. Occurrence of antimicrobial resistance among bacterial pathogens and indicator bacteria in pigs in different European countries from year 2002-2004; the ARBAO-II study

    NARCIS (Netherlands)

    Hendriksen, R.S.; Mevius, D.J.; Schroeter, A.; Teale, C.; Jouy, E.; Butaye, P.; Franco, A.; Utinane, A.; Amado, A.; Moreno, M.; Greko, C.; Stark, K.D.; Berghold, C.; Myllyniemi, A.L.; Hoszowski, A.; Sunde, M.; Aerestrup, F.

    2008-01-01

    Background The project "Antibiotic resistance in bacteria of animal origin ¿ II" (ARBAO-II) was funded by the European Union (FAIR5-QLK2-2002-01146) for the period 2003¿05. The aim of this project was to establish a program for the continuous monitoring of antimicrobial susceptibility of pathogenic

  19. Biochemical identification and determination of antimicrobial resistance in clinical isolates of anaerobic bacteria obtained from the Hospital San Juan de Dios in the period 2009 to 2011

    International Nuclear Information System (INIS)

    Meza Pena, Maria Daniela

    2014-01-01

    Clinical isolates of 81 anaerobic bacteria isolated are identified to patients of the Hospital San Juan de Dios, between 2009 to 2011; by algorithms that have employed biochemical methods of reference chemical samples. Antimicrobial resistance is determined. The miniaturized methods and biochemical algorithms proposed were compared to identify differences between methods. The minimum inhibitory concentration of metronidazole, clindamycin, amoxicillin, tetracycline and cefotaxime are determined to 81 anaerobic bacteria isolated from the Hospital mentioned [es

  20. Antimicrobial usage and resistance in beef production

    OpenAIRE

    Cameron, Andrew; McAllister, Tim A.

    2016-01-01

    Antimicrobials are critical to contemporary high-intensity beef production. Many different antimicrobials are approved for beef cattle, and are used judiciously for animal welfare, and controversially, to promote growth and feed efficiency. Antimicrobial administration provides a powerful selective pressure that acts on the microbial community, selecting for resistance gene determinants and antimicrobial-resistant bacteria resident in the bovine flora. The bovine microbiota includes many harm...

  1. Occurrence of antimicrobial resistance among bacterial pathogens

    OpenAIRE

    Hendriksen, Rene S.; Mevius, Dik J.; Schroeter, Andreas; Teale, Christopher; Jouy, Eric; Butaye, Patrick; Franco, Alessia; Utinane, Andra; Amado, Alice; Moreno, Miguel; Greko, Christina; Stärk, Katharina D.C.; Berghold, Christian; Myllyniemi, Anna-Liisa; Hoszowski, Andrzej

    2008-01-01

    Background: The project "Antibiotic resistance in bacteria of animal origin – II" (ARBAO-II) was funded by the European Union (FAIR5-QLK2-2002-01146) for the period 2003–05. The aim of this project was to establish a program for the continuous monitoring of antimicrobial susceptibility of pathogenic and indicator bacteria from food animals using validated and harmonised methodologies. In this report the first data on the occurrence of antimicrobial resistance among bacteria cau...

  2. Antimicrobial and Herbal Drug Resistance in Enteric Bacteria Isolated from Faecal Droppings of Common House Lizard/Gecko (Hemidactylus frenatus

    Directory of Open Access Journals (Sweden)

    Bhoj R. Singh

    2013-01-01

    Full Text Available From 194 faecal dropping samples of common house geckos collected from offices (60, houses (88, integrated farm units (IFS,18 and hostels, guest houses, and dining rooms of different canteen/mess (HGM, 28, 326 bacterial isolates of enteric bacteria belonging to 17 genera and 34 species were detected. Escherichia coli were the most frequently (39 isolated followed by Citrobacter freundii (33, Klebsiella pneumonia (27, Salmonella indica (12, Enterobacter gergoviae (12, and Ent. agglomerans (11. Other important bacteria isolated from gecko droppings were Listonella damsela (2, Raoultella terrigena (3, S. salamae (2, S. houtenae (3, Edwardsiella tarda (4, Edwardsiella hoshinae (1, and Klebsiella oxytoca (2. Of the 223 isolates tested for antimicrobial drug sensitivity, 27 (12.1% had multiple drug resistance (MDR. None of the salmonellae or edwardsiellae had MDR however, MDR strains were significantly more common among Escherichia spp. (P=1.9×10-5 and isolates from IFS units (P=3.58×10-23. The most effective herbal drug, Ageratum conyzoides extract, inhibited growth of only 27.8% of strains tested followed by ethanolic extract of Zanthoxylum rhetsa (13.9%, eucalyptus oil (5.4%, patchouli oil (5.4%, lemongrass oil (3.6%, and sandalwood oil (3.1%, and Artemisia vulgaris essential oil (3.1%.

  3. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Skip to common links HHS U.S. Department of Health and Human Services U.S. Food and Drug Administration A to Z Index Follow FDA En Español Search FDA Submit search ... & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet ...

  4. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Skip to common links HHS U.S. Department of Health and Human Services U.S. Food and Drug Administration ... Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet ...

  5. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... menu Skip to common links HHS U.S. Department of Health and Human Services U.S. Food and Drug Administration ... Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More ...

  6. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System About NARMS 2015 NARMS Integrated Report Data Meetings ... Deutsch | 日本語 | فارسی | English FDA Accessibility Careers FDA Basics FOIA No FEAR ...

  7. Occurrence of antimicrobial resistance among bacterial pathogens and indicator bacteria in pigs in different European countries from year 2002 – 2004: the ARBAO-II study

    Directory of Open Access Journals (Sweden)

    Hendriksen Rene S

    2008-06-01

    Full Text Available Abstract Background The project "Antibiotic resistance in bacteria of animal origin – II" (ARBAO-II was funded by the European Union (FAIR5-QLK2-2002-01146 for the period 2003–05. The aim of this project was to establish a program for the continuous monitoring of antimicrobial susceptibility of pathogenic and indicator bacteria from food animals using validated and harmonised methodologies. In this report the first data on the occurrence of antimicrobial resistance among bacteria causing infections in pigs are reported. Methods Susceptibility data from 17,642 isolates of pathogens and indicator bacteria including Actinobacillus pleuropneumoniae, Streptococcus suis and Escherichia coli isolated from pigs were collected from fifteen European countries in 2002–2004. Results Data for A. pleuropneumoniae from infected pigs were submitted from five countries. Most of the isolates from Denmark were susceptible to all drugs tested with the exceptions of a low frequency of resistance to tetracycline and trimethoprim – sulphonamide. Data for S. suis were obtained from six countries. In general, a high level of resistance to tetracycline (48.0 – 92.0% and erythromycin (29.1 – 75.0% was observed in all countries whereas the level of resistance to ciprofloxacin and penicillin differed between the reporting countries. Isolates from England (and Wales, France and The Netherlands were all susceptible to penicillin. In contrast the proportion of strains resistant to ciprofloxacin ranged from 12.6 to 79.0% (2004 and to penicillin from 8.1 – 13.0% (2004 in Poland and Portugal. Data for E. coli from infected and healthy pigs were obtained from eleven countries. The data reveal a high level of resistance to tetracyclines, streptomycin and ampicillin among infected pigs whereas in healthy pigs the frequency of resistance was lower. Conclusion Bacterial resistance to some antimicrobials was frequent with different levels of resistance being observed to

  8. Antimicrobial resistance among commensal Escherichia coli from ...

    African Journals Online (AJOL)

    Commensal bacteria contribute to the distribution and persistence of antimicrobial resistance in the environment. This study monitored antimicrobial resistance in commensal Escherichia coli from the faeces of on-farm and slaughter cattle and beef. A total of 342 (89.5%) E. coli isolates were obtained from 382 samples.

  9. Antimicrobial resistance among commensal Escherichia coli from ...

    African Journals Online (AJOL)

    user1

    2012-07-19

    Jul 19, 2012 ... Commensal bacteria contribute to the distribution and persistence of antimicrobial resistance in the environment. This study monitored antimicrobial resistance in commensal Escherichia coli from the faeces of on-farm and slaughter cattle and beef. A total of 342 (89.5%) E. coli isolates were obtained.

  10. Resistance of Bacteria to Biocides.

    Science.gov (United States)

    Maillard, Jean-Yves

    2018-04-01

    Biocides and formulated biocides are used worldwide for an increasing number of applications despite tightening regulations in Europe and in the United States. One concern is that such intense usage of biocides could lead to increased bacterial resistance to a product and cross-resistance to unrelated antimicrobials including chemotherapeutic antibiotics. Evidence to justify such a concern comes mostly from the use of health care-relevant bacterial isolates, although the number of studies of the resistance characteristics of veterinary isolates to biocides have increased the past few years. One problem remains the definition of "resistance" and how to measure resistance to a biocide. This has yet to be addressed globally, although the measurement of resistance is becoming more pressing, with regulators both in Europe and in the United States demanding that manufacturers provide evidence that their biocidal products will not impact on bacterial resistance. Alongside in vitro evidence of potential antimicrobial cross-resistance following biocide exposure, our understanding of the mechanisms of bacterial resistance and, more recently, our understanding of the effect of biocides to induce a mechanism(s) of resistance in bacteria has improved. This article aims to provide an understanding of the development of antimicrobial resistance in bacteria following a biocide exposure. The sections provide evidence of the occurrence of bacterial resistance and its mechanisms of action and debate how to measure bacterial resistance to biocides. Examples pertinent to the veterinary field are used where appropriate.

  11. Antimicrobial resistance mechanisms among Campylobacter.

    Science.gov (United States)

    Wieczorek, Kinga; Osek, Jacek

    2013-01-01

    Campylobacter jejuni and Campylobacter coli are recognized as the most common causative agents of bacterial gastroenteritis in the world. Humans most often become infected by ingesting contaminated food, especially undercooked chicken, but also other sources of bacteria have been described. Campylobacteriosis is normally a self-limiting disease. Antimicrobial treatment is needed only in patients with more severe disease and in those who are immunologically compromised. The most common antimicrobial agents used in the treatment of Campylobacter infections are macrolides, such as erythromycin, and fluoroquinolones, such as ciprofloxacin. Tetracyclines have been suggested as an alternative choice in the treatment of clinical campylobacteriosis but in practice are not often used. However, during the past few decades an increasing number of resistant Campylobacter isolates have developed resistance to fluoroquinolones and other antimicrobials such as macrolides, aminoglycosides, and beta-lactams. Trends in antimicrobial resistance have shown a clear correlation between use of antibiotics in the veterinary medicine and animal production and resistant isolates of Campylobacter in humans. In this review, the patterns of emerging resistance to the antimicrobial agents useful in treatment of the disease are presented and the mechanisms of resistance to these drugs in Campylobacter are discussed.

  12. Antimicrobial properties of black grape (Vitis vinifera L.) peel extracts against antibiotic-resistant pathogenic bacteria and toxin producing molds.

    Science.gov (United States)

    Yadav, Devbrat; Kumar, Arvind; Kumar, Pramod; Mishra, Diwaker

    2015-01-01

    Black grape peel possesses a substantial amount of polyphenolic antimicrobial compounds that can be used for controlling the growth of pathogenic microorganisms. The purpose of this study was to assess antibacterial and antifungal activity of black grape peel extracts against antibiotic-resistant pathogenic bacteria and toxin producing molds, respectively. Peel of grape was subjected to polyphenolic extraction using different solvents viz., water, ethanol, acetone, and methanol. Antibiotic-resistant strains of Staphylococcus aureus, Enterococcus faecalis, Enterobacter aerogenes, Salmonella typhimurium, and Escherichia coli were screened for the antibacterial activity of different grape extracts. Antibacterial activity was analyzed using agar well diffusion method. Penicillium chrysogenum, Penicillium expansum, Aspergillus niger and Aspergillus versicolor were screened for the antifungal activity. Antifungal activity was determined by counting nongerminated spores in the presence of peel extracts. As compared to other solvent extracts, methanol extracts possessed high antibacterial and antifungal activity. S. typhimurium and E. coli showed complete resistance against antibacterial action at screened concentrations of grape peel extracts. Maximum zone of inhibition was found in case of S. aureus, i.e., 22 mm followed by E. faecalis and E. aerogenes, i.e., 18 and 21 mm, respectively, at 1080 mg tannic acid equivalent (TAE)/ml. The maximum and minimum percent of growth inhibition was shown by P. expansum and A. niger as 73% and 15% at 1080 TAE/ml concentration of grape peel extract, respectively. Except S. typhimurium and E. coli, growth of all bacterial and mold species were found to be significantly (P < 0.05) inhibited by all the solvent extracts.

  13. Therapeutic Potential of a Scorpion Venom-Derived Antimicrobial Peptide and Its Homologs Against Antibiotic-Resistant Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Gaomin Liu

    2018-05-01

    Full Text Available The alarming rise in the prevalence of antibiotic resistance among pathogenic bacteria poses a unique challenge for the development of effective therapeutic agents. Antimicrobial peptides (AMPs have attracted a great deal of attention as a possible solution to the increasing problem of antibiotic-resistant bacteria. Marcin-18 was identified from the scorpion Mesobuthus martensii at both DNA and protein levels. The genomic sequence revealed that the marcin-18 coding gene contains a phase-I intron with a GT-AG splice junction located in the DNA region encoding the N-terminal part of signal peptide. The peptide marcin-18 was also isolated from scorpion venom. A protein sequence homology search revealed that marcin-18 shares extremely high sequence identity to the AMPs meucin-18 and megicin-18. In vitro, chemically synthetic marcin-18 and its homologs (meucin-18 and megicin-18 showed highly potent inhibitory activity against Gram-positive bacteria, including some clinical antibiotic-resistant strains. Importantly, in a mouse acute peritonitis model, these peptides significantly decreased the bacterial load in ascites and rescued nearly all mice heavily infected with clinical methicillin-resistant Staphylococcus aureus from lethal bacteremia. Peptides exerted antimicrobial activity via a bactericidal mechanism and killed bacteria through membrane disruption. Taken together, marcin-18 and its homologs have potential for development as therapeutic agents for treating antibiotic-resistant, Gram-positive bacterial infections.

  14. Antimicrobial Peptides: a promising class of antimicrobial compounds against BWA and multi-drug resistant bacteria: in the spotlight: the lactoferrin chimera

    NARCIS (Netherlands)

    Bikker, F.J.; Sijbrandij, T.; Nazmi, K.; Bolscher, J.G.M.; Veerman, E.C.I.; Jansen, H-J.

    2014-01-01

    Anti-Microbial Peptides (AMPs) are part of the innate immune defense system and considered as promising lead compounds for the development of novel anti-bacterial agents. In general, AMPs are simple, short peptides with broad-spectrum activity against Gram-negative and Gram-positive bacteria, fungi,

  15. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    OpenAIRE

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i....

  16. Activity of Topical Antimicrobial Agents Against Multidrug-Resistant Bacteria Recovered from Burn Patients

    Science.gov (United States)

    2010-01-01

    Spectrum of activity Pros Cons Resistance/ other Prior studies Bacitracin Polypeptide produced by Bacillus subtilis that inhibits cell wall synthesis and...concentrations (MICs) and zones of inhibition (ZI). Isolates had systemic antibiotic resistance and clonality determined. MDR included resistance to... antibiotics in three or more classes. Results: We assessed 22 ESBL-producing K. pneumoniae, 20 ABC (75% MDR), 20 P. aeruginosa (45% MDR), and 20 MRSA

  17. Antimicrobial activity of Manuka honey against antibiotic-resistant strains of the cell wall-free bacteria Ureaplasma parvum and Ureaplasma urealyticum.

    Science.gov (United States)

    Hillitt, K L; Jenkins, R E; Spiller, O B; Beeton, M L

    2017-03-01

    The susceptibility of the cell wall-free bacterial pathogens Ureaplasma spp. to Manuka honey was examined. The minimum inhibitory concentration (MIC) of Manuka honey for four Ureaplasma urealyticum and four Ureaplasma parvum isolates was determined. Sensitivity to honey was also compared to clinical isolates with resistance to tetracycline, macrolide and fluoroquinolone antibiotics. Finally step-wise resistance training was utilized in an attempt to induce increased tolerance to honey. The MIC was dependent on the initial bacterial load with 7·5 and 18·0% w/v honey required to inhibit U. urealyticum at 1 and 10 6 colour changing units (CCU), respectively, and 4·8 and 15·3% w/v required to inhibit U. parvum at 1 and 10 6  CCU respectively. MIC values were consistently lower for U. parvum compared with U. urealyticum. Antimicrobial activity was seen against tetracycline-resistant, erythromycin-resistant and ciprofloxacin-resistant isolates at 10 5  CCU. No resistance to honey was observed with 50 consecutive challenges at increasing concentrations of honey. This is the first report of the antimicrobial activity of Manuka honey against a cell wall-free bacterial pathogen. The antimicrobial activity was retained against antibiotic-resistant strains and it was not possible to generate resistant mutants. Manuka honey is known to have a broad spectrum of antimicrobial activity, with the bacterial cell wall being suggested as a predominant site of action. This study has demonstrated that Manuka honey has activity against Ureaplasma spp., a genus of cell wall-free bacteria which are intrinsically resistant to many available antibiotics making treatment inherently difficult. This is the first report of the antimicrobial activity of Manuka honey against a bacterial pathogen, in the absence of a cell well and opens scope for the use of components of Manuka honey as a therapeutic among Ureaplasma infections. © 2016 The Society for Applied Microbiology.

  18. Antimicrobial Activity of Actinomycetes Against Multidrug Resistant ...

    African Journals Online (AJOL)

    Antimicrobial Activity of Actinomycetes Against Multidrug Resistant Staphylococcus aureus, E. coli and Various Other Pathogens. ... Purpose: The rapid emergence of drug resistance among pathogenic bacteria, especially multidrugresistant bacteria, underlines the need to look for new antibiotics. Methods: In the present ...

  19. Molecular Methods for Detection of Antimicrobial Resistance

    DEFF Research Database (Denmark)

    Anjum, Muna F.; Zankari, Ea; Hasman, Henrik

    2017-01-01

    The increase in bacteria harboring antimicrobial resistance (AMR) is a global problem because there is a paucity of antibiotics available to treat multidrug-resistant bacterial infections in humans and animals. Detection of AMR present in bacteria that may pose a threat to veterinary and public...

  20. Antimicrobial Resistance in the Food Chain: A Review

    Science.gov (United States)

    Verraes, Claire; Van Boxstael, Sigrid; Van Meervenne, Eva; Van Coillie, Els; Butaye, Patrick; Catry, Boudewijn; de Schaetzen, Marie-Athénaïs; Van Huffel, Xavier; Imberechts, Hein; Dierick, Katelijne; Daube, George; Saegerman, Claude; De Block, Jan; Dewulf, Jeroen; Herman, Lieve

    2013-01-01

    Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance. PMID:23812024

  1. Antimicrobial (Drug) Resistance Prevention

    Science.gov (United States)

    ... June 6, 2018 HIV Vaccine Elicits Antibodies in Animals that Neutralize Dozens of HIV Strains , June 4, 2018 ... Antimicrobial (Drug) Resistance > Understanding share with facebook share with twitter share ...

  2. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... it More sharing options Linkedin Pin it Email Print The Food and Drug Administration's (FDA's) Center for ... issue of antimicrobial resistance is that the subject material appears abstract and is complex. This video was ...

  3. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... produced material may be copied, reproduced, and distributed as long as FDA's Center for Veterinary Medicine is cited as the corporate author. Animation Animation of Antimicrobial Resistance ( ...

  4. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... complex. This video was designed to make the concept of antimicrobial resistance more real and understandable to ... audiences. We hope this animation will make the concept more understandable to non-scientists by showing how ...

  5. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... One of the major obstacles to understanding the issue of antimicrobial resistance is that the subject material ... Website Policies U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver Spring, MD 20993 1-888- ...

  6. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture

    DEFF Research Database (Denmark)

    Noor Uddin, Gazi Md; Larsen, Marianne Halberg; Christensen, Henrik

    2015-01-01

    in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic...... that they contained macrolide (ermD), tetracycline (tetL), phenicol (fexA) and trimethoprim (dfrD, dfrG and dfrK) resistance genes, but not known structures associated with horizontal gene transfer. Probiotic bacterial strains used in Vietnamese shrimp culture seem to contribute with very limited types and numbers...

  7. Mechanisms of bacterial resistance to antimicrobial agents.

    NARCIS (Netherlands)

    van Duijkeren, Engeline; Schink, Anne-Kathrin; Roberts, Marilyn C; Wang, Yang; Schwarz, Stefan

    During the past decades resistance to virtually all antimicrobial agents has been observed in bacteria of animal origin. This chapter describes in detail the mechanisms so far encountered for the various classes of antimicrobial agents. The main mechanisms include enzymatic inactivation by either

  8. Increasing antimicrobial resistance in clinical isolates of Staphylococcus intermedius group bacteria and emergence of MRSP in the UK.

    Science.gov (United States)

    Beever, L; Bond, R; Graham, P A; Jackson, B; Lloyd, D H; Loeffler, A

    2015-02-14

    Frequencies of antimicrobial resistance were determined amongst 14,555 clinical Staphylococcus intermedius group (SIG) isolates from UK dogs and cats to estimate resistance trends and quantify the occurrence of meticillin-resistant Staphylococcus pseudintermedius (MRSP). Reports from two diagnostic laboratories (13,313 general submissions, 1242 referral centre only submissions) were analysed retrospectively (2003/2006-2012). MRSP were defined by phenotypic resistance to meticillin and concurrent broad β-lactam resistance; a subset was confirmed genetically (SIG-specific nuc and mecA). Trends were analysed by Cochran-Armitage test. Resistance remained below 10 per cent for cefalexin, amoxicillin-clavulanic acid and the fluoroquinolones. Increasing resistance trends were seen in both laboratories for ampicillin/amoxicillin (both PResistance to cefalexin increased over time in referral hospital isolates (Presistance to important antimicrobials was identified overtime and the emergence of MRSP from UK clinical cases was confirmed. Attention to responsible use of antibacterial therapy in small animal practice is urgently needed. British Veterinary Association.

  9. Correlations between Income inequality and antimicrobial resistance.

    Science.gov (United States)

    Kirby, Andrew; Herbert, Annie

    2013-01-01

    The aim of this study is to investigate if correlations exist between income inequality and antimicrobial resistance. This study's hypothesis is that income inequality at the national level is positively correlated with antimicrobial resistance within developed countries. Income inequality data were obtained from the Standardized World Income Inequality Database. Antimicrobial resistance data were obtained from the European antimicrobial Resistance Surveillance Network and outpatient antimicrobial consumption data, measured by Defined daily Doses per 1000 inhabitants per day, from the European Surveillance of antimicrobial Consumption group. Spearman's correlation coefficient (r) defined strengths of correlations of: > 0.8 as strong, > 0.5 as moderate and > 0.2 as weak. Confidence intervals and p values were defined for all r values. Correlations were calculated for the time period 2003-10, for 15 European countries. Income inequality and antimicrobial resistance correlations which were moderate or strong, with 95% confidence intervals > 0, included the following. Enterococcus faecalis resistance to aminopenicillins, vancomycin and high level gentamicin was moderately associated with income inequality (r= ≥0.54 for all three antimicrobials). Escherichia coli resistance to aminoglycosides, aminopenicillins, third generation cephalosporins and fluoroquinolones was moderately-strongly associated with income inequality (r= ≥0.7 for all four antimicrobials). Klebsiella pneumoniae resistance to third generation cephalosporins, aminoglycosides and fluoroquinolones was moderately associated with income inequality (r= ≥0.5 for all three antimicrobials). Staphylococcus aureus methicillin resistance and income inequality were strongly associated (r=0.87). As income inequality increases in European countries so do the rates of antimicrobial resistance for bacteria including E. faecalis, E. coli, K. pneumoniae and S. aureus. Further studies are needed to confirm these

  10. Zinc and copper in animal feed - development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin

    OpenAIRE

    Yazdankhah, Siamak; Rudi, Knut; Bernhoft, Aksel

    2014-01-01

    Farmed animals such as pig and poultry receive additional Zn and Cu in their diets due to supplementing elements in compound feed as well as medical remedies. Enteral bacteria in farmed animals are shown to develop resistance to trace elements such as Zn and Cu. Resistance to Zn is often linked with resistance to methicillin in staphylococci, and Zn supplementation to animal feed may increase the proportion of multiresistant E. coli in the gut. Resistance to Cu in bacteria, in particular ente...

  11. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Español Search FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, ... Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of ...

  12. Efflux-mediated antimicrobial resistance.

    Science.gov (United States)

    Poole, Keith

    2005-07-01

    Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.

  13. Antimicrobial resistance of mastitis pathogens.

    Science.gov (United States)

    Oliver, Stephen P; Murinda, Shelton E

    2012-07-01

    Antibiotics are used extensively in the dairy industry to combat disease and to improve animal performance. Antibiotics such as penicillin, cephalosporin, streptomycin, and tetracycline are used for the treatment and prevention of diseases affecting dairy cows caused by a variety of gram-positive and gram-negative bacteria. Antibiotics are often administrated routinely to entire herds to prevent mastitis during the dry period. An increase in the incidence of disease in a herd generally results in increased use of antimicrobials, which in turn increases the potential for antibiotic residues in milk and the potential for increased bacterial resistance to antimicrobials. Continued use of antibiotics in the treatment and prevention of diseases of dairy cows will continue to be scrutinized. It is clear that strategies employing the prudent use of antimicrobials are needed. This clearly illustrates the importance of effective herd disease prevention and control programs. Based on studies published to date, scientific evidence does not support widespread, emerging resistance among mastitis pathogens to antibacterial drugs even though many of these antibiotics have been used in the dairy industry for treatment and prevention of disease for several decades. However, it is clear that use of antibiotics in dairy cows can contribute to increased antimicrobial resistance. While antimicrobial resistance does occur, we are of the opinion that the advantages of using antibiotics for the treatment of mastitis far outweigh the disadvantages. The clinical consequences of antimicrobial resistance of dairy pathogens affecting humans appear small. Antimicrobial resistance among dairy pathogens, particularly those found in milk, is likely not a human health concern as long as the milk is pasteurized. However, there are an increasing number of people who choose to consume raw milk. Transmission of an antimicrobial-resistant mastitis pathogen and/or foodborne pathogen to humans could occur

  14. Determination of antimicrobial and heavy metal resistance profiles of some bacteria isolated from aquatic amphibian and reptile species.

    Science.gov (United States)

    Hacioglu, Nurcihan; Tosunoglu, Murat

    2014-01-01

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from aquatic animals (Lissotriton vulgaris, Pelophylax ridibundus, Emys orbicularis, Mauremys rivulata, and Natrix natrix) in Turkey (Kavak Delta). A total of 153 bacteria have been successfully isolated from cloaca and oral samples of the aquatic amphibians and reptilians which were found, namely, Aeromonas sp. (n = 29), Plesiomonas sp. (n = 7), Vibrio sp. (n = 12), Citrobacter sp. (n = 12), Enterobacter sp. (n = 11), Escherichia sp. (n = 22), Klebsiella sp. (n = 22), Edwardsiella sp. (n = 6), Hafnia sp. (n = 1), Proteus sp. (n = 19), Providencia sp. (n = 8), and Pseudomonas sp. (n = 4). In terms of antibiotic and heavy metal susceptibility testing, each isolate was tested against 12 antibiotics and 4 metals. There was a high incidence of resistance to cefoxitin (46.40 %), ampicillin (44.44 %), erythromycin (35.29 %), and a low incidence of resistance to gentamicin (6.53 %), kanamycin (8.49 %), chloramphenicol (9.15 %), and cefotaxime (10.45 %). The multiple antibiotic resistance index of each bacterial species indicated that bacteria from raised amphibians and reptiles have been exposed to tested antibiotics, with results ranging from 0 to 0.58. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from100 to >3,200 μg/mL. According to these results, a significant occurrence of bacteria in the internal organs of reptiles and amphibians, with a high incidence of resistance against antibiotics and heavy metals, may risk aquatic animals and the public health. These data appoint the importance of epidemiological surveillance and microbiological monitoring and reinforce the need to implement environment protection programs for amphibian and reptile species.

  15. Antimicrobial resistance among aerobic biofilm producing bacteria isolated from chronic wounds in the tertiary care hospitals of Peshawar, Pakistan.

    Science.gov (United States)

    Rahim, K; Qasim, M; Rahman, H; Khan, T A; Ahmad, I; Khan, N; Ullah, A; Basit, A; Saleha, S

    2016-08-01

    Chronic wound infections impose major medical and economic costs on health-care systems, cause significant morbidity, mortality and prolonged hospitalisation. The presence of biofilm producing bacteria in these wounds is considered as an important virulence factor that leads to chronic implications including ulceration. The undertaken study aimed to isolate and identify the biofilm aerobic bacterial pathogens from patients with chronic wound infections, and determine their antibiotics resistance profiles Method: During this study, swab specimens were collected from patients with chronic wounds at teaching hospitals of Peshawar, Pakistan between May 2013 and June 2014. The isolated aerobic bacterial pathogens were identified on the basis of standard cultural characteristics and biochemical tests. Antibiotics resistance profiles of biofilm producing bacteria against selected antibiotics were then determined. Among the chronic wound infections, diabetic foot ulcers were most common 37 (37%), followed by surgical ulcers 27 (27%). Chronic wounds were common in male patients older than 40 years. Among the total 163 isolated bacterial pathogens the most prevalent bacterial species were Pseudomonas aeruginosa 44 (27%), Klebsiella pneumoniae 26 (16%), Staphylococcus species 22 (14%) and Streptococcus spp. 21 (13%). The isolation rate of bacterial pathogens was high among patients with diabetic foot ulcers 83 (50.9%). Among bacterial isolates, 108 (66.2%) were observed as biofilm producers while 55 (33.8%) did not form biofilm in our model. The investigated biofilm producing bacterial isolates showed comparatively high resistance against tested antibiotics compared to non-biofilm producing bacterial isolates. The most effective antibiotics were amikacine and cefepime against all isolates. Increased multidrug resistance in biofilm producing bacteria associated with chronic wounds was observed in this study. Judicious use of antibiotics is needed to control the wound

  16. [Antimicrobial resistance in gram negative bacteria isolated from intensive care units of Colombian hospitals, WHONET 2003, 2004 and 2005].

    Science.gov (United States)

    Miranda, María Consuelo; Pérez, Federico; Zuluaga, Tania; Olivera, María del Rosario; Correa, Adriana; Reyes, Sandra Lorena; Villegas, Maria Virginia

    2006-09-01

    Surveillance systems play a key role in the detection and control of bacterial resistance. It is necessary to constantly collect information from all institutions because the mechanisms of bacterial resistance can operate in different ways between countries, cities and even in hospitals in the same area. Therefore local information is important in order to learn about bacterial behaviour and design appropriate interventions for each institution. Between January 2003 and December 2004, the Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM) developed a surveillance project in 10 tertiary hospitals in 6 cities of Colombia. Describe the trends of antibiotic resistance among the isolates of Escherichia coli, Klebsiella pneumoniae, Pseudomona aeruginosa, Acinetobacter baumannii and Enterobacter cloacae, five of the most prevalent nosocomial Gram negative pathogens. The susceptibility tests were performed by automated methods in 9 hospitals and by Kirby Bauer in 1 hospital. Antibiotics with known activity against Gram negatives, according to the Clinical Laboratory Standards Institute guidelines, were selected. The laboratories performed internal and external quality controls. During the study period, the information was downloaded monthly from the databases of each microbiology laboratory and sent to CIDEIM where it was centralized in a database using the system WHONET 5.3. The high resistance rates reported especially for A. baumannii, evidenced the presence of multidrug resistant bacteria in both ICUs and wards at every studied institution. The creation of a national surveillance network to improve our capabilities to detect, follow up, and control the antibiotic resistance in Colombia is urgently needed.

  17. Persistence of nasal colonization with human pathogenic bacteria and associated antimicrobial resistance in the German general population

    Directory of Open Access Journals (Sweden)

    R. Köck

    2016-01-01

    Full Text Available The nares represent an important bacterial reservoir for endogenous infections. This study aimed to assess the prevalence of nasal colonization by different important pathogens, the associated antimicrobial susceptibility and risk factors. We performed a prospective cohort study among 1878 nonhospitalized volunteers recruited from the general population in Germany. Participants provided nasal swabs at three time points (each separated by 4–6 months. Staphylococcus aureus, Enterobacteriaceae and important nonfermenters were cultured and subjected to susceptibility testing. Factors potentially influencing bacterial colonization patterns were assessed. The overall prevalence of S. aureus, Enterobacteriaceae and nonfermenters was 41.0, 33.4 and 3.7%, respectively. Thirteen participants (0.7% were colonized with methicillin-resistant S. aureus. Enterobacteriaceae were mostly (>99% susceptible against ciprofloxacin and carbapenems (100%. Extended-spectrum β-lactamase–producing isolates were not detected among Klebsiella oxytoca, Klebsiella pneumoniae and Escherichia coli. Several lifestyle- and health-related factors (e.g. household size, travel, livestock density of the residential area or occupational livestock contact, atopic dermatitis, antidepressant or anti-infective drugs were associated with colonization by different microorganisms. This study unexpectedly demonstrated high nasal colonization rates with Enterobacteriaceae in the German general population, but rates of antibiotic resistance were low. Methicillin-resistant S. aureus carriage was rare but highly associated with occupational livestock contact.

  18. Profile of antimicrobial susceptibility isolated microorganisms from hospitalized patients in PICU ward and detection of Methicillin-resistant Staphylococcus aureus and ESBL-producing bacteria by phenotypic methods

    Directory of Open Access Journals (Sweden)

    Shahla Abbas Poor

    2014-10-01

    Full Text Available Background: Hospital-acquired infections are a major challenge to patient. A range of gram-negative organisms are responsible for hospital-acquired infections, the Enterobacteriaceae family being the most commonly identified group overall. Infections by ESBL producers are associated with severe adverse clinical outcomes that have led to increased mortality, prolonged hospitalization, and rising medical costs. The aim of this study was to survey profile of antimicrobial susceptibility isolated microorganisms from hospitalized patients in PICU ward and detection of methicillin-resistant Staphylococcus aureus and ESBL-producing bacteria by phenotypic methods. Material and Methods: In this study participants were patients hospitalized in PICU part of Bahrami Hospital, Tehran, with attention to involved organ. For isolation of bacteria from patient’s samples, culture performed on different selective and differential media. After confirmation of bacteria by biochemical tests, susceptibility testing was performed by disc diffusion method. Phenotypic detection of MRSA strains was performed using cefoxcitin disc. ESBL producing strains were detected by ceftazidime (CAZ and ceftazidime/clavulanic acid (CAZ/CLA discs. Results: Among all isolated organisms from clinical samples, the most common isolated organisms were Escherichia coli (24 cases, Pseudomonas areoginosa (9 cases and Staphylococcus aureus (8 cases, respectively. Among eight MRSA isolated strains from different clinical samples, six strains (75% were MRSA. Among 52 isolated gram negative organisms, 5 strains (9/6% were ESBL. Conclusion: Standard interventions to prevent the transmission of antimicrobial resistance in health care facilities include hand hygiene, using barrier precautions in the care of colonized and infected patients, using dedicated instruments and equipment for these patients. The colonized or infected patients should be isolated in single rooms, multibed rooms or areas

  19. Bacterial strategies of resistance to antimicrobial peptides.

    Science.gov (United States)

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  20. Dealing with antimicrobial resistance - the Danish experience

    DEFF Research Database (Denmark)

    Bager, Flemming; Aarestrup, Frank Møller; Wegener, Henrik Caspar

    2000-01-01

    (DANMAP), which monitors resistance among bacteria from food animals, food and humans. A programme to monitor all use of prescription medicine in food animals at the herd level is presently being implemented. Another initiative was the elaboration of a series of practical recommendations to veterinarians...... on the prudent use of antimicrobials in order to reduce the development of resistance without compromising therapeutic efficacy. Our experience with avoparcin shows that a restrictive policy on the use of antimicrobials can curb the development of resistance. However, the occurrence and persistence of specific...

  1. Plant-Derived Antimicrobials: Insights into Mitigation of Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Shun-Kai Yang

    2018-07-01

    Full Text Available Antibiotic resistance had first been reported not long after the discovery of the first antibiotic and has remained a major public health issue ever since. Challenges are constantly encountered during the mitigation process of antibiotic resistance in the clinical setting; especially with the emergence of the formidable superbug, a bacteria with multiple resistance towards different antibiotics; this resulted in the term multidrug resistant (MDR bacteria. This rapid evolution of the resistance phenomenon has propelled researchers to continuously uncover new antimicrobial agents in a bid to hopefully, downplay the rate of evolution despite a drying pipeline. Recently, there has been a paradigm shift in the mining of potential antimicrobials; in the past, targets for drug discovery were from microorganisms and at current, the focus has moved onto plants, this is mainly due to the beneficial attributes that plants are able to confer over that of microorganisms. This review will briefly discuss antibiotic resistance mechanisms employed by resistant bacteria followed by a detailed expository regarding the use of secondary metabolites from plants as a potential solution to the MDR pathogen. Finally, future prospects recommending enhancements to the usage of plant secondary metabolites to directly target antibiotic resistant pathogens will be discussed.

  2. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria

    Science.gov (United States)

    2014-01-01

    In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2θ values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA. PMID:25114655

  3. Antibiotic and Antimicrobial Resistance: Threat Report 2013

    Science.gov (United States)

    ... Form Controls Cancel Submit Search The CDC Antibiotic / Antimicrobial Resistance Note: Javascript is disabled or is not ... please visit this page: About CDC.gov . Antibiotic / Antimicrobial Resistance About Antimicrobial Resistance Biggest Threats Emerging Drug ...

  4. The antimicrobial potential of algicolous marine fungi for counteracting multidrug-resistant bacteria: phylogenetic diversity and chemical profiling.

    Science.gov (United States)

    Gnavi, Giorgio; Palma Esposito, Fortunato; Festa, Carmen; Poli, Anna; Tedesco, Pietro; Fani, Renato; Monti, Maria Chiara; de Pascale, Donatella; D'Auria, Maria Valeria; Varese, Giovanna Cristina

    2016-01-01

    Marine fungi represent an important but still largely unexplored source of novel and potentially bioactive secondary metabolites. The antimicrobial activity of nine sterile mycelia isolated from the green alga Flabellia petiolata collected from the Mediterranean Sea was tested on four antibiotic-resistant bacterial strains using extracellular and intracellular extracts obtained from each fungal strain. The isolated fungi were identified at the molecular level and assigned to one of the Dothideomycetes, Sordariomycetes or Eurotiomycetes classes. Following assessment of inhibition of bacterial growth (IC50), all crude extracts were subjected to preliminary (1)H NMR and TLC analysis. According to preliminary pharmacologic and spectroscopic/chromatographic results, extracts of fungal strains MUT 4865, classified as Beauveria bassiana, and MUT 4861, classified as Microascacea sp.2, were selected for LC-HRMS analysis. Chemical profiling of antibacterial extracts from MUT 4861 and MUT 4865 by LC HRMS allowed identification of the main components of the crude extracts. Several sphingosine bases were identified, including a compound previously unreported from natural sources, which gave a rationale to the broad spectrum of antibacterial activity exhibited. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control), 2015. EU Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2013

    DEFF Research Database (Denmark)

    Korsgaard, Helle Bisgaard

    The antimicrobial resistance data on zoonotic and indicator bacteria in 2013, submitted by 28 EU MSs, were jointly analysed by EFSA and ECDC. Resistance in zoonotic Salmonella and Campylobacter species from humans, animals and food, and resistance in indicator Escherichia coli and enterococci...... from broilers and/or pigs in several MSs. Multi-resistance and co-resistance to critically important antimicrobials in both human and animal isolates were uncommon. A minority of isolates from animals belonging to a few Salmonella serovars (notably Kentucky and Infantis) had a high level of resistance......,as well as data on meticillin-resistant Staphylococcus aureus, in animals and food were addressed. ‘Microbiological’ resistance was assessed using epidemiological cut-off (ECOFF) values in animal and food isolates and, where possible, in human isolates. For human isolates interpreted based on clinical...

  6. Salmon Aquaculture and Antimicrobial Resistance in the Marine Environment

    Science.gov (United States)

    Buschmann, Alejandro H.; Tomova, Alexandra; López, Alejandra; Maldonado, Miguel A.; Henríquez, Luis A.; Ivanova, Larisa; Moy, Fred; Godfrey, Henry P.; Cabello, Felipe C.

    2012-01-01

    Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments. PMID:22905164

  7. Salmon aquaculture and antimicrobial resistance in the marine environment.

    Directory of Open Access Journals (Sweden)

    Alejandro H Buschmann

    Full Text Available Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments.

  8. Insusceptibility to disinfectants in bacteria from animals, food and humans – is there a link to antimicrobial resistance?

    Directory of Open Access Journals (Sweden)

    Karin eSchwaiger

    2014-03-01

    Full Text Available Enterococcus faecalis (n = 834 and Enterococcus faecium (n = 135 from blood and feces of hospitalized humans, from feces of outpatients and livestock and from food were screened for their susceptibility to a quaternary ammonium compound (didecyldimethyl-ammoniumchloride, DDAC and to 28 antibiotics by micro-/macrodilution. The maximum DDAC-MIC in our field study was 3.5 mg/l, but after adaptation in the laboratory, MIC values of 21.9 mg/l were observed. Strains for which DDAC had MICs > 1.4 mg/l (non-wildtype, in total: 46 of 969 isolates / 4. 7 % were most often found in milk and dairy products (14.6 %, while their prevalence in livestock was generally low (0-4 %. Of human isolates, 2.9 to 6.8 % had a non-wildtype phenotype. An association between reduced susceptibility to DDAC, high-level-aminoglycoside resistance and aminopenicillin resistance was seen in E. faecium (p In addition, bacteria (n = 42 of different genera were isolated from formic acid based boot bath disinfectant (20 ml of 55 % formic acid /l. The MICs of this disinfectant exceeded the wildtype MICs up to 20fold (staphylococci, but were still one to three orders of magnitude below the used concentration of the disinfectant (i. e. 1.1 % formic acid. In conclusion, the bacterial susceptibility to disinfectants still seems to be high. Thus, the proper use of disinfectants in livestock surroundings along with a good hygiene praxis should still be highly encouraged. Hints to a link between antibiotic resistance and reduced susceptibility for disinfectants – as seen for E. faecium - should be substantiated in further studies and might be an additional reason to confine the use of antibiotics.

  9. A functional MSBBA cyltransferaseof photorhabdus luminescens, required for secondary lipid aacylation in gram-negative bacteria,confers resistance to anti-microbial peptides

    International Nuclear Information System (INIS)

    Abi Khattar, Z.; Gaudriault, S.; Givaudan, A.

    2016-01-01

    Lipid A is a potent endotoxin, and its fatty acids (lauric, myristic, and sometimes palmitic acid) anchors lipopolysaccharide (LPS) into the outer leaflet of the outer membrane of most Gram-negative bacteria. The highly anionic charge of the glucosamine lipid A moiety makes the LPS a powerful attractant for cationic antimicrobial peptides (AMPs). AMPs are major component of innate immunity that kill bacteria by permeabilization of lipid bilayers. Secondary lipid A acylation of Klebsiella pneumoniae, involving the acyltransferase LpxM (formally, msbBor WaaN) that acylates (KDO)2-(lauroyl)-lipid IV-A with myristate during lipid A biosynthesis, has been associated with bacterial resistanceto AMPs contributing to virulence in animal models. We investigated here the role of the msbB gene of the entomopathogenic bacterium Photorhabdus luminescens in AMP resistance, by functional complementation of the AMP susceptible K. pneumoniae lpxM mutant with the P. luminescens msbB gene. We showed that msbB (lpxM) gene of P. luminescensis able to enhance polymyxin B, colistin and cecropin A resistance of K. pneumoniae lpxM mutant, compared to the non-complemented mutant. However, we could not obtain any msbB mutant of Photorhabdus by performing allelic exchange experiments based on positive selection of sucrose highly resistant mutants.We thus suggest that msbB-mediated Photorhabdus lipid A acylation is essential for outer membrane low-permeability and thatmodification of lipid A composition, fluidity and osmosis-resistance have an important role in the ability of Photorhabdus to grow in sucrose at high concentrations. (author)

  10. Thin Layer Chromatography-Bioautography and Gas Chromatography-Mass Spectrometry of Antimicrobial Leaf Extracts from Philippine Piper betle L. against Multidrug-Resistant Bacteria

    Directory of Open Access Journals (Sweden)

    Demetrio L. Valle

    2016-01-01

    Full Text Available This study isolated and identified the antimicrobial compounds of Philippine Piper betle L. leaf ethanol extracts by thin layer chromatography- (TLC- bioautography and gas chromatography-mass spectrometry (GC-MS. Initially, TLC separation of the leaf ethanol extracts provided a maximum of eight compounds with Rf values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV 366 nm. Agar-overlay bioautography of the isolated compounds demonstrated two spots with Rf values of 0.86 and 0.13 showing inhibitory activities against two Gram-positive multidrug-resistant (MDR bacteria, namely, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The compound with an Rf value of 0.86 also possessed inhibitory activity against Gram-negative MDR bacteria, namely, carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae and metallo-β-lactamase-producing Acinetobacter baumannii. GC-MS was performed to identify the semivolatile and volatile compounds present in the leaf ethanol extracts. Six compounds were identified, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include ethyl diazoacetate, tris(trifluoromethylphosphine, heptafluorobutyrate, 3-fluoro-2-propynenitrite, 4-(2-propenylphenol, and eugenol. The results of this study could lead to the development of novel therapeutic agents capable of dealing with specific diseases that either have weakened reaction or are currently not responsive to existing drugs.

  11. Thin Layer Chromatography-Bioautography and Gas Chromatography-Mass Spectrometry of Antimicrobial Leaf Extracts from Philippine Piper betle L. against Multidrug-Resistant Bacteria.

    Science.gov (United States)

    Valle, Demetrio L; Puzon, Juliana Janet M; Cabrera, Esperanza C; Rivera, Windell L

    2016-01-01

    This study isolated and identified the antimicrobial compounds of Philippine Piper betle L. leaf ethanol extracts by thin layer chromatography- (TLC-) bioautography and gas chromatography-mass spectrometry (GC-MS). Initially, TLC separation of the leaf ethanol extracts provided a maximum of eight compounds with R f values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV 366 nm. Agar-overlay bioautography of the isolated compounds demonstrated two spots with R f values of 0.86 and 0.13 showing inhibitory activities against two Gram-positive multidrug-resistant (MDR) bacteria, namely, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The compound with an R f value of 0.86 also possessed inhibitory activity against Gram-negative MDR bacteria, namely, carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae and metallo-β-lactamase-producing Acinetobacter baumannii. GC-MS was performed to identify the semivolatile and volatile compounds present in the leaf ethanol extracts. Six compounds were identified, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, 3-fluoro-2-propynenitrite, 4-(2-propenyl)phenol, and eugenol. The results of this study could lead to the development of novel therapeutic agents capable of dealing with specific diseases that either have weakened reaction or are currently not responsive to existing drugs.

  12. Antimicrobial substances produced by bacteria isolated from ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... We report here the preliminary antimicrobial activity of substances produced by Bacillus subtilis NB-6. (air flora isolate) ... Key words: Antimicrobial activity, Bacillus, Burkholderia, Corynebacterium, methicillin-resistant Staphylococcus aureus. .... products contaminated with animal MRSA is very plausible ...

  13. Public health risk of antimicrobial resistance transfer from companion animals.

    Science.gov (United States)

    Pomba, Constança; Rantala, Merja; Greko, Christina; Baptiste, Keith Edward; Catry, Boudewijn; van Duijkeren, Engeline; Mateus, Ana; Moreno, Miguel A; Pyörälä, Satu; Ružauskas, Modestas; Sanders, Pascal; Teale, Christopher; Threlfall, E John; Kunsagi, Zoltan; Torren-Edo, Jordi; Jukes, Helen; Törneke, Karolina

    2017-04-01

    Antimicrobials are important tools for the therapy of infectious bacterial diseases in companion animals. Loss of efficacy of antimicrobial substances can seriously compromise animal health and welfare. A need for the development of new antimicrobials for the therapy of multiresistant infections, particularly those caused by Gram-negative bacteria, has been acknowledged in human medicine and a future corresponding need in veterinary medicine is expected. A unique aspect related to antimicrobial resistance and risk of resistance transfer in companion animals is their close contact with humans. This creates opportunities for interspecies transmission of resistant bacteria. Yet, the current knowledge of this field is limited and no risk assessment is performed when approving new veterinary antimicrobials. The objective of this review is to summarize the current knowledge on the use and indications for antimicrobials in companion animals, drug-resistant bacteria of concern among companion animals, risk factors for colonization of companion animals with resistant bacteria and transmission of antimicrobial resistance (bacteria and/or resistance determinants) between animals and humans. The major antimicrobial resistance microbiological hazards originating from companion animals that directly or indirectly may cause adverse health effects in humans are MRSA, methicillin-resistant Staphylococcus pseudintermedius, VRE, ESBL- or carbapenemase-producing Enterobacteriaceae and Gram-negative bacteria. In the face of the previously recognized microbiological hazards, a risk assessment tool could be applied in applications for marketing authorization for medicinal products for companion animals. This would allow the approval of new veterinary medicinal antimicrobials for which risk levels are estimated as acceptable for public health. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For

  14. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria

    Science.gov (United States)

    2013-01-01

    drug resistant clinical and soil bacterial strains. Cinnamaldehyde was identified as the most active antimicrobial component present in the cinnamon essential oil which acted as a strong inhibitory agent in MIC assay against the tested bacteria. The results indicate that essential oils from Pakistani spices can be pursued against multidrug resistant bacteria. PMID:24119438

  15. Determination of the Antimicrobial Effects of Hydro-Alcoholic Extract of Cannabis Sativa on Multiple Drug Resistant Bacteria Isolated from Nosocomial Infections

    Directory of Open Access Journals (Sweden)

    Hossein Sarmadyan

    2014-02-01

    Full Text Available Background: The science of identification and employment of medicinal plants dates back to the early days of man on earth. Cannabis (hashish is the most common illegal substance used in the United States and was subjected to extensive research as a powerful local disinfecting agent for mouth cavity and skin and an anti-tubercular agent in 1950. Methods: Clinical strains were isolated from hospitalized patients in Vali-e-Asr Hospital of Arak. The hydro-alcoholic extract of cannabis (5 g was prepared following liquid-liquid method and drying in 45˚C. The antimicrobial properties of the extract were determined through disk diffusion and determination of MIC (Minimum Inhibitory Concentration. Results: First, the sensitivity of bacteria was detected based on disk diffusion method and the zone of inhibition was obtained for MRSA (12 mm, S.aureus 25923 (14 mm, E. coli ESBL+: (10 mm, and Klebsiella pneumoniae (7 mm. Disk diffusion for Pseudomonas and Acinetobacter demonstrated no inhibitory zones. Through Broth dilution method, MIC of cannabis extract on the bacteria was determined: E.coli 25922: 50µg/ml, E.coli ESBL+:100 µg/ml, S.aureus 25923:25 µg/ml, MRSA: 50 µg/ml, Pseudomona aeroginosaESBL+> 100 µg/ml, Pseudomonas: 100 µg/ml, Klebsiella pneumoniae: 100 µg/ml, and Acinetobacter baumannii> 1000. Conclusion: The maximum anti-microbial effect of the hydro-alcoholic extract of cannabis was seen for gram positive cocci, especially S. aureus, whereas non-fermentative gram negatives presented resistance to the extract. This extract had intermediate effect on Enterobacteriacae family. Cannabis components extracted through chemical analysis can perhaps be effective in treatment of nosocomial infections.

  16. Persistence of nasal colonization with human pathogenic bacteria and associated antimicrobial resistance in the German general population

    NARCIS (Netherlands)

    Köck, R; Werner, P; Friedrich, A W; Fegeler, C; Becker, K

    The nares represent an important bacterial reservoir for endogenous infections. This study aimed to assess the prevalence of nasal colonization by different important pathogens, the associated antimicrobial susceptibility and risk factors. We performed a prospective cohort study among 1878

  17. Use of Colistin and Other Critical Antimicrobials on Pig and Chicken Farms in Southern Vietnam and Its Association with Resistance in Commensal Escherichia coli Bacteria

    NARCIS (Netherlands)

    Nguyen, Nhung T.; Nguyen, Hoa M.; Nguyen, Cuong V.; Nguyen, Trung V.; Nguyen, Men T.; Thai, Hieu Q.; Ho, Mai H.; Thwaites, Guy; Ngo, Hoa T.; Baker, Stephen; Carrique-Mas, Juan

    2016-01-01

    Antimicrobial resistance (AMR) is a global health problem, and emerging semi-intensive farming systems in Southeast Asia are major contributors to the AMR burden. We accessed 12 pig and chicken farms at key stages of production in Tien Giang Province, Vietnam, to measure antimicrobial usage and to

  18. Resistencia a los antimicrobianos en bacterias indicadoras y zoonóticas aisladas de animales domésticos en Argentina Antimicrobial resistance in indicator and zoonotic bacteria isolated from domestic animals in Argentina

    Directory of Open Access Journals (Sweden)

    F. L. Pantozzi

    2010-02-01

    Full Text Available Se estudiaron los patrones de resistencia a diversos antimicrobianos en bacterias indicadoras y zoonóticas aisladas de muestras fecales de individuos sanos, sin signología clínica, pertenecientes a los siguientes grupos animales: bovinos, equinos, ovinos, porcinos, gallinas ponedoras y caninos. Los antimicrobianos seleccionados fueron los empleados con mayor frecuencia en medicina veterinaria y humana, y el método de evaluación utilizado fue el de difusión en agar con discos. Los resultados obtenidos a partir de 240 Escherichia coli, 189 Enterococcus spp., 11 Campylobacter spp. y 2 Salmonella Gaminara (16:d:1,7, revelaron un mayor porcentaje de resistencia y multirresistencia en porcinos y aves, esto es, en animales de cría intensiva. El perfil de resistencia observado en los aislamientos de E. coli incluyó a la ampicilina, la estreptomicina, la tetraciclina y el ácido nalidíxico, en coincidencia con los antimicrobianos más utilizados en las explotaciones animales, al igual que lo detectado en Enterococcus spp. respecto a la tetraciclina y la eritromicina. Las cepas de Salmonella Gaminara (16:d:1,7 fueron sensibles a todos los antimicrobianos probados. En Campylobacter spp., si bien el número de aislamientos evaluados fue reducido, se observó una mayor resistencia a tetraciclina y quinolonas. Teniendo en cuenta la falta de datos en nuestro país sobre resistencia a los antimicrobianos en bacterias indicadoras y zoonóticas en animales domésticos, consideramos que la información obtenida podría utilizarse como punto de partida para futuros programas de monitoreo.Antimicrobial resistance profiles in indicator and zoonotic bacteria isolated from faeces of healthy animals without clinical signs of the following species: bovine, equine, ovine, porcine, layer hens, and canine, were studied. The chosen antimicrobials are frequently used in veterinary and human medicine. The agar diffusion was the method used. The obtained results of 240

  19. Occurrence of Antimicrobial Resistance in Fish-Pathogenic and Environmental Bacteria Associated with Four Danish Rainbow Trout Farms

    DEFF Research Database (Denmark)

    Schmidt, Anja S.; Bruun, Morten Sichlau; Dalsgaard, Inger

    2000-01-01

    in fish, water, and sediment samples, two major fish pathogens (88 Flavobacterium psychrophilum isolates and 134 Yersinia ruckeri isolates) and 313 motile Aeromonas isolates, representing a group of ubiquitous aquatic bacteria, were isolated from the same samples. MICs were obtained applying...... flavobacteria and aeromonads, thus indicating a substantial impact of fish farming on several groups of bacteria associated with aquacultural environments....

  20. Antimicrobial resistance of thermophilic Campylobacter

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Engberg, J.

    2001-01-01

    Campylobacter has become the leading cause of zoonotic enteric infections in developed and developing countries world-wide. Antimicrobial resistance has emerged among Campylobacter mainly as a consequence of the use of antimicrobial agents in food animal production. Resistance to drugs of choice...... for the treatment of infections, macrolides and fluoroquinolones has emerged as a clinical problem and interventions to reduce this are recommended. Resistance to fluoroquinolones and macrolides is mediated by chromosomal mutations. Resistance to other relevant antimicrobial agents, mediated by acquired resistance...... genes, has not become widespread so far. However, resistance genes originating from both Gram-positive and Gram-negative bacterial species have been found, showing the potential for acquired resistance to emerge in Campylobacter....

  1. Production of Silver Nanoparticles with Strong and Stable Antimicrobial Activity against Highly Pathogenic and Multidrug Resistant Bacteria

    Science.gov (United States)

    Saeb, Amr T. M.; Alshammari, Ahmad S.; Al-Brahim, Hessa; Al-Rubeaan, Khalid A.

    2014-01-01

    Aims. To synthesize, characterize, and analyze antimicrobial activity of AgNPs of Escherichia hermannii (SHE), Citrobacter sedlakii (S11P), and Pseudomonas putida (S5). Methods. The synthesized AgNPs were examined using ultraviolet-visible spectroscopy (UV-vis) and, zeta potential, and the size and the morphology obtained from the three different isolates were also confirmed by TEM. Results. Among the three isolates tested, SHE showed the best antimicrobial activity due to the presence of small (4–12 nm) and stable (−22 mV) AgNPs. Stability of AgNPs was also investigated and found to be dependent on the nature of isolates. Conclusion. Produced AgNPs showed particle stability and antimicrobial efficacy up to 90 days of production. Our AgNPs exhibited greater antimicrobial activity compared with gentamicin against P. aeruginosa isolates and vancomycin against S. aureus and MRSA isolates at very low concentration (0.0002 mg per Microliters). PMID:25093206

  2. Antimicrobial resistance in the environment

    National Research Council Canada - National Science Library

    Keen, Patricia L; Montforts, M. H. M. M

    2012-01-01

    ... or antibiotic resistance genes as environmental contaminants. It also considers alternate uses and functions for antimicrobial compounds other than those intended for medicinal purposes in humans, animals, and fish...

  3. Efflux pumps as antimicrobial resistance mechanisms.

    Science.gov (United States)

    Poole, Keith

    2007-01-01

    Antibiotic resistance continues to hamper antimicrobial chemotherapy of infectious disease, and while biocide resistance outside of the laboratory is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are not uncommon. Efflux mechanisms, both drug-specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials in important human pathogens. Multidrug efflux mechanisms are generally chromosome-encoded, with their expression typically resultant from mutations in regulatory genes, while drug-specific efflux mechanisms are encoded by mobile genetic elements whose acquisition is sufficient for resistance. While it has been suggested that drug-specific efflux systems originated from efflux determinants of self-protection in antibiotic-producing Actinomycetes, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, are appreciated as having an intended housekeeping function unrelated to drug export and resistance. Thus, it will be important to elucidate the intended natural function of these efflux mechanisms in order, for example, to anticipate environmental conditions or circumstances that might promote their expression and, so, compromise antimicrobial chemotherapy. Given the clinical significance of antimicrobial exporters, it is clear that efflux must be considered in formulating strategies for treatment of drug-resistant infections, both in the development of new agents, for example, less impacted by efflux or in targeting efflux directly with efflux inhibitors.

  4. Molecular Detection of Antimicrobial Resistance

    Science.gov (United States)

    Fluit, Ad C.; Visser, Maarten R.; Schmitz, Franz-Josef

    2001-01-01

    The determination of antimicrobial susceptibility of a clinical isolate, especially with increasing resistance, is often crucial for the optimal antimicrobial therapy of infected patients. Nucleic acid-based assays for the detection of resistance may offer advantages over phenotypic assays. Examples are the detection of the methicillin resistance-encoding mecA gene in staphylococci, rifampin resistance in Mycobacterium tuberculosis, and the spread of resistance determinants across the globe. However, molecular assays for the detection of resistance have a number of limitations. New resistance mechanisms may be missed, and in some cases the number of different genes makes generating an assay too costly to compete with phenotypic assays. In addition, proper quality control for molecular assays poses a problem for many laboratories, and this results in questionable results at best. The development of new molecular techniques, e.g., PCR using molecular beacons and DNA chips, expands the possibilities for monitoring resistance. Although molecular techniques for the detection of antimicrobial resistance clearly are winning a place in routine diagnostics, phenotypic assays are still the method of choice for most resistance determinations. In this review, we describe the applications of molecular techniques for the detection of antimicrobial resistance and the current state of the art. PMID:11585788

  5. Use of Colistin and Other Critical Antimicrobials on Pig and Chicken Farms in Southern Vietnam and Its Association with Resistance in Commensal Escherichia coli Bacteria.

    Science.gov (United States)

    Nguyen, Nhung T; Nguyen, Hoa M; Nguyen, Cuong V; Nguyen, Trung V; Nguyen, Men T; Thai, Hieu Q; Ho, Mai H; Thwaites, Guy; Ngo, Hoa T; Baker, Stephen; Carrique-Mas, Juan

    2016-07-01

    Antimicrobial resistance (AMR) is a global health problem, and emerging semi-intensive farming systems in Southeast Asia are major contributors to the AMR burden. We accessed 12 pig and chicken farms at key stages of production in Tien Giang Province, Vietnam, to measure antimicrobial usage and to investigate the prevalence of AMR to five critical antimicrobials (β-lactams, third-generation cephalosporins, quinolones, aminoglycosides, and polymyxins) and their corresponding molecular mechanisms among 180 Escherichia coli isolates. Overall, 94.7 mg (interquartile range [IQR], 65.3 to 151.1) and 563.6 mg (IQR, 398.9 to 943.6) of antimicrobials was used to produce 1 kg (live weight) of chicken and pig, respectively. A median of 3 (out of 8) critical antimicrobials were used on pig farms. E. coli isolates exhibited a high prevalence of resistance to ampicillin (97.8% and 94.4% for chickens and pigs, respectively), ciprofloxacin (73.3% and 21.1%), gentamicin (42.2% and 35.6%), and colistin (22.2% and 24.4%). The prevalence of a recently discovered colistin resistance gene, mcr-1, was 19 to 22% and had strong agreement with phenotypic colistin resistance. We conducted plasmid conjugation experiments with 37 mcr-1 gene-positive E. coli isolates and successfully observed transfer of the gene in 54.0% of isolates through a plasmid of approximately 63 kb, consistent with one recently identified in China. We found no significant correlation between total use of antimicrobials at the farm level and AMR. These data provide additional insight into the role of mcr-1 in colistin resistance on farms and outline the dynamics of phenotypic and genotypic AMR in semi-intensive farming systems in Vietnam. Our study provides accurate baseline information on levels of antimicrobial use, as well as on the dynamics of phenotypic and genotypic resistance for antimicrobials of critical importance among E. coli over the different stages of production in emerging pig and poultry production

  6. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... NARMS 2015 NARMS Integrated Report Data Meetings and Publications Resources Judicious Use of Antimicrobials Page Last Updated: ... Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance Federal, State & Local Officials Consumers Health ...

  7. Antimicrobial use in swine production and its effect on the swine gut microbiota and antimicrobial resistance.

    Science.gov (United States)

    Holman, Devin B; Chénier, Martin R

    2015-11-01

    Antimicrobials have been used in swine production at subtherapeutic levels since the early 1950s to increase feed efficiency and promote growth. In North America, a number of antimicrobials are available for use in swine. However, the continuous administration of subtherapeutic, low concentrations of antimicrobials to pigs also provides selective pressure for antimicrobial-resistant bacteria and resistance determinants. For this reason, subtherapeutic antimicrobial use in livestock remains a source of controversy and concern. The swine gut microbiota demonstrates a number of changes in response to antimicrobial administration depending on the dosage, duration of treatment, age of the pigs, and gut location that is sampled. Both culture-independent and -dependent studies have also shown that the swine gut microbiota contains a large number of antimicrobial resistance determinants even in the absence of antimicrobial exposure. Heavy metals, such as zinc and copper, which are often added at relatively high doses to swine feed, may also play a role in maintaining antimicrobial resistance and in the stability of the swine gut microbiota. This review focuses on the use of antimicrobials in swine production, with an emphasis on the North American regulatory context, and their effect on the swine gut microbiota and on antimicrobial resistance determinants in the gut microbiota.

  8. National disparities in the relationship between antimicrobial resistance and antimicrobial consumption in Europe: an observational study in 29 countries.

    Science.gov (United States)

    McDonnell, Lucy; Armstrong, David; Ashworth, Mark; Dregan, Alexandru; Malik, Umer; White, Patrick

    2017-11-01

    Antimicrobial resistance in invasive infections is driven mainly by human antimicrobial consumption. Limited cross-national comparative evidence exists about variation in antimicrobial consumption and effect on resistance. We examined the relationship between national community antimicrobial consumption rates (2013) and national hospital antimicrobial resistance rates (2014) across 29 countries in the European Economic Area (EEA). Consumption rates were obtained from the European Surveillance of Antimicrobial Consumption Network (ESAC-Net). Resistance data were obtained from the European Antimicrobial Resistance Surveillance Network (EARS-Net), based on 196480 invasive isolates in 2014. Data availability and consistency were good. Some countries did not report figures for each strain of resistant bacteria. National antimicrobial consumption rates (2013) varied from ≤ 13 DDD (Estonia, the Netherlands and Sweden) to ≥ 30 DDD (France, Greece and Romania) per 1000 inhabitants per day. National antimicrobial resistance rates (hospital isolates, 15 species) also varied from  37.2% (Bulgaria, Greece, Romania and Slovakia). National antimicrobial consumption rates (2013) showed strong to moderate correlation with national hospital antimicrobial resistance rates (2014) in 19 strains of bacteria (r = 0.84 to r = 0.39). Some countries defied the trend with high consumption and low resistance (France, Belgium and Luxembourg) or low consumption and high resistance (Bulgaria, Hungary and Latvia). We found associations between national community antimicrobial consumption and national hospital antimicrobial resistance across a wide range of bacteria. These associations were not uniform. Different mechanisms may drive resistance in hospital-based invasive infections. Future research on international variations in antimicrobial resistance should consider environmental factors, agricultural use, vaccination policies and prescribing quality. © The Author 2017

  9. Antimicrobial resistance in the 21st century: a multifaceted challenge.

    Science.gov (United States)

    Nolte, O

    2014-04-01

    Antimicrobial resistance, the ability of (pathogenic) bacteria to withstand the action of antibiotic drugs, has recently been rated of having an impact on humans similar to that of global climate change. Indeed, during the last years medicine has faced the development of highly resistant bacterial strains, which were, as a consequence of worldwide travel activity, dispersed all over the globe. This is even more astonishing if taking into account that antibiotics were introduced into human medicine not even hundred years ago. Resistance covers different principle aspects, natural resistance, acquired resistance and clinical resistance. In the modern microbiology laboratory, antimicrobial resistance is determined by measuring the susceptibility of micro-organisms in vitro in the presence of antimicrobials. However, since the efficacy of an antibiotic depends on its pharmacokinetic and pharmacodynamics properties, breakpoints are provided to translate minimal inhibitory concentration to categorical efficacy (i.e. susceptible or resistant). Resistance in one microorganism against one particular drug may drive treatment decisions of clinicians, thereby fostering selection pressure to resistance development against another antibiotic. Thereby, bacteria may acquire more and more resistance traits, ending up with multi-resistance. To this end, antimicrobial resistance becomes a public health concern, not only in terms of limited treatment options but also due to its economic burden. The current paper provides a summary of the main topics associated with antimicrobial resistance as an introduction to this special issue.

  10. Monitoring of antimicrobial resistance among food animals: Principles and limitations

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    2004-01-01

    Large amounts of antimicrobial agents are in the production of food animals used for therapy and prophylactics of bacterial infections and in feed to promote growth. The use of antimicrobial agents causes problems in the therapy of infections through the selection for resistance among bacteria...... pathogenic for animals or humans. Current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimes to limit the development of resistance......, there are major differences between programmes designed to detect changes in a national population, individual herds or groups of animals. In addition, programmes have to be designed differently according to whether the aim is to determine changes in resistance for all antimicrobial agents or only...

  11. Microbiota and anthropic interference on antimicrobial resistance profile of bacteria isolated from Brazilian maned-wolf (Chrysocyon brachyurus)

    OpenAIRE

    Vieira-da-Motta, Olney; Eckhardt-de-Pontes, Luiz Antonio; Petrucci, Melissa Paes; dos Santos, Israel Pereira; da Cunha, Isabel Candia Nunes; Morato, Ronaldo Gonçalves

    2014-01-01

    Both the study of Brazilian wild mammal fauna and the conditions that foster the preservation of endangered species, such as Brazilian Maned-wolf (Chrysocyon brachyurus), in wild life are of extreme importance. In order to study the resistance profile of microbiota bacterial colonizing Brazilian Maned-wolf, this work investigated samples from eight male captive and free roaming animals originating from different Brazilian geographical regions. Samples for microbiological purposes were collect...

  12. Global Governance Mechanisms to Address Antimicrobial Resistance.

    Science.gov (United States)

    Padiyara, Ponnu; Inoue, Hajime; Sprenger, Marc

    2018-01-01

    Since their discovery, antibiotics, and more broadly, antimicrobials, have been a cornerstone of modern medicine. But the overuse and misuse of these drugs have led to rising rates of antimicrobial resistance, which occurs when bacteria adapt in ways that render antibiotics ineffective. A world without effective antibiotics can have drastic impacts on population health, global development, and the global economy. As a global common good, antibiotic effectiveness is vulnerable to the tragedy of the commons, where a shared limited resource is overused by a community when each individual exploits the finite resource for their own benefit. A borderless threat like antimicrobial resistance requires global governance mechanisms to mitigate its emergence and spread, and it is the responsibility of all countries and relevant multilateral organizations. These mechanisms can be in the form of legally binding global governance mechanisms such as treaties and regulatory standards or nonbinding mechanisms such as political declarations, resolutions, or guidelines. In this article, we argue that while both are effective methods, the strong, swift, and coordinated action needed to address rising rates of antimicrobial resistance will be better served through legally binding governance mechanisms.

  13. Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes.

    Science.gov (United States)

    Schwarz, Stefan; Shen, Jianzhong; Wendlandt, Sarah; Fessler, Andrea T; Wang, Yang; Kadlec, Kristina; Wu, Cong-Ming

    2014-12-01

    In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.

  14. Antimicrobial activity of surfactants produced by Bacillus subtilis R14 against multidrug-resistant bacteria Atividade antimicrobiana de surfactantes produzidos por Bacillus subtilis R14 frente a bacterias multidroga-resistentes

    Directory of Open Access Journals (Sweden)

    Paulo André Vicente Fernandes

    2007-12-01

    Full Text Available Lipopeptides represent a class of microbial surfactants with increasing scientific, therapeutic and biotechnological interests. The genus Bacillus is a producer of these active compounds, and among them B. subtilis produces surfactin, the most potent biosurfactant known. These compounds can act as antibiotics, antivirals, antitumorals, immunomodulators and enzyme inhibitors. In this work, the antimicrobial activity of biosurfactants obtained by cultivation of B. subtilis R14 was investigated against multidrug-resistant bacteria. During cultivation in defined medium, the surface tension of the medium was reduced from 54 mN/m in the beginning of the microbial growth to 30 mN/m after 20 hours. A crude surfactant concentration of 2.0 g/L was obtained after 40 hours of cultivation. A preliminary characterization suggested that two surfactants were produced. The evaluation of the antimicrobial activity of these compounds was carried out against 29 bacteria. Enterococcus faecalis (11 strains, Staphylococcus aureus (6 strains and Pseudomonas aeruginosa (7 strains and Escherichia coli CI 18 (1 strain displayed a profile of well defined drug resistance. All strains were sensitive to the surfactants, in particular Enterococcus faecalis. The results demonstrated that lipopeptides have a broad spectrum of action, including antimicrobial activity against microorganisms with multidrug-resistant profiles.Os lipopeptídeos representam uma classe de surfactantes microbiológicos com crescente interesse científico, terapêutico e biotecnológico. O gênero Bacillus é um dos maiores produtores destes compostos ativos. Dentre as espécies produtoras de biossurfactante, B. subtilis produz surfactina um dos mais conhecidos. Estes compostos atuam como antibióticos, antivirais, agente antitumorais, imunomoduladores e inibidores enzimáticos. O objetivo deste trabalho foi determinar a atividade antimicrobiana de biossurfactantes, obtidos pelo cultivo de B. subtilis R

  15. Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes.

    Science.gov (United States)

    Adu-Oppong, Boahemaa; Gasparrini, Andrew J; Dantas, Gautam

    2017-01-01

    Microbial communities contain diverse bacteria that play important roles in every environment. Advances in sequencing and computational methodologies over the past decades have illuminated the phylogenetic and functional diversity of microbial communities from diverse habitats. Among the activities encoded in microbiomes are the abilities to synthesize and resist small molecules, yielding antimicrobial activity. These functions are of particular interest when viewed in light of the public health emergency posed by the increase in clinical antimicrobial resistance and the dwindling antimicrobial discovery and approval pipeline, and given the intimate ecological and evolutionary relationship between antimicrobial biosynthesis and resistance. Here, we review genomic and functional methods that have been developed for accessing the antimicrobial biosynthesis and resistance capacity of microbiomes and highlight outstanding examples of their applications. © 2016 New York Academy of Sciences.

  16. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    Directory of Open Access Journals (Sweden)

    Getahun E Agga

    Full Text Available This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie. Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR Gram-negative (Escherichia coli and Salmonella enterica and Gram-positive (enterococci bacteria were determined from individual samples (n = 174. The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44 by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine, low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05 in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar

  17. Antimicrobial Drug Resistance and Gonorrhea

    Centers for Disease Control (CDC) Podcasts

    2017-12-26

    Dr. Robert Kirkcaldy, a medical officer at CDC, discusses his article on antimicrobial resistance and gonorrhea.  Created: 12/26/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/26/2017.

  18. Antimicrobial copper alloys decreased bacteria on stethoscope surfaces.

    Science.gov (United States)

    Schmidt, Michael G; Tuuri, Rachel E; Dharsee, Arif; Attaway, Hubert H; Fairey, Sarah E; Borg, Keith T; Salgado, Cassandra D; Hirsch, Bruce E

    2017-06-01

    Stethoscopes may serve as vehicles for transmission of bacteria among patients. The aim of this study was to assess the efficacy of antimicrobial copper surfaces to reduce the bacterial concentration associated with stethoscope surfaces. A structured prospective trial involving 21 health care providers was conducted at a pediatric emergency division (ED) (n = 14) and an adult medical intensive care unit located in tertiary care facilities (n = 7). Four surfaces common to a stethoscope and a facsimile instrument fabricated from U.S. Environmental Protection Agency-registered antimicrobial copper alloys (AMCus) were assessed for total aerobic colony counts (ACCs), methicillin-resistant Staphylococcus aureus, gram-negative bacteria, and vancomycin-resistant enterococci for 90 days. The mean ACCs collectively recovered from all stethoscope surfaces fabricated from the AMCus were found to carry significantly lower concentrations of bacteria (pediatric ED, 11.7 vs 127.1 colony forming units [CFU]/cm 2 , P stethoscopes was the most heavily burdened surface; mean concentrations exceeded the health care-associated infection acquisition concentration (5 CFU/cm 2 ) by at least 25×, supporting that the stethoscope warrants consideration in plans mitigating microbial cross-transmission during patient care. Stethoscope surfaces fabricated with AMCus were consistently found to harbor fewer bacteria. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  19. Role of Antimicrobial Selective Pressure and Secondary Factors on Antimicrobial Resistance Prevalence in Escherichia coli from Food-Producing Animals in Japan

    OpenAIRE

    Harada, Kazuki; Asai, Tetsuo

    2010-01-01

    The use of antimicrobial agents in the veterinary field affects the emergence, prevalence, and dissemination of antimicrobial resistance in bacteria isolated from food-producing animals. To control the emergence, prevalence, and dissemination of antimicrobial resistance, it is necessary to implement appropriate actions based on scientific evidence. In Japan, the Japanese Veterinary Antimicrobial Resistance Monitoring System (JVARM) was established in 1999 to monitor the antimicrobial suscepti...

  20. Radiation-resistant asporogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K [Tokyo Univ. (Japan). Faculty of Agriculture

    1975-09-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned.

  1. Radiation-resistant asporogenic bacteria

    International Nuclear Information System (INIS)

    Yano, Keiji

    1975-01-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned. (Tsukamoto, Y.)

  2. Towards a research agenda for water, sanitation and antimicrobial resistance

    NARCIS (Netherlands)

    Wuijts, Susanne; van den Berg, Harold H J L; Miller, Jennifer; Abebe, Lydia; Sobsey, Mark; Andremont, Antoine; Medlicott, Kate O; van Passel, Mark W J; de Roda Husman, Ana Maria

    Clinically relevant antimicrobial resistant bacteria, genetic resistance elements, and antibiotic residues (so-called AMR) from human and animal waste are abundantly present in environmental samples. This presence could lead to human exposure to AMR. In 2015, the World Health Organization (WHO)

  3. Prevalence and drug resistance in bacteria of the urinary tract ...

    African Journals Online (AJOL)

    Objective: To obtain data on the prevalence of antibiotic resistance in bacteria isolated from patients with suspected urinary tract infection in Bulawayo province, Zimbabwe. Method: Over a period of one year, 257 urine samples were analyzed for bacteria by standard procedures. Antimicrobial susceptibility testing of isolated ...

  4. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Resistance Monitoring System About NARMS 2015 NARMS Integrated Report Data Meetings and Publications Resources Judicious Use of ... back to top Popular Content Home Latest Recalls Report an Adverse Event MedWatch Safety Alerts News Releases ...

  5. The clinical consequences of antimicrobial resistance.

    Science.gov (United States)

    Rice, Louis B

    2009-10-01

    The continued evolution of antimicrobial resistance in the hospital and more recently in the community threatens to seriously compromise our ability to treat serious infections. The major success of the seven-valent Streptococcus pneumoniae vaccine at reducing both infection and resistance has been followed by the emergence of previously minor serotypes that express multiresistance. The almost universal activity of cephalosporins and fluoroquinolones against community Escherichia coli strains has been compromised by the spread of CTX-M beta-lactamase-producing, fluoroquinolone-resistant strains, and the emergence of community-onset methicillin-resistant Staphylococcus aureus, particularly in the United States, has forced us to re-think our empirical treatment guidelines for skin and soft-tissue infections. Finally, our most potent and reliable class of antibiotics, the carbapenems, is compromised by the growth, primarily in intensive care units, of multiresistant Klebsiella pneumoniae, Acinetobacter baumanni, and Pseudomonas aeruginosa. The lack of a robust pipeline of new agents, particularly against resistant Gram-negative bacteria, emphasizes the importance of optimizing our use of current antimicrobials and promoting strict adherence to established infection control practices.

  6. Use and Misuse of Antimicrobial Drugs in Poultry and Livestock: Mechanisms of Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Toni Poole* and Cynthia Sheffield

    2013-07-01

    Full Text Available Food safety begins on the farm with management practices that contribute to an abundant, safe, and affordable food supply. To attain this goal antimicrobials have been used in all stages of food animal production in the United States and elsewhere around the world at one time or another. Among food–production animals antimicrobials are used for growth promotion, disease prophylaxis or disease treatment, and are generally administered to the entire flock or herd. Over many decades bacteria have become resistant to multiple antimicrobial classes in a cumulative manner. Bacteria exhibit a number of well characterized mechanisms of resistance to antimicrobials that include: 1 modification of the antimicrobial; 2 alteration of the drug target; 3 decreased access of drug to target; and 4 implementation of an alternative metabolic pathway not affected by the drug. The mechanisms of resistance are complex and depend on the type of bacterium involved (e.g. Gram–positive or Gram–negative and the class of drug. Some bacterial species have accumulated resistance to nearly all antimicrobial classes due to a combination of intrinsic and acquired processes. This has and will continue to lead to clinical failures of antimicrobial treatment in both human and animal medicine.

  7. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.

    Science.gov (United States)

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola

    2017-02-01

    Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Strategies and molecular tools to fight antimicrobial resistance: resistome, transcriptome and antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Leticia Stephan Tavares

    2013-12-01

    Full Text Available The increasing number of antibiotic resistant bacteria motivates prospective research towards discovery of new antimicrobial active substances. There are, however, controversies concerning the cost-effectiveness of such research with regards to the description of new substances with novel cellular interactions, or description of new uses of existing substances to overcome resistance. Although examination of bacteria isolated from remote locations with limited exposure to humans has revealed an absence of antibiotic resistance genes, it is accepted that antibiotic resistance genes were both abundant and diverse in ancient living organisms, as detected in DNA recovered from Pleistocene deposits (30,000 years ago. Indeed, even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Bacteria can exhibit different strategies for resistance against antibiotics. New genetic information may lead to the modification of protein structure affecting the antibiotic carriage into the cell, enzymatic inactivation of drugs, or even modification of cellular structure interfering in the drug-bacteria interaction. There are still plenty of new genes out there in the environment that can be appropriated by putative pathogenic bacteria to resist antimicrobial agents. On the other hand, there are compounds with antibiotic activity just waiting to be discovered. Antimicrobial peptides (AMPs are molecules which are wide-spread in all forms of life, from multi-cellular organisms to bacterial cells used to interfere with microbial growth. Several AMPs have been shown to be effective against multi-drug resistant bacteria and have low propensity to resistance development, probably due to their unique mode of action, different from well known antimicrobial drugs. These substances may interact in different ways with bacterial cell membrane, protein synthesis, protein modulation and protein folding.

  9. The global threat of antimicrobial resistance: science for intervention

    Directory of Open Access Journals (Sweden)

    I. Roca

    2015-07-01

    Full Text Available In the last decade we have witnessed a dramatic increase in the proportion and absolute number of bacterial pathogens resistant to multiple antibacterial agents. Multidrug-resistant bacteria are currently considered as an emergent global disease and a major public health problem. The B-Debate meeting brought together renowned experts representing the main stakeholders (i.e. policy makers, public health authorities, regulatory agencies, pharmaceutical companies and the scientific community at large to review the global threat of antibiotic resistance and come up with a coordinated set of strategies to fight antimicrobial resistance in a multifaceted approach. We summarize the views of the B-Debate participants regarding the current situation of antimicrobial resistance in animals and the food chain, within the community and the healthcare setting as well as the role of the environment and the development of novel diagnostic and therapeutic strategies, providing expert recommendations to tackle the global threat of antimicrobial resistance.

  10. Antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products.

    Science.gov (United States)

    Katla, A K; Kruse, H; Johnsen, G; Herikstad, H

    2001-07-20

    Commercial starter culture bacteria are widely used in the production of dairy products and could represent a potential source for spread of genes encoding resistance to antimicrobial agents. To learn more about the antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products, a total of 189 isolates of lactic acid bacteria were examined for susceptibility to ampicillin, penicillin G, cephalothin, vancomycin, bacitracin, gentamicin, streptomycin, erythromycin, tetracycline, chloramphenicol, quinupristin/dalfopristin, ciprofloxacin, trimethoprim and sulphadiazine using Etest for MIC determination. Most of the isolates (140) originated from 39 dairy products (yoghurt, sour cream, fermented milk and cheese), while 49 were isolated directly from nine commercial cultures. The bacteria belonged to the genera Lactobacillus, Lactococcus, Leuconostoc and Streptococcus. Only one of the 189 isolates was classified as resistant to an antimicrobial agent included in the study. This isolate, a lactobacillus, was classified as high level resistant to streptomycin. The remaining isolates were not classified as resistant to the antimicrobial agents included other than to those they are known to have a natural reduced susceptibility to. Thus, starter culture bacteria in Norwegian dairy products do not seem to represent a source for spread of genes encoding resistance to antimicrobial agents.

  11. Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria

    Science.gov (United States)

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-01-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photostimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl2. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT. PMID

  12. Antimicrobial resistant Salmonella enterica and Escherichia coli recovered from dairy operations

    Science.gov (United States)

    Antimicrobial resistance has become a major public health concern and animal agriculture is often implicated as a source of resistant bacteria. The primary objective of this study was to determine prevalence of antimicrobial resistance in Salmonella and E. coli from healthy animals on dairy farms i...

  13. Human Health Hazards from Antimicrobial-Resistant Escherichia coli of Animal Origin

    DEFF Research Database (Denmark)

    Hammerum, A. M.; Heuer, Ole Eske

    2009-01-01

    of antimicrobial agents in food animals may add to the burden of antimicrobial resistance in humans. Bacteria from the animal reservoir that carry resistance to antimicrobial agents that are regarded as highly or critically important in human therapy (e.g., aminoglycosides, fluoroquinolones, and third- and fourth......Because of the intensive use of antimicrobial agents in food animal production, meat is frequently contaminated with antimicrobial-resistant Escherichia coli. Humans can be colonized with E. coli of animal origin, and because of resistance to commonly used antimicrobial agents, these bacteria may...... cause infections for which limited therapeutic options are available. This may lead to treatment failure and can have serious consequences for the patient. Furthermore, E. coli of animal origin may act as a donor of antimicrobial resistance genes for other pathogenic E. coli. Thus, the intensive use...

  14. Acid resistance, bile tolerance and antimicrobial properties of ...

    African Journals Online (AJOL)

    Maari is a fermented food condiment obtained by spontaneous fermentation of seeds from the baobab tree (Adansonia digitata). Nine dominant lactic acid bacteria (LAB) strains, isolated from traditional maari fermentation were examined for their resistance to pH 2.5, their tolerance to 0.3% bile and their antimicrobial ...

  15. Isolation, Antimicrobial Susceptibility Profile and Detection of Sul1, blaTEM, and blaSHV in Amoxicillin-Clavulanate-Resistant Bacteria Isolated From Retail Sausages in Kampar, Malaysia.

    Science.gov (United States)

    Tew, Lih-Shin; She, Li-Yen; Chew, Choy-Hoong

    2016-10-01

    Due to the overuse of antibiotics in livestock as a growth-promoting agent, the emergence of multi-antibiotic resistant bacteria is becoming a concern. In this study, we aimed to detect the presence and discover the molecular determinants of foodborne bacteria in retail sausages resistant towards the antibacterial agent amoxicillin-clavulanate. Two grams of sausages were chopped into small pieces and transferred into sterile Luria-Bertani (LB) enrichment broths overnight before they were plated on MacConkey agar petri dishes. The bacteria isolated were then screened for amoxicillin-clavulanate resistance, and an antimicrobial susceptibility test of each isolate was performed by using the disc diffusion method. Double synergy and phenotypic tests were carried out to detect the presence of extended spectrum β-lactamase (ESBL). API 20E kit was used to identify the Enterobacteriaceae . All isolates were further examined by polymerase chain reaction (PCR) for resistant genes bla OXA-1, bla OXA-10, plasmid-mediated AmpC ( bla CMY and bla DHA), and the chromosome-mediated AmpC, Sul 1, bla TEM, and bla SHV genes. A total of 18 amoxicillin-clavulanate resistant isolates were obtained from seven different types of retail sausages. Only half of them were identified as Enterobacteriaceae , but none were ESBL-producers. All the 18 isolated strains demonstrated resistance towards amoxicillin-clavulanate, penicillin and oxacillin (100%), cefotaxime (71.4%), cefpodoxime (66.7%), and ampicillin (83.3%). bla TEM was the most frequently detected β-lactamase gene. Both plasmid- and chromosomal-bound bla TEM genes were detected in all of the isolated Enterobacteriaceae . bla SHV and Sul 1 accounted for 22.2% and 11.1% of the amoxicillin-clavulanate resistant isolates, respectively, whereas bla AMPC, bla CMY, bla DHA, bla OXA-1, and bla OXA-10 were not found in any of the isolates. The only one ESBL-producing bacteria detected in this study was Chryseobacterium meningosepticum , which

  16. Isolation, Antimicrobial Susceptibility Profile and Detection of Sul1, blaTEM, and blaSHV in Amoxicillin-Clavulanate-Resistant Bacteria Isolated From Retail Sausages in Kampar, Malaysia

    Science.gov (United States)

    Tew, Lih-Shin; She, Li-Yen; Chew, Choy-Hoong

    2016-01-01

    Background Due to the overuse of antibiotics in livestock as a growth-promoting agent, the emergence of multi-antibiotic resistant bacteria is becoming a concern. Objectives In this study, we aimed to detect the presence and discover the molecular determinants of foodborne bacteria in retail sausages resistant towards the antibacterial agent amoxicillin-clavulanate. Methods Two grams of sausages were chopped into small pieces and transferred into sterile Luria-Bertani (LB) enrichment broths overnight before they were plated on MacConkey agar petri dishes. The bacteria isolated were then screened for amoxicillin-clavulanate resistance, and an antimicrobial susceptibility test of each isolate was performed by using the disc diffusion method. Double synergy and phenotypic tests were carried out to detect the presence of extended spectrum β-lactamase (ESBL). API 20E kit was used to identify the Enterobacteriaceae. All isolates were further examined by polymerase chain reaction (PCR) for resistant genes blaOXA-1, blaOXA-10, plasmid-mediated AmpC (blaCMY and blaDHA), and the chromosome-mediated AmpC, Sul1, blaTEM, and blaSHV genes. Results A total of 18 amoxicillin-clavulanate resistant isolates were obtained from seven different types of retail sausages. Only half of them were identified as Enterobacteriaceae, but none were ESBL-producers. All the 18 isolated strains demonstrated resistance towards amoxicillin-clavulanate, penicillin and oxacillin (100%), cefotaxime (71.4%), cefpodoxime (66.7%), and ampicillin (83.3%). blaTEM was the most frequently detected β-lactamase gene. Both plasmid- and chromosomal-bound blaTEM genes were detected in all of the isolated Enterobacteriaceae. blaSHV and Sul1 accounted for 22.2% and 11.1% of the amoxicillin-clavulanate resistant isolates, respectively, whereas blaAMPC, blaCMY, blaDHA, blaOXA-1, and blaOXA-10 were not found in any of the isolates. The only one ESBL-producing bacteria detected in this study was Chryseobacterium

  17. National Antimicrobial Resistance Monitoring System: Two Decades of Advancing Public Health Through Integrated Surveillance of Antimicrobial Resistance.

    Science.gov (United States)

    Karp, Beth E; Tate, Heather; Plumblee, Jodie R; Dessai, Uday; Whichard, Jean M; Thacker, Eileen L; Hale, Kis Robertson; Wilson, Wanda; Friedman, Cindy R; Griffin, Patricia M; McDermott, Patrick F

    2017-10-01

    Drug-resistant bacterial infections pose a serious and growing public health threat globally. In this review, we describe the role of the National Antimicrobial Resistance Monitoring System (NARMS) in providing data that help address the resistance problem and show how such a program can have broad positive impacts on public health. NARMS was formed two decades ago to help assess the consequences to human health arising from the use of antimicrobial drugs in food animal production in the United States. A collaboration among the Centers for Disease Control and Prevention, the U.S. Food and Drug Administration, the United States Department of Agriculture, and state and local health departments, NARMS uses an integrated "One Health" approach to monitor antimicrobial resistance in enteric bacteria from humans, retail meat, and food animals. NARMS has adapted to changing needs and threats by expanding surveillance catchment areas, examining new isolate sources, adding bacteria, adjusting sampling schemes, and modifying antimicrobial agents tested. NARMS data are not only essential for ensuring that antimicrobial drugs approved for food animals are used in ways that are safe for human health but they also help address broader food safety priorities. NARMS surveillance, applied research studies, and outbreak isolate testing provide data on the emergence of drug-resistant enteric bacteria; genetic mechanisms underlying resistance; movement of bacterial populations among humans, food, and food animals; and sources and outcomes of resistant and susceptible infections. These data can be used to guide and evaluate the impact of science-based policies, regulatory actions, antimicrobial stewardship initiatives, and other public health efforts aimed at preserving drug effectiveness, improving patient outcomes, and preventing infections. Many improvements have been made to NARMS over time and the program will continue to adapt to address emerging resistance threats, changes in

  18. Isolation, Biochemical and Molecular Identification, and In-Vitro Antimicrobial Resistance Patterns of Bacteria Isolated from Bubaline Subclinical Mastitis in South India.

    Directory of Open Access Journals (Sweden)

    P L Preethirani

    Full Text Available Buffaloes are the second largest source of milk. Mastitis is a major impediment for milk production, but not much information is available about bubaline mastitis, especially subclinical mastitis. The aim of this study was to (a investigate the application of various tests for the diagnosis of bubaline subclinical mastitis, (b identify the major bacteria associated with it, and (c evaluate the antibiotic resistance pattern of the bacteria. To this end, 190 quarter milk samples were collected from 57 domesticated dairy buffaloes from organized (64 samples and unorganized (126 samples sectors. Of these, 48.4%, 40.0%, 45.8%, 61.1%, and 61.6% were positive for subclinical mastitis by somatic cell count, electrical conductivity, California mastitis test, bromothymol blue test, and N-acetyl glucosaminidase test, respectively. As compared to the gold standard of somatic cell count, California mastitis test performed the best. However, a combination of the two methods was found to be the best option. Microbiological evaluation, both by biochemical methods as well as by monoplex and multiplex polymerase chain reaction, revealed that coagulase-negative staphylococci were the most predominant (64.8% bacteria, followed by streptococci (18.1%, Escherichia coli (9.8% and Staphylococcus aureus (7.3%. Most of the pathogens were resistant to multiple antibiotics, especially to β-lactam antibiotics. We propose that California mastitis test be combined with somatic cell count for diagnosis of subclinical mastitis in domestic dairy buffaloes. Further, our results reveal high resistance of the associated bacteria to the β-lactam class of antibiotics, and a possible major role of coagulase-negative staphylococci in causing the disease in India.

  19. Isolation, Biochemical and Molecular Identification, and In-Vitro Antimicrobial Resistance Patterns of Bacteria Isolated from Bubaline Subclinical Mastitis in South India.

    Science.gov (United States)

    Preethirani, P L; Isloor, Shrikrishna; Sundareshan, S; Nuthanalakshmi, V; Deepthikiran, K; Sinha, Akhauri Y; Rathnamma, D; Nithin Prabhu, K; Sharada, R; Mukkur, Trilochan K; Hegde, Nagendra R

    2015-01-01

    Buffaloes are the second largest source of milk. Mastitis is a major impediment for milk production, but not much information is available about bubaline mastitis, especially subclinical mastitis. The aim of this study was to (a) investigate the application of various tests for the diagnosis of bubaline subclinical mastitis, (b) identify the major bacteria associated with it, and (c) evaluate the antibiotic resistance pattern of the bacteria. To this end, 190 quarter milk samples were collected from 57 domesticated dairy buffaloes from organized (64 samples) and unorganized (126 samples) sectors. Of these, 48.4%, 40.0%, 45.8%, 61.1%, and 61.6% were positive for subclinical mastitis by somatic cell count, electrical conductivity, California mastitis test, bromothymol blue test, and N-acetyl glucosaminidase test, respectively. As compared to the gold standard of somatic cell count, California mastitis test performed the best. However, a combination of the two methods was found to be the best option. Microbiological evaluation, both by biochemical methods as well as by monoplex and multiplex polymerase chain reaction, revealed that coagulase-negative staphylococci were the most predominant (64.8%) bacteria, followed by streptococci (18.1%), Escherichia coli (9.8%) and Staphylococcus aureus (7.3%). Most of the pathogens were resistant to multiple antibiotics, especially to β-lactam antibiotics. We propose that California mastitis test be combined with somatic cell count for diagnosis of subclinical mastitis in domestic dairy buffaloes. Further, our results reveal high resistance of the associated bacteria to the β-lactam class of antibiotics, and a possible major role of coagulase-negative staphylococci in causing the disease in India.

  20. Antimicrobial Activity – The Most Important Property of Probiotic and Starter Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Blaženka Kos

    2010-01-01

    Full Text Available The antimicrobial activity of industrially important lactic acid bacteria as starter cultures and probiotic bacteria is the main subject of this review. This activity has been attributed to the production of metabolites such as organic acids (lactic and acetic acid, hydrogen peroxide, ethanol, diacetyl, acetaldehyde, acetoine, carbon dioxide, reuterin, reutericyclin and bacteriocins. The potential of using bacteriocins of lactic acid bacteria, primarily used as biopreservatives, represents a perspective, alternative antimicrobial strategy for continuously increasing problem with antibiotic resistance. Another strategy in resolving this problem is an application of probiotics for different gastrointestinal and urogenital infection therapies.

  1. Use of antimicrobials in veterinary medicine and mechanisms of resistance.

    Science.gov (United States)

    Schwarz, S; Chaslus-Dancla, E

    2001-01-01

    This review deals with the application of antimicrobial agents in veterinary medicine and food animal production and the possible consequences arising from the widespread and multipurpose use of antimicrobials. The various mechanisms that bacteria have developed to escape the inhibitory effects of the antimicrobials most frequently used in the veterinary field are reported in detail. Resistance of bacteria to tetracyclines, macrolide-lincosamide-streptogramin antibiotics, beta-lactam antibiotics, aminoglycosides, sulfonamides, trimethoprim, fluoroquinolones and chloramphenicol/florfenicol is described with regard to enzymatic inactivation, decreased intracellular drug accumulation and modification/protection/replacement of the target sites. In addition, basic information is given about mobile genetic elements which carry the respective resistance genes, such as plasmids, transposons, and gene cassettes/integrons, and their ways of spreading via conjugation, mobilisation, transduction, and transformation.

  2. Antimicrobial resistance issues in beef production

    Science.gov (United States)

    Antimicrobial resistance threats to human health as identified have been recognized as a critical global public health concern. Linkage of some threats to beef production is discussed. The relevance to beef production of recent government actions will be examined. Prominent antimicrobial resistance ...

  3. Quantifying antimicrobial resistance at veal calf farms

    NARCIS (Netherlands)

    Bosman, A.B.; Wagenaar, J.A.; Stegeman, A.; Vernooij, H.; Mevius, D.J.

    2012-01-01

    This study was performed to determine a sampling strategy to quantify the prevalence of antimicrobial resistance on veal calf farms, based on the variation in antimicrobial resistance within and between calves on five farms. Faecal samples from 50 healthy calves (10 calves/farm) were collected. From

  4. Antimicrobial resistance patterns and plasmid profiles of ...

    African Journals Online (AJOL)

    Objectives: To determine the frequency of resistance of Staphylococcus aureus to various antimicrobial agents, and the relationship between antimicrobial resistance of the isolates and carriage of plasmids. Design: A random sampling of milk and meat samples was carried out. Setting: Milk was collected from various dairy ...

  5. Multicenter study of antimicrobial susceptibility of anaerobic bacteria in Korea in 2012.

    Science.gov (United States)

    Lee, Yangsoon; Park, Yeon Joon; Kim, Mi Na; Uh, Young; Kim, Myung Sook; Lee, Kyungwon

    2015-09-01

    Periodic monitoring of regional or institutional resistance trends of clinically important anaerobic bacteria is recommended, because the resistance of anaerobic pathogens to antimicrobial drugs and inappropriate therapy are associated with poor clinical outcomes. There has been no multicenter study of clinical anaerobic isolates in Korea. We aimed to determine the antimicrobial resistance patterns of clinically important anaerobes at multiple centers in Korea. A total of 268 non-duplicated clinical isolates of anaerobic bacteria were collected from four large medical centers in Korea in 2012. Antimicrobial susceptibility was tested by the agar dilution method according to the CLSI guidelines. The following antimicrobials were tested: piperacillin, piperacillin-tazobactam, cefoxitin, cefotetan, imipenem, meropenem, clindamycin, moxifloxacin, chloramphenicol, metronidazole, and tigecycline. Organisms of the Bacteroides fragilis group were highly susceptible to piperacillin-tazobactam, imipenem, and meropenem, as their resistance rates to these three antimicrobials were lower than 6%. For B. fragilis group isolates and anaerobic gram-positive cocci, the resistance rates to moxifloxacin were 12-25% and 11-13%, respectively. Among B. fragilis group organisms, the resistance rates to tigecycline were 16-17%. Two isolates of Finegoldia magna were non-susceptible to chloramphenicol (minimum inhibitory concentrations of 16-32 mg/L). Resistance patterns were different among the different hospitals. Piperacillin-tazobactam, cefoxitin, and carbapemems are highly active beta-lactam agents against most of the anaerobes. The resistance rates to moxifloxacin and tigecycline are slightly higher than those in the previous study.

  6. Genome-Wide Identification of Antimicrobial Intrinsic Resistance Determinants in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Leng, Bingfeng; Haaber, Jakob

    2016-01-01

    The emergence of antimicrobial resistance severely threatens our ability to treat bacterial infections. While acquired resistance has received considerable attention, relatively little is known of intrinsic resistance that allows bacteria to naturally withstand antimicrobials. Gene products...... that confer intrinsic resistance to antimicrobial agents may be explored for alternative antimicrobial therapies, by potentiating the efficacy of existing antimicrobials. In this study, we identified the intrinsic resistome to a broad spectrum of antimicrobials in the human pathogen, Staphylococcus aureus. We...... with the atpA mutant compared to wild type cells with gentamicin at a clinically relevant concentration. Our results demonstrate that many gene products contribute to the intrinsic antimicrobial resistance of S. aureus. Knowledge of these intrinsic resistance determinants provides alternative targets...

  7. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Demetrio L Valle

    Full Text Available Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC and the minimum bactericidal concentrations (MBC of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA, vancomycin-resistant Enterococcus (VRE, extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn. Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant

  8. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    Science.gov (United States)

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.

  9. Surveillance of antimicrobial resistance at a tertiary hospital in Tanzania

    Directory of Open Access Journals (Sweden)

    Mashurano Marcellina

    2004-10-01

    Full Text Available Abstract Background Antimicrobial resistance is particularly harmful to infectious disease management in low-income countries since expensive second-line drugs are not readily available. The objective of this study was to implement and evaluate a computerized system for surveillance of antimicrobial resistance at a tertiary hospital in Tanzania. Methods A computerized surveillance system for antimicrobial susceptibility (WHONET was implemented at the national referral hospital in Tanzania in 1998. The antimicrobial susceptibilities of all clinical bacterial isolates received during an 18 months' period were recorded and analyzed. Results The surveillance system was successfully implemented at the hospital. This activity increased the focus on antimicrobial resistance issues and on laboratory quality assurance issues. The study identified specific nosocomial problems in the hospital and led to the initiation of other prospective studies on prevalence and antimicrobial susceptibility of bacterial infections. Furthermore, the study provided useful data on antimicrobial patterns in bacterial isolates from the hospital. Gram-negative bacteria displayed high rates of resistance to common inexpensive antibiotics such as ampicillin, tetracycline and trimethoprim-sulfamethoxazole, leaving fluoroquinolones as the only reliable oral drugs against common Gram-negative bacilli. Gentamicin and third generation cephalosporins remain useful for parenteral therapy. Conclusion The surveillance system is a low-cost tool to generate valuable information on antimicrobial resistance, which can be used to prepare locally applicable recommendations on antimicrobial use. The system pinpoints relevant nosocomial problems and can be used to efficiently plan further research. The surveillance system also functions as a quality assurance tool, bringing attention to methodological issues in identification and susceptibility testing.

  10. EMERGING ANTIMICROBIAL RESISTANCE IN HOSPITAL A THREAT TO PUBLIC HEALTH

    Directory of Open Access Journals (Sweden)

    Vichal Rastogi

    2013-01-01

    Full Text Available Background: Antimicrobial resistance(AMR threatens the health of many throughout the world, since both old and new infectious diseases remain a formidable public health threat. When pathogenic microorganisms can multiply beyond some critical mass in the face of invading antimicrobials, treatment outcome is compromised. This phenomenon is referred as antimicrobial resistance (AMR. Objective: This retrospective study was conducted to assess the overall antimicrobial resistance in bacterial isolates from tertiary care hospitals as majority of patients here receive empirical antibiotics therapy. Method: This retrospective study was carried out in teaching hospital, Greater Noida to determine prevalence of multidrug resistance in patients in relation to empirical antibiotic therapy in hospital. Various samples (pus,urine,blood were collected for bacterial culture and antibiotic sensitivity. Results: Total 500 bacterial strains isolated from ICU, surgery, obstetrics & gynaecology and orthopaedics and their sensitivity pattern was compared in this study. The highest number of resistant bacterias were of pseudomonas sp. i.e. 21(33.87% followed by 16(25.80% of staphylococcus aureus, 12(19.35% of Escherichia coli, Klebseilla sp & Proteus vulgaris were 05(8.06% each & Citrobacter sp. 03(4.83%. Total 62(12.4% bacterial isolates were found to be resistant to multiple drugs. The 31 (50% of these resistant bacteria were prevalent in ICU, 12(19.35% in Surgery, 11(17.74% in Gynaecology, 08(12.90% in Orthopaedics.. All the bacterial strains were resistant to common antibiotics like Penicillin, Amoxicillin, Doxycycline & Cotrimoxazole and some were even resistant to Imipenem. Conclusion: Therefore we have outlined the nature of the antimicrobial resistance problem as an important health issue for national and international community. It is advised to avoid use of empirical antibiotics therapy.

  11. Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria

    OpenAIRE

    Horta, André; Pinteus, Susete; Alves, Celso; Fino, Nádia; Silva, Joana; Fernandez, Sara; Rodrigues, Américo; Pedrosa, Rui

    2014-01-01

    This article belongs to the Special Issue Selected Papers from the 14th International Symposium on Marine Natural Products Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S...

  12. Identification and antimicrobial susceptibility of obligate anaerobic bacteria from clinical samples of animal origin.

    Science.gov (United States)

    Mayorga, Melissa; Rodríguez-Cavallini, Evelyn; López-Ureña, Diana; Barquero-Calvo, Elías; Quesada-Gómez, Carlos

    2015-12-01

    The etiology of veterinary infectious diseases has been the focus of considerable research, yet relatively little is known about the causative agents of anaerobic infections. Susceptibility studies have documented the emergence of antimicrobial resistance and indicate distinct differences in resistance patterns related to veterinary hospitals, geographic regions, and antibiotic-prescribing regimens. The aim of the present study was to identify the obligate anaerobic bacteria from veterinary clinical samples and to determinate the in vitro susceptibility to eight antimicrobials and their resistance-associated genes. 81 clinical specimens obtained from food-producing animals, pets and wild animals were examined to determine the relative prevalence of obligate anaerobic bacteria, and the species represented. Bacteroides spp, Prevotella spp and Clostridium spp represented approximately 80% of all anaerobic isolates. Resistance to metronidazole, clindamycin, tetracycline and fluoroquinolones was found in strains isolated from food-producing animals. Ciprofloxacin, enrofloxacin and cephalotin showed the highest resistance in all isolates. In 17%, 4% and 14% of tetracycline-resistant isolates, the resistance genes tetL, tetM and tetW were respectively amplified by PCR whereas in 4% of clindamycin-resistant strains the ermG gene was detected. 26% of the isolates were positive for cepA, while only 6% harbored the cfxA (resistance-conferring genes to beta-lactams). In this study, the obligate anaerobic bacteria from Costa Rica showed a high degree of resistance to most antimicrobials tested. Nevertheless, in the majority of cases this resistance was not related to the resistance acquired genes usually described in anaerobes. It is important to address and regulate the use of antimicrobials in the agricultural industry and the empirical therapy in anaerobic bacterial infections in veterinary medicine, especially since antibiotics and resistant bacteria can persist in the

  13. Oral antimicrobials increase antimicrobial resistance in porcine E. coli--a systematic review.

    Science.gov (United States)

    Burow, E; Simoneit, C; Tenhagen, B-A; Käsbohrer, A

    2014-03-01

    Administration of antimicrobials to livestock increases the risk of antimicrobial resistance (AMR) in commensal bacteria. Antimicrobials in pig production are usually administered per pen via feed which implies treatment of sick alongside with healthy animals. The objective of this systematic literature review was to investigate the effect of orally administered antimicrobials on AMR in Escherichia coli of swine. Studies published in peer reviewed journals were retrieved from the international online databases ISI Web of Knowledge, PubMed, Scopus and the national electronic literature data base of Deutsches Institut für Medizinische Dokumentation und Information. The studies were assessed using the eligibility criteria English or German language, access to full paper version, defined treatment and control group (initial value or non-treatment) as well as administration and resistance testing of the same antimicrobial class. In the qualitative synthesis, only studies were included presenting the summary measures odds ratio or prevalence of resistance, the category of the applied antimicrobial and the dosage. An effect of the antimicrobial on AMR in E. coli was evaluated as an "increase", "no effect" or "decrease" if the odds or alternatively the prevalence ratio were >1.0, 1.0 or antimicrobial substance and dosage was missing in 4 and 5 of the 11 finally selected studies. The 36 identified trials were inhomogenous in usage and provision of information on sample size. Oral administration of antimicrobials increases the risk of AMR in E. coli from swine. There is however a lack of studies on the impact of dosage and longitudinal effects of treatment. The published studies have a number of issues concerning their scientific quality. More high quality research is needed to better address and quantifiy the effect of orally administered antimicrobials on AMR in swine. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Antimicrobial Resistance in the Environment.

    Science.gov (United States)

    Waseem, Hassan; Williams, Maggie R; Stedtfeld, Robert D; Hashsham, Syed A

    2017-10-01

    This review summarizes selected publications of 2016 with emphasis on occurrence and treatment of antibiotic resistance genes and bacteria in the aquatic environment and wastewater and drinking water treatment plants. The review is conducted with emphasis on fate, modeling, risk assessment and data analysis methodologies for characterizing abundance. After providing a brief introduction, the review is divided into the following four sections: i) Occurrence of AMR in the Environment, ii) Treatment Technologies for AMR, iii) Modeling of Fate, Risk, and Environmental Impact of AMR, and iv) ARG Databases and Pipelines.

  15. Mechanisms of antimicrobial resistance among hospital-associated pathogens.

    Science.gov (United States)

    Khan, Ayesha; Miller, William R; Arias, Cesar A

    2018-04-01

    The introduction of antibiotics revolutionized medicine in the 20th-century permitting the treatment of once incurable infections. Widespread use of antibiotics, however, has led to the development of resistant organisms, particularly in the healthcare setting. Today, the clinician is often faced with pathogens carrying a cadre of resistance determinants that severely limit therapeutic options. The genetic plasticity of microbes allows them to adapt to stressors via genetic mutations, acquisition or sharing of genetic material and modulation of genetic expression leading to resistance to virtually any antimicrobial used in clinical practice. Areas covered: This is a comprehensive review that outlines major mechanisms of resistance in the most common hospital-associated pathogens including bacteria and fungi. Expert commentary: Understanding the genetic and biochemical mechanisms of such antimicrobial adaptation is crucial to tackling the rapid spread of resistance, can expose unconventional therapeutic targets to combat multidrug resistant pathogens and lead to more accurate prediction of antimicrobial susceptibility using rapid molecular diagnostics. Clinicians making treatment decisions based on the molecular basis of resistance may design therapeutic strategies that include de-escalation of broad spectrum antimicrobial usage, more focused therapies or combination therapies. These strategies are likely to improve patient outcomes and decrease the risk of resistance in hospital settings.

  16. Using Genome-Editing Technologies to Mitigate Antimicrobial Resistance [CRISPR-Based Antibacterials: Transforming Bacterial Defense into Offense

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Adrienne C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-07

    The development of antimicrobial-resistant (AMR) bacteria poses a serious worldwide health concern. CRISPR-based antibacterials, however, are a novel and adaptable method for building an arsenal of antibacterials potentially capable of targeting any pathogenic bacteria.

  17. [Antimicrobial susceptibility testing of anaerobic bacteria].

    Science.gov (United States)

    García-Sánchez, José E; García-Sánchez, Enrique; García-García, María Inmaculada

    2014-02-01

    The anaerobic bacteria resistance to antibiotics is increasing, and even has appeared against the most active of those, like metronidazol and carbapenems. This fact forces to make and periodical sensibility tests -at least in the most aggressive and virulent species, in cases that they are isolated from life locations and in the absence of therapeutic response- to check the local sensibility and to establish suitable empiric therapies, all based on multicentric studies carried out in order to this or well to check the activity of new antibiotics. For the laboratory routine, the easiest sensibility method is the E-test/MIC evaluator. Another alternative is microdilution, that's only normalized for Bacteroides. There are preliminary facts that allow the use of disc diffusion method in some species of Bacteroides and Clostridium. For the temporal and multicentric studies, the procedure is dilution in agar plate, the reference method. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  18. Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria

    Directory of Open Access Journals (Sweden)

    André Horta

    2014-03-01

    Full Text Available Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1 extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity and oxygen radical absorbance capacity (ORAC. Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%, Alteromonas sp. (12.82%, Shewanella sp. (12.26%, Serratia sp. (2.56%, Citricoccus sp. (2.56%, Cellulophaga sp. (2.56%, Ruegeria sp. (2.56% and Staphylococcus sp. (2.56%. Six (15.38% of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis was exhibited by strain 16 (Shewanella sp.. Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds.

  19. Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria.

    Science.gov (United States)

    Horta, André; Pinteus, Susete; Alves, Celso; Fino, Nádia; Silva, Joana; Fernandez, Sara; Rodrigues, Américo; Pedrosa, Rui

    2014-03-24

    Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1) extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%), Alteromonas sp. (12.82%), Shewanella sp. (12.26%), Serratia sp. (2.56%), Citricoccus sp. (2.56%), Cellulophaga sp. (2.56%), Ruegeria sp. (2.56%) and Staphylococcus sp. (2.56%). Six (15.38%) of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST) match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis) was exhibited by strain 16 (Shewanella sp.). Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds.

  20. Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents.

    Science.gov (United States)

    Borges, Anabela; Saavedra, Maria J; Simões, Manuel

    2015-01-01

    Antimicrobial resistance is one of the most serious public health problems. This is of particular concern when bacteria become resistant to various antimicrobial agents simultaneously and when they form biofilms. Consequently, therapeutic options for the treatment of infections have become limited, leading frequently to recurrent infections, treatment failure and increase of morbidity and mortality. Both, persistence and spread of antibiotic resistance, in combination with decreased effectiveness and increased toxicity of current antibiotics have emphasized the urgent need to search alternative sources of antimicrobial substances. Plants are recognized as a source of unexplored chemical structures with high therapeutic potential, including antimicrobial activity against clinically important microorganisms. Additionally, phytochemicals (plant secondary metabolites) present several advantages over synthetic molecules, including green status and different mechanisms of action from antibiotics which could help to overcome the resistance problem. In this study, an overview of the main classes of phytochemicals with antimicrobial properties and their mode of action is presented. A revision about the application of phytochemicals for biofilm prevention and control is also done. Moreover, the use of phytochemicals as scaffolds of new functional molecules to expand the antibiotics pipeline is reviewed.

  1. Will new antimicrobials overcome resistance among Gram-negatives?

    Science.gov (United States)

    Bassetti, Matteo; Ginocchio, Francesca; Mikulska, Małgorzata; Taramasso, Lucia; Giacobbe, Daniele Roberto

    2011-10-01

    The spread of resistance among Gram-positive and Gram-negative bacteria represents a growing challenge for the development of new antimicrobials. The pace of antibiotic drug development has slowed during the last decade and, especially for Gram-negatives, clinicians are facing a dramatic shortage in the availability of therapeutic options to face the emergency of the resistance problem throughout the world. In this alarming scenario, although there is a shortage of compounds reaching the market in the near future, antibiotic discovery remains one of the keys to successfully stem and maybe overcome the tide of resistance. Analogs of already known compounds and new agents belonging to completely new classes of antimicrobials are in early stages of development. Novel and promising anti-Gram-negative antimicrobials belong both to old (cephalosporins, carbapenems, β-lactamase inhibitors, monobactams, aminoglycosides, polymyxin analogues and tetracycline) and completely new antibacterial classes (boron-containing antibacterial protein synthesis inhibitors, bis-indoles, outer membrane synthesis inhibitors, antibiotics targeting novel sites of the 50S ribosomal subunit and antimicrobial peptides). However, all of these compounds are still far from being introduced into clinical practice. Therefore, infection control policies and optimization in the use of already existing molecules are still the most effective approaches to reduce the spread of resistance and preserve the activity of antimicrobials.

  2. Resistance in bacteria of the food chain: epidemiology and control strategies

    DEFF Research Database (Denmark)

    Cavaco, Lina; Aarestrup, Frank Møller

    2013-01-01

    Antimicrobial agents are widely used for treatment of animals and humans as well as for production purposes in livestock production in several countries. This is exerting a major selective pressure on bacterial populations, and is selecting for populations resistant to the antimicrobials used....... The emergence and spread of resistant bacteria in the food chain is a major concern as food-producing animals may constitute a huge reservoir for antimicrobial resistance. Furthermore, food animals and food of animal origin is traded worldwide, which means that the occurrences of antimicrobial resistance...

  3. Sucralose Increases Antimicrobial Resistance and Stimulates Recovery of Escherichia coli Mutants.

    Science.gov (United States)

    Qu, Yilin; Li, Rongyan; Jiang, Mingshan; Wang, Xiuhong

    2017-07-01

    Because of heavy use of antimicrobials, antimicrobial resistance in bacteria has become of great concern. The effect of some widely used food additives such as sucralose on bacteria in the gut and the environment has also drawn increasing attention. In this study, we investigated the interaction between antimicrobials and sucralose impacting antimicrobial resistance and mutation of Escherichia coli (E. coli). To examine antimicrobial resistance and mutation frequency, different subinhibitory concentrations of sucralose were added to cultures of E.coli BW25113 that were then treated with antimicrobials, oxolinic acid, or moxifloxacin. Then the E.coli were assayed for bacterial survival and recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Pre-treatment of E.coli BW25113 with 1/2 minimal inhibitory concentration (MIC) of sucralose increased the survival rate in oxolinic acid or moxifloxacin. A 1/3 MIC of sucralose increased rifampicin-resistant mutation rate of E.coli BW25113 after 72 h, while rifampicin-resistant mutation rate was increased when co-treated with 1/8 MIC, 1/4 MIC, 1/3 MIC sucralose, and oxolinic acid after 24 h. Sucralose can increase the antimicrobial resistance and mutation frequency of E.coli to some antimicrobials.

  4. Bacterial resistance and susceptibility to antimicrobial peptides and peptidomimetics

    DEFF Research Database (Denmark)

    Citterio, Linda

    Bacterial resistance to conventional antibiotics has become a global challenge and there is urgent need for new and alternative compounds. Antimicrobial peptides (AMPs) are under investigation as novel antibiotics. These are part of the immune defense of all living organisms; hence, they represen...... be a threat to our immunity may be overestimated. In conclusion, this PhD project supports the belief that bacteria hold the potential to develop resistance to each novel antibacterial agent. Nevertheless, strategies to circumvent resistance exist and must be pursued....

  5. Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.

    Science.gov (United States)

    Rowe, Will; Baker, Kate S; Verner-Jeffreys, David; Baker-Austin, Craig; Ryan, Jim J; Maskell, Duncan; Pearce, Gareth

    2015-01-01

    Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR

  6. Antibiotic-resistant bacteria: a challenge for the food industry.

    Science.gov (United States)

    Capita, Rosa; Alonso-Calleja, Carlos

    2013-01-01

    Antibiotic-resistant bacteria were first described in the 1940s, but whereas new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. At present, the paucity of new antimicrobials coming into the market has led to the problem of antibiotic resistance fast escalating into a global health crisis. Although the selective pressure exerted by the use of antibiotics (particularly overuse or misuse) has been deemed the major factor in the emergence of bacterial resistance to these antimicrobials, concerns about the role of the food industry have been growing in recent years and have been raised at both national and international levels. The selective pressure exerted by the use of antibiotics (primary production) and biocides (e.g., disinfectants, food and feed preservatives, or decontaminants) is the main driving force behind the selection and spread of antimicrobial resistance throughout the food chain. Genetically modified (GM) crops with antibiotic resistance marker genes, microorganisms added intentionally to the food chain (probiotic or technological) with potentially transferable antimicrobial resistance genes, and food processing technologies used at sub-lethal doses (e.g., alternative non-thermal treatments) are also issues for concern. This paper presents the main trends in antibiotic resistance and antibiotic development in recent decades, as well as their economic and health consequences, current knowledge concerning the generation, dissemination, and mechanisms of antibacterial resistance, progress to date on the possible routes for emergence of resistance throughout the food chain and the role of foods as a vehicle for antibiotic-resistant bacteria. The main approaches to prevention and control of the development, selection, and spread of antibacterial resistance in the food industry are also addressed.

  7. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance.

    Science.gov (United States)

    Weckesser, S; Engel, K; Simon-Haarhaus, B; Wittmer, A; Pelz, K; Schempp, C M

    2007-08-01

    There is cumulative resistance against antibiotics of many bacteria. Therefore, the development of new antiseptics and antimicrobial agents for the treatment of skin infections is of increasing interest. We have screened six plant extracts and isolated compounds for antimicrobial effects on bacteria and yeasts with dermatological relevance. The following plant extracts have been tested: Gentiana lutea, Harpagophytum procumbens, Boswellia serrata (dry extracts), Usnea barbata, Rosmarinus officinalis and Salvia officinalis (supercritical carbon dioxide [CO2] extracts). Additionally, the following characteristic plant substances were tested: usnic acid, carnosol, carnosic acid, ursolic acid, oleanolic acid, harpagoside, boswellic acid and gentiopicroside. The extracts and compounds were tested against 29 aerobic and anaerobic bacteria and yeasts in the agar dilution test. U. barbata-extract and usnic acid were the most active compounds, especially in anaerobic bacteria. Usnea CO2-extract effectively inhibited the growth of several Gram-positive bacteria like Staphylococcus aureus (including methicillin-resistant strains - MRSA), Propionibacterium acnes and Corynebacterium species. Growth of the dimorphic yeast Malassezia furfur was also inhibited by Usnea-extract. Besides the Usnea-extract, Rosmarinus-, Salvia-, Boswellia- and Harpagophytum-extracts proved to be effective against a panel of bacteria. It is concluded that due to their antimicrobial effects some of the plant extracts may be used for the topical treatment of skin disorders like acne vulgaris and seborrhoic eczema.

  8. Identification of acquired antimicrobial resistance genes

    DEFF Research Database (Denmark)

    Zankari, Ea; Hasman, Henrik; Cosentino, Salvatore

    2012-01-01

    ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laborato......ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic...... laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.MethodsWe developed a web-based method, ResFinder that uses BLAST for identification of acquired...... antimicrobial resistance genes in whole-genome data. As input, the method can use both pre-assembled, complete or partial genomes, and short sequence reads from four different sequencing platforms. The method was evaluated on 1862 GenBank files containing 1411 different resistance genes, as well as on 23 de...

  9. Management of neonatal sepsis at Muhimbili National Hospital in Dar es Salaam: diagnostic accuracy of C-reactive protein and newborn scale of sepsis and antimicrobial resistance pattern of etiological bacteria.

    Science.gov (United States)

    Mkony, Martha Franklin; Mizinduko, Mucho Michael; Massawe, Augustine; Matee, Mecky

    2014-12-05

    We determined the accuracy of Rubarth's newborn scale of sepsis and C- reactive protein in diagnosing neonatal sepsis and assessed antimicrobial susceptibility pattern of etiological bacteria. This cross sectional study was conducted at Muhimbili National Hospital in Dar es Salaam, Tanzania between July 2012 and March 2013. Neonates suspected to have sepsis underwent physical examination using Rubarth's newborn scale of sepsis (RNSOS). Blood was taken for culture and antimicrobial sensitivity testing, full blood picture and C - reactive protein (CRP) performed 12 hours apart. The efficacy of RNSOS and serial CRP was assessed by calculating sensitivity, specificity, negative and positive predictive values, receiver operating characteristics (ROC) analysis as well as likelihood ratios (LHR) with blood culture result used as a gold standard. Out of 208 blood samples, 19.2% had a positive blood culture. Single CRP had sensitivity and specificity of 87.5% and 70.9% respectively, while RNSOS had sensitivity of 65% and specificity of 79.7%. Serial CRP had sensitivity of 69.0% and specificity of 92.9%. Combination of CRP and RNSOS increased sensitivity to 95.6% and specificity of 56.4%. Combination of two CRP and RNSOS decreased sensitivity to 89.1% but increased specificity to 74%. ROC for CRP was 0.86; and for RNSOS was 0.81. For CRP the LHR for positive test was 3 while for negative test was 0.18, while for RNSOS the corresponding values were 3.24 and for negative test was 0.43. Isolated bacteria were Klebsiella spp 14 (35%), Escherichia coli 12 (22.5%), Coagulase negative staphlococci 9 (30%), Staphylococcus aureus 4 (10%), and Pseudomonas spp 1 (2.5%). The overall resistance to the WHO recommended first line antibiotics was 100%, 92% and 42% for cloxacillin, ampicillin and gentamicin, respectively. For the second line drugs resistance was 45%, 40%, and 7% for ceftriaxone, vancomycin and amikacin respectively. Single CRP in combination with RNSOS can be used for rapid

  10. Systemic resistance induced by rhizosphere bacteria

    NARCIS (Netherlands)

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    1998-01-01

    Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean,

  11. Statins: antimicrobial resistance breakers or makers?

    Directory of Open Access Journals (Sweden)

    Humphrey H.T. Ko

    2017-10-01

    Full Text Available Introduction The repurposing of non-antibiotic drugs as adjuvant antibiotics may help break antimicrobial resistance (AMR. Statins are commonly prescribed worldwide to lower cholesterol. They also possess qualities of AMR “breakers”, namely direct antibacterial activity, synergism with antibiotics, and ability to stimulate the host immune system. However, statins’ role as AMR breakers may be limited. Their current extensive use for cardiovascular protection might result in selective pressures for resistance, ironically causing statins to be AMR “makers” instead. This review examines statins’ potential as AMR breakers, probable AMR makers, and identifies knowledge gaps in a statin-bacteria-human-environment continuum. The most suitable statin for repurposing is identified, and a mechanism of antibacterial action is postulated based on structure-activity relationship analysis. Methods A literature search using keywords “statin” or “statins” combined with “minimum inhibitory concentration” (MIC was performed in six databases on 7th April 2017. After screening 793 abstracts, 16 relevant studies were identified. Unrelated studies on drug interactions; antifungal or antiviral properties of statins; and antibacterial properties of mevastatin, cerivastatin, antibiotics, or natural products were excluded. Studies involving only statins currently registered for human use were included. Results Against Gram-positive bacteria, simvastatin generally exerted the greatest antibacterial activity (lowest MIC compared to atorvastatin, rosuvastatin, and fluvastatin. Against Gram-negative bacteria, atorvastatin generally exhibited similar or slightly better activity compared to simvastatin, but both were more potent than rosuvastatin and fluvastatin. Discussion Statins may serve as AMR breakers by working synergistically with existing topical antibiotics, attenuating virulence factors, boosting human immunity, or aiding in wound healing. It

  12. Antimicrobial drug resistance of Escherichia coli isolated from poultry abattoir workers at risk and broilers on antimicrobials

    Directory of Open Access Journals (Sweden)

    J.W. Oguttu

    2008-05-01

    Full Text Available Antimicrobial usage in food animals increases the prevalence of antimicrobial drug resistance among their enteric bacteria. It has been suggested that this resistance can in turn be transferred to people working with such animals, e.g. abattoir workers. Antimicrobial drug resistance was investigated for Escherichia coli from broilers raised on feed supplemented with antimicrobials, and the people who carry out evisceration, washing and packing of intestines in a high-throughput poultry abattoir in Gauteng, South Africa. Broiler carcasses were sampled from 6 farms, on each of which broilers are produced in a separate 'grow-out cycle'. Per farm, 100 caeca were randomly collected 5 minutes after slaughter and the contents of each were selectively cultured for E. coli. The minimum inhibitory concentration (MIC of each isolate was determined for the following antimicrobials : doxycycline, trimethoprim, sulphamethoxazole, ampicillin, enrofloxacin, fosfomycin, ceftriaxone and nalidixic acid. The same was determined for the faeces of 29 abattoir workers and 28 persons used as controls. The majority of isolates from broilers were resistant, especially to antimicrobials that were used on the farms in the study. Overall median MICs and the number of resistant isolates from abattoir workers (packers plus eviscerators tended to be higher than for the control group. However, no statistically significant differences were observed when the median MICs of antimicrobials used regularly in poultry and percentage resistance were compared, nor could an association between resistance among the enteric E. coli from packers and those from broilers be demonstrated.

  13. Current resistance issues in antimicrobial therapy | Senekal ...

    African Journals Online (AJOL)

    The human gut contains 1013 - 1014 bacteria that are exposed to selection pressure whenever antibiotics are administered.1 The same selection pressure applies to respiratory flora, which is one of the reasons why antimicrobial therapy prescribed for the treatment of respiratory tract infection should aim to eradicate ...

  14. Human health hazard from antimicrobial-resistant enterococci in animals and food

    DEFF Research Database (Denmark)

    Heuer, Ole Eske; Hammerum, Anette Marie; Collignon, P.

    2006-01-01

    The use of antimicrobial agents in the modern farm industry has created a reservoir of resistant bacteria in food animals. Foods of animal origin are often contaminated with enterococci that are likely to contribute resistance genes, virulence factors, or other properties to enterococci IN humans....... The potential hazard to human health from antimicrobial-resistant enterococci in animals is questioned by some scientists because of evidence of host specificity of enterococci. Similarly, the occurrences of specific nosocomial clones of enterococci in hospitals have lead to the misconception that antimicrobial-resistant...... to change the current view that antimicrobial-resistant enterococci from animals pose a threat to human health. On the contrary, antimicrobial resistance genes appear to spread freely between enterococci from different reservoirs, irrespective of their apparent host association....

  15. Coagulase-negative staphylococci: pathogenesis, occurrence of antibiotic resistance genes and in vitro effects of antimicrobial agents on biofilm-growing bacteria.

    Science.gov (United States)

    Szczuka, Ewa; Jabłońska, Lucyna; Kaznowski, Adam

    2016-12-01

    Coagulase-negative staphylococci (CoNS) are opportunistic pathogens that particularly cause infections in patients with implanted medical devices. The present research was performed to study the virulence potential of 53 clinical isolates of Staphylococcus capitis, Staphylococcus auricularis, Staphylococcus lugdunensis, Staphylococcus simulans, Staphylococcus cohnii and Staphylococcus caprae. All clinical strains were clonally unrelated. Isolates carried genes encoding resistance to β-lactam (mecA) (15 %), aminoglycoside [aac(6')/aph(2″)(11 %), aph (3')-IIIa (15 %), ant(4')-Ia (19 %)] and macrolide, lincosamide and streptogramin B (MLSB) [erm(A) (4 %), erm(B) (13 %), erm(C) (41 %), msr(A) (11 %)] antibiotics. CoNS isolates (64 %) were able to form biofilms. Confocal laser scanning microscopy revealed that these biofilms formed a three-dimensional structure composed mainly of living cells. All biofilm-positive strains carried the ica operon. In vitro studies demonstrated that a combination treatment with tigecycline and rifampicin was more effective against biofilms than one with ciprofloxacin and rifampicin. The minimum biofilm eradication concentration values were 0.062-0.5 µg ml-1 for tigecycline/rifampicin and 0.250-2 µg ml-1 for ciprofloxacin/rifampicin. All CoNS strains adhered to the human epithelial cell line HeLa, and more than half of the isolates were able to invade the HeLa cells, although most invaded relatively poorly. The virulence of CoNS is also attributed to their cytotoxic effects on HeLa cells. Incubation of HeLa cells with culture supernatant of the CoNS isolates resulted in cell death. The results indicate that the pathogenicity of S. capitis, S. auricularis, S. lugdunensis, S. cohnii and S. caprae is multi-factorial, involving the ability of these bacteria to adhere to human epithelial cells, form biofilms and invade and destroy human cells.

  16. Danish integrated antimicrobial in resistance monitoring and research program

    DEFF Research Database (Denmark)

    Hammerum, Anette Marie; Heuer, Ole Eske; Emborg, Hanne-Dorthe

    2007-01-01

    a systematic and continuous monitoring program of antimicrobial drug consumption and antimicrobial agent resistance in animals, food, and humans, the Danish Integrated Antimicrobial Resistance Monitoring and Research Program (DANMAP). Monitoring of antimicrobial drug resistance and a range of research......Resistance to antimicrobial agents is an emerging problem worldwide. Awareness of the undesirable consequences of its widespread occurrence has led to the initiation of antimicrobial agent resistance monitoring programs in several countries. In 1995, Denmark was the first country to establish...... activities related to DANMAP have contributed to restrictions or bans of use of several antimicrobial agents in food animals in Denmark and other European Union countries....

  17. Correlation between antimicrobial consumption and antimicrobial resistance of Pseudomonas aeruginosa in a hospital setting: a 10-year study.

    Science.gov (United States)

    Mladenovic-Antic, S; Kocic, B; Velickovic-Radovanovic, R; Dinic, M; Petrovic, J; Randjelovic, G; Mitic, R

    2016-10-01

    Antimicrobial resistance is one of the greatest threats to human health. One of the most important factors leading to the emergence of resistant bacteria is overuse of antibiotics. The purpose of this study was to investigate the correlation between antimicrobial usage and bacterial resistance of Pseudomonas aeruginosa (P. aeruginosa) over a 10-year period in the Clinical Center Niš, one of the biggest tertiary care hospitals in Serbia. We focused on possible relationships between the consumption of carbapenems and beta-lactam antibiotics and the rates of resistance of P. aeruginosa to carbapenems. We recorded utilization of antibiotics expressed as defined daily doses per 100 bed days (DBD). Bacterial resistance was reported as the percentage of resistant isolates (percentage of all resistant and intermediate resistant strains) among all tested isolates. A significant increasing trend in resistance was seen in imipenem (P resistance to amikacin (P resistance to imipenem in P. aeruginosa shows significance (P resistance to meropenem showed a trend towards significance (P > 0·05, Pearson r = 0·607). We found a very good correlation between the use of all beta-lactam and P. aeruginosa resistance to carbapenems (P antimicrobial resistance to carbapenems, significant correlations between the consumption of antibiotics, especially carbapenems and beta-lactams, and rates of antimicrobial resistance of P. aeruginosa to imipenem and meropenem. © 2016 John Wiley & Sons Ltd.

  18. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health.

    Science.gov (United States)

    Cabello, Felipe C; Godfrey, Henry P; Tomova, Alexandra; Ivanova, Larisa; Dölz, Humberto; Millanao, Ana; Buschmann, Alejandro H

    2013-07-01

    The worldwide growth of aquaculture has been accompanied by a rapid increase in therapeutic and prophylactic usage of antimicrobials including those important in human therapeutics. Approximately 80% of antimicrobials used in aquaculture enter the environment with their activity intact where they select for bacteria whose resistance arises from mutations or more importantly, from mobile genetic elements containing multiple resistance determinants transmissible to other bacteria. Such selection alters biodiversity in aquatic environments and the normal flora of fish and shellfish. The commonality of the mobilome (the total of all mobile genetic elements in a genome) between aquatic and terrestrial bacteria together with the presence of residual antimicrobials, biofilms, and high concentrations of bacteriophages where the aquatic environment may also be contaminated with pathogens of human and animal origin can stimulate exchange of genetic information between aquatic and terrestrial bacteria. Several recently found genetic elements and resistance determinants for quinolones, tetracyclines, and β-lactamases are shared between aquatic bacteria, fish pathogens, and human pathogens, and appear to have originated in aquatic bacteria. Excessive use of antimicrobials in aquaculture can thus potentially negatively impact animal and human health as well as the aquatic environment and should be better assessed and regulated. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Bacterial Resistance to the Tetracyclines and Antimicrobial ...

    African Journals Online (AJOL)

    Optimizing of tetracycline antibiotics dosing and duration in human and animal healthcare and food production might help minimize the emergence of resistance in some situations. New approaches to antimicrobial chemotherapy are needed if we are to survive the increasing rates of tetracycline antibiotic resistance ...

  20. Isolation and identification of local bacteria endophyte and screening of its antimicrobial property against pathogenic bacteria and fungi

    Science.gov (United States)

    Fikri, Ahmad Syairazie Ibrahim; Rahman, Irman Abdul; Nor, Norefrina Shafinaz Md; Hamzah, Ainon

    2018-04-01

    Endophytes are organisms, often fungi and bacteria that live in living plant cells. These organisms reside in the living tissues of the host plant in a variety of relationships, ranging from symbiotic to slightly pathogenic. The endophytes may produce a plethora of substances that have potential to be used in modern medicine, agriculture and industry. The aims of this study are to isolate, identify and screening antimicrobial activity of bacterial endophytes. The endophytes were isolated using nutrient agar, incubated at 37°C for 48 hours. Identification of the isolates were done based on morphological characteristics, biochemical tests and 16S rDNA molecular analysis. Disk diffusion method was used to screen for antimicrobial activity of metabolites from endophytes against pathogenic bacteria. Screening for antifungal activity of selected endophytes was done using dual culture method againts pathogenic fungi followed by Kirby-Bauer method. Results showed endophytes designated as B2c and B7b have positive antimicrobial activity. The metabolites from isolate B2c showed antimicrobial activity against pathogenic bacteria methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus and Staphylococcus epidermis, while isolate B7b have positive activities againts MRSA, S. aureus and Pseudomonas aeruginosa. Isolates B2c displayed antifungal activity against Fusarium oxysporum, Fusarium solani, Phytophthora palmivora and Colletotrichum gloeosporioides. Identification using biochemical tests and 16S rDNA sequences identified isolate B2c as Pseudomonas resinovorans with 97% homology and isolate B7b as Bacillus subtilis with 98% homology.

  1. Quantifying antimicrobial resistance at veal calf farms.

    Directory of Open Access Journals (Sweden)

    Angela B Bosman

    Full Text Available This study was performed to determine a sampling strategy to quantify the prevalence of antimicrobial resistance on veal calf farms, based on the variation in antimicrobial resistance within and between calves on five farms. Faecal samples from 50 healthy calves (10 calves/farm were collected. From each individual sample and one pooled faecal sample per farm, 90 selected Escherichia coli isolates were tested for their resistance against 25 mg/L amoxicillin, 25 mg/L tetracycline, 0.5 mg/L cefotaxime, 0.125 mg/L ciprofloxacin and 8/152 mg/L trimethoprim/sulfamethoxazole (tmp/s by replica plating. From each faecal sample another 10 selected E. coli isolates were tested for their resistance by broth microdilution as a reference. Logistic regression analysis was performed to compare the odds of testing an isolate resistant between both test methods (replica plating vs. broth microdilution and to evaluate the effect of pooling faecal samples. Bootstrap analysis was used to investigate the precision of the estimated prevalence of resistance to each antimicrobial obtained by several simulated sampling strategies. Replica plating showed similar odds of E. coli isolates tested resistant compared to broth microdilution, except for ciprofloxacin (OR 0.29, p ≤ 0.05. Pooled samples showed in general lower odds of an isolate being resistant compared to individual samples, although these differences were not significant. Bootstrap analysis showed that within each antimicrobial the various compositions of a pooled sample provided consistent estimates for the mean proportion of resistant isolates. Sampling strategies should be based on the variation in resistance among isolates within faecal samples and between faecal samples, which may vary by antimicrobial. In our study, the optimal sampling strategy from the perspective of precision of the estimated levels of resistance and practicality consists of a pooled faecal sample from 20 individual animals, of which

  2. Antimicrobial resistance: A global emerging threat to public health systems.

    Science.gov (United States)

    Ferri, Maurizio; Ranucci, Elena; Romagnoli, Paola; Giaccone, Valerio

    2017-09-02

    Antimicrobial resistance (AMR) became in the last two decades a global threat to public health systems in the world. Since the antibiotic era, with the discovery of the first antibiotics that provided consistent health benefits to human medicine, the misuse and abuse of antimicrobials in veterinary and human medicine have accelerated the growing worldwide phenomenon of AMR. This article presents an extensive overview of the epidemiology of AMR, with a focus on the link between food producing-animals and humans and on the legal framework and policies currently implemented at the EU level and globally. The ways of responding to the AMR challenges foresee an array of measures that include: designing more effective preventive measures at farm level to reduce the use of antimicrobials; development of novel antimicrobials; strengthening of AMR surveillance system in animal and human populations; better knowledge of the ecology of resistant bacteria and resistant genes; increased awareness of stakeholders on the prudent use of antibiotics in animal productions and clinical arena; and the public health and environmental consequences of AMR. Based on the global nature of AMR and considering that bacterial resistance does not recognize barriers and can spread to people and the environment, the article ends with specific recommendations structured around a holistic approach and targeted to different stakeholders.

  3. Pathogenic Bacteria and their Susceptibility to Antimicrobial Agents ...

    African Journals Online (AJOL)

    African Journal of Paediatric Surgery ... Background: Antibiotic-resistant Gram negative bacteria are increasingly emerging as ... Conclusion: There is a high prevalence of urinary tract infections and high incidence of multi-drug resistant

  4. Antimicrobial resistance among Salmonella enterica serovar Infantis from broiler carcasses in Serbia

    Science.gov (United States)

    Nikolić, A.; Baltić, T.; Velebit, B.; Babić, M.; Milojević, L.; Đorđević, V.

    2017-09-01

    This study aimed to investigate antimicrobial resistance of Salmonella Infantis isolates from poultry carcasses in Serbia. A total of 48 Salmonella isolates were examined for antimicrobial resistance. A panel of 10 antibiotics was selected for testing. Isolates showed resistance to sulfamethoxazole, ceftazidime and cefotaxime (100%). However, the highest number of Salmonella Infantis isolates were sensitive to chloramphenicol. The usage of antibiotics in food producing animals could result in antimicrobial resistance pathogenic bacteria especially Salmonella spp. in poultry, which may be transmitted to humans through the food chain and increase risk of treatment failures.

  5. Antimicrobial effect of Malaysian vegetables against enteric bacteria

    Directory of Open Access Journals (Sweden)

    Hassanain Al-Talib

    2016-03-01

    Conclusions: Garlic had excellent antimicrobial effects against enteric bacteria and was recommended to be given to patients with gastroenteritis. The other vegetables (pennywort, mint, parsley and celery showed no inhibitory effects on enteric bacteria but still can be used for its richness in vitamins and fibers. The performance of the well diffusion method was better than that of the disc diffusion method in detecting the antibacterial effects of green vegetables.

  6. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota

    DEFF Research Database (Denmark)

    Cantas, L.; Shah, Syed Q A; Cavaco, Lina

    2013-01-01

    The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting...... from use, misuse, and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance (AMR) genes have been suggested to originate from environmental bacteria, as clinically relevant resistance genes have been detected on the chromosome of environmental bacteria....... As only a few new antimicrobials have been developed in the last decade, the further evolution of resistance poses a serious threat to public health. Urgent measures are required not only to minimize the use of antimicrobials for prophylactic and therapeutic purposes but also to look for alternative...

  7. Antimicrobial resistance surveillance of flomoxef in China.

    Science.gov (United States)

    Cui, Lanqing; Li, Yun; Lv, Yuan; Xue, Feng; Liu, Jian

    2015-05-01

    The aim of this study was to investigate the susceptibility of flomoxef against clinical isolates collected from China and understand the trend of antimicrobial resistance. A total of 2955 pathogenic strains isolated from 18 tertiary hospitals in 18 cities of China over the period from July 2011 to June 2012 were studied. And the susceptibility tests were performed using agar dilution method recommended by CLSI in central laboratory. Flomoxef showed good potency against Enterobacteriaceae with susceptibility rate 85%-100%. The susceptibility rates of flomoxef against Staphylococcus spp. isolates were 63.9%-92.2%; 98.8% of MSSA and 88.2% of MSSE were susceptible to this drug. For other tested bacteria including Moraxella catarrhalis, Haemophilus spp., and Streptococcus spp. (except Viridans group streptococci) flomoxef showed good potency with susceptibility rate more than 95%. All these results strongly suggest that flomoxef is a potent antibacterial agent against major pathogens in China. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Impact of interspecific interactions on antimicrobial activity among soil bacteria

    NARCIS (Netherlands)

    Tyc, O.; Berg, van den M.; Gerards, S.; Veen, van J.A.; Raaijmakers, J.M.; Boer, de W.; Garbeva, P.

    2014-01-01

    Certain bacterial species produce antimicrobial compounds only in the presence of a competing species. However, little is known on the frequency of interaction-mediated induction of antibiotic compound production in natural communities of soil bacteria. Here we developed a high-throughput method to

  9. Seafood pathogens and information on antimicrobial resistance: A review.

    Science.gov (United States)

    Elbashir, S; Parveen, S; Schwarz, J; Rippen, T; Jahncke, M; DePaola, A

    2018-04-01

    Seafood-borne diseases are a major public health hazard in the United States and worldwide. Per capita, seafood consumption has increased globally during recent decades. Seafood importation and domestic aquaculture farming has also increased. Moreover, several recent outbreaks of human gastroenteritis have been linked to the consumption of contaminated seafood. Investigation of seafood-borne illnesses caused by norovirus, and Vibrio, and other bacteria and viruses require a concrete knowledge about the pathogenicity and virulence properties of the etiologic agents. This review explores pathogens that have been associated with seafood and resulting outbreaks in the U.S. and other countries as well as the presence of antimicrobial resistance in the reviewed pathogens. The spectrum of such resistance is widening due to the overuse, misuse, and sub-therapeutic application of antimicrobials in humans and animals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Antimicrobial resistance in Libya: 1970–2011

    Directory of Open Access Journals (Sweden)

    Khalifa Sifaw Ghenghesh

    2013-03-01

    Full Text Available Resistance to antimicrobial agents is a major health problem that affects the whole world. Providing information on the past state of antimicrobial resistance in Libya may assist the health authorities in addressing the problem more effectively in the future. Information was obtained mainly from Highwire Press (including PubMed search for the period 1970–2011 using the terms ‘antibiotic resistance in Libya’, ‘antimicrobial resistance in Libya’, ‘tuberculosis in Libya’, and ‘primary and acquired resistance in Libya’ in title and abstract. From 1970 to 2011 little data was available on antimicrobial resistance in Libya due to lack of surveillance and few published studies. Available data shows high resistance rates for Salmonella species in the late 1970s and has remained high to the present day. High prevalence rates (54–68% of methicillin-resistant Staphylococcus aureus (MRSA were reported in the last decade among S. aureus from patients with burns and surgical wound infections. No reports were found of vancomycin-resistant S. aureus (VRSA or vancomycin-intermediate-resistant S. aureus (VISA using standard methods from Libya up to the end of 2011. Reported rates of primary (i.e. new cases and acquired (i.e. retreatment cases multidrug-resistant tuberculosis (MDR-TB from the eastern region of Libya in 1971 were 16.6 and 33.3% and in 1976 were 8.6 and 14.7%, in western regions in 1984–1986 were 11 and 21.5% and in the whole country in 2011 were estimated at 3.4 and 29%, respectively. The problem of antibiotic resistance is very serious in Libya. The health authorities in particular and society in general should address this problem urgently. Establishing monitoring systems based on the routine testing of antimicrobial sensitivity and education of healthcare workers, pharmacists, and the community on the health risks associated with the problem and benefits of prudent use of antimicrobials are some steps that can be taken to

  11. A European study on the relationship between antimicrobial use and antimicrobial resistance

    NARCIS (Netherlands)

    Bronzwaer, SLAM; Cars, O; Buchholz, U; Molstad, S; Goettsch, W; Veldhuijzen, IK; Kool, JL; Sprenger, MJW; Degener, JE

    In Europe, antimicrobial resistance has been monitored since 1998 by the European Antimicrobial Resistance Surveillance System (EARSS). We examined the relationship between penicillin nonsusceptibility of invasive isolates of Streptococcus pneumoniae and antibiotic sales. Information was collected

  12. 76 FR 16795 - The National Antimicrobial Resistance Monitoring System Strategic Plan 2011-2015; Request for...

    Science.gov (United States)

    2011-03-25

    ...] The National Antimicrobial Resistance Monitoring System Strategic Plan 2011-2015; Request for Comments..., FDA requested comments on a document for the National Antimicrobial Resistance Monitoring System....fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistance...

  13. SCREENING OF PLANT EXTRACTS FOR ANTIMICROBIAL ACTIVITY AGAINST BACTERIA

    Directory of Open Access Journals (Sweden)

    Alexander Vatľák

    2014-02-01

    Full Text Available The aim of this study was antimicrobial action of the methanolic extracts of Equisetum arvense L. and Urtica dioica L. against gramnegative and grampositive bacteria. The antimicrobial activities of the extracts against gramnegative bacteria: Escherichia coli CCM 3988, Listeria ivanovii CCM 5884, Listeria innocua CCM 4030, Pseudomonas aeruginosa CCM 1960, Serratia rubidaea CCM 4684 and grampositive bacteria: Brochothrix thermosphacta CCM 4769, Enterococcus raffinosus CCM 4216, Lactobacillus rhamnosus CCM 1828, Paenobacillus larvae CCM 4483 and Staphylococcus epidermis CCM 4418 were determined by the disc diffusion method and the microbroth dilution method according to CLSI. Probit analysis was used in this experiment. Of the 2 plant extracts tested, all extracts showed antimicrobial activity against one or more species of microorganisms. The most antimicrobial activity showed methanolic plant extract of E. arvense against S. epidermis with disc diffusion method and with microbroth dilution method against S. rubidaea and plant extract Urtica dioica with disc diffusion method against P. aeruginosa and with microbroth dilution method against S. rubidaea and E. coli.

  14. Studies on tridecaptin B(1), a lipopeptide with activity against multidrug resistant Gram-negative bacteria.

    Science.gov (United States)

    Cochrane, Stephen A; Lohans, Christopher T; van Belkum, Marco J; Bels, Manon A; Vederas, John C

    2015-06-07

    Previously other groups had reported that Paenibacillus polymyxa NRRL B-30507 produces SRCAM 37, a type IIA bacteriocin with antimicrobial activity against Campylobacter jejuni. Genome sequencing and isolation of antimicrobial compounds from this P. polymyxa strain show that the antimicrobial activity is due to polymyxins and tridecaptin B1. The complete structural assignment, synthesis, and antimicrobial profile of tridecaptin B1 is reported, as well as the putative gene cluster responsible for its biosynthesis. This peptide displays strong activity against multidrug resistant Gram-negative bacteria, a finding that is timely to the current problem of antibiotic resistance.

  15. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria

    OpenAIRE

    Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha

    2014-01-01

    In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon ...

  16. Comparative Review of Antimicrobial Resistance in Humans and Nonhuman Primates.

    Science.gov (United States)

    Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Habing, Gregory G

    2018-04-02

    Antimicrobial resistance (AMR) presents serious threats to human and animal health. Although AMR of pathogens is often evaluated independently between humans and animals, comparative analysis of AMR between humans and animals is necessary for zoonotic pathogens. Major surveillance systems monitor AMR of zoonotic pathogens in humans and food animals, but comprehensive AMR data in veterinary medicine is not diligently monitored for most animal species with which humans commonly contact, including NHP. The objective of this review is to provide a complete report of the prevalences of AMR among zoonotic bacteria that present the greatest threats to NHP, occupational, and public health. High prevalences of AMR exist among Shigella, Campylobacter, and Yersinia, including resistance to antimicrobials important to public health, such as macrolides. Despite improvements in regulations, standards, policies, practices, and zoonotic awareness, occupational exposures to and illnesses due to zoonotic pathogens continue to be reported and, given the documented prevalences of AMR, constitute an occupational and public health risk. However, published literature is sparse, thus indicating the need for veterinarians to proactively monitor AMR in dangerous zoonotic bacteria, to enable veterinarians to make more informed decisions to maximize antimicrobial therapy and minimize occupational risk.

  17. Prevalence and antimicrobial resistance pattern of coagulase ...

    African Journals Online (AJOL)

    Prevalence and antimicrobial resistance pattern of coagulase negative Staphylococci isolated from pigs and in-contact humans in Jos Metropolis, Nigeria. ... (53/401) of the isolates were CoNS species based on confirmatory test with Microgen biochemical kit and were further subjected to antibiotic susceptibility testing.

  18. Bacteria-Triggered Release of Antimicrobial Agents

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2014-01-01

    Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular...... bacterial lipases are particularly abundant at sites of infection. Herein it is shown how active or proactive compounds attached to polymeric surfaces using lipase‐sensitive linkages, such as fatty acid esters or anhydrides, may be released in response to infection. Proof‐of‐concept of the responsive...

  19. Relation between antimicrobial use and resistance in Belgian pig herds

    OpenAIRE

    Callens, Benedicte; Boyen, Filip; Maes, Dominiek; Haesebrouck, Freddy; Butaye, Patrick; Dewulf, Jeroen

    2011-01-01

    The aim of this study was to determine the link between the characteristics of antimicrobial therapy and occurrence of antimicrobial resistance in Escherichia coli of clinically healthy pigs exposed to antimicrobial treatments. A total of 918 Escherichia coli isolates were obtained from faecal samples, collected from 50 pig herds at the end of the fattening period and susceptibility was tested towards 15 different antimicrobial agents, using the disk diffusion method. The Antimicrobial Resist...

  20. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance.

    Science.gov (United States)

    Cabello, Felipe C; Godfrey, Henry P; Buschmann, Alejandro H; Dölz, Humberto J

    2016-07-01

    Aquaculture uses hundreds of tonnes of antimicrobials annually to prevent and treat bacterial infection. The passage of these antimicrobials into the aquatic environment selects for resistant bacteria and resistance genes and stimulates bacterial mutation, recombination, and horizontal gene transfer. The potential bridging of aquatic and human pathogen resistomes leads to emergence of new antimicrobial-resistant bacteria and global dissemination of them and their antimicrobial resistance genes into animal and human populations. Efforts to prevent antimicrobial overuse in aquaculture must include education of all stakeholders about its detrimental effects on the health of fish, human beings, and the aquatic ecosystem (the notion of One Health), and encouragement of environmentally friendly measures of disease prevention, including vaccines, probiotics, and bacteriophages. Adoption of these measures is a crucial supplement to efforts dealing with antimicrobial resistance by developing new therapeutic agents, if headway is to be made against the increasing problem of antimicrobial resistance in human and veterinary medicine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Antimicrobial resistance determinant microarray for analysis of multi-drug resistant isolates

    Science.gov (United States)

    Taitt, Chris Rowe; Leski, Tomasz; Stenger, David; Vora, Gary J.; House, Brent; Nicklasson, Matilda; Pimentel, Guillermo; Zurawski, Daniel V.; Kirkup, Benjamin C.; Craft, David; Waterman, Paige E.; Lesho, Emil P.; Bangurae, Umaru; Ansumana, Rashid

    2012-06-01

    The prevalence of multidrug-resistant infections in personnel wounded in Iraq and Afghanistan has made it challenging for physicians to choose effective therapeutics in a timely fashion. To address the challenge of identifying the potential for drug resistance, we have developed the Antimicrobial Resistance Determinant Microarray (ARDM) to provide DNAbased analysis for over 250 resistance genes covering 12 classes of antibiotics. Over 70 drug-resistant bacteria from different geographic regions have been analyzed on ARDM, with significant differences in patterns of resistance identified: genes for resistance to sulfonamides, trimethoprim, chloramphenicol, rifampin, and macrolide-lincosamidesulfonamide drugs were more frequently identified in isolates from sources in Iraq/Afghanistan. Of particular concern was the presence of genes responsible for resistance to many of the last-resort antibiotics used to treat war traumaassociated infections.

  2. DEVELOPMENT OF RESISTANCE IN BACTERIA AGAINST ANTI - MICROBIAL AGENTS: REASONS, THREATS AND ONGOING ENCOUNTER

    Directory of Open Access Journals (Sweden)

    Shibabrata Pattanayak

    2011-07-01

    Full Text Available Development of Multi Druug Resistant bacteria is creating a very severe problem in anti-microbial chemotherapy. Many recently developed antibiotics are found incapable to control resistant organisms.The reasons of development of resistance gene in the bacterial plasmid and their quick spread among various related and unrelated bacteria are analysed in this article along with discussion of world wide ongoing research to combat the problem.

  3. DEVELOPMENT OF RESISTANCE IN BACTERIA AGAINST ANTI - MICROBIAL AGENTS: REASONS, THREATS AND ONGOING ENCOUNTER

    OpenAIRE

    Shibabrata Pattanayak

    2011-01-01

    Development of Multi Druug Resistant bacteria is creating a very severe problem in anti-microbial chemotherapy. Many recently developed antibiotics are found incapable to control resistant organisms.The reasons of development of resistance gene in the bacterial plasmid and their quick spread among various related and unrelated bacteria are analysed in this article along with discussion of world wide ongoing research to combat the problem.

  4. A novel antimicrobial peptide against dental-caries-associated bacteria.

    Science.gov (United States)

    Chen, Long; Jia, Lili; Zhang, Qiang; Zhou, Xirui; Liu, Zhuqing; Li, Bingjie; Zhu, Zhentai; Wang, Fenwei; Yu, Changyuan; Zhang, Qian; Chen, Feng; Luo, Shi-Zhong

    2017-10-01

    Dental caries, a highly prevalent oral disease, is primarily caused by pathogenic bacteria infection, and most of them are anaerobic. Herein, we investigated the activity of a designed antimicrobial peptide ZXR-2, and found it showed broad-spectrum activity against a variety of Gram-positive and Gram-negative oral bacteria, particularly the caries-related taxa Streptococcus mutans. Time-course killing assays indicated that ZXR-2 killed most bacterial cells within 5 min at 4 × MIC. The mechanism of ZXR-2 involved disruption of cell membranes, as observed by scanning electron microscopy. Moreover, ZXR-2 inhibited the formation of S. mutans biofilm, but showed limited hemolytic effect. Based on its potent antimicrobial activity, rapid killing, and inhibition of S. mutans biofilm formation, ZXR-2 represents a potential therapeutic for the prevention and treatment of dental caries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Multidrug-Resistant Enterococcal Infections: New Compounds, Novel Antimicrobial Therapies?

    Science.gov (United States)

    van Harten, Roel M; Willems, Rob J L; Martin, Nathaniel I; Hendrickx, Antoni P A

    2017-06-01

    Over the past two decades infections due to antibiotic-resistant bacteria have escalated world-wide, affecting patient morbidity, mortality, and health care costs. Among these bacteria, Enterococcus faecium and Enterococcus faecalis represent opportunistic nosocomial pathogens that cause difficult-to-treat infections because of intrinsic and acquired resistance to a plethora of antibiotics. In recent years, a number of novel antimicrobial compound classes have been discovered and developed that target Gram-positive bacteria, including E. faecium and E. faecalis. These new antibacterial agents include teixobactin (targeting lipid II and lipid III), lipopeptides derived from nisin (targeting lipid II), dimeric vancomycin analogues (targeting lipid II), sortase transpeptidase inhibitors (targeting the sortase enzyme), alanine racemase inhibitors, lipoteichoic acid synthesis inhibitors (targeting LtaS), various oxazolidinones (targeting the bacterial ribosome), and tarocins (interfering with teichoic acid biosynthesis). The targets of these novel compounds and mode of action make them very promising for further antimicrobial drug development and future treatment of Gram-positive bacterial infections. Here we review current knowledge of the most favorable anti-enterococcal compounds along with their implicated modes of action and efficacy in animal models to project their possible future use in the clinical setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Resistance in bacteria of the food chain: epidemiology and control strategies

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Wegener, Henrik Caspar; Collignon, P.

    2008-01-01

    quantification of the transmission difficult. The exposure of humans to antimicrobial resistance from food animals can be controlled by either limiting the selective pressure from antimicrobial usage or by limiting the spread of the bacteria/genes. A number of control options are reviewed, including drug...... licensing, removing financial incentives, banning or restricting the use of certain drugs, altering prescribers behavior, improving animal health, improving hygiene and implementing microbial criteria for certain types of resistant pathogens for use in the control of trade of both food animals and food.......Bacteria have evolved multiple mechanisms for the efficient evolution and spread of antimicrobial resistance. Modern food production facilitates the emergence and spread of resistance through the intensive use of antimicrobial agents and international trade of both animals and food products...

  7. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.

    Science.gov (United States)

    Nuti, Ramya; Goud, Nerella S; Saraswati, A Prasanth; Alvala, Ravi; Alvala, Mallika

    2017-01-01

    Antimicrobial resistance (AMR) has posed a serious threat to global public health and it requires immediate action, preferably long term. Current drug therapies have failed to curb this menace due to the ability of microbes to circumvent the mechanisms through which the drugs act. From the drug discovery point of view, the majority of drugs currently employed for antimicrobial therapy are small molecules. Recent trends reveal a surge in the use of peptides as drug candidates as they offer remarkable advantages over small molecules. Newer synthetic strategies like organometalic complexes, Peptide-polymer conjugates, solid phase, liquid phase and recombinant DNA technology encouraging the use of peptides as therapeutic agents with a host of chemical functions, and tailored for specific applications. In the last decade, many peptide based drugs have been successfully approved by the Food and Drug Administration (FDA). This success can be attributed to their high specificity, selectivity and efficacy, high penetrability into the tissues, less immunogenicity and less tissue accumulation. Considering the enormity of AMR, the use of Antimicrobial Peptides (AMPs) can be a viable alternative to current therapeutics strategies. AMPs are naturally abundant allowing synthetic chemists to develop semi-synthetics peptide molecules. AMPs have a broad spectrum of activity towards microbes and they possess the ability to bypass the resistance induction mechanisms of microbes. The present review focuses on the potential applications of AMPs against various microbial disorders and their future prospects. Several resistance mechanisms and their strategies have also been discussed to highlight the importance in the current scenario. Breakthroughs in AMP designing, peptide synthesis and biotechnology have shown promise in tackling this challenge and has revived the interest of using AMPs as an important weapon in fighting AMR. Copyright© Bentham Science Publishers; For any queries

  8. Prevalence and antimicrobial resistance pattern of bacterial meningitis in Egypt

    Directory of Open Access Journals (Sweden)

    Shaban Lamyaa

    2009-09-01

    Full Text Available Abstract Infectious diseases are the leading cause of morbidity and mortality in the developing world. In Egypt bacterial diseases constitute a great burden, with several particular bacteria sustaining the leading role of multiple serious infections. This article addresses profound bacterial agents causing a wide array of infections including but not limited to pneumonia and meningitis. The epidemiology of such infectious diseases and the prevalence of Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae are reviewed in the context of bacterial meningitis. We address prevalent serotypes in Egypt, antimicrobial resistance patterns and efficacy of vaccines to emphasize the importance of periodic surveillance for appropriate preventive and treatment strategies.

  9. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria

    DEFF Research Database (Denmark)

    Ebbensgaard, Anna Elisabeth; Mordhorst, Hanne; Overgaard, Michael Toft

    2015-01-01

    The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various...... AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram...

  10. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    Directory of Open Access Journals (Sweden)

    Qing-Bin Yuan

    Full Text Available This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L. The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L. By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L. However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  11. The interaction between human antimicrobial use and the risk of foodborne zoonotic bacteria

    DEFF Research Database (Denmark)

    Koningstein, Maike

    of infection further due to the selective pressure put on other bacteria susceptible to the drug taken. Between 1999 – 2005, a total of 31,699 cases of Campylobacter were laboratory confirmed in Denmark, and thus enrolled in the study. We found that being diagnosed with Campylobacter was associated...... against invasive bacteria such as Campylobacter. In Manuscript III, the relation between clinical outcomes of infection with S. Typhimurium and the antimicrobial resistance profile of the causative strain was assessed, together with the association between outcome of infection and previous antimicrobial......) susceptibility profile had a higher odds of being hospitalised due to their salmonellosis (OR 2.5, 95%CI: 1.0 – 6.0), experience abdominal pain (OR 2.9, 95%CI:1.3 – 6.5), and feeling nauseated (OR 2.6, 95%CI: 1.1 – 6.2), than patients with a pansusceptible Salmonella. We found no increasing trend with increasing...

  12. Herd-level association between antimicrobial use and antimicrobial resistance in bovine mastitis Staphylococcus aureus isolates on Canadian dairy farms.

    Science.gov (United States)

    Saini, V; McClure, J T; Scholl, D T; DeVries, T J; Barkema, H W

    2012-04-01

    Surveillance of antimicrobial use and resistance is needed to manage antimicrobial resistance in bacteria. In this study, data were collected on antimicrobial use and resistance in Staphylococcus aureus (n=562), isolated from intramammary infections and (sub)clinical mastitis cases on 89 dairy farms in 4 regions of Canada [Alberta, Ontario, Québec, and the Maritime Provinces (Prince Edward Island, Nova Scotia, and New Brunswick)]. Dairy producers were asked to deposit empty drug containers into specially provided receptacles, and antimicrobial drug use rate was calculated to quantify antimicrobial use. Minimum inhibitory concentrations were determined using the Sensititer bovine mastitis plate system (TREK Diagnostic Systems Inc., Cleveland, OH), containing antimicrobials commonly used for mastitis treatment and control. Multivariable logistic regression models were built to determine herd-level risk factors of penicillin, ampicillin, pirlimycin, penicillin-novobiocin combination, tetracycline and sulfadimethoxine resistance in Staph. aureus isolates. Intramammary administration of the penicillin-novobiocin combination for dry cow therapy was associated with penicillin and ampicillin resistance [odds ratio (OR): 2.17 and 3.10, respectively]. Systemic administration of penicillin was associated with penicillin resistance (OR: 1.63). Intramammary administration of pirlimycin for lactating cow mastitis treatment was associated with pirlimycin resistance as well (OR: 2.07). Average herd parity was associated with ampicillin and tetracycline resistance (OR: 3.88 and 0.02, respectively). Average herd size was also associated with tetracycline resistance (OR: 1.02). Dairy herds in the Maritime region had higher odds of penicillin and lower odds of ampicillin resistance than dairy herds in Québec (OR: 2.18 and 0.19, respectively). Alberta dairy herds had lower odds of ampicillin and sulfadimethoxine resistance than dairy herds in Québec (OR: 0.04 and 0.08, respectively

  13. Antimicrobial Susceptibility/Resistance of Streptococcus Pneumoniae

    Science.gov (United States)

    Karcic, Emina; Aljicevic, Mufida; Bektas, Sabaheta; Karcic, Bekir

    2015-01-01

    Introduction: Pneumococcal infections are a major cause of morbidity and mortality worldwide, whose treatment is threatened with an increase in the number of strains resistant to antibiotic therapy. Goal: The main goal of this research was to investigate the presence of antimicrobial susceptibility/resistance of S. pneumoniae. Material and methods: Taken are swabs of the nose and nasopharynx, eye and ear. In vitro tests that were made in order to study the antimicrobial resistance of pneumococci are: disk diffusion method and E-test. Results: The resistance to inhibitors of cell wall synthesis was recorded at 39.17%, protein synthesis inhibitors 19.67%, folate antagonists 47.78% and quinolone in 1.11%. S. pneumoniae has shown drug resistance to erythromycin in 45%, clindamycin in 45%, chloramphenicol–0.56%, rifampicin–6.11%, tetracycline–4.67%, penicillin-G in 4.44%, oxacillin in 73.89%, ciprofloxacin in 1.11% and trimethoprim-sulfamethoxazole in 5.34% of cases. Conclusion: The highest resistance pneumococcus showed to erythromycin, clindamycin and trimethoprim-sulfamethoxazole and these should be avoided in the treatment. The least resistance pneumococcus showed to tetracycline, rifampicin, chloramphenicol, penicillin-G and ciprofloxacin. PMID:26236165

  14. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik's Cube of Clinical Microbiology?

    Science.gov (United States)

    Gajdács, Márió; Spengler, Gabriella; Urbán, Edit

    2017-11-07

    Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance purposes or otherwise is of paramount importance but the availability of these testing methods is usually limited. In this present review, our aim was to give an overview of the methods currently available for the identification (using phenotypic characteristics, biochemical testing, gas-liquid chromatography, MALDI-TOF MS and WGS) and antimicrobial susceptibility testing (agar dilution, broth microdilution, disk diffusion, gradient tests, automated systems, phenotypic and molecular resistance detection techniques) of anaerobes, when should these methods be used and what are the recent developments in resistance patterns of anaerobic bacteria.

  15. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology?

    Science.gov (United States)

    Gajdács, Márió; Spengler, Gabriella; Urbán, Edit

    2017-01-01

    Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance purposes or otherwise is of paramount importance but the availability of these testing methods is usually limited. In this present review, our aim was to give an overview of the methods currently available for the identification (using phenotypic characteristics, biochemical testing, gas-liquid chromatography, MALDI-TOF MS and WGS) and antimicrobial susceptibility testing (agar dilution, broth microdilution, disk diffusion, gradient tests, automated systems, phenotypic and molecular resistance detection techniques) of anaerobes, when should these methods be used and what are the recent developments in resistance patterns of anaerobic bacteria. PMID:29112122

  16. The Role of Flies in the Maintenance of Antimicrobial Resistance in Farm Environments.

    Science.gov (United States)

    Fukuda, Akira; Usui, Masaru; Okamura, Masashi; Dong-Liang, Hu; Tamura, Yutaka

    2018-04-30

    Flies play an important role as vectors in the transmission of antimicrobial-resistant bacteria (ARB) and are hypothesized to transfer ARB between internal and external livestock housing areas. The aim of this study was to understand the role that flies may play in the maintenance of ARB in the farm environment. We first evaluated the fate of ingested antimicrobial-resistant Escherichia coli harboring a plasmid containing antimicrobial-resistance genes (ARGs) throughout the housefly (Musca domestica) life cycle, from adult to the subsequent F1 generation. Antimicrobial-resistant E. coli was isolated from different life cycle stages and ARG carriage quantified. The ingested E. coli persisted throughout the fly life cycle, and ARG carriage was maintained at a constant level in the housefly microbiota. To clarify the transmission of ARB from flies to livestock, 30-day-old chickens were inoculated with maggots containing antimicrobial-resistant E. coli. Based on the quantification of bacteria isolated from cecal samples, antimicrobial-resistant E. coli persisted in these chickens for at least 16 days. These results suggest that flies act as a reservoir of ARB throughout their life cycle and may therefore be involved in the maintenance and circulation of ARB in the farm environment.

  17. Multidrug-Resistance and Toxic Metal Tolerance of Medically Important Bacteria Isolated from an Aquaculture System

    Science.gov (United States)

    Resende, Juliana Alves; Silva, Vânia L.; Fontes, Cláudia Oliveira; Souza-Filho, Job Alves; de Oliveira, Tamara Lopes Rocha; Coelho, Cíntia Marques; César, Dionéia Evangelista; Diniz, Cláudio Galuppo

    2012-01-01

    The use of antimicrobials and toxic metals should be considered carefully in aquaculture and surrounding environments. We aimed to evaluate medically relevant bacteria in an aquaculture system and their susceptibility to antimicrobials and toxic metals. Selective cultures for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC) were obtained from water samples collected in two different year seasons. The isolated bacteria were biochemically identified and antimicrobial and toxic metal susceptibility patterns were determined. Overall, 407 representative strains were recovered. In general, bacteria isolated from fish ponds showed higher multiple antibiotic resistance indices when compared to those isolated from a water-fed canal. Resistance to penicillin and azithromycin was observed more frequently in the GPC group, whereas resistance to ampicillin and ampicillin/sulbactam or gentamicin was observed more frequently in the ENT and NFR groups, respectively. All the isolated bacteria were tolerant to nickel, zinc, chromium and copper at high levels (≥1,024 μg mL−1), whereas tolerance to cadmium and mercury varied among the isolated bacteria (2–1,024 μg mL−1). Multidrug-resistant bacteria were more frequent and diverse in fish ponds than in the water-fed canal. A positive correlation was observed between antimicrobial resistance and metal tolerance. The data point out the need for water treatment associated with the aquaculture system. PMID:22972388

  18. Antimicrobial-resistant Shigella infections from Iran

    DEFF Research Database (Denmark)

    Tajbakhsh, Mercedeh; García Migura, Lourdes; Rahbar, Mohammad

    2012-01-01

    Objectives: In this study, we wanted to assess the level of antimicrobial resistance, the presence of genes encoding resistance to cephalosporins and plasmid-mediated quinolone resistance (PMQR), and genetic relatedness among Shigella isolates obtained from Iranian patients. ; Methods: A total...... of 44 Shigella isolates were collected from Iranian patients admitted to Milad Hospital, Tehran, Iran, during 2008–10. Of these, 37 were serotyped and characterized by MIC determination. A subset of eight suspected extended-spectrum β-lactamase (ESBL) producers (six Shigella sonnei phase II and two...... Shigella flexneri type 1b) were examined for the presence of genes encoding cephalosporin resistance. The presence of PMQR was assessed in one S. flexneri isolate exhibiting low-level resistance to ciprofloxacin and susceptibility to nalidixic acid. PFGE was performed on 25 S. sonnei phase II isolates...

  19. Poverty and prevalence of antimicrobial resistance in invasive isolates.

    Science.gov (United States)

    Alvarez-Uria, Gerardo; Gandra, Sumanth; Laxminarayan, Ramanan

    2016-11-01

    To evaluate the association between the income status of a country and the prevalence of antimicrobial resistance (AMR) in the three most common bacteria causing infections in hospitals and in the community: third-generation cephalosporin (3GC)-resistant Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), and 3GC-resistant Klebsiella species. Using 2013-2014 country-specific data from the ResistanceMap repository and the World Bank, the association between the prevalence of AMR in invasive samples and the gross national income (GNI) per capita was investigated through linear regression with robust standard errors. To account for non-linear association with the dependent variable, GNI per capita was log-transformed. The models predicted an 11.3% (95% confidence interval (CI) 6.5-16.2%), 18.2% (95% CI 11-25.5%), and 12.3% (95% CI 5.5-19.1%) decrease in the prevalence of 3GC-resistant E. coli, 3GC-resistant Klebsiella species, and MRSA, respectively, for each log GNI per capita. The association was stronger for 3GC-resistant E. coli and Klebsiella species than for MRSA. A significant negative association between GNI per capita and the prevalence of MRSA and 3GC-resistant E. coli and Klebsiella species was found. These results underscore the urgent need for new policies aimed at reducing AMR in resource-poor settings. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Antimicrobial activity of yeasts against some pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Gamal Younis

    2017-08-01

    Full Text Available Aim: This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species. Materials and Methods: A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In addition, all yeast species isolates were subjected to polymerase chain reaction (PCR for detection of khs (kievitone hydratase and pelA (pectate degrading enzyme genes. Results: The recovery rate of yeasts from sausage was 20% (2/10 followed by kareish cheese, processed cheese, and butter 10% (1/10 each as well as raw milk 9% (9/100, and fruit yoghurt 30% (6/20. Different yeast species were recovered, namely, Candida kefyr (5 isolates, Saccharomyces cerevisiae (4 isolates, Candida intermedia (3 isolates, Candida tropicalis (2 isolates, Candida lusitaniae (2 isolates, and Candida krusei (1 isolate. khs gene was detected in all S. cerevisiae isolates, however, pelA gene was not detected in all identified yeast species. Antimicrobial activity of recovered yeasts against the selected bacterial species showed high activity with C. intermedia against S. aureus and E. coli, C. kefyr against E. coli, and C. lusitaniae against S. aureus. Moderate activities were obtained with C. tropicalis, C. lusitaniae, and S. cerevisiae against E. coli; meanwhile, all the tested yeasts revealed a very low antimicrobial activity against P. aeruginosa. Conclusion: The obtained results confirmed that some kinds of yeasts have the ability to produce antimicrobial compounds that could inhibit some pathogenic and spoilage bacteria and these antimicrobial activity of yeasts enables them to be one of the novel agents in controlling spoilage of food.

  1. Antimicrobial resistance among Enterobacteriaceae in South America: history, current dissemination status and associated socioeconomic factors.

    Science.gov (United States)

    Bonelli, Raquel Regina; Moreira, Beatriz Meurer; Picão, Renata Cristina

    2014-04-01

    South America exhibits some of the higher rates of antimicrobial resistance in Enterobactericeae worldwide. This continent includes 12 independent countries with huge socioeconomic differences, where the ample access to antimicrobials, including counterfeit ones, coexists with ineffective health systems and sanitation problems, favoring the emergence and dissemination of resistant strains. This work presents a literature review concerning the evolution and current status of antimicrobial resistance threats found among Enterobacteriaceae in South America. Resistance to β-lactams, fluoroquinolones and aminoglycosides was emphasized along with description of key epidemiological studies that highlight the success of specific resistance determinants in different parts of the continent. In addition, a discussion regarding political and socioeconomic factors possibly related to the dissemination of antimicrobial resistant strains in clinical settings and at the community is presented. Finally, in order to assess the possible sources of resistant bacteria, we compile the current knowledge about the occurrence of antimicrobial resistance in isolates in South American' food, food-producing animals and off-hospitals environments. By addressing that intensive intercontinental commerce and tourism neutralizes the protective effect of geographic barriers, we provide arguments reinforcing that globally integrated efforts are needed to decelerate the emergence and dissemination of antimicrobial resistant strains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Antimicrobial resistances do not affect colonization parameters of intestinal E. coli in a small piglet group

    Directory of Open Access Journals (Sweden)

    Schierack Peter

    2009-10-01

    Full Text Available Abstract Background Although antimicrobial resistance and persistence of resistant bacteria in humans and animals are major health concerns worldwide, the impact of antimicrobial resistance on bacterial intestinal colonization in healthy domestic animals has only been rarely studied. We carried out a retrospective analysis of the antimicrobial susceptibility status and the presence of resistance genes in intestinal commensal E. coli clones from clinically healthy pigs from one production unit with particular focus on effects of pheno- and/or genotypic resistance on different nominal and numerical intestinal colonization parameters. In addition, we compared the occurrence of antimicrobial resistance phenotypes and genotypes with the occurrence of virulence associated genes typical for extraintestinal pathogenic E. coli. Results In general, up to 72.1% of all E. coli clones were resistant to ampicillin, chloramphenicol, kanamycin, streptomycin, sulfamethoxazole or tetracycline with a variety of different resistance genes involved. There was no significant correlation between one of the nominal or numerical colonization parameters and the absence or presence of antimicrobial resistance properties or resistance genes. However, there were several statistically significant associations between the occurrence of single resistance genes and single virulence associated genes. Conclusion The demonstrated resistance to the tested antibiotics might not play a dominant role for an intestinal colonization success in pigs in the absence of antimicrobial drugs, or cross-selection of other colonization factors e.g. virulence associated genes might compensate "the cost of antibiotic resistance". Nevertheless, resistant strains are not outcompeted by susceptible bacteria in the porcine intestine. Trial Registration The study was approved by the local animal welfare committee of the "Landesamt für Arbeitsschutz, Gesundheitsschutz und technische Sicherheit" Berlin

  3. Impact of antimicrobial use during beef production on fecal occurrence of antimicrobial resistance

    Science.gov (United States)

    Objective: To determine the impact of typical antimicrobial use during cattle production on fecal occurrence of antimicrobial resistance by culture, quantitative PCR, and metagenomic sequencing. Experimental Design & Analysis: Feces were recovered from colons of 36 lots of "conventional" (CONV) ca...

  4. Use of Extract of Citrus sinensis as an antimicrobial agent for foodborne zoonotic pathogens and spoilage bacteria

    Science.gov (United States)

    Foodborne pathogens remain global health problems despite concerted efforts to control the transmission of these microorganisms through food. The resurgence of drug resistant bacteria has renewed interest in developing and testing new sources of antimicrobial agents to control foodborne illness. Thi...

  5. Resistance to Antimicrobial Peptides in Vibrios

    Directory of Open Access Journals (Sweden)

    Delphine Destoumieux-Garzón

    2014-10-01

    Full Text Available Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.

  6. Antimicrobial properties of coconut husk aqueous extract on cariogenic bacteria

    Directory of Open Access Journals (Sweden)

    Maria B Cyriac

    2013-01-01

    Full Text Available Background and Objectives: The husk fibers of coconut (Cocos nucifera are reported to be used by people of rural areas of South India for daily cleaning their teeth. As the beneficial effects of this plant material, with respect to antimicrobial properties against common cariogenic bacteria, are not scientifically proven, the present study was conducted. Materials and Methods: The husk of coconut was collected and aqueous extract was prepared and antimicrobial properties against common oral pathogens like Streptococcus mutans, Streptococcus salivarius, Streptococcus mitis, and Lactobacillus acidophilus were performed by agar well diffusion method. The values obtained were then subjected to statistical analysis using one way ANOVA and Tukey HSD. Results: Aqueous extract of coconut husk showed a concentration-dependent antimicrobial activity against different tested organisms with zone of inhibition ranging from 4.44 to 15.33 mms. However, the efficacy was less in comparison to chlorhexidine. Conclusion: Inhibitory action against cariogenic bacteria exhibited by aqueous extract of coconut husk indicate presence of highly effective active compounds in these extracts, which can be identified and incorporated into modern oral care systems for controlling dental caries.

  7. Pharmacokinetic-Pharmacodynamic Model To Evaluate Intramuscular Tetracycline Treatment Protocols To Prevent Antimicrobial Resistance in Pigs

    DEFF Research Database (Denmark)

    Ahmad, Amais; Græsbøll, Kaare; Christiansen, Lasse Engbo

    2015-01-01

    High instances of antimicrobial resistance are linked to both routine and excessive antimicrobial use, but excessive or inappropriate use represents an unnecessary risk. The competitive growth advantages of resistant bacteria may be amplified by the strain dynamics; in particular, the extent...... to which resistant strains outcompete susceptible strains under antimicrobial pressure may depend not only on the antimicrobial treatment strategies but also on the epidemiological parameters, such as the composition of the bacterial strains in a pig. This study evaluated how variation in the dosing...... protocol for intramuscular administration of tetracycline and the composition of bacterial strains in a pig affect the level of resistance in the intestine of a pig. Predictions were generated by a mathematical model of competitive growth of Escherichia coli strains in pigs under specified plasma...

  8. Pharmacokinetic-Pharmacodynamic Model To Evaluate Intramuscular Tetracycline Treatment Protocols To Prevent Antimicrobial Resistance in Pigs

    DEFF Research Database (Denmark)

    Ahmad, Amais; Græsbøll, Kaare; Christiansen, Lasse Engbo

    2015-01-01

    protocol for intramuscular administration of tetracycline and the composition of bacterial strains in a pig affect the level of resistance in the intestine of a pig. Predictions were generated by a mathematical model of competitive growth of Escherichia coli strains in pigs under specified plasma......High instances of antimicrobial resistance are linked to both routine and excessive antimicrobial use, but excessive or inappropriate use represents an unnecessary risk. The competitive growth advantages of resistant bacteria may be amplified by the strain dynamics; in particular, the extent...... to which resistant strains outcompete susceptible strains under antimicrobial pressure may depend not only on the antimicrobial treatment strategies but also on the epidemiological parameters, such as the composition of the bacterial strains in a pig. This study evaluated how variation in the dosing...

  9. The growing problem of antimicrobial resistance

    DEFF Research Database (Denmark)

    Holmstrup, Palle; Klausen, Bjarne

    2018-01-01

    Antibiotic therapy over the years has saved millions of lives, but antimicrobial resistance (AMR) is a current threat to human health. An interesting review on AMR has recently been presented in the Journal of American Medical Association (Marston et al., 2016). The review is authored by five staff...... members at National Institutes of Health in Bethesda, Maryland, and the purpose of the review was to identify factors associated with AMR, the current epidemiology of important resistant organisms, and possible solutions to the AMR problem. This article is protected by copyright. All rights reserved....

  10. Genome-wide identification of antimicrobial intrinsic resistance determinants in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Martin Vestergaard

    2016-12-01

    Full Text Available The emergence of antimicrobial resistance severely threatens our ability to treat bacterial infections. While acquired resistance has received considerable attention, relatively little is known of intrinsic resistance that allows bacteria to naturally withstand antimicrobials. Gene products that confer intrinsic resistance to antimicrobial agents may be explored for alternative antimicrobial therapies, by potentiating the efficacy of existing antimicrobials. In this study, we identified the intrinsic resistome to a broad spectrum of antimicrobials in the human pathogen, Staphylococcus aureus. We screened the Nebraska Transposon Mutant Library of 1920 single-gene inactivations in S. aureus strain JE2, for increased susceptibility to the anti-staphylococcal antimicrobials (ciprofloxacin, oxacillin, linezolid, fosfomycin, daptomycin, mupirocin, vancomycin and gentamicin. 68 mutants were confirmed by E-test to display at least two-fold increased susceptibility to one or more antimicrobial agents. The majority of the identified genes have not previously been associated with antimicrobial susceptibility in S. aureus. For example, inactivation of genes encoding for subunits of the ATP synthase, atpA, atpB, atpG and atpH, reduced the minimum inhibitory concentration (MIC of gentamicin 16-fold. To elucidate the potential of the screen, we examined treatment efficacy in the Galleria mellonella infection model. Gentamicin efficacy was significantly improved, when treating larvae infected with the atpA mutant compared to wild type cells with gentamicin at a clinically relevant concentration. Our results demonstrate that many gene products contribute to the intrinsic antimicrobial resistance of S. aureus. Knowledge of these intrinsic resistance determinants provides alternative targets for compounds that may potentiate the efficacy of existing antimicrobial agents against this important pathogen.

  11. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria.

    Science.gov (United States)

    Yosef, Ido; Manor, Miriam; Kiro, Ruth; Qimron, Udi

    2015-06-09

    The increasing threat of pathogen resistance to antibiotics requires the development of novel antimicrobial strategies. Here we present a proof of concept for a genetic strategy that aims to sensitize bacteria to antibiotics and selectively kill antibiotic-resistant bacteria. We use temperate phages to deliver a functional clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system into the genome of antibiotic-resistant bacteria. The delivered CRISPR-Cas system destroys both antibiotic resistance-conferring plasmids and genetically modified lytic phages. This linkage between antibiotic sensitization and protection from lytic phages is a key feature of the strategy. It allows programming of lytic phages to kill only antibiotic-resistant bacteria while protecting antibiotic-sensitized bacteria. Phages designed according to this strategy may be used on hospital surfaces and hand sanitizers to facilitate replacement of antibiotic-resistant pathogens with sensitive ones.

  12. A sampling and metagenomic sequencing-based methodology for monitoring antimicrobial resistance in swine herds

    DEFF Research Database (Denmark)

    Munk, Patrick; Dalhoff Andersen, Vibe; de Knegt, Leonardo

    2016-01-01

    Objectives Reliable methods for monitoring antimicrobial resistance (AMR) in livestock and other reservoirs are essential to understand the trends, transmission and importance of agricultural resistance. Quantification of AMR is mostly done using culture-based techniques, but metagenomic read...... mapping shows promise for quantitative resistance monitoring. Methods We evaluated the ability of: (i) MIC determination for Escherichia coli; (ii) cfu counting of E. coli; (iii) cfu counting of aerobic bacteria; and (iv) metagenomic shotgun sequencing to predict expected tetracycline resistance based...... cultivation-based techniques in terms of predicting expected tetracycline resistance based on antimicrobial consumption. Our metagenomic approach had sufficient resolution to detect antimicrobial-induced changes to individual resistance gene abundances. Pen floor manure samples were found to represent rectal...

  13. Antimicrobial resistance in E. coli and Salmonella spp. isolates from calves in southern Chile

    Directory of Open Access Journals (Sweden)

    Luis Hervé-Claude

    2017-09-01

    Full Text Available Objective: Description of antimicrobial resistance in E. coli and Salmonella spp. isolates from calves <30 days of age from southern Chile. Material and methods: Necropsy and microbiology reports of 107 calves <30 days of age received at the Animal Pathology Institute between 2002 and 2015 were considered. Additionally, an antimicrobial resistance score was generated to allow comparisons among isolates with different antimicrobial susceptibility profiles. Results: There was no clear trend in antimicrobial resistance during the study period, with similar levels of resistance for E. coli, β-hemolytic E. coli and Salmonella spp. Approximately 50% of isolates were sensitive to antimicrobials, and between 19 and 36% of samples showed possible extended- or pan- drug resistance. Multiple different antimicrobial resistance patterns were found, including 32 for E. coli, 17 for β-hemolytic E. coli and 10 for Salmonella spp. Conclusions: Overall, E. coli samples were most sensitive to ceftriaxone; β-hemolytic E. coli to florfenicol; and Salmonella spp. to gentamicin. In contrast, these agents were resistant to amoxicillin, ampicillin and oxytetracycline respectively. This study is unique in its approach and provides useful information for veterinarians and producers on the antibiotic resistance patterns of bacteria posing a serious threat to calves. These results can help field veterinarians to control and treat bacterial diarrhea in calves.

  14. Antibiotic Resistance of Diverse Bacteria from Aquaculture in Borneo

    Directory of Open Access Journals (Sweden)

    M. M. Kathleen

    2016-01-01

    Full Text Available The administration of antimicrobials in aquaculture provides a selective pressure creating a reservoir of multiple resistant bacteria in the cultured fish and shrimps as well as the aquaculture environment. The objective of this study was to determine the extent of antibiotic resistance in aquaculture products and aquaculture’s surrounding environment in Sarawak, Malaysian Borneo. Ninety-four identified bacterial isolates constituted of 17 genera were isolated from sediment, water, and cultured organisms (fish and shrimp in selected aquaculture farms. These isolates were tested for their antibiotic resistance against 22 antibiotics from several groups using the disk diffusion method. The results show that the highest resistance was observed towards streptomycin (85%, n=20, while the lowest resistance was towards gentamicin (1.1%, n=90. The multiple antibiotic resistant (MAR index of the isolates tested ranged between 0 and 0.63. It was suggested that isolates with MAR index > 0.2 were recovered from sources with high risk of antibiotic resistant contamination. This study revealed low level of antibiotic resistance in the aquaculture bacterial isolates except for streptomycin and ampicillin (>50% resistance, n=94 which have been used in the aquaculture industry for several decades. Antibiotic resistant patterns should be continuously monitored to predict the emergence and widespread of MAR. Effective action is needed to keep the new resistance from further developing and spreading.

  15. Strategic measures for the control of surging antimicrobial resistance in Hong Kong and mainland of China.

    Science.gov (United States)

    Cheng, Vincent C C; Wong, Sally C Y; Ho, Pak-Leung; Yuen, Kwok-Yung

    2015-02-01

    Antimicrobial-resistant bacteria are either highly prevalent or increasing rapidly in Hong Kong and China. Treatment options for these bacteria are generally limited, less effective and more expensive. The emergence and dynamics of antimicrobial resistance genes in bacteria circulating between animals, the environment and humans are not entirely known. Nonetheless, selective pressure by antibiotics on the microbiomes of animal and human, and their associated environments (especially farms and healthcare institutions), sewage systems and soil are likely to confer survival advantages upon bacteria with antimicrobial-resistance genes, which may be further disseminated through plasmids or transposons with integrons. Therefore, antibiotic use must be tightly regulated to eliminate such selective pressure, including the illegalization of antibiotics as growth promoters in animal feed and regulation of antibiotic use in veterinary practice and human medicine. Heightened awareness of infection control measures to reduce the risk of acquiring resistant bacteria is essential, especially during antimicrobial use or institutionalization in healthcare facilities. The transmission cycle must be interrupted by proper hand hygiene, environmental cleaning, avoidance of undercooked or raw food and compliance with infection control measures by healthcare workers, visitors and patients, especially during treatment with antibiotics. In addition to these routine measures, proactive microbiological screening of hospitalized patients with risk factors for carrying resistant bacteria, including history of travel to endemic countries, transfer from other hospitals, and prolonged hospitalization; directly observed hand hygiene before oral intake of drugs, food and drinks; and targeted disinfection of high-touch or mutual-touch items, such as bed rails and bed curtains, are important. Transparency of surveillance data from each institute for public scrutiny provides an incentive for

  16. Antimicrobial blue light inactivation of Methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Wang, Yucheng; Dai, Tianhong; Gu, Ying

    2016-10-01

    Background: With the increasing emergence of multidrug-resistant (MDR) bacterial strains, there is a pressing need for the development of alternative treatment for infections. Antimicrobial blue light (aBL) has provided a simple and effective approach. Methods: We first investigated the effectiveness of aBL (415 nm) inactivation of USA300 LAClux (a communityacquired Methicillin-resistant Staphylococcus aureus strain) both in the planktonic and biofilm forms. The survival of the bacteria in suspensions was determined by serial dilution and that of the biofilm-embedded bacteria was determined by bioluminescence quantification. Using a mouse model of thermal burn infected with USA300 LAClux, we further assessed the effectiveness of aBL for treating localized infections. Bioluminescence imaging was performed to monitor in real time bacterial viability in vivo. Results: In vitro study showed that, for the planktonic counterpart of the bacteria or the 24-h-old biofilms, an irradiance of 55 mW/cm2 for 60 min resulted in a 4.61 log10 or 2.56 log10 inactivation, respectively. In vivo study using infected mouse burns demonstrated that a 2.56-log10 inactivation was achieved after 100-mW/cm2 irradiation for 62 min. Conclusions: aBL is a potential alternative approach for treating Methicillin-resistant Staphylococcus aureus infections.

  17. Antimicrobial resistance and its association with tolerance to heavy metals in agriculture production.

    Science.gov (United States)

    Yu, Zhongyi; Gunn, Lynda; Wall, Patrick; Fanning, Séamus

    2017-06-01

    Antimicrobial resistance is a recognized public health challenge that since its emergence limits the therapeutic options available to veterinarians and clinicians alike, when treatment is warranted. This development is further compounded by the paucity of new antibiotics. The agri-food industry benefits from the availability of antimicrobial compounds for food-animal production and crop protection. Nonetheless, their improper use can result in the selection for bacteria that are phenotypically resistant to these compounds. Another class of agents used in agriculture includes various cationic metals that can be included in animal diets as nutritional supplements or spread on pastures to support crop growth and protection. Heavy metals, in particular, are giving rise to concerns among public health professionals, as they can persist in the environment remaining stable for prolonged periods. Moreover, bacteria can also exhibit resistance to these chemical elements and the genes encoding this phenotype can be physically localized to plasmids that may also contain one or more antimicrobial resistance-encoding gene(s). This paper reviews our current understanding of the role that bacteria play in expressing resistance to heavy metals. It will describe how heavy metals are used in agri-food production, and explore evidence available to link resistance to heavy metals and antimicrobial compounds. In addition, possible solutions to reduce the impact of heavy metal resistance are also discussed, including using organic minerals and reducing the level of trace minerals in animal feed rations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Identification and antimicrobial resistance of microflora colonizing feral pig (Sus scrofa of Brazilian Pantanal

    Directory of Open Access Journals (Sweden)

    SS Lessa

    2011-06-01

    Full Text Available Antimicrobial resistance of bacteria is a worldwide problem affecting wild life by living with resistant bacteria in the environment. This study presents a discussion of outside factors environment on microflora of feral pigs (Sus scrofa from Brazilian Pantanal. Animals had samples collected from six different body sites coming from two separated geographic areas, Nhecolandia and Rio Negro regions. With routine biochemical tests and commercial kits 516 bacteria were identified, with 240 Gram-positive, predominantly staphylococci (36 and enterococci (186 strains. Among Gram-negative (GN bacteria the predominant specimens of Enterobacteriaceae (247 mainly represented by Serratia spp. (105, Escherichia coli (50, and Enterobacter spp. (40 and specimens not identified (7. Antimicrobial susceptibility was tested against 17 drugs by agar diffusion method. Staphylococci were negative to production of enterotoxins and TSST-1, with all strains sensitive towards four drugs and highest resistance toward ampicillin (17%. Enterococci presented the highest sensitivity against vancomycin (98%, ampicillin (94% and tetracycline (90%, and highest resistance pattern toward oxacillin (99%, clindamycin (83%, and cotrimoxazole (54%. In GN the highest resistance was observed with Serratia marcescens against CFL (98%, AMC (66% and AMP (60% and all drugs was most effective against E. coli SUT, TET (100%, AMP, TOB (98%, GEN, CLO (95%, CFO, CIP (93%. The results show a new profile of oxacillin-resistant enterococci from Brazilian feral pigs and suggest a limited residue and spreading of antimicrobials in the environment, possibly because of low anthropogenic impact reflected by the drug susceptibility profile of bacteria isolated.

  19. Antimicrobial property of lemongrass (Cymbopogon citratus) oil against pathogenic bacteria isolated from pet turtles.

    Science.gov (United States)

    De Silva, B C J; Jung, Won-Gi; Hossain, Sabrina; Wimalasena, S H M P; Pathirana, H N K S; Heo, Gang-Joon

    2017-06-01

    The usage of essential oils as antimicrobial agents is gaining attention. Besides, pet turtles were known to harbor a range of pathogenic bacteria while the turtle keeping is a growing trend worldwide.The current study examined the antimicrobial activity of lemon grass oil (LGO) against seven species of Gram negative bacteria namely; Aeromonas hydrophila , A. caviae , Citrobacter freundii , Salmonella enterica , Edwardsiella tarda , Pseudomonas aeruginosa , and Proteus mirabilis isolated from three popular species of pet turtles. Along with the results of disc diffusion, minimum inhibitory and minimum bactericidal concentration (MIC and MBC) tests, LGO was detected as effective against 6 species of bacteria excluding P. aeruginosa . MIC of LGO for the strains except P. aeruginosa ranged from 0.016 to 0.5% (V/V). The lowest MIC recorded in the E. tarda strain followed by A. hydrophilla , C. freundii , P. mirabilis , and S. enterica . Interestingly, all the bacterial species except E. tarda were showing high multiple antimicrobial resistance (MAR) index values ranging from 0.36 to 0.91 upon the 11 antibiotics tested although they were sensitive to LGO.

  20. Antimicrobial stewardship in a Gastroenterology Department: Impact on antimicrobial consumption, antimicrobial resistance and clinical outcome.

    Science.gov (United States)

    Bedini, Andrea; De Maria, Nicola; Del Buono, Mariagrazia; Bianchini, Marcello; Mancini, Mauro; Binda, Cecilia; Brasacchio, Andrea; Orlando, Gabriella; Franceschini, Erica; Meschiari, Marianna; Sartini, Alessandro; Zona, Stefano; Paioli, Serena; Villa, Erica; Gyssens, Inge C; Mussini, Cristina

    2016-10-01

    A major cause of the increase in antimicrobial resistance is the inappropriate use of antimicrobials. To evaluate the impact on antimicrobial consumption and clinical outcome of an antimicrobial stewardship program in an Italian Gastroenterology Department. Between October 2014 and September 2015 (period B), a specialist in infectious diseases (ID) controlled all antimicrobial prescriptions and decided about the therapy in agreement with gastroenterologists. The defined daily doses of antimicrobials (DDDs), incidence of MDR-infections, mean length of stay and overall in-hospital mortality rate were compared with those of the same period in the previous 12-months (period A). During period B, the ID specialist performed 304 consultations: antimicrobials were continued in 44.4% of the cases, discontinued in 13.8%, not recommended in 12.1%, de-escalated 9.9%, escalated in 7.9%, and started in 4.0%. Comparing the 2 periods, we observed a decreased of antibiotics consumption (from 109.81 to 78.45 DDDs/100 patient-days, p=0.0005), antifungals (from 41.28 to 24.75 DDDs/100pd, p=0.0004), carbapenems (from 15.99 to 6.80 DDDsx100pd, p=0.0032), quinolones (from 35.79 to 17.82 DDDsx100pd, p=0.0079). No differences were observed in incidence of MDR-infections, length of hospital stay (LOS), and mortality rate. ASP program had a positive impact on reducing the consumption of antimicrobials, without an increase in LOS and mortality. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  1. Phytochemical, toxicological and antimicrobial evaluation of Lawsonia inermis extracts against clinical isolates of pathogenic bacteria.

    Science.gov (United States)

    Gull, Iram; Sohail, Maria; Aslam, Muhammad Shahbaz; Amin Athar, Muhammad

    2013-12-01

    The emerging resistance of pathogen against the currently available antimicrobial agents demands the search of new antimicrobial agents. The use of medicinal plants as natural substitute is the paramount area of research to overwhelm the drug resistance of infectious agents. Scientists have not made enough effort on the evaluation of safety of medicinal plant yet. In the present study antimicrobial activity of Lawsonia inermis is investigated against clinical isolates of seven bacteria including four Gram negative (Escherichia coli, Salmonella typhi, Klebsiella spp., Shigella sonnei) and three Gram positive (Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis) using disc diffusion method. Four types of Lawsonia inermis extracts were prepared using methanol, chloroform, acetone and water as extraction solvents, while DMSO (Dimethyl sulfoxide) and water as dissolution solvents. The rate and extent of bacterial killing was estimated by time-kill kinetic assay at 1× MIC of each bacterial isolate. The overall safety of Lawsonia inermis extracts was assessed in mice. Lawsonia inermis displayed noteworthy antimicrobial activity against both gram positive and gram negative bacterial strains used in the study. The minimum value of MIC for different bacterial strains ranged from 2.31 mg/ml to 9.27 mg/ml. At 1x MIC of each bacterial isolate, 3log10 decrease in CFU was recorded after 6 hours of drug exposure and no growth was observed in almost all tested bacteria after 24 hours of exposure. No sign of toxidrome were observed during in vivo toxicity evaluation in mice at 300 mg/kg concentration. In conclusion, the present study provides the scientific rational for medicinal use of Lawsonia inermis. The use of Lawsonia inermis extracts is of great significance as substitute antimicrobial agent in therapeutics.

  2. Antimicrobial-Resistance Genetic Markers in Potentially Pathogenic Gram Positive Cocci Isolated from Brazilian Soft Cheese.

    Science.gov (United States)

    Resende, Juliana Alves; Fontes, Cláudia Oliveira; Ferreira-Machado, Alessandra Barbosa; Nascimento, Thiago César; Silva, Vânia Lúcia; Diniz, Cláudio Galuppo

    2018-02-01

    Although most Brazilian dairy products meet high technological standards, there are quality issues regarding milk production, which may reduce the final product quality. Several microbial species may contaminate milk during manufacture and handling. If antimicrobial usage remains uncontrolled in dairy cattle, the horizontal transfer of antimicrobial resistance genes in foodstuffs may be of particular concern for both food producers and dairy industry. This study focused on the evaluation of putative Gram positive cocci in Minas cheese and of antimicrobial and biocide resistance genes among the isolated bacteria. Representative samples of 7 different industrially trademarked Minas cheeses (n = 35) were processed for selective culture and isolation of Gram positive cocci. All isolated bacteria were identified by DNA sequencing of the 16S rRNA gene. Antimicrobial resistance genes were screened by PCR. Overall, 208 strains were isolated and identified as follows: Enterococcus faecalis (47.6%), Macrococcus caseolyticus (18.3%), Enterococcus faecium (11.5%), Enterococcus caseliflavus (7.7%), Staphylococcus haemolyticus (7.2%), Staphylococcus aureus (4.3%), Staphylococcus epidermidis (2.9%), and Enterococcus hirae (0.5%). The genetic markers mecA (78.0%) and smr (71.4%) were the most prevalent, but others were also detected, such as blaZ (65.2%), msrA (60.9%), msrB (46.6%), linA (54.7%), and aacA-aphD (47.6%). The occurrence of opportunist pathogenic bacteria harboring antimicrobial resistance markers in the cheese samples are of special concern, since these bacteria are not considered harmful contaminating agents according to the Brazilian sanitary regulations. However, they are potentially pathogenic bacteria and the cheese may be considered a reservoir for antimicrobial resistance genes available for horizontal transfer through the food chain, manufacturing personnel and consumers. © 2018 Institute of Food Technologists®.

  3. The diversity of antimicrobial resistance genes among staphylococci of animal origin.

    Science.gov (United States)

    Wendlandt, Sarah; Feßler, Andrea T; Monecke, Stefan; Ehricht, Ralf; Schwarz, Stefan; Kadlec, Kristina

    2013-08-01

    Staphylococci of animal origin harbor a wide variety of resistance genes. So far, more than 40 different resistance genes have been identified in staphylococci from animals. This includes genes that confer resistance to virtually all classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into three major categories: (i) enzymatic inactivation, (ii) active efflux, or (iii) protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate the exchange of resistance genes with staphylococci of human origin but also with other Gram-positive bacteria. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. The antimicrobial resistance monitoring and research (ARMoR) program: the US Department of Defense response to escalating antimicrobial resistance.

    Science.gov (United States)

    Lesho, Emil P; Waterman, Paige E; Chukwuma, Uzo; McAuliffe, Kathryn; Neumann, Charlotte; Julius, Michael D; Crouch, Helen; Chandrasekera, Ruvani; English, Judith F; Clifford, Robert J; Kester, Kent E

    2014-08-01

    Responding to escalating antimicrobial resistance (AMR), the US Department of Defense implemented an enterprise-wide collaboration, the Antimicrobial Resistance Monitoring and Research Program, to aid in infection prevention and control. It consists of a network of epidemiologists, bioinformaticists, microbiology researchers, policy makers, hospital-based infection preventionists, and healthcare providers who collaborate to collect relevant AMR data, conduct centralized molecular characterization, and use AMR characterization feedback to implement appropriate infection prevention and control measures and influence policy. A particularly concerning type of AMR, carbapenem-resistant Enterobacteriaceae, significantly declined after the program was launched. Similarly, there have been no further reports or outbreaks of another concerning type of AMR, colistin resistance in Acinetobacter, in the Department of Defense since the program was initiated. However, bacteria containing AMR-encoding genes are increasing. To update program stakeholders and other healthcare systems facing such challenges, we describe the processes and impact of the program. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Antimicrobial resistance of bacterial enteropathogens isolated from stools in Madagascar.

    Science.gov (United States)

    Randrianirina, Frederique; Ratsima, Elisoa Hariniana; Ramparany, Lova; Randremanana, Rindra; Rakotonirina, Hanitra Clara; Andriamanantena, Tahiry; Rakotomanana, Fanjasoa; Rajatonirina, Soatiana; Richard, Vincent; Talarmin, Antoine

    2014-02-25

    Diarrheal diseases are a major public health problem in developing countries, and are one of the main causes of hospital admissions in Madagascar. The Pasteur Institute of Madagascar undertook a study to determine the prevalence and the pathogenicity of bacterial, viral and protozoal enteropathogens in diarrheal and non-diarrheal stools of children aged less than 5 years in Madagascar. We present here the results of the analysis of antimicrobial susceptibility of the bacteria isolated during this study. The study was conducted in the community setting in 14 districts of Madagascar from October 2008 to May 2009. Conventional methods and PCR were used to identify the bacteria; antimicrobial susceptibility was determined using an agar diffusion method for enterobacteriaceae and MICs were measured by an agar dilution method for Campylobacter sp. In addition to the strains isolated during this study, Salmonella sp and Shigella sp isolated at the Pasteur Institute of Madagascar from 2005 to 2009 were included in the analysis to increase the power of the study. Twenty-nine strains of Salmonella sp, 35 strains of Shigella sp, 195 strains of diarrheagenic E. coli, 203 strains of C. jejuni and 71 strains of C. coli isolated in the community setting were tested for antibiotic resistance. Fifty-five strains of Salmonella sp and 129 strains of Shigella sp isolated from patients referred to the Pasteur Institute of Madagascar were also included in the study. Many E. coli and Shigella isolates (around 80%) but fewer Salmonella isolates were resistant to ampicillin and trimethoprim/sulfamethoxazole. A small proportion of strains of each species were resistant to ciprofloxacin and only 3% of E. coli strains presented a resistance to third generation cephalosporins due to the production of extended-spectrum beta-lactamases. The resistance of Campylobacter sp to ampicillin was the most prevalent, whereas less than 5% of isolates were resistant to each of the other antibiotics. The

  6. Associations between Antimicrobial Resistance Phenotypes, Antimicrobial Resistance Genes, and Virulence Genes of Fecal Escherichia coli Isolates from Healthy Grow-Finish Pigs ▿

    OpenAIRE

    Rosengren, Leigh B.; Waldner, Cheryl L.; Reid-Smith, Richard J.

    2009-01-01

    Escherichia coli often carries linked antimicrobial resistance genes on transmissible genetic elements. Through coselection, antimicrobial use may select for unrelated but linked resistance or virulence genes. This study used unconditional statistical associations to investigate the relationships between antimicrobial resistance phenotypes and antimicrobial resistance genes in 151 E. coli isolates from healthy pigs. Phenotypic resistance to each drug was significantly associated with phenotyp...

  7. Shigella Antimicrobial Drug Resistance Mechanisms, 2004-2014.

    Science.gov (United States)

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert; Stephan, Roger

    2016-06-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004-2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis.

  8. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria.

    Science.gov (United States)

    El Salabi, Allaaeddin; Walsh, Timothey R; Chouchani, Chedly

    2013-05-01

    Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.

  9. Population mobility, globalization, and antimicrobial drug resistance.

    Science.gov (United States)

    MacPherson, Douglas W; Gushulak, Brian D; Baine, William B; Bala, Shukal; Gubbins, Paul O; Holtom, Paul; Segarra-Newnham, Marisel

    2009-11-01

    Population mobility is a main factor in globalization of public health threats and risks, specifically distribution of antimicrobial drug-resistant organisms. Drug resistance is a major risk in healthcare settings and is emerging as a problem in community-acquired infections. Traditional health policy approaches have focused on diseases of global public health significance such as tuberculosis, yellow fever, and cholera; however, new diseases and resistant organisms challenge existing approaches. Clinical implications and health policy challenges associated with movement of persons across barriers permeable to products, pathogens, and toxins (e.g., geopolitical borders, patient care environments) are complex. Outcomes are complicated by high numbers of persons who move across disparate and diverse settings of disease threat and risk. Existing policies and processes lack design and capacity to prevent or mitigate adverse health outcomes. We propose an approach to global public health risk management that integrates population factors with effective and timely application of policies and processes.

  10. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota

    Science.gov (United States)

    Cantas, L.; Shah, Syed Q. A.; Cavaco, L. M.; Manaia, C. M.; Walsh, F.; Popowska, M.; Garelick, H.; Bürgmann, H.; Sørum, H.

    2013-01-01

    The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting from use, misuse, and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance (AMR) genes have been suggested to originate from environmental bacteria, as clinically relevant resistance genes have been detected on the chromosome of environmental bacteria. As only a few new antimicrobials have been developed in the last decade, the further evolution of resistance poses a serious threat to public health. Urgent measures are required not only to minimize the use of antimicrobials for prophylactic and therapeutic purposes but also to look for alternative strategies for the control of bacterial infections. This review examines the global picture of antimicrobial resistance, factors that favor its spread, strategies, and limitations for its control and the need for continuous training of all stake-holders i.e., medical, veterinary, public health, and other relevant professionals as well as human consumers, in the appropriate use of antimicrobial drugs. PMID:23675371

  11. Persistence of antimicrobial resistance genes from sows to finisher pigs

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla; Halasa, Tariq; Folkesson, Anders

    2018-01-01

    Antimicrobial resistance in pigs has been under scrutiny for many years. However, many questions remain unanswered, including whether the initial antimicrobial resistance level of a pig will influence the antimicrobial resistance found at slaughter. Faecal samples from finishers pigs from 681 farms...... and from sows from 82 farms were collected, and levels of seven antimicrobial resistance genes, ermB, ermF, sulI, sulII, tet(M), tet(O), and tet(W), were quantified by high-capacity qPCR. There were 40 pairs of observations where the finishers were born in the farms of the sows. The objective of this study...

  12. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend?

    Science.gov (United States)

    Michael, G B; Schwarz, S

    2016-12-01

    Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens

    NARCIS (Netherlands)

    Kwakman, P.H.S.; Boer, den L.; Ruyter-Spira, C.; Creemers-Molenaar, T.; Helsper, J.P.F.G.; Vandenbroucke-Grauls, C.M.J.E.; Zaat, S.A.J.; Velde, te A.A.

    2011-01-01

    Honey has potent activity against both antibioticsensitive and -resistant bacteria, and is an interesting agent for topical antimicrobial application to wounds. As honey is diluted by wound exudate, rapid bactericidal activity up to high dilution is a prerequisite for its successful application. We

  14. Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens

    NARCIS (Netherlands)

    Kwakman, P. H. S.; de Boer, L.; Ruyter-Spira, C. P.; Creemers-Molenaar, T.; Helsper, J. P. F. G.; Vandenbroucke-Grauls, C. M. J. E.; Zaat, S. A. J.; te Velde, A. A.

    2011-01-01

    Honey has potent activity against both antibiotic-sensitive and -resistant bacteria, and is an interesting agent for topical antimicrobial application to wounds. As honey is diluted by wound exudate, rapid bactericidal activity up to high dilution is a prerequisite for its successful application. We

  15. Identification and antimicrobial resistance of members from the Enterobacteriaceae family isolated from canaries (Serinus canaria

    Directory of Open Access Journals (Sweden)

    Ruben V. Horn

    2015-06-01

    Full Text Available Abstract: The Enterobacteriaceae family contains potentially zoonotic bacteria, and their presence in canaries is often reported, though the current status of these in bird flocks is unknown. Therefore, this study aimed to identify the most common genera of enterobacteria from canaries (Serinus canaria and their antimicrobial resistance profiles. From February to June of 2013, a total of 387 cloacal swab samples from eight domiciliary breeding locations of Fortaleza city, Brazil, were collected and 58 necropsies were performed in canaries, which belonged to the Laboratory of Ornithological Studies. The samples were submitted to microbiological procedure using buffered peptone water and MacConkey agar. Colonies were selected according to their morphological characteristics on selective agar and submitted for biochemical identification and antimicrobial susceptibility. A total of 61 isolates were obtained, of which 42 were from cloacal swabs and 19 from necropsies. The most isolated bacteria was Escherichia coli with twenty five strains, followed by fourteen Klebsiellaspp., twelve Enterobacterspp., seven Pantoea agglomerans, two Serratiaspp. and one Proteus mirabilis. The antimicrobial to which the strains presented most resistance was sulfonamides with 55.7%, followed by ampicillin with 54.1% and tetracycline with 39.3%. The total of multidrug-resistant bacteria (MDR was 34 (55.7%. In conclusion, canaries harbor members of the Enterobacteriaceae family and common strains present a high antimicrobial resistance rate, with a high frequency of MDR bacteria.

  16. Antimicrobial resistance problems in typhoid fever

    Science.gov (United States)

    Saragih, R. H.; Purba, G. C. F.

    2018-03-01

    Typhoid fever (enteric fever) remains a burden in developing countries and a major health problem in Southern and Southeastern Asia. Salmonella typhi (S. typhi), the causative agent of typhoid fever, is a gram-negative, motile, rod-shaped, facultative anaerobe and solely a human pathogen with no animal reservoir. Infection of S. typhi can cause fever, abdominal pain and many worsenonspecific symptoms, including gastrointestinal symptoms suchas nausea, vomiting, constipation, and diarrhea. Chloramphenicol, ampicillin,and cotrimoxazole were the first-recommended antibiotics in treating typhoid fever. In the last two decades though, these three traditional drugs started to show resistance and developed multidrug resistance (MDR) S. typhi strains. In many parts of the world, the changing modes ofpresentation and the development of MDR have made typhoid fever increasingly difficult to treat.The use of first-line antimicrobials had been recommended to be fluoroquinolone as a replacement. However, this wassoonfollowedbyreportsof isolates ofS. typhi showing resistancetofluoroquinolones as well. These antimicrobial resistance problems in typhoid fever have been an alarming situation ever since and need to be taken seriously or else typhoid fever will no longer be taken care completely by administering antibiotics.

  17. Antimicrobial susceptibility of clinically isolated anaerobic bacteria in a University Hospital Centre Split, Croatia in 2013.

    Science.gov (United States)

    Novak, Anita; Rubic, Zana; Dogas, Varja; Goic-Barisic, Ivana; Radic, Marina; Tonkic, Marija

    2015-02-01

    Anaerobic bacteria play a significant role in many endogenous polymicrobial infections. Since antimicrobial resistance among anaerobes has increased worldwide, it is useful to provide local susceptibility data to guide empirical therapy. The present study reports recent data on the susceptibility of clinically relevant anaerobes in a University Hospital Centre (UHC) Split, Croatia. A total of 63 Gram-negative and 59 Gram-positive anaerobic clinical isolates from various body sites were consecutively collected from January to December 2013. Antimicrobial susceptibility testing was performed using standardized methods and interpreted using EUCAST criteria. Patient's clinical and demographic data were recorded by clinical microbiologist. Among 35 isolates of Bacteroides spp., 97.1% were resistant to penicillin (PCN), 5.7% to amoxicillin/clavulanic acid (AMC), 8.6% to piperacillin/tazobactam (TZP), 29.0% to clindamycin (CLI) and 2.9% to metronidazole (MZ). Percentages of susceptible strains to imipenem (IPM), meropenem (MEM) and ertapenem (ETP) were 94.3. Resistance of other Gram-negative bacilli was 76.0% to PCN, 8.0% to AMC, 12.0% to TZP, 28.0% to CLI and 8% to MZ. All other Gram-negative strains were fully susceptible to MEM and ETP, while 96.0% were susceptible to IPM. Clostridium spp. isolates were 100% susceptible to all tested antibiotics except to CLI (two of four tested isolates were resistant). Propionibacterium spp. showed resistance to CLI in 4.3%, while 100% were resistant to MZ. Among other Gram-positive bacilli, 18.2% were resistant to PCN, 9.1% to CLI and 54.5% to MZ, while 81.8% of isolates were susceptible to carbapenems. Gram-positive cocci were 100% susceptible to all tested antimicrobials except to MZ, where 28.6% of resistant strains were recorded. Abdomen was the most common source of isolates (82.5%). The most prevalent types of infection were abscess (22.1%), sepsis (14.8%), appendicitis (13.9%) and peritonitis (6.6%). Twenty four patients (19

  18. Antimicrobial resistance trends among Escherichia coli isolates obtained from dairy cattle in the northeastern United States, 2004-2011.

    Science.gov (United States)

    Cummings, Kevin J; Aprea, Victor A; Altier, Craig

    2014-01-01

    Monitoring antimicrobial resistance trends among bacteria isolated from food animals and people is necessary to inform risk analyses and guide public policy regarding antimicrobial use. Our objectives were to describe the antimicrobial resistance status of Escherichia coli isolates from dairy cattle in the northeastern United States and to identify trends in resistance to selected antimicrobial agents over time. We collected data retrospectively for all bovine E. coli isolates that were obtained from samples submitted to Cornell University's Animal Health Diagnostic Center between January 1, 2004 and December 31, 2011. We investigated temporal trends in the prevalence of resistant E. coli for each antimicrobial agent using the Cochran-Armitage trend test. Antimicrobial susceptibility testing was performed on 3373 bovine E. coli isolates from clinical samples submitted during the study period. Overall resistance to each antimicrobial agent ranged from 2.7% (enrofloxacin) to 91.3% (oxytetracycline). There was evidence of a significantly decreasing trend in prevalence of resistance to several agents: chlortetracycline, florfenicol, neomycin, oxytetracycline, spectinomycin, and trimethoprim/sulfamethoxazole. However, a significantly increasing trend in prevalence of resistance to enrofloxacin was also evident. These results do not support the idea that current antimicrobial use practices on dairy operations are driving a general increase in the emergence and dissemination of drug-resistant E. coli in the region served by the laboratory. However, resistance to some drugs remained consistently high during the study period, and increasing resistance to enrofloxacin is a key area of concern.

  19. ACVIM Consensus Statement on Therapeutic Antimicrobial Use in Animals and Antimicrobial Resistance

    OpenAIRE

    Weese, J.S.; Gigu?re, S.; Guardabassi, L.; Morley, P.S.; Papich, M.; Ricciuto, D.R.; Sykes, J.E.

    2015-01-01

    The epidemic of antimicrobial resistant infections continues to challenge, compromising animal care, complicating food animal production and posing zoonotic disease risks. While the overall role of therapeutic antimicrobial use in animals in the development AMR in animal and human pathogens is poorly defined, veterinarians must consider the impacts of antimicrobial use in animal and take steps to optimize antimicrobial use, so as to maximize the health benefits to animals while minimizing the...

  20. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria.

    Science.gov (United States)

    Cermak, Pavel; Olsovska, Jana; Mikyska, Alexandr; Dusek, Martin; Kadleckova, Zuzana; Vanicek, Jiri; Nyc, Otakar; Sigler, Karel; Bostikova, Vanda; Bostik, Pavel

    2017-11-01

    Anaerobic bacteria, such as Bacteroides fragilis or Clostridium perfringens, are part of indigenous human flora. However, Clostridium difficile represents also an important causative agent of nosocomial infectious antibiotic-associated diarrhoea. Treatment of C. difficile infection is problematic, making it imperative to search for new compounds with antimicrobial properties. Hops (Humulus lupulus L.) contain substances with antibacterial properties. We tested antimicrobial activity of purified hop constituents humulone, lupulone and xanthohumol against anaerobic bacteria. The antimicrobial activity was established against B. fragilis, C. perfringens and C. difficile strains according to standard testing protocols (CLSI, EUCAST), and the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were calculated. All C. difficile strains were toxigenic and clinically relevant, as they were isolated from patients with diarrhoea. Strongest antimicrobial effects were observed with xanthohumol showing MIC and MBC values of 15-107 μg/mL, which are close to those of conventional antibiotics in the strains of bacteria with increased resistance. Slightly higher MIC and MBC values were obtained with lupulone followed by higher values of humulone. Our study, thus, shows a potential of purified hop compounds, especially xanthohumol, as alternatives for treatment of infections caused by select anaerobic bacteria, namely nosocomial diarrhoea caused by resistant strains. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  1. Bovine Serum Albumin and Chitosan Coated Silver Nanoparticles and Its Antimicrobial Activity against Oral and Nonoral Bacteria

    Directory of Open Access Journals (Sweden)

    León Francisco Espinosa-Cristóbal

    2015-01-01

    Full Text Available Antimicrobial agents have been developed for drug-resistance infections, which have been rapidly increasing; however, the control of involved microorganisms is still a challenge. In this work, SNP with bovine serum albumin (BSA and chitosan (CS coatings were prepared with an aqueous reduction method, characterized using dispersion light scattering, transmission electron microscopy, and thermal analysis. Antibacterial activity was tested on seven oral and nonoral bacteria by microdilution test and scanning electron microscopy. Six different sizes and shapes of coated SNP were prepared and used. Characterization revealed narrow size and good distribution of particles, spherical and pseudospherical shapes, and the presence of coatings on the SNP surfaces. All samples showed antimicrobial activity, although smaller sizes and CS samples had the best inhibition effects. The highest microbial resistance was shown by Gram-positive bacteria. Although coated SNP action depends on particular bacterium, BSA and CS coated SNP could be used for drug-resistance infections.

  2. Study of antimicrobial effect of novel Quaternary Ammonium Compounds on bacteria and fungi

    Directory of Open Access Journals (Sweden)

    Maryam Sadrnia

    2014-10-01

    Full Text Available Background: Quarterly Ammonium Compounds (QuAC are the more effective antimicrobial agents in medicine and industry. It needs to produce the new compounds with the wider spectrum and less toxicity, because of microbial resistance. Aim of this study was microbiological Evaluation of the new Quarterly Ammonium Compounds produced by Structural modifications on some bacteria, yeast and fungi. Material and Methods: 16 Quat salts were designed and made in Ethanol or Aceto Nitril. Minimum Inhibitory Concentration (MIC was determined by standard method on Nutrient Broth and Minimal agar culture media for bacteria , Potato Dextrose Agar (PDA for fungi and Nutrient Agar and Saboro Dextrose Agar (SDA for yeasts . Results: Compounds 2,7,8,9,12,13 has the more antimicrobial effect ( minimum of MIC. Furthermore, it was shown that MIC was unrelated to culture compounds. In yeast culture it must to increases the concentration in enriched media. Compounds 9,12 and 13 has the more antibacterial effect as well as antifungal effect. Conclusion: In comparison of structure of produced compounds and results of the study, it was revealed that radical R3 has the most important role in antimicrobial properties of Quats and it could to be substitute any suitable group related to increasing anti microbial effects.

  3. Evaluation of an antimicrobial resistance monitoring program for campylobacter in poultry by simulation

    DEFF Research Database (Denmark)

    Regula, G.; Wong, Danilo Lo Fo; Ledergerber, U.

    2005-01-01

    An ideal national resistance monitoring program should deliver a precise estimate of the resistance situation for a given combination of bacteria and antimicrobial at a low cost. To achieve this, decisions need to be made on the number of samples to be collected at each of different possible...... sampling points. Existing methods of sample size calculation can not be used to solve this problem, because sampling decisions do not only depend on the prevalence of resistance and sensitivity and specificity of resistance testing, but also on the prevalence of the bacteria, and test characteristics...... of isolation of these bacteria. Our aim was to develop a stochastic simulation model that optimized a national resistance monitoring program, taking multi-stage sampling, imperfect sensitivity and specificity of diagnostic tests, and cost-effectiveness considerations into account. The process of resistance...

  4. Refugees and antimicrobial resistance: A systematic review.

    Science.gov (United States)

    de Smalen, Allard Willem; Ghorab, Hatem; Abd El Ghany, Moataz; Hill-Cawthorne, Grant A

    There is a large increase in the numbers of refugees and asylum seekers worldwide and a lack of data on the carriage of antimicrobial resistance in refugee/asylum seeking groups. This article aims to identify the impact of refugees and asylum seekers on the acquisition and transmission of antimicrobial resistance (AMR) through a literature search. The databases Embase, Medline, Pubmed, and Web of Science Core Collection were utilised and covered all articles before the 1st of October 2016. In total, 577 articles were identified, and studies were eligible if they met the selection criteria, including observational study design, English language, and AMR strains reported in absolute numbers. In total, 17 articles met the criteria, the majority were from the European region. Articles fitting the selection criteria exclusively reported AMR in bacterial species including Mycobacterium tuberculosis, Escherichia coli, Klebsiella pneumonia, K. oxytoca, Shigella spp., Staphylococcus aureus, Enterococcus faecium, and Acinetobacter baumannii. The analyses indicated that a high percentage of AMR strains, have been circulating among refugees and asylum seekers. The displacement of refugees and asylum seekers seem to play a key role in the transmission of AMR. Therefore, improved AMR control measures are essential. A knowledge gap was identified; further research is strongly recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Antimicrobial-resistant faecal organisms in algae products marketed as health supplements

    LENUS (Irish Health Repository)

    2017-09-01

    Dietary supplements are increasingly popular in Irish society. One of these is blue-green algae which is used with a variety health benefits in mind. A batch of Chlorella powder was found to be contaminated with Salmonella species in Ireland in 2015. This prompted additional testing of a total of 8 samples of three different products (Chlorella, Spirulina and Super Greens), for other faecal flora and antimicrobial resistance in any bacteria isolated. All 8 samples cultured enteric flora such as Enterococci, Enterobacteriaceae and Clostridium species. Antimicrobial susceptibility testing revealed one isolate with extended-spectrum β-lactamase (ESBL) activity and one with carbapenemase activity. Clinicians caring for vulnerable patients should be aware of the potential risk of exposure to antimicrobial resistant bacteria associated with these products

  6. 76 FR 37356 - 2011 Scientific Meeting of the National Antimicrobial Resistance Monitoring System; Public...

    Science.gov (United States)

    2011-06-27

    ... animal and retail sampling methods for the National Antimicrobial Resistance Monitoring System (NARMS... Web site at http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/National...] 2011 Scientific Meeting of the National Antimicrobial Resistance Monitoring System; Public Meeting...

  7. Distribution of Gram Negative Bacteria and Evaluation of Resistance Profiles

    Directory of Open Access Journals (Sweden)

    Serap Pamukcuoglu

    2014-03-01

    Full Text Available Aim: In this study, we aimed to examine the distributon of Gram negative bacteria isolated from urine cultures of out-patients in Afyonkarahisar State Hospital and evaluate the antimicrobial resistance rates of these pathogens. Material and Method: Urine samples of out-patients which were sent to microbiology laboratory between 2012-2013 were retrospectively evaluated. The isolates were identified using conventional methods and/or automated Vitec 2.0 system. Antibiogram sensitivities were determined by Kirby-Bauer disc diffusion method or automated system and interpreted on the basis of Clinical and Laboratory Standards Institute (CSI criteria. Double disc sinergy test (DDST or Vitec 2.0 system was used to detect extended spectrum beta-lactamase (ESBL.When conventional methods could%u2019t be clarified according to their colony morphologies, gram staining patterns, biochemical test; automated system has been used. Results: A total of 671 isolates acquired from urine samples were studied. 427 Escherichia coli (63.6 %, 165 Klebsiella spp. (24.6 %, 22 Pseudomonas spp. (3.3 %, nine Acinetobacter spp. (1.3 %, 41 Proteus spp. (6.1 % and seven Serratia (1.0 % strains were identified among isolates. 97 E.coli (22.8 % and 41 Klebsiella (24.8 % isolates were ESBL positive. Most common bacteria were E.coli, 31.1 % of which were resistant to trimethoprim-sulfamethoxazole, 16 % to ciprofloxacin and 3.6 % to nitrofurantoin. Among Enterobacteriaceae, no resistance aganist carbapenems were detected. Moreover, aminoglicoside sensitivity rate was significantly high in this group. Discussion: Microorganisms that have progressively increasing antimicrobial resistance should be considered in the treatment of urinary tract infections. It is also important to use the most appropriate antibiotics to avoid unnecessary usage of these drugs in order to decrease drug resistance rates and ESBL production which may effect the success of the treatment.

  8. Multistrain models predict sequential multidrug treatment strategies to result in less antimicrobial resistance than combination treatment

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo

    2016-01-01

    generated by a mathematical model of the competitive growth of multiple strains of Escherichia coli.Results: Simulation studies showed that sequential use of tetracycline and ampicillin reduced the level of double resistance, when compared to the combination treatment. The effect of the cycling frequency...... frequency did not play a role in suppressing the growth of resistant strains, but the specific order of the two antimicrobials did. Predictions made from the study could be used to redesign multidrug treatment strategies not only for intramuscular treatment in pigs, but also for other dosing routes.......Background: Combination treatment is increasingly used to fight infections caused by bacteria resistant to two or more antimicrobials. While multiple studies have evaluated treatment strategies to minimize the emergence of resistant strains for single antimicrobial treatment, fewer studies have...

  9. The in vitro fitness cost of antimicrobial resistance in Escherichia coli varies with the growth conditions

    DEFF Research Database (Denmark)

    Petersen, Andreas; Aarestrup, Frank Møller; Olsen, John Elmerdahl

    2009-01-01

    The objective of this study was to investigate the influence of stressful growth conditions on the fitness cost of antimicrobial resistance in Escherichia coli BJ4 caused by chromosomal mutations and plasmid acquisition. The fitness cost of chromosomal streptomycin resistance increased......H and at high-salt concentrations. Strains with an impaired rpoS demonstrated a reduced fitness only during growth in a high-salt concentration. In conclusion, it was demonstrated that bacterial fitness cost in association with antimicrobial resistance generally increases under stressful growth conditions....... However, the growth potential of bacteria with antimicrobial resistances did not increase in a straightforward manner in these in vitro experiments and is therefore probably even more difficult to predict in vivo....

  10. Resistance trends in gram-negative bacteria: surveillance results from two Mexican hospitals, 2005–2010

    Directory of Open Access Journals (Sweden)

    Morfin-Otero Rayo

    2012-06-01

    Full Text Available Abstract Background Hospital-acquired infections caused by multiresistant gram-negative bacteria are difficult to treat and cause high rates of morbidity and mortality. The analysis of antimicrobial resistance trends of gram-negative pathogens isolated from hospital-acquired infections is important for the development of antimicrobial stewardship programs. The information obtained from antimicrobial resistant programs from two hospitals from Mexico will be helpful in the selection of empiric therapy for hospital-acquired gram-negative infections. Findings Two thousand one hundred thirty two gram-negative bacteria collected between January 2005 and December 2010 from hospital-acquired infections occurring in two teaching hospitals in Mexico were evaluated. Escherichia coli was the most frequently isolated gram-negative bacteria, with >50% of strains resistant to ciprofloxacin and levofloxacin. Klebsiella spp. showed resistance rates similar to Escherichia coli for ceftazidime (33.1% vs 33.2%, but exhibited lower rates for levofloxacin (18.2% vs 56%. Of the samples collected for the third most common gram-negative bacteria, Pseudomonas aeruginosa, >12.8% were resistant to the carbapenems, imipenem and meropenem. The highest overall resistance was found in Acinetobacter spp. Enterobacter spp. showed high susceptibility to carbapenems. Conclusions E. coli was the most common nosocomial gram-negative bacilli isolated in this study and was found to have the second-highest resistance to fluoroquinolones (>57.9%, after Acinetobacter spp. 81.2%. This finding represents a disturbing development in a common nosocomial and community pathogen.

  11. plasmid mediated resistance in multidrug resistant bacteria isolated

    African Journals Online (AJOL)

    User

    PLASMID MEDIATED RESISTANCE IN MULTIDRUG RESISTANT BACTERIA. ISOLATED FROM CHILDREN WITH SUSPECTED SEPTICAEMIA IN ZARIA,. NIGERIA. AbdulAziz, Z. A.,1* Ehinmidu, J. O.,1 Adeshina, G. O.,1 Pala, Y. Y2., Yusuf, S. S2. and. Bugaje, M. A.3. 1Department of Pharmaceutics and Pharmaceutical ...

  12. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota

    Directory of Open Access Journals (Sweden)

    Leon eCantas

    2013-05-01

    Full Text Available The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting from use, misuse and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance genes have been suggested to originate from environmental bacteria, as clinically relevant resistance genes have been detected on the chromosome of environmental bacteria. As only a few new antimicrobials have been developed in the last decade, the further evolution of resistance poses a serious threat to public health. Urgent measures are required not only to minimize the use of antimicrobials for prophylactic and therapeutic purposes but also to look for alternative strategies for the control of bacterial infections. This review examines the global picture of antibacterial resistance, factors that favor its spread, strategies and limitations for its control and the need for continuous training of all stake-holders i.e. medical, veterinary, public health and other relevant professionals as well as human consumers of antibiotic drugs, in the appropriate use of antimicrobials.

  13. Providing context: antimicrobial resistance from multiple environmental sources

    Science.gov (United States)

    Background: Animal agriculture has been identified as encouraging the spread of resistance due to the use of large quantities of antimicrobials for animal production purposes. When antimicrobial resistance (AMR) is reported in agricultural settings without comparison to other environments there is a...

  14. Prevention strategies for antimicrobial resistance: a systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Whitney P Caron

    2010-05-01

    Full Text Available Whitney P Caron1, Shaker A Mousa1,21The Pharmaceutical Research Institute, Center of Excellence of Infection Prevention (CEIP, Albany College of Pharmacy and Health Sciences, Albany, NY, USA; 2King Saud University, Riyadh, Saudi ArabiaAbstract: Antibiotics offer great benefits by reducing the duration and severity of illnesses and aiding in infection transmission control. With this being said, the inexorable process of antimicrobial drug resistance is to some degree unavoidable. Although drug resistance will likely persist and is to be expected, the overall level can be dramatically decreased with increased attention to antibiotic overuse and the pharmacokinetic and pharmacodynamic properties of different drug formulations, and the use of proper hygiene and protective barriers. Implementation of such practices as microbial surveillance and prophylaxis has been shown to result in decreased hospital length of stay, health care costs and mortality due to drug-resistant infections. This review will summarize current progress in preventative techniques aimed at reducing the incidence of infection by antimicrobial-resistant bacteria and the emergence and spread of antimicrobial-resistant strains. By employing a variety of prevention strategies, including proper personal hygiene, prescreening for carrier status before hospital admission, disinfection of hospital rooms, and careful monitoring of antimicrobial prescribing, marked progress can be achieved in the control of drug-resistant pathogens, which can translate into more effective antimicrobial therapy.Keywords: infection prevention, antibiotic, personal hygiene, disinfection, microbial surveillance, drug-resistant pathogen

  15. Antibiotic-resistant bacteria in drinking water.

    Science.gov (United States)

    Armstrong, J L; Shigeno, D S; Calomiris, J J; Seidler, R J

    1981-08-01

    We analyzed drinking water from seven communities for multiply antibiotic-resistant (MAR) bacteria (bacteria resistant to two or more antibiotics) and screened the MAR bacterial isolates obtained against five antibiotics by replica plating. Overall, 33.9% of 2,653 standard plate count bacteria from treated drinking waters were MAR. Two different raw water supplies for two communities carried MAR standard plate count bacteria at frequencies of 20.4 and 18.6%, whereas 36.7 and 67.8% of the standard plate count populations from sites within the respective distribution systems were MAR. Isolate identification revealed that MAR gram-positive cocci (Staphylococcus) and MAR gram-negative, nonfermentative rods (Pseudomonas, Alcaligenes, Moraxella-like group M, and Acinetobacter) were more common in drinking waters than in untreated source waters. Site-to-site variations in generic types and differences in the incidences of MAR organisms indicated that shedding of MAR bacteria living in pipelines may have contributed to the MAR populations in tap water. We conclude that the treatment of raw water and its subsequent distribution select for standard plate count bacteria exhibiting the MAR phenotype.

  16. Antimicrobial resistance in Danish pigs: A cross sectional study of the association between antimicrobial resistance and geography, exposure to antimicrobials, and trade

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla

    Antimicrobial resistance is a worldwide problem of paramount importance for both humans and animals. To combat the emergence of antimicrobial resistance, the problem must be targeted in all major reservoirs as it is assumed that a high level of AMR genes in environmental reservoirs can increase...... the risk of human pathogens becoming resistant. Pigs might constitute an important reservoir. Therefore, it is important to manage antimicrobial resistance in pigs. Before effectiveactions can be initiated, it is crucial to know which factors are associated with the levels of antimicrobial resistance...... the collection of information on relevant factors. The aim of this PhD project was to study the relationship between the levels of antimicrobial resistance genes and three factors in Danish pig farms: the geographical location of the farm, the exposure to antimicrobials, and the trade patterns. Data collection...

  17. Beer spoilage bacteria and hop resistance.

    Science.gov (United States)

    Sakamoto, Kanta; Konings, Wil N

    2003-12-31

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However

  18. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  19. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    Science.gov (United States)

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.

  20. Screening of metal-resistant coal mine bacteria for biofabrication of ...

    Indian Academy of Sciences (India)

    Additionally, IR study provided information about the bacterial proteins involved in either reduction of Ag(I) into silver nanoparticle or capping of reduced silver nanocrystal or both.Thus, majority of the bacteria found in the coal mines have the resistance against the antimicrobial metal ion, and the potential to reduce the ion ...

  1. Antimicrobial potential of Casearia sylvestris against oral bacteria

    Directory of Open Access Journals (Sweden)

    Amanda Henriques CAVALHEIRO

    Full Text Available Abstract Aim The aim of this study was to obtain Casearia sylvestris leave extracts by different extractive methods, including the obtention of essential oil, in order to compare their antimicrobial activities to conventional mouthwash chlorhexidine against oral bacteria. Material and method For this evaluation, extracts from the leaves were obtained by different methods of extraction (infusion, decoction, maceration and percolation using different solvent systems: water 100%, ethanol 100%, methanol 100%, water: ethanol 3:7; water: ethanol 7:3; water: methanol 7:3 and water: methanol 3:7. The essential oil, which corresponds to a volatile fraction, was obtained by hydrodistillation using Clevenger modified apparatus. The microdilution broth method was used to determine the values of minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC for the following microorganisms: Streptococcus mutans ATCC 25175, S. mitis ATCC 49456, S. sanguinis ATCC 10556, S. salivarius ATCC 25975, Lactobacillus casei ATCC 11578 and Enterococcus faecalis ATCC4082. Chlorhexidine gluconate was used as a positive control. Result All extracts evaluated in the used protocol displayed MIC values higher than 400 µg/mL and few showed bactericidal activity. The antimicrobial activity of essential oil was higher than the activity of the extracts, and the best minimum inhibitory concentration and minimum bactericidal concentration values were obtained against L. casei (MIC of 0.023 µg/mL and MBC of 0.046 µg/mL and S. mutans (MIC of 25 µg/mL and MBC of 50 µg/mL, respectively. Conclusion The essential oil of Casearia sylvestris has significant antimicrobial activity against oral microorganisms.

  2. In vitro antimicrobial activity of five essential oils on multi-drug resistant Gram-negative clinical isolates

    OpenAIRE

    Hercules Sakkas; Panagiota Gousia; Vangelis Economou; Vassilios Sakkas; Stefanos Petsios; Chrissanthy Papadopoulou

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneum...

  3. Cyclodextrins: A Weapon in the Fight Against Antimicrobial Resistance

    Science.gov (United States)

    Wong, Chew Ee; Dolzhenko, Anton V.; Lee, Sui Mae; Young, David James

    Antimicrobial resistance poses one of the most serious global challenges of our age. Cyclodextrins (CDs) are widely utilized excipients in formulations because of their solubilizing properties, low toxicity, and low inflammatory response. This review summarizes recent investigations of antimicrobial agents involving CDs and CD-based antimicrobial materials. CDs have been employed for antimicrobial applications either through formation of inclusion complexes or by chemical modification of their hydroxyl groups to tailor pharmaceutically active compounds. Applications of these CD inclusion complexes include drug delivery, antimicrobial coatings on materials (e.g., biomedical devices and implants) and antimicrobial dressings that help to prevent wound infections. There are relatively limited studies of chemically modified CDs with antimicrobial activity. The mechanism of action of antimicrobial CD inclusion complexes and derivatives needs further elucidation, but activity of CDs and their derivatives is often associated with their interaction with bacterial cell membranes.

  4. Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Atikya Farjana

    2014-09-01

    Full Text Available Objective: To determine antibacterial activity of water, oil and methanol extracts of guava (Psidium guajava, green tea (Camellia sinensis, neem (Azadirachta indica and marigold (Calendula officinalis against different species of bacteria, Pseudomonas spp., Vibrio cholerae, Vibrio parahaemolyticus (V. parahaemolyticus, Klebsiella spp., Escherichia coli, Salmonella spp. and Staphylococcus aureus (S. aureus. Methods: Antibacterial activity of plant extracts was measured by agar well diffusion method. Results: Boiled water extracts of guava leaf showed the largest zone of inhibition (22 mm against V. parahaemolyticus. Water extracts of green tea leaf at boiling and room temperature showed 17.5 mm and 19 mm zone of inhibitions against V. parahaemolyticus and S. aureus, respectively. Boiled water extract of neem leaf showed moderate zone of inhibition against Escherichia coli (10 mm and Klebsiella spp. (11 mm. Water and oil extracts of marigold leaf at both boiling and room temperature did not show any zone of inhibition against any of the tested microorganisms. Methanol extracts of both guava and green tea leaves showed same zone of inhibition against Pseudomonus spp. (18 mm. Methanol extract of neem leaf showed antibacterial acitivity against Klebsiella spp. (16 mm and Vibrio cholerae (14 mm and that of marigold leaf showed antimicrobial activity against S. aureus (18 mm and Klebsiella spp. (12 mm. Conclusions: The results from the study suggest that the leaves of guava, green tea, neem and marigold show anibacterial activity against different bacterial species. They could be used as alternatives to common antimicrobial agents for treatment of bacterial infections.

  5. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria

    Science.gov (United States)

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  6. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L. on Two Gram-Negative and Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Bipul Biswas

    2013-01-01

    Full Text Available Aim. To determine the antimicrobial potential of guava (Psidium guajava leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water. The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties.

  7. Antimicrobial resistance and prevalence of resistance genes of obligate anaerobes isolated from periodontal abscesses.

    Science.gov (United States)

    Xie, Yi; Chen, Jiazhen; He, Junlin; Miao, Xinyu; Xu, Meng; Wu, Xingwen; Xu, Beiyun; Yu, Liying; Zhang, Wenhong

    2014-02-01

    This study attempts to determine the antimicrobial resistance profiles of obligate anaerobic bacteria that were isolated from a periodontal abscess and to evaluate the prevalence of resistance genes in these bacteria. Forty-one periodontal abscess samples were cultivated on selective and non-selective culture media to isolate the oral anaerobes. Their antibiotic susceptibilities to clindamycin, doxycycline, amoxicillin, imipenem, cefradine, cefixime, roxithromycin, and metronidazole were determined using the agar dilution method, and polymerase chain reaction assays were performed to detect the presence of the ermF, tetQ, nim, and cfxA drug resistance genes. A total of 60 different bacterial colonies was isolated and identified. All of the isolates were sensitive to imipenem. Of the strains, 6.7%, 13.3%, 16.7%, and 25% were resistant to doxycycline, metronidazole, cefixime, and amoxicillin, respectively. The resistance rate for both clindamycin and roxithromycin was 31.7%. Approximately 60.7% of the strains had the ermF gene, and 53.3% of the amoxicillin-resistant strains were found to have the cfxA gene. Two nim genes that were found in eight metronidazole-resistant strains were identified as nimB. In the present study, the Prevotella species are the most frequently isolated obligate anaerobes from periodontal abscesses. The current results show their alarmingly high resistance rate against clindamycin and roxithromycin; thus, the use of these antibiotics is unacceptable for the empirical therapy of periodontal abscesses. A brief prevalence of four resistance genes in the anaerobic bacteria that were isolated was also demonstrated.

  8. The Spider Venom Peptide Lycosin-II Has Potent Antimicrobial Activity against Clinically Isolated Bacteria

    Directory of Open Access Journals (Sweden)

    Yongjun Wang

    2016-04-01

    Full Text Available Antimicrobial peptides have been accepted as excellent candidates for developing novel antibiotics against drug-resistant bacteria. Recent studies indicate that spider venoms are the source for the identification of novel antimicrobial peptides. In the present study, we isolated and characterized an antibacterial peptide named lycosin-II from the venom of the spider Lycosa singoriensis. It contains 21 amino acid residue lacking cysteine residues and forms a typical linear amphipathic and cationic α-helical conformation. Lycosin-II displays potent bacteriostatic effect on the tested drug-resistant bacterial strains isolated from hospital patients, including multidrug-resistant A. baumannii, which has presented a huge challenge for the infection therapy. The inhibitory ability of lycosin-II might derive from its binding to cell membrane, because Mg2+ could compete with the binding sites to reduce the bacteriostatic potency of lycosin-II. Our data suggest that lycosin-II might be a lead in the development of novel antibiotics for curing drug-resistant bacterial infections.

  9. Antibiotic resistance of lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Bulajić Snežana

    2008-01-01

    Full Text Available Knowledge on the antibiotic resistance of lactic acid bacteria is still limited, possibly because of the large numbers of genera and species encountered in this group, as well as variances in their resistance spectra. The EFSA considers antibiotic resistances, especially transferable resistances, an important decision criterion for determining a strain's QPS status. There are no approved standards for the phenotypic or genotypic evaluation of antibiotic resistances in food isolates. Also, the choice of media is problematic, as well as the specification of MIC breakpoint values as a result of the large species variation and the possible resulting variation in MIC values between species and genera. The current investigations in this field showed that we might end up with a range of different species- or genus-specific breakpoint values that may further increase the current complexity. Another problem associated with safety determinations of starter strains is that once a resistance phenotype and an associated resistance determinant have been identified, it becomes difficult to show that this determinant is not transferable, especially if the resistance gene is not located on a plasmid and no standard protocols for showing genetic transfer are available. Encountering those problems, the QPS system should allow leeway for the interpretations of results, especially when these relate to the methodology for resistance phenotype determinations, determinations of MIC breakpoints for certain genera, species, or strains, the nondeterminability of a genetic basis of a resistance phenotype and the transferability of resistance genes.

  10. Role of Nutrients and Phyto-compounds in the Modulation of Antimicrobial Resistance.

    Science.gov (United States)

    Harakeh, Steve; Khan, Imran; Almasaudi, Saad B; Azhar, Esam I; Al-Jaouni, Soad; Niedzweicki, Aleksandra

    2017-01-01

    Antimicrobial resistance is quickly spreading and has become a major public health problem worldwide. If this issue is not resolved, it may cause a shift back to the pre-antibiotics era and infectious disease will again be a serious problem, especially in developing countries. Since the discovery of antibiotics, bacterial resistance has emerged, enabling certain bacteria to withstand antibiotic action. The emergence of antibiotic resistance is fueled by excessive and improper use of antimicrobial agents, especially in developing countries. For this reason, alternatives to or modifications of current treatment methods have been sought. The aim of this review is to highlight the possible synergies of various agents that can augment antibiotic activities. A structured literature search was conducted using only papers that have been published in PubMed with the focus on the agents that are likely to modulate antimicrobial resistance. In this review, data was retrieved from the literature regarding the possible synergies that exist between commercially available antimicrobial drugs with agents of interest. The papers included were summarized and analyzed, critiqued and compared for their contents using a conceptual frame-work. In total, one hundred and twenty six papers were reviewed. The number of papers that dealt with the different topics included are as follows (): emergence of antimicrobial resistance (22), bioactive phyto-compounds (36) (phytobiologics, and phytochemicals), Antioxidants (40) (N-acetylcysteine, Ambroxol, Ascorbic acid, Glutathione and vitamin E), Peptide synergies (14) (Synthetic cationic α-helical AMPs, CopA3, Alafosfalin, PMAP-36, Phosphonopeptide L-norvalyl-L-1-aminoethylphosphonic acid and norcardicin-A), nano-antibiotics (10), drug-compound interactions (4).This review addressed the new strategies using the above compounds in the modulation of antimicrobial resistance to avoid issues related to resistance of bacteria to antibiotics. The

  11. Isolation and Identification of Phyllospheric Bacteria Possessing Antimicrobial Activity from Astragalus obtusifolius, Prosopis juliflora, Xanthium strumarium and Hippocrepis unisiliqousa.

    Science.gov (United States)

    Mazinani, Zohreh; Zamani, Marzieh; Sardari, Soroush

    2017-01-01

    The widespread utilization of antimicrobial compounds has caused emergence of resistant microorganisms in the world. Hence, the research to probe the products with antimicrobial features has led to finding natural habitats and discovering new pharmaceutical products. In this study, an attempt was made to explore the niche of novel habitat to isolate pyllospheric bacteria from the above ground parts (stems and leaves) of Astragalus obtusifolius , Prosopis juliflora , Xanthium strumarium , and Hippocrepis unisiliqousa to evaluate their antimicrobial features. The inhibitory effects of these strains on the growth of two fungi ( Aspergillus niger , Aspergillus fumigatus ), two yeasts ( Saccharomyces cerevisiae , Candida albicans ) and six bacteria ( Escherichia coli , Staphylococcus aureus , Pseudomonas aeruginosa , Bacillus subtilis , Salmonella typhi , Streptococcus pyogenes ) were tested. In total, 113 bacterial strains were isolated. Twenty five bacterial strains (B-1 to B-25) indicated promising antimicrobial (antibacterial and antifungal) activities against aforementioned pathogens. The identification of the bacterial strains was ascertained by morphological, physiological, biochemical tests and two strains with the strongest antimicrobial activities were further characterized based on 16s rRNA sequencing. These two strains were identified as Bacillus amyloliquefaciens . Our results provide evidence that phyllospheric microorganisms are capable of producing some compounds with antimicrobial properties.

  12. Antimicrobial susceptibility of clinical isolates of anaerobic bacteria in Ontario, 2010-2011.

    Science.gov (United States)

    Marchand-Austin, Alex; Rawte, Prasad; Toye, Baldwin; Jamieson, Frances B; Farrell, David J; Patel, Samir N

    2014-08-01

    The local epidemiology of antimicrobial susceptibility patterns in anaerobic bacteria is important in guiding the empiric treatment of infections. However, susceptibility data are very limited on anaerobic organisms, particularly among non-Bacteroides organisms. To determine susceptibility profiles of clinically-significant anaerobic bacteria in Ontario Canada, anaerobic isolates from sterile sites submitted to Public Health Ontario Laboratory (PHOL) for identification and susceptibility testing were included in this study. Using the E-test method, isolates were tested for various antimicrobials including, penicillin, cefoxitin, clindamycin, meropenem, piperacillin-tazobactam and metronidazole. The MIC results were interpreted based on guidelines published by Clinical and Laboratory Standards Institute. Of 2527 anaerobic isolates submitted to PHOL, 1412 were either from sterile sites or bronchial lavage, and underwent susceptibility testing. Among Bacteroides fragilis, 98.2%, 24.7%, 1.6%, and 1.2% were resistant to penicillin, clindamycin, piperacillin-tazobactam, and metronidazole, respectively. Clostridium perfringens was universally susceptible to penicillin, piperacillin-tazobactam, and meropenem, whereas 14.2% of other Clostridium spp. were resistant to penicillin. Among Gram-positive anaerobes, Actinomyces spp., Parvimonas micra and Propionibacterium spp. were universally susceptible to β-lactams. Eggerthella spp., Collinsella spp., and Eubacterium spp. showed variable resistance to penicillin. Among Gram-negative anaerobes, Fusobacterium spp., Prevotella spp., and Veillonella spp. showed high resistance to penicillin but were universally susceptible to meropenem and piperacillin-tazobactam. The detection of metronidazole resistant B. fragilis is concerning as occurrence of these isolates is extremely rare. These data highlight the importance of ongoing surveillance to provide clinically relevant information to clinicians for empiric management of

  13. The risk of some veterinary antimicrobial agents on public health associated with antimicrobial resistance and their molecular basis

    OpenAIRE

    Haihong Hao; Zahid Iqbal; Yulian Wang; Guyue Cheng; Zong-Hui Yuan

    2016-01-01

    The risk of antimicrobial agents used in food-producing animals on public health associated with antimicrobial resistance continues to be a current topic of discussion as related to animal and human public health. In the present review, resistance monitoring data and risk assessment result of some important antimicrobial agents were cited to elucidate the possible association of antimicrobial use in food animals and antimicrobial resistance in human. From the selected examples, it was obvious...

  14. Efflux drug transporters at the forefront of antimicrobial resistance.

    Science.gov (United States)

    Rahman, Tahmina; Yarnall, Benjamin; Doyle, Declan A

    2017-10-01

    Bacterial antibiotic resistance is rapidly becoming a major world health consideration. To combat antibiotics, microorganisms employ their pre-existing defence mechanisms that existed long before man's discovery of antibiotics. Bacteria utilise levels of protection that range from gene upregulation, mutations, adaptive resistance, and production of resistant phenotypes (persisters) to communal behaviour, as in swarming and the ultimate defence of a biofilm. A major part of all of these responses involves the use of antibiotic efflux transporters. At the single cell level, it is becoming apparent that the use of efflux pumps is the first line of defence against an antibiotic, as these pumps decrease the intracellular level of antibiotic while the cell activates the various other levels of protection. This frontline of defence involves a coordinated network of efflux transporters. In the future, inhibition of this efflux transporter network, as a target for novel antibiotic therapy, will require the isolation and then biochemical/biophysical characterisation of each pump against all known and new antibiotics. This depth of knowledge is required so that we can fully understand and tackle the mechanisms of developing antimicrobial resistance.

  15. The in Vitro Antimicrobial Efficacy of PDT against Periodontopathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Philippe A. Haag

    2015-11-01

    Full Text Available Periodontitis, an inflammatory disease, is caused by biofilms with a mixed microbial etiology and involves the progressive destruction of the tooth-supporting tissues. A rising number of studies investigate the clinical potential of photodynamic therapy (PDT as an adjunct during active therapy. The aim of the present review was to evaluate the available literature for the in vitro antimicrobial efficacy of photodynamic therapy focusing on the periodontopathogenic bacteria Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum. The focused question was: “Is it possible to decrease (at least 3 log steps or 99.9% or even eliminate bacterial growth by photodynamic therapy in vitro when compared to untreated control groups or control groups treated by placebo?” In general, PDT resulted in a substantial reduction of surviving bacteria. However, not all studies showed the desired reduction or elimination. The ranges of log10-reduction were 0.38 (58% to a complete eradication (100% for P. gingivalis, 0.21 (39% to 100% for A. actinomycetemcomitans and 0.3 (50% to 100% for F. nucleatum. In conclusion, further and particularly more comparable studies are needed to evaluate if PDT can be clinically successful as an adjuvant in periodontal therapy.

  16. Impetigo: A need for new therapies in a world of increasing antimicrobial resistance.

    Science.gov (United States)

    D'Cunha, N M; Peterson, G M; Baby, K E; Thomas, J

    2018-02-01

    Impetigo is a highly contagious bacterial skin infection and is one of the most common skin infections in children. Antibiotics are the first-line treatment when multiple lesions exist, but with an increasing prevalence of antibiotic-resistant bacteria the successful management of impetigo in the future is an area of concern. Current treatment options that favour the use of oral antibiotic therapy are increasingly problematic. Widespread use of these agents contributes to antimicrobial resistance and has adverse consequences for individuals and communities. There is a need for new topical antimicrobials and antiseptics as an alternative treatment strategy. To successfully treat impetigo into the future and ensure that therapy does not contribute to bacterial resistance, additional research is required to ascertain the usefulness of alternative agents, including new topical antimicrobials and antiseptics. © 2017 John Wiley & Sons Ltd.

  17. Multistrain models predict sequential multidrug treatment strategies to result in less antimicrobial resistance than combination treatment

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo

    2016-01-01

    Background: Combination treatment is increasingly used to fight infections caused by bacteria resistant to two or more antimicrobials. While multiple studies have evaluated treatment strategies to minimize the emergence of resistant strains for single antimicrobial treatment, fewer studies have...... the sensitive fraction of the commensal flora.Growth parameters for competing bacterial strains were estimated from the combined in vitro pharmacodynamic effect of two antimicrobials using the relationship between concentration and net bacterial growth rate. Predictions of in vivo bacterial growth were...... (how frequently antibiotics are alternated in a sequential treatment) of the two drugs was dependent upon the order in which the two drugs were used.Conclusion: Sequential treatment was more effective in preventing the growth of resistant strains when compared to the combination treatment. The cycling...

  18. Impact of colistin sulfate treatment of broilers on the presence of resistant bacteria and resistance genes in stored or composted manure.

    Science.gov (United States)

    Le Devendec, Laetitia; Mourand, Gwenaelle; Bougeard, Stéphanie; Léaustic, Julien; Jouy, Eric; Keita, Alassane; Couet, William; Rousset, Nathalie; Kempf, Isabelle

    2016-10-15

    The application of manure may result in contamination of the environment with antimicrobials, antimicrobial-resistant bacteria, resistance genes and plasmids. The aim of this study was to investigate the impact of the administration of colistin and of manure management on (i) the presence of colistin-resistant Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa and (ii) the prevalence of various antimicrobial resistance genes in feces and in composted or stored manure. One flock of chickens was treated with colistin at the recommended dosage and a second flock was kept as an untreated control. Samples of feces, litter and stored or composted manure from both flocks were collected for isolation and determination of the colistin-susceptibility of E. coli, K. pneumoniae and P. aeruginosa and quantification of genes coding for resistance to different antimicrobials. The persistence of plasmids in stored or composted manure from colistin-treated broilers was also evaluated by plasmid capturing experiments. Results revealed that colistin administration to chickens had no apparent impact on the antimicrobial resistance of the dominant Enterobacteriaceae and P. aeruginosa populations in the chicken gut. Composting stimulated an apparently limited decrease in genes coding for resistance to different antimicrobial families. Importantly, it was shown that even after six weeks of composting or storage, plasmids carrying antimicrobial resistance genes could still be transferred to a recipient E. coli. In conclusion, composting is insufficient to completely eliminate the risk of spreading antimicrobial resistance through chicken manure. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The antimicrobial resistance crisis: management through gene monitoring

    Science.gov (United States)

    2016-01-01

    Antimicrobial resistance (AMR) is an acknowledged crisis for humanity. Its genetic origins and dire potential outcomes are increasingly well understood. However, diagnostic techniques for monitoring the crisis are currently largely limited to enumerating the increasing incidence of resistant pathogens. Being the end-stage of the evolutionary process that produces antimicrobial resistant pathogens, these measurements, while diagnostic, are not prognostic, and so are not optimal in managing this crisis. A better test is required. Here, using insights from an understanding of evolutionary processes ruling the changing abundance of genes under selective pressure, we suggest a predictive framework for the AMR crisis. We then discuss the likely progression of resistance for both existing and prospective antimicrobial therapies. Finally, we suggest that by the environmental monitoring of resistance gene frequency, resistance may be detected and tracked presumptively, and how this tool may be used to guide decision-making in the local and global use of antimicrobials. PMID:27831476

  20. Association between selected antimicrobial resistance genes and antimicrobial exposure in Danish pig farms

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla; Hisham Beshara Halasa, Tariq; Græsbøll, Kaare

    2017-01-01

    Bacterial antimicrobial resistance (AMR) in pigs is an important public health concern due to its possible transfer to humans. We aimed at quantifying the relationship between the lifetime exposure of antimicrobials and seven antimicrobial resistance genes in Danish slaughter pig farms. AMR gene...... levels were quantified by qPCR of total-community DNA in faecal samples obtained from 681 batches of slaughter pigs. The lifetime exposure to antimicrobials was estimated at batch level for the piglet, weaner, and finisher periods individually for the sampled batches. We showed that the effect...... of antimicrobial exposure on the levels of AMR genes was complex and unique for each individual gene. Several antimicrobial classes had both negative and positive correlations with the AMR genes. From 10-42% of the variation in AMR gene levels could be explained in the final regression models, indicating...

  1. Prevalence and antimicrobial resistance among Escherichia coli and Salmonella in Ontario smallholder chicken flocks.

    Science.gov (United States)

    Lebert, L; Martz, S-L; Janecko, N; Deckert, A E; Agunos, A; Reid, A; Rubin, J E; Reid-Smith, R J; McEwen, S A

    2018-02-01

    Surveillance is an important component of an overall strategy to address antimicrobial resistant bacteria in food animals and the food chain. The poultry market has many points of entry into the Canadian food chain, and some production practices are underrepresented in terms of surveillance. For example, pathogen carriage and antimicrobial resistance surveillance data are limited in smallholder chicken flocks raised for slaughter at provincially inspected abattoirs. In Canada, antimicrobial resistance in Escherichia coli and Salmonella isolated from commercial broiler chicken flocks, slaughtered at federally inspected abattoirs, is monitored by the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS). The objective of this study was to establish baseline information of antimicrobial resistance presence in E. coli and Salmonella isolated from smallholder flocks in Ontario, utilizing CIPARS collection and isolation methodologies, and to compare findings with CIPARS federally inspected abattoir data from Ontario, Canada. Five chickens per flock were sampled from 205 smallholder flocks. Of 1,025 samples, the E. coli prevalence was 99% (1,022/1,025), and 47% (483/1,022) of positive E. coli isolates were resistant to one or more of the 14 antimicrobials. Furthermore, as compared to results reported for the CIPARS commercial flocks, E. coli isolates from smallholder flocks had significantly lower resistance prevalence to six of 14 individual antimicrobials. Recovery of E. coli did not differ between federally inspected and provincially inspected flocks. Salmonella prevalence at the bird level in smallholder flocks was 0.3% (3/1,025), significantly lower (p ≪ 0.0001, 95% CI 0.080%-0.86%) than federally inspected commercial flocks. The overall differences found between the commercial and smallholder flocks may be explained by differences in poultry husbandry practices and hatchery sources. © 2017 Her Majesty the Queen in Right of Canada

  2. Occurrence and antimicrobial resistance of Salmonella spp. isolated from food other than meat in Poland

    Directory of Open Access Journals (Sweden)

    Łukasz Mąka

    2015-09-01

    Full Text Available Introduction and objectives. Antimicrobial resistance of pathogenic bacteria can result in therapy failure, increased hospitalization, and increased risk of death. In Poland, [i]Salmonella[/i] spp. is a major bacterial agent of food poisoning. The majority of studies on antimicrobial resistance in [i]Salmonella[/i] spp. isolates from food have focused on meat products as the source of this pathogen. In comparison, this study examines the antimicrobial susceptibility of [i]Salmonella[/i] spp. isolated from retail food products other than meat in Poland. Materials and Methods. A collection of 122 [i]Salmonella[/i] spp. isolates were isolated in Poland in 2008–2012 from foods other than meat: confectionery products, eggs, fruits, vegetables, spices and others. The resistance of these isolates to 19 antimicrobial agents was tested using the disc diffusion method. Results. [i]Salmonella[/i] Enteritidis was the most frequently identified serotype (84.4% of all tested isolates. In total, 42.6% of the [i]Salmonella[/i] spp. isolates were resistant to antibiotics. The highest frequencies of resistance were observed in isolates from 2009 (60.0% and 2012 (59.5%. Antibiotic resistance was most prevalent among [i]Salmonella[/i] spp. isolated from egg-containing food samples (68.0%. Resistance to nalidixic acid was most common and was observed in 35.2% of all tested isolates. The isolates were less frequently resistant to sulphonamides (6.6%, ampicillin (4.9%, amoxicillin/clavulanic acid (2.5% and to streptomycin, cefoxitin, gentamicin and tetracycline (1.6%. Only one isolate showed resistance to chloramphenicol. Four isolates displayed multiresistance. Conclusions. Although, the level of resistance and multiresistance of [i]Salmonella[/i] spp. isolates from non-meat foods was lower than in those from meat products, the presence of these resistant bacteria poses a real threat to the health of consumers.

  3. Frequency of Resistance and Susceptible Bacteria Isolated from Houseflies

    Directory of Open Access Journals (Sweden)

    B Davari

    2010-12-01

    Conclusion: Houseflies collected from hospitals and slaughterhouse may be involved in the spread of drug resistant bacteria and may increase the potential of human exposure to drug resistant bacteria.

  4. Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage.

    Science.gov (United States)

    Wesgate, Rebecca; Grasha, Pierre; Maillard, Jean-Yves

    2016-04-01

    In this study we assessed the propensity of biocide exposure in the development of antimicrobial resistance in bacteria. Our protocol is based on reporting changes in established antimicrobial susceptibility profiles in biocides and antibiotics after during use exposure to a product. The during use exposure reflects worse conditions of product use during application. It differs from the term low concentration, which usually reflects a concentration below the minimal inhibitory concentration, but not necessarily a concentration that occurs in practice. Our results showed that exposure to triclosan (0.0004%) was associated with a high risk of developing resistance and cross-resistance in Staphylococcus aureus and Escherichia coli. This was not observed with exposure to chlorhexidine (0.00005%) or a hydrogen peroxide-based biocidal product (in during use conditions). Interestingly, exposure to a low concentration of hydrogen peroxide (0.001%) carried a risk of emerging resistance to antibiotics if the presence of the oxidizing agent was maintained. We observed a number of unstable clinical resistances to antibiotics after exposure to the cationic biocide and oxidizing agent, notably to tobramycin and ticarcillin-clavulanic acid. Using a decision tree based on the change in antimicrobial susceptibility test results, we were able to provide information on the effect of biocide exposure on the development of bacterial resistance to antimicrobials. Such information should address the call from the U.S. Food and Drug Administration and European Union Biocidal Products Regulation for manufacturers to provide information on antimicrobial resistance and cross-resistance in bacteria after the use of their product. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  5. New antimicrobial contact catalyst killing antibiotic resistant clinical and waterborne pathogens

    International Nuclear Information System (INIS)

    Guridi, A.; Diederich, A.-K.; Aguila-Arcos, S.; Garcia-Moreno, M.; Blasi, R.; Broszat, M.; Schmieder, W.; Clauss-Lendzian, E.; Sakinc-Gueler, T.; Andrade, R.; Alkorta, I.; Meyer, C.; Landau, U.; Grohmann, E.

    2015-01-01

    Microbial growth on medical and technical devices is a big health issue, particularly when microorganisms aggregate to form biofilms. Moreover, the occurrence of antibiotic-resistant bacteria in the clinical environment is dramatically growing, making treatment of bacterial infections very challenging. In search of an alternative, we studied a novel antimicrobial surface coating based on micro galvanic elements formed by silver and ruthenium with surface catalytic properties. The antimicrobial coating efficiently inhibited the growth of the nosocomial pathogens Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Enterococcus faecium as demonstrated by the growth inhibition on agar surface and in biofilms of antibiotic resistant clinical E. faecalis, E. faecium, and S. aureus isolates. It also strongly reduced the growth of Legionella in a drinking water pipeline and of Escherichia coli in urine. We postulate a mode of action of the antimicrobial material, which is independent of the release of silver ions. Thus, the novel antimicrobial coating could represent an alternative to combat microbial growth avoiding the toxic side effects of high levels of silver ions on eukaryotic cells. - Highlights: • The novel antimicrobial inhibits growth of clinical staphylococci and enterococci. • The novel antimicrobial inhibits growth of Legionella in drinking water. • A putative mode of action of the antimicrobial coating is presented

  6. New antimicrobial contact catalyst killing antibiotic resistant clinical and waterborne pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Guridi, A. [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); Diederich, A.-K. [University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany); Aguila-Arcos, S.; Garcia-Moreno, M. [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); Blasi, R.; Broszat, M. [University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany); Schmieder, W.; Clauss-Lendzian, E. [Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany); Sakinc-Gueler, T. [University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Andrade, R. [Advanced Research Facilities (SGIker), University of the Basque Country, UPV/EHU, 48940 Leioa (Spain); Alkorta, I. [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); Meyer, C.; Landau, U. [Largentec GmbH, Am Waldhaus 32, 14129 Berlin (Germany); Grohmann, E., E-mail: elisabeth.grohmann@googlemail.com [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany)

    2015-05-01

    Microbial growth on medical and technical devices is a big health issue, particularly when microorganisms aggregate to form biofilms. Moreover, the occurrence of antibiotic-resistant bacteria in the clinical environment is dramatically growing, making treatment of bacterial infections very challenging. In search of an alternative, we studied a novel antimicrobial surface coating based on micro galvanic elements formed by silver and ruthenium with surface catalytic properties. The antimicrobial coating efficiently inhibited the growth of the nosocomial pathogens Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Enterococcus faecium as demonstrated by the growth inhibition on agar surface and in biofilms of antibiotic resistant clinical E. faecalis, E. faecium, and S. aureus isolates. It also strongly reduced the growth of Legionella in a drinking water pipeline and of Escherichia coli in urine. We postulate a mode of action of the antimicrobial material, which is independent of the release of silver ions. Thus, the novel antimicrobial coating could represent an alternative to combat microbial growth avoiding the toxic side effects of high levels of silver ions on eukaryotic cells. - Highlights: • The novel antimicrobial inhibits growth of clinical staphylococci and enterococci. • The novel antimicrobial inhibits growth of Legionella in drinking water. • A putative mode of action of the antimicrobial coating is presented.

  7. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria

    Science.gov (United States)

    Mith, Hasika; Duré, Rémi; Delcenserie, Véronique; Zhiri, Abdesselam; Daube, Georges; Clinquart, Antoine

    2014-01-01

    This study was undertaken to determine the in vitro antimicrobial activities of 15 commercial essential oils and their main components in order to pre-select candidates for potential application in highly perishable food preservation. The antibacterial effects against food-borne pathogenic bacteria (Listeria monocytogenes, Salmonella Typhimurium, and enterohemorrhagic Escherichia coli O157:H7) and food spoilage bacteria (Brochothrix thermosphacta and Pseudomonas fluorescens) were tested using paper disk diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Most of the tested essential oils exhibited antimicrobial activity against all tested bacteria, except galangal oil. The essential oils of cinnamon, oregano, and thyme showed strong antimicrobial activities with MIC ≥ 0.125 μL/mL and MBC ≥ 0.25 μL/mL. Among tested bacteria, P. fluorescens was the most resistant to selected essential oils with MICs and MBCs of 1 μL/mL. The results suggest that the activity of the essential oils of cinnamon, oregano, thyme, and clove can be attributed to the existence mostly of cinnamaldehyde, carvacrol, thymol, and eugenol, which appear to possess similar activities against all the tested bacteria. These materials could be served as an important natural alternative to prevent bacterial growth in food products. PMID:25473498

  8. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection

    Science.gov (United States)

    Gupta, Akash; Saleh, Neveen M.; Das, Riddha; Landis, Ryan F.; Bigdeli, Arafeh; Motamedchaboki, Khatereh; Rosa Campos, Alexandre; Pomeroy, Kenneth; Mahmoudi, Morteza; Rotello, Vincent M.

    2017-06-01

    Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. Antibiotic treatment of resistant infections further contributes to the rapidly increasing number of antibiotic-resistant species and strains. Synthetic macromolecules such as nanoparticles (NPs) exhibit broad-spectrum activity against MDR species, however lack of specificity towards bacteria relative to their mammalian hosts limits their widespread therapeutic application. Here, we demonstrate synergistic antimicrobial therapy using hydrophobically functionalized NPs and fluoroquinolone antibiotics for treatment of MDR bacterial strains. An 8-16-fold decrease in antibiotic dosage is achieved in presence of engineered NPs to combat MDR strains. This strategy demonstrates the potential of using NPs to ‘revive’ antibiotics that have been rendered ineffective due to the development of resistance by pathogenic bacteria.

  9. Resistencia bacteriana Bacterial resistance to antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Jesualdo Fuentes

    1993-01-01

    Full Text Available

    Se presenta un panorama de la resistencia bacteriana incluyendo su fisiopatogenia y formas de presentación y se establecen algunas consideraciones generales de tipo clínico como auxiliares para racionalizar el uso de los antimicrobianos y evitar o retardar el problema de la resistencia; éste plantea la necesidad de un reordenamiento definitivo en la prescripción de antimicrobianos. No será tanto la creación o descubrimiento de nuevos antibióticos sino la racionalización del manejo de los existentes lo que permitirá alcanzar victorias sobre estos microorganismos. Es Importante mantener educación continua sobre el uso adecuado de los antimicrobianos desde los puntos de vista epidemiológico, farmacocinético y fisiopatogénico.

    An overview on bacterial resistance to antimicrobial agents is presented. It includes the different genetic mechanisms for Its development and the biochemical phenomena that explain It. Some clinical considerations are proposed in order to rationalize the use of these drugs and to avoid or delay the appearance of resistance.

  10. Antimicrobial resistance and the current refugee crisis.

    Science.gov (United States)

    Maltezou, Helena C; Theodoridou, Maria; Daikos, George L

    2017-09-01

    In the past few years, Europe has experienced an enormous influx of refugees and migrants owing to the ongoing civil war in Syria as well as conflicts, violence and instability in other Asian and African countries. Available data suggest that refugees carry a significant burden of multidrug-resistant (MDR) organisms, which is attributed to the rising antimicrobial resistance (AMR) rates in their countries of origin, both in healthcare settings and in the community. Transmission of MDR pathogens among refugees is facilitated by the collapsed housing, hygiene and healthcare infrastructures in several communities as well as poor hygiene conditions during their trip to destination countries. These findings highlight the fact that refugees may serve as vehicles of AMR mechanisms from their countries of origin along the immigration route. Following risk assessment, routine microbiological screening for MDR organism carriage of refugees and migrants as well as effective infection control measures should be considered upon admission. This will on the one hand address the possibility of dissemination of novel AMR mechanisms in non- or low-endemic countries and on the other will ensure safety for all patients. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  11. Mechanism of quinolone resistance in anaerobic bacteria.

    Science.gov (United States)

    Oh, H; Edlund, C

    2003-06-01

    Several recently developed quinolones have excellent activity against a broad range of aerobic and anaerobic bacteria and are thus potential drugs for the treatment of serious anaerobic and mixed infections. Resistance to quinolones is increasing worldwide, but is still relatively infrequent among anaerobes. Two main mechanisms, alteration of target enzymes (gyrase and topoisomerase IV) caused by chromosomal mutations in encoding genes, or reduced intracellular accumulation due to increased efflux of the drug, are associated with quinolone resistance. These mechanisms have also been found in anaerobic species. High-level resistance to the newer broad-spectrum quinolones often requires stepwise mutations in target genes. The increasing emergence of resistance among anaerobes may be a consequence of previous widespread use of quinolones, which may have enriched first-step mutants in the intestinal tract. Quinolone resistance in the Bacteroides fragilis group strains is strongly correlated with amino acid substitutions at positions 82 and 86 in GyrA (equivalent to positions 83 and 87 of Escherichia coli). Several studies have indicated that B. fragilis group strains possess efflux pump systems that actively expel quinolones, leading to resistance. DNA gyrase seems also to be the primary target for quinolones in Clostridium difficile, since amino acid substitutions in GyrA and GyrB have been detected in resistant strains. To what extent other mechanisms, such as mutational events in other target genes or alterations in outer-membrane proteins, contribute to resistance among anaerobes needs to be further investigated.

  12. Susceptibility of bacteria isolated from acute gastrointestinal infections to rifaximin and other antimicrobial agents in Mexico.

    Science.gov (United States)

    Novoa-Farías, O; Frati-Munari, A C; Peredo, M A; Flores-Juárez, S; Novoa-García, O; Galicia-Tapia, J; Romero-Carpio, C E

    2016-01-01

    Bacterial resistance may hamper the antimicrobial management of acute gastroenteritis. Bacterial susceptibility to rifaximin, an antibiotic that achieves high fecal concentrations (up to 8,000μg/g), has not been evaluated in Mexico. To determine the susceptibility to rifaximin and other antimicrobial agents of enteropathogenic bacteria isolated from patients with acute gastroenteritis in Mexico. Bacterial strains were analyzed in stool samples from 1,000 patients with diagnosis of acute gastroenteritis. The susceptibility to rifaximin (RIF) was tested by microdilution (<100, <200, <400 and <800μg/ml) and susceptibility to chloramphenicol (CHL), trimethoprim-sulfamethoxazole (T-S), neomycin (NEO), furazolidone (FUR), fosfomycin (FOS), ampicillin (AMP) and ciprofloxacin (CIP) was tested by agar diffusion at the concentrations recommended by the Clinical & Laboratory Standards Institute and the American Society for Microbiology. Isolated bacteria were: enteropathogenic Escherichia coli (E. coli) (EPEC) 531, Shigella 120, non-Typhi Salmonella 117, Aeromonas spp. 80, enterotoxigenic E. coli (ETEC) 54, Yersinia enterocolitica 20, Campylobacter jejuni 20, Vibrio spp. 20, Plesiomonas shigelloides 20, and enterohemorrhagic E. coli (EHEC 0:157) 18. The overall cumulative susceptibility to RIF at <100, <200, <400, and <800μg/ml was 70.6, 90.8, 99.3, and 100%, respectively. The overall susceptibility to each antibiotic was: AMP 32.2%, T-S 53.6%, NEO 54.1%, FUR 64.7%, CIP 67.3%, CLO 73%, and FOS 81.3%. The susceptibility to RIF <400 and RIF <800μg/ml was significantly greater than with the other antibiotics (p<0.001). Resistance of enteropathogenic bacteria to various antibiotics used in gastrointestinal infections is high. Rifaximin was active against 99-100% of these enteropathogens at reachable concentrations in the intestine with the recommended dose. Copyright © 2015 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  13. Plasmid mediated resistance in multidrug resistant bacteria isolated ...

    African Journals Online (AJOL)

    The antibiotic susceptibility testing of isolated bacteria associated with septicaemia in children were carried out using standard microbiological protocol. The MAR index for the test bacterial isolates was determined and the bacterial isolates that displayed multiple antibiotic resistance were investigated for the presence of ...

  14. Efficacy of antimicrobial 405 nm blue-light for inactivation of airborne bacteria

    Science.gov (United States)

    Dougall, Laura R.; Anderson, John G.; Timoshkin, Igor V.; MacGregor, Scott J.; Maclean, Michelle

    2018-02-01

    Airborne transmission of infectious organisms is a considerable concern within the healthcare environment. A number of novel methods for `whole room' decontamination, including antimicrobial 405 nm blue light, are being developed. To date, research has focused on its effects against surface-deposited contamination; however, it is important to also establish its efficacy against airborne bacteria. This study demonstrates evidence of the dose-response kinetics of airborne bacterial contamination when exposed to 405 nm light and compares bacterial susceptibility when exposed in three different media: air, liquid and surfaces. Bacterial aerosols of Staphylococcus epidermidis, generated using a 6-Jet Collison nebulizer, were introduced into an aerosol suspension chamber. Aerosolized bacteria were exposed to increasing doses of 405 nm light, and air samples were extracted from the chamber using a BioSampler liquid impinger, with viability analysed using pour-plate culture. Results have demonstrated successful aerosol inactivation, with a 99.1% reduction achieved with a 30 minute exposure to high irradiance (22 mWcm-2) 405 nm light (P=0.001). Comparison to liquid and surface exposures proved bacteria to be 3-4 times more susceptible to 405 nm light inactivation when in aerosol form. Overall, results have provided fundamental evidence of the susceptibility of bacterial aerosols to antimicrobial 405 nm light treatment, which offers benefits in terms of increased safety for human exposure, and eradication of microbes regardless of antibiotic resistance. Such benefits provide advantages for a number of applications including `whole room' environmental decontamination, in which reducing levels of airborne bacteria should reduce the number of infections arising from airborne contamination.

  15. Multidrug-Resistant Enterococcal Infections : New Compounds, Novel Antimicrobial Therapies?

    NARCIS (Netherlands)

    van Harten, Roel M; Willems, Rob J L; Martin, Nathaniel I; Hendrickx, Antoni P A

    Over the past two decades infections due to antibiotic-resistant bacteria have escalated world-wide, affecting patient morbidity, mortality, and health care costs. Among these bacteria, Enterococcus faecium and Enterococcus faecalis represent opportunistic nosocomial pathogens that cause

  16. Antimicrobial resistance among enterococci from pigs in three European countries

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hasman, Henrik; Jensen, Lars Bogø

    2002-01-01

    to the amounts of antimicrobial agents used in food animal production in those countries. Similar genes were found to encode resistance in the different countries, but the tet(L) and let(S) genes were more frequently found among isolates from Spain. A recently identified transferable copper resistance gene......Enterococci from pigs in Denmark, Spain, and Sweden were examined for susceptibility to antimicrobial agents and copper and the presence of selected resistance genes. The greatest levels of resistance were found among isolates from Spain and Denmark compared to those from Sweden, which corresponds...... was found in all copper-resistant isolates from the different countries....

  17. The human microbiome as a reservoir of antimicrobial resistance

    Directory of Open Access Journals (Sweden)

    John ePenders

    2013-04-01

    Full Text Available The gut microbiota is amongst the most densely populated microbial ecosystem on earth. While the microbiome exerts numerous health beneficial functions, the high density of microorganisms within this ecosystem also facilitates horizontal transfer of antimicrobial resistance (AMR genes to potential pathogenic bacteria. Over the past decades antibiotic susceptibility testing of specific indicator bacteria from the microbiome, such as Escherichia coli, has been the method of choice in most studies. These studies have greatly enlarged our understanding on the prevalence and distribution of AMR and associated risk factors.Recent studies using (functional metagenomics, however, highlighted the unappreciated diversity of AMR genes in the human microbiome and identified genes that had not been described previously. Next to metagenomics, more targeted approaches such as PCR for detection and quantification of AMR genes within a population are promising, in particular for large-scale epidemiological screening. Here we present an overview of the indigenous microbiota as a reservoir of AMR genes, the current knowledge on this resistome and the recent and upcoming advances in the molecular diagnostic approaches to unravel this reservoir.

  18. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters.

    Science.gov (United States)

    Kennedy, Jonathan; Baker, Paul; Piper, Clare; Cotter, Paul D; Walsh, Marcella; Mooij, Marlies J; Bourke, Marie B; Rea, Mary C; O'Connor, Paula M; Ross, R Paul; Hill, Colin; O'Gara, Fergal; Marchesi, Julian R; Dobson, Alan D W

    2009-01-01

    Samples of the marine sponge Haliclona simulans were collected from Irish coastal waters, and bacteria were isolated from these samples. Phylogenetic analyses of the cultured isolates showed that four different bacterial phyla were represented; Bacteriodetes, Actinobacteria, Proteobacteria, and Firmicutes. The sponge bacterial isolates were assayed for the production of antimicrobial substances, and biological activities against Gram-positive and Gram-negative bacteria and fungi were demonstrated, with 50% of isolates showing antimicrobial activity against at least one of the test strains. Further testing showed that the antimicrobial activities extended to the important pathogens Pseudomonas aeruginosa, Clostridium difficile, multi-drug-resistant Staphylococcus aureus, and pathogenic yeast strains. The Actinomycetes were numerically the most abundant producers of antimicrobial activities, although activities were also noted from Bacilli and Pseudovibrio isolates. Surveys for the presence of potential antibiotic encoding polyketide synthase and nonribosomal peptide synthetase genes also revealed that genes for the biosynthesis of these secondary metabolites were present in most bacterial phyla but were particularly prevalent among the Actinobacteria and Proteobacteria. This study demonstrates that the culturable fraction of bacteria from the sponge H. simulans is diverse and appears to possess much potential as a source for the discovery of new medically relevant biological active agents.

  19. Advances in pharmacovigilance initiatives surrounding antimicrobial resistance-Indian perspective.

    Science.gov (United States)

    Bairy, Laxminarayana Kurady; Nayak, Veena; A, Avinash; Kunder, Sushil Kiran

    2016-08-01

    In recent years the development of antimicrobial resistance has been accelerating, the discovery of new antimicrobial agents has slowed substantially in past decades. This review mainly focuses on the problem of antimicrobial resistance(AMR); the various contributor mechanisms, consequences and future of AMR. The review also highlights the irrational use of antimicrobials, improving their usage and problems associated with pharmacovigilance of antimicrobial resistance. Pharmacovigilance in the form of surveillance of antibiotic use is being done in 90% of the countries worldwide through the WHONET program developed by WHO. However, the data comes from a limited area of the globe. Data from every part of the world is required, so that there is geographical representation of every region. A major hurdle in quantifying the extent of antimicrobial resistance is the fact that there are several known microbes, that may turn out to be resistant to one or more of the several known antimicrobial agents. The global action plan initiated by WHO, if implemented successfully will definitely reduce AMR and will help in evaluating treatment interventions.

  20. Prediction of Phenotypic Antimicrobial Resistance Profiles From Whole Genome Sequences of Non-typhoidal Salmonella enterica.

    Science.gov (United States)

    Neuert, Saskia; Nair, Satheesh; Day, Martin R; Doumith, Michel; Ashton, Philip M; Mellor, Kate C; Jenkins, Claire; Hopkins, Katie L; Woodford, Neil; de Pinna, Elizabeth; Godbole, Gauri; Dallman, Timothy J

    2018-01-01

    Surveillance of antimicrobial resistance (AMR) in non-typhoidal Salmonella enterica (NTS), is essential for monitoring transmission of resistance from the food chain to humans, and for establishing effective treatment protocols. We evaluated the prediction of phenotypic resistance in NTS from genotypic profiles derived from whole genome sequencing (WGS). Genes and chromosomal mutations responsible for phenotypic resistance were sought in WGS data from 3,491 NTS isolates received by Public Health England's Gastrointestinal Bacteria Reference Unit between April 2014 and March 2015. Inferred genotypic AMR profiles were compared with phenotypic susceptibilities determined for fifteen antimicrobials using EUCAST guidelines. Discrepancies between phenotypic and genotypic profiles for one or more antimicrobials were detected for 76 isolates (2.18%) although only 88/52,365 (0.17%) isolate/antimicrobial combinations were discordant. Of the discrepant results, the largest number were associated with streptomycin (67.05%, n = 59). Pan-susceptibility was observed in 2,190 isolates (62.73%). Overall, resistance to tetracyclines was most common (26.27% of isolates, n = 917) followed by sulphonamides (23.72%, n = 828) and ampicillin (21.43%, n = 748). Multidrug resistance (MDR), i.e., resistance to three or more antimicrobial classes, was detected in 848 isolates (24.29%) with resistance to ampicillin, streptomycin, sulphonamides and tetracyclines being the most common MDR profile ( n = 231; 27.24%). For isolates with this profile, all but one were S . Typhimurium and 94.81% ( n = 219) had the resistance determinants bla TEM-1, strA-strB, sul2 and tet (A). Extended-spectrum β-lactamase genes were identified in 41 isolates (1.17%) and multiple mutations in chromosomal genes associated with ciprofloxacin resistance in 82 isolates (2.35%). This study showed that WGS is suitable as a rapid means of determining AMR patterns of NTS for public health surveillance.

  1. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates.

    Science.gov (United States)

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants' potential for developing new antimicrobials.

  2. IDRC and DHSC partner to fight antimicrobial resistance in animals ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-04-11

    Apr 11, 2018 ... English · Français ... Innovative Veterinary Solutions for Antimicrobial Resistance (InnoVet-AMR) ... Support research that will identify innovative veterinary solutions, including vaccines and alternative solutions, to reduce the ...

  3. Physiological and genetics studies of highly radiation-resistant bacteria

    International Nuclear Information System (INIS)

    Keller, L.C.

    1981-01-01

    The phenomenon of radiation resistance was studied using micrococci and Moraxella-Acinetobacter capable of surviving very high doses of gamma radiation which were isolated from foods. Physiological age, or growth phase, was found to be an important factor in making comparisons of radiation-resistance among different bacteria and their mutants. Radiation-resistant bacteria were highly resistant to the lethal effect of nitrosoguanidine used for mutagenesis. Studies of relative resistance of radiation-resistant bacteria, radiation-sensitive mutants, and nonradiation-resistant bacteria to killing by different chemical mutagens did not reveal a correlation between the traits of radiation resistance and mutagen resistance among different strains. Comparisons of plasmid profiles of radiation-resistant bacteria and selected radiation-sensitive mutants suggested the possibility that plasmids may carry genes involved in radiation resistance

  4. The effects of antibiotic usage in food animals on the development of antimicrobial resistance of importance for humans in Campylobacter and Escherichia coli

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Wegener, Henrik Caspar

    1999-01-01

    Modern food animal production depends on use of large amounts of antibiotics for disease control. This provides favourable conditions for the spread and persistence of antimicrobial-resistant zoonotic bacteria such as Campylobacter and E. coli O157. The occurrence of antimicrobial resistance...... to antimicrobials used in human therapy is increasing in human pathogenic Campylobacter and E. coli from animals. There is an urgent need to implement strategies for prudent use of antibiotics in food animal production to prevent further increases in the occurrence of antimicrobial resistance in food-borne human...

  5. How to measure and monitor antimicrobial consumption and resistance.

    Science.gov (United States)

    Grau, Santiago; Bou, Germán; Fondevilla, Esther; Nicolás, Jordi; Rodríguez-Maresca, Manuel; Martínez-Martínez, Luis

    2013-09-01

    Collateral damage caused by antibiotic use includes resistance, which could be reduced if the global inappropriate use of antibiotics, especially in low-income countries, could be prevented. Surveillance of antimicrobial consumption can identify and target practice areas for quality improvement, both in the community and in healthcare institutions. The defined daily dose, the usual adult dose of an antimicrobial for treating one patient for one day, has been considered useful for measuring antimicrobial prescribing trends within a hospital. Various denominators from hospital activity including beds, admissions and discharges have been used to obtain some standard ratios for comparing antibiotic consumption between hospitals and countries. Laboratory information systems in Clinical Microbiology Services are the primary resource for preparing cumulative reports on susceptibility testing results. This information is useful for planning empirical treatment and for adopting infection control measures. Among the supranational initiatives on resistance surveillance, the EARS-Net provides information about trends on antimicrobial resistance in Europe. Resistance is the consequence of the selective pressure of antibiotics, although in some cases these agents also promote resistance by favouring the emergence of mutations that are subsequently selected. Multiple studies have shown a relationship between antimicrobial use and emergence or resistance. While in some cases a decrease in antibiotic use was associated with a reduction in resistance rates, in many other situations this has not been the case, due to co-resistance and/or the low biological cost of the resistance mechanisms involved. New antimicrobial agents are urgently needed, which coupled with infection control measures will help to control the current problem of antimicrobial resistance. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  6. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002–2004

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Mevius, Dik J; Schroeter, Andreas

    2008-01-01

    Background: The project "Antibiotic resistance in bacteria of animal origin - II" (ARBAO-II) was funded by the European Union (FAIR5-QLK2-2002-01146) for the period 2003 - 2005, with the aim to establish a continuous monitoring of antimicrobial susceptibility among veterinary laboratories...... (2002-2004). Each year the participating laboratories were requested to fill in excelfile templates with national summary data on the occurrence of antimicrobial resistance from different bacterial species. A proficiency test (EQAS - external quality assurance system) for antimicrobial susceptibility...... from 13 European countries. For Staphylococcus aureus from bovine mastitis major differences were apparent in the occurrence of resistance between countries and between the different antimicrobial agents tested. The highest frequency of resistance was observed for penicillin. For Mannheimia haemolytica...

  7. Antimicrobial-resistant Klebsiella species isolated from free-range chicken samples in an informal settlement.

    Science.gov (United States)

    Fielding, Burtram C; Mnabisa, Amanda; Gouws, Pieter A; Morris, Thureyah

    2012-02-29

    Sub-therapeutic doses of antimicrobial agents are administered routinely to poultry to aid growth and to prevent disease, with prolonged exposure often resulting in bacterial resistance. Crossover of antibiotic resistant bacteria from poultry to humans poses a risk to human health. In this study, 17 chicken samples collected from a vendor operating in an informal settlement in the Cape Town Metropolitan area, South Africa were screened for antimicrobial-resistant Gram-negative bacilli using the Kirby Bauer disk diffusion assay. IN TOTAL, SIX ANTIBIOTICS WERE SCREENED: ampicillin, ciprofloxacin, gentamicin, nalidixic acid, tetracycline and trimethoprim. Surprisingly, Klebsiella ozaenae was identified in 96 and K. rhinoscleromatis in 6 (n=102) of the samples tested. Interestingly, ∼40% of the isolated Klebsiella spp. showed multiple resistance to at least three of the six antibiotics tested. Klebsiella ozaenae and K. rhinoscleromatis cause clinical chronic rhinitis and are almost exclusively associated with people living in areas of poor hygiene.

  8. Multidrug resistant bacteria isolated from septic arthritis in horses

    Directory of Open Access Journals (Sweden)

    Rodrigo G. Motta

    Full Text Available ABSTRACT: Septic arthritis is a debilitating joint infectious disease of equines that requires early diagnosis and immediate therapeutic intervention to prevent degenerative effects on the articular cartilage, as well as loss of athletic ability and work performance of the animals. Few studies have investigated the etiological complexity of this disease, as well as multidrug resistance of isolates. In this study, 60 horses with arthritis had synovial fluid samples aseptically collected, and tested by microbiological culture and in vitro susceptibility test (disk diffusion using nine antimicrobials belonging to six different pharmacological groups. Bacteria were isolated in 45 (75.0% samples, as follows: Streptococcus equi subsp. equi (11=18.3%, Escherichia coli (9=15.0%, Staphylococcus aureus (6=10.0%, Streptococcus equi subsp. zooepidemicus (5=8.3%, Staphylococcus intermedius (2=3.3%, Proteus vulgaris (2=3.3%, Trueperella pyogenes (2=3.3%, Pseudomonas aeruginosa (2=3.3%, Klebsiella pneumoniae (1=1.7%, Rhodococcus equi (1=1.7%, Staphylococcus epidermidis (1=1.7%, Klebsiella oxytoca (1=1.7%, Nocardia asteroides (1=1.7%, and Enterobacter cloacae (1=1.7%. Ceftiofur was the most effective drug (>70% efficacy against the pathogens in the disk diffusion test. In contrast, high resistance rate (>70% resistance was observed to penicillin (42.2%, enrofloxacin (33.3%, and amikacin (31.2%. Eleven (24.4% isolates were resistant to three or more different pharmacological groups and were considered multidrug resistant strains. The present study emphasizes the etiological complexity of equine septic arthritis, and highlights the need to institute treatment based on the in vitro susceptibility pattern, due to the multidrug resistance of isolates. According to the available literature, this is the first report in Brazil on the investigation of the etiology. of the septic arthritis in a great number of horses associated with multidrug resistance of the isolates.

  9. antimicrobial resistance patterns and plasmid profiles

    African Journals Online (AJOL)

    hi-tech

    2000-09-01

    Sep 1, 2000 ... antimicrobial agents by use of disc diffusion technique(23). Bacterial strains were ... a roller drum at 37°C. About 1.5 ml of each overnight broth culture was ... antimicrobial agents compared to 36% of milk isolates (p. = 0.0394). A higher .... Hall, B., Greene, R., Potter, M. E. Cohen, M. L. and Brake, B. A..

  10. Antimicrobial Resistance of Faecal Escherichia coli Isolates from Pig Farms with Different Durations of In-feed Antimicrobial Use.

    Science.gov (United States)

    Gibbons, J F; Boland, F; Egan, J; Fanning, S; Markey, B K; Leonard, F C

    2016-05-01

    Antimicrobial use and resistance in animal and food production are of concern to public health. The primary aims of this study were to determine the frequency of resistance to 12 antimicrobials in Escherichia coli isolates from 39 pig farms and to identify patterns of antimicrobial use on these farms. Further aims were to determine whether a categorization of farms based on the duration of in-feed antimicrobial use (long-term versus short-term) could predict the occurrence of resistance on these farms and to identify the usage of specific antimicrobial drugs associated with the occurrence of resistance. Escherichia coli were isolated from all production stages on these farms; susceptibility testing was carried out against a panel of antimicrobials. Antimicrobial prescribing data were collected, and farms were categorized as long term or short term based on these. Resistance frequencies and antimicrobial use were tabulated. Logistic regression models of resistance to each antimicrobial were constructed with stage of production, duration of antimicrobial use and the use of 5 antimicrobial classes included as explanatory variables in each model. The greatest frequencies of resistance were observed to tetracycline, trimethoprim/sulphamethoxazole and streptomycin with the highest levels of resistance observed in isolates from first-stage weaned pigs. Differences in the types of antimicrobial drugs used were noted between long-term and short-term use farms. Categorization of farms as long- or short-term use was sufficient to predict the likely occurrence of resistance to 3 antimicrobial classes and could provide an aid in the control of resistance in the food chain. Stage of production was a significant predictor variable in all models of resistance constructed and did not solely reflect antimicrobial use at each stage. Cross-selection and co-selection for resistance was evident in the models constructed, and the use of trimethoprim/sulphonamide drugs in particular was

  11. Selection of media for antimicrobial susceptibility testing of fish pathogenic bacteria

    DEFF Research Database (Denmark)

    Dalsgaard, Inger

    2001-01-01

    The available data concerning antimicrobial susceptibility testing of fish pathogens showed that there is no consensus to the basal medium currently being employed. Different media recommended for susceptibility testing of human pathogens (Mueller-Hinton Agar, Tryptone Soya Agar, Antibiotic Medium...... 3, Diagnostic Sensitivity Test Agar) have been used in addition to media (Brain Heart Infusion Agar, Heart Infusion Agar, Columbia Blood Agar) normally utilized for cultivating fastidious bacteria. When testing marine pathogens, sodium chloride or seawater has been included in the media. Media...... normally used for cultivation of pathogens with specific growth requirements like Flavobacterium species and Renibacterium salmoninarum have been used for susceptibility testing. The Mueller-Hinton Agar and different modifications of this medium was used most frequently in published studies on resistant...

  12. Using data on resistance prevalence per sample in the surveillance of antimicrobial resistance

    DEFF Research Database (Denmark)

    Vieira, Antonio; Shuyu, Wu; Jensen, Lars Bogø

    2008-01-01

    Objectives: In most existing antimicrobial resistance monitoring programmes, one single bacterial colony from each collected sample is susceptibility tested against a panel of antimicrobials. Detecting the proportion of colonies resistant to different antimicrobials in each sample can provide...... quantitative data on antimicrobial resistance (resistance prevalence per sample). Methods: In this study, a total of 98 faecal samples from slaughter pigs were tested for tetracycline and sulphonamide resistance in Escherichia coli using the single colony method, and these results were compared...... with the results obtained using the resistance prevalence per sample method. Results: The results obtained by the resistance prevalence per sample method showed a lower occurrence of resistance. Tetracycline resistance in E. coli was found in 36.7% of the samples using the single colony method, while the mean...

  13. Antimicrobial-resistant patterns of Escherichia coli and Salmonella strains in the aquatic Lebanese environments

    International Nuclear Information System (INIS)

    Harakeh, Steve; Yassine, Hadi; El-Fadel, Mutasem

    2006-01-01

    This study is the first to be conducted in Lebanon on the isolation and molecular characterization and the antimicrobial resistance profile of environmental pathogenic bacterial strains. Fifty-seven samples of seawater, sediment, crab, and fresh water were collected during the spring and summer seasons of 2003. The isolation of Escherichia coli and Salmonella using appropriate selective media revealed that 94.7% of the tested samples were contaminated with one or both of the tested bacteria. The polymerase chain reaction (PCR) was then used to identify the species of both bacteria using various sets of primers. Many pathogenic E. coli isolates were detected by PCR out of which two were identified as O157:H7 E. coli. Similarly, the species of many of the Salmonella isolates was molecularly identified. The confirmed isolates of Salmonella and E. coli were then tested using the disk diffusion method for their susceptibility to four different antimicrobials revealing high rates of antimicrobial resistance. - First report of antibiotic resistance in bacteria in the environment in Lebanon

  14. Susceptibility to rifaximin and other antimicrobials of bacteria isolated in patients with acute gastrointestinal infections in Southeast Mexico.

    Science.gov (United States)

    Novoa-Farias, O; Frati-Munari, A C; Peredo, M A; Flores-Juárez, S; Novoa-García, O; Galicia-Tapia, J; Romero-Carpio, C E

    Enteropathogenic bacteria isolated in Mexico City have shown a high rate of resistance to different antibiotics, with the exception of rifaximin (RIF). RIF is a nonabsorbable antibiotic that reaches high fecal concentrations (≈ 8,000μg/g). Susceptibility to antimicrobials can vary in different geographic regions. To study the susceptibility to rifaximin and other antimicrobials of enteropathogenic bacteria isolated in patients with acute diarrhea in the southeastern region of Mexico. A total of 614 strains of bacteria isolated from patients with acute diarrhea from 4 cities in Southeast Mexico were analyzed. An antibiogram with the following antibiotics was created: ampicillin (AMP), trimethoprim/sulfamethoxazole (T-S), neomycin (NEO), furazolidone (FUR), ciprofloxacin (CIP), chloramphenicol (CHL), and fosfomycin (FOS), assessed through the agar diffusion method at the standard concentrations recommended by the Clinical and Laboratory Standards Institute (CLSI) and the American Society for Microbiology (ASM), and RIF, assessed through microdilution at 4 concentrations. The bacteria were Escherichia coli (55%), as the majority, in all its pathogenic variants, Shigella (16.8%), Salmonella (15.3%), Aeromonas (7.8%), and less than 5% Campylobacter, Yersinia, Vibrio, and Plesiomonas. The accumulated overall susceptibility to RIF was 69.1, 90.8, 98.9, and 100% at concentrations of 100, 200, 400, and 800μg/ml, respectively. Overall susceptibility to other antibiotics was FOS 82.8%, CHL 76.8%, CIP 73.9%, FUR 64%, T-S 58.7%, NEO 55.8%, and AMP 23.8%. Susceptibility to RIF at 400 and 800μg was significantly greater than with the other antimicrobials (P 98% of the bacterial strains and a high frequency of resistance to several common antimicrobials. Copyright © 2017 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  15. Frequency, serotyping and antimicrobial resistance pattern of Salmonella from feces and lymph nodes of pigs

    Directory of Open Access Journals (Sweden)

    João B.P. Guerra Filho

    Full Text Available ABSTRACT: Salmonellosis is a foodborne disease caused by bacteria of the genus Salmonella, being pigs and pork-products potentially important for its occurrence. In recent decades, some serovars of Salmonella have shown increase of resistance to conventional antimicrobials used in human and animal therapy, with serious risks for public health. The aim of this study was to evaluate feces (n=50, mediastinal (n=50, mesenteric (n=50 and mandibular (n=50 lymph nodes obtained from slaughter houses for Salmonella spp. Positive samples were serotyped and subjected to an in vitro antimicrobial susceptibility test, including the extended-spectrum beta-lactamase (ESBL production. Salmonella species were identified in 10% (20/200 of total samples. From these, 20% (10/50 were identified in the submandibular lymph nodes, 18% (9/50 in the mesenteric lymph nodes, 2% (1/50 in feces and 0% (0/50 in the mediastinal lymph nodes. The serotypes found were Salonella Typhimurium (55%, S. enterica subsp. enterica 4,5,12: i: - (35%, S. Brandenburg and S. Derby with 5% (5% each. All strains showed resistance to at least one antimicrobial; 90% were resistant to four or more antimicrobials, and 15% were multidrug-resistant. Resistance to ciprofloxacin, tetracycline and nalidixic acid was particularly prevalent amongst the tested serovars. Here, we highlighted the impact of pigs in the epidemiological chain of salmonellosis in domestic animals and humans, as well as the high antimicrobial resistance rates of Salmonella strains, reinforcing the necessity for responsible use of antimicrobials for animals as an emergent One Health issue, and to keep these drugs for human therapy approaches.

  16. Modified Polymeric Nanoparticles Exert In Vitro Antimicrobial Activity Against Oral Bacteria.

    Science.gov (United States)

    Toledano-Osorio, Manuel; Babu, Jegdish P; Osorio, Raquel; Medina-Castillo, Antonio L; García-Godoy, Franklin; Toledano, Manuel

    2018-06-14

    Polymeric nanoparticles were modified to exert antimicrobial activity against oral bacteria. Nanoparticles were loaded with calcium, zinc and doxycycline. Ions and doxycycline release were measured by inductively coupled plasma optical emission spectrometer and high performance liquid chromatography. Porphyromonas gingivalis , Lactobacillus lactis , Streptoccocus mutans , gordonii and sobrinus were grown and the number of bacteria was determined by optical density. Nanoparticles were suspended in phosphate-buffered saline (PBS) at 10, 1 and 0.1 mg/mL and incubated with 1.0 mL of each bacterial suspension for 3, 12, and 24 h. The bacterial viability was assessed by determining their ability to cleave the tetrazolium salt to a formazan dye. Data were analyzed by ANOVA and Scheffe’s F ( p Nanoparticles (60% to 99% reduction) followed by Ca-Nanoparticles or Zn-Nanoparticles (30% to 70% reduction) and finally the non-doped nanoparticles (7% to 35% reduction). P. gingivalis , S. mutans and L. lactis were the most susceptible bacteria, being S. gordonii and S. sobrinus the most resistant to the tested nanoparticles.

  17. MOLECULAR-PHYLOGENETIC CHARACTERIZATION AND ANTIMICROBIAL RESISTANCE OF Escherichia coli ISOLATED FROM GOATS WITH DIARRHEA

    Directory of Open Access Journals (Sweden)

    Rodrigo Almeida Guimarães

    2015-10-01

    Full Text Available Neonatal diarrhea determines significant changes in feed conversion, causing productivity loss in caprine herds. The antimicrobial resistance in bacteria is characterized as an important public health issue; therefore, Escherichia coli may be characterized as an important pathogen due to expressing virulence mechanisms responsible for significant clinical conditions in humans and animals. The present study evaluated the presence of E. coli among 117 caprine fecal samples and analyzed the isolates for antimicrobial resistance. Suggestive colonies were submitted to biochemical screening followed by genotypic group determination and phylogenetic analysis; further, the samples were submitted to antimicrobials susceptibility test. E. coli, Salmonella spp, Shigella sonnei and Enterobacter aerogenes were identified. E. coli isolates were phylogenetically classified as B2 (9/39, D (19/39, B1 (7/39 e A (4/29 groups. The analysis of the isolates also revealed the presence of K99 (04/39 and Stx (02/39 virulence factors. Antimicrobial susceptibility test revealed sensitive isolates to Chloramphenicol, Streptomycin, Amoxicillin and Ciprofloxacin, being all resistant to Lincomycin, Vancomycin and Penicillin. The results support the need of establishing restricted protocols for antimicrobial use, a fundamental procedure for health improvement in Brazilian caprine herds.

  18. Antimicrobial resistance profiles of common mastitis pathogens on Canadian dairy farms.

    Science.gov (United States)

    Saini, V; McClure, J T; Léger, D; Keefe, G P; Scholl, D T; Morck, D W; Barkema, H W

    2012-08-01

    Monitoring of antimicrobial resistance (AMR) in bacteria has clinical and public health significance. The present study determined prevalence of AMR in common mastitis pathogens Staphylococcus aureus, including methicillin-resistant Staph. aureus (MRSA; n=1,810), Escherichia coli (n=394), and Klebsiella species (n=139), including extended-spectrum β-lactamase (ESBL)-producing E. coli and Klebsiella species, isolated from milk samples on 89 dairy farms in 6 Canadian provinces. Minimum inhibitory concentrations (MIC) were determined using the Sensititer bovine mastitis plate (Trek Diagnostic Systems Inc., Cleveland, OH) and a National Antimicrobial Resistance Monitoring System gram-negative panel containing antimicrobials commonly used for mastitis treatment and control. Denim blue chromogenic agar and real-time PCR were used to screen and confirm MRSA, respectively. Resistance proportion estimates ranged from 0% for cephalothin and oxacillin to 8.8% for penicillin in Staph. aureus isolates, and 15% of the resistant Staph. aureus isolates were multidrug resistant. One MRSA isolate was confirmed (prevalence: 0.05%). Resistance proportion estimates ranged from 0% for ceftriaxone and ciprofloxacin to 14.8% for tetracycline in E. coli, and 0% for amikacin, ceftiofur, ciprofloxacin, and nalidixic acid to 18.6% for tetracycline in Klebsiella species isolates. Further, 62.8 and 55% of the resistant E. coli and Klebsiella species isolates were multidrug resistant, respectively. Resistance to >5 and >2 antimicrobials was most common in E. coli and Klebsiella species isolates, respectively, and no ESBL producers were found. Prevalence of AMR in bovine mastitis pathogens was low. Most gram-negative udder pathogens were multidrug resistant; MRSA was rarely found, and ESBL E. coli and Klebsiella species isolates were absent in Canadian milk samples. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Effect of Antimicrobial Consumption and Production Type on Antibacterial Resistance in the Bovine Respiratory and Digestive Tract.

    Directory of Open Access Journals (Sweden)

    Boudewijn Catry

    Full Text Available The aim of this study was to investigate the relationship between antimicrobial use and the occurrence of antimicrobial resistance in the digestive and respiratory tract in three different production systems of food producing animals. A longitudinal study was set up in 25 Belgian bovine herds (10 dairy, 10 beef, and 5 veal herds for a 2 year monitoring of antimicrobial susceptibilities in E. coli and Pasteurellaceae retrieved from the rectum and the nasal cavity, respectively. During the first year of observation, the antimicrobial use was prospectively recorded on 15 of these farms (5 of each production type and transformed into the treatment incidences according to the (animal defined daily dose (TIADD and (actually used daily dose (TIUDD. Antimicrobial resistance rates of 4,174 E. coli (all herds and 474 Pasteurellaceae (beef and veal herds only isolates for 12 antimicrobial agents demonstrated large differences between intensively reared veal calves (abundant and inconstant and more extensively reared dairy and beef cattle (sparse and relatively stable. Using linear mixed effect models, a strong relation was found between antimicrobial treatment incidences and resistance profiles of 1,639 E. coli strains (p<0.0001 and 309 Pasteurellaceae (p≤0.012. These results indicate that a high antimicrobial selection pressure, here found to be represented by low dosages of oral prophylactic and therapeutic group medication, converts not only the commensal microbiota from the digestive tract but also the opportunistic pathogenic bacteria in the respiratory tract into reservoirs of multi-resistance.

  20. Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa

    OpenAIRE

    Khaledi, Ariane; Schniederjans, Monika; Pohl, Sarah; Rainer, Roman; Bodenhofer, Ulrich; Xia, Boyang; Klawonn, Frank; Bruchmann, Sebastian; Preusse, Matthias; Eckweiler, Denitsa; Dötsch, Andreas; Häussler, Susanne

    2016-01-01

    Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance status of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technologies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, a...

  1. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance.

    Science.gov (United States)

    Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-10-01

    In recent years, the antimicrobial resistance (AMR) or multidrug resistance (MDR) has become a serious health concern and major challenging issue, worldwide. After decades of negligence, the AMR has now captured global attention. The increasing number of antibiotic-resistant strains has threatened the achievements of science and medicine since it inactivates conventional antimicrobial therapeutics. Scientists are trying to respond to AMR/MDR threat by exploring innovative platforms and new therapeutic strategies to tackle infections from these resistant strains and bypass treatment limitations related to these pathologies. The present review focuses on the utilization of bio-inspired novel constructs and their potential applications as novel antimicrobial agents. The first part of the review describes plant-based biological macromolecules containing an immense variety of secondary metabolites, which could be potentially used as alternative strategies to combat antimicrobial resistance. The second part discusses the potential of metal-based macromolecules as effective antimicrobial platforms for preventing infections from resistant strains. The third part comprehensively elucidates how nanoparticles, in particular, metal-integrated nanoparticles can overcome this AMR or MDR issue. Towards the end, information is given with critical concluding remarks, gaps, and finally envisioned with future considerations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Multiple antimicrobial resistance in bacterial isolates from clinical ...

    African Journals Online (AJOL)

    A total of 545 clinical specimens (pus, blood, urine, and stool) and environmental specimens (air sample, saline solution, nasal swabs etc) were cultured for isolation and identification of aerobic bacteria and antimicrobial susceptibility testing. Out of these, 356(65%) specimens yielded one or more bacterial strains. Frequent ...

  3. Prevalence, Risk Factors and Antimicrobial Resistance of ...

    African Journals Online (AJOL)

    Mubeen

    Background: Asymptomatic bacteriuria (ABU) in antenatal women is microbiological diagnosis ... 287 asymptomatic pregnant women who attended the antenatal clinic at a tertiary care ... that antimicrobial treatment of ABU during pregnancy.

  4. Antimicrobial resistance in the Bacteroides fragilis group in faecal microbiota from healthy Danish children

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Jensen, Betina Hebbelstrup; Petersen, Andreas Munk

    2017-01-01

    The Bacteroides fragilis group constitute a significant portion of the human gut microbiota and comprise a major proportion of anaerobic bacteria isolated in human infections. We established a baseline of antimicrobial susceptibility rates in the B. fragilis group in the intestinal tract of relat......The Bacteroides fragilis group constitute a significant portion of the human gut microbiota and comprise a major proportion of anaerobic bacteria isolated in human infections. We established a baseline of antimicrobial susceptibility rates in the B. fragilis group in the intestinal tract...... of relatively antibiotic-naive healthy Danish children. From 174 faecal samples collected from children attending day care, 359 non-duplicate isolates were screened for antimicrobial susceptibility. Of these, 0.0%, 1.9%, 5.0% and 21.2% of isolates were intermediate-susceptible or resistant to metronidazole......, meropenem, piperacillin/tazobactam and clindamycin, respectively. Eighteen additional studies reporting susceptibility rates in the B. fragilis group bacteria were identified by conducting a literature search. Heterogeneity among results from studies of B. fragilis group antimicrobial susceptibility rates...

  5. Antimicrobial activity of methanolic extracts of Sambucus ebulus and Urtica dioica against clinical isolates of methicillin resistant Staphylococcus aureus.

    Science.gov (United States)

    Salehzadeh, Ali; Asadpour, Leila; Naeemi, Akram Sadat; Houshmand, Elham

    2014-01-01

    Increase in the emergence of drug -resistant pathogens led to the development of natural antimicrobials. In this study the antimicrobial effect of methanolic extracts of Sambucus ebulus and Urtica dioica on 16 skin and wound infections isolates of methicillin resistant S. aureus have been studied. Solvent extraction procedure was done using soxhlet apparatus for extracting antimicrobial agents from freeze dried plants. Antibacterial activity was measured using agar well diffusion method. The MIC of Sambucus ebulus and Urtica dioica extracts against the standard strain of S. aureus ATCC 6538 were determined using the micro dilution method at 15 mg and 20 mg respectively. All the test bacteria were found sensitive to the Sambucus ebulus extract and only one isolate was resistant to Urtica dioica extract. Extracts of Sambucus ebulus and Urtica dioica possess antibacterial potency against MRSA isolates and may be used as a natural antiseptics and antimicrobial agents in medicine.

  6. Machine learning: novel bioinformatics approaches for combating antimicrobial resistance.

    Science.gov (United States)

    Macesic, Nenad; Polubriaginof, Fernanda; Tatonetti, Nicholas P

    2017-12-01

    Antimicrobial resistance (AMR) is a threat to global health and new approaches to combating AMR are needed. Use of machine learning in addressing AMR is in its infancy but has made promising steps. We reviewed the current literature on the use of machine learning for studying bacterial AMR. The advent of large-scale data sets provided by next-generation sequencing and electronic health records make applying machine learning to the study and treatment of AMR possible. To date, it has been used for antimicrobial susceptibility genotype/phenotype prediction, development of AMR clinical decision rules, novel antimicrobial agent discovery and antimicrobial therapy optimization. Application of machine learning to studying AMR is feasible but remains limited. Implementation of machine learning in clinical settings faces barriers to uptake with concerns regarding model interpretability and data quality.Future applications of machine learning to AMR are likely to be laboratory-based, such as antimicrobial susceptibility phenotype prediction.

  7. Oral administration of antimicrobials increase antimicrobial resistance in E. coli from chicken--a systematic review.

    Science.gov (United States)

    Simoneit, C; Burow, E; Tenhagen, B-A; Käsbohrer, A

    2015-01-01

    Antimicrobials play an important role in animal and human health care. It was the aim of this systematic review to assess the effects of oral administration of antimicrobials on the development of antimicrobial resistance (AMR) in Escherichia coli (E. coli) from chickens. Moreover, the effects of the administration of more than one antimicrobial and of different dosages were studied. Literature was searched in November 2012 from the electronic databases ISI Web of Science, PubMed, Scopus and a national literature database (DIMDI) as well as the database ProQuest LLC. The search was updated in March 2014. Original studies describing a treatment (A) and a control group of either non-treatment (C) or initial value (0) and determining AMR in E. coli at different sample points (SP) were included. The literature search resulted in 35 full text articles on the topic, seven (20%) of which contained sufficient information on the administered antimicrobial and the impact of treatment on AMR. Most papers described the use of more than one antimicrobial, several dosages, controls (non-treatment or pre-treatment) and measured AMR at different SPs leading to a total of 227 SPs on the impact of the use of antimicrobials on AMR in chickens. 74% of the SPs (168/227) described a higher AMR-rate in E. coli from treated animals than from controls. After the administration of a single antimicrobial, AMR increased at 72% of the SPs. Administration of more than one antimicrobial increased AMR at 82% of the SPs. Higher dosages were associated with similar or higher AMR rates. The limited number of studies for each antimicrobial agent and the high variability in the resistance effect call for more well designed studies on the impact of oral administration on AMR development and spread. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Antimicrobial compounds targeting Gram-negative bacteria in food: Their mode of action and combinational effects

    DEFF Research Database (Denmark)

    Hyldgaard, Morten

    2015-01-01

    compromising food shelf-life or safety. Natural antimicrobial compounds have therefore gained increased interest as a label-friendly alternative that can be added directly to food products. Although natural antimicrobials constitute an interesting source of compounds, it is often not understood how...... they interact with bacterial cells to exert their mechanism of inhibition or killing. Furthermore, natural antimicrobials are often not potent enough as single compounds, and may cause unwanted sensory side-effects, which limit the quantities that can be applied to food. These problems might be circumvented...... by combining antimicrobials to decrease the concentrations needed without compromising their antimicrobial activity. The work described in this dissertation presents two projects concerning the mechanism of action of selected natural antimicrobial compounds primarily against Gram-negative bacteria, and two...

  9. Antimicrobial resistance of fecal isolates of salmonella and shigella ...

    African Journals Online (AJOL)

    Salmonellosis and Shigellosis coupled with increased levels of multidrug resistances are public health problems, especially in developing countries. This study was aimed at determining the prevalence of fecal Salmonella and Shigella spp and its antimicrobial resistance patterns. A retrospective study was conducted on ...

  10. Mycoplasma bovis: Mechanisms of Resistance and Trends in Antimicrobial Susceptibility.

    Science.gov (United States)

    Lysnyansky, Inna; Ayling, Roger D

    2016-01-01

    Mycoplasma bovis is a cell-wall-less bacterium and belongs to the class Mollicutes. It is the most important etiological agent of bovine mycoplasmoses in North America and Europe, causing respiratory disease, mastitis, otitis media, arthritis, and reproductive disease. Clinical disease associated with M. bovis is often chronic, debilitating, and poorly responsive to antimicrobial therapy, resulting in significant economic loss, the full extent of which is difficult to estimate. Until M. bovis vaccines are universally available, sanitary control measures and antimicrobial treatment are the only approaches that can be used in attempts to control M. bovis infections. However, in vitro studies show that many of the current M. bovis isolates circulating in Europe have high minimum inhibitory concentrations (MIC) for many of the commercially available antimicrobials. In this review we summarize the current MIC trends indicating the development of antimicrobial resistance in M. bovis as well as the known molecular mechanisms by which resistance is acquired.

  11. Mycoplasma bovis: mechanisms of resistance and trends in antimicrobial susceptibility

    Directory of Open Access Journals (Sweden)

    Inna eLysnyansky

    2016-04-01

    Full Text Available Mycoplasma bovis is a cell-wall-less bacterium and belongs to the class Mollicutes. It is the most important etiological agent of bovine mycoplasmoses in North America and Europe, causing respiratory disease, mastitis, otitis media, arthritis, and reproductive disease. Clinical disease associated with M. bovis is often chronic, debilitating, and poorly responsive to antimicrobial therapy, resulting in significant economic loss, the full extent of which is difficult to estimate. Until M. bovis vaccines are universally available, sanitary control measures and antimicrobial treatment are the only approaches that can be used in attempts to control M. bovis infections. However, in vitro studies show that many of the current M. bovis isolates circulating in Europe have high minimum inhibitory concentrations (MIC for many of the commercially available antimicrobials. In this review we summarize the current MIC trends indicating the development of antimicrobial resistance in M. bovis as well as the known molecular mechanisms by which resistance is acquired.

  12. Multidrug-resistant pattern of food borne illness associated bacteria ...

    African Journals Online (AJOL)

    This study aimed at determining anti-microbial resistance pattern of food borne illness ... bial drugs in the pharmaceutical pipeline.2 The effective- ness of ... Materials and methods ... selected based on local availability, clinical efficiency, liter-.

  13. Prevalence of antimicrobial resistance in fecal Escherichia coli and Salmonella enterica in Canadian commercial meat, companion, laboratory, and shelter rabbits (Oryctolagus cuniculus) and its association with routine antimicrobial use in commercial meat rabbits.

    Science.gov (United States)

    Kylie, Jennifer; McEwen, Scott A; Boerlin, Patrick; Reid-Smith, Richard J; Weese, J Scott; Turner, Patricia V

    2017-11-01

    Antimicrobial resistance (AMR) in zoonotic (e.g. Salmonella spp.), pathogenic, and opportunistic (e.g. E. coli) bacteria in animals represents a potential reservoir of antimicrobial resistant bacteria and resistance genes to bacteria infecting humans and other animals. This study evaluated the prevalence of E. coli and Salmonella enterica, and the presence of associated AMR in commercial meat, companion, research, and shelter rabbits in Canada. Associations between antimicrobial usage and prevalence of AMR in bacterial isolates were also examined in commercial meat rabbits. Culture and susceptibility testing was conducted on pooled fecal samples from weanling and adult commercial meat rabbits taken during both summer and winter months (n=100, 27 farms), and from pooled laboratory (n=14, 8 laboratory facilities), companion (n=53), and shelter (n=15, 4 shelters) rabbit fecal samples. At the facility level, E. coli was identified in samples from each commercial rabbit farm, laboratory facility, and 3 of 4 shelters, and in 6 of 53 companion rabbit fecal samples. Seventy-nine of 314 (25.2%; CI: 20.7-30.2%) E. coli isolates demonstrated resistance to >1 antimicrobial agent. At least one E. coli isolate resistant to at least one antimicrobial agent was present in samples from 55.6% of commercial farms, and from 25% of each laboratory and shelter facilities, with resistance to tetracycline being most common; no resistance was identified in companion animal samples. Salmonella enterica subsp. was identified exclusively in pooled fecal samples from commercial rabbit farms; Salmonella enterica serovar London from one farm and Salmonella enterica serovar Kentucky from another. The S. Kentucky isolate was resistant to amoxicillin/clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, streptomycin, and tetracycline, whereas the S. London isolate was pansusceptible. Routine use of antimicrobials on commercial meat rabbit farms was not significantly associated with the

  14. Vanillin selectively modulates the action of antibiotics against resistant bacteria.

    Science.gov (United States)

    Bezerra, Camila Fonseca; Camilo, Cicera Janaine; do Nascimento Silva, Maria Karollyna; de Freitas, Thiago Sampaio; Ribeiro-Filho, Jaime; Coutinho, Henrique Douglas Melo

    2017-12-01

    The treatment of infections caused by microorganisms that are resistant to antibiotics represent one of the main challenges of medicine today, especially due to the inefficacy of long-term drug therapy. In the search for new alternatives to treat these infections, many researchers have been looking for new substances derived from natural products to replace, or be used in combination with conventional antibiotics. Vanillin is a phenolic compound whose antimicrobial activity has been used in the elimination of pathogens present in fruits and vegetables. However, its antibacterial and modulating properties remain to be characterized. Therefore, this work aimed to evaluate the antibacterial activity and analyze the modulator activity of vanillin in association with conventional antibiotics. The antimicrobial activity of vanillin was evaluated using the microdilution method to determine the Minimum Inhibitory Concentration (MIC) Standard strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and multi-resistant strains of Escherichia coli 06, Staphylococcus aureus 10, Pseudomonas aeruginosa 24 were used in this study. The antibiotic modulating effect was analyzed by combining vanillin with Norfloxacin, Imipenem, Gentamicin, Erythromycin and Tetracycline against the following multiresistant bacteria strains: Escherichia coli 06, Staphylococcus aureus 10 and Pseudomonas aeruginosa 24. Data were analyzed using the ANOVA test of two tracks followed by the post hoc Bonferroni test. Vanillin presented CIMs ≥1024μg/mL against all tested strains demonstrating that it did not present significant antibacterial activity. However, modulated the activity of gentamicin and imipenem against S. aureus and E. coli, causing a synergistic effect, but did not affect the activity of norfloxacin, tetracycline and erythromycin against these same microorganisms. A synergistic effect was also obtained from the association of vanillin with norfloxacin against P

  15. Bacterial Pathogens and Antimicrobial Resistance Patterns in Pediatric Urinary Tract Infections: A Four-Year Surveillance Study (2009–2012)

    OpenAIRE

    Mirsoleymani, Seyed Reza; Salimi, Morteza; Shareghi Brojeni, Masoud; Ranjbar, Masoud; Mehtarpoor, Mojtaba

    2014-01-01

    The aims of this study were to assess the common bacterial microorganisms causing UTI and their antimicrobial resistance patterns in Bandar Abbas (Southern Iran) during a four-year period. In this retrospective study, samples with a colony count of ≥105 CFU/mL bacteria were considered positive; for these samples, the bacteria were identified, and the profile of antibiotic susceptibility was characterized. From the 19223 samples analyzed, 1513 (7.87%) were positive for bacterial infection. UTI...

  16. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and

  17. Decreased antimicrobial resistance and defined daily doses after implementation of a clinical culture-guided antimicrobial stewardship program in a local hospital

    Directory of Open Access Journals (Sweden)

    Chang-Teng Wu

    2017-12-01

    Full Text Available Background: We aimed to report the implementation of an antimicrobial stewardship program (ASP guided by clinically significant cultures in a hospital to assess its pharmaceutical, microbiological, financial, and outcome effects. Methods: A 3-year cohort study of an antimicrobial restriction policy implementation was performed. The ASP with culture-guided de-escalation of antibiotics was instituted in a local hospital since January 1, 2012. The cost of antimicrobials, defined daily dose (DDD, susceptibility to antimicrobials, and outcome of all admitted patients were calculated and evaluated before and after the ASP implementation. Results: Average monthly length of stay of admitted patients decreased from 7.8 ± 0.5 days in 2011 to 6.9 ± 0.3 days in 2013 (p < 0.001. The average monthly cost of antimicrobials decreased 46.9% from US$30,146.8 in 2011 to US$16,021.3 in 2013 (p < 0.001. Total intravenous antimicrobial DDDs per 100 bed-days of the inpatients were 66.9, 54.1 and 48.4 in 2011, 2012 and 2013, respectively. A total of 18.6 DDDs per 100 bed-days of inpatients (27.7% decreased from 2011 to 2013. By comparing data in 2013 to those in 2011, the ASP reduced antimicrobial resistance of Gram-positive bacteria (p = 0.013, Gram-negative bacteria (p < 0.001, and predominant species (all p < 0.05. The yearly mortality also decreased from 1.3% in 2011 to 1.1% in 2012 and 1.0% in 2013. Conclusions: The ASP with a culture-guided de-escalation of antibiotics successfully reduced length of stay, mortality, the cost of antimicrobials, DDDs, and antimicrobial resistance rate, and that is highly recommended for local hospitals. Keywords: antimicrobial resistance, antimicrobial restriction policy, antimicrobial stewardship program, defined daily dose

  18. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons

    International Nuclear Information System (INIS)

    Zhang, Yuping; Zhang, Chiqian; Parker, David B.; Snow, Daniel D.; Zhou, Zhi; Li, Xu

    2013-01-01

    Livestock manure treatment and storage structures are potential environmental sources of antimicrobials and antimicrobial resistance genes (ARGs). In this study, the occurrence of antimicrobials and ARGs was investigated in the water and the sludge compartments of beef cattle storage ponds and swine lagoons. Analysis was focused on two families of antimicrobials (sulfonamide and tetracycline) and the corresponding ARGs (sul1, sul2, tetO, tetQ and tetX). Results showed that the pseudo-partitioning coefficients of tetracyclines were higher than those of sulfonamides, suggesting different distributions of these two classes of antimicrobials between water and sludge. The ARGs tested were detected in nearly all ponds and lagoons, with the highest relative abundance in sul2 at 6.3 × 10 −1 copies per 16S rRNA gene. A positive correlation was observed between total sul genes and total sulfonamides in water while the correlation was negative in sludge. No significant correlation was found between total tet genes and total tetracyclines in either water or sludge, but significant correlations were observed for certain individual tet genes. Ammonia concentrations strongly correlated with all ARGs except tetX. This study provided quantitative information on the occurrence of antimicrobials and ARGs in the liquid and solid compartments of typical manure treatment and storage structures. - Highlights: • Partitioning of antimicrobials between water and sludge is compound specific. • Antimicrobial resistance genes occurred in both water and sludge. • The ARG abundance varied more substantially in swine lagoons than in cattle ponds. • Correlations between ARGs and antimicrobials are system dependent

  19. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuping; Zhang, Chiqian [Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE (United States); Parker, David B. [USDA Meat Animal Research Center, Clay Center, NE (United States); Snow, Daniel D. [Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, NE (United States); Zhou, Zhi [Department of Civil and Environmental Engineering, National University of Singapore (Singapore); Li, Xu, E-mail: xuli@unl.edu [Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE (United States)

    2013-10-01

    Livestock manure treatment and storage structures are potential environmental sources of antimicrobials and antimicrobial resistance genes (ARGs). In this study, the occurrence of antimicrobials and ARGs was investigated in the water and the sludge compartments of beef cattle storage ponds and swine lagoons. Analysis was focused on two families of antimicrobials (sulfonamide and tetracycline) and the corresponding ARGs (sul1, sul2, tetO, tetQ and tetX). Results showed that the pseudo-partitioning coefficients of tetracyclines were higher than those of sulfonamides, suggesting different distributions of these two classes of antimicrobials between water and sludge. The ARGs tested were detected in nearly all ponds and lagoons, with the highest relative abundance in sul2 at 6.3 × 10{sup −1} copies per 16S rRNA gene. A positive correlation was observed between total sul genes and total sulfonamides in water while the correlation was negative in sludge. No significant correlation was found between total tet genes and total tetracyclines in either water or sludge, but significant correlations were observed for certain individual tet genes. Ammonia concentrations strongly correlated with all ARGs except tetX. This study provided quantitative information on the occurrence of antimicrobials and ARGs in the liquid and solid compartments of typical manure treatment and storage structures. - Highlights: • Partitioning of antimicrobials between water and sludge is compound specific. • Antimicrobial resistance genes occurred in both water and sludge. • The ARG abundance varied more substantially in swine lagoons than in cattle ponds. • Correlations between ARGs and antimicrobials are system dependent.

  20. Susceptibility of Pediococcus isolates to antimicrobial compounds in relation to hop-resistance and beer-spoilage

    Directory of Open Access Journals (Sweden)

    Ziola Barry

    2009-09-01

    Full Text Available Abstract Background Though important in the context of food microbiology and as potential pathogens in immuno-compromised humans, bacterial isolates belonging to the genus Pediococcus are best known for their association with contamination of ethanol fermentation processes (beer, wine, or fuel ethanol. Use of antimicrobial compounds (e.g., hop-compounds, Penicillin by some industries to combat Pediococcus contaminants is long-standing, yet knowledge about the resistance of pediococci to antimicrobial agents is minimal. Here we examined Pediococcus isolates to determine whether antibiotic resistance is associated with resistance to hops, presence of genes known to correlate with beer spoilage, or with ability to grow in beer. Results Lactic acid bacteria susceptibility test broth medium (LSM used in combination with commercially available GPN3F antimicrobial susceptibility plates was an effective method for assessing antimicrobial susceptibility of Pediococcus isolates. We report the finding of Vancomycin-susceptible Pediococcus isolates from four species. Interestingly, we found that hop-resistant, beer-spoilage, and beer-spoilage gene-harbouring isolates had a tendency to be more susceptible, rather than more resistant, to antimicrobial compounds. Conclusion Our findings indicate that the mechanisms involved in conferring hop-resistance or ability to spoil beer by Pediococcus isolates are not associated with resistance to antibiotics commonly used for treatment of human infections. Also, Vancomycin-resistance was found to be isolate-specific and not intrinsic to the genus as previously believed.

  1. [Adherence to international recommendations in the fight against antimicrobial resistance - Substantial difference between outpatient consumption in Spain and Denmark].

    Science.gov (United States)

    Malo, Sara; Rabanaque, María José; Bjerrum, Lars

    2016-02-01

    Increasing antibiotic resistance represents a major public health threat that jeopardises the future treatment of bacterial infections. This study aims to describe the adherence to recommendations proposed by the World Health Organization (WHO) Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR), in Spain and Denmark, and to analyse the relation between the outpatient use of Critically Important Antimicrobials (CIA) and the bacterial resistance rates to these agents. The Antimicrobial consumption interactive database (ESAC-Net) and Antimicrobial resistance interactive database (EARS-Net) provided data on outpatient use (2010-2013) of CIA (fluoroquinolones, macrolides, and 3rd and 4th generation cephalosporins) and the percentages of isolates of the main pathogens causing serious infections, resistant to these agents. The use of cephalosporins and fluoroquinolones, as well as the percentage of bacteria resistant, is higher in Spain than in Denmark. Although consumption of macrolides in both countries is similar, the proportion of Streptococcus pneumoniae resistant to macrolides is significantly higher in Spain. The high outpatient consumption of CIA agents in Spain deviates substantially from the WHO recommendations. Moreover, it has the effect of elevated rates of antimicrobial resistance, that are lower in Denmark.

  2. Susceptibility of Pediococcus isolates to antimicrobial compounds in relation to hop-resistance and beer-spoilage.

    Science.gov (United States)

    Haakensen, Monique; Vickers, David M; Ziola, Barry

    2009-09-07

    Though important in the context of food microbiology and as potential pathogens in immuno-compromised humans, bacterial isolates belonging to the genus Pediococcus are best known for their association with contamination of ethanol fermentation processes (beer, wine, or fuel ethanol). Use of antimicrobial compounds (e.g., hop-compounds, Penicillin) by some industries to combat Pediococcus contaminants is long-standing, yet knowledge about the resistance of pediococci to antimicrobial agents is minimal. Here we examined Pediococcus isolates to determine whether antibiotic resistance is associated with resistance to hops, presence of genes known to correlate with beer spoilage, or with ability to grow in beer. Lactic acid bacteria susceptibility test broth medium (LSM) used in combination with commercially available GPN3F antimicrobial susceptibility plates was an effective method for assessing antimicrobial susceptibility of Pediococcus isolates. We report the finding of Vancomycin-susceptible Pediococcus isolates from four species. Interestingly, we found that hop-resistant, beer-spoilage, and beer-spoilage gene-harbouring isolates had a tendency to be more susceptible, rather than more resistant, to antimicrobial compounds. Our findings indicate that the mechanisms involved in conferring hop-resistance or ability to spoil beer by Pediococcus isolates are not associated with resistance to antibiotics commonly used for treatment of human infections. Also, Vancomycin-resistance was found to be isolate-specific and not intrinsic to the genus as previously believed.

  3. Antimicrobial resistance profile of urinary tract infection at a secondary care hospital in Medan, Indonesia

    Science.gov (United States)

    Rahimi, A.; Saragih, R. H.; Nainggolan, R.

    2018-03-01

    Urinary tract infection (UTI) is a considerable health problem which ranks as the second leading cause of infection after respiratory tract one. Antimicrobial resistance in UTI has become a burden in the management of the disease due to high usage of antibiotics. A comprehensive understanding of the etiology and the antimicrobial resistance of the uropathogenic bacteria is essential to provide adequate treatment. This study aims to determine the etiologic agents and their susceptibility pattern in UTI patients. The analysis was performed retrospectively on culture isolates obtained from urine samples received at the Department of Microbiology, Dr.Pirngadi General Hospital, Medan, Indonesia in the period from January 2015 until December 2016. Higher prevalence of UTI was found in female participants of the study in comparison with males. Enterobacter (64.58%) was the most common bacteria revealed as the etiologic agent, followed by E. coli (11.46%), Citrobacter and Klebsiella (9.38% each). Amikacin and meropenem were the most sensitive antimicrobial agents for Enterobacter, E. coli, Citrobacter, and Klebsiella, showing low resistance rate. This study showed that Enterobacter was the most dominant bacterial pathogen of UTI. Amikacin and meropenem were the antibiotics with high sensitivity for UTI treatment.

  4. Antimicrobial Resistance and the Alternative Resources with Special Emphasis on Plant-Based Antimicrobials—A Review

    Directory of Open Access Journals (Sweden)

    Harish Chandra

    2017-04-01

    Full Text Available Indiscriminate and irrational use of antibiotics has created an unprecedented challenge for human civilization due to microbe’s development of antimicrobial resistance. It is difficult to treat bacterial infection due to bacteria’s ability to develop resistance against antimicrobial agents. Antimicrobial agents are categorized according to their mechanism of action, i.e., interference with cell wall synthesis, DNA and RNA synthesis, lysis of the bacterial membrane, inhibition of protein synthesis, inhibition of metabolic pathways, etc. Bacteria may become resistant by antibiotic inactivation, target modification, efflux pump and plasmidic efflux. Currently, the clinically available treatment is not effective against the antibiotic resistance developed by some bacterial species. However, plant-based antimicrobials have immense potential to combat bacterial, fungal, protozoal and viral diseases without any known side effects. Such plant metabolites include quinines, alkaloids, lectins, polypeptides, flavones, flavonoids, flavonols, coumarin, terpenoids, essential oils and tannins. The present review focuses on antibiotic resistance, the resistance mechanism in bacteria against antibiotics and the role of plant-active secondary metabolites against microorganisms, which might be useful as an alternative and effective strategy to break the resistance among microbes.

  5. Diversity and Antimicrobial Potential of Predatory Bacteria from the Peruvian Coastline.

    Science.gov (United States)

    Linares-Otoya, Luis; Linares-Otoya, Virginia; Armas-Mantilla, Lizbeth; Blanco-Olano, Cyntia; Crüsemann, Max; Ganoza-Yupanqui, Mayar L; Campos-Florian, Julio; König, Gabriele M; Schäberle, Till F

    2017-10-12

    The microbiome of three different sites at the Peruvian Pacific coast was analyzed, revealing a lower bacterial biodiversity at Isla Foca than at Paracas and Manglares, with 89 bacterial genera identified, as compared to 195 and 173 genera, respectively. Only 47 of the bacterial genera identified were common to all three sites. In order to obtain promising strains for the putative production of novel antimicrobials, predatory bacteria were isolated from these sampling sites, using two different bait organisms. Even though the proportion of predatory bacteria was only around 0.5% in the here investigated environmental microbiomes, by this approach in total 138 bacterial strains were isolated as axenic culture. 25% of strains showed antibacterial activity, thereby nine revealed activity against clinically relevant methicillin resistant Staphylococcus aureus (MRSA) and three against enterohemorrhagic Escherichia coli (EHEC) strains. Phylogeny and physiological characteristics of the active strains were investigated. First insights into the chemical basis of the antibacterial activity indicated the biosynthetic production of the known compounds ariakemicin, kocurin, naphthyridinomycin, pumilacidins, resistomycin, and surfactin. However, most compounds remained elusive until now. Hence, the obtained results implicate that the microbiome present at the various habitats at the Peruvian coastline is a promising source for heterotrophic bacterial strains showing high potential for the biotechnological production of antibiotics.

  6. Diversity and Antimicrobial Potential of Predatory Bacteria from the Peruvian Coastline

    Directory of Open Access Journals (Sweden)

    Luis Linares-Otoya

    2017-10-01

    Full Text Available The microbiome of three different sites at the Peruvian Pacific coast was analyzed, revealing a lower bacterial biodiversity at Isla Foca than at Paracas and Manglares, with 89 bacterial genera identified, as compared to 195 and 173 genera, respectively. Only 47 of the bacterial genera identified were common to all three sites. In order to obtain promising strains for the putative production of novel antimicrobials, predatory bacteria were isolated from these sampling sites, using two different bait organisms. Even though the proportion of predatory bacteria was only around 0.5% in the here investigated environmental microbiomes, by this approach in total 138 bacterial strains were isolated as axenic culture. 25% of strains showed antibacterial activity, thereby nine revealed activity against clinically relevant methicillin resistant Staphylococcus aureus (MRSA and three against enterohemorrhagic Escherichia coli (EHEC strains. Phylogeny and physiological characteristics of the active strains were investigated. First insights into the chemical basis of the antibacterial activity indicated the biosynthetic production of the known compounds ariakemicin, kocurin, naphthyridinomycin, pumilacidins, resistomycin, and surfactin. However, most compounds remained elusive until now. Hence, the obtained results implicate that the microbiome present at the various habitats at the Peruvian coastline is a promising source for heterotrophic bacterial strains showing high potential for the biotechnological production of antibiotics.

  7. Antimicrobial Potential of Bacteria Associated with Marine Sea Slugs from North Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    Nils Böhringer

    2017-06-01

    Full Text Available Nudibranchia, marine soft-bodied organisms, developed, due to the absence of a protective shell, different strategies to protect themselves against putative predators and fouling organisms. One strategy is to use chemical weapons to distract predators, as well as pathogenic microorganisms. Hence, these gastropods take advantage of the incorporation of chemical molecules. Thereby the original source of these natural products varies; it might be the food source, de novo synthesis from the sea slug, or biosynthesis by associated bacteria. These bioactive molecules applied by the slugs can become important drug leads for future medicinal drugs. To test the potential of the associated bacteria, the latter were isolated from their hosts, brought into culture and extracts were prepared and tested for antimicrobial activities. From 49 isolated bacterial strains 35 showed antibiotic activity. The most promising extracts were chosen for further testing against relevant pathogens. In that way three strains showing activity against methicillin resistant Staphylococcus aureus and one strain with activity against enterohemorrhagic Escherichia coli, respectively, were identified. The obtained results indicate that the sea slug associated microbiome is a promising source for bacterial strains, which hold the potential for the biotechnological production of antibiotics.

  8. Campylobacter Antimicrobial Drug Resistance among Humans in ...

    African Journals Online (AJOL)

    Background: Though Campylobacter enteritis is a self-limiting disease, antimicrobial agents are recommended for extraintestinal infections and for treating immunocompromised persons. ... The in-vitro antibiotic susceptibility testing for all organisms was performed by employing the Kirby- Bauer disc diffusion method.

  9. Antimicrobial resistance patterns of phenotype Extended Spectrum ...

    African Journals Online (AJOL)

    Methods: From July 2013 to January 2014, urine, pus and blood samples were collected from patients suspected to have bacterial infections at Kilimanjaro Christian Medical Centre in Moshi, Tanzania. The isolates were identified based on standard laboratory procedures. Antimicrobial susceptibility tests were carried out ...

  10. Antimicrobial resistance and plasmid profiles of Aeromonas ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate the presence of Aeromonas hydrophila at commonly used water collection points on the River Njoro and to determine the in-vitro antimicrobial susceptibility and plasmid profiles of isolates. In total, 126 samples were collected and 36.5% of them were positive for A. hydrophila.

  11. [Potential antimicrobial drug interactions in clinical practice: consequences of polypharmacy and multidrug resistance].

    Science.gov (United States)

    Martínez-Múgica, Cristina

    2015-12-01

    Polypharmacy is a growing problem nowadays, which can increase the risk of potential drug interactions, and result in a loss of effectiveness. This is particularly relevant to the anti-infective therapy, especially when infection is produced by resistant bacteria, because therapeutic options are limited and interactions can cause treatment failure. All antimicrobial prescriptions were retrospectively reviewed during a week in the Pharmacy Department, in order to detect potential drug-interactions and analysing their clinical significance. A total of 314 antimicrobial prescriptions from 151 patients were checked. There was at least one potential interaction detected in 40% of patients, being more frequent and severe in those infected with multidrug-resistant microorganisms. Drugs most commonly involved were quinolones, azoles, linezolid and vancomycin. Potential drug interactions with antimicrobial agents are a frequent problem that can result in a loss of effectiveness. This is why they should be detected and avoided when possible, in order to optimize antimicrobial therapy, especially in case of multidrug resistant infections.

  12. Synthesis of CdTe QDs/single-walled aluminosilicate nanotubes hybrid compound and their antimicrobial activity on bacteria

    Science.gov (United States)

    Geraldo, Daniela A.; Arancibia-Miranda, Nicolás; Villagra, Nicolás A.; Mora, Guido C.; Arratia-Perez, Ramiro

    2012-12-01

    The use of molecular conjugates of quantum dots (nanocrystalline fluorophores) for biological purposes have received much attention due to their improved biological activity. However, relatively, little is known about the synthesis and application of aluminosilicate nanotubes decorated with quantum dots (QDs) for imaging and treatment of pathogenic bacteria. This paper describes for a first time, the use of single-walled aluminosilicate nanotubes (SWNT) (imogolite) as a one-dimensional template for the in situ growth of mercaptopropionic acid-capped CdTe QDs. This new nanohybrid hydrogel was synthesized by a simple reaction pathway and their enhanced optical properties were monitored by fluorescence and UV-Vis spectroscopy, confirming that the use of these nanotubes favors the confinement effects of net CdTe QDs. In addition, studies of FT-IR spectroscopy and transmission electron microscopy confirmed the non-covalent functionalization of SWNT. Finally, the antimicrobial activity of SWNT coated with CdTe QDs toward three opportunistic multi-resistant pathogens such as Salmonella typhimurium, Acinetobacter baumannii, and Pseudomonas aeruginosa were tested. Growth inhibition tests were conducted by exposing growing bacteria to CdTe QDs/SWNT hybrid compound showing that the new nano-structured composite is a potential antimicrobial agent for heavy metal-resistant bacteria.

  13. Synthesis of CdTe QDs/single-walled aluminosilicate nanotubes hybrid compound and their antimicrobial activity on bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Daniela A., E-mail: daniela.geraldo@unab.cl [Universidad Andres Bello, Departamento de Ciencias Quimicas (Chile); Arancibia-Miranda, Nicolas [CEDENNA, Center for the Development of Nanoscience and Nanotechnology (Chile); Villagra, Nicolas A. [Universidad Andres Bello, Laboratorio de Microbiologia, Facultad de Ciencias Biologicas (Chile); Mora, Guido C. [Universidad Andres Bello, Unidad de Microbiologia, Facultad de Medicina (Chile); Arratia-Perez, Ramiro [Universidad Andres Bello, Departamento de Ciencias Quimicas (Chile)

    2012-12-15

    The use of molecular conjugates of quantum dots (nanocrystalline fluorophores) for biological purposes have received much attention due to their improved biological activity. However, relatively, little is known about the synthesis and application of aluminosilicate nanotubes decorated with quantum dots (QDs) for imaging and treatment of pathogenic bacteria. This paper describes for a first time, the use of single-walled aluminosilicate nanotubes (SWNT) (imogolite) as a one-dimensional template for the in situ growth of mercaptopropionic acid-capped CdTe QDs. This new nanohybrid hydrogel was synthesized by a simple reaction pathway and their enhanced optical properties were monitored by fluorescence and UV-Vis spectroscopy, confirming that the use of these nanotubes favors the confinement effects of net CdTe QDs. In addition, studies of FT-IR spectroscopy and transmission electron microscopy confirmed the non-covalent functionalization of SWNT. Finally, the antimicrobial activity of SWNT coated with CdTe QDs toward three opportunistic multi-resistant pathogens such as Salmonella typhimurium, Acinetobacter baumannii, and Pseudomonas aeruginosa were tested. Growth inhibition tests were conducted by exposing growing bacteria to CdTe QDs/SWNT hybrid compound showing that the new nano-structured composite is a potential antimicrobial agent for heavy metal-resistant bacteria.

  14. Synthesis of CdTe QDs/single-walled aluminosilicate nanotubes hybrid compound and their antimicrobial activity on bacteria

    International Nuclear Information System (INIS)

    Geraldo, Daniela A.; Arancibia-Miranda, Nicolás; Villagra, Nicolás A.; Mora, Guido C.; Arratia-Perez, Ramiro

    2012-01-01

    The use of molecular conjugates of quantum dots (nanocrystalline fluorophores) for biological purposes have received much attention due to their improved biological activity. However, relatively, little is known about the synthesis and application of aluminosilicate nanotubes decorated with quantum dots (QDs) for imaging and treatment of pathogenic bacteria. This paper describes for a first time, the use of single-walled aluminosilicate nanotubes (SWNT) (imogolite) as a one-dimensional template for the in situ growth of mercaptopropionic acid-capped CdTe QDs. This new nanohybrid hydrogel was synthesized by a simple reaction pathway and their enhanced optical properties were monitored by fluorescence and UV–Vis spectroscopy, confirming that the use of these nanotubes favors the confinement effects of net CdTe QDs. In addition, studies of FT-IR spectroscopy and transmission electron microscopy confirmed the non-covalent functionalization of SWNT. Finally, the antimicrobial activity of SWNT coated with CdTe QDs toward three opportunistic multi-resistant pathogens such as Salmonella typhimurium, Acinetobacter baumannii, and Pseudomonas aeruginosa were tested. Growth inhibition tests were conducted by exposing growing bacteria to CdTe QDs/SWNT hybrid compound showing that the new nano-structured composite is a potential antimicrobial agent for heavy metal-resistant bacteria.

  15. The fight against Antimicrobial Resistance: Important recent publications

    DEFF Research Database (Denmark)

    Minssen, Timo

    2014-01-01

    One of my previous blogs discussed the growing threat of antimicrobial resistance (AMR). I concluded that antimicrobial resistance is a growing and complex threat involving multifaceted legal, socio-economic and scientific aspects. This requires sustained and coordinated action on both global...... for a period of at least two years. Major outcomes, such as consensus papers, meeting reports, and periodic progress reports, will be posted on the TATFAR website. The extension of the TATFAR mandate is an important and necessary step that can only be welcomed. By re-affirming their commitment, the US...

  16. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts.

    Science.gov (United States)

    Friedman, Mendel

    2015-04-22

    Foodborne antibiotic-resistant pathogenic bacteria such as Campylobacter jejuni, Bacillus cereus, Clostridium perfringens, Escherichia coli, Salmonella enterica, Staphylococcus aureus, Vibrio cholerae, and Vibrio parahemolyticus can adversely affect animal and human health, but a better understanding of the factors involved in their pathogenesis is needed. To help meet this need, this overview surveys and interprets much of our current knowledge of antibiotic (multidrug)-resistant bacteria in the food chain and the implications for microbial food safety and animal and human health. Topics covered include the origin and prevalence of resistant bacteria in the food chain (dairy, meat, poultry, seafood, and herbal products, produce, and eggs), their inactivation by different classes of compounds and plant extracts and by the use of chlorine and physicochemical methods (heat, UV light, pulsed electric fields, and high pressure), the synergistic antimicrobial effects of combinations of natural antimicrobials with medicinal antibiotics, and mechanisms of antimicrobial activities and resistant effects. Possible areas for future research are suggested. Plant-derived and other safe natural antimicrobial compounds have the potential to control the prevalence of both susceptible and resistant pathogens in various environments. The collated information and suggested research will hopefully contribute to a better understanding of approaches that could be used to minimize the presence of resistant pathogens in animal feed and human food, thus reducing adverse effects, improving microbial food safety, and helping to prevent or treat animal and human infections.

  17. Serratia marcescens resistance profile and its susceptibility to photodynamic antimicrobial chemotherapy.

    Science.gov (United States)

    Parente, Ticiana Mont Alverne Lopes; Rebouças, Emanuela de Lima; Santos, Vitor Coutinho Vieira Dos; Barbosa, Francisco Cesar Barroso; Zanin, Iriana Carla Junqueira

    2016-06-01

    Some authors have reported the antimicrobial action of photodynamic antimicrobial chemotherapy (PACT) on bacteria related to nosocomial infections but there are few studies evaluating PACT on Serratia marcescens grown as planktonic cultures or as biofilms. The purpose of this study was to analyze the S. marcescens resistance profile and its susceptibility to PACT. Initially, 55 S. marcescens strains isolated from environmental, oral and extra-oral infections were tested by antimicrobial resistance to cefotaxime (CTX), imipenem (IPM), ciprofloxacin (CIP), tobramycin (TOB) and doxycycline (DOX) using E-test(®). Following, isolates grown as planktonic cultures or biofilms were submitted to PACT using the association of a light-emitting diode and toluidine blue (TBO). The E-test(®) results demonstrated intermediated sensitive strains to CTX, IMP, TOB, and DOX; and resistant strains to CTX, TOB, DOX and CIP. Also, CTX and IMP demonstrated variation when CLSI 2007 and CLSI 2015 were compared. Planktonic cultures and biofilms submitted to PACT demonstrated counts varying from 10(11) to 10(7) for planktonic cultures and 10(10) to 10(7) for biofilms. There were no statistical differences in the results when planktonic cultures and biofilms were compared. Increase in the profile of S. marcescens resistance was observed when CLSI 2007 and CLSI 2015 were compared. Also, IMP remains as the drug with lower rate of resistance. Additionally, both S. marcescens planktonic cultures and early biofilms are susceptible to PACT under tested conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions.

    Science.gov (United States)

    Watts, Joy E M; Schreier, Harold J; Lanska, Lauma; Hale, Michelle S

    2017-06-01

    As the human population increases there is an increasing reliance on aquaculture to supply a safe, reliable, and economic supply of food. Although food production is essential for a healthy population, an increasing threat to global human health is antimicrobial resistance. Extensive antibiotic resistant strains are now being detected; the spread of these strains could greatly reduce medical treatment options available and increase deaths from previously curable infections. Antibiotic resistance is widespread due in part to clinical overuse and misuse; however, the natural processes of horizontal gene transfer and mutation events that allow genetic exchange within microbial populations have been ongoing since ancient times. By their nature, aquaculture systems contain high numbers of diverse bacteria, which exist in combination with the current and past use of antibiotics, probiotics, prebiotics, and other treatment regimens-singularly or in combination. These systems have been designated as "genetic hotspots" for gene transfer. As our reliance on aquaculture grows, it is essential that we identify the sources and sinks of antimicrobial resistance, and monitor and analyse the transfer of antimicrobial resistance between the microbial community, the environment, and the farmed product, in order to better understand the implications to human and environmental health.

  19. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions

    Directory of Open Access Journals (Sweden)

    Joy E. M. Watts

    2017-06-01

    Full Text Available As the human population increases there is an increasing reliance on aquaculture to supply a safe, reliable, and economic supply of food. Although food production is essential for a healthy population, an increasing threat to global human health is antimicrobial resistance. Extensive antibiotic resistant strains are now being detected; the spread of these strains could greatly reduce medical treatment options available and increase deaths from previously curable infections. Antibiotic resistance is widespread due in part to clinical overuse and misuse; however, the natural processes of horizontal gene transfer and mutation events that allow genetic exchange within microbial populations have been ongoing since ancient times. By their nature, aquaculture systems contain high numbers of diverse bacteria, which exist in combination with the current and past use of antibiotics, probiotics, prebiotics, and other treatment regimens—singularly or in combination. These systems have been designated as “genetic hotspots” for gene transfer. As our reliance on aquaculture grows, it is essential that we identify the sources and sinks of antimicrobial resistance, and monitor and analyse the transfer of antimicrobial resistance between the microbial community, the environment, and the farmed product, in order to better understand the implications to human and environmental health.

  20. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions

    Science.gov (United States)

    Watts, Joy E. M.; Schreier, Harold J.; Lanska, Lauma; Hale, Michelle S.

    2017-01-01

    As the human population increases there is an increasing reliance on aquaculture to supply a safe, reliable, and economic supply of food. Although food production is essential for a healthy population, an increasing threat to global human health is antimicrobial resistance. Extensive antibiotic resistant strains are now being detected; the spread of these strains could greatly reduce medical treatment options available and increase deaths from previously curable infections. Antibiotic resistance is widespread due in part to clinical overuse and misuse; however, the natural processes of horizontal gene transfer and mutation events that allow genetic exchange within microbial populations have been ongoing since ancient times. By their nature, aquaculture systems contain high numbers of diverse bacteria, which exist in combination with the current and past use of antibiotics, probiotics, prebiotics, and other treatment regimens—singularly or in combination. These systems have been designated as “genetic hotspots” for gene transfer. As our reliance on aquaculture grows, it is essential that we identify the sources and sinks of antimicrobial resistance, and monitor and analyse the transfer of antimicrobial resistance between the microbial community, the environment, and the farmed product, in order to better understand the implications to human and environmental health. PMID:28587172

  1. Trends and Sources of Zoonoses, Zoonotic Agents and Antimicrobial resistance in the European Union in 2004

    DEFF Research Database (Denmark)

    Helwigh, Birgitte

    EFSA's Community Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Antimicrobial resistance in the European Union in 2004 was published in December 2005. The zoonoses, meaning infectious diseases transmissible from animals to humans, affected over 380,000 EU citizens in 2004....... Often the human form of the disease is acquired through contaminated food. According to the report, the two most frequently reported zoonotic diseases in humans were Salmonella and Campylobacter infections. These bacteria were also commonly found in food and animals. The report includes information...... of 11 zoonoses, antimicrobial resistance in zoonotic agents as well as foodborne outbreaks. The national zoonoses country reports which have been used as a basis for this Summary report are below. The utmost effort was made to keep the information in the Summary Report and the national reports identical...

  2. Antimicrobial Usage and Antimicrobial Resistance in Animal Production in Southeast Asia: A Review

    Directory of Open Access Journals (Sweden)

    Nguyen T. Nhung

    2016-11-01

    Full Text Available Southeast Asia is an area of great economic dynamism. In recent years, it has experienced a rapid rise in the levels of animal product production and consumption. The region is considered to be a hotspot for infectious diseases and antimicrobial resistance (AMR. We reviewed English-language peer-reviewed publications related to antimicrobial usage (AMU and AMR in animal production, as well as antimicrobial residues in meat and fish from 2000 to 2016, in the region. There is a paucity of data from most countries and for most bacterial pathogens. Most of the published work relates to non-typhoidal Salmonella (NTS, Escherichia coli (E. coli, and Campylobacter spp. (mainly from Vietnam and Thailand, Enterococcus spp. (Malaysia, and methicillin-resistant Staphylococcus aureus (MRSA (Thailand. However, most studies used the disk diffusion method for antimicrobial susceptibility testing; breakpoints were interpreted using Clinical Standard Laboratory Institute (CSLI guidelines. Statistical models integrating data from publications on AMR in NTS and E. coli studies show a higher overall prevalence of AMR in pig isolates, and an increase in levels of AMR over the years. AMU studies (mostly from Vietnam indicate very high usage levels of most types of antimicrobials, including beta-lactams, aminoglycosides, macrolides, and quinolones. This review summarizes information about genetic determinants of resistance, most of which are transferrable (mostly plasmids and integrons. The data in this review provide a benchmark to help focus research and policies on AMU and AMR in the region.

  3. Neisseria gonorrhoeae: testing, typing and treatment in an era of increased antimicrobial resistance

    NARCIS (Netherlands)

    Wind, C.M.

    2017-01-01

    This thesis discusses the management of Neisseria gonorrhoeae infections while under threat of emerging antimicrobial resistance. It focuses on improved diagnostics, and antimicrobial resistance to current and future therapies. We describe a new method of targeted deferred culture, using nucleic

  4. Probable secondary transmission of antimicrobial-resistant Escherichia coli between people living with and without pets.

    Science.gov (United States)

    Chung, Yeon Soo; Park, Young Kyung; Park, Yong Ho; Park, Kun Taek

    2017-03-18

    Companion animals are considered as one of the reservoirs of antimicrobial-resistant (AR) bacteria that can be cross-transmitted to humans. However, limited information is available on the possibility of AR bacteria originating from companion animals being transmitted secondarily from owners to non-owners sharing the same space. To address this issue, the present study investigated clonal relatedness among AR E. coli isolated from dog owners and non-owners in the same college classroom or household. Anal samples (n=48) were obtained from 14 owners and 34 non-owners; 31 E. coli isolates were collected (nine from owners and 22 from non-owners). Of 31 E. coli, 20 isolates (64.5%) were resistant to at least one antimicrobial, and 16 isolates (51.6%) were determined as multi-drug resistant E. coli. Six isolates (19.4%) harbored integrase genes (five harbored class I integrase gene and one harbored class 2 integrase gene, respectively). Pulsed-field gel electrophoretic analysis identified three different E. coli clonal sets among isolates, indicating that cross-transmission of AR E. coli can easily occur between owners and non-owners. The findings emphasize a potential risk of spread of AR bacteria originating from pets within human communities, once they are transferred to humans. Further studies are needed to evaluate the exact risk and identify the risk factors of secondarily transmission by investigating larger numbers of isolates from pets, their owners and non-owners in a community.

  5. Costs and length of stay associated with antimicrobial resistance in acute kidney injury patients with bloodstream infection.

    Science.gov (United States)

    Vandijck, D M; Blot, S I; Decruyenaere, J M; Vanholder, R C; De Waele, J J; Lameire, N H; Claus, S; De Schuijmer, J; Dhondt, A W; Verschraegen, G; Hoste, E A

    2008-01-01

    Antimicrobial resistance negatively impacts on prognosis. Intensive care unit (ICU) patients, and particularly those with acute kidney injury (AKI), are at high risk for developing nosocomial bloodstream infections (BSI) due to multi-drug-resistant strains. Economic implications in terms of costs and length of stay (LOS) attributable to antimicrobial resistance are underevaluated. This study aimed to assess whether microbial susceptibility patterns affect costs and LOS in a well-defined cohort of ICU patients with AKI undergoing renal replacement therapy (RRT) who developed nosocomial BSI. Historical study (1995-2004) enrolling all adult RRT-dependent ICU patients with AKI and nosocomial BSI. Costs were considered as invoiced in the Belgian reimbursement system, and LOS was used as a surrogate marker for hospital resource allocation. Of the 1330 patients with AKI undergoing RRT, 92 had microbiologic evidence of nosocomial BSI (57/92, 62% due to a multi-drug-resistant microorganism). Main patient characteristics were equal in both groups. As compared to patients with antimicro-4 bial-susceptible BSI, patients with antimicrobial-resistant BSI were more likely to acquire Gram-positive infection (72.6% vs 25.5%, P0.05) or hospital costs (all P>0.05) when comparing patients with antimicrobial-resistant vs antimicrobial-susceptible BSI. However, although not statistically significant, patients with BSI caused by resistant Gram-negative-, Candida-, or anaerobic bacteria incurred substantial higher costs than those without. In a cohort of ICU patients with AKI and nosocomial BSI undergoing RRT, patients with antimicrobial-resistant vs antimicrobial-susceptible Gram-positive BSI did not have longer hospital stays, or higher hospital costs. Patients with resistant "other" (i.e. Gram-negative, Candida, or anaerobic) BSI were found to have a distinct trend towards increased resources use as compared to patients with susceptible "other" BSI, respectively.

  6. Multidrug resistance in enteric and other gram-negative bacteria.

    Science.gov (United States)

    George, A M

    1996-05-15

    In Gram-negative bacteria, multidrug resistance is a term that is used to describe mechanisms of resistance by chromosomal genes that are activated by induction or mutation caused by the stress of exposure to antibiotics in natural and clinical environments. Unlike plasmid-borne resistance genes, there is no alteration or degradation of drugs or need for genetic transfer. Exposure to a single drug leads to cross-resistance to many other structurally and functionally unrelated drugs. The only mechanism identified for multidrug resistance in bacteria is drug efflux by membrane transporters, even though many of these transporters remain to be identified. The enteric bacteria exhibit mostly complex multidrug resistance systems which are often regulated by operons or regulons. The purpose of this review is to survey molecular mechanisms of multidrug resistance in enteric and other Gram-negative bacteria, and to speculate on the origins and natural physiological functions of the genes involved.

  7. The antimicrobial resistance crisis: causes, consequences, and management.

    Science.gov (United States)

    Michael, Carolyn Anne; Dominey-Howes, Dale; Labbate, Maurizio

    2014-01-01

    The antimicrobial resistance (AMR) crisis is the increasing global incidence of infectious diseases affecting the human population, which are untreatable with any known antimicrobial agent. This crisis will have a devastating cost on human society as both debilitating and lethal diseases increase in frequency and scope. Three major factors determine this crisis: (1) the increasing frequency of AMR phenotypes among microbes is an evolutionary response to the widespread use of antimicrobials; (2) the large and globally connected human population allows pathogens in any environment access to all of humanity; and (3) the extensive and often unnecessary use of antimicrobials by humanity provides the strong selective pressure that is driving the evolutionary response in the microbial world. Of these factors, the size of the human population is least amenable to rapid change. In contrast, the remaining two factors may be affected, so offering a means of managing the crisis: the rate at which AMR, as well as virulence factors evolve in microbial world may be slowed by reducing the applied selective pressure. This may be accomplished by radically reducing the global use of current and prospective antimicrobials. Current management measures to legislate the use of antimicrobials and to educate the healthcare world in the issues, while useful, have not comprehensively addressed the problem of achieving an overall reduction in the human use of antimicrobials. We propose that in addition to current measures and increased research into new antimicrobials and diagnostics, a comprehensive education program will be required to change the public paradigm of antimicrobial usage from that of a first line treatment to that of a last resort when all other therapeutic options have failed.

  8. The antimicrobial resistance crisis: causes, consequences and management.

    Directory of Open Access Journals (Sweden)

    Carolyn Anne Michael

    2014-09-01

    Full Text Available The Antimicrobial Resistance (AMR crisis is the increasing global incidence of infectious diseases affecting the human population, which are untreatable with any known antimicrobial agent. This crisis will have a devastating cost on human society as both debilitating and lethal diseases increase in frequency and scope. Three major factors determine this crisis: 1/ The increasing frequency of AMR phenotypes amongst microbes is an evolutionary response to the widespread use of antimicrobials. 2/ The large and globally connected human population allows pathogens in any environment access to all of humanity. 3/ The extensive and often unnecessary use of antimicrobials by humanity provides the strong selective pressure that is driving the evolutionary response in the microbial world. Of these factors, the size of the human population is least amenable to rapid change. In contrast the remaining two factors may be affected, so offering a means of managing the crisis: The rate at which AMR, as well as virulence factors evolve in microbial world may be slowed by reducing the applied selective pressure. This may be accomplished by radically reducing the global use of current and prospective antimicrobials. Current management measures to legislate the use of antimicrobials and to educate the healthcare world in the issues, while useful, have not comprehensively addressed the problem of achieving an overall reduction in the human use of antimicrobials. We propose that in addition to current measures and increased research into new antimicrobials and diagnostics, a comprehensive education programme will be required to change the public paradigm of antimicrobial usage from that of a first line treatment to that of a last resort when all other therapeutic options have failed.

  9. Prevalence and Antimicrobial Resistance of Enterococcus Species: A Hospital-Based Study in China

    Directory of Open Access Journals (Sweden)

    Wei Jia

    2014-03-01

    exhibited various resistances to the same antimicrobial agent, while reserpine treatment reduced the resistance of Enterococcus species to ciprofloxacin, gatifloxacin and levofloxacin. The β-lactamase gene TEM, aminoglycoside-modifying-enzyme genes aac(6'-aph(2", aph(3'-III, ant(6-I and ant(2"-I, tetracycline resistance gene tetM, erythromycin resistance gene ermB, vancomycin resistance gene vanA and the enterococcal multidrug resistance efflux emeA gene were detected in 77%, 62%, 26%, 13%, 36%, 31%, 66%, 5% and 55% of the 100 multiple-drug resistant enterococcal isolates. Conclusions: similar to previous findings, E. faecium and E. faecalis are predominant conditionally pathogenic bacteria that cause hospital-acquired infections that can cause urinary and respiratory system infections. Multiple and high-level antimicrobial resistance is highly prevalent in the hospital isolates of Enterococcus species. Reserpine treatment inhibits the active efflux of Enterococcus species to ciprofloxacin, gatifloxacin and levofloxacin in vitro and reduces the MIC of Enterococcus species to these three fluoroquinolones. The presence of the enterococcal multidrug resistance efflux emeA gene is associated with the resistance to antibiotics in Enterococcus species. The monitoring of the prevalence and antimicrobial resistance of Enterococcus species is of great significance to guide the control and prevention of enterococcal infections.

  10. Longitudinal characterization of antimicrobial resistance genes in feces shed from cattle fed different subtherapeutic antibiotics

    Directory of Open Access Journals (Sweden)

    Read Ronald R

    2011-01-01

    Full Text Available Abstract Background Environmental transmission of antimicrobial-resistant bacteria and resistance gene determinants originating from livestock is affected by their persistence in agricultural-related matrices. This study investigated the effects of administering subtherapeutic concentrations of antimicrobials to beef cattle on the abundance and persistence of resistance genes within the microbial community of fecal deposits. Cattle (three pens per treatment, 10 steers per pen were administered chlortetracycline, chlortetracycline plus sulfamethazine, tylosin, or no antimicrobials (control. Model fecal deposits (n = 3 were prepared by mixing fresh feces from each pen into a single composite sample. Real-time PCR was used to measure concentrations of tet, sul and erm resistance genes in DNA extracted from composites over 175 days of environmental exposure in the field. The microbial communities were analyzed by quantification and denaturing gradient gel electrophoresis (DGGE of PCR-amplified 16S-rRNA. Results The concentrations of 16S-rRNA in feces were similar across treatments and increased by day 56, declining thereafter. DGGE profiles of 16S-rRNA differed amongst treatments and with time, illustrating temporal shifts in microbial communities. All measured resistance gene determinants were quantifiable in feces after 175 days. Antimicrobial treatment differentially affected the abundance of certain resistance genes but generally not their persistence. In the first 56 days, concentrations of tet(B, tet(C, sul1, sul2, erm(A tended to increase, and decline thereafter, whereas tet(M and tet(W gradually declined over 175 days. At day 7, the concentration of erm(X was greatest in feces from cattle fed tylosin, compared to all other treatments. Conclusion The abundance of genes coding for antimicrobial resistance in bovine feces can be affected by inclusion of antibiotics in the feed. Resistance genes can persist in feces from cattle beyond 175 days

  11. Antimicrobial properties of probiotic bacteria from various sources

    African Journals Online (AJOL)

    OKEREKE HOPE C

    2012-05-15

    May 15, 2012 ... The lactic acid bacteria (LAB), a component of several fermented foods including ... lactic acid bacteria grown in MRS broth for 20 to 24 h using centrifugation .... vacuum packed chill-stored meat has potential application for ...

  12. The bacteriological safety and antimicrobial susceptibility of bacteria ...

    African Journals Online (AJOL)

    In developing countries the major sources of food-borne illnesses are street vended foods. The aim of this study was thus to assess the prevalence and antibiogram of bacteria from white lupin in Bahir Dar Town. METHODS: A total of 40 samples were processed for detection of indicator bacteria and pathogens from ...

  13. Isolation of radiation-resistant bacteria without exposure to irradiation

    International Nuclear Information System (INIS)

    Sanders, S.W.; Maxcy, R.B.

    1979-01-01

    Resistance to desiccation was utilized in the selection of highly radiation-resistant asporogenous bacteria from nonirradiated sources. A bacterial suspension in phosphate buffer was dried in a thin film at 25 0 C and 33% relative humidity. Storage under these conditions for 15 days or more reduced the number of radiation-sensitive bacteria. Further selection for radiation-resistant bacteria was obtained by irradiation of bacteria on velveteen in the replication process, therby avoiding the toxic effect of irradiated media. The similarity of radiation resistance and identifying characteristics in irradiated and non-irradiated isolates should allay some concerns that highly radiation-resistance bacteria have been permanently altered by radiation selection

  14. Antimicrobial resistant Escherichia coli in the municipal wastewater system: effect of hospital effluent and environmental fate.

    Science.gov (United States)

    Harris, Suvi; Morris, Carol; Morris, Dearbhaile; Cormican, Martin; Cummins, Enda

    2014-01-15

    The prevalence of antimicrobial resistant (AMR) bacteria is increasing worldwide and remains a significant medical challenge which may lead to antimicrobial redundancy. The contribution of hospital effluent to the prevalence of resistance in wastewater treatment plant (WWTP) effluents is not fully understood. AMR bacteria contained in hospital effluent may be released into the aquatic and soil environments after WWTP processing. Hence, the objective of this study is to identify the extent hospital effluent contributes to contamination of these environments by comparing two WWTPs, one which receives hospital effluent and one which does not. AMR Escherichia coli were monitored in the two WWTPs. A model was developed using these monitored values to predict the effect of hospital effluent within a WWTP. The model predicted levels of AMR E. coli in the aquatic environment and potential bather exposure to AMR E. coli. The model results were highly variable. WWTP influent containing hospital effluent had a higher mean percentage of AMR E. coli; although, there appeared to be no within treatment plant effect on the prevalence of AMR E. coli. Examination of WWTP sludge showed a similar variation. There appeared to be no consistent effect from the presence of hospital effluent. The human exposure assessment model predicted swimmer intake of AMR E. coli between 6 and 193CFU/100ml sea water. It appears that hospital effluent is not the main contributing factor behind the development and persistence of AMR E. coli within WWTPs, although resistance may be too well-developed to identify an influence from hospital effluent. Mitigation needs to focus on the removal of already present resistant bacteria but for new or hospital specific antimicrobials focus needs to be on their limited release within effluents or separate treatment. © 2013.

  15. Antimicrobials Influence Bond Stiffness and Detachment of Oral Bacteria

    NARCIS (Netherlands)

    Song, L.; Hou, J.; van der Mei, H. C.; Veeregowda, D. H.; Busscher, H. J.; Sjollema, J.

    Oral biofilm can never be fully removed by oral hygiene measures. Biofilm left behind after brushing is often left behind on the same sites and exposed multiple times to antimicrobials from toothpastes and mouthrinses, after which removal becomes increasingly difficult. On the basis of this

  16. A decade-long commitment to antimicrobial resistance surveillance in Portugal

    Directory of Open Access Journals (Sweden)

    Catarina Moreira Marinho

    2016-10-01

    Full Text Available Antimicrobial resistance (AMR is a worldwide problem with serious health and economic repercussions. Since the 1940s, underuse, overuse, and misuse of antibiotics have had a significant environmental downside. Large amounts of antibiotics not fully metabolized after use in human and veterinary medicine, and other applications, are annually released into the environment. The result has been the development and dissemination of antibiotic-resistant bacteria due to many years of selective pressure. Surveillance of AMR provides important information that helps in monitoring and understanding how resistance mechanisms develop and disseminate within different environments. Surveillance data is needed to inform clinical therapy decisions, to guide policy proposals, and to assess the impact of action plans to fight AMR. The Functional Genomics and Proteomics Unit, based at the University of Trás-os-Montes and Alto Douro (UTAD in Vila Real, Portugal, has recently completed 10 years of research surveying AMR in bacteria, mainly commensal indicator bacteria such as enterococci and Escherichia coli from the microbiota of different animals. Samples from more than 75 different sources have been accessed, from humans to food-producing animals, pets, and wild animals. The typical microbiological workflow involved phenotypic studies followed by molecular approaches. Throughout the decade, 4,017 samples were collected and over 5,000 bacterial isolates obtained. High levels of AMR to several antimicrobial classes have been reported, including to β-lactams, glycopeptides, tetracyclines, aminoglycosides, sulphonamides and quinolones. Multi-resistant strains, some relevant to human and veterinary medicine like extended-spectrum β-lactamase-producing E. coli and vancomycin-resistant enterococci, have been repeatedly isolated even in non-synanthropic animal species. Of particular relevance are reports of AMR bacteria in wildlife from natural reserves and endangered

  17. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation?

    Science.gov (United States)

    Kashef, Nasim; Hamblin, Michael R

    2017-03-01

    Infections have been a major cause of disease throughout the history of humans on earth. With the introduction of antibiotics, it was thought that infections had been conquered. However, bacteria have been able to develop resistance to antibiotics at an exponentially increasing rate. The growing threat from multi-drug resistant organisms calls for intensive action to prevent the emergence of totally resistant and untreatable infections. Novel, non-invasive, non-antibiotic strategies are needed that act more efficiently and faster than current antibiotics. One promising alternative is antimicrobial photodynamic inactivation (APDI), an approach that produces reactive oxygen species when dyes and light are combined. So far, it has been questionable if bacteria can develop resistance against APDI. This review paper gives an overview of recent studies concerning the susceptibility of bacteria towards oxidative stress, and suggests possible mechanisms of the development of APDI-resistance that should at least be addressed. Some ways to potentiate APDI and also to overcome future resistance are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Antimicrobial susceptibility and tetracycline resistance determinant genotyping of Gallibacterium anatis

    DEFF Research Database (Denmark)

    Bojesen, Anders M.; Vazquez, Maria E.; Bager, Ragnhild J.

    2011-01-01

    no determinant was identified.This is the first study to determine the antimicrobial susceptibility of Gallibacterium anatis by MIC revealing that multidrug resistance is very common among G. anatis field isolates. tet(B) was by far the most common determinant identified but future work should aim at identifying......The present investigation was undertaken to assess the antimicrobial susceptibility of a collection of 58 Gallibacterium isolates. All strains were tested by the broth dilution method using the veterinary fastidious medium. A total of 46 field strains were tested, whereof 23 were clinical isolates....... Multidrug resistance (resistance towards≥three drugs) was observed for 65% of the field strains and only two strains were susceptible to all compounds. Most prominently, resistance to tetracycline and sulfamethoxazole was observed in 92% and 97% of the field strains, respectively. For comparison...

  19. 76 FR 21907 - Draft Action Plan-A Public Health Action Plan To Combat Antimicrobial Resistance

    Science.gov (United States)

    2011-04-19

    ... Infectious Diseases, Division of Healthcare Quality Promotion, Office of Antimicrobial Resistance, Attn... Promotion, Office of Antimicrobial Resistance; 1600 Clifton Road, NE., Mailstop A-07, Atlanta, Georgia 30333... agencies in addressing antimicrobial resistance (AR) in recognition of the increasing importance of AR as a...

  20. 76 FR 14402 - Draft Action Plan-A Public Health Action Plan To Combat Antimicrobial Resistance

    Science.gov (United States)

    2011-03-16

    ... Infectious Diseases, Division of Healthcare Quality Promotion, Office of Antimicrobial Resistance, Attn... Promotion, Office of Antimicrobial Resistance; 1600 Clifton Road, NE., Mailstop A-07, Atlanta, Georgia 30333... agencies in addressing antimicrobial resistance (AR) in recognition of the increasing importance of AR as a...

  1. Antimicrobial activity of peptidomimetics against multidrug-resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Frimodt-Møller, Niels; Franzyk, Henrik

    2012-01-01

    Novel remedies in the battle against multidrug-resistant bacterial strains are urgently needed, and one obvious approach involves antimicrobial peptides and mimics hereof. The impact of a- and ß-peptoid as well as ß(3)-amino acid modifications on the activity profile against ß-lactamase-producing...

  2. Antimicrobial resistance patterns in Danish isolates of Flavobacterium psychrophilum

    DEFF Research Database (Denmark)

    Bruun, Morten Sichlau; Schmidt, A.S.; Madsen, Lone

    2000-01-01

    were tested and the resulting antibiograms were used to predict the theoretical therapeutic efficacy and to evaluate if resistance had changed as a course of time. Antimicrobial agents included in this investigation were oxolinic acid (OXA), amoxicillin (AMX), potentiated sulfadiazine, oxytetracycline...

  3. Antimicrobial resistance patterns in outpatient urinary tract infections ...

    African Journals Online (AJOL)

    Background. There is a global emergence of resistance against commonly prescribed antibiotics. Empirical antibiotic prescribing should be guided by local antimicrobial susceptibility patterns. Aim. To identify organisms and determine antibiotic susceptibility in urinary tract infections (UTIs) at 3 Military Hospital, Bloemfontein ...

  4. Spatial patterns of Antimicrobial Resistance Genes in Danish Pig Farms

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla; Ersbøll, A. K.; Hisham Beshara Halasa, Tariq

    2016-01-01

    antimicrobial resistance genes, ermB, ermF, sulI, sulII, tet(M), tet(O) and tet(W), was quantified by a high-throughput qPCR. It was evaluated whether the sample method resulted in a study population representative of Danish pig farms with finishers where it was found that the study population was biased...

  5. Antimicrobial resistance: revisiting the “tragedy of the commons”

    OpenAIRE

    2010-01-01

    When the NDM1 enzyme-containing “superbugs” struck in India, Pakistan and the United Kingdom earlier this year, media reports blamed medical tourism for its spread. But in this interview, Professor John Conly argues that the overuse and misuse of antibiotics leading to antimicrobial resistance – the theme of World Health Day 2011 – is the more important topic.

  6. Prevalence and antimicrobial susceptibilities of anaerobic bacteria isolated from perforated corneal ulcers by culture and multiplex PCR: an evaluation in cases with keratitis and endophthalmitis.

    Science.gov (United States)

    Tokman, Hrisi Bahar; İskeleli, Güzin; Dalar, Zeynep Güngördü; Kangaba, Achille Aime; Demirci, Mehmet; Akay, Hatice K; Borsa, Bariş Ata; Algingil, Reyhan Çalişkan; Kocazeybek, Bekir S; Torun, Müzeyyen Mamal; Kiraz, Nuri

    2014-01-01

    Anaerobic bacteria play an important role in eye infections; however, there is limited epidemiologic data based on the the role of these bacteria in the etiology of keratitis and endophthalmitis. The aim of this re- search is to determine the prevalence of anaerobic bacteria in perforated corneal ulcers of patients with keratitis and endophthalmitis and to evaluate their antimicrobial susceptibilities. Corneal scrapings were taken by the ophthalmologist using sterile needles. For the isolation of anaerobic bacteria, samples were inoculated on specific media and were incubated under anaerobic conditions obtained with Anaero-Gen (Oxoid & Mitsubishi Gas Company) in anaerobic jars (Oxoid USA, Inc. Columbia, MD, USA). The molecular identification of anaerobic bacteria was performed by multiplex PCR and the susceptibilities of an- aerobic bacteria to penicillin, chloramphenicol, and clindamycin were determined with the E test (bioMerieux). 51 strains of anaerobic bacteria belonging to four different genuses were detected by multiplex PCR and only 46 strains were isolated by culture. All of them were found susceptible to chloramphenicol whereas penicillin resistance was found in 13.3% of P.anaerobius strains, clindamycin resistance was found in 34.8% of P.acnes and 13.3% of P. anaerobius strains. Additionnaly, one strain of P. granulosum was found resistant to clindamycin, one strain of B. fragilis and one strain of P.melaninogenica were found resistant to penicillin and clindamycin. Routine analyses of anaerobes in perforated corneal ulcers is inevitable and usage of appropriate molecular methods, for the detection of bacteria responsible from severe infections which might not be deter- mined by cultivation, may serve for the early decision of the appropriate treatment. Taking into account the in- creasing antimicrobial resistance of anaerobic bacteria, alternative eye specific antibiotics effective against anaer- obes are needed to achieve a successful treatment.

  7. Antimicrobial resistance in Escherichia coli isolated from different parts of the digestive tract of sheep

    Directory of Open Access Journals (Sweden)

    E. Afshari-Safavi

    2017-09-01

    Full Text Available In order to evaluate differences in resistance patterns of Escherichia coli isolated from different parts of sheep digestive tract, the intestinal tracts of 24 sheep were sampled at various locations (duode-num, jejunum, caecum, colon and rectum after slaughter. Samples were cultured on MacConkey agar and obtained colonies were confirmed as E. coli based on the biochemical tests results. Isolates were tested for antimicrobial agent susceptibility to 10 antibiotics (colistin, gentamicin, oxytetracycline, trimethoprim-sulfamethoxazole, amoxicillin-clavulanic acid, enrofloxacin, ampicillin, cephotaxime, neomycin and florfenicol, using disc diffusion method. The tested E. coli resistant to colistin, ampicillin and amoxicillin-clavulanic acid were isolated more frequently from large intestine (rectum than from small intestine (duodenum (P<0.05. In conclusion, antimicrobial resistance pattern of generic E. coli inhabiting the intestinal tract of sheep depends on sampling location, which should be considered in interpreting the results of antimicrobial resistance tests of E. coli isolated from the faecal samples and generalising results to bacteria colonised in other parts of the digestive tract

  8. Macropis fulvipes Venom component Macropin Exerts its Antibacterial and Anti-Biofilm Properties by Damaging the Plasma Membranes of Drug Resistant Bacteria.

    Science.gov (United States)

    Ko, Su Jin; Kim, Min Kyung; Bang, Jeong Kyu; Seo, Chang Ho; Luchian, Tudor; Park, Yoonkyung

    2017-11-29

    The abuse of antibiotics for disease treatment has led to the emergence of multidrug resistant bacteria. Antimicrobial peptides, found naturally in various organisms, have received increasing interest as alternatives to conventional antibiotics because of their broad spectrum antimicrobial activity and low cytotoxicity. In a previous report, Macropin, isolated from bee venom, exhibited antimicrobial activity against both gram-positive and negative bacteria. In the present study, Macropin was synthesized and its antibacterial and anti-biofilm activities were tested against bacterial strains, including gram-positive and negative bacteria, and drug resistant bacteria. Moreover, Macropin did not exhibit hemolytic activity and cytotoxicity to keratinocytes, whereas Melittin, as a positive control, showed very high toxicity. Circular dichroism assays showed that Macropin has an α-helical structure in membrane mimic environments. Macropin binds to peptidoglycan and lipopolysaccharide and kills the bacteria by disrupting their membranes. Moreover, the fractional inhibitory concentration index indicated that Macropin has additive and partially synergistic effects with conventional antibiotics against drug resistant bacteria. Thus, our study suggested that Macropin has potential for use of an antimicrobial agent for infectious bacteria, including drug resistant bacteria.

  9. Prospective Source of Antimicrobial Compounds From Pigment Produced by Bacteria associated with Brown Alga ( Phaeophyceae ) Isolated from Karimunjawa island, Indonesia

    Science.gov (United States)

    Lunggani, A. T.; Darmanto, Y. S.; Radjasa, O. K.; Sabdono, A.

    2018-02-01

    Brown algae or Phaeophyceae characterized by their natural pigments that differ from other important algal classes. Several publications proves that brown algae - associated bacteria have great potential in developing marine pharmaceutical industry since they are capable to synthesized numerous bioactive metabolite compounds. However the potency of marine pigmented microbes associated with brown alga to produce natural pigments and antimicrobials has been less studied. Marine pigmented bacteria associated with brown algae collected from Karimunjawa Island were successfully isolated and screened for antimicrobial activity. The aim of this research was evaluated of the antimicrobial activity of pigments extracted from culturable marine pigmented bacteria on some pathogenic bacteria and yeast. The results showed that all isolates had antimicrobial activity and could be prospectively developed as antimicrobial agent producing pigments. The 6 marine pigmented bacteria was identified to genus level as Pseudoalteromonas, Sphingomonas, Serratia, Paracoccus, Vibrio.

  10. Antimicrobial Resistance Profiles of the Two Porcine Salmonella Typhimurium Isolates

    Directory of Open Access Journals (Sweden)

    Kemal METİNER

    2016-07-01

    Full Text Available The aim of the study is to detect the presence of the Salmonella species in swine with diarrhea, and to investigate their antimicrobial resistance and extended spectrum beta lactamase (ESBL and/or AmpC β-lactamase production. For this purpose, stool samples from three commercial pig farms in Istanbul and Tekirdag were collected and processed for Salmonella isolation by culture and isolates were identified by biochemical activity tests. Salmonella isolates were confirmed by PCR then serotyped. Antimicrobial resistance and ESBL and AmpC production of the isolates were determined according to the Clinical and Laboratory Standards Institute (CLSI standard. In the study, two hundred and thirty eight stool samples were examined. Salmonella spp. were obtained from 2 samples, and the isolation rate was determined as 0.8%. Both of the isolates were defined as Salmonella enterica subsp. enterica serovar Typhimurium (serotype 1, 4, [5], 12: I: 1, 2 by serotyping. Both of them were resistant to cefaclor, cloxacillin and lincomycin (100%. Multidrug resistance (resistance ≥3 antimicrobials observed in all isolates. ESBL and AmpC production were not detected in any of the isolates. To our knowledge, this is the first report of the isolation of S. Typhimurium in pigs with diarrhea in Turkey. This study also represents the first report of multi-drug resistant S. Typhimurium isolates from pig stools in Turkey.

  11. Antimicrobial stewardship in small animal veterinary practice

    DEFF Research Database (Denmark)

    Guardabassi, Luca; Prescott, John F

    2015-01-01

    Despite the increasing recognition of the critical role for antimicrobial stewardship in preventing the spread of multidrug-resistant bacteria, examples of effective antimicrobial stewardship programs are rare in small animal veterinary practice. This article highlights the basic requirements...

  12. Isolation of Corynebacterium Xerosis from Jordanian Soil and a Study on its Antimicrobial Activity against a Range of Bacteria and Fungi

    International Nuclear Information System (INIS)

    El-Banna, Nasser

    2004-01-01

    A bacterial strain which has been identified as Corneybacterium Xerosis NB-2 was isolated from a soil sample from Jerash Private University, Jerash, Jordan. This isolate was found to produce an antimicrobial substance active only against filamentous fungi and yeasts (Aspergillus niger SQ 40, Fusarium oxysporium SQ11, Verticillium dahliae SQ 42, Saccharomyces SQ 46 and Candida albicans SQ 47). However, all tested gram-positive bacteria and gram negative bacteria (Bacillus megaterium SQ5, Bacillus cereus SQ6, Staphylococcus aureus SQ9, Streptococcus pyogens SQ10, Eschericshia coli SQ 22, Klepsiella spp SQ33 and SQ33 and Pseudonomas mallei SQ 34) were found to be resistant. In batch culture, the isolated NB-2 produced the antimicrobial substance late in the growth phase and antimicrobial activity of Corynebacterium Xerosis against filamentous fungi and yeasts which was not previously described. (author)

  13. High Mortality from Blood Stream Infection in Addis Ababa, Ethiopia, Is Due to Antimicrobial Resistance.

    Directory of Open Access Journals (Sweden)

    Teshale Seboxa

    Full Text Available Managing blood stream infection in Africa is hampered by lack of bacteriological support needed for antimicrobial stewardship, and background data needed for empirical treatment. A combined pro- and retrospective approach was used to overcome thresholds in clinical research in Africa.Outcome and characteristics including age, HIV infection, pancytopenia and bacteriological results were studied in 292 adult patients with two or more SIRS criteria using univariate and confirming multivariate logistic regression models. Expected randomly distributed resistance covariation was compared with observed co-resistance among gram-negative enteric bacteria in 92 paediatric blood culture isolates that had been harvested in the same hospital during the same period of time.Mortality was fivefold increased among patients with positive blood culture results [50.0% vs. 9.8%; OR 11.24 (4.38-25.88, p < 0.0001], and for this group of patients mortality was significantly associated with antimicrobial resistance [OR 23.28 (3.3-164.4, p = 0.002]. All 11 patients with Enterobacteriaceae resistant to 3rd. generation cephalosporins died. Eighty-nine patients had pancytopenia grade 3-4. Among patients with negative blood culture results, mortality was significantly associated with pancytopenia [OR 3.12 (1.32-7.39, p = 0.01]. HIV positivity was not associated with increased mortality. Antimicrobial resistance that concerned gram-negative enteric bacteria, regardless of species, was characterized by co-resistance between third generation cephalosporins, gentamicin, chloramphenicol, and co-trimoxazole.Mortality was strongly associated with growth of bacteria resistant to empirical treatment, and these patients were dead or dying when bacteriological reports arrived. Because of co-resistance, alternative efficient antibiotics would not have been available in Ethiopia for 8/11 Enterobacteriaceae-infected patients with isolates resistant to third generation cephalosporins

  14. Antimicrobial resistance of bacterial strains isolated from avian cellulitis

    Directory of Open Access Journals (Sweden)

    MM Santos

    2014-03-01

    Full Text Available Avian cellulitis is an inflammatory process in the subcutaneous tissue, mainly located in the abdomen and thighs. This problem is commonly observed in poultry at slaughter and it is considered one of the major causes of condemnation of carcasses in Brazil. The aim of this study was to perform the microbial isolation of lesions of avian cellulitis from a processing plant located in the State of Goiás in order to analyze antimicrobial resistance by antibiogram test and to detect resistance genes by polymerase chain reaction. A total of 25 samples of avian cellulitis lesions were analyzed, from which 30 bacterial strains were isolated. There were eleven (44% strains of Escherichia coli, nine (36% strains of Staphylococcus epidermidis, seven (28% strains of Proteus mirabilis and three (12% strains of Manheimiahaemolytica. The antibiogram test showed that all strains were resistant to at least one antimicrobial. The gene of antimicrobial resistance tetB was detected in E. coli, S. epidermidis and P. mirabilis strains, and was the most frequently observed gene. The gene of antimicrobial resistance Sul1 was detected in all bacterial species, while tetA was found in E. coli and S. epidermidis strains, SHV in E. coli strains, S. epidermidis and P. mirabilis,and cat1 in one P. mirabilis strain. The results suggest a potential public health hazard due to the ability of these microorganisms to transmit antimicrobial resistancegenes to other microorganisms present in the intestinal tract of humans and animals, which may affect clinical-medical usage of these drugs.

  15. Evolution of antimicrobial resistance of Salmonella enteritidis (1972–2005

    Directory of Open Access Journals (Sweden)

    Jermaine Khumalo

    2014-11-01

    Full Text Available With the extensive use of antibiotics in livestock production, surveillance revealed an increase in Salmonella resistance to the commonly used antimicrobials in veterinary and public health. This serious threat to health care is further exacerbated by the limited epidemiological information about the common zoonotic agent, Salmonella enteritidis, required to determine antibiotic therapy. The aim was to characterise the antimicrobial resistance patterns of S. enteritidis isolates across different timelines (1972–2005 with accompanying genetic changes being investigated. Thirty-seven stored S. enteritidis isolates were collected from the Central Veterinary Laboratory, Harare, with antimicrobial susceptibility determined against eight antibiotics. Plasmids were isolated to analyse any genetic variation. An overall significant increase in resistance (p < 0.05 to nalidixic acid (0% – 10%, ampicillin (14.3% – 50%, tetracycline (14.3% – 30% and erythromycin (71.4% – 100% was observed across the timeline. However, the highest rates of susceptibility were maintained for gentamicin, sulphamethoxazole-trimethoprim, kanamycin and chloramphenicol. We report an increase in multidrug resistance (MDR of 14.2% – 50% with an increase in resistotypes and plasmid profiles across the timeline. Eleven plasmid profiles were obtained in the 37 isolates studied with a minority of isolates (21.6%, 8/37 harbouring a 54 kb plasmid, commonly serovar-specific. A concerning increase in antimicrobial resistance to commonly administered drugs was observed across the timeline. The surge in MDR is of great concern and implies the need for consistent antimicrobial stewardship. No correlation was observed between the plasmid and antibiotic profiles.

  16. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Sóki, József; Hasman, Henrik

    2015-01-01

    Bacteroides fragilis constitutes the most frequent anaerobic bacterium causing bacteremia in humans. The genetic background for antimicrobial resistance in B. fragilis is diverse with some genes requiring insertion sequence (IS) elements inserted upstream for increased expression. To evaluate whole...... genome shotgun sequencing as a method for predicting antimicrobial resistance properties, one meropenem resistant and five multidrug-resistant blood culture isolates were sequenced and antimicrobial resistance genes and IS elements identified using ResFinder 2.1 (http...

  17. Meta-genomic analysis of toilet waste from long distance flights; a step towards global surveillance of infectious diseases and antimicrobial resistance

    DEFF Research Database (Denmark)

    Petersen, Thomas Nordahl; Rasmussen, Simon; Hasman, Henrik

    2015-01-01

    Human populations worldwide are increasingly confronted with infectious diseases and antimicrobial resistance spreading faster and appearing more frequently. Knowledge regarding their occurrence and worldwide transmission is important to control outbreaks and prevent epidemics. Here, we performed...... for bacteria and antimicrobial resistance genes. An average of 106,839 (0.06%) reads were assigned to resistance genes with genes encoding resistance to tetracycline, macrolide and beta-lactam resistance genes as the most abundant in all samples. We found significantly higher abundance and diversity of genes...

  18. Antimicrobial activities of lactic acid bacteria isolated from akamu ...

    African Journals Online (AJOL)

    The partially purified inhibitory compounds were screened by agar spot assay method for antagonistic ... The partially purified compounds exhibited strong activity against ... Keywords: Bacterioc