WorldWideScience

Sample records for antimicrobial phagocytosis progress

  1. C-type lectin B (SpCTL-B) regulates the expression of antimicrobial peptides and promotes phagocytosis in mud crab Scylla paramamosain.

    Science.gov (United States)

    Wei, Xiaoyuan; Wang, Limin; Sun, Wanwei; Zhang, Ming; Ma, Hongyu; Zhang, Yueling; Zhang, Xinxu; Li, Shengkang

    2018-07-01

    As pattern recognition receptors, C-type lectins (CTLs) play important roles in immune system of crustaceans through identifying and binding to the conservative pathogen-associated molecular patterns (PAMPs) on pathogen surfaces. In this study, a new CTL, SpCTL-B, was identified from the hemocytes of mud crab Scylla paramamosain. The full-length of SpCTL-B cDNA was 1278 bp with an open reading frame (ORF) of 348 bp. The predicted SpCTL-B protein contains a single carbohydrate-recognition domain (CRD). SpCTL-B transcripts were distributed in all examined tissues with the highest levels in hepatopancreas. After challenged with Vibrio parahaemolyticus, LPS, polyI:C and white spot syndrome virus (WSSV), the mRNA levels of SpCTL-B in hemocytes and hepatopancreas were up-regulated. The recombinant SpCTL-B (rSpCTL-B) purified by Ni-affinity chromatography showed stronger binding activities with Staphylococcus aureus, β-hemolytic Streptococcus, Escherichia coli, Aeromonas hydrophila, Vibrio alginolyticus than those with V. parahaemolyticus and Saccharomyces cerevisiae. rSpCTL-B exhibited a broad spectrum of microorganism-agglutination activities against Gram-positive bacteria (S. aureus, β-hemolytic Streptococcus) and Gram-negative bacteria (E. coli, V. parahaemolyticus, A. hydrophila, V. alginolyticus) in a Ca 2+ -dependent manner. The agglutination activities of rSpCTL-B could be inhibited by D-mannose and LPS, but not by d-fructose and galactose. The antimicrobial assay showed that rSpCTL-B exhibited the growth inhibition against all examined gram-positive bacteria and gram-negative bacteria. When SpCTL-B was silenced by RNAi, the bacterial clearance ability in mud crab was decreased and the transcript levels of five antimicrobial peptides (AMPs) (SpCrustin, SpHistin, SpALF4 (anti-lipopolysaccharide factor), SpALF5 and SpALF6) were significantly decreased in hemocytes. In our study, knockdown of SpCTL-B could down-regulate the expression of SpSTAT at m

  2. Divergence of macrophage phagocytic and antimicrobial programs in leprosy.

    Science.gov (United States)

    Montoya, Dennis; Cruz, Daniel; Teles, Rosane M B; Lee, Delphine J; Ochoa, Maria Teresa; Krutzik, Stephan R; Chun, Rene; Schenk, Mirjam; Zhang, Xiaoran; Ferguson, Benjamin G; Burdick, Anne E; Sarno, Euzenir N; Rea, Thomas H; Hewison, Martin; Adams, John S; Cheng, Genhong; Modlin, Robert L

    2009-10-22

    Effective innate immunity against many microbial pathogens requires macrophage programs that upregulate phagocytosis and direct antimicrobial pathways, two functions generally assumed to be coordinately regulated. We investigated the regulation of these key functions in human blood-derived macrophages. Interleukin-10 (IL-10) induced the phagocytic pathway, including the C-type lectin CD209 and scavenger receptors, resulting in phagocytosis of mycobacteria and oxidized low-density lipoprotein. IL-15 induced the vitamin D-dependent antimicrobial pathway and CD209, yet the cells were less phagocytic. The differential regulation of macrophage functional programs was confirmed by analysis of leprosy lesions: the macrophage phagocytosis pathway was prominent in the clinically progressive, multibacillary form of the disease, whereas the vitamin D-dependent antimicrobial pathway predominated in the self-limited form and in patients undergoing reversal reactions from the multibacillary to the self-limited form. These data indicate that macrophage programs for phagocytosis and antimicrobial responses are distinct and differentially regulated in innate immunity to bacterial infections.

  3. Stimulation of phagocytosis by sulforaphane

    International Nuclear Information System (INIS)

    Suganuma, Hiroyuki; Fahey, Jed W.; Bryan, Kelley E.; Healy, Zachary R.; Talalay, Paul

    2011-01-01

    Research highlights: → Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. → This effect does not require Nrf2-dependent induction of phase 2 genes. → Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatory and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-μm diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2 -/- mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.

  4. Stimulation of phagocytosis by sulforaphane

    Energy Technology Data Exchange (ETDEWEB)

    Suganuma, Hiroyuki, E-mail: hsuganu1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Fahey, Jed W., E-mail: jfahey@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Bryan, Kelley E., E-mail: kbryanm1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Healy, Zachary R., E-mail: zhealy1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Talalay, Paul, E-mail: ptalalay@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States)

    2011-02-04

    Research highlights: {yields} Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. {yields} This effect does not require Nrf2-dependent induction of phase 2 genes. {yields} Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatory and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-{mu}m diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2{sup -/-} mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.

  5. Aliphatic alcohols in spirits inhibit phagocytosis by human monocytes.

    Science.gov (United States)

    Pál, László; Árnyas, Ervin M; Bujdosó, Orsolya; Baranyi, Gergő; Rácz, Gábor; Ádány, Róza; McKee, Martin; Szűcs, Sándor

    2015-04-01

    A large volume of alcoholic beverages containing aliphatic alcohols is consumed worldwide. Previous studies have confirmed the presence of ethanol-induced immunosuppression in heavy drinkers, thereby increasing susceptibility to infectious diseases. However, the aliphatic alcohols contained in alcoholic beverages might also impair immune cell function, thereby contributing to a further decrease in microbicidal activity. Previous research has shown that aliphatic alcohols inhibit phagocytosis by granulocytes but their effect on human monocytes has not been studied. This is important as they play a crucial role in engulfment and killing of pathogenic microorganisms and a decrease in their phagocytic activity could lead to impaired antimicrobial defence in heavy drinkers. The aim of this study was to measure monocyte phagocytosis following their treatment with those aliphatic alcohols detected in alcoholic beverages. Monocytes were separated from human peripheral blood and phagocytosis of opsonized zymosan particles by monocytes treated with ethanol and aliphatic alcohols individually and in combination was determined. It was shown that these alcohols could suppress the phagocytic activity of monocytes in a concentration-dependent manner and when combined with ethanol, they caused a further decrease in phagocytosis. Due to their additive effects, it is possible that they may inhibit phagocytosis in a clinically meaningful way in alcoholics and episodic heavy drinkers thereby contribute to their increased susceptibility to infectious diseases. However, further research is needed to address this question.

  6. Teaching Phagocytosis Using Flow Cytometry

    Directory of Open Access Journals (Sweden)

    John Boothby

    2009-12-01

    Full Text Available Investigative microbiology on protists in a basic teaching laboratory environment is limited by student skill level, ease of microbial culture and manipulation, instrumentation, and time. The flow cytometer is gaining use as a mainstream instrument in research and clinical laboratories, but has had minimal application in teaching laboratories. Although the cost of a flow cytometer is currently prohibitive for many microbiology teaching environments and the number of trained instructors and teaching materials is limited, in many ways the flow cytometer is an ideal instrument for teaching basic microbiology. We report here on a laboratory module to study phagocytosis in Tetrahymena sp. using flow cytometry in a basic microbiology teaching laboratory. Students and instructors found the flow cytometry data analysis program, Paint-A-GatePRO-TM, to be very intuitive and easy to learn within a short period of time. Assessment of student learning about Tetrahymena sp., phagocytosis, flow cytometry, and investigative microbiology using an inquiry-based format demonstrated an overall positive response from students.

  7. Aliphatic alcohol contaminants of illegally produced spirits inhibit phagocytosis by human granulocytes.

    Science.gov (United States)

    Pál, László; Árnyas, Ervin M; Tóth, Béla; Ádám, Balázs; Rácz, Gábor; Ádány, Róza; McKee, Martin; Szűcs, Sándor

    2013-04-01

    Unregulated production of spirits in many countries leads to products containing appreciable levels of aliphatic alcohols (AAs) and is the main source of human exposure to these substances worldwide. Previous studies have confirmed that alcohol abuse can lead to ethanol-induced immunosuppression and thereby increased susceptibility to infectious diseases. Granulocytes, as professional phagocytic cells, play a crucial role in engulfment and killing of pathogenic microorganisms. Thus, a decrease in their phagocytic activity has been invoked as a factor in the impaired antimicrobial defense observed in alcoholics. However, AAs consumed as contaminants of illicit spirits may also influence phagocytosis, thereby contributing to a further decrease in microbicidal activity but, so far, this has not been studied. Therefore, the aim of this study was to measure granulocyte phagocytosis following treatment of granulocytes with those higher alcohols found in illegal spirits. Granulocytes were isolated from human peripheral blood. Then phagocytosis of opsonized zymosan particles by granulocytes treated with AAs individually and in combination was determined. These alcohols inhibited phagocytosis in a concentration-dependent manner and at lower concentrations when combined than when tested individually. Due to their synergistic effects, it is possible that, in combination with ethanol, they may inhibit phagocytosis in a clinically meaningful way in episodic heavy drinkers.

  8. Phagocytosis in phosphate chromium (III) suspensions

    International Nuclear Information System (INIS)

    Cruz-Arencibia, Jorge; Fano Machín, Yoiz; Cruz-Morales, Ahmed; Tamayo Fuente, Radamés; Morín-Zorrilla, José

    2015-01-01

    Phagocytosis in vivo and in vitro of a suspension of chromic phosphate (III) labeled with 51 Cr and 32 P is studied. The radioactive particles dispersed in a media of 2 % gelatin in acetate buffer pH 4-4.5 have a predominant size of 0.8 μm and 5 μm. According with biodistribution experiments in rats after 30 minutes near the 80 % of radioactivity is registered in the liver, probably associated with phagocytosis of the particles by liver Kupffer cells. Is also showed that the suspension particles are phagocytized in vitro by mouse peritoneal macrophages. This facts indicate that the studied suspension have appropriate characteristics to be used in radiosynoviorthesis according to the principal action mechanism described for this procedure, particles phagocytosis by cells present in the inflamed synovium. (author)

  9. Autophagy and phagocytosis converge for better vision.

    Science.gov (United States)

    Ferguson, Thomas A; Green, Douglas R

    2014-01-01

    The retinal pigment epithelium (RPE) is a single layer of nonregenerating cells essential to homeostasis in the retina and the preservation of vision. While the RPE perform a number of important functions, 2 essential processes are phagocytosis, which removes the most distal tips of the photoreceptors to support disk renewal, and the visual cycle, which maintains the supply of chromophore for regeneration of photo-bleached visual pigments. We recently reported that these processes are linked by a noncanonical form of autophagy termed LC3-associated phagocytosis (LAP) in which components of the autophagy pathway are co-opted by phagocytosis to recover vitamin A in support of optimal vision. Here we summarize these findings.

  10. Determination of phagocytosis in periodontitis postjuvenilis using 14C

    International Nuclear Information System (INIS)

    Zietek, M.

    1990-01-01

    In 20 patients with periodontitis and 10 healthy controls phagocytosis was determined using 14 C-labelled Staphylococcus aureus. The decrease of phagocytosis found in the diseased patients was significant

  11. Microglial Phagocytosis and Its Regulation: A Therapeutic Target in Parkinson’s Disease?

    Directory of Open Access Journals (Sweden)

    Elzbieta Janda

    2018-04-01

    Full Text Available The role of phagocytosis in the neuroprotective function of microglia has been appreciated for a long time, but only more recently a dysregulation of this process has been recognized in Parkinson’s disease (PD. Indeed, microglia play several critical roles in central nervous system (CNS, such as clearance of dying neurons and pathogens as well as immunomodulation, and to fulfill these complex tasks they engage distinct phenotypes. Regulation of phenotypic plasticity and phagocytosis in microglia can be impaired by defects in molecular machinery regulating critical homeostatic mechanisms, including autophagy. Here, we briefly summarize current knowledge on molecular mechanisms of microglia phagocytosis, and the neuro-pathological role of microglia in PD. Then we focus more in detail on the possible functional role of microglial phagocytosis in the pathogenesis and progression of PD. Evidence in support of either a beneficial or deleterious role of phagocytosis in dopaminergic degeneration is reported. Altered expression of target-recognizing receptors and lysosomal receptor CD68, as well as the emerging determinant role of α-synuclein (α-SYN in phagocytic function is discussed. We finally discuss the rationale to consider phagocytic processes as a therapeutic target to prevent or slow down dopaminergic degeneration.

  12. Rat Neutrophil Phagocytosis Following Feed Restriction

    Czech Academy of Sciences Publication Activity Database

    Slapničková, Martina; Berger, J.

    2002-01-01

    Roč. 11, č. 3 (2002), s. 172-177 ISSN 0938-7714 Institutional research plan: CEZ:AV0Z5052915 Keywords : circulating neutrophil * diet restriction * phagocytosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.167, year: 2001

  13. PROBLEM OF ANTIBIOTIC USE AND ANTIMICROBIAL RESISTANCE IN INDONESIA: ARE WE REALLY MAKING PROGRESS?

    Directory of Open Access Journals (Sweden)

    Usman Hadi

    2013-10-01

    Full Text Available Background: Based on the results Antimicrobial Resistance in Indonesia: prevalence and prevention-study (AMRIN-study, the Ministry of Health of Indonesia in 2005 began a program antibiotic resistance control (PPRA in some government hospitals, and is currently developing to all government teaching hospitals in Indonesia. Aim: The core activities of the PPRA are to implement standardized surveillance emergence of antibiotic resistant bacteria, and the surveillance of antibiotic use in terms of quantity and quality. Method: Our research in the years 2003 showed the proportion of antibiotic use 84% of patients in a hospital. The use of inappropriate antibiotics was very high, 42% no indication. Result: In 2012 the results ofsurveillance showed decline ofinappropriate use of antibiotic, but prevalence extended-spectrum b-lactamase (ESBL-producing K.pneumoniae (58%, and E.coli (52% and methicillin-resistant S.aures (MRSA (24% were increasing. Conclusion: It was needed to implement the most appropriate programs to prevent the growth and development ofbacteria resistant to antibiotics.

  14. The role of formyl peptide receptors for immunomodulatory activities of antimicrobial peptides and peptidomimetics

    DEFF Research Database (Denmark)

    Skovbakke, Sarah Line; Holdfeldt, André; Forsman, Huamei

    2018-01-01

    In recent years, the therapeutic potential of antimicrobial peptides (AMPs) as immunomodulators has become generally accepted. Nevertheless, only very few AMP-based compounds have progressed into clinical trials. This paradox may be explained by the fact, that some of the intrinsic properties...... displaying analogous immunomodulatory activity profiles. Neutrophils play key roles in host defense as major effector cells in clearance of pathogens by phagocytosis and by regulating other processes of innate immunity as well as promotion of resolution of inflammation. Several aspects of these effects...... are correlated to their expression of formyl peptide receptors (FPRs) that have been shown to be targets of both natural and synthetic antimicrobial peptides. In the present review recent findings highlighting the role of FPRs in mediating immunomodulatory activities of natural and synthetic AMPs as well...

  15. Phagocytosis in Teleosts. Implications of the New Cells Involved

    Directory of Open Access Journals (Sweden)

    María Ángeles Esteban

    2015-12-01

    Full Text Available Phagocytosis is the process by which cells engulf some solid particles to form internal vesicles known as phagosomes. Phagocytosis is in fact a specific form of endocytosis involving the vesicular interiorization of particles. Phagocytosis is essentially a defensive reaction against infection and invasion of the body by foreign substances and, in the immune system, phagocytosis is a major mechanism used to remove pathogens and/or cell debris. For these reasons, phagocytosis in vertebrates has been recognized as a critical component of the innate and adaptive immune responses to pathogens. Furthermore, more recent studies have revealed that phagocytosis is also crucial for tissue homeostasis and remodeling. Professional phagocytes in teleosts are monocyte/macrophages, granulocytes and dendritic cells. Nevertheless, in recent years phagocytic properties have also been attributed to teleost lymphocytes and thrombocytes. The possible implications of such cells on this important biological process, new factors affecting phagocytosis, evasion of phagocytosis or new forms of phagocytosis will be considered and discussed.

  16. [Update views on the theory of phagocytosis].

    Science.gov (United States)

    Freĭdlin, I S

    2008-01-01

    Developer of the phagocytosis theory I.I Mechnikov forecasted the most fruitful directions of its development. Macrophages express on the plasma membranes broad spectrum of receptors, which mediate their interaction with altered organism's own components as well as with exogenous agents, including various microorganisms. Recognition leads to changes of expression of surface molecules, enhancement of phagocytic activity as well as production and secretion of cytokines, presentation functions, signaling and genes expression. This reflected on maintenance of homeostasis, as well as on host defense effectiveness, including mechanisms of innate and adaptive immunity.

  17. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications.

    Science.gov (United States)

    Dutta, J; Tripathi, S; Dutta, P K

    2012-02-01

    In recent years, active biomolecules such as chitosan and its derivatives are undergoing a significant and very fast development in food application area. Due to recent outbreaks of contaminations associated with food products, there have been growing concerns regarding the negative environmental impact of packaging materials of antimicrobial biofilms, which have been studied. Chitosan has a great potential for a wide range of applications due to its biodegradability, biocompatibility, antimicrobial activity, nontoxicity and versatile chemical and physical properties. It can be formed into fibers, films, gels, sponges, beads or nanoparticles. Chitosan films have been used as a packaging material for the quality preservation of a variety of foods. Chitosan has high antimicrobial activities against a wide variety of pathogenic and spoilage microorganisms, including fungi, and Gram-positive and Gram-negative bacteria. A tremendous effort has been made over the past decade to develop and test films with antimicrobial properties to improve food safety and shelf-life. This review highlights the preparation, mechanism, antimicrobial activity, optimization of biocide properties of chitosan films and applications including biocatalysts for the improvement of quality and shelf-life of foods.

  18. Cortactin and phagocytosis in isolated Sertoli cells

    Directory of Open Access Journals (Sweden)

    Wolski Katja M

    2005-12-01

    Full Text Available Abstract Background Cortactin, an actin binding protein, has been associated with Sertoli cell ectoplasmic specializations in vivo, based on its immunolocalization around the heads of elongated spermatids, but not previously identified in isolated Sertoli cells. In an in vitro model of Sertoli cell-spermatid binding, cortactin was identified around debris and dead germ cells. Based on this observation, we hypothesized that this actin binding protein may be associated with a non-junction-related physiological function, such as phagocytosis. The purpose of this study was to identify the presence and distribution of cortactin in isolated rat Sertoli cells active in phagocytic activity following the addition of 0.8 μm latex beads. Results Sertoli cell monocultures were incubated with or without follicle stimulating hormone (FSH; 0.1 μg/ml in the presence or absence of cytochalasin D (2 μM, as an actin disrupter. Cortactin was identified by standard immunostaining with anti-cortactin, clone 4F11 (Upstate after incubation times of 15 min, 2 hr, and 24 hr with or without beads. Cells exposed to no hormone and no beads appeared to have a ubiquitous distribution of cortactin throughout the cytoplasm. In the presence of cytochalasin D, cortactin immunostaining was punctate and distributed in a pattern similar to that reported for actin in cells exposed to cytochalasin D. Sertoli cells not exposed to FSH, but activated with beads, did not show cortactin immunostaining around the phagocytized beads at any of the time periods. FSH exposure did not alter the distribution of cortactin within Sertoli cells, even when phagocytic activity was upregulated by the presence of beads. Conclusion Results of this study suggest cortactin is not associated with peripheralized actin at junctional or phagocytic sites. Further studies are necessary to clarify the role of cortactin in Sertoli cells.

  19. Lipopolysaccharide O-antigen prevents phagocytosis of Vibrio anguillarum by rainbow trout (Oncorhynchus mykiss skin epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kristoffer Lindell

    Full Text Available Colonization of host tissues is a first step taken by many pathogens during the initial stages of infection. Despite the impact of bacterial disease on wild and farmed fish, only a few direct studies have characterized bacterial factors required for colonization of fish tissues. In this study, using live-cell and confocal microscopy, rainbow trout skin epithelial cells, the main structural component of the skin epidermis, were demonstrated to phagocytize bacteria. Mutant analyses showed that the fish pathogen Vibrio anguillarum required the lipopolysaccharide O-antigen to evade phagocytosis and that O-antigen transport required the putative wzm-wzt-wbhA operon, which encodes two ABC polysaccharide transporter proteins and a methyltransferase. Pretreatment of the epithelial cells with mannose prevented phagocytosis of V. anguillarum suggesting that a mannose receptor is involved in the uptake process. In addition, the O-antigen transport mutants could not colonize the skin but they did colonize the intestines of rainbow trout. The O-antigen polysaccharides were also shown to aid resistance to the antimicrobial factors, lysozyme and polymyxin B. In summary, rainbow trout skin epithelial cells play a role in the fish innate immunity by clearing bacteria from the skin epidermis. In defense, V. anguillarum utilizes O-antigen polysaccharides to evade phagocytosis by the epithelial cells allowing it to colonize rapidly fish skin tissues.

  20. Lipopolysaccharide O-Antigen Prevents Phagocytosis of Vibrio anguillarum by Rainbow Trout (Oncorhynchus mykiss) Skin Epithelial Cells

    Science.gov (United States)

    Lindell, Kristoffer; Fahlgren, Anna; Hjerde, Erik; Willassen, Nils-Peder; Fällman, Maria; Milton, Debra L.

    2012-01-01

    Colonization of host tissues is a first step taken by many pathogens during the initial stages of infection. Despite the impact of bacterial disease on wild and farmed fish, only a few direct studies have characterized bacterial factors required for colonization of fish tissues. In this study, using live-cell and confocal microscopy, rainbow trout skin epithelial cells, the main structural component of the skin epidermis, were demonstrated to phagocytize bacteria. Mutant analyses showed that the fish pathogen Vibrio anguillarum required the lipopolysaccharide O-antigen to evade phagocytosis and that O-antigen transport required the putative wzm-wzt-wbhA operon, which encodes two ABC polysaccharide transporter proteins and a methyltransferase. Pretreatment of the epithelial cells with mannose prevented phagocytosis of V. anguillarum suggesting that a mannose receptor is involved in the uptake process. In addition, the O-antigen transport mutants could not colonize the skin but they did colonize the intestines of rainbow trout. The O-antigen polysaccharides were also shown to aid resistance to the antimicrobial factors, lysozyme and polymyxin B. In summary, rainbow trout skin epithelial cells play a role in the fish innate immunity by clearing bacteria from the skin epidermis. In defense, V. anguillarum utilizes O-antigen polysaccharides to evade phagocytosis by the epithelial cells allowing it to colonize rapidly fish skin tissues. PMID:22662189

  1. Effects of microparticle size and Fc density on macrophage phagocytosis.

    Directory of Open Access Journals (Sweden)

    Patricia Pacheco

    Full Text Available Controlled induction of phagocytosis in macrophages offers the ability to therapeutically regulate the immune system as well as improve delivery of chemicals or biologicals for immune processing. Maximizing particle uptake by macrophages through Fc receptor-mediated phagocytosis could lead to new delivery mechanisms in drug or vaccine development. Fc ligand density and particle size were examined independently and in combination in order to optimize and tune the phagocytosis of opsonized microparticles. We show the internalization efficiency of small polystyrene particles (0.5 µm to 2 µm is significantly affected by changes in Fc ligand density, while particles greater than 2 µm show little correlation between internalization and Fc density. We found that while macrophages can efficiently phagocytose a large number of smaller particles, the total volume of phagocytosed particles is maximized through the non-specific uptake of larger microparticles. Therefore, larger microparticles may be more efficient at delivering a greater therapeutic payload to macrophages, but smaller opsonized microparticles can deliver bio-active substances to a greater percentage of the macrophage population. This study is the first to treat as independent variables the physical and biological properties of Fc density and microparticle size that initiate macrophage phagocytosis. Defining the physical and biological parameters that affect phagocytosis efficiency will lead to improved methods of microparticle delivery to macrophages.

  2. Disruption of Sphingolipid Biosynthesis Blocks Phagocytosis of Candida albicans.

    Directory of Open Access Journals (Sweden)

    Fikadu G Tafesse

    2015-10-01

    Full Text Available The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway. Blockade of serine-palmitoyltransferase (SPT and ceramide synthase-enzymes involved in sphingolipid biosynthesis- by myriocin and fumonisin B1, respectively, impaired phagocytosis by phagocytes. We used CRISPR/Cas9-mediated genome editing to generate Sptlc2-deficient DC2.4 dendritic cells, which lack serine palmitoyl transferase activity. Sptlc2-/- DC2.4 cells exhibited a stark defect in phagocytosis, were unable to bind fungal particles and failed to form a normal phagocytic cup to engulf C. albicans. Supplementing the growth media with GM1, the major ganglioside present at the cell surface, restored phagocytic activity of Sptlc2-/- DC2.4 cells. While overall membrane trafficking and endocytic pathways remained functional, Sptlc2-/- DC2.4 cells express reduced levels of the pattern recognition receptors Dectin-1 and TLR2 at the cell surface. Consistent with the in vitro data, compromised sphingolipid biosynthesis in mice sensitizes the animal to C. albicans infection. Sphingolipid biosynthesis is therefore critical for phagocytosis and in vivo clearance of C. albicans.

  3. Progranulin increases phagocytosis by retinal pigment epithelial cells in culture.

    Science.gov (United States)

    Murase, Hiromi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Shimazawa, Masamitsu; Hara, Hideaki

    2017-12-01

    Retinal pigment epithelium (RPE) cells take part in retinal preservation, such as phagocytizing the shed photoreceptor outer segments (POS), every day. The incomplete phagocytic function accelerates RPE degeneration and formation of the toxic by-product lipofuscin. Excessive lipofuscin accumulation is characteristic of various blinding diseases in the human eye. Progranulin is a cysteine-rich protein that has multiple biological activities, and it has a high presence in the retina. Progranulin has been recognized to be involved in macrophage phagocytosis in the brain. The purpose of this study is to determine whether progranulin influences phagocytosis by RPE cells. All experiments were performed on primary human RPE (hRPE) cells in culture. pHrodo was used to label the isolated porcine POS, and quantification of pHrodo fluorescence was used to determine the degree of phagocytosis. Western blotting and immunohistochemistry of key proteins involved in phagocytosis were used to clarify the mechanism of progranulin. Progranulin increased RPE phagocytosis in hydrogen peroxide-treated and nontreated RPE cells. The phosphorylated form of Mer tyrosine kinase, which is important for POS internalization, was significantly increased in the progranulin-exposed cells. This increase was attenuated by SU11274, an inhibitor of hepatic growth factor receptor. Under the oxidative stress condition, exposure to progranulin led to an approximately twofold increase in integrin alpha-v, which is associated with the first step in recognition of POS by RPE cells. These results suggest that progranulin could be an effective stimulator for RPE phagocytosis and could repair RPE function. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Bovine-associated CNS species resist phagocytosis differently

    Science.gov (United States)

    2013-01-01

    Background Coagulase-negative staphylococci (CNS) cause usually subclinical or mild clinical bovine mastitis, which often remains persistent. Symptoms are usually mild, mostly only comprising slight changes in the appearance of milk and possibly slight swelling. However, clinical mastitis with severe signs has also been reported. The reasons for the differences in clinical expression are largely unknown. Macrophages play an important role in the innate immunity of the udder. This study examined phagocytosis and killing by mouse macrophage cells of three CNS species: Staphylococcus chromogenes (15 isolates), Staphylococcus agnetis (6 isolates) and Staphylococcus simulans (15 isolates). Staphylococcus aureus (7 isolates) was also included as a control. Results All the studied CNS species were phagocytosed by macrophages, but S. simulans resisted phagocytosis more effectively than the other CNS species. Only S. chromogenes was substantially killed by macrophages. Significant variations between isolates were seen in both phagocytosis and killing by macrophages and were more common in the killing assays. Significant differences between single CNS species and S. aureus were observed in both assays. Conclusion This study demonstrated that differences in the phagocytosis and killing of mastitis-causing staphylococci by macrophages exist at both the species and isolate level. PMID:24207012

  5. Multiple sclerosis : Mechanisms of myelin phagocytosis and lesion expansion

    NARCIS (Netherlands)

    Hendrickx, D.A.E.

    2018-01-01

    Multiple sclerosis (MS) is characterized by immune activation and focal demyelination in the central nervous system. The aim of this thesis was to gain more insight into the mechanisms of myelin phagocytosis by resident microglia and infiltrating macrophages. We first evaluated the expression of the

  6. DMPD: Complement-mediated phagocytosis--the role of Syk. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16754322 Complement-mediated phagocytosis--the role of Syk. Tohyama Y, Yamamura H. ...IUBMB Life. 2006 May-Jun;58(5-6):304-8. (.png) (.svg) (.html) (.csml) Show Complement-mediated phagocytosis-...-the role of Syk. PubmedID 16754322 Title Complement-mediated phagocytosis--the role of Syk. Authors Tohyama

  7. Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin

    Directory of Open Access Journals (Sweden)

    Hadas Smadar

    2012-07-01

    Full Text Available Abstract Background Intact myelin, which normally surrounds axons, breaks down in Wallerian degeneration following axonal injury and during neurodegenerative diseases such as multiple sclerosis. Clearance of degenerated myelin by phagocytosis is essential since myelin impedes repair and exacerbates damage. CR3 (complement receptor-3 is a principal phagocytic receptor in myelin phagocytosis. We studied how tyrosine kinase Syk (spleen tyrosine kinase and cofilin control phagocytosis of degenerated myelin by CR3 in microglia and macrophages. Syk is a non-receptor tyrosine kinase that CR3 recruits to convey cellular functions. Cofilin is an actin-depolymerizing protein that controls F-actin (filamentous actin remodeling (i.e., disassembly and reassembly by shifting between active unphosphorylated and inactive phosphorylated states. Results Syk was continuously activated during prolonged phagocytosis. Phagocytosis increased when Syk activity and expression were reduced, suggesting that normally Syk down regulates CR3-mediated myelin phagocytosis. Levels of inactive p-cofilin (phosphorylated cofilin decreased transiently during prolonged phagocytosis. In contrast, p-cofilin levels decreased continuously when Syk activity and expression were continuously reduced, suggesting that normally Syk advances the inactive state of cofilin. Observations also revealed inverse relationships between levels of phagocytosis and levels of inactive p-cofilin, suggesting that active unphosphorylated cofilin advances phagocytosis. Active cofilin could advance phagocytosis by promoting F-actin remodeling, which supports the production of membrane protrusions (e.g., filopodia, which, as we also revealed, are instrumental in myelin phagocytosis. Conclusions CR3 both activates and downregulates myelin phagocytosis at the same time. Activation was previously documented. We presently demonstrate that downregulation is mediated through Syk, which advances the inactive

  8. Phagocytosis-induced /sup 45/calcium efflux in polymorphonuclear leucocytes

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, A; Schell-Frederick, E [Brussels Univ. (Belgium). Institut de Recherche Interdisciplinaire; Paridaens, R [Brussels Univ. (Belgium). Faculte de Medicine

    1977-10-15

    The role of calcium ions in regulating the structure and function of non-muscle cells is a subject of intense study. Several lines of evidence that calcium may be essential in the function of polymorphonuclear leuocytes (PMNL) and an important control element in the process of phagocytosis. Direct studies of calcium distribution and fluxes have only recently been undertaken. To our knowledge, no report of calcium movements during normal phagocytosis has been published. In the context of an overall study of calcium dynamics in the PMNL, we report here initial studies on /sup 45/Ca efflux in prelabelled guinea pig PMNL. The results demonstrate the energy-dependence of resting calcium efflux and an increased efflux upon addition of phagocytic particles which is not dependent on particle internalization.

  9. Integrins and small GTPases as modulators of phagocytosis.

    Science.gov (United States)

    Sayedyahossein, Samar; Dagnino, Lina

    2013-01-01

    Phagocytosis is the mechanism whereby cells engulf large particles. This process has long been recognized as a critical component of the innate immune response, which constitutes the organism's defense against microorganisms. In addition, phagocytic internalization of apoptotic cells or cell fragments plays important roles in tissue homeostasis and remodeling. Phagocytosis requires target interactions with receptors on the plasma membrane of the phagocytic cell. Integrins have been identified as important mediators of particle clearance, in addition to their well-established roles in cell adhesion, migration and mechanotransduction. Indeed, these ubiquitously expressed proteins impart phagocytic capacity to epithelial, endothelial and mesenchymal cell types. The importance of integrins in particle internalization is emphasized by the ability of microbial and viral pathogens to exploit their signaling pathways to invade host cells, and by the wide variety of disorders that arise from abnormalities in integrin-dependent phagocytic uptake. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Modulation of hepatic reticuloendothelial system phagocytosis by pancreatic hormones.

    Science.gov (United States)

    Cornell, R P; McClellan, C C

    1982-12-01

    Experiments were conducted to determine the influence of the pancreatic hormones insulin, glucagon, and somatostatin on reticuloendothelial system (RES) phagocytosis both in vivo and in the isolated perfused livers of rats. Chronic pancreatic hormonal treatment consisted of twice daily injections SC of NPH insulin with doses ranging from 0.75 U on day 1 to 9.0 U on day 13 and unchanged doses of glucagon (200 micrograms) and somatostatin (50 micrograms). Chronic treatment with insulin significantly depressed by 48% intravascular phagocytosis of colloidal carbon administered IV at a dose of 8 mg/100 g, while glucagon and somatostatin stimulated macrophage endocytic function by 32% and 26%, respectively, compared to the control value. Acute treatment with the three pancreatic hormones at 30 min prior to carbon administration similarly produced insulin depression as well as glucagon and somatostatin stimulation of RES phagocytosis. Addition of the three hormones at near physiologic concentrations (20 ng/ml for insulin, 10 ng/ml for glucagon, and 5 ng/ml for somatostatin) to the recirculating perfusate of isolated perfused rat livers simultaneous with 24 mg of colloidal carbon likewise resulted in phagocytic reduction after insulin and enhancement after glucagon and somatostatin. Experiments involving insulin in vitro with isolated perfused livers as well as glucose replacement therapy concomitant with insulin in vivo demonstrated that hypoglycemia is not necessary for phagocytic depression by insulin while severe hypoglycemia in the perfusion medium is sufficient to depress carbon uptake by isolated perfused livers independent of insulin. Both pancreatic hormones and the level of glycemia seem to be important in modulating hepatic reticuloendothelial system phagocytosis.

  11. How cells engulf: a review of theoretical approaches to phagocytosis

    Science.gov (United States)

    Richards, David M.; Endres, Robert G.

    2017-12-01

    Phagocytosis is a fascinating process whereby a cell surrounds and engulfs particles such as bacteria and dead cells. This is crucial both for single-cell organisms (as a way of acquiring nutrients) and as part of the immune system (to destroy foreign invaders). This whole process is hugely complex and involves multiple coordinated events such as membrane remodelling, receptor motion, cytoskeleton reorganisation and intracellular signalling. Because of this, phagocytosis is an excellent system for theoretical study, benefiting from biophysical approaches combined with mathematical modelling. Here, we review these theoretical approaches and discuss the recent mathematical and computational models, including models based on receptors, models focusing on the forces involved, and models employing energetic considerations. Along the way, we highlight a beautiful connection to the physics of phase transitions, consider the role of stochasticity, and examine links between phagocytosis and other types of endocytosis. We cover the recently discovered multistage nature of phagocytosis, showing that the size of the phagocytic cup grows in distinct stages, with an initial slow stage followed by a much quicker second stage starting around half engulfment. We also address the issue of target shape dependence, which is relevant to both pathogen infection and drug delivery, covering both one-dimensional and two-dimensional results. Throughout, we pay particular attention to recent experimental techniques that continue to inform the theoretical studies and provide a means to test model predictions. Finally, we discuss population models, connections to other biological processes, and how physics and modelling will continue to play a key role in future work in this area.

  12. Rapamycin-based inducible translocation systems for studying phagocytosis.

    Science.gov (United States)

    Bohdanowicz, Michal; Fairn, Gregory D

    2011-01-01

    Phagocytosis is an immune receptor-mediated process whereby cells engulf large particles. The process is dynamic and requires several localized factors acting in concert with and sequentially after the engagement of immune receptors to envelope the particle. Once the particle is internalized, the nascent -phagosome undergoes a series of events leading to its maturation to the microbicidal phagolysosome. Investigating these dynamic and temporally controlled series of events in live cells requires noninvasive methods. The ability to rapidly recruit the proteins of interest to the sites of phagocytosis or to nascent phagosomes would help dissect the regulatory mechanisms involved during phagocytosis. Here, we describe a general approach to express in RAW264.7 murine macrophages, a genetically encoded rapamycin--induced heterodimerization system. In the presence of rapamycin, tight association between FK506-binding protein (FKBP) and FKBP rapamycin-binding protein (FRB) is observed. Based on this principle, a synthetic system consisting of a targeting domain attached to FKBP can recruit a protein of interest fused to FRB upon the addition of rapamycin. Previously, this technique has been used to target lipid-modifying enzymes and small GTPases to the phagosome or plasma membrane. The recruitment of the FRB module can be monitored by fluorescent microscopy if a fluorescent protein is fused to the FRB sequence. While the focus of this chapter is on phagocytic events, this method can be employed to study any organelle of interest when the appropriate targeting sequence is used.

  13. Some Observations on Carbon Nano tubes Susceptibility to Cell Phagocytosis

    International Nuclear Information System (INIS)

    Fraczek-Szczypta, A.; Menaszek, E.; Blazewicz, S.; Menaszek, E.

    2011-01-01

    The aim of this study was to assess the influence of different types of carbon nano tubes (CNTs) on cell phagocytosis. Three kinds of carbon nano tubes: single-walled carbon nano horns (SWCNHs), multi walled carbon nano tubes (MWCNTs), and ultra-long single-walled carbon nano tubes (ULSWCNTs) before and after additional chemical functionalization were seeded with macrophage cell culture. Prior to biological testing, the CNTs were subjected to dispersion process with the use of phosphate buffered solution (PBS) and PBS containing surfactant (Tween 20) or dimethyl sulfoxide (DMSO). The results indicate that the cells interaction with an individual nano tube is entirely different as compared to CNTs in the form of aggregate. The presence of the surfactant favors the CNTs dispersion in culture media and facilitates phagocytosis process, while it has disadvantageous influence on cells morphology. The cells phagocytosis is a more effective for MWCNTs and SWCNHs after their chemical functionalization. Moreover, these nano tubes were well dispersed in culture media without using DMSO or surfactant. The functionalized carbon nano tubes were easily dispersed in pure PBS and seeded with cells

  14. Characterization of myosin light chain in shrimp hemocytic phagocytosis.

    Science.gov (United States)

    Han, Fang; Wang, Zhiyong; Wang, Xiaoqing

    2010-11-01

    Myosin light chain, a well-known cytoskeleton gene, regulates multiple processes that are involved in material transport, muscle shrink and cell division. However, its function in phagocytosis against invading pathogens in crustacean remains unknown. In this investigation, a myosin light chain gene was obtained from Marsupenaeus japonicus shrimp. The full-length cDNA of this gene was of 766 bp and an open reading frame (ORF) of 462 bp encoding a polypeptide of 153 amino acids. The myosin light chain protein was expressed in Escherichia coli and purified. Subsequently the specific antibody was raised using the purified GST fusion protein. As revealed by immuno-electron microscopy, the myosin light chain protein was only expressed in the dark bands of muscle. In the present study, the myosin light chain gene was up-regulated in the WSSV-resistant shrimp as revealed by real-time PCR and western blot. And the phagocytic percentage and phagocytic index using FITC-labeled Vibrio parahemolyticus were remarkably increased in the WSSV-resistant shrimp, suggesting that the myosin light chain protein was essential in hemocytic phagocytosis. On the other hand, RNAi assays indicated that the phagocytic percentage and phagocytic index were significantly decreased when the myosin light chain gene was silenced by sequence-specific siRNA. These findings suggested that myosin light chain protein was involved in the regulation of hemocytic phagocytosis of shrimp. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lin Nan

    2011-06-01

    receptor FcγRIII, and significantly increased that of formyl peptide receptor 2 (FPR2 and scavenger receptor class B1 (SRB1, compared with the basal level. Interestingly, the pre-stimulation with oAβ(1-42 or the inflammatory and oxidative milieu (IL-1β, LPS or t-BHP significantly downregulated the fAβ(1-42-induced mRNA over-expression of CD36, CD47 and Itgb1 receptors in microglial cells. Conclusion These results imply that Aβ oligomers induce a potent inflammatory response and subsequently disturb microglial phagocytosis and clearance of Aβ fibrils, thereby contributing to an initial neurodegenerative characteristic of AD. Antiinflammatory and antioxidative therapies may indeed prove beneficial to delay the progression of AD.

  16. Antimicrobial Resistance

    Science.gov (United States)

    ... least 10 countries (Australia, Austria, Canada, France, Japan, Norway, Slovenia, South Africa, Sweden and the United Kingdom ... plan Global report on surveillance Country situation analysis Policy to combat antimicrobial resistance More on antimicrobial resistance ...

  17. Antimicrobial Resistance

    Science.gov (United States)

    ... can prevent and manage antimicrobial resistance. It is collaborating with partners to strengthen the evidence base and ... on the global action plan. WHO has been leading multiple initiatives to address antimicrobial resistance: World Antibiotic ...

  18. Antimicrobials Treatment

    Science.gov (United States)

    Drosinos, Eleftherios H.; Skandamis, Panagiotis N.; Mataragas, Marios

    The use of antimicrobials is a common practice for preservation of foods. Incorporation, in a food recipe, of chemical antimicrobials towards inhibition of spoilage and pathogenic micro-organisms results in the compositional modification of food. This treatment is nowadays undesirable for the consumer, who likes natural products. Scientific community reflecting consumers demand for natural antimicrobials has made efforts to investigate the possibility to use natural antimicrobials such us bacteriocins and essential oils of plant origin to inhibit microbial growth.

  19. The kinetics of phagocytosis of 198Au colloids ''in vitro''

    International Nuclear Information System (INIS)

    Astorri, N.L.; Bergoc, R.M.; Bianchin, A.M.; Caro, R.A.; Ihlo, J.E.; Rivera, E.S.

    1982-01-01

    The kinetics of the phagocytosis of 198-Au colloids by macrophages ''in vitro'' was studied by incubating during 5 hours phagocytic cells from the liver and the spleen of Wistar rats with colloidal radiogold particles, in the presence of an adequate culture medium (TC-199 with 10 per cent of Bovine Fetal Serum). In each experiment, the number of colloidal gold particles offered to each phatocytic cell, (Au) 0 and the mean rate of phagocytosis v, were calculated. The latter value was determined by measuring the radioactivity incorporated into the phagocytic cells during the incubation; it was expressed as the number of phagocytized colloidal gold particles per cell per minute. The values of log v = f [log (Au) 0 ] were plotted. The Lineweaver-Burk analysis of the results demonstrates that the kinetics of the phagocytosis of colloidal radiogold particles ''in vitro'' follows a model similar to Michaelis-Menten equations for enzyme reactions. The values of the substratum constant Ks and maximun velocity Vm were obtained by the regression analysis of the 1/v vs. 1/(Au) 0 graph. Vm was equal to 9.44 x 10 and 1.63 x 10 phagocytized colloidal gold particles per cell per minute for liver and spleen macrophages, respectively. Ks was equal to 6.01 x 10 9 and 8.02 x 10 8 colloidal gold particles per cell for liver and spleen macrophages, respectively. The significance of these differences is discussed and attributed mainly to a change of the specific engulfment rate constant. (author) [es

  20. Influence of UV-radiation on granulocytic phagocytosis in vitro

    International Nuclear Information System (INIS)

    Walther, T.; Rytter, M.; Gast, W.; Haustein, U.F.

    1987-01-01

    The influence of UV radiation on the vitality, the performance of phagocytosis and the ability to reduce nitro-blue tetrazolium test (NBT) by human granulocytes was investigated in vitro. Already by low doses of UVA (8% UVB) the percentage of phagocytizing granulocytes was decreased more distinctly than their cell vitality. The number of ingested Candida albicans particles was 4.5 particles per granulocyte in the controls. It was reduced to about 1.4 particles per cell by UV radiation independent of the dosis applied. On the other hand the ability of granulocytes to reduce NBT intracellularly remained completely unchanged. (author)

  1. Antimicrobial resistance

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2014-01-01

    Antimicrobial resistance is a global public health challenge, which has accelerated by the overuse of antibiotics worldwide. Increased antimicrobial resistance is the cause of severe infections, complications, longer hospital stays and increased mortality. Overprescribing of antibiotics......-the-counter sale of antibiotics, the use of antimicrobial stewardship programmes, the active participation of clinicians in audits, the utilization of valid rapid point-of-care tests, the promotion of delayed antibiotic prescribing strategies, the enhancement of communication skills with patients with the aid...

  2. In vitro phagocytosis of several Candida berkhout species by murine leukocytes.

    Science.gov (United States)

    Fontenla de Petrino, S E; Bibas Bonet de Jorrat, M E; Sirena, A

    1985-03-01

    In vitro phagocytosis of thirteen Candida berkhout species by rat leukocytes was studied to assess a possible correlation between pathogenicity and phagocytosis Yeast-leukocyte suspensions were mixed up for 3 h and phagocytic index, germ-tube formation and leukocyte candidacidal activity were evaluated. Highest values for phagocytosis were reached in all cases at the end of the first hour. Leukocyte candidacidal activity was absent. Only C. albicans produced germ-tubes. The various phagocytosis indices were determined depending on the Candida species assayed. Under these conditions, the more pathogenic species presented the lower indices of phagocytosis. It is determined that the in vitro phagocytic index may bear a close relationship with the pathogenicity of the Candida berkhout.

  3. Impaired phagocytosis in localized aggressive periodontitis: rescue by Resolvin E1.

    Directory of Open Access Journals (Sweden)

    Gabrielle Fredman

    Full Text Available Resolution of inflammation is an active temporally orchestrated process demonstrated by the biosynthesis of novel proresolving mediators. Dysregulation of resolution pathways may underlie prevalent human inflammatory diseases such as cardiovascular diseases and periodontitis. Localized Aggressive Periodontitis (LAP is an early onset, rapidly progressing form of inflammatory periodontal disease. Here, we report increased surface P-selectin on circulating LAP platelets, and elevated integrin (CD18 surface expression on neutrophils and monocytes compared to healthy, asymptomatic controls. Significantly more platelet-neutrophil and platelet-monocyte aggregates were identified in circulating whole blood of LAP patients compared with asymptomatic controls. LAP whole blood generates increased pro-inflammatory LTB4 with addition of divalent cation ionophore A23187 (5 µM and significantly less, 15-HETE, 12-HETE, 14-HDHA, and lipoxin A(4. Macrophages from LAP subjects exhibit reduced phagocytosis. The pro-resolving lipid mediator, Resolvin E1 (0.1-100 nM, rescues the impaired phagocytic activity in LAP macrophages. These abnormalities suggest compromised resolution pathways, which may contribute to persistent inflammation resulting in establishment of a chronic inflammatory lesion and periodontal disease progression.

  4. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... of Animation of Antimicrobial Resistance More in Antimicrobial ... Antimicrobial Resistance Monitoring System About NARMS 2015 NARMS Integrated ...

  5. Wip1-dependent modulation of macrophage migration and phagocytosis

    DEFF Research Database (Denmark)

    Tang, Yiting; Pan, Bing; Zhou, Xin

    2017-01-01

    Macrophage accumulation within the vascular wall is a hallmark of atherosclerosis. Controlling macrophage conversion into foam cells remains a major challenge for treatment of atherosclerotic diseases. Here, we show that Wip1, a member of the PP2C family of Ser/Thr protein phosphatases, modulates...... macrophage migration and phagocytosis associated with atherosclerotic plaque formation. Wip1 deficiency increases migratory and phagocytic activities of the macrophage under stress conditions. Enhanced migration of Wip1-/- macrophages is mediated by Rac1-GTPase and PI3K/AKT signalling pathways. Elevated...... phagocytic ability of Wip1-/- macrophages is linked to CD36 plasma membrane recruitment that is regulated by AMPK activity. Our study identifies Wip1 as an intrinsic negative regulator of macrophage chemotaxis. We propose that Wip1-dependent control of macrophage function may provide avenues for preventing...

  6. Induction of Live Cell Phagocytosis by a Specific Combination of Inflammatory Stimuli

    Directory of Open Access Journals (Sweden)

    Takamasa Ishidome

    2017-08-01

    Full Text Available Conditions of severe hyper-inflammation can lead to uncontrolled activation of macrophages, and the ensuing phagocytosis of live cells. However, relationships between inflammatory stimuli and uncontrolled phagocytosis of live cells by macrophages are poorly understood. To identify mediators of this process, we established phagocytosis assays of live cells by stimulating macrophages with CpG DNA, interferon-γ, and anti-interleukin-10 receptor antibody. In this model, various cell surface receptors were upregulated on macrophages, and phagocytosis of live cells was induced in a Rac1-dependent manner. Subsequent inhibition of the ICAM-1, VCAM-1, and both of these receptors abolished in vitro and in vivo phagocytosis of live T cells, myeloid cells, and B cells, respectively. Specifically, the reduction in lymphocyte numbers due to in vivo activation of macrophages was ameliorated in Icam-1-deficient mice. In addition, overexpression of ICAM-1 or VCAM-1 in non-phagocytic NIH3T3 cells led to active phagocytosis of live cells. These data indicate molecular mechanisms underlying live cell phagocytosis induced by hyper-inflammation, and this experimental model will be useful to clarify the pathophysiological mechanisms of hemophagocytosis and to indicate therapeutic targets.

  7. [Antimicrobial susceptibility in Chile 2012].

    Science.gov (United States)

    Cifuentes-D, Marcela; Silva, Francisco; García, Patricia; Bello, Helia; Briceño, Isabel; Calvo-A, Mario; Labarca, Jaime

    2014-04-01

    Bacteria antimicrobial resistance is an uncontrolled public health problem that progressively increases its magnitude and complexity. The Grupo Colaborativo de Resistencia, formed by a join of experts that represent 39 Chilean health institutions has been concerned with bacteria antimicrobial susceptibility in our country since 2008. In this document we present in vitro bacterial susceptibility accumulated during year 2012 belonging to 28 national health institutions that represent about 36% of hospital discharges in Chile. We consider of major importance to report periodically bacteria susceptibility so to keep the medical community updated to achieve target the empirical antimicrobial therapies and the control measures and prevention of the dissemination of multiresistant strains.

  8. Phagocytosis of gram-negative bacteria by a unique CD14-dependent mechanism.

    Science.gov (United States)

    Schiff, D E; Kline, L; Soldau, K; Lee, J D; Pugin, J; Tobias, P S; Ulevitch, R J

    1997-12-01

    THP-1-derived cell lines were stably transfected with constructs encoding glycophosphatidylinositol (GPI)-anchored or transmembrane forms of human CD14. CD14 expression was associated with enhanced phagocytosis of serum (heat-inactivated)-opsonized Escherichia coli (opEc). Both the GPI-anchored and transmembrane forms of CD14 supported phagocytosis of opEc equally well. Lipopolysaccharide-binding protein (LBP) played a role in CD14-dependent phagocytosis as evidenced by inhibition of CD14-dependent phagocytosis of opEc with anti-LBP monoclonal antibody (mAb) and by enhanced phagocytosis of E. coli opsonized with purified LBP. CD14-dependent phagocytosis was inhibited by a phosphatidylinositol (PI) 3-kinase inhibitor (wortmannin) and a protein tyrosine kinase inhibitor (tyrphostin 23) but not a protein kinase C inhibitor (bisindolyl-maleimide) or a divalent cation chelator (ethylenediaminetetraacetate). Anti-LBP mAb 18G4 and anti-CD14 mAb 18E12 were used to differentiate between the pathways involved in CD14-dependent phagocytosis and CD14-dependent cell activation. F(ab')2 fragments of 18G4, a mAb to LBP that does not block cell activation, inhibited ingestion of opEc by THP1-wtCD14 cells. 18E12 (an anti-CD14 mAb that does not block LPS binding to CD14 but does inhibit CD14-dependent cell activation) did not inhibit phagocytosis of LBP-opEc by THP1-wtCD14 cells. Furthermore, CD14-dependent phagocytosis was not inhibited by anti-CD18 (CR3 and CR4 beta-chain) or anti-Fcgamma receptor mAb.

  9. A versatile, high through-put, bead-based phagocytosis assay for Plasmodium falciparum

    DEFF Research Database (Denmark)

    Lloyd, Yukie M.; Ngati, Elise P.; Salanti, Ali

    2017-01-01

    Antibody-mediated phagocytosis is an important immune effector mechanism against Plasmodium falciparum-infected erythrocytes (IE); however, current phagocytosis assays use IE collected from infected individuals or from in vitro cultures of P. falciparum, making them prone to high variation....... A simple, high-throughput flow cytometric assay was developed that uses THP-1 cells and fluorescent beads covalently-coupled with the malarial antigen VAR2CSA. The assay is highly repeatable, provides both the overall percent phagocytosis and semi-quantitates the number of antigen-coupled beads...

  10. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... video) Animation of Antimicrobial Resistance (text version) Arabic Translation of Animation of Antimicrobial Resistance Chinese Translation of Animation of Antimicrobial Resistance French Translation of ...

  11. Antimicrobial Pesticides

    Science.gov (United States)

    EPA regulates pesticides under the statutory authority of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). The registration requirements for antimicrobial pesticides differ somewhat from those of other pesticides. Find out more.

  12. Opsonic Phagocytosis in Chronic Obstructive Pulmonary Disease is Enhanced by Nrf2 Agonists.

    NARCIS (Netherlands)

    Bewley, Martin A; Budd, Richard C; Ryan, Eilise; Cole, Joby; Collini, Paul; Marshall, Jennifer; Kolsum, Umme; Beech, Gussie; Emes, Richard D; Tcherniaeva, Irina; Berbers, Guy A M; Walmsley, Sarah R; Donaldson, Gavin; Wedzicha, Jadwiga A; Kilty, Iain; Rumsey, William; Sanchez, Yolanda; Brightling, Christopher E; Donnelly, Louise E; Barnes, Peter J; Singh, Dave; Whyte, Moira K B; Dockrell, David H

    2018-01-01

    Previous studies have identified defects in bacterial phagocytosis by alveolar macrophages (AM) in patients with chronic obstructive pulmonary disease (COPD) but the mechanisms and clinical consequences remain incompletely defined.

  13. Overexpression of Enterococcus faecalis elr operon protects from phagocytosis.

    Science.gov (United States)

    Cortes-Perez, Naima G; Dumoulin, Romain; Gaubert, Stéphane; Lacoux, Caroline; Bugli, Francesca; Martin, Rebeca; Chat, Sophie; Piquand, Kevin; Meylheuc, Thierry; Langella, Philippe; Sanguinetti, Maurizio; Posteraro, Brunella; Rigottier-Gois, Lionel; Serror, Pascale

    2015-05-25

    Mechanisms underlying the transition from commensalism to virulence in Enterococcus faecalis are not fully understood. We previously identified the enterococcal leucine-rich protein A (ElrA) as a virulence factor of E. faecalis. The elrA gene is part of an operon that comprises four other ORFs encoding putative surface proteins of unknown function. In this work, we compared the susceptibility to phagocytosis of three E. faecalis strains, including a wild-type (WT), a ΔelrA strain, and a strain overexpressing the whole elr operon in order to understand the role of this operon in E. faecalis virulence. While both WT and ΔelrA strains were efficiently phagocytized by RAW 264.7 mouse macrophages, the elr operon-overexpressing strain showed a decreased capability to be internalized by the phagocytic cells. Consistently, the strain overexpressing elr operon was less adherent to macrophages than the WT strain, suggesting that overexpression of the elr operon could confer E. faecalis with additional anti-adhesion properties. In addition, increased virulence of the elr operon-overexpressing strain was shown in a mouse peritonitis model. Altogether, our results indicate that overexpression of the elr operon facilitates the E. faecalis escape from host immune defenses.

  14. Immunomodulation by gadolinium chloride-induced Kupffer cell phagocytosis blockade

    International Nuclear Information System (INIS)

    Lazar, G.; Husztik, E.; Kiss, I.; Szakacs, J.; Olah, J.

    1998-01-01

    Gadolinium chloride (GdCl 3 ), a rare earth metal salt, depresses macrophage activity, and is commonly used to study the physiology of the reticuloendothelial system. In the present work, the effect of GdCl 3 -induced Kupffer cell blockade on the humoral immune response in mice to sheep red blood cells (SRBC) was investigated. Kupffer cell phagocytosis blockade was found to increase both the primary and secondary immune responses to SRBC. The primary immune response was significantly augmented in animals injected intravenously with GdCl 3 2, 3 or 4 days before injection of the cellular antigen, but GdCl 3 injected 7 days before the antigen did not modify the immune response. Increased secondary humoral immune responses were also observed. When GdCl 3 was injected 2 days before the second dose of antigen, the numbers of both IgM and IgG-producing plaque forming cells were augmented. GdCl 3 injected 2 days before the first dose of SRBC did not modify the humoral immune response. Earlier studies with 51 Cr-labelled foreign red blood cells suggested that the augmentation of the humoral immune response in GdCl 3 -pretreated mice is a consequence of the spillover of the antigen from the liver into the spleen and other extrahepatic reticuloendothelial organs. (orig.)

  15. Phagocytosis and Inflammation: Exploring the effects of the components of E?cigarette vapor on macrophages

    OpenAIRE

    Ween, Miranda P.; Whittall, Jonathan J.; Hamon, Rhys; Reynolds, Paul N.; Hodge, Sandra J.

    2017-01-01

    Abstract E?cigarettes are perceived as harmless; however, evidence of their safety is lacking. New data suggests E?cigarettes discharge a range of compounds capable of physiological damage to users. We previously established that cigarette smoke caused defective alveolar macrophage phagocytosis. The present study compared the effect E?cigarette of components; E?liquid flavors, nicotine, vegetable glycerine, and propylene glycol on phagocytosis, proinflammatory cytokine secretion, and phagocyt...

  16. CEACAM3-mediated phagocytosis of human-specific bacterial pathogens involves the adaptor molecule Nck

    OpenAIRE

    Peterson, Lisa

    2010-01-01

    Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) are exploited by human-specific pathogens to anchor themselves to or invade host cells. Interestingly, human granulocytes express a specific isoform, CEACAM3, that can direct efficient, opsonin-independent phagocytosis of CEACAM-binding Neisseria, Moraxella and Haemophilus species. As opsonin-independent phagocytosis of CEACAM-binding Neisseria depends on Src-family protein tyrosine kinase (PTK) phosphorylation of the CEACAM3 ...

  17. Alveolar macrophage phagocytosis is enhanced after blunt chest trauma and alters the posttraumatic mediator release.

    Science.gov (United States)

    Seitz, Daniel H; Palmer, Annette; Niesler, Ulrike; Fröba, Janine S; Heidemann, Vera; Rittlinger, Anne; Braumüller, Sonja T; Zhou, Shaoxia; Gebhard, Florian; Knöferl, Markus W

    2011-12-01

    Blunt chest trauma is known to induce a pulmonary invasion of short-lived polymorphonuclear neutrophils and apoptosis of alveolar epithelial type 2 (AT2) cells. Apoptotic cells are removed by alveolar macrophages (AMΦ). We hypothesized that chest trauma alters the phagocytic response of AMΦ as well as the mediator release of AMΦ during phagocytosis. To study this, male Sprague-Dawley rats were subjected to blunt chest trauma. Phagocytosis assays were performed in AMΦ isolated 2 or 24 h after trauma with apoptotic cells or opsonized beads. Phagocytosis of apoptotic AT2 cells by unstimulated AMΦ was significantly increased 2 h after trauma. At 24 h, AMΦ from traumatized animals, stimulated with phorbol-12-myristate-13-acetate, ingested significantly more apoptotic polymorphonuclear neutrophils than AMΦ from sham animals. Alveolar macrophages after trauma released significantly higher levels of tumor necrosis factor α, macrophage inflammatory protein 1α, and cytokine-induced neutrophil chemoattractant 1 when they incorporated latex beads, but significantly lower levels of interleukin 1β and macrophage inflammatory protein 1α when they ingested apoptotic cells. In vivo, phagocytosis of intratracheally instilled latex beads was decreased in traumatized rats. The bronchoalveolar lavage concentrations of the phagocytosis-supporting surfactant proteins A and D after blunt chest trauma were slightly decreased, whereas surfactant protein D mRNA expression in AT2 cells was significantly increased after 2 h. These findings indicate that chest trauma augments the phagocytosis of apoptotic cells by AMΦ. Phagocytosis of opsonized beads enhances and ingestion of apoptotic cells downregulates the immunologic response following lung contusion. Our data emphasize the important role of phagocytosis during posttraumatic inflammation after lung contusion.

  18. Antibiotic-Enhanced Phagocytosis of ’Borrelia recurrentis’ by Blood Polymorphonuclear Leukocytes.

    Science.gov (United States)

    1979-11-30

    hours after Butler 7 institution of antibiotic treatment. Polymorphonuclear leukocytes are known to release endogenous pyrogen after phagocytosis of...other bacteria (6), and endogenous pyrogen may be one of the mediators of the rigor and temperature rise in the Jarisch-Herxheimer reaction (2). Release...the pathogenesis of fever. XII. The effect of phagocytosis on the release of endogenous pyrogen by polymorphonuclear leukocytes. J. Exp. Med. 119:715

  19. Interaction between Mitochondrial Reactive Oxygen Species, Heme Oxygenase, and Nitric Oxide Synthase Stimulates Phagocytosis in Macrophages

    Directory of Open Access Journals (Sweden)

    Andrea Müllebner

    2018-01-01

    Full Text Available BackgroundMacrophages are cells of the innate immune system that populate every organ. They are required not only for defense against invading pathogens and tissue repair but also for maintenance of tissue homeostasis and iron homeostasis.AimThe aim of this study is to understand whether heme oxygenase (HO and nitric oxide synthase (NOS contribute to the regulation of nicotinamide adenine dinucleotide phosphate oxidase (NOX activity and phagocytosis, two key components of macrophage function.MethodsThis study was carried out using resting J774A.1 macrophages treated with hemin or vehicle. Activity of NOS, HO, or NOX was inhibited using specific inhibitors. Reactive oxygen species (ROS formation was determined by Amplex® red assay, and phagocytosis was measured using fluorescein isothiocyanate-labeled bacteria. In addition, we analyzed the fate of the intracellular heme by using electron spin resonance.ResultsWe show that both enzymes NOS and HO are essential for phagocytic activity of macrophages. NOS does not directly affect phagocytosis, but stimulates NOX activity via nitric oxide-triggered ROS production of mitochondria. Treatment of macrophages with hemin results in intracellular accumulation of ferrous heme and an inhibition of phagocytosis. In contrast to NOS, HO products, including carbon monoxide, neither clearly affect NOX activity nor clearly affect phagocytosis, but phagocytosis is accelerated by HO-mediated degradation of heme.ConclusionBoth enzymes contribute to the bactericidal activity of macrophages independently, by controlling different pathways.

  20. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target

    Science.gov (United States)

    Beningo, Karen A.; Wang, Yu-li

    2002-01-01

    Phagocytosis is an actin-based process used by macrophages to clear particles greater than 0.5 microm in diameter. In addition to its role in immunological responses, phagocytosis is also necessary for tissue remodeling and repair. To prevent catastrophic autoimmune reactions, phagocytosis must be tightly regulated. It is commonly assumed that the recognition/selection of phagocytic targets is based solely upon receptor-ligand binding. Here we report an important new criterion, that mechanical parameters of the target can dramatically affect the efficiency of phagocytosis. When presented with particles of identical chemical properties but different rigidity, macrophages showed a strong preference to engulf rigid objects. Furthermore, phagocytosis of soft particles can be stimulated with the microinjection of constitutively active Rac1 but not RhoA, and with lysophosphatidic acid, an agent known to activate the small GTP-binding proteins of the Rho family. These data suggest a Rac1-dependent mechanosensory mechanism for phagocytosis, which probably plays an important role in a number of physiological and pathological processes from embryonic development to autoimmune diseases.

  1. Antimicrobial polymers.

    Science.gov (United States)

    Jain, Anjali; Duvvuri, L Sailaja; Farah, Shady; Beyth, Nurit; Domb, Abraham J; Khan, Wahid

    2014-12-01

    Better health is basic requirement of human being, but the rapid growth of harmful pathogens and their serious health effects pose a significant challenge to modern science. Infections by pathogenic microorganisms are of great concern in many fields such as medical devices, drugs, hospital surfaces/furniture, dental restoration, surgery equipment, health care products, and hygienic applications (e.g., water purification systems, textiles, food packaging and storage, major or domestic appliances etc.) Antimicrobial polymers are the materials having the capability to kill/inhibit the growth of microbes on their surface or surrounding environment. Recently, they gained considerable interest for both academic research and industry and were found to be better than their small molecular counterparts in terms of enhanced efficacy, reduced toxicity, minimized environmental problems, resistance, and prolonged lifetime. Hence, efforts have focused on the development of antimicrobial polymers with all desired characters for optimum activity. In this Review, an overview of different antimicrobial polymers, their mechanism of action, factors affecting antimicrobial activity, and application in various fields are given. Recent advances and the current clinical status of these polymers are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Overload training inhibits phagocytosis and ROS generation of peritoneal macrophages: role of IGF-1 and MGF.

    Science.gov (United States)

    Xiao, Weihua; Chen, Peijie; Wang, Ru; Dong, Jingmei

    2013-01-01

    We tested the hypothesis that overload training inhibits the phagocytosis and the reactive oxygen species (ROS) generation of peritoneal macrophages (Mϕs), and that insulin-like growth factor-1(IGF-1) and mechano-growth factor (MGF) produced by macrophages may contribute to this process. Rats were randomized to two groups, sedentary control group (n = 10) and overload training group (n = 10). The rats of overload training group were subjected to 11 weeks of experimental training protocol. Blood sample was used to determine the content of hemoglobin, testosterone, and corticosterone. The phagocytosis and the ROS generation of Mϕs were measured by the uptake of neutral red and the flow cytometry, respectively. IGF-1 and MGF mRNA levels in Mϕs were determined by real-time PCR. In addition, we evaluated the effects of IGF-1 and MGF peptide on phagocytosis and ROS generation of Mϕs in vitro. The data showed that overload training significantly decreased the body weight (19.3 %, P overload training significantly decreased the phagocytosis (27 %, P overload training group increased significantly compared with the control group (21-fold and 92-fold, respectively; P overload training inhibits the phagocytosis and the ROS generation of peritoneal macrophages, and that MGF produced by macrophages may play a key role in this process. This may represent a novel mechanism of immune suppression induced by overload training.

  3. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... CVM) produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, ...

  4. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts to select the appropriate antimicrobial ...

  5. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, ...

  6. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing ... CVM) produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over ...

  7. Animation of Antimicrobial Resistance

    Science.gov (United States)

    ... Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin ...

  8. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin ...

  9. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System ... If you need help accessing information in different file formats, see Instructions for Downloading ...

  10. A Simple Microscopy Assay to Teach the Processes of Phagocytosis and Exocytosis

    Science.gov (United States)

    Gray, Ross; Gray, Andrew; Fite, Jessica L.; Jordan, Renee; Stark, Sarah; Naylor, Kari

    2012-01-01

    Phagocytosis and exocytosis are two cellular processes involving membrane dynamics. While it is easy to understand the purpose of these processes, it can be extremely difficult for students to comprehend the actual mechanisms. As membrane dynamics play a significant role in many cellular processes ranging from cell signaling to cell division to…

  11. Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera worker castes.

    Directory of Open Access Journals (Sweden)

    Eva Marit Hystad

    Full Text Available Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells that clear pathogens from hemolymph (blood by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees, and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which-together with confocal microscopy and flow cytometry-allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity.

  12. Phagocytosis and Inflammation: Exploring the effects of the components of E-cigarette vapor on macrophages.

    Science.gov (United States)

    Ween, Miranda P; Whittall, Jonathan J; Hamon, Rhys; Reynolds, Paul N; Hodge, Sandra J

    2017-08-01

    E-cigarettes are perceived as harmless; however, evidence of their safety is lacking. New data suggests E-cigarettes discharge a range of compounds capable of physiological damage to users. We previously established that cigarette smoke caused defective alveolar macrophage phagocytosis. The present study compared the effect E-cigarette of components; E-liquid flavors, nicotine, vegetable glycerine, and propylene glycol on phagocytosis, proinflammatory cytokine secretion, and phagocytic recognition molecule expression using differentiated THP-1 macrophages. Similar to CSE, phagocytosis of NTHi bacteria was significantly decreased by E-liquid flavoring (11.65-15.75%) versus control (27.01%). Nicotine also decreased phagocytosis (15.26%). E-liquid, nicotine, and E-liquid+ nicotine reduced phagocytic recognition molecules; SR-A1 and TLR-2. IL-8 secretion increased with flavor and nicotine, while TNF α , IL-1 β , IL-6, MIP-1 α , MIP-1 β , and MCP-1 decreased after exposure to most flavors and nicotine. PG, VG, or PG:VG mix also induced a decrease in MIP-1 α and MIP-1 β We conclude that E-cigarettes can cause macrophage phagocytic dysfunction, expression of phagocytic recognition receptors and cytokine secretion pathways. As such, E-cigarettes should be treated with caution by users, especially those who are nonsmokers. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes.

    Science.gov (United States)

    Hystad, Eva Marit; Salmela, Heli; Amdam, Gro Vang; Münch, Daniel

    2017-01-01

    Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees), and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which-together with confocal microscopy and flow cytometry-allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity.

  14. Essential role of integrin-linked kinase in regulation of phagocytosis in keratinocytes.

    Science.gov (United States)

    Sayedyahossein, Samar; Nini, Lylia; Irvine, Timothy S; Dagnino, Lina

    2012-10-01

    Phagocytic melanosome uptake by epidermal keratinocytes is a central protective mechanism against damage induced by ultraviolet radiation. Phagocytosis requires formation of pseudopodia via actin cytoskeleton rearrangements. Integrin-linked kinase (ILK) is an important modulator of actin cytoskeletal dynamics. We have examined the role of ILK in regulation of phagocytosis, using epidermal keratinocytes isolated from mice with epidermis-restricted Ilk gene inactivation. ILK-deficient cells exhibited severely impaired capacity to engulf fluorescent microspheres in response to stimulation of the keratinocyte growth factor (KGF) receptor or the protease-activated receptor-2. KGF induced ERK phosphorylation in ILK-expressing and ILK-deficient cells, suggesting that ILK is not essential for KGF receptor signaling. In contrast, KGF promoted activation of Rac1 and formation of pseudopodia in ILK-expressing, but not in ILK-deficient cells. Rac1-deficient keratinocytes also showed substantially impaired phagocytic ability, underlining the importance of ILK-dependent Rac1 function for particle engulfment. Finally, cross-modulation of KGF receptors by integrins may be another important element, as integrin β1-deficient keratinocytes also fail to show significant phagocytosis in response to KGF. Thus, we have identified a novel signaling pathway essential for phagocytosis in keratinocytes, which involves ILK-dependent activation of Rac1 in response to KGF, resulting in the formation of pseudopodia and particle uptake.

  15. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    International Nuclear Information System (INIS)

    Kakita, Hiroki; Aoyama, Mineyoshi; Nagaya, Yoshiaki; Asai, Hayato; Hussein, Mohamed Hamed; Suzuki, Mieko; Kato, Shin; Saitoh, Shinji; Asai, Kiyofumi

    2013-01-01

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N G -monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for IAE

  16. LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein

    Directory of Open Access Journals (Sweden)

    Marker Daniel F

    2012-11-01

    Full Text Available Abstract Background Human Immunodeficiency Virus-1 (HIV-1 associated neurocognitive disorders (HANDs are accompanied by significant morbidity, which persists despite the use of combined antiretroviral therapy (cART. While activated microglia play a role in pathogenesis, changes in their immune effector functions, including phagocytosis and proinflammatory signaling pathways, are not well understood. We have identified leucine-rich repeat kinase 2 (LRRK2 as a novel regulator of microglial phagocytosis and activation in an in vitro model of HANDs, and hypothesize that LRRK2 kinase inhibition will attenuate microglial activation during HANDs. Methods We treated BV-2 immortalized mouse microglia cells with the HIV-1 trans activator of transcription (Tat protein in the absence or presence of LRRK2 kinase inhibitor (LRRK2i. We used Western blot, qRT-PCR, immunocytochemistry and latex bead engulfment assays to analyze LRRK2 protein levels, proinflammatory cytokine and phagocytosis receptor expression, LRRK2 cellular distribution and phagocytosis, respectively. Finally, we utilized ex vivo microfluidic chambers containing primary hippocampal neurons and BV-2 microglia cells to investigate microglial phagocytosis of neuronal axons. Results We found that Tat-treatment of BV-2 cells induced kinase activity associated phosphorylation of serine 935 on LRRK2 and caused the formation of cytoplasmic LRRK2 inclusions. LRRK2i decreased Tat-induced phosphorylation of serine 935 on LRRK2 and inhibited the formation of Tat-induced cytoplasmic LRRK2 inclusions. LRRK2i also decreased Tat-induced process extension in BV-2 cells. Furthermore, LRRK2i attenuated Tat-induced cytokine expression and latex bead engulfment. We examined relevant cellular targets in microfluidic chambers and found that Tat-treated BV-2 microglia cells cleared axonal arbor and engulfed neuronal elements, whereas saline treated controls did not. LRRK2i was found to protect axons in the presence

  17. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Kakita, Hiroki [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Aoyama, Mineyoshi, E-mail: ao.mine@med.nagoya-cu.ac.jp [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Nagaya, Yoshiaki; Asai, Hayato [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Hussein, Mohamed Hamed [Neonatal Intensive Care Unit, Pediatric Hospital, Cairo University, Cairo 11559 (Egypt); Maternal and Child Health Department, VACSERA, 51 Wizaret El-Zeraa-Agouza, Giza 22311 (Egypt); Suzuki, Mieko [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Kato, Shin [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Saitoh, Shinji [Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2013-04-15

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N{sup G}-monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for

  18. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    OpenAIRE

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i....

  19. Diversity and Versatility of Phagocytosis: Roles in Innate Immunity, Tissue Remodeling, and Homeostasis.

    Science.gov (United States)

    Lim, Justin J; Grinstein, Sergio; Roth, Ziv

    2017-01-01

    Phagocytosis, a critical early event in the microbicidal response of neutrophils, is now appreciated to serve multiple functions in a variety of cell types. Professional phagocytes play a central role in innate immunity by eliminating pathogenic bacteria, fungi and malignant cells, and contribute to adaptive immunity by presenting antigens to lymphocytes. In addition, phagocytes play a part in tissue remodeling and maintain overall homeostasis by disposing of apoptotic cells, a task shared by non-professional phagocytes, often of epithelial origin. This functional versatility is supported by a vast array of receptors capable of recognizing a striking variety of foreign and endogenous ligands. Here we present an abbreviated overview of the different types of phagocytes, their varied modes of signaling and particle engulfment, and the multiple physiological roles of phagocytosis.

  20. Depression of efficiency of neutrophils for Candida albicans phagocytosis in personnel working in radiation field

    International Nuclear Information System (INIS)

    Hassan, A.A.

    2000-01-01

    The neutrophil functions, chemotaxis (direct and random migration), phagocytosis using Candida albicans (percent, index), phagocytosis by NBT (percent, score) and adherence were studied on 55 persons working in radiation field (group I) and 40 persons as control (group II). The effect of radiation on blood picture of persons working in this field with special references to leucocytic counts and neutrophil functions was studied. White and red cells counts were 6.275 +- 1.723 and 5.475 +- 1.039 (group I) and 6.440 +- 1.556, 4.704 +- 0.734 for group II, respectively with no significant difference, while in neutrophil function there was a statistically significant difference in all functions between two groups (P < 0.01). This indicates the importance of neutrophil functions in following up persons working in radiation field

  1. Influence of Corynebacterium parvum on the phagocytosis of /sup 198/Au colloids in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bergoc, R.M.; Bianchin, A.M.; Caro, R.A.; Ihlo, J.E.; Rivera, E.S. (Buenos Aires Univ. Nacional (Argentina). Facultad de Farmacia y Bioquimica)

    1982-07-01

    The kinetics of the phagocytosis of gelatin-protected /sup 198/Au colloids in Wistar rats treated with Corynebacterium Parvum (CBP), was studied in order to explain its mechanism of immunomodulation. A previously developed extracorporeal blood circulation technique was used. The changes in the rate of phagocytosis, v, after the administration of CBP, for a dose of the /sup 198/Au colloid smaller or higher than the substratum constant, were studied. In the first case, no significant changes of v were observed; in the second case, significant increases of v were determined, which reached a maximum 6 days after the CBP administration. The kinetic analysis of the obtained data indicates that the action of CBP is exerted on the stage of the entrance of the colloidal particle into the reticuloendothelial cell.

  2. Influence of Corynebacterium parvum on the phagocytosis of 198Au colloids in rats

    International Nuclear Information System (INIS)

    Bergoc, R.M.; Bianchin, A.M.; Caro, R.A.; Ihlo, J.E.; Rivera, E.S.

    1982-01-01

    The kinetics of the phagocytosis of gelatin-protected 198 Au colloids in Wistar rats treated with Corynebacterium Parvum (CBP), was studied in order to explain its mechanism of immunomodulation. A previously developed extracorporeal blood circulation technique was used. The changes in the rate of phagocytosis, v, after the administration of CBP, for a dose of the 198 Au colloid smaller or higher than the substratum constant, were studied. In the first case, no significant changes of v were observed; in the second case, significant increases of v were determined, which reached a maximum 6 days after the CBP administration. The kinetic analysis of the obtained data indicates that the action of CBP is exerted on the stage of the entrance of the colloidal particle into the reticuloendothelial cell. (author) [es

  3. Neisseria meningitidis and Escherichia coli are protected from leukocyte phagocytosis by binding to erythrocyte complement receptor 1 in human blood

    DEFF Research Database (Denmark)

    Brekke, O. L.; Hellerud, B. C.; Christiansen, D.

    2011-01-01

    The initial interaction of Gram-negative bacteria with erythrocytes and its implications on leukocyte phagocytosis and oxidative burst in human whole blood were examined. Alexa-labeled Escherichia coli, wild-type H44/76 N. meningitidis and the H44/76lpxA lipopolysaccharide (LPS)-deficient mutant...... antagonist (C5aRa) and a complement receptor 1 (CR1)-blocking antibody (3D9) were examined. Most bacteria (80%) immediately bound to erythrocytes. The binding gradually declined over time, with a parallel increase in phagocytosis. Complement inhibition with compstatin reduced erythrocyte binding...... and bacterial C3 opsonization. In contrast, the C5aRa efficiently reduced phagocytosis, but did not affect the binding of bacteria to erythrocytes. The anti-CR1 blocking mAb dose-dependently reduced bacterial binding to erythrocytes to nil, with subsequent increased phagocytosis and oxidative burst. LPS had...

  4. Inhaled corticosteroid treatment for 6?months was not sufficient to normalize phagocytosis in asthmatic children

    OpenAIRE

    da Silva-Martins, Carmen L?via Faria; Couto, Shirley Claudino; Muniz-Junqueira, Maria Imaculada

    2013-01-01

    Background Corticosteroids are the first-line therapy for asthma; however, the effect of corticosteroids on the innate immune system remains unclear. This study?s objective was to evaluate the effect of inhaled corticosteroid therapy (ICT) on phagocytic functions. Methods To evaluate the impact of ICT, the phagocytosis of Saccharomyces cerevisiae by blood monocytes and neutrophils and the production of superoxide anions were assessed before and after three and six months of ICT treatment in 5...

  5. Phagocytosis by Thrombocytes is a Conserved Innate Immune Mechanism in Lower Vertebrates

    OpenAIRE

    Nagasawa, Takahiro; Nakayasu, Chihaya; Rieger, Aja M.; Barreda, Daniel R.; Somamoto, Tomonori; Nakao, Miki

    2014-01-01

    Thrombocytes, nucleated hemostatic blood cells of non-mammalian vertebrates, are regarded as the functional equivalent of anucleated mammalian platelets. Additional immune functions, including phagocytosis, have also been suggested for thrombocytes, but no conclusive molecular or cellular experimental evidence for their potential ingestion and clearance of infiltrating microbes has been provided till date. In the present study, we demonstrate the active phagocytic ability of thrombocytes in l...

  6. ITAM-like signalling for efficient phagocytosis : The paradigm of the granulocyte receptor CEACAM3

    OpenAIRE

    Pils, Stefan

    2010-01-01

    Human CEACAM3 is a tailor-made receptor of the innate immune system to fight pathogens exploiting epithelial CEACAM-family members for colonisation and invasion of their host. Previous studies established CEACAM3 as the receptor facilitating rapid phagocytosis and elimination of N. gonorrhoeae by human granulocytes. The studies reported here set out to shed light on the evolution of this highly specialised receptor and the associated signalling machinery.CEACAM3 arose from exon shuffling afte...

  7. The zipper mechanism in phagocytosis: energetic requirements and variability in phagocytic cup shape

    Directory of Open Access Journals (Sweden)

    Dart Anna E

    2010-11-01

    Full Text Available Abstract Background Phagocytosis is the fundamental cellular process by which eukaryotic cells bind and engulf particles by their cell membrane. Particle engulfment involves particle recognition by cell-surface receptors, signaling and remodeling of the actin cytoskeleton to guide the membrane around the particle in a zipper-like fashion. Despite the signaling complexity, phagocytosis also depends strongly on biophysical parameters, such as particle shape, and the need for actin-driven force generation remains poorly understood. Results Here, we propose a novel, three-dimensional and stochastic biophysical model of phagocytosis, and study the engulfment of particles of various sizes and shapes, including spiral and rod-shaped particles reminiscent of bacteria. Highly curved shapes are not taken up, in line with recent experimental results. Furthermore, we surprisingly find that even without actin-driven force generation, engulfment proceeds in a large regime of parameter values, albeit more slowly and with highly variable phagocytic cups. We experimentally confirm these predictions using fibroblasts, transfected with immunoreceptor FcγRIIa for engulfment of immunoglobulin G-opsonized particles. Specifically, we compare the wild-type receptor with a mutant receptor, unable to signal to the actin cytoskeleton. Based on the reconstruction of phagocytic cups from imaging data, we indeed show that cells are able to engulf small particles even without support from biological actin-driven processes. Conclusions This suggests that biochemical pathways render the evolutionary ancient process of phagocytic highly robust, allowing cells to engulf even very large particles. The particle-shape dependence of phagocytosis makes a systematic investigation of host-pathogen interactions and an efficient design of a vehicle for drug delivery possible.

  8. Viral Inhibition of Bacterial Phagocytosis by Human Macrophages: Redundant Role of CD36.

    Directory of Open Access Journals (Sweden)

    Grace E Cooper

    Full Text Available Macrophages are essential to maintaining lung homoeostasis and recent work has demonstrated that influenza-infected lung macrophages downregulate their expression of the scavenger receptor CD36. This receptor has also been shown to be involved in phagocytosis of Streptococcus pneumoniae, a primary agent associated with pneumonia secondary to viral infection. The aim of this study was to investigate the role of CD36 in the effects of viral infection on macrophage phagocytic function. Human monocyte-derived macrophages (MDM were exposed to H3N2 X31 influenza virus, M37 respiratory syncytial virus (RSV or UV-irradiated virus. No infection of MDM was seen upon exposure to UV-irradiated virus but incubation with live X31 or M37 resulted in significant levels of viral detection by flow cytometry or RT-PCR respectively. Infection resulted in significantly diminished uptake of S. pneumoniae by MDM and significantly decreased expression of CD36 at both the cell surface and mRNA level. Concurrently, there was a significant increase in IFNβ gene expression in response to infection and we observed a significant decrease in bacterial phagocytosis (p = 0.031 and CD36 gene expression (p = 0.031 by MDM cultured for 24 h in 50IU/ml IFNβ. Knockdown of CD36 by siRNA resulted in decreased phagocytosis, but this was mimicked by transfection reagent alone. When MDM were incubated with CD36 blocking antibodies no effect on phagocytic ability was observed. These data indicate that autologous IFNβ production by virally-infected cells can inhibit bacterial phagocytosis, but that decreased CD36 expression by these cells does not play a major role in this functional deficiency.

  9. Alginate-Derived Oligosaccharide Inhibits Neuroinflammation and Promotes Microglial Phagocytosis of β-Amyloid

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2015-09-01

    Full Text Available Alginate from marine brown algae has been widely applied in biotechnology. In this work, the effects of alginate-derived oligosaccharide (AdO on lipopolysaccharide (LPS/β-amyloid (Aβ-induced neuroinflammation and microglial phagocytosis of Aβ were studied. We found that pretreatment of BV2 microglia with AdO prior to LPS/Aβ stimulation led to a significant inhibition of production of nitric oxide (NO and prostaglandin E2 (PGE2, expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 and secretion of proinflammatory cytokines. We further demonstrated that AdO remarkably attenuated the LPS-activated overexpression of toll-like receptor 4 (TLR4 and nuclear factor (NF-κB in BV2 cells. In addition to the impressive inhibitory effect on neuroinflammation, we also found that AdO promoted the phagocytosis of Aβ through its interaction with TLR4 in microglia. Our results suggested that AdO exerted the inhibitory effect on neuroinflammation and the promotion effect on microglial phagocytosis, indicating its potential as a nutraceutical or therapeutic agent for neurodegenerative diseases, particularly Alzheimer’s disease (AD.

  10. Phagocytosis by macrophages mediated by receptors for denatured proteins - dependence on tyrosine protein kinases

    Directory of Open Access Journals (Sweden)

    M.R. Hespanhol

    2002-03-01

    Full Text Available Previous studies have demonstrated that some components of the leukocyte cell membrane, CR3 (Mac-1, CD11b/CD18 and p150/95, are able to bind to denatured proteins. Thus, it is of interest to know which effector functions of these cells can be triggered by these receptors when they interact with particles or surfaces covered with denatured proteins. In the present study we analyzed their possible role as mediators of phagocytosis of red cells covered with denatured bovine serum albumin (BSA by mouse peritoneal macrophages. We observed that a macrophages are able to recognize (bind to these red cells, b this interaction can be inhibited by denatured BSA in the fluid phase, c there is no phagocytosis of these particles by normal macrophages, d phagocytosis mediated by denatured BSA can be, however, effectively triggered in inflammatory macrophages induced by glycogen or in macrophages activated in vivo with LPS, and e this phagocytic capacity is strongly dependent on the activity of tyrosine protein kinases in its signal transduction pathway, as demonstrated by using three kinds of enzyme inhibitors (genistein, quercetin and herbimycin A.

  11. Rab20 regulates phagosome maturation in RAW264 macrophages during Fc gamma receptor-mediated phagocytosis.

    Directory of Open Access Journals (Sweden)

    Youhei Egami

    Full Text Available Rab20, a member of the Rab GTPase family, is known to be involved in membrane trafficking, however its implication in FcγR-mediated phagocytosis is unclear. We examined the spatiotemporal localization of Rab20 during phagocytosis of IgG-opsonized erythrocytes (IgG-Es in RAW264 macrophages. By the live-cell imaging of fluorescent protein-fused Rab20, it was shown that Rab20 was transiently associated with the phagosomal membranes. During the early stage of phagosome formation, Rab20 was not localized on the membranes of phagocytic cups, but was gradually recruited to the newly formed phagosomes. Although Rab20 was colocalized with Rab5 to some extent, the association of Rab20 with the phagosomes persisted even after the loss of Rab5 from the phagosomal membranes. Then, Rab20 was colocalized with Rab7 and Lamp1, late endosomal/lysosomal markers, on the internalized phagosomes. Moreover, our analysis of Rab20 mutant expression revealed that the maturation of phagosomes was significantly delayed in cells expressing the GDP-bound mutant Rab20-T19N. These data suggest that Rab20 is an important component of phagosome and regulates the phagosome maturation during FcγR-mediated phagocytosis.

  12. Effects of pentachlorophenol on survival of earthworms (Lumbricus terrestris) and phagocytosis by their immunoactive coelomocytes

    Energy Technology Data Exchange (ETDEWEB)

    Giggleman, M.A.; Fitzpatrick, L.C.; Goven, A.J. [Univ. of North Texas, Denton, TX (United States); Venables, B.J. [TRAC Labs., Denton, TX (United States)

    1998-12-01

    Earthworms, Lumbricus terrestris, exposed for 96 h to filter paper saturated with five nominal concentrations of pentachlorophenol, exhibited a 50% lethal concentration (LC50) of 25.0 {micro}g PCP/cm{sup 2} and corresponding whole worm body burden-based 50% lethal dose (LD50) of 877.7 {micro}g PCP/g dry mass. Linear regression modeling showed that worms increased body concentrations (BC = {micro}g PCP/g dry tissue mass) with increasing exposure concentrations (EC) according to BC = 113.5 + 29.5EC. Phagocytosis of yeast cells by immunoactive coelomocytes was suppressed only at body concentrations (863.3 {micro}g PCP/g dry mass) that approximated the calculated LD50 and overlapped those demonstrating lethality, indicating a sharp transition between sublethal and lethal toxicity. An exposure concentration of 15 {micro}g PCP/cm{sup 2} produced significant suppression of phagocytosis of yeast cells by immunoactive coelomocytes. However, the average measured body burden from this group approximated the estimated LD50, indicating a sharp toxic response slope. Exposure to 10 {micro}g PCP/cm{sup 2} with a corresponding body concentration of 501.3 {micro}g PCP/g dry mass did not affect phagocytosis. The importance of body burden data is emphasized.

  13. A novel flow cytometric assay for measurement of In Vivo pulmonary neutrophil phagocytosis

    Directory of Open Access Journals (Sweden)

    Gentry-Nielsen Martha J

    2006-07-01

    Full Text Available Abstract Background Phagocytosis assays are traditionally performed in vitro using polymorphonuclear leukocytes (PMNs isolated from peripheral blood or the peritoneum and heat-killed, pre-opsonized organisms. These assays may not adequately mimic the environment within the infected lung. Our laboratory therefore has developed a flow cytometric in vivo phagocytosis assay that enables quantification of PMN phagocytosis of viable bacteria within the lungs of rats. In these studies, rats are injected transtracheally with lipopolysaccharide (LPS to recruit PMNs to their lungs. They are then infected with live 5(-and 6 carboxyfluorescein diacetate succinimidyl ester (CFDA/SE labeled type 3 Streptococcus pneumoniae. Bronchoalveolar lavage is performed and resident alveolar macrophages and recruited PMNs are labeled with monoclonal antibodies specific for surface epitopes on each cell type. Three color flow cytometry is utilized to identify the cell types, quantify recruitment, and determine uptake of the labeled bacteria. Results The viability of the alveolar macrophages and PMNs isolated from the lavage fluid was >95%. The values of the percentage of PMNs in the lavage fluid as well as the percentage of PMNs associated with CFSE-labeled S. pneumoniae as measured through flow cytometry showed a high degree of correlation with the results from manual counting of cytospin slides. Conclusion This assay is suitable for measuring bacterial uptake within the infected lung. It can be adapted for use with other organisms and/or animal model systems.

  14. CD47 limits antibody dependent phagocytosis against non-malignant B cells.

    Science.gov (United States)

    Gallagher, Sandra; Turman, Sean; Lekstrom, Kristen; Wilson, Susan; Herbst, Ronald; Wang, Yue

    2017-05-01

    Recent studies have demonstrated the importance of CD47 in protecting malignant B cells from antibody dependent cellular phagocytosis (ADCP). Combined treatment of anti-CD47 and -CD20 antibodies synergistically augment elimination of tumor B cells in xenograft mouse models. This has led to the development of novel reagents that can potentially enhance killing of malignant B cells in patients. B cell depleting therapy is also a promising treatment for autoimmune patients. In the current study, we aimed to investigate whether or not CD47 protects non-malignant B cells from ADCP. We show that CD47 is expressed on all B cells in mice, with the highest level on plasma cells in bone marrow and spleen. Although its expression is dispensable for B cell development in mice, CD47 on B cells limits antibody mediated phagocytosis. B cell depletion following in vivo anti-CD19 treatment is more efficient in CD47-/- mice than in wild type mice. In vitro, both naïve and activated B cells from CD47-/- mice are more sensitive to ADCP than wild type B cells. Lastly, we show in an ADCP assay that blocking CD47 can enhance anti-CD19 antibody mediated phagocytosis of wild type B cells. These results suggest that in addition to its already demonstrated benefit in cancer, targeting CD47 may be used as an adjunct in combination with B cell depletion antibodies for treatment of autoimmune diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... search Popular ... produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will ...

  16. Antimicrobial Treatments and Efficacy

    Science.gov (United States)

    To limit exposure to indoor biological contamination a risk-management approach which employs various antimicrobial treatments can effectively control contaminants and reduce exposure. Antimicrobial treatment of biological contaminants, especially mold in buildings, it is often n...

  17. Antimicrobial (Drug) Resistance

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Antimicrobial (Drug) Resistance Go to Information for Researchers ► Credit: ... and infectious diseases. Why Is the Study of Antimicrobial (Drug) Resistance a Priority for NIAID? Over time, ...

  18. With Friends Like These: The Complex Role of Neutrophils in the Progression of Severe Pneumonia

    Directory of Open Access Journals (Sweden)

    Roger D. Pechous

    2017-05-01

    Full Text Available Pneumonia is a leading cause of death from infection in the United States and across the globe. During pulmonary infection, clear resolution of host inflammatory responses occurs in the absence of appreciable lung damage. Neutrophils are the first wave of leukocytes to arrive in the lung upon infection. After activation, neutrophils traffic from the vasculature via transendothelial migration through the lung interstitium and into the alveolar space. Successful pulmonary immunity requires neutrophil-mediated killing of invading pathogens by phagocytosis and release of a myriad of antimicrobial molecules, followed by resolution of inflammation, neutrophil apoptosis, and clearing of dead or dying neutrophils by macrophages. In addition to their antimicrobial role, it is becoming clear that neutrophils are also important modulators of innate and adaptive immune responses, primarily through the release of cytokines and recruitment of additional waves of neutrophils into the airways. Though typically essential to combating severe pneumonia, neutrophil influx into the airways is a double-edged sword: Overzealous neutrophil activation can cause severe tissue damage as a result of the release of toxic agents including proteases, cationic polypeptides, cytokines, and reactive oxygen species (ROS aimed at killing invading microbes. In extreme cases, the damage caused by neutrophils and other innate immune mediators become the primary source of morbidity and mortality. Here, we review the complex role of neutrophils during severe pneumonia by highlighting specific molecules and processes that contribute to pulmonary immunity, but can also drive progression of severe disease. Depending on the identity of the infectious agent, enhancing or suppressing neutrophil-mediated responses may be key to effectively treating severe and typically lethal pneumonia.

  19. CD14-dependent monocyte isolation enhances phagocytosis of listeria monocytogenes by proinflammatory, GM-CSF-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Caroline Neu

    Full Text Available Macrophages are an important line of defence against invading pathogens. Human macrophages derived by different methods were tested for their suitability as models to investigate Listeria monocytogenes (Lm infection and compared to macrophage-like THP-1 cells. Human primary monocytes were isolated by either positive or negative immunomagnetic selection and differentiated in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF or macrophage colony-stimulating factor (M-CSF into pro- or anti-inflammatory macrophages, respectively. Regardless of the isolation method, GM-CSF-derived macrophages (GM-Mφ stained positive for CD206 and M-CSF-derived macrophages (M-Mφ for CD163. THP-1 cells did not express CD206 or CD163 following incubation with PMA, M- or GM-CSF alone or in combination. Upon infection with Lm, all primary macrophages showed good survival at high multiplicities of infection whereas viability of THP-1 was severely reduced even at lower bacterial numbers. M-Mφ generally showed high phagocytosis of Lm. Strikingly, phagocytosis of Lm by GM-Mφ was markedly influenced by the method used for isolation of monocytes. GM-Mφ derived from negatively isolated monocytes showed low phagocytosis of Lm whereas GM-Mφ generated from positively selected monocytes displayed high phagocytosis of Lm. Moreover, incubation with CD14 antibody was sufficient to enhance phagocytosis of Lm by GM-Mφ generated from negatively isolated monocytes. By contrast, non-specific phagocytosis of latex beads by GM-Mφ was not influenced by treatment with CD14 antibody. Furthermore, phagocytosis of Lactococcus lactis, Escherichia coli, human cytomegalovirus and the protozoan parasite Leishmania major by GM-Mφ was not enhanced upon treatment with CD14 antibody indicating that this effect is specific for Lm. Based on these observations, we propose macrophages derived by ex vivo differentiation of negatively selected human primary monocytes as the most

  20. Novel natural food antimicrobials.

    Science.gov (United States)

    Juneja, Vijay K; Dwivedi, Hari P; Yan, Xianghe

    2012-01-01

    Naturally occurring antimicrobial compounds could be applied as food preservatives to protect food quality and extend the shelf life of foods and beverages. These compounds are naturally produced and isolated from various sources, including plants, animals and microorganisms, in which they constitute part of host defense systems. Many naturally occurring compounds, such as nisin, plant essential oils, and natamycin, have been widely studied and are reported to be effective in their potential role as antimicrobial agents against spoilage and pathogenic microorganisms. Although some of these natural antimicrobials are commercially available and applied in food processing, their efficacy, consumer acceptance and regulation are not well defined. This manuscript reviews natural antimicrobial compounds with reference to their applications in food when applied individually or in combination with other hurdles. It also reviews the mechanism of action of selected natural antimicrobials, factors affecting their antimicrobial activities, and future prospects for use of natural antimicrobials in the food industry.

  1. Kinetic studies of Candida parapsilosis phagocytosis by macrophages and detection of intracellular survival mechanisms

    Directory of Open Access Journals (Sweden)

    Renata eToth

    2014-11-01

    Full Text Available Even though the number of Candida infections due to non-albicans species like C. parapsilosis has been increasing, little is known about their pathomechanisms. Certain aspects of C. parapsilosis and host interactions have already been investigated; however we lack information about the innate cellular responses towards this species. The aim of our project was to dissect and compare the phagocytosis of C. parapsilosis to C. albicans and to another Candida species C. glabrata by murine and human macrophages by live cell video microscopy. We broke down the phagocytic process into three stages: macrophage migration, engulfment of fungal cells and host cell killing after the uptake. Our results showed increased macrophage migration towards C. parapsilosis and we observed differences during the engulfment processes when comparing the three species. The engulfment time of C. parapsilosis was comparable to that of C. albicans regardless of the pseudohypha length and spatial orientation relative to phagocytes, while the rate of host cell killing and the overall uptake regarding C. parapsilosis showed similarities mainly with C. glabrata. Furthermore, we observed difference between human and murine phagocytes in the uptake of C. parapsilosis. UV-treatment of fungal cells had varied effects on phagocytosis dependent upon which Candida strain was used. Besides statistical analysis, live cell imaging videos showed that this species similarly to the other two also has the ability to survive in host cells via the following mechanisms: yeast replication, and pseudohypha growth inside of phagocytes, exocytosis of fungal cells and also abortion of host cell mitosis following the uptake. According to our knowledge this is the first study that provides a thorough examination of C. parapsilosis phagocytosis and reports intracellular survival mechanisms associated with this species.

  2. Extracellular vesicles modulate host-microbe responses by altering TLR2 activity and phagocytosis.

    Directory of Open Access Journals (Sweden)

    Jeroen van Bergenhenegouwen

    Full Text Available Oral delivery of Gram positive bacteria, often derived from the genera Lactobacillus or Bifidobacterium, can modulate immune function. Although the exact mechanisms remain unclear, immunomodulatory effects may be elicited through the direct interaction of these bacteria with the intestinal epithelium or resident dendritic cell (DC populations. We analyzed the immune activation properties of Lactobacilli and Bifidobacterium species and made the surprising observation that cellular responses in vitro were differentially influenced by the presence of serum, specifically the extracellular vesicle (EV fraction. In contrast to the tested Lactobacilli species, tested Bifidobacterium species induce TLR2/6 activity which is inhibited by the presence of EVs. Using specific TLR ligands, EVs were found to enhance cellular TLR2/1 and TLR4 responses while TLR2/6 responses were suppressed. No effect could be observed on cellular TLR5 responses. We determined that EVs play a role in bacterial aggregation, suggesting that EVs interact with bacterial surfaces. EVs were found to slightly enhance DC phagocytosis of Bifidobacterium breve whereas phagocytosis of Lactobacillus rhamnosus was virtually absent upon serum EV depletion. DC uptake of a non-microbial substance (dextran was not affected by the different serum fractions suggesting that EVs do not interfere with DC phagocytic capacity but rather modify the DC-microbe interaction. Depending on the microbe, combined effects of EVs on TLR activity and phagocytosis result in a differential proinflammatory DC cytokine release. Overall, these data suggest that EVs play a yet unrecognized role in host-microbe responses, not by interfering in recipient cellular responses but via attachment to, or scavenging of, microbe-associated molecular patterns. EVs can be found in any tissue or bodily fluid, therefore insights into EV-microbe interactions are important in understanding the mechanism of action of potential

  3. Cigarette Smoke Exposure Inhibits Bacterial Killing via TFEB-Mediated Autophagy Impairment and Resulting Phagocytosis Defect

    Directory of Open Access Journals (Sweden)

    Garrett Pehote

    2017-01-01

    Full Text Available Introduction. Cigarette smoke (CS exposure is the leading risk factor for COPD-emphysema pathogenesis. A common characteristic of COPD is impaired phagocytosis that causes frequent exacerbations in patients leading to increased morbidity. However, the underlying mechanism is unclear. Hence, we investigated if CS exposure causes autophagy impairment as a mechanism for diminished bacterial clearance via phagocytosis by utilizing murine macrophages (RAW264.7 cells and Pseudomonas aeruginosa (PA01-GFP as an experimental model. Methods. Briefly, RAW cells were treated with cigarette smoke extract (CSE, chloroquine (autophagy inhibitor, TFEB-shRNA, CFTR(inh-172, and/or fisetin prior to bacterial infection for functional analysis. Results. Bacterial clearance of PA01-GFP was significantly impaired while its survival was promoted by CSE (p<0.01, autophagy inhibition (p<0.05; p<0.01, TFEB knockdown (p<0.01; p<0.001, and inhibition of CFTR function (p<0.001; p<0.01 in comparison to the control group(s that was significantly recovered by autophagy-inducing antioxidant drug, fisetin, treatment (p<0.05; p<0.01; and p<0.001. Moreover, investigations into other pharmacological properties of fisetin show that it has significant mucolytic and bactericidal activities (p<0.01; p<0.001, which warrants further investigation. Conclusions. Our data suggests that CS-mediated autophagy impairment as a critical mechanism involved in the resulting phagocytic defect, as well as the therapeutic potential of autophagy-inducing drugs in restoring is CS-impaired phagocytosis.

  4. Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response.

    Science.gov (United States)

    Cai, Qing; Li, Yuanyuan; Pei, Gang

    2017-03-24

    Ganoderma lucidum (GL) has been widely used in Asian countries for hundreds of years to promote health and longevity. The pharmacological functions of which had been classified, including the activation of innate immune responses, suppression of tumour and modulation of cell proliferations. Effective fractions of Ganoderma lucidum polysaccharides (GLP) had already been reported to regulate the immune system. Nevertheless, the role of GLP in the microglia-mediated neuroinflammation has not been sufficiently elucidated. Further, GLP effect on microglial behavioural modulations in correlation with the inflammatory responses remains to be unravelled. The aim of this work was to quantitatively analyse the contributions of GLP on microglia. The BV2 microglia and primary mouse microglia were stimulated by lipopolysaccharides (LPS) and amyloid beta 42 (Aβ 42 ) oligomer, respectively. Investigation on the effect of GLP was carried by quantitative determination of the microglial pro- and anti-inflammatory cytokine expressions and behavioural modulations including migration, morphology and phagocytosis. Analysis of microglial morphology and phagocytosis modulations was confirmed in the zebrafish brain. Quantitative results revealed that GLP down-regulates LPS- or Aβ-induced pro-inflammatory cytokines and promotes anti-inflammatory cytokine expressions in BV-2 and primary microglia. In addition, GLP attenuates inflammation-related microglial migration, morphological alterations and phagocytosis probabilities. We also showed that modulations of microglial behavioural responses were associated with MCP-1 and C1q expressions. Overall, our study provides an insight into the GLP regulation of LPS- and Aβ-induced neuroinflammation and serves an implication that the neuroprotective function of GLP might be achieved through modulation of microglial inflammatory and behavioural responses.

  5. Scavenger Receptor C Mediates Phagocytosis of White Spot Syndrome Virus and Restricts Virus Proliferation in Shrimp

    Science.gov (United States)

    Yang, Ming-Chong; Shi, Xiu-Zhen; Yang, Hui-Ting; Sun, Jie-Jie; Xu, Ling; Wang, Xian-Wei; Zhao, Xiao-Fan

    2016-01-01

    Scavenger receptors are an important class of pattern recognition receptors that play several important roles in host defense against pathogens. The class C scavenger receptors (SRCs) have only been identified in a few invertebrates, and their role in the immune response against viruses is seldom studied. In this study, we firstly identified an SRC from kuruma shrimp, Marsupenaeus japonicus, designated MjSRC, which was significantly upregulated after white spot syndrome virus (WSSV) challenge at the mRNA and protein levels in hemocytes. The quantity of WSSV increased in shrimp after knockdown of MjSRC, compared with the controls. Furthermore, overexpression of MjSRC led to enhanced WSSV elimination via phagocytosis by hemocytes. Pull-down and co-immunoprecipitation assays demonstrated the interaction between MjSRC and the WSSV envelope protein. Electron microscopy observation indicated that the colloidal gold-labeled extracellular domain of MjSRC was located on the outer surface of WSSV. MjSRC formed a trimer and was internalized into the cytoplasm after WSSV challenge, and the internalization was strongly inhibited after knockdown of Mjβ-arrestin2. Further studies found that Mjβ-arrestin2 interacted with the intracellular domain of MjSRC and induced the internalization of WSSV in a clathrin-dependent manner. WSSV were co-localized with lysosomes in hemocytes and the WSSV quantity in shrimp increased after injection of lysosome inhibitor, chloroquine. Collectively, this study demonstrated that MjSRC recognized WSSV via its extracellular domain and invoked hemocyte phagocytosis to restrict WSSV systemic infection. This is the first study to report an SRC as a pattern recognition receptor promoting phagocytosis of a virus. PMID:28027319

  6. Non-degradable contrast agent with selective phagocytosis for cellular and hepatic magnetic resonance imaging

    International Nuclear Information System (INIS)

    Chen, Fei-Yan; Gu, Zhe-Jia; Zhao, Dawen; Tang, Qun

    2015-01-01

    Degradation is the long-existing toxic issue of metal-containing inorganic medicine. In this paper, we fully investigated the degradation of dextran-coated KMnF 3 nanocube in the in vitro and in vivo surroundings. Different from the general decomposing and ion releasing events, this special agent is resistant to acidic environment, as well as ion exchange. Non-degradability was proved by simulated and real cellular experiments. Moreover, it can be engulfed in the macrophage cells and kept stable in the lysosome. Due to its stability and highly selective phagocytosis, implanted liver cancer can be clearly visualized after administration

  7. Impaired neonatal macrophage phagocytosis is not explained by overproduction of prostaglandin E2

    Directory of Open Access Journals (Sweden)

    Ballinger Megan N

    2011-12-01

    Full Text Available Abstract Background Neonates and young infants manifest increased susceptibility to bacterial, viral and fungal lung infections. Previous work has identified a role for eicosanoids in mediating host defense functions of macrophages. This study examines the relationship between alveolar macrophage (AM host defense and production of lipid mediators during the neonatal period compared to adult AMs. Methods AMs were harvested from young (day 7 and day 14 and adult (~10 week rats. The functionality of these cells was assessed by examining their ability to phagocytose opsonized targets, produce cytokines, eicosanoids and intracellular cAMP measured by enzyme immunoassays, and gene expression of proteins, enzymes and receptors essential for eicosanoid generation and phagocytosis measured by real time RT-PCR. Results AMs from young animals (day 7 and 14 were defective in their ability to phagocytose opsonized targets and produce tumor necrosis factor (TNF- α. In addition, young AMs produce more prostaglandin (PG E2, a suppressor of host defense, and less leukotriene (LT B4, a promoter of host defense. Young AMs express higher levels of enzymes responsible for the production of PGE2 and LTB4; however, there was no change in the expression of E prostanoid (EP receptors or LT receptors. Despite the similar EP profiles, young AMs are more responsive to PGE2 as evidenced by their increased production of the important second messenger, cyclic AMP. In addition, young AMs express higher levels of PDE3B and lower levels of PDE4C compared to adult AMs. However, even though the young AMs produced a skewed eicosanoid profile, neither the inhibition of PGE2 by aspirin nor the addition of exogenous LTB4 rescued the defective opsonized phagocytosis. Examination of a receptor responsible for mediating opsonized phagocytosis showed a significant decrease in the gene expression levels of the Fcgamma receptor in young (day 7 AMs compared to adult AMs. Conclusion These

  8. Non-degradable contrast agent with selective phagocytosis for cellular and hepatic magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei-Yan [Nanchang University, College of Chemistry (China); Gu, Zhe-Jia [Nanchang University, Institute for Advanced Study (China); Zhao, Dawen [UT Southwestern Medical Center, Department of Radiology (United States); Tang, Qun, E-mail: tangqun@ncu.edu.cn [Nanchang University, Institute for Advanced Study (China)

    2015-09-15

    Degradation is the long-existing toxic issue of metal-containing inorganic medicine. In this paper, we fully investigated the degradation of dextran-coated KMnF{sub 3} nanocube in the in vitro and in vivo surroundings. Different from the general decomposing and ion releasing events, this special agent is resistant to acidic environment, as well as ion exchange. Non-degradability was proved by simulated and real cellular experiments. Moreover, it can be engulfed in the macrophage cells and kept stable in the lysosome. Due to its stability and highly selective phagocytosis, implanted liver cancer can be clearly visualized after administration.

  9. Determination of phagocytosis of 32P-labeled Staphylococcus aureus by bovine polymorphonuclear leukocytes

    International Nuclear Information System (INIS)

    Dulin, A.M.; Paape, M.J.; Weinland, B.T.

    1984-01-01

    A procedure for the measurement of phagocytosis by bovine polymorphonuclear leukocytes (PMN) of 32 P-labeled Staphylococcus aureus was modified so that a larger number of samples could be compared in a single run, and smaller volumes of sample, PMN, and 32 P-labeled S aureus could be used. Results were highly reproducible, with a coefficient of variation between duplicate determinations of less than or equal to 2%. Lysostaphin was prepared from the supernatant of S staphylolyticus and was compared with a commercially available preparation. Effects of lysostaphin on PMN and influence of incubation media on release of 32 P from 32 P-labeled S aureus by lysostaphin were examined

  10. Ability of Staphylococcus aureus coagulase genotypes to resist neutrophil bactericidal activity and phagocytosis

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Scott, N. L.; Sordillo, L. M.

    1994-01-01

    This study investigated the functional capabilities of neutrophils against different Staphylococcus aureus genotypes isolated from cows with mastitis. Six strains of S. aureus were chosen for use in the study, two with a common genotype, two with an intermediate genotype, and two with a rare......; rare type, 10.5/cell). These findings suggest that one of the reasons for the variation in prevalence of different genotypes of S. aureus in the mammary gland is due to the superior ability of some types to resist phagocytosis and/or killing by bovine neutrophils...

  11. Clearing the corpses: regulatory mechanisms, novel tools, and therapeutic potential of harnessing microglial phagocytosis in the diseased brain

    Directory of Open Access Journals (Sweden)

    Irune Diaz-Aparicio

    2016-01-01

    Full Text Available Apoptosis is a widespread phenomenon that occurs in the brain in both physiological and pathological conditions. Dead cells must be quickly removed to avoid the further toxic effects they exert in the parenchyma, a process executed by microglia, the brain professional phagocytes. Although phagocytosis is critical to maintain tissue homeostasis, it has long been either overlooked or indirectly assessed based on microglial morphology, expression of classical activation markers, or engulfment of artificial phagocytic targets in vitro. Nevertheless, these indirect methods present several limitations and, thus, direct observation and quantification of microglial phagocytosis is still necessary to fully grasp its relevance in the diseased brain. To overcome these caveats and obtain a comprehensive, quantitative picture of microglial phagocytosis we have developed a novel set of parameters. These parameters have allowed us to identify the different strategies utilized by microglia to cope with apoptotic challenges induced by excitotoxicity or inflammation. In contrast, we discovered that in mouse and human epilepsy microglia failed to find and engulf apoptotic cells, resulting in accumulation of debris and inflammation. Herein, we advocate that the efficiency of microglial phagocytosis should be routinely tested in neurodegenerative and neurological disorders, in order to determine the extent to which it contributes to apoptosis and inflammation found in these conditions. Finally, our findings point towards enhancing microglial phagocytosis as a novel therapeutic strategy to control tissue damage and inflammation, and accelerate recovery in brain diseases.

  12. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials

    OpenAIRE

    Nurit Beyth; Yael Houri-Haddad; Avi Domb; Wahid Khan; Ronen Hazan

    2015-01-01

    Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The ...

  13. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α on phagocytes

    Directory of Open Access Journals (Sweden)

    Reichert Fanny

    2011-03-01

    Full Text Available Abstract Background Traumatic injury to axons produces breakdown of axons and myelin at the site of the lesion and then further distal to this where Wallerian degeneration develops. The rapid removal of degenerated myelin by phagocytosis is advantageous for repair since molecules in myelin impede regeneration of severed axons. Thus, revealing mechanisms that regulate myelin phagocytosis by macrophages and microglia is important. We hypothesize that myelin regulates its own phagocytosis by simultaneous activation and down-regulation of microglial and macrophage responses. Activation follows myelin binding to receptors that mediate its phagocytosis (e.g. complement receptor-3, which has been previously studied. Down-regulation, which we test here, follows binding of myelin CD47 to the immune inhibitory receptor SIRPα (signal regulatory protein-α on macrophages and microglia. Methods CD47 and SIRPα expression was studied by confocal immunofluorescence microscopy, and myelin phagocytosis by ELISA. Results We first document that myelin, oligodendrocytes and Schwann cells express CD47 without SIRPα and further confirm that microglia and macrophages express both CD47 and SIRPα. Thus, CD47 on myelin can bind to and subsequently activate SIRPα on phagocytes, a prerequisite for CD47/SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis by itself. We then demonstrate that phagocytosis of CD47+/+ myelin is augmented when binding between myelin CD47 and SIRPα on phagocytes is blocked by mAbs against CD47 and SIRPα, indicating that down-regulation of phagocytosis indeed depends on CD47-SIRPα binding. Further, phagocytosis in serum-free medium of CD47+/+ myelin is augmented after knocking down SIRPα levels (SIRPα-KD in phagocytes by lentiviral infection with SIRPα-shRNA, whereas phagocytosis of myelin that lacks CD47 (CD47-/- is not. Thus, myelin CD47 produces SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis in phagocytes

  14. Peripheral blood leukocyte phagocytosis and respiratory response to certain macromolecular substances in the ABCC-JNIH adult health study, Hiroshima

    Energy Technology Data Exchange (ETDEWEB)

    Barerras, R F; Finch, S C

    1974-01-01

    The functional integrity of the peripheral blood leukocytes of 10 heavily exposed subjects and 10 matched controls was evaluated by measuring oxygen consumption following the addition of latex particles and E. coli endotoxin, and measuring sensitized and unsensitized starch granule phagocytosis. There was no significant difference in the responses of leukocytes from exposed subjects and controls following the addition of latex particles. The ultimate response of leukocytes from exposed subjects to the stimulus of E. coli endotoxin was comparable to that of the controls. Depressed early response in 5 of 10 exposed and 1 of 10 control subjects was observed. Interpretation is unclear. No evidence of radiation-related impairment of starch granule phagocytosis was observed. Results fail to demonstrate any late radiation-related functional impairment of peripheral blood leukocytes during phagocytosis. The serum-related changes were inconstant and probably were of little significance. (auth)

  15. Intraocular pressure elevation precedes a phagocytosis decline in a model of pigmentary glaucoma [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Yalong Dang

    2018-04-01

    Full Text Available Background: Outflow regulation and phagocytosis are key functions of the trabecular meshwork (TM, but it is not clear how the two are related in secondary open angle glaucomas characterized by an increased particle load. We hypothesized that diminished TM phagocytosis is not the primary cause of early ocular hypertension and recreated pigment dispersion in a porcine ex vivo model. Methods: Sixteen porcine anterior chamber cultures received a continuous infusion of pigment granules (Pg, while 16 additional anterior chambers served as controls (C. Pressure transducers recorded the intraocular pressure (IOP. The phagocytic capacity of the trabecular meshwork was determined by fluorescent microspheres. Results: The baseline IOPs in Pg and C were similar (P=0.82. A significant IOP elevation occurred in Pg at 48, 120, and 180 hours (all P0.05. Conclusions: In this porcine model of pigmentary glaucoma, an IOP elevation occurs much earlier than when phagocytosis fails, suggesting that two separate mechanisms might be at work.

  16. Collectin-11 Is an Important Modulator of Retinal Pigment Epithelial Cell Phagocytosis and Cytokine Production.

    Science.gov (United States)

    Dong, Xia; Wu, Weiju; Ma, Liang; Liu, Chengfei; Bhuckory, Mohajeet B; Wang, Liping; Nandrot, Emeline F; Xu, Heping; Li, Ke; Liu, Yizhi; Zhou, Wuding

    2017-01-01

    In this paper, we report previously unknown roles for collectin-11 (CL-11, a soluble C-type lectin) in modulating the retinal pigment epithelial (RPE) cell functions of phagocytosis and cytokine production. We found that CL-11 and its carbohydrate ligand are expressed in both the murine and human neural retina; these resemble each other in terms of RPE and photoreceptor cells. Functional analysis of murine RPE cells showed that CL-11 facilitates the opsonophagocytosis of photoreceptor outer segments and apoptotic cells, and also upregulates IL-10 production. Mechanistic analysis revealed that calreticulin on the RPE cells is required for CL-11-mediated opsonophagocytosis whereas signal-regulatory protein α and mannosyl residues on the cells are involved in the CL-11-mediated upregulation of IL-10 production. This study is the first to demonstrate the role of CL-11 and the molecular mechanisms involved in modulating RPE cell phagocytosis and cytokine production. It provides a new insight into retinal health and disease and has implications for other phagocytic cells. © 2017 S. Karger AG, Basel.

  17. Phagocytosis by Thrombocytes is a Conserved Innate Immune Mechanism in Lower Vertebrates.

    Science.gov (United States)

    Nagasawa, Takahiro; Nakayasu, Chihaya; Rieger, Aja M; Barreda, Daniel R; Somamoto, Tomonori; Nakao, Miki

    2014-01-01

    Thrombocytes, nucleated hemostatic blood cells of non-mammalian vertebrates, are regarded as the functional equivalent of anucleated mammalian platelets. Additional immune functions, including phagocytosis, have also been suggested for thrombocytes, but no conclusive molecular or cellular experimental evidence for their potential ingestion and clearance of infiltrating microbes has been provided till date. In the present study, we demonstrate the active phagocytic ability of thrombocytes in lower vertebrates using teleost fishes and amphibian models. Ex vivo, common carp thrombocytes were able to ingest live bacteria as well as latex beads (0.5-3 μm in diameter) and kill the bacteria. In vivo, we found that thrombocytes represented nearly half of the phagocyte population in the common carp total peripheral blood leukocyte pool. Phagocytosis efficiency was further enhanced by serum opsonization. Particle internalization led to phagolysosome fusion and killing of internalized bacteria, pointing to a robust ability for microbe elimination. We find that this potent phagocytic activity is shared across teleost (Paralichthys olivaceus) and amphibian (Xenopus laevis) models examined, implying its conservation throughout the lower vertebrate lineage. Our results provide novel insights into the dual nature of thrombocytes in the immune and homeostatic response and further provide a deeper understanding of the potential immune function of mammalian platelets based on the conserved and vestigial functions.

  18. Phagocytosis by thrombocytes is a conserved innate immune mechanism in lower vertebrates

    Directory of Open Access Journals (Sweden)

    Takahiro eNagasawa

    2014-09-01

    Full Text Available Thrombocytes, nucleated hemostatic blood cells of nonmammalian vertebrates, are regarded as the functional equivalent of anucleated mammalian platelets. Additional immune functions, including phagocytosis, have also been suggested for thrombocytes, but no conclusive molecular or cellular experimental evidence for their potential ingestion and clearance of infiltrating microbes has been provided till date. In the present study, we demonstrate the active phagocytic ability of thrombocytes in lower vertebrates using teleost fishes and amphibian models. Ex vivo, common carp thrombocytes were able to ingest live bacteria as well as latex beads (0.5–3 μm in diameter and kill the bacteria. In vivo, we found that thrombocytes represented nearly half of the phagocyte population in the common carp total peripheral blood leukocyte pool. Phagocytosis efficiency was further enhanced by serum opsonization. Particle internalization led to phagolysosome fusion and killing of internalized bacteria, pointing to a robust ability for microbe elimination. We find that this potent phagocytic activity is shared across teleost (Paralichthys olivaceus and amphibian (Xenopus laevis models examined, implying its conservation throughout the lower vertebrate lineage. Our results provide novel insights into the dual nature of thrombocytes in the immune and homeostatic response and further provide a deeper understanding of the potential immune function of mammalian platelets based on the conserved and vestigial functions.

  19. Brucella abortus-activated microglia induce neuronal death through primary phagocytosis.

    Science.gov (United States)

    Rodríguez, Ana M; Delpino, M Victoria; Miraglia, M Cruz; Costa Franco, Miriam M; Barrionuevo, Paula; Dennis, Vida A; Oliveira, Sergio C; Giambartolomei, Guillermo H

    2017-07-01

    Inflammation has long been implicated as a contributor to pathogenesis in neurobrucellosis. Many of the associated neurocognitive symptoms of neurobrucellosis may be the result of neuronal dysfunction resulting from the inflammatory response induced by Brucella abortus infection in the central nervous system. In this manuscript, we describe an immune mechanism for inflammatory activation of microglia that leads to neuronal death upon B. abortus infection. B. abortus was unable to infect or harm primary cultures of mouse neurons. However, when neurons were co-cultured with microglia and infected with B. abortus significant neuronal loss occurred. This phenomenon was dependent on TLR2 activation by Brucella lipoproteins. Neuronal death was not due to apoptosis, but it was dependent on the microglial release of nitric oxide (NO). B. abortus infection stimulated microglial proliferation, phagocytic activity and engulfment of neurons. NO secreted by B. abortus-activated microglia induced neuronal exposure of the "eat-me" signal phosphatidylserine (PS). Blocking of PS-binding to protein milk fat globule epidermal growth factor-8 (MFG-E8) or microglial vitronectin receptor-MFG-E8 interaction was sufficient to prevent neuronal loss by inhibiting microglial phagocytosis without affecting their activation. Taken together, our results indicate that B. abortus is not directly toxic to neurons; rather, these cells become distressed and are killed by phagocytosis in the inflammatory surroundings generated by infected microglia. Neuronal loss induced by B. abortus-activated microglia may explain, in part, the neurological deficits observed during neurobrucellosis. © 2017 Wiley Periodicals, Inc.

  20. Effects of aflibercept on primary RPE cells: toxicity, wound healing, uptake and phagocytosis.

    Science.gov (United States)

    Klettner, Alexa; Tahmaz, Nihat; Dithmer, Michaela; Richert, Elisabeth; Roider, Johann

    2014-10-01

    Anti-VEGF treatment is the therapy of choice in age-related macular degeneration, and is also applied in diabetic macular oedema or retinal vein occlusion. Recently, the fusion protein, aflibercept, has been approved for therapeutic use. In this study, we investigate the effects of aflibercept on primary RPE cells. Primary RPE cells were prepared from freshly slaughtered pigs' eyes. The impact of aflibercept on cell viability was investigated with MTT and trypan blue exclusion assay. The influence of aflibercept on wound healing was assessed with a scratch assay. Intracellular uptake of aflibercept was investigated in immunohistochemistry and its influence on phagocytosis with a phagocytosis assay using opsonised latex beads. Aflibercept displays no cytotoxicity on RPE cells but impairs its wound healing ability. It is taken up into RPE cells and can be intracellularly detected for at least 7 days. Intracellular aflibercept impairs the phagocytic capacity of RPE cells. Aflibercept interferes with the physiology of RPE cells, as it is taken up into RPE cells, which is accompanied by a reduction of the phagocytic ability. Additionally, it impairs the wound healing capacity of RPE cells. These effects on the physiology of RPE cells may indicate possible side effects. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Outer segment phagocytosis by cultured retinal pigment epithelial cells requires Gas6.

    Science.gov (United States)

    Hall, M O; Prieto, A L; Obin, M S; Abrams, T A; Burgess, B L; Heeb, M J; Agnew, B J

    2001-10-01

    The function and viability of vertebrate photoreceptors requires the daily phagocytosis of photoreceptor outer segments (OS) by the adjacent retinal pigment epithelium (RPE). We demonstrate here a critical role in this process for Gas6 and by implication one of its receptor protein tyrosine kinases (RTKs), Mertk (Mer). Gas6 specifically and selectively stimulates the phagocytosis of OS by normal cultured rat RPE cells. The magnitude of the response is dose-dependent and shows an absolute requirement for calcium. By contrast the Royal College of Surgeons (RCS) rat RPE cells, in which a mutation in the gene Mertk results in the expression of a truncated, non-functional receptor, does not respond to Gas6. These data strongly suggest that activation of Mertk by its ligand, Gas6, is the specific signaling pathway responsible for initiating the ingestion of shed OS. Moreover, photoreceptor degeneration in the RCS rat retina, which lacks Mertk, and in humans with a mutation in Mertk, strongly suggests that the Gas6/Mertk signaling pathway is essential for photoreceptor viability. We believe that this is the first demonstration of a specific function for Gas6 in the eye. Copyright 2001 Academic Press.

  2. Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects

    Science.gov (United States)

    Nejadnik, Hossein; Lenkov, Olga; Gassert, Florian; Fretwell, Deborah; Lam, Isaac; Daldrup-Link, Heike E.

    2016-05-01

    Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.

  3. Identification of intracellular phospholipases A2 in the human eye: involvement in phagocytosis of photoreceptor outer segments

    DEFF Research Database (Denmark)

    Kolko, Miriam; Wang, Jinmei; Zhan, Chen

    2007-01-01

    PURPOSE: To identify intracellular phospholipases A(2) (PLA(2)) in the human retina and to explore the role of these enzymes in human retinal pigment epithelium (RPE) phagocytosis of photoreceptor outer segments (POS). METHODS: PCR amplification and Western blot analysis were used to identify m......)-VIA activity was found to be specifically increased 12 hours after ARPE-19 cells were fed with POS. Finally, RPE phagocytosis was inhibited by the iPLA(2)-VIA inhibitor bromoenol lactone. CONCLUSIONS: Various intracellular PLA(2) subtypes are present in the human retina. iPLA(2)-VIA may play...

  4. Involvement of Tiam1, RhoG and ELMO2/ILK in Rac1-mediated phagocytosis in human trabecular meshwork cells.

    Science.gov (United States)

    Peotter, Jennifer L; Phillips, Jenny; Tong, Tiegang; Dimeo, Kaylee; Gonzalez, Jose M; Peters, Donna M

    2016-10-01

    We previously demonstrated that an αvβ5 integrin/FAK- mediated pathway regulated the phagocytic properties of human trabecular meshwork (HTM) cells. Here we demonstrate that this process is mediated by Rac-1 and a previously unreported signaling pathway that utilizes the Tiam1 as well as a novel ILK/RhoG/ELMO2 signaling pathway. Phagocytosis in both a TM-1 cell line and normal HTM cells was mediated by Rac1 and could be significantly decreased by >75% using the Rac1 inhibitor EHop-016. Knockdown of Rac1 in TM-1 cells also inhibited phagocytosis by 40% whereas overexpression of a constitutively active Rac1 or stimulation with PDGF increased phagocytosis by 83% and 32% respectively. Tiam1 was involved in regulating phagocytosis. Knockdown of Tiam1 inhibited phagocytosis by 72% while overexpression of Tiam1 C1199 increased phagocytosis by 75%. Other upstream effectors of Rac1 found to be involved included ELMO2, RhoG, and ILK. Knockdowns of ELMO2, ILK, and RhoG caused a reduction in phagocytosis by 51%, 55% and 46% respectively. In contrast, knockdown of Vav2 and Dock1 or overexpression of Vav2 Y159/172F did not cause a significant change in phagocytosis. These data suggest a novel link between Tiam1 and RhoG/ILK /ELMO2 pathway as upstream effectors of the Rac1-mediated phagocytic process in TM cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. P2X receptor-dependent erythrocyte damage by α-hemolysin from Escherichia coli triggers phagocytosis by THP-1 cells

    DEFF Research Database (Denmark)

    Fagerberg, Steen Kåre; Skals, Marianne Gerberg; Leipziger, Jens Georg

    2013-01-01

    , which is known to be a keen trigger for phagocytosis. We hypothesize that exposure to HlyA elicits removal of the damaged erythrocytes by phagocytic cells. Cultured THP-1 cells as a model for erythrocytal phagocytosis was verified by a variety of methods, including live cell imaging. We consistently...

  6. The assessment of serum-mediated phagocytosis of necrotic material by polymorphonuclear leukocytes to diagnose and predict the clinical features of systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Compagno, Michele; Gullstrand, Birgitta; Jacobsen, Søren

    2016-01-01

    BACKGROUND: Serum-mediated phagocytosis of antibody- and complement-opsonized necrotic cell material (NCM) by polymorphonuclear leukocytes can be quantified by using a flow cytometry-based assay. The phagocytosis of necrotic cell material (PNC) assay parallels the well-known lupus erythematosus c...

  7. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma

    DEFF Research Database (Denmark)

    Overdijk, M. B.; Verploegen, S.; Bogels, M.

    2015-01-01

    Daratumumab (DARA) is a human CD38-specific IgG1 antibody that is in clinical development for the treatment of multiple myeloma (MM). The potential for IgG1 antibodies to induce macrophage-mediated phagocytosis, in combination with the known presence of macrophages in the tumor microenvironment...... in MM and other hematological tumors, led us to investigate the contribution of antibody-dependent, macrophage-mediated phagocytosis to DARA's mechanism of action. Live cell imaging revealed that DARA efficiently induced macrophage-mediated phagocytosis, in which individual macrophages rapidly...... and sequentially engulfed multiple tumor cells. DARA-dependent phagocytosis by mouse and human macrophages was also observed in an in vitro flow cytometry assay, using a range of MM and Burkitt's lymphoma cell lines. Phagocytosis contributed to DARA's anti-tumor activity in vivo, in both a subcutaneous...

  8. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Skip to common links HHS U.S. Department of Health and Human Services U.S. Food and Drug Administration A to Z Index Follow FDA En Español Search FDA Submit search ... & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet ...

  9. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Skip to common links HHS U.S. Department of Health and Human Services U.S. Food and Drug Administration ... Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet ...

  10. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... menu Skip to common links HHS U.S. Department of Health and Human Services U.S. Food and Drug Administration ... Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More ...

  11. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  12. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System About NARMS 2015 NARMS Integrated Report Data Meetings ... Deutsch | 日本語 | فارسی | English FDA Accessibility Careers FDA Basics FOIA No FEAR ...

  13. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Pin it Email Print The Food and Drug Administration's (FDA's) Center for Veterinary Medicine (CVM) produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will result in ...

  14. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials

    Directory of Open Access Journals (Sweden)

    Nurit Beyth

    2015-01-01

    Full Text Available Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The present review discusses the activities of nanoparticles as an antimicrobial means, their mode of action, nanoparticle effect on drug-resistant bacteria, and the risks attendant on their use as antibacterial agents. Factors contributing to nanoparticle performance in the clinical setting, their unique properties, and mechanism of action as antibacterial agents are discussed in detail.

  15. Tick Thioester-Containing Proteins and Phagocytosis Do Not Affect Transmission of Borrelia afzelii from the Competent Vector Ixodes ricinus

    Czech Academy of Sciences Publication Activity Database

    Urbanová, V.; Hajdušek, O.; Hönig Mondeková, Helena; Šíma, R.; Kopáček, P.

    2017-01-01

    Roč. 7, MAR 16 (2017), s. 1-16, č. článku 73. ISSN 2235-2988 Institutional support: RVO:61388971 Keywords : Borrelia * complement * phagocytosis Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.300, year: 2016

  16. Effects of early-life lead exposure on oxidative status and phagocytosis activity in great tits (Parus major)

    NARCIS (Netherlands)

    Rainio, Miia J.; Eeva, Tapio; Lilley, Thomas; Stauffer, Janina; Ruuskanen, Suvi

    2015-01-01

    Abstract Lead is a highly poisonous metal with a very long half-life, distributing throughout the body in blood and accumulating primarily in bones and kidney. We studied the short and long-term effects of early-life lead exposure on antioxidant defense and phagocytosis activity in a small passerine

  17. Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface.

    Directory of Open Access Journals (Sweden)

    Ya-Ping Ko

    Full Text Available Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a 'capsule'-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein.

  18. Cryptococcus neoformans Is Internalized by Receptor-Mediated or ‘Triggered’ Phagocytosis, Dependent on Actin Recruitment

    Science.gov (United States)

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both ‘zipper’ (receptor-mediated) and ‘trigger’ (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells. PMID:24586631

  19. Protein C Inhibitor (PCI) Binds to Phosphatidylserine Exposing Cells with Implications in the Phagocytosis of Apoptotic Cells and Activated Platelets

    Science.gov (United States)

    Rieger, Daniela; Assinger, Alice; Einfinger, Katrin; Sokolikova, Barbora; Geiger, Margarethe

    2014-01-01

    Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10–30% of cells). PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal. PMID:25000564

  20. Melanin targets LC3-associated phagocytosis (LAP): A novel pathogenetic mechanism in fungal disease.

    Science.gov (United States)

    Chamilos, Georgios; Akoumianaki, Tonia; Kyrmizi, Irene; Brakhage, Axel; Beauvais, Anne; Latge, Jean-Paul

    2016-05-03

    Intracellular swelling of conidia of the major human airborne fungal pathogen Aspergillus fumigatus results in surface exposure of immunostimulatory pathogen-associated molecular patterns (PAMPs) and triggers activation of a specialized autophagy pathway called LC3-associated phagocytosis (LAP) to promote fungal killing. We have recently discovered that, apart from PAMPs exposure, cell wall melanin removal during germination of A. fumigatus is a prerequisite for activation of LAP. Importantly, melanin promotes fungal pathogenicity via targeting LAP, as a melanin-deficient A. fumigatus mutant restores its virulence upon conditional inactivation of Atg5 in hematopoietic cells of mice. Mechanistically, fungal cell wall melanin selectively excludes the CYBA/p22phox subunit of NADPH oxidase from the phagosome to inhibit LAP, without interfering with signaling regulating cytokine responses. Notably, inhibition of LAP is a general property of melanin pigments, a finding with broad physiological implications.

  1. Intravenous immunglobulin binds beta amyloid and modifies its aggregation, neurotoxicity and microglial phagocytosis in vitro.

    Directory of Open Access Journals (Sweden)

    Susann Cattepoel

    Full Text Available Intravenous Immunoglobulin (IVIG has been proposed as a potential therapeutic for Alzheimer's disease (AD and its efficacy is currently being tested in mild-to-moderate AD. Earlier studies reported the presence of anti-amyloid beta (Aβ antibodies in IVIG. These observations led to clinical studies investigating the potential role of IVIG as a therapeutic agent in AD. Also, IVIG is known to mediate beneficial effects in chronic inflammatory and autoimmune conditions by interfering with various pathological processes. Therefore, we investigated the effects of IVIG and purified polyclonal Aβ-specific antibodies (pAbs-Aβ on aggregation, toxicity and phagocytosis of Aβ in vitro, thus elucidating some of the potential mechanisms of action of IVIG in AD patients. We report that both IVIG and pAbs-Aβ specifically bound to Aβ and inhibited its aggregation in a dose-dependent manner as measured by Thioflavin T assay. Additionally, IVIG and the purified pAbs-Aβ inhibited Aβ-induced neurotoxicity in the SH-SY5Y human neuroblastoma cell line and prevented Aβ binding to rat primary cortical neurons. Interestingly, IVIG and pAbs-Aβ also increased the number of phagocytosing cells as well as the amount of phagocytosed fibrillar Aβ by BV-2 microglia. Phagocytosis of Aβ depended on receptor-mediated endocytosis and was accompanied by upregulation of CD11b expression. Importantly, we could also show that Privigen dose-dependently reversed Aβ-mediated LTP inhibition in mouse hippocampal slices. Therefore, our in vitro results suggest that IVIG may have an impact on different processes involved in AD pathogenesis, thereby promoting further understanding of the effects of IVIG observed in clinical studies.

  2. Antimicrobial Peptides in Reptiles

    Science.gov (United States)

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  3. Antimicrobial (Drug) Resistance Prevention

    Science.gov (United States)

    ... June 6, 2018 HIV Vaccine Elicits Antibodies in Animals that Neutralize Dozens of HIV Strains , June 4, 2018 ... Antimicrobial (Drug) Resistance > Understanding share with facebook share with twitter share ...

  4. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... bacteria. Over time, the use of antimicrobial drugs will result in the development of resistant strains of ... and other key audiences. We hope this animation will make the concept more understandable to non-scientists ...

  5. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... it More sharing options Linkedin Pin it Email Print The Food and Drug Administration's (FDA's) Center for ... issue of antimicrobial resistance is that the subject material appears abstract and is complex. This video was ...

  6. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... produced material may be copied, reproduced, and distributed as long as FDA's Center for Veterinary Medicine is cited as the corporate author. Animation Animation of Antimicrobial Resistance ( ...

  7. What are Antimicrobial Pesticides?

    Science.gov (United States)

    Antimicrobial pesticides are substances or mixtures of substances used to destroy or suppress the growth of harmful microorganisms such as bacteria, viruses, or fungi on inanimate objects and surfaces.

  8. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... complex. This video was designed to make the concept of antimicrobial resistance more real and understandable to ... audiences. We hope this animation will make the concept more understandable to non-scientists by showing how ...

  9. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... NARMS 2015 NARMS Integrated Report Data Meetings and Publications Resources Judicious Use of Antimicrobials Page Last Updated: ... Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance Federal, State & Local Officials Consumers Health ...

  10. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... One of the major obstacles to understanding the issue of antimicrobial resistance is that the subject material ... Website Policies U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver Spring, MD 20993 1-888- ...

  11. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... proliferates among bacteria. Over time, the use of antimicrobial drugs will result in the development of resistant strains ... bacteria, complicating clinician's efforts to select the appropriate ... and human medicine to preserve the effectiveness of these drugs. One ...

  12. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts ... Inspections & Compliance Federal, State & Local Officials Consumers Health Professionals Science & Research Industry Scroll back to top Popular ...

  13. Antimicrobial compounds in tears.

    Science.gov (United States)

    McDermott, Alison M

    2013-12-01

    The tear film coats the cornea and conjunctiva and serves several important functions. It provides lubrication, prevents drying of the ocular surface epithelia, helps provide a smooth surface for refracting light, supplies oxygen and is an important component of the innate defense system of the eye providing protection against a range of potential pathogens. This review describes both classic antimicrobial compounds found in tears such as lysozyme and some more recently identified such as members of the cationic antimicrobial peptide family and surfactant protein-D as well as potential new candidate molecules that may contribute to antimicrobial protection. As is readily evident from the literature review herein, tears, like all mucosal fluids, contain a plethora of molecules with known antimicrobial effects. That all of these are active in vivo is debatable as many are present in low concentrations, may be influenced by other tear components such as the ionic environment, and antimicrobial action may be only one of several activities ascribed to the molecule. However, there are many studies showing synergistic/additive interactions between several of the tear antimicrobials and it is highly likely that cooperativity between molecules is the primary way tears are able to afford significant antimicrobial protection to the ocular surface in vivo. In addition to effects on pathogen growth and survival some tear components prevent epithelial cell invasion and promote the epithelial expression of innate defense molecules. Given the protective role of tears a number of scenarios can be envisaged that may affect the amount and/or activity of tear antimicrobials and hence compromise tear immunity. Two such situations, dry eye disease and contact lens wear, are discussed here. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Phagocytosis (cannibalism) of apoptotic neutrophils by tumor cells in gastric micropapillary carcinomas.

    Science.gov (United States)

    Barresi, Valeria; Branca, Giovanni; Ieni, Antonio; Rigoli, Luciana; Tuccari, Giovanni; Caruso, Rosario Alberto

    2015-05-14

    cytoplasmic vacuoles of tumor cells. These data suggest phagocytosis (cannibalism) of apoptotic neutrophils by micropapillary tumor cells. Tumor cell cannibalism is usually found in aggressive tumors with anaplastic morphology. Our data extend these observations to gastric micropapillary carcinoma: a tumor histotype analogously characterized by aggressive behavior and poor prognosis. The results are of interest because they raise the intriguing possibility that neutrophil cannibalism by tumor cells may be one of the mechanisms favoring tumor growth in gastric micropapillary carcinomas. This is the first study showing phagocytosis (cannibalism) of apoptotic neutrophils by tumor cells in gastric micropapillary carcinomas.

  15. Effect of Bothrops alternatus snake venom on macrophage phagocytosis and superoxide production: participation of protein kinase C

    Directory of Open Access Journals (Sweden)

    SS Setubal

    2011-01-01

    Full Text Available Envenomations caused by different species of Bothrops snakes result in severe local tissue damage, hemorrhage, pain, myonecrosis, and inflammation with a significant leukocyte accumulation at the bite site. However, the activation state of leukocytes is still unclear. According to clinical cases and experimental work, the local effects observed in envenenomation by Bothrops alternatus are mainly the appearance of edema, hemorrhage, and necrosis. In this study we investigated the ability of Bothrops alternatus crude venom to induce macrophage activation. At 6 to 100 ¼g/mL, BaV is not toxic to thioglycollate-elicited macrophages; at 3 and 6 ¼g/mL, it did not interfere in macrophage adhesion or detachment. Moreover, at concentrations of 1.5, 3, and 6 ¼g/mL the venom induced an increase in phagocytosis via complement receptor one hour after incubation. Pharmacological treatment of thioglycollate-elicited macrophages with staurosporine, a protein kinase (PKC inhibitor, abolished phagocytosis, suggesting that PKC may be involved in the increase of serum-opsonized zymosan phagocytosis induced by BaV. Moreover, BaV also induced the production of anion superoxide (O2_ by thioglycollate-elicited macrophages. This BaV stimulated superoxide production was abolished after treating the cells with staurosporine, indicating that PKC is an important signaling pathway for the production of this radical. Based on these results, we suggest that phagocytosis and reactive oxygen species are involved in the pathogenesis of local tissue damage characteristic of Bothrops spp. envenomations.

  16. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting.

    Science.gov (United States)

    Anselmo, Aaron C; Zhang, Mengwen; Kumar, Sunny; Vogus, Douglas R; Menegatti, Stefano; Helgeson, Matthew E; Mitragotri, Samir

    2015-03-24

    The impact of physical and chemical modifications of nanoparticles on their biological function has been systemically investigated and exploited to improve their circulation and targeting. However, the impact of nanoparticles' flexibility (i.e., elastic modulus) on their function has been explored to a far lesser extent, and the potential benefits of tuning nanoparticle elasticity are not clear. Here, we describe a method to synthesize polyethylene glycol (PEG)-based hydrogel nanoparticles of uniform size (200 nm) with elastic moduli ranging from 0.255 to 3000 kPa. These particles are used to investigate the role of particle elasticity on key functions including blood circulation time, biodistribution, antibody-mediated targeting, endocytosis, and phagocytosis. Our results demonstrate that softer nanoparticles (10 kPa) offer enhanced circulation and subsequently enhanced targeting compared to harder nanoparticles (3000 kPa) in vivo. Furthermore, in vitro experiments show that softer nanoparticles exhibit significantly reduced cellular uptake in immune cells (J774 macrophages), endothelial cells (bEnd.3), and cancer cells (4T1). Tuning nanoparticle elasticity potentially offers a method to improve the biological fate of nanoparticles by offering enhanced circulation, reduced immune system uptake, and improved targeting.

  17. Flow cytometric quantitation of phagocytosis in heparinized complete blood with latex particles and Candida albicans

    Directory of Open Access Journals (Sweden)

    Jesús M. Egido

    1997-12-01

    Full Text Available We report a rapid method for the flow cytometric quantitation of phagocytosis in heparinized complete peripherial blood (HCPB, using commercially available phycoerythrin-conjugated latex particles of 1µm diameter. The method is faster and shows greater reproducibility than Bjerknes' (1984 standard technique using propidium iodide-stained Candida albicans, conventionally applied to the leukocytic layer of peripherial blood but here modified for HCPB. We also report a modification of Bjerknes' Intracellular Killing Test to allow its application to HCPB.Se da cuenta de un método rápido para la cuantización del flujo citométrico de la fagocitosis en sangre periférica completamente heparinizada (HCPB, mediante la utilización de partículas de látex phycoerythrin-conjugadas de 1µm de diámetro disponibles comercialmente. El método es más rápido y presenta mayor reproducibilidad que la técnica estandar de Bjerknes' (1984 utilizando propidium iodide-teñida Candida albicans, aplicada convencionalmente a la capa leucocitica de sangre periférica pero modificada por HCPB. Tambien damos cuenta de una modificación de Bjerknes' Intracellular Killing Test para permitir su aplicación a HCPB.

  18. Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis.

    Directory of Open Access Journals (Sweden)

    Sigrid E M Heinsbroek

    2008-11-01

    Full Text Available Candida albicans is a medically important pathogen, and recognition by innate immune cells is critical for its clearance. Although a number of pattern recognition receptors have been shown to be involved in recognition and phagocytosis of this fungus, the relative role of these receptors has not been formally examined. In this paper, we have investigated the contribution of the mannose receptor, Dectin-1, and complement receptor 3; and we have demonstrated that Dectin-1 is the main non-opsonic receptor involved in fungal uptake. However, both Dectin-1 and complement receptor 3 were found to accumulate at the site of uptake, while mannose receptor accumulated on C. albicans phagosomes at later stages. These results suggest a potential role for MR in phagosome sampling; and, accordingly, MR deficiency led to a reduction in TNF-alpha and MCP-1 production in response to C. albicans uptake. Our data suggest that pattern recognition receptors sample the fungal phagosome in a sequential fashion.

  19. Igg Subclasses Targeting the Flagella of Salmonella enterica Serovar Typhimurium Can Mediate Phagocytosis and Bacterial Killing

    Science.gov (United States)

    Goh, Yun Shan; Armour, Kathryn L; Clark, Michael R; Grant, Andrew J; Mastroeni, Pietro

    2016-01-01

    Invasive non-typhoidal Salmonella are a common cause of invasive disease in immuno-compromised individuals and in children. Multi-drug resistance poses challenges to disease control, with a critical need for effective vaccines. Flagellin is an attractive vaccine candidate due to surface exposure and high epitope copy number, but its potential as a target for opsonophacytic antibodies is unclear. We examined the effect of targeting flagella with different classes of IgG on the interaction between Salmonella Typhimurium and a human phagocyte-like cell line, THP-1. We tagged the FliC flagellar protein with a foreign CD52 mimotope (TSSPSAD) and bacteria were opsonized with a panel of humanised CD52 antibodies with the same antigen-binding V-region, but different constant regions. We found that IgG binding to flagella increases bacterial phagocytosis and reduces viable intracellular bacterial numbers. Opsonisation with IgG3, followed by IgG1, IgG4, and IgG2, resulted in the highest level of bacterial uptake and in the highest reduction in the intracellular load of viable bacteria. Taken together, our data provide proof-of-principle evidence that targeting flagella with antibodies can increase the antibacterial function of host cells, with IgG3 being the most potent subclass. These data will assist the rational design of urgently needed, optimised vaccines against iNTS disease. PMID:27366588

  20. Roles of phagocytosis activating protein (PAP) in Aeromonas hydrophila infected Cyprinus carpio.

    Science.gov (United States)

    Wonglapsuwan, Monwadee; Kongmee, Pataraporn; Suanyuk, Naraid; Chotigeat, Wilaiwan

    2016-06-01

    Cyprinus carpio (koi) is one of the most popular ornamental fish. A major problem for C. carpio farming is bacterial infections especially by Aeromonas hydrophila. Previously studies had shown that the Phagocytosis Activating Protein (PAP) gene was involved in the innate immune response of animals. Therefore, we attempted to identify a role for the PAP gene in the immunology of C. carpio. The expression of the PAP was found in C. carpio whole blood and increased when the fish were stimulated by inactivated A. hydrophila. In addition, PAP-phMGFP DNA was injected as an immunostimulant. The survival rate and the phagocytic index were significantly increased in the A. hydrophila infected fish that received the PAP-phMGFP DNA immunostimulant. A chitosan-PAP-phMGFP nanoparticle was then developed and feeded into fish which infected with A. hydrophila. These fish had a significantly lower mortality rate than the control. Therefore, this research confirmed a key role for PAP in protection fish from bacterial infection and the chitosan-PAP-phMGFP nanoparticle could be a good prototype for fish immunostimulant in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Antibody dependent cellular phagocytosis by macrophages is a novel mechanism of action of elotuzumab.

    Science.gov (United States)

    Kurdi, Ahmed T; Glavey, Siobhan V; Bezman, Natalie A; Jhatakia, Amy; Guerriero, Jennifer L; Manier, Salomon; Moschetta, Michele; Mishima, Yuji; Roccaro, Aldo; Detappe, Alexandre; Liu, Chia-Jen; Sacco, Antonio; Huynh, Daisy; Tai, Yu-Tzu; Robbins, Michael D; Azzi, Jamil; Ghobrial, Irene M

    2018-04-13

    Elotuzumab, a recently approved antibody for the treatment of multiple myeloma (MM), has been shown to stimulate Fcγ receptor (FcγR)-mediated antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells towards myeloma cells. The modulatory effects of elotuzumab on other effector cells in the tumor microenvironment, however, has not been fully explored. Antibody dependent cellular phagocytosis (ADCP) is a mechanism by which macrophages contribute to anti-tumor potency of monoclonal antibodies. Herein, we studied the NK cell independent effect of elotuzumab on tumor associated macrophages (TAMs) using a xenograft tumor model deficient in NK and adaptive immune cells. We demonstrate significant anti-tumor efficacy of single agent elotuzumab in immunocompromised xenograft models of multiple myeloma, which is in part mediated by Fc-FcγR interaction of elotuzumab with macrophages. Elotuzumab is shown in this study to induce phenotypic activation of macrophages in-vivo and mediates ADCP of myeloma cells though a FcγR dependent manner in-vitro. Together, these findings propose a novel immune mediated mechanism by which elotuzumab exerts anti-myeloma activity and helps to provide rationale for combination therapies that can enhance macrophage activity. Copyright ©2018, American Association for Cancer Research.

  2. Glycoengineering of therapeutic antibodies enhances monocyte/macrophage-mediated phagocytosis and cytotoxicity.

    Science.gov (United States)

    Herter, Sylvia; Birk, Martina C; Klein, Christian; Gerdes, Christian; Umana, Pablo; Bacac, Marina

    2014-03-01

    Therapeutic Abs possess several clinically relevant mechanisms of action including perturbation of tumor cell signaling, activation of complement-dependent cytotoxicity, Ab-dependent cellular cytotoxicity (ADCC), Ab-dependent cellular phagocytosis (ADCP), and induction of adaptive immunity. In view of the important role of phagocytic lineage cells in the mechanism of action of therapeutic Abs, we analyzed FcγR receptor-dependent effector functions of monocytes and macrophages triggered by glycoengineered (GE) Abs (having enhanced FcγRIIIa [CD16a] binding affinity) versus their wild-type (WT) counterparts under different experimental conditions. We first defined the precise FcγR repertoire on classical and nonclassical intermediate monocytes--M1 and M2c macrophage populations. We further show that WT and GE Abs display comparable binding and induce similar effector functions (ADCC and ADCP) in the absence of nonspecific, endogenous IgGs. However, in the presence of these IgGs (i.e., in a situation that more closely mimics physiologic conditions), GE Abs display significantly superior binding and promote stronger monocyte and macrophage activity. These data show that in addition to enhancing CD16a-dependent NK cell cytotoxicity, glycoengineering also enhances monocyte and macrophage phagocytic and cytotoxic activities through enhanced binding to CD16a under conditions that more closely resemble the physiologic setting.

  3. Enhanced antibody-dependent cellular phagocytosis by chimeric monoclonal antibodies with tandemly repeated Fc domains.

    Science.gov (United States)

    Nagashima, Hiroaki; Ootsubo, Michiko; Fukazawa, Mizuki; Motoi, Sotaro; Konakahara, Shu; Masuho, Yasuhiko

    2011-04-01

    We previously reported that chimeric monoclonal antibodies (mAbs) with tandemly repeated Fc domains, which were developed by introducing tandem repeats of Fc domains downstream of 2 Fab domains, augmented binding avidities for all Fcγ receptors, resulting in enhanced antibody (Ab)-dependent cellular cytotoxicity. Here we investigated regarding Ab-dependent cellular phagocytosis (ADCP) mediated by these chimeric mAbs, which is considered one of the most important mechanisms that kills tumor cells, using two-color flow cytometric methods. ADCP mediated by T3-Ab, a chimeric mAb with 3 tandemly repeated Fc domains, was 5 times more potent than that by native anti-CD20 M-Ab (M-Ab hereafter). Furthermore, T3-Ab-mediated ADCP was resistant to competitive inhibition by intravenous Ig (IVIG), although M-Ab-mediated ADCP decreased in the presence of IVIG. An Fcγ receptor-blocking study demonstrated that T3-Ab mediated ADCP via both FcγRIA and FcγRIIA, whereas M-Ab mediated ADCP exclusively via FcγRIA. These results suggest that chimeric mAbs with tandemly repeated Fc domains enhance ADCP as well as ADCC, and that Fc multimerization may significantly enhance the efficacy of therapeutic Abs. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Activation-Inactivation Cycling of Rab35 and ARF6 Is Required for Phagocytosis of Zymosan in RAW264 Macrophages

    Directory of Open Access Journals (Sweden)

    Youhei Egami

    2015-01-01

    Full Text Available Phagocytosis of zymosan by phagocytes is a widely used model of microbial recognition by the innate immune system. Live-cell imaging showed that fluorescent protein-fused Rab35 accumulated in the membranes of phagocytic cups and then dissociated from the membranes of newly formed phagosomes. By our novel pull-down assay for Rab35 activity, we found that Rab35 is deactivated immediately after zymosan internalization into the cells. Phagosome formation was inhibited in cells expressing the GDP- or GTP-locked Rab35 mutant. Moreover, the simultaneous expression of ACAP2—a Rab35 effector protein—with GTP-locked Rab35 or the expression of plasma membrane-targeted ACAP2 showed a marked inhibitory effect on phagocytosis through ARF6 inactivation by the GAP activity of ACAP2. ARF6, a substrate for ACAP2, was also localized on the phagocytic cups and dissociated from the membranes of internalized phagosomes. In support of the microscopic observations, ARF6-GTP pull-down experiments showed that ARF6 is transiently activated during phagosome formation. Furthermore, the expression of GDP- or GTP-locked ARF6 mutants also suppresses the uptake of zymosan. These data suggest that the activation-inactivation cycles of Rab35 and ARF6 are required for the uptake of zymosan and that ACAP2 is an important component that links Rab35/ARF6 signaling during phagocytosis of zymosan.

  5. Phagocytosis, bacterial killing, and cytokine activation of circulating blood neutrophils in horses with severe equine asthma and control horses.

    Science.gov (United States)

    Vanderstock, Johanne M; Lecours, Marie-Pier; Lavoie-Lamoureux, Annouck; Gottschalk, Marcelo; Segura, Mariela; Lavoie, Jean-Pierre; Jean, Daniel

    2018-04-01

    OBJECTIVE To evaluate in vitro phagocytosis and bactericidal activity of circulating blood neutrophils in horses with severe equine asthma and control horses and to determine whether circulating blood neutrophils in horses with severe equine asthma have an increase in expression of the proinflammatory cytokine tumor necrosis factor (TNF)-α and the chemokine interleukin (IL)-8 and a decrease in expression of the anti-inflammatory cytokine IL-10 in response to bacteria. ANIMALS 6 horses with severe equine asthma and 6 control horses. PROCEDURES Circulating blood neutrophils were isolated from horses with severe equine asthma and control horses. Phagocytosis was evaluated by use of flow cytometry. Bactericidal activity of circulating blood neutrophils was assessed by use of Streptococcus equi and Streptococcus zooepidemicus as targets, whereas the cytokine mRNA response was assessed by use of a quantitative PCR assay. RESULTS Circulating blood neutrophils from horses with severe equine asthma had significantly lower bactericidal activity toward S zooepidemicus but not toward S equi, compared with results for control horses. Phagocytosis and mRNA expression of TNF-α, IL-8, and IL-10 were not different between groups. CONCLUSIONS AND CLINCAL RELEVANCE Impairment of bactericidal activity of circulating blood neutrophils in horses with severe equine asthma could contribute to an increased susceptibility to infections.

  6. Source and role of diacylglycerol formed during phagocytosis of opsonized yeast particles and associated respiratory burst in human neutrophils

    International Nuclear Information System (INIS)

    Della Bianca, V.; Grzeskowiak, M.; Lissandrini, D.; Rossi, F.

    1991-01-01

    The results presented in this paper demonstrate that in human neutrophils phagocytosis of C3b/bi and IgG-opsonized yeast particles is associated with activation of phospholipase D and that this reaction is the main source of diglycerides. The demonstration is based upon the following findings: (1) the challenge of neutrophils with these opsonized particles was followed by a rapid formation of [3H]alkyl-phosphatidic acid [( 3H]alkyl-PA) and [3H]alkyl-diglyceride [( 3H]alkyl-DG) in cells labeled with [3H]alkyl-lyso-phosphatidylcholine; (2) in the presence of ethanol [3H]alkyl-phosphatidylethanol was formed, and accumulation of [3H]alkyl-PA and [3H]alkyl-DG was depressed; (3) propranolol, by inhibiting the dephosphorylation of [3H]alkyl-PA, completely inhibited the accumulation of [3H]alkyl-DG and depressed by about 75% the formation of diglyceride mass. Evidence is also presented that phagocytosis of C3b/bi and IgG-opsonized yeast particles and associated respiratory burst can take place independently of diglyceride formation and of the activity of this second messenger on protein kinase C. In fact: (a) propranolol while completely inhibited the formation of diglyceride mass did not modify either the phagocytosis or respiratory burst; (b) these two processes were insensitive to staurosporine

  7. The antimicrobial resistance crisis: management through gene monitoring

    Science.gov (United States)

    2016-01-01

    Antimicrobial resistance (AMR) is an acknowledged crisis for humanity. Its genetic origins and dire potential outcomes are increasingly well understood. However, diagnostic techniques for monitoring the crisis are currently largely limited to enumerating the increasing incidence of resistant pathogens. Being the end-stage of the evolutionary process that produces antimicrobial resistant pathogens, these measurements, while diagnostic, are not prognostic, and so are not optimal in managing this crisis. A better test is required. Here, using insights from an understanding of evolutionary processes ruling the changing abundance of genes under selective pressure, we suggest a predictive framework for the AMR crisis. We then discuss the likely progression of resistance for both existing and prospective antimicrobial therapies. Finally, we suggest that by the environmental monitoring of resistance gene frequency, resistance may be detected and tracked presumptively, and how this tool may be used to guide decision-making in the local and global use of antimicrobials. PMID:27831476

  8. Antimicrobials, stress and mutagenesis.

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    2014-10-01

    Full Text Available Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes whereas antibiotics are mostly employed by microorganisms. As antimicrobial peptides (AMPs mostly target the cell wall, a microbial 'Achilles heel', it has been proposed that bacterial resistance evolution is very unlikely and hence AMPs are ancient 'weapons' of multicellular organisms. Here we provide a new hypothesis to explain the widespread distribution of AMPs amongst multicellular organism. Studying five antimicrobial peptides from vertebrates and insects, we show, using a classic Luria-Delbrück fluctuation assay, that cationic antimicrobial peptides (AMPs do not increase bacterial mutation rates. Moreover, using rtPCR and disc diffusion assays we find that AMPs do not elicit SOS or rpoS bacterial stress pathways. This is in contrast to the main classes of antibiotics that elevate mutagenesis via eliciting the SOS and rpoS pathways. The notion of the 'Achilles heel' has been challenged by experimental selection for AMP-resistance, but our findings offer a new perspective on the evolutionary success of AMPs. Employing AMPs seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs.

  9. Self-stratifying antimicrobial coatings

    NARCIS (Netherlands)

    Yagci, M.B.

    2012-01-01

    Today, antimicrobial polymers/coatings are widely used in various areas, such as biomedical devices, pharmaceuticals, hospital buildings, textiles, food processing, and contact lenses, where sanitation is needed. Such wide application facilities have made antimicrobial materials very attractive for

  10. Antimicrobial stewardship: Limits for implementation

    NARCIS (Netherlands)

    Sinha, Bhanu

    2014-01-01

    Antibiotic stewardship programme (ASP) is a multifaceted approach to improve patients' clinical outcomes, prevent the emergence of antimicrobial resistance, and reduce hospital costs by prudent and focused antimicrobial use. Development of local treatment guidelines according to local ecology, rapid

  11. General principles of antimicrobial therapy.

    Science.gov (United States)

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community.

  12. Structural, physicochemical characterization and antimicrobial ...

    Indian Academy of Sciences (India)

    Structural, physicochemical characterization and antimicrobial activities of a new Tetraaqua ... Antimicrobial activity of 1 was tested. ... was prepared as good quality yellow single crystals .... at 540 nm. Increase of OD was compared to control.

  13. CHEMICAL COMPOSITION, ANTIMICROBIAL AND ANTIOXYDANT ...

    African Journals Online (AJOL)

    VOUNDI

    2016-04-20

    Apr 20, 2016 ... antimicrobial activities of some spices' essential oils on ... antimicrobial effect of their essential oils on some food pathogenic bacteria, namely, Staphylococcus aureus ...... by Origanum compactum essential oil. J. Appl.

  14. HIF-1α is essential for effective PMN bacterial killing, antimicrobial peptide production and apoptosis in Pseudomonas aeruginosa keratitis.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Berger

    Full Text Available Hypoxia-inducible factor (HIF-1α, is a transcription factor that controls energy metabolism and angiogenesis under hypoxic conditions, and a potent regulator of innate immunity. The studies described herein examined the role of HIF-1α in disease resolution in BALB/c (resistant, cornea heals mice after ocular infection with Pseudomonas (P. aeruginosa. Furthermore, the current studies focused on the neutrophil (PMN, the predominant cell infiltrate in keratitis. Using both siRNA and an antagonist (17-DMAG, the role of HIF-1α was assessed in P. aeruginosa-infected BALB/c mice. Clinical score and slit lamp photography indicated HIF-1α inhibition exacerbated disease and corneal destruction. Real time RT-PCR, immunohistochemistry, ELISA, Greiss and MPO assays, bacterial load, intracellular killing, phagocytosis and apoptosis assays further tested the regulatory role of HIF-1α. Despite increased pro-inflammatory cytokine expression and increased MPO levels after knocking down HIF-1α expression, in vivo studies revealed a decrease in NO production and higher bacterial load. In vitro studies using PMN provided evidence that although inhibition of HIF-1α did not affect phagocytosis, both bacterial killing and apoptosis were significantly affected, as was production of antimicrobial peptides. Overall, data provide evidence that inhibition of HIF-1α converts a normally resistant disease response to susceptible (corneal thinning and perforation after induction of bacterial keratitis. Although this inhibition does not appear to affect PMN transmigration or phagocytosis, both in vivo and in vitro approaches indicate that the transcriptional factor is essential for effective bacterial killing, apoptosis and antimicrobial peptide production.

  15. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  16. Antimicrobial Drugs in the Home

    Centers for Disease Control (CDC) Podcasts

    Survey participants in the United Kingdom admitted keeping leftover antimicrobial drugs for future use and taking them without medical advice. Dr. J. Todd Weber, director of CDC's Office of Antimicrobial Resistance, advises against the practice, which can be dangerous and can promote antimicrobial drug resistance.

  17. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.

    Science.gov (United States)

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola

    2017-02-01

    Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Hypoglycemic depression of hepatic phagocytosis in vivo and in the in situ perfused rat liver.

    Science.gov (United States)

    Kober, P M; Filkins, J P

    1981-01-01

    Depression of the phagocytic function of the reticuloendothelial system (RES) during endotoxic hypoglycemia has been implicated in the pathogenesis of endotoxin shock. The present study evaluated the in vivo effects of hypoglycemia on RES function and assessed the effects of an vivo bout of hypoglycemia on phagocytosis in the in situ perfused rat liver. Hypoglycemia was produced in male Holtzman rats using either 1 U of regular insulin (RI) (ILETIN, Lilly) or 0.75 U of long-acting insulin (LAI) (85% LENTE/15% ULTRALENTE, Lilly). RES function was quantitated by intravascular clearance of 8 mg/100 gm body weight colloidal carbon (CC). Two hr after RI and 2.5 hr after LAI, the intravascular halftimes of CC clearance were 19 +/- 2 min (N = 22) and 18 +/- 1 min (N = 19), respectively, as compared to control, 11.3 +/- 0.4 min (N = 53, P less than 0.001). The corresponding plasma glucose (PG) levels were 95 +/- 2 mg/dl in control, 14.4 +/- 0.9 for the RI group, and 17 +/- 1 for LAI. Two hr after RI, livers were perfused for 10 min in situ with 50 mg/liter CC in saline 5% rat serum. PG for control liver donors were 90 +/- 3 mg/dl, while those for hypoglycemic liver donors were 15 +/- 2. CC uptake was decreased from 22 micrograms/min/gm liver in the control (+ serum, n = 19) to 11 +/- 2 in hypoglycemia livers (N = 6); no effect of serum on hypoglycemic depression of the RES was seen. There were no differences in flow rates in the 2 groups. These results indicate that hypoglycemia directly impairs RES function and that the in vivo depression of intravascular clearance is not related to either the presence or absence of serum factors or total hepatic blood flow. Thus, the characteristic hypoglycemia of endotoxin shock may contribute to RES depression and the lethal shock syndrome.

  19. Non-opsonic phagocytosis of Legionella pneumophila by macrophages is mediated by phosphatidylinositol 3-kinase.

    Directory of Open Access Journals (Sweden)

    Souvenir D Tachado

    Full Text Available BACKGROUND: Legionella pneumophila, is an intracellular pathogen that causes Legionnaires' disease in humans, a potentially lethal pneumonia. L. pneumophila has the ability to enter and replicate in the host and is essential for pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Phagocytosis was measured by cell invasion assays. Construction of PI3K mutant by PCR cloning and expression of dominant negative mutant was detected by Western blot. PI3K activity was measured by 32P labeling and detection of phospholipids products by thin layer chromatography. Infection of macrophages with virulent L. pneumophila stimulated the formation of phosphatidylinositol 3-phosphate (PIP3, a phosphorylated lipid product of PI3K whereas two structurally distinct phosphatidylinositol 3 kinase (PI3K inhibitors, wortmannin and LY294002, reduced L. pneumophila entry into macrophages in a dose-dependent fashion. Furthermore, PI3K activation led to Akt stimulation, a serine/threonine kinase, which was also inhibited by wortmannin and LY294002. In contrast, PI3K and protein kinase B (PKB/Akt activities were lower in macrophages infected with an avirulent bacterial strain. Only virulent L. pneumophila increased lipid kinase activity present in immunoprecipitates of the p85alpha subunit of class I PI3K and tyrosine phosphorylated proteins. In addition, macrophages expressing a specific dominant negative mutant of PI3K reduced L. pneumophila entry into these cells. CONCLUSION/SIGNIFICANCE: Entry of L. pneumophila is mediated by PI3K/Akt signaling pathway. These results suggest an important role for PI3K and Akt in the L. pneumophila infection process. They point to possible novel strategies for undermining L. pneumophila host uptake and reducing pathogenesis of Legionnaires' disease.

  20. Cyclic GMP-dependent protein kinase II is necessary for macrophage M1 polarization and phagocytosis via toll-like receptor 2.

    Science.gov (United States)

    Liao, Wei-Ting; You, Huey-Ling; Li, Changgui; Chang, Jan-Gowth; Chang, Shun-Jen; Chen, Chung-Jen

    2015-05-01

    Cyclic GMP-dependent protein kinase II (cGKII; PRKG2) phosphorylates a variety of biological targets and has been identified as a gout-susceptible gene. However, the regulatory role of cGKII in triggering gout disease has yet to be clarified. Thus, we plan to explore the specific function of cGKII in macrophages related to gout disease. By using cGKII gene knockdown method, we detected macrophage M1/M2 polarization, phagocytosis, and their responses to stimulation by monosodium urate (MSU). cGKII was highly expressed in M1 phenotype, but not in M2, and cGKII knockdown significantly inhibited macrophage M1 polarization by decreasing M1 chemokine markers (CXCL10 and CCL2) and downregulating phagocytosis function. We further identified that cGKII-associated phagocytosis was mediated by upregulating toll-like receptor 2 (TLR2) expression, but not by TLR4. Mimicking gout condition by MSU treatments, we found that MSU alone induced cGKII and TLR2 expression with increased M1 polarization markers and phagocytosis activity. It means that cGKII knockdown significantly inhibited this MSU-induced cGKII-TLR2-phagocytosis axis. Our study showed that cGKII plays a key role in M1 polarization, especially in TLR2-mediated phagocytosis under MSU exposure. The findings provide evidence for the possible role of cGKII as an inflammation exciter in gout disease. Gout-susceptible gene cGKII is necessary for macrophage M1 polarization. cGKII regulates M1 phagocytosis function via TLR2. Monosodium urate treatments increase cGKII expression and related function. This study reveals the role of cGKII in enhancing gouty inflammatory responses.

  1. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Español Search FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, ... Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of ...

  2. Effect of UVB irradiation of the blood on cellular volume adherence and phagocytosis in probands and patients with multiple sclerosis

    International Nuclear Information System (INIS)

    Mix, E.; Jenssen, H.L.; Lehmitz, R.; Buddenhagen, F.; Hitzschke, B.; Richter, M.

    1988-01-01

    UVB-induced changes of blood cell properties were investigated in 12 multiple sclerosis (MS) patients and in 10 healthy volunteers. The mean cell volume (MCV) was determined by electronic sizing, the granulocyte and lymphocyte adherence was estimated in a capillary assay, and the phagocytic activity of granulocytes was measured in a test system based on the incorporation of opsonized baker's yeast. In MS patients the MCV of red cells and lymphocytes decreased rapidly within 6 UVB treatments. In contrast, the reduction of the granulocyte volume was delayed (between the 6th and 12th UVB). In the control group the mean value of the red cell and lymphocyte MCV remained rather unaffected. There was a slight rise of the granulocyte volume after the 6th UVB. The only significant change of adherence was an increase of granulocyte adherence in MS patients. Untreated patients had a significantly enhanced phagocytic activity in comparison to the control group. 6 UVB treatments induced a singificant reduction of the phagocytic activity in MS patients. However, subsequently the percentage of phagocytizing cells increased again, whereas the particle uptake per cell continued to decrease. In the control group only minor UVB-induced changes of phagocytosis were observed. The in vitro UV irradiation caused an enhanced phagocytosis in the majority of cases in both controls and MS patients. In general, under the UVB treatment all parameters examined changed in the sense of a normalisation, in that the measured values reached a new level lying between the extreme pretreatment values accompanied by a reduced standard deviation. The effect of UVB was more pronounced in MS patients when compared with normal control. This could result from an enhanced sensitivity to the influence of UVB of pathologically altered cells in MS patients. The monitoring of the MCV of red cells and lymphocytes as well as the repeated testing of granulocyte phagocytosis are recommended for supportion of therapy

  3. Pathogen-Specific Binding Soluble Down Syndrome Cell Adhesion Molecule (Dscam Regulates Phagocytosis via Membrane-Bound Dscam in Crab

    Directory of Open Access Journals (Sweden)

    Xue-Jie Li

    2018-04-01

    Full Text Available The Down syndrome cell adhesion molecule (Dscam gene is an extraordinary example of diversity that can produce thousands of isoforms and has so far been found only in insects and crustaceans. Cumulative evidence indicates that Dscam may contribute to the mechanistic foundations of specific immune responses in insects. However, the mechanism and functions of Dscam in relation to pathogens and immunity remain largely unknown. In this study, we identified the genome organization and alternative Dscam exons from Chinese mitten crab, Eriocheir sinensis. These variants, designated EsDscam, potentially produce 30,600 isoforms due to three alternatively spliced immunoglobulin (Ig domains and a transmembrane domain. EsDscam was significantly upregulated after bacterial challenge at both mRNA and protein levels. Moreover, bacterial specific EsDscam isoforms were found to bind specifically with the original bacteria to facilitate efficient clearance. Furthermore, bacteria-specific binding of soluble EsDscam via the complete Ig1–Ig4 domain significantly enhanced elimination of the original bacteria via phagocytosis by hemocytes; this function was abolished by partial Ig1–Ig4 domain truncation. Further studies showed that knockdown of membrane-bound EsDscam inhibited the ability of EsDscam with the same extracellular region to promote bacterial phagocytosis. Immunocytochemistry indicated colocalization of the soluble and membrane-bound forms of EsDscam at the hemocyte surface. Far-Western and coimmunoprecipitation assays demonstrated homotypic interactions between EsDscam isoforms. This study provides insights into a mechanism by which soluble Dscam regulates hemocyte phagocytosis via bacteria-specific binding and specific interactions with membrane-bound Dscam as a phagocytic receptor.

  4. Using an improved phagocytosis assay to evaluate the effect of HIV on specific antibodies to pregnancy-associated malaria.

    Science.gov (United States)

    Ataíde, Ricardo; Hasang, Wina; Wilson, Danny W; Beeson, James G; Mwapasa, Victor; Molyneux, Malcolm E; Meshnick, Steven R; Rogerson, Stephen J

    2010-05-25

    Pregnant women residing in malaria endemic areas are highly susceptible to Plasmodium falciparum malaria, particularly during their first pregnancy, resulting in low birth weight babies and maternal anaemia. This susceptibility is associated with placental sequestration of parasitised red blood cells expressing pregnancy-specific variant surface antigens. Acquisition of antibodies against these variant surface antigens may protect women and their offspring. Functions of such antibodies may include prevention of placental sequestration or opsonisation of parasitised cells for phagocytic clearance. Here we report the development and optimisation of a new high-throughput flow cytometry-based phagocytosis assay using undifferentiated Thp-1 cells to quantitate the amount of opsonizing antibody in patient sera, and apply this assay to measure the impact of HIV on the levels of antibodies to a pregnancy malaria-associated parasite line in a cohort of Malawian primigravid women. The assay showed high reproducibility, with inter-experimental correlation of r(2) = 0.99. In primigravid women, concurrent malaria infection was associated with significantly increased antibodies, whereas HIV decreased the ability to acquire opsonising antibodies (Mann-Whitney ranksum: p = 0.013). This decrease was correlated with HIV-induced immunosuppression, with women with less than 350 x 10(6) CD4+ T- cells/L having less opsonising antibodies (coef: -11.95,P = 0.002). Levels of antibodies were not associated with protection from low birth weight or anaemia. This flow cytometry-based phagocytosis assay proved to be efficient and accurate for the measurement of Fc-receptor mediated phagocytosis-inducing antibodies in large cohorts. HIV was found to affect mainly the acquisition of antibodies to pregnancy-specific malaria in primigravidae. Further studies of the relationship between opsonising antibodies to malaria in pregnancy and HIV are indicated.

  5. Tick thioester-containing proteins and phagocytosis do not affect transmission of Borrelia afzelii from the competent vector ixodes ricinus

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Veronika; Hajdušek, Ondřej; Hönig Mondeková, Helena; Šíma, Radek; Kopáček, Petr

    2017-01-01

    Roč. 7, MAR (2017), č. článku 73. ISSN 2235-2988 R&D Projects: GA ČR GJ15-12006Y; GA ČR GA13-11043S; GA ČR GA17-27386S; GA ČR GA17-27393S EU Projects: European Commission(XE) 602272 - ANTIDotE Institutional support: RVO:60077344 Keywords : Borrelia * complement * Ixodes * phagocytosis * thioester-containing proteins Subject RIV: EC - Immunology OBOR OECD: Immunology Impact factor: 4.300, year: 2016

  6. Simultaneous determination of phagocytosis of Plasmodium falciparum-parasitized and non-parasitized red blood cells by flow cytometry

    Directory of Open Access Journals (Sweden)

    Gallo Valentina

    2012-12-01

    Full Text Available Abstract Background Severe falciparum malaria anaemia (SMA is a frequent cause of mortality in children and pregnant women. The most important determinant of SMA appears to be the loss of non-parasitized red blood cells (np-RBCs in excess of loss of parasitized (p- RBCs at schizogony. Based on data from acute SMA where excretion of haemoglobin in urine and increased plasma haemoglobin represented respectively less than 1% and 0.5% of total Hb loss, phagocytosis appears to be the predominant mechanism of removal of np- and p-RBC. Estimates indicate that np-RBCs are cleared in approximately 10-fold excess compared to p-RBCs. An even larger removal of np-RBCs has been described in vivax malaria anaemia. Estimates were based on two single studies both performed on neurosyphilitic patients who underwent malaria therapy. As the share of np-RBC removal is likely to vary between wide limits, it is important to assess the contribution of both np- and p-RBC populations to overall RBC loss, and disclose the mechanism of such variability. As available methods do not discriminate between the removal of np- vs p-RBCs, the purpose of this study was to set up a system allowing the simultaneous determination of phagocytosis of p- and np-RBC in the same sample. Methods and Results Phagocytosis of p- and np-RBCs was quantified in the same sample using double-labelled target cells and the human phagocytic cell-line THP-1, pre-activated by TNF and IFNγ to enhance their phagocytic activity. Target RBCs were double-labelled with fluorescent carboxyfluorescein-succinimidyl ester (CF-SE and the DNA label ethidium bromide (EB. EB, a DNA label, allowed to discriminate p-RBCs that contain parasitic DNA from the np-RBCs devoid of DNA. FACS analysis of THP-1 cells fed with double-labelled RBCs showed that p- and np-RBCs were phagocytosed in different proportions in relation to parasitaemia. Conclusions The assay allowed the analysis of phagocytosis rapidly and with low

  7. Neuro-immune relationships at patients with chronic pyelonephrite and cholecystite. Communication 2. Correlations between parameters EEG, HRV and Phagocytosis

    OpenAIRE

    Kul’chyns’kyi, Andriy B; Kovbasnyuk, Marta M; Korolyshyn, Tetyana A; Kyjenko, Valeriy M; Zukow, Walery; Popovych, Igor L

    2016-01-01

    Kul’chyns’kyi Andriy B, Kovbasnyuk Marta M, Korolyshyn Tetyana A, Kyjenko Valeriy M, Zukow Walery, Popovych Igor L. Neuro-immune relationships at patients with chronic pyelonephrite and cholecystite. Communication 2. Correlations between parameters EEG, HRV and Phagocytosis. Journal of Education, Health and Sport. 2016;6(10):377-401. eISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.163221 http://ojs.ukw.edu.pl/index.php/johs/article/view/3957 The journal h...

  8. Interaction between Salmonella typhimurium and phagocytic cells in pigs - Phagocytosis, oxidative burst and killing in polymorphonuclear leukocytes and monocytes

    DEFF Research Database (Denmark)

    Riber, Ulla; Lind, Peter

    1999-01-01

    Interactions between Salmonella typhimurium and peripheral blood leucocytes from healthy, Salmonella-free pigs were investigated in vitro. Both granulocytes and monocytes phagocytized FITC-labelled heat-killed Salmonella bacteria as shown by flow cytometry. Phagocytosis in whole blood and isolated...... with the exhaustion of oxidative burst in non-adherent monocytes were performed by prestimulation with PMA, heat-killed Salmonella or buffer. Prestimulation with PMA led to a strong reduction in oxidative burst induced by living opsonized Salmonella bacteria, whereas prestimulation with heat-killed bacteria gave rise...

  9. Diverse regulation of retinal pigment epithelium phagocytosis of photoreceptor outer segments by calcium-independent phospholipase A₂, group VIA and secretory phospholipase A₂, group IB

    DEFF Research Database (Denmark)

    Zhan, Chen; Wang, Jinmei; Kolko, Miriam

    2012-01-01

    PURPOSE: To investigate the roles of the phospholipases A(2) (PLA(2)) subtypes, iPLA(2)-VIA and sPLA(2)-IB in retinal pigment epithelium (RPE) phagocytosis of photoreceptor outer segments (POS) and to explore a possible interaction between sPLA(2)-IB and iPLA(2)-VIA in the RPE. METHODS: To explore...... the role of iPLA(2)-VIA in RPE phagocytosis of POS, experiments with iPLA(2)-VIA vector transfection, iPLA(2)-VIA(-/-) knockout (KO) mice, and iPLA(2)-VIA inhibition by bromoenol lactone (BEL) were done. Exogenous addition of sPLA(2)-IB was used to investigate the role of sPLA(2)-IB in RPE phagocytosis....... A Luciferase Reporter Vector containing the iPLA(2)-VIA promoter was used to study the effects of sPLA(2)-IB on the iPLA(2)-VIA promoter. RESULTS: ARPE-19 and primary mouse RPE cells transfected with iPLA(2)-VIA showed increased phagocytosis. Phagocytosis was reduced in primary mouse RPE inhibited with BEL...

  10. Therapeutic drug monitoring of antimicrobials

    Science.gov (United States)

    Roberts, Jason A; Norris, Ross; Paterson, David L; Martin, Jennifer H

    2012-01-01

    Optimizing the prescription of antimicrobials is required to improve clinical outcome from infections and to reduce the development of antimicrobial resistance. One such method to improve antimicrobial dosing in individual patients is through application of therapeutic drug monitoring (TDM). The aim of this manuscript is to review the place of TDM in the dosing of antimicrobial agents, specifically the importance of pharmacokinetics (PK) and pharmacodynamics (PD) to define the antimicrobial exposures necessary for maximizing killing or inhibition of bacterial growth. In this context, there are robust data for some antimicrobials, including the ratio of a PK parameter (e.g. peak concentration) to the minimal inhibitory concentration of the bacteria associated with maximal antimicrobial effect. Blood sampling of an individual patient can then further define the relevant PK parameter value in that patient and, if necessary, antimicrobial dosing can be adjusted to enable achievement of the target PK/PD ratio. To date, the clinical outcome benefits of a systematic TDM programme for antimicrobials have only been demonstrated for aminoglycosides, although the decreasing susceptibility of bacteria to available antimicrobials and the increasing costs of pharmaceuticals, as well as emerging data on pharmacokinetic variability, suggest that benefits are likely. PMID:21831196

  11. Trastuzumab mediates antibody-dependent cell-mediated cytotoxicity and phagocytosis to the same extent in both adjuvant and metastatic HER2/neu breast cancer patients.

    Science.gov (United States)

    Petricevic, Branka; Laengle, Johannes; Singer, Josef; Sachet, Monika; Fazekas, Judit; Steger, Guenther; Bartsch, Rupert; Jensen-Jarolim, Erika; Bergmann, Michael

    2013-12-12

    Monoclonal antibodies (mAb), such as trastuzumab are a valuable addition to breast cancer therapy. Data obtained from neoadjuvant settings revealed that antibody-dependent cell-mediated cytotoxicity (ADCC) is a major mechanism of action for the mAb trastuzumab. Conflicting results still call into question whether disease progression, prolonged treatment or concomitant chemotherapy influences ADCC and related immunological phenomena. We analyzed the activity of ADCC and antibody-dependent cell-mediated phagocytosis (ADCP) of peripheral blood mononuclear cells (PBMCs) from human epidermal growth factor receptor 2 (HER2/neu) positive breast cancer patients receiving trastuzumab therapy either in an adjuvant (n = 13) or metastatic (n = 15) setting as well as from trastuzumab treatment-naive (t-naive) HER2/neu negative patients (n = 15). PBMCs from healthy volunteers (n = 24) were used as controls. ADCC and ADCP activity was correlated with the expression of antibody binding Fc-gamma receptor (FcγR)I (CD64), FcγRII (CD32) and FcγRIII (CD16) on CD14+ (monocytes) and CD56+ (NK) cells, as well as the expression of CD107a+ (LAMP-1) on CD56+ cells and the total amount of CD4+CD25+FOXP3+ (Treg) cells. In metastatic patients, markers were correlated with progression-free survival (PFS). ADCC activity was significantly down regulated in metastatic, adjuvant and t-naive patient cohorts as compared to healthy controls. Reduced ADCC activity was inversely correlated with the expression of CD107a on CD56+ cells in adjuvant patients. ADCC and ADCP activity of the patient cohorts were similar, regardless of treatment duration or additional chemotherapy. PFS in metastatic patients inversely correlated with the number of peripheral Treg cells. The reduction of ADCC in patients as compared to healthy controls calls for adjuvant strategies, such as immune-enhancing agents, to improve the activity of trastuzumab. However, efficacy of trastuzumab-specific ADCC and ADCP appears not to

  12. The fight against Antimicrobial Resistance: Important recent publications

    DEFF Research Database (Denmark)

    Minssen, Timo

    2014-01-01

    One of my previous blogs discussed the growing threat of antimicrobial resistance (AMR). I concluded that antimicrobial resistance is a growing and complex threat involving multifaceted legal, socio-economic and scientific aspects. This requires sustained and coordinated action on both global...... for a period of at least two years. Major outcomes, such as consensus papers, meeting reports, and periodic progress reports, will be posted on the TATFAR website. The extension of the TATFAR mandate is an important and necessary step that can only be welcomed. By re-affirming their commitment, the US...

  13. SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ...

    African Journals Online (AJOL)

    Preferred Customer

    The synthesized chelating agent and metal(II) complexes were screened for ... Coordination compounds, Antimicrobial study ... The biological activity of Zn(II), Cu(II), Co(II) and Ni(II) with imidazole derivative (DIPO) ... product in 86% yield. .... [Ni(DIPO)Br2]. 2.0. 2.5. 2.5. 3.0. 3.0. 3.0. 9. Maxipime. 10.6. D iam eter o f in h ib itio.

  14. Substandard/counterfeit antimicrobial drugs.

    Science.gov (United States)

    Kelesidis, Theodoros; Falagas, Matthew E

    2015-04-01

    Substandard/counterfeit antimicrobial drugs are a growing global problem. The most common substandard/counterfeit antimicrobials include beta-lactams (among antibiotics) and chloroquine and artemisin derivatives (among antimalarials). The most common type of substandard/counterfeit antimicrobial drugs have a reduced amount of the active drug, and the majority of them are manufactured in Southeast Asia and Africa. Counterfeit antimicrobial drugs may cause increased mortality and morbidity and pose a danger to patients. Here we review the literature with regard to the issue of substandard/counterfeit antimicrobials and describe the prevalence of this problem, the different types of substandard/counterfeit antimicrobial drugs, and the consequences for the individuals and global public health. Local, national, and international initiatives are required to combat this very important public health issue. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Antimicrobial Drugs in the Home

    Centers for Disease Control (CDC) Podcasts

    2006-10-19

    Survey participants in the United Kingdom admitted keeping leftover antimicrobial drugs for future use and taking them without medical advice. Dr. J. Todd Weber, director of CDC's Office of Antimicrobial Resistance, advises against the practice, which can be dangerous and can promote antimicrobial drug resistance.  Created: 10/19/2006 by Emerging Infectious Diseases.   Date Released: 10/26/2006.

  16. Inhaled corticosteroid treatment for 6 months was not sufficient to normalize phagocytosis in asthmatic children.

    Science.gov (United States)

    da Silva-Martins, Carmen Lívia Faria; Couto, Shirley Claudino; Muniz-Junqueira, Maria Imaculada

    2013-08-30

    Corticosteroids are the first-line therapy for asthma; however, the effect of corticosteroids on the innate immune system remains unclear. This study's objective was to evaluate the effect of inhaled corticosteroid therapy (ICT) on phagocytic functions. To evaluate the impact of ICT, the phagocytosis of Saccharomyces cerevisiae by blood monocytes and neutrophils and the production of superoxide anions were assessed before and after three and six months of ICT treatment in 58 children with persistent asthma and 21 healthy controls. We showed that the phagocytic capacity of monocytes and neutrophils that occurred via pattern recognition receptors or was mediated by complement and immunoglobulin receptors in asthmatic children before treatment was significantly lower than in healthy controls (pICT for 6 months was not sufficient to normalize phagocytosis by the phagocytes. Superoxide anion production was also decreased in the asthmatic children before treatment, and ICT normalized the O- production only for children with mild persistent asthma when assessed at baseline but caused this function to decrease after stimulation (p<0.05, Kruskal-Wallis test). Our data suggest that an immunodeficiency in phagocytes remained even after treatment. However, this immunodeficiency does not appear to correspond with the clinical evolution of asthma because an improvement in clinical parameters occurred.

  17. Cromolyn Reduces Levels of the Alzheimer's Disease-Associated Amyloid β-Protein by Promoting Microglial Phagocytosis.

    Science.gov (United States)

    Zhang, Can; Griciuc, Ana; Hudry, Eloise; Wan, Yu; Quinti, Luisa; Ward, Joseph; Forte, Angela M; Shen, Xunuo; Ran, ChongZhao; Elmaleh, David R; Tanzi, Rudolph E

    2018-01-18

    Amyloid-beta protein (Aβ) deposition is a pathological hallmark of Alzheimer's disease (AD). Aβ deposition triggers both pro-neuroinflammatory microglial activation and neurofibrillary tangle formation. Cromolyn sodium is an asthma therapeutic agent previously shown to reduce Aβ levels in transgenic AD mouse brains after one-week of treatment. Here, we further explored these effects as well as the mechanism of action of cromolyn, alone, and in combination with ibuprofen in APP Swedish -expressing Tg2576 mice. Mice were treated for 3 months starting at 5 months of age, when the earliest stages of β-amyloid deposition begin. Cromolyn, alone, or in combination with ibuprofen, almost completely abolished longer insoluble Aβ species, i.e. Aβ40 and Aβ42, but increased insoluble Aβ38 levels. In addition to its anti-aggregation effects on Aβ, cromolyn, alone, or plus ibuprofen, but not ibuprofen alone, increased microglial recruitment to, and phagocytosis of β-amyloid deposits in AD mice. Cromolyn also promoted Aβ42 uptake in microglial cell-based assays. Collectively, our data reveal robust effects of cromolyn, alone, or in combination with ibuprofen, in reducing aggregation-prone Aβ levels and inducing a neuroprotective microglial activation state favoring Aβ phagocytosis versus a pro-neuroinflammatory state. These findings support the use of cromolyn, alone, or with ibuprofen, as a potential AD therapeutic.

  18. Phagocytosis-induced 51Cr release from activated macrophages and blood mononuclears. Effect of colchicine and antioxidants

    International Nuclear Information System (INIS)

    McGee, M.P.; Hale, A.H.

    1981-01-01

    The chromium-release test was adapted to the measurement of the cellular injury induced when activated macrophages phagocytose particulates. Macrophages obtained from rabbit lungs undergoing BCG-induced chronic inflammation released more chromium when incubated in the presence of phagocytosable particles than when incubated under resting conditions. Blood mononuclear cells, 40-60% monocytes, procured from the same BCG-injected animals, were less susceptible to phagocytosis-induced injury than the macrophages obtained from the lungs. The amount of chromium released by the activated macrophages was proportional to the number of particles present during incubation. In the presence of catalase, the amounts of chromium released by phagocytosing and resting macrophages were similar; in the presence of superoxide dismutase and cytochrome c, the amount of chromium released by phagocytosing macrophages was 13-35% less than the amount of chromium released by macrophages incubated without the antioxidants. In addition, colchicine, an inhibitor of degranulation also exerted partial inhibition of the chromium release. These results suggest that oxygen radicals and lysosomal contents contribute to the cellular injury that results from phagocytosis

  19. Shrimp miR-12 Suppresses White Spot Syndrome Virus Infection by Synchronously Triggering Antiviral Phagocytosis and Apoptosis Pathways

    Science.gov (United States)

    Shu, Le; Zhang, Xiaobo

    2017-01-01

    Growing evidence has indicated that the innate immune system can be regulated by microRNAs (miRNAs). However, the mechanism underlying miRNA-mediated simultaneous activation of multiple immune pathways remains unknown. To address this issue, the role of host miR-12 in shrimp (Marsupenaeus japonicus) antiviral immune responses was characterized in the present study. The results indicated that miR-12 participated in virus infection, host phagocytosis, and apoptosis in defense against white spot syndrome virus invasion. miR-12 could simultaneously trigger phagocytosis, apoptosis, and antiviral immunity through the synchronous downregulation of the expression of shrimp genes [PTEN (phosphatase and tensin homolog) and BI-1(transmembrane BAX inhibitor motif containing 6)] and the viral gene (wsv024). Further analysis showed that miR-12 could synchronously mediate the 5′–3′ exonucleolytic degradation of its target mRNAs, and this degradation terminated in the vicinity of the 3′ untranslated region sequence complementary to the seed sequence of miR-12. Therefore, the present study showed novel aspects of the miRNA-mediated simultaneous regulation of multiple immune pathways. PMID:28824612

  20. Virulent and Vaccine Strains of Streptococcus equi ssp. zooepidemicus Have Different Influences on Phagocytosis and Cytokine Secretion of Macrophages.

    Science.gov (United States)

    Jie, Peng; Zhe, Ma; Chengwei, Hua; Huixing, Lin; Hui, Zhang; Chengping, Lu; Hongjie, Fan

    2017-01-06

    Swine streptococcosis is a significant threat to the Chinese pig industry, and Streptococcus equi ssp. zooepidemicus (SEZ) is one of the major pathogens. SEZ ATCC35246 is a classical virulent strain, while SEZ ST171 is a Chinese attenuated vaccine strain. In this study, we employed stable isotope labeling by amino acids in cell culture and liquid chromatography-mass spectrometry (LC-MS) to determine the differential response of macrophages to infection by these two strains. Eighty-seven upregulated proteins and 135 downregulated proteins were identified. The proteomic results were verified by real-time polymerase chain reaction for 10 chosen genes and Western blotting for three proteins. All differentially abundant proteins were analyzed for their Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations. Certain downregulated proteins were associated with immunity functions, and the upregulated proteins were related to cytomembrane and cytoskeleton regulation. The phagocytosis rate and cytokine genes transcription in Raw264.7 cells during SEZ ATCC35246 and ST171 infection were detected to confirm the bioinformatics results. These results showed that different effects on macrophage phagocytosis and cytokine expression might explain the different phenotypes of SEZ ATCC35246 and ST171 infection. This research provided clues to the mechanisms of host immunity responses to SEZ ST171and SEZ ATCC35246, which could identify potential therapy and vaccine development targets.

  1. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  2. Antibiotic and Antimicrobial Resistance: Threat Report 2013

    Science.gov (United States)

    ... Form Controls Cancel Submit Search The CDC Antibiotic / Antimicrobial Resistance Note: Javascript is disabled or is not ... please visit this page: About CDC.gov . Antibiotic / Antimicrobial Resistance About Antimicrobial Resistance Biggest Threats Emerging Drug ...

  3. Correlation Between Total Flavonoid Contents and Macrophage Phagocytosis Activity of Fractions From Faloak (Sterculia quadrifida R.Br. Barks Ethanolic Extract In Vitro

    Directory of Open Access Journals (Sweden)

    Rima Munawaroh

    2018-04-01

    Full Text Available On Timor island, Nusa Tenggara Timur, faloak barks (Sterculia quadrifida R.Br. has been used empirically to restore stamina. Faloak bark ethanolic extract proved to have immunomodulatory activity in vitro, which can increase macrophage phagocytosis activity. This research aimed: (i to determine the immunomodulatory active fraction of faloak bark ethanolic extract, (ii to determine the total flavonoid contents of faloak extract and fractions, and (iii to evaluate the correlation of the total flavonoid contents of those extract and fractions with their macrophage phagocytosis activity. The simplisia powder is macerated with 96% ethanol. The extract was dissolved in methanol:water (9:1v/v was then subsequently partitioned with n-hexane, ethyl acetate, and water to obtain n-hexane fraction, ethyl acetate fraction, water fraction, and insoluble fraction. Faloak extract and fractions at concentration 62,5; 125; 250; 500μg/mL were tested for their effect on the peritoneal macrophage phagocytosis of Balb/c mice in vitro by the latex beads method. Phagocytosis capacity and phagocytosis index were analyzed using one-way anova and post hoc Tukey HSD test with 95% confidence level. The results showed that ethyl acetate fraction had the highest macrophage phagocytosis capacity and the highest total flavonoid content compared to other fractions. The highest macrophage phagocytosis capacity of ethyl acetate fraction at concentration of 250 μg/mL was 51,94±4,67%, this value was significantly different from cell control (7,50±1,29%, negative controls of 0,0625% dimethylsulphoxide (6,25±0,36%, as well as positive control of 200 μg/mL echinaceae extract syrup® (9,97±0,33%. The total flavonoid content of ethyl acetate fraction determined by aluminum chloride method was 4,290±0.029 mg of quercetin equivalent/g fraction. There was a positive and strong correlation between the total flavonoid content of these extract and fractions with their macrophage

  4. The Haemophilus ducreyi LspA1 protein inhibits phagocytosis by using a new mechanism involving activation of C-terminal Src kinase.

    Science.gov (United States)

    Dodd, Dana A; Worth, Randall G; Rosen, Michael K; Grinstein, Sergio; van Oers, Nicolai S C; Hansen, Eric J

    2014-05-20

    Haemophilus ducreyi causes chancroid, a sexually transmitted infection. A primary means by which this pathogen causes disease involves eluding phagocytosis; however, the molecular basis for this escape mechanism has been poorly understood. Here, we report that the LspA virulence factors of H. ducreyi inhibit phagocytosis by stimulating the catalytic activity of C-terminal Src kinase (Csk), which itself inhibits Src family protein tyrosine kinases (SFKs) that promote phagocytosis. Inhibitory activity could be localized to a 37-kDa domain (designated YL2) of the 456-kDa LspA1 protein. The YL2 domain impaired ingestion of IgG-opsonized targets and decreased levels of active SFKs when expressed in mammalian cells. YL2 contains tyrosine residues in two EPIYG motifs that are phosphorylated in mammalian cells. These tyrosine residues were essential for YL2-based inhibition of phagocytosis. Csk was identified as the predominant mammalian protein interacting with YL2, and a dominant-negative Csk rescued phagocytosis in the presence of YL2. Purified Csk phosphorylated the tyrosines in the YL2 EPIYG motifs. Phosphorylated YL2 increased Csk catalytic activity, resulting in positive feedback, such that YL2 can be phosphorylated by the same kinase that it activates. Finally, we found that the Helicobacter pylori CagA protein also inhibited phagocytosis in a Csk-dependent manner, raising the possibility that this may be a general mechanism among diverse bacteria. Harnessing Csk to subvert the Fcγ receptor (FcγR)-mediated phagocytic pathway represents a new bacterial mechanism for circumventing a crucial component of the innate immune response and may potentially affect other SFK-involved cellular pathways. Phagocytosis is a critical component of the immune system that enables pathogens to be contained and cleared. A number of bacterial pathogens have developed specific strategies to either physically evade phagocytosis or block the intracellular signaling required for

  5. Emergence of anti-red blood cell antibodies triggers red cell phagocytosis by activated macrophages in a rabbit model of Epstein-Barr virus-associated hemophagocytic syndrome.

    Science.gov (United States)

    Hsieh, Wen-Chuan; Chang, Yao; Hsu, Mei-Chi; Lan, Bau-Shin; Hsiao, Guan-Chung; Chuang, Huai-Chia; Su, Ih-Jen

    2007-05-01

    Hemophagocytic syndrome (HPS) is a fatal complication frequently associated with viral infections. In childhood HPS, Epstein-Barr virus (EBV) is the major causative agent, and red blood cells (RBCs) are predominantly phagocytosed by macrophages. To investigate the mechanism of RBC phagocytosis triggered by EBV infection, we adopted a rabbit model of EBV-associated HPS previously established by using Herpesvirus papio (HVP). The kinetics of virus-host interaction was studied. Using flow cytometry, we detected the emergence of antibody-coated RBCs, as well as anti-platelet antibodies, at peak virus load period at weeks 3 to 4 after HVP injection, and the titers increased thereafter. The presence of anti-RBCs preceded RBC phagocytosis in tissues and predicted the full-blown development of HPS. The anti-RBC antibodies showed cross-reactivity with Paul-Bunnell heterophile antibodies. Preabsorption of the HVP-infected serum with control RBCs removed the majority of anti-RBC activities and remarkably reduced RBC phagocytosis. The RBC phagocytosis was specifically mediated via an Fc fragment of antibodies in the presence of macrophage activation. Therefore, the emergence of anti-RBC antibodies and the presence of macrophage activation are both essential in the development of HPS. Our observations in this animal model provide a potential mechanism for hemophagocytosis in EBV infection.

  6. IrAM—An .alpha..sub.2./sub.-macroglobulin from the hard tick Ixodes ricinus: Characterization and function in phagocytosis of a potential pathogen Chryseobacterium indologenes

    Czech Academy of Sciences Publication Activity Database

    Burešová, Veronika; Hajdušek, Ondřej; Franta, Zdeněk; Sojka, Daniel; Kopáček, Petr

    2009-01-01

    Roč. 33, č. 4 (2009), s. 489-198 ISSN 0145-305X R&D Projects: GA AV ČR IAA600220603; GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518 Keywords : α2-macroglobulin * tick * phagocytosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.290, year: 2009

  7. Antimicrobial Peptides: An Introduction.

    Science.gov (United States)

    Haney, Evan F; Mansour, Sarah C; Hancock, Robert E W

    2017-01-01

    The "golden era" of antibiotic discovery has long passed, but the need for new antibiotics has never been greater due to the emerging threat of antibiotic resistance. This urgency to develop new antibiotics has motivated researchers to find new methods to combat pathogenic microorganisms resulting in a surge of research focused around antimicrobial peptides (AMPs; also termed host defense peptides) and their potential as therapeutics. During the past few decades, more than 2000 AMPs have been identified from a diverse range of organisms (animals, fungi, plants, and bacteria). While these AMPs share a number of common features and a limited number of structural motifs; their sequences, activities, and targets differ considerably. In addition to their antimicrobial effects, AMPs can also exhibit immunomodulatory, anti-biofilm, and anticancer activities. These diverse functions have spurred tremendous interest in research aimed at understanding the activity of AMPs, and various protocols have been described to assess different aspects of AMP function including screening and evaluating the activities of natural and synthetic AMPs, measuring interactions with membranes, optimizing peptide function, and scaling up peptide production. Here, we provide a general overview of AMPs and introduce some of the methodologies that have been used to advance AMP research.

  8. The adaptor molecule Nck localizes the WAVE complex to promote actin polymerization during CEACAM3-mediated phagocytosis of bacteria.

    Directory of Open Access Journals (Sweden)

    Stefan Pils

    Full Text Available BACKGROUND: CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. PRINCIPAL FINDINGS: In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. CONCLUSIONS: Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment.

  9. Effect of UVB irradiation of the blood on cellular volume adherence and phagocytosis in probands and patients with multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Mix, E; Jenssen, H L; Lehmitz, R; Buddenhagen, F; Hitzschke, B; Richter, M

    1988-01-01

    UVB-induced changes of blood cell properties were investigated in 12 multiple sclerosis (MS) patients and in 10 healthy volunteers. The mean cell volume (MCV) was determined by electronic sizing, the granulocyte and lymphocyte adherence was estimated in a capillary assay, and the phagocytic activity of granulocytes was measured in a test system based on the incorporation of opsonized baker's yeast. In MS patients the MCV of red cells and lymphocytes decreased rapidly within 6 UVB treatments. In contrast, the reduction of the granulocyte volume was delayed (between the 6th and 12th UVB). In the control group the mean value of the red cell and lymphocyte MCV remained rather unaffected. There was a slight rise of the granulocyte volume after the 6th UVB. The only significant change of adherence was an increase of granulocyte adherence in MS patients. Untreated patients had a significantly enhanced phagocytic activity in comparison to the control group. 6 UVB treatments induced a singificant reduction of the phagocytic activity in MS patients. However, subsequently the percentage of phagocytizing cells increased again, whereas the particle uptake per cell continued to decrease. In the control group only minor UVB-induced changes of phagocytosis were observed. The in vitro UV irradiation caused an enhanced phagocytosis in the majority of cases in both controls and MS patients. In general, under the UVB treatment all parameters examined changed in the sense of a normalisation, in that the measured values reached a new level lying between the extreme pretreatment values accompanied by a reduced standard deviation. The effect of UVB was more pronounced in MS patients when compared with normal control. This could result from an enhanced sensitivity to the influence of UVB of pathologically altered cells in MS patients. (Abstract Truncated)

  10. Effect of trastuzumab interchain disulfide bond cleavage on Fcγ receptor binding and antibody-dependent tumour cell phagocytosis.

    Science.gov (United States)

    Suzuki, Mami; Yamanoi, Ayaka; Machino, Yusuke; Ootsubo, Michiko; Izawa, Ken-ichi; Kohroki, Junya; Masuho, Yasuhiko

    2016-01-01

    The Fc domain of human IgG1 binds to Fcγ receptors (FcγRs) to induce effector functions such as phagocytosis. There are four interchain disulfide bonds between the H and L chains. In this study, the disulfide bonds within the IgG1 trastuzumab (TRA), which is specific for HER2, were cleaved by mild S-sulfonation or by mild reduction followed by S-alkylation with three different reagents. The cleavage did not change the binding activities of TRA to HER2-bearing SK-BR-3 cells. The binding activities of TRA to FcγRIIA and FcγRIIB were greatly enhanced by modification with mild reduction and S-alkylation with ICH2CONH2 or N-(4-aminophenyl) maleimide, while the binding activities of TRA to FcγRI and FcγRIIIA were decreased by any of the four modifications. However, the interchain disulfide bond cleavage by the different modifications did not change the antibody-dependent cell-mediated phagocytosis (ADCP) of SK-BR-3 cells by activated THP-1 cells. The order of FcγR expression levels on the THP-1 cells was FcγRII > FcγRI > FcγRIII and ADCP was inhibited by blocking antibodies against FcγRI and FcγRII. These results imply that the effect of the interchain disulfide bond cleavage on FcγRs binding and ADCP is dependent on modifications of the cysteine residues and the FcγR isotypes. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  11. STUDIES ON THE PATHOGENESIS OF FEVER. 13. THE EFFECT OF PHAGOCYTOSIS ON THE RELEASE OF ENDOGENOUS PYROGEN BY POLYMORPHONUCLEAR LEUKOCYTES.

    Science.gov (United States)

    BERLIN, R D; WOOD, W B

    1964-05-01

    1. Phagocytosis promotes the release of endogenous pyrogen from polymorphonuclear leucocytes. 2. The release of pyrogen, though initiated by the phagocytic event, is not synchronous with it. 3. The postphagocytic release mechanism is not inhibited by sodium fluoride and, therefore, appears not to require continued production of energy by the cell. 4. The release process, on the other hand, is inhibited by arsenite, suggesting the participation of one or more sulfhydryl-dependent enzymes in the over-all reaction. 5. Particle for particle, the ingestion of heat-killed rough pneumococci causes the release of approximately 100 times as much pyrogen as the ingestion of polystyrene beads of the same size. 6. The pyrogen release mechanism of polymorphonuclear leucocytes separated directly from blood, unlike that of granulocytes in acute inflammatory exudates, is not readily activated by incubation of the cells in K-free saline. Despite this difference, both blood and exudate leucocytes following phagocytosis release large amounts of pyrogen, even in the presence of K(+). The fact that the postphagocytic reaction is uninhibited by the concentrations of K(+) which are present in plasma and extracellular fluids, suggests that this mechanism of pyrogen release may well operate in vivo. 7. As might be expected from the foregoing observations, the intravenous injection of a sufficiently large number of heat-killed pneumococci causes fever in the intact host. Intravenously injected polystyrene beads, on the other hand, are significantly less pyrogenic. Evidence is presented to support the conclusion that the fever in both instances is caused by pyrogen released from the circulating leucocytes which have phagocyted the injected particles. 8. The possible relationships of these findings to the pathogenesis of fevers caused by acute bacterial infections are discussed.

  12. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  13. Novel Formulations for Antimicrobial Peptides

    Science.gov (United States)

    Carmona-Ribeiro, Ana Maria; Carrasco, Letícia Dias de Melo

    2014-01-01

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy. PMID:25302615

  14. Mass spectrometry imaging of biomarker lipids for phagocytosis and signalling during focal cerebral ischaemia

    DEFF Research Database (Denmark)

    Nielsen, Mette M B; Lambertsen, Kate L; Clausen, Bettina H

    2016-01-01

    biomarker CD11b, and probably with cholesteryl ester. Mass spectrometry imaging can visualize spatiotemporal changes in the lipidome during the progression and resolution of focal cerebral inflammation and suggests that BMP(22:6/22:6) and N-acyl-phosphatidylethanolamines can be used as biomarkers......Focal cerebral ischaemia has an initial phase of inflammation and tissue injury followed by a later phase of resolution and repair. Mass spectrometry imaging (desorption electrospray ionization and matrix assisted laser desorption ionization) was applied on brain sections from mice 2 h, 24 h, 5d, 7...

  15. Antimicrobial resistance in the environment

    National Research Council Canada - National Science Library

    Keen, Patricia L; Montforts, M. H. M. M

    2012-01-01

    ... or antibiotic resistance genes as environmental contaminants. It also considers alternate uses and functions for antimicrobial compounds other than those intended for medicinal purposes in humans, animals, and fish...

  16. Antimicrobial peptides from Capsicum sp.

    African Journals Online (AJOL)

    ajl yemi

    2011-12-30

    Dec 30, 2011 ... Key words: Antimicrobial peptides, Capsicum sp, Capsicum chinense, chili pepper, agronomical options, ..... of this human activity is resumed by the simple phrase: produce .... It will be interesting to scale the AMPs extraction.

  17. Antimicrobial Pesticide Use Site Index

    Science.gov (United States)

    This Use Site Index provides guidance to assist applicants for antimicrobial pesticide registration by helping them identify the data requirements necessary to register a pesticide or support their product registrations.

  18. Antimicrobial activity of Agave sisalana

    African Journals Online (AJOL)

    STORAGESEVER

    2009-11-16

    Nov 16, 2009 ... cancer treatment, transplantation or are immuno- suppressed for ... machine after the decortication process of the leaves of A. sisalana in a sisal .... Composition and antimicrobial activity of the essential oils of two Origanum ...

  19. Antimicrobial stewardship in wound care

    DEFF Research Database (Denmark)

    Lipsky, Benjamin A; Dryden, Matthew; Gottrup, Finn

    2016-01-01

    BACKGROUND: With the growing global problem of antibiotic resistance it is crucial that clinicians use antibiotics wisely, which largely means following the principles of antimicrobial stewardship (AMS). Treatment of various types of wounds is one of the more common reasons for prescribing...... of experts in infectious diseases/clinical microbiology (from the British Society for Antimicrobial Chemotherapy) and wound management (from the European Wound Management Association) who, after thoroughly reviewing the available literature and holding teleconferences, jointly produced this guidance document...

  20. Progress Report

    DEFF Research Database (Denmark)

    Duer, Karsten

    1999-01-01

    Progress report describing the work carried out by the Danish participant in the ALTSET project in the period January 1999 to July 1999.......Progress report describing the work carried out by the Danish participant in the ALTSET project in the period January 1999 to July 1999....

  1. Progress Report

    Science.gov (United States)

    2018-05-16

    This report summarizes the annual progress of EPA’s Clean Air Markets Programs such as the Acid Rain Program (ARP) and the Cross-State Air Pollution Rule (CSAPR). EPA systematically collects data on emissions, compliance, and environmental effects, these data are highlighted in our Progress Reports.

  2. Antimicrobial susceptibility, serotypes and genotypes of Pasteurella multocida isolates associated with swine pneumonia in Taiwan.

    Science.gov (United States)

    Yeh, Jih-Ching; Lo, Dan-Yuan; Chang, Shao-Kuang; Chou, Chi-Chung; Kuo, Hung-Chih

    2017-09-21

    Pasteurella multocida (PM) can cause progressive atrophic rhinitis and suppurative bronchopneumonia in pigs. The present study performed antimicrobial susceptibility testing and serotype and genotype identification on the 62 PM strains isolated from the lungs of diseased pigs with respiratory symptoms. Antimicrobial susceptibility testing examined 13 antimicrobial agents (amoxicillin, cefazolin, doxycycline, flumequine, enrofloxacin, florfenicol, kanamycin, lincomycin, Linco-Spectin (lincomycin and spectinomycin), erythromycin, tylosin, tilmicosin and tiamulin). Antimicrobial resistance ratios were over 40% in all of the antimicrobial agents except for cefazolin. The highest levels of resistance (100%) were found for kanamycin, erythromycin and tylosin. The majority of isolated strains was serotype D:L6 (n=35) followed by A:L3 (n=17). Comparison of the antimicrobial resistance levels between the two serotypes showed that the antimicrobial resistance rates were higher in D:L6 than in A:L3 for all the tested antimicrobials except for tylosin and tilmicosin. For PM with erm (B), erm (T) or erm (42), the results showed no significant difference compared with non-resistance gene strains in phenotype. Pulsed-field gel electrophoresis genotyping using Apa I restriction digestion of the genomic DNA demonstrated that there were 17 distinct clusters with a similarity of 85% or more, and the genotyping result was similar to that of serotyping. The results of the present study demonstrated that the PM isolated from diseased pigs in Taiwan was resistant to multiple antimicrobials, and the distribution of antimicrobial resistance was associated with pulsotype and serotype. © British Veterinary Association (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Antimicrobial stewardship in a Gastroenterology Department: Impact on antimicrobial consumption, antimicrobial resistance and clinical outcome.

    Science.gov (United States)

    Bedini, Andrea; De Maria, Nicola; Del Buono, Mariagrazia; Bianchini, Marcello; Mancini, Mauro; Binda, Cecilia; Brasacchio, Andrea; Orlando, Gabriella; Franceschini, Erica; Meschiari, Marianna; Sartini, Alessandro; Zona, Stefano; Paioli, Serena; Villa, Erica; Gyssens, Inge C; Mussini, Cristina

    2016-10-01

    A major cause of the increase in antimicrobial resistance is the inappropriate use of antimicrobials. To evaluate the impact on antimicrobial consumption and clinical outcome of an antimicrobial stewardship program in an Italian Gastroenterology Department. Between October 2014 and September 2015 (period B), a specialist in infectious diseases (ID) controlled all antimicrobial prescriptions and decided about the therapy in agreement with gastroenterologists. The defined daily doses of antimicrobials (DDDs), incidence of MDR-infections, mean length of stay and overall in-hospital mortality rate were compared with those of the same period in the previous 12-months (period A). During period B, the ID specialist performed 304 consultations: antimicrobials were continued in 44.4% of the cases, discontinued in 13.8%, not recommended in 12.1%, de-escalated 9.9%, escalated in 7.9%, and started in 4.0%. Comparing the 2 periods, we observed a decreased of antibiotics consumption (from 109.81 to 78.45 DDDs/100 patient-days, p=0.0005), antifungals (from 41.28 to 24.75 DDDs/100pd, p=0.0004), carbapenems (from 15.99 to 6.80 DDDsx100pd, p=0.0032), quinolones (from 35.79 to 17.82 DDDsx100pd, p=0.0079). No differences were observed in incidence of MDR-infections, length of hospital stay (LOS), and mortality rate. ASP program had a positive impact on reducing the consumption of antimicrobials, without an increase in LOS and mortality. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  4. HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis

    Science.gov (United States)

    2018-01-01

    ABSTRACT Vaccine-elicited humoral immune responses comprise an array of antibody forms and specificities, with only a fraction contributing to protective host immunity. Elucidation of antibody effector functions responsible for protective immunity against human immunodeficiency virus type 1 (HIV-1) acquisition is a major goal for the HIV-1 vaccine field. Immunoglobulin A (IgA) is an important part of the host defense against pathogens; however, little is known about the role of vaccine-elicited IgA and its capacity to mediate antiviral functions. To identify the antiviral functions of HIV-1-specific IgA elicited by vaccination, we cloned HIV-1 envelope-specific IgA monoclonal antibodies (MAbs) by memory B cell cultures from peripheral blood mononuclear cells from an RV144 vaccinee and produced two IgA clonal cell lines (HG129 and HG130) producing native, nonrecombinant IgA MAbs. The HG129 and HG130 MAbs mediated phagocytosis by monocytes, and HG129 blocked HIV-1 Env glycoprotein binding to galactosylceramide, an alternative HIV-1 receptor. These findings elucidate potential antiviral functions of vaccine-elicited HIV-1 envelope-specific IgA that may act to block HIV-1 acquisition at the portal of entry by preventing HIV-1 binding to galactosylceramide and mediating antibody Fc receptor-mediated virion phagocytosis. Furthermore, these findings highlight the complex and diverse interactions of vaccine-elicited IgA with pathogens that depend on IgA fine specificity and form (e.g., multimeric or monomeric) in the systemic circulation and mucosal compartments. IMPORTANCE Host-pathogen interactions in vivo involve numerous immune mechanisms that can lead to pathogen clearance. Understanding the nature of antiviral immune mechanisms can inform the design of efficacious HIV-1 vaccine strategies. Evidence suggests that both neutralizing and nonneutralizing antibodies can mediate some protection against HIV in animal models. Although numerous studies have characterized the

  5. Decoupling internalization, acidification and phagosomal-endosomal/lysosomal fusion during phagocytosis of InlA coated beads in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Craig D Blanchette

    Full Text Available BACKGROUND: Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK and Caco-2 epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA, a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification. CONCLUSIONS/SIGNIFICANCE: Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23-32 min, 3-4 min and 74-120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply

  6. Editorial of the Special Issue Antimicrobial Polymers

    Directory of Open Access Journals (Sweden)

    Iolanda Francolini

    2013-09-01

    Full Text Available The special issue “Antimicrobial Polymers” includes research and review papers concerning the recent advances on preparation of antimicrobial polymers and their relevance to industrial settings and biomedical field. Antimicrobial polymers have recently emerged as promising candidates to fight microbial contamination onto surfaces thanks to their interesting properties. In this special issue, the main strategies pursued for developing antimicrobial polymers, including polymer impregnation with antimicrobial agents or synthesis of polymers bearing antimicrobial moieties, were discussed. The future application of these polymers either in industrial or healthcare settings could result in an extremely positive impact not only at the economic level but also for the improvement of quality of life.

  7. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  8. An interspecies comparison of the phagocytosis and dissolution of 241AmO2 particles by rat, dog and monkey alveolar macrophages in vitro

    International Nuclear Information System (INIS)

    Taya, A.; Carmack, D.B.; Muggenburg, B.A.; Mewhinney, J.A.

    1992-01-01

    Experiments were conducted to study the phagocytosis and dissolution of 241 AmO 2 particles by rat, dog and monkey alveolar macrophages (PAM) in vitro. The phagocytosis and dissolution of 241 AmO 2 particles were followed up to 20 and 72 h, respectively. Dog and monkey PAM took up 241 AmO 2 particles at similar rates, whereas rat PAM phagocytosed only 60% of the amount phagocytosed by dog and monkey PAM at 20h. The PAM of the three species dissolved 241 AmO 2 particles at similar rates; 8-10% was dissolved by 72h. The results of the 241 AmO 2 uptake in vitro may reflect in vivo situations, where the differences in uptake seen in vitro would probably diminish at later times after exposure. The dissolution results imply that the dissolution of 241 AmO 2 particles by alveolar macrophages of the three species might be species-independent. (author)

  9. Progressive Business

    DEFF Research Database (Denmark)

    Christiansen, Christian O.

    2016-01-01

    Guest Post to the Society for U.S. Intellectual History Blog. Brief introduction to the book Progressive Business: An Intellectual History of the Role of Business in American Society, Oxford U.P., 2015.......Guest Post to the Society for U.S. Intellectual History Blog. Brief introduction to the book Progressive Business: An Intellectual History of the Role of Business in American Society, Oxford U.P., 2015....

  10. Behavioral approach to appropriate antimicrobial prescribing in hospitals: the Dutch Unique Method for Antimicrobial Stewardship (DUMAS) participatory intervention study.

    NARCIS (Netherlands)

    Sikkens, J.J.; Agtmael, M.A. van; Peters, E.J.G.; Lettinga, K.D.; Kuip, M. van der; Vandenbroucke-Grauls, C.M.J.E.; Wagner, C.; Kramer, M.H.H.

    2017-01-01

    Importance: Inappropriate antimicrobial prescribing leads to antimicrobial resistance and suboptimal clinical outcomes. Changing antimicrobial prescribing is a complex behavioral process that is not often taken into account in antimicrobial stewardship programs. Objective: To examine whether an

  11. The role of phagocytosis, oxidative burst and neutrophil extracellular traps in the interaction between neutrophils and the periodontal pathogen Porphyromonas gingivalis.

    Science.gov (United States)

    Jayaprakash, K; Demirel, I; Khalaf, H; Bengtsson, T

    2015-10-01

    Neutrophils are regarded as the sentinel cells of innate immunity and are found in abundance within the gingival crevice. Discovery of neutrophil extracellular traps (NETs) within the gingival pockets prompted us to probe the nature of the interactions of neutrophils with the prominent periopathogen Porphyromonas gingivalis. Some of the noted virulence factors of this Gram-negative anaerobe are gingipains: arginine gingipains (RgpA/B) and lysine gingipain (Kgp). The aim of this study was to evaluate the role of gingipains in phagocytosis, formation of reactive oxygen species, NETs and CXCL8 modulation by using wild-type strains and isogenic gingipain mutants. Confocal imaging showed that gingipain mutants K1A (Kgp) and E8 (RgpA/B) induced extracellular traps in neutrophils, whereas ATCC33277 and W50 were phagocytosed. The viability of both ATCC33277 and W50 dwindled as the result of phagocytosis and could be salvaged by cytochalasin D, and the bacteria released high levels of lipopolysaccharide in the culture supernatant. Porphyromonas gingivalis induced reactive oxygen species and CXCL8 with the most prominent effect being that of the wild-type strain ATCC33277, whereas the other wild-type strain W50 was less effective. Quantitative real-time polymerase chain reaction revealed a significant CXCL8 expression by E8. All the tested P. gingivalis strains increased cytosolic free calcium. In conclusion, phagocytosis is the primary neutrophil response to P. gingivalis, although NETs could play an accessory role in infection control. Although gingipains do not seem to directly regulate phagocytosis, NETs or oxidative burst in neutrophils, their proteolytic properties could modulate the subsequent outcomes such as nutrition acquisition and survival by the bacteria. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression in U937 cells.

    Science.gov (United States)

    Chihara, Kazuyasu; Kato, Yuji; Yoshiki, Hatsumi; Takeuchi, Kenji; Fujieda, Shigeharu; Sada, Kiyonao

    2017-09-13

    The adaptor protein c-Abl SH3 domain binding protein-2 (3BP2) is tyrosine phosphorylated by Syk in response to cross-linking of antigen receptors, which in turn activates various immune responses. Recently, a study using the mouse model of cherubism, a dominant inherited disorder caused by mutations in the gene encoding 3BP2, showed that 3BP2 is involved in the regulation of phagocytosis mediated by Fc receptor for IgG (FcγR) in macrophages. However, the molecular mechanisms underlying 3BP2-mediated regulation of phagocytosis and the physiological relevance of 3BP2 tyrosine phosphorylation remains elusive. In this study, we established various gene knockout U937 cell lines using the CRISPR/Cas9 system and found that 3BP2 is rapidly tyrosine phosphorylated by Syk in response to cross-linking of FcγRI. Depletion of 3BP2 caused significant reduction in the Fc receptor γ chain (FcRγ)-mediated phagocytosis in addition to the FcγRI-mediated induction of chemokine mRNA for IL-8, CCL3L3 and CCL4L2. Syk-dependent tyrosine phosphorylation of 3BP2 was required for overcoming these defects. Finally, we found that the PH and SH2 domains play important roles on FcγRI-mediated tyrosine phosphorylation of 3BP2 in HL-60 cells. Taken together, these results indicate that Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression.

  13. Ocean Acidification Affects the Cytoskeleton, Lysozymes, and Nitric Oxide of Hemocytes: A Possible Explanation for the Hampered Phagocytosis in Blood Clams, Tegillarca granosa.

    Science.gov (United States)

    Su, Wenhao; Rong, Jiahuan; Zha, Shanjie; Yan, Maocang; Fang, Jun; Liu, Guangxu

    2018-01-01

    An enormous amount of anthropogenic carbon dioxide (CO 2 ) has been dissolved into the ocean, leading to a lower pH and changes in the chemical properties of seawater, which has been termed ocean acidification (OA). The impacts of p CO 2 -driven acidification on immunity have been revealed recently in various marine organisms. However, the mechanism causing the reduction in phagocytosis still remains unclear. Therefore, the impacts of p CO 2 -driven OA at present and near-future levels (pH values of 8.1, 7.8, and 7.4) on the rate of phagocytosis, the abundance of cytoskeleton components, the levels of nitric oxide (NO), and the concentration and activity of lysozymes (LZM) of hemocytes were investigated in a commercial bivalve species, the blood clam ( Tegillarca granosa ). In addition, the effects of OA on the expression of genes regulating actin skeleton and nitric oxide synthesis 2 ( NOS2 ) were also analyzed. The results obtained showed that the phagocytic rate, cytoskeleton component abundance, concentration and activity of LZM of hemocytes were all significantly reduced after a 2-week exposure to the future OA scenario of a pH of 7.4. On the contrary, a remarkable increase in the concentration of NO compared to that of the control was detected in clams exposed to OA. Furthermore, the expression of genes regulating the actin cytoskeleton and NOS were significantly up-regulated after OA exposure. Though the mechanism causing phagocytosis seemed to be complicated based on the results obtained in the present study and those reported previously, our results suggested that OA may reduce the phagocytosis of hemocytes by (1) decreasing the abundance of cytoskeleton components and therefore hampering the cytoskeleton-mediated process of engulfment, (2) reducing the concentration and activity of LZM and therefore constraining the degradation of the engulfed pathogen through an oxygen-independent pathway, and (3) inducing the production of NO, which may negatively

  14. A Review of Antimicrobial Peptides and Their Therapeutic Potential as Anti-Infective Drugs

    Science.gov (United States)

    Gordon, Y. Jerold; Romanowski, Eric G.; McDermott, Alison M.

    2006-01-01

    Purpose. Antimicrobial peptides (AMPs) are an essential part of innate immunity that evolved in most living organisms over 2.6 billion years to combat microbial challenge. These small cationic peptides are multifunctional as effectors of innate immunity on skin and mucosal surfaces and have demonstrated direct antimicrobial activity against various bacteria, viruses, fungi, and parasites. This review summarizes their progress to date as commercial antimicrobial drugs for topical and systemic indications. Methods. Literature review. Results. Despite numerous clinical trials, no modified AMP has obtained Food & Drug Administration approval yet for any topical or systemic medical indications. Conclusions. While AMPs are recognized as essential components of natural host innate immunity against microbial challenge, their usefulness as a new class of antimicrobial drugs still remains to be proven. PMID:16020284

  15. Non-thermal plasma technology for the development of antimicrobial surfaces: a review

    Science.gov (United States)

    Nikiforov, Anton; Deng, Xiaolong; Xiong, Qing; Cvelbar, U.; DeGeyter, N.; Morent, R.; Leys, Christophe

    2016-05-01

    Antimicrobial coatings are in high demand in many fields including the biomaterials and healthcare sectors. Within recent progress in nanoscience and engineering at the nanoscale, preparation of nanocomposite films containing metal nanoparticles (such as silver nanoparticles, copper nanoparticles, zinc oxide nanoparticles) is becoming an important step in manufacturing biomaterials with high antimicrobial activity. Controlled release of antibiotic agents and eliminating free nanoparticles are of equal importance for engineering antimicrobial nanocomposite materials. Compared to traditional chemical ‘wet’ methods, plasma deposition and plasma polymerization are promising approaches for the fabrication of nanocomposite films with the advantages of gas phase dry processes, effective use of chemicals and applicability to various substrates. In this article, we present a short overview of state-of-the-art engineering of antimicrobial materials based on the use of non-thermal plasmas at low and atmospheric pressure.

  16. In vivo and in vitro phagocytosis of Leishmania (Leishmania) amazonensis promastigotes by B-1 cells.

    Science.gov (United States)

    Geraldo, M M; Costa, C R; Barbosa, F M C; Vivanco, B C; Gonzaga, W F K M; Novaes E Brito, R R; Popi, A F; Lopes, J D; Xander, P

    2016-06-01

    Leishmaniasis is caused by Leishmania parasites that infect several cell types. The promastigote stage of Leishmania is internalized by phagocytic cells and transformed into the obligate intracellular amastigote form. B-1 cells are a subpopulation of B cells that are able to differentiate in vitro and in vivo into mononuclear phagocyte-like cells with phagocytic properties. B-1 cells use several receptors for phagocytosis, such as the mannose receptor and third complement receptor. Leishmania binds to the same receptors on macrophages. In this study, we demonstrated that phagocytes derived from B-1 cells (B-1 CDP) were able to internalize promastigotes of L. (L.) amazonensis in vitro. The internalized promastigotes differentiated into amastigotes. Our results showed that the phagocytic index was higher in B-1 CDP compared to peritoneal macrophages and bone marrow-derived macrophages. The in vivo phagocytic ability of B-1 cells was also demonstrated. Parasites were detected inside purified B-1 cells after intraperitoneal infection with L. (L.) amazonensis promastigotes. Intraperitoneal stimulation with the parasites led to an increase in both IL-10 and TNF-α. These results highlight the importance of studying B-1 CDP cells as phagocytic cells that can participate and contribute to immunity to parasites. © 2016 John Wiley & Sons Ltd.

  17. Sialoglycoproteins in morphological distinct stages of Mucor polymorphosporus and their influence on phagocytosis by human blood phagocytes.

    Science.gov (United States)

    Almeida, Catia Amancio; de Campos-Takaki, Galba Maria; Portela, Maristela Barbosa; Travassos, Luiz R; Alviano, Celuta Sales; Alviano, Daniela Sales

    2013-10-01

    The possible role of sialic acids in host cells-fungi interaction and their association with glycoproteins were evaluated using a clinical isolate of the dimorphic fungus Mucor polymorphosporus. Lectin-binding assays with spores and yeast cells denoted the presence of surface sialoglycoconjugates containing 2,3- and 2,6-linked sialylglycosyl groups. Western blotting with peroxidase-labeled Limulus polyphemus agglutinin revealed the occurrence of different sialoglycoprotein types in both cell lysates and cell wall protein extracts of mycelia, spores, and yeasts of M. polymorphosporus. Sialic acids contributed to the surface negative charge of spores and yeast forms as evaluated by adherence to a cationic substrate. Sialidase-treated spores were less resistant to phagocytosis by human neutrophils and monocytes from healthy individuals than control (untreated) fungal suspensions. The results suggest that sialic acids are terminal units of various glycoproteins of M. polymorphosporus, contributing to negative charge of yeasts and spore cells and protecting infectious propagules from destruction by host cells.

  18. The in vitro biocompatibility and macrophage phagocytosis of Mg17Al12 phase in Mg-Al-Zn alloys.

    Science.gov (United States)

    Liu, Chen; He, Peng; Wan, Peng; Li, Mei; Wang, Kehong; Tan, Lili; Zhang, Yu; Yang, Ke

    2015-07-01

    Mg alloys are gaining interest for applications as biodegradable medical implant, including Mg-Al-Zn series alloys with good combination of mechanical properties and reasonable corrosion resistance. However, whether the existence of second phase particles in the alloys exerts influence on the biocompatibility is still not clear. A deeper understanding of how the particles regulate specific biological responses is becoming a crucial requirement for their subsequent biomedical application. In this work, the in vitro biocompatibility of Mg17Al12 as a common second phase in biodegradable Mg-Al-Zn alloys was investigated via hemolysis, cytotoxicity, cell proliferation, and cell adhesion tests. Moreover, osteogenic differentiation was evaluated by the extracellular matrix mineralization assay. The Mg17Al12 particles were also prepared to simulate the real situation of second phase in the in vivo environment in order to estimate the cellular response in macrophages to the Mg17Al12 particles. The experimental results indicated that no hemolysis was found and an excellent cytocompatibility was also proved for the Mg17Al12 second phase when co-cultured with L929 cells, MC3T3-E1 cells and BMSCs. Macrophage phagocytosis co-culture test revealed that Mg17Al12 particles exerted no harmful effect on RAW264.7 macrophages and could be phagocytized by the RAW264.7 cells. Furthermore, the possible inflammatory reaction and metabolic way for Mg17Al12 phase were also discussed in detail. © 2014 Wiley Periodicals, Inc.

  19. Cross-talk between miR-471-5p and autophagy component proteins regulates LC3-associated phagocytosis (LAP) of apoptotic germ cells.

    Science.gov (United States)

    Panneerdoss, Subbarayalu; Viswanadhapalli, Suryavathi; Abdelfattah, Nourhan; Onyeagucha, Benjamin C; Timilsina, Santosh; Mohammad, Tabrez A; Chen, Yidong; Drake, Michael; Vuori, Kristiina; Kumar, T Rajendra; Rao, Manjeet K

    2017-09-19

    Phagocytic clearance of apoptotic germ cells by Sertoli cells is vital for germ cell development and differentiation. Here, using a tissue-specific miRNA transgenic mouse model, we show that interaction between miR-471-5p and autophagy member proteins regulates clearance of apoptotic germ cells via LC3-associated phagocytosis (LAP). Transgenic mice expressing miR-471-5p in Sertoli cells show increased germ cell apoptosis and compromised male fertility. Those effects are due to defective engulfment and impaired LAP-mediated clearance of apoptotic germ cells as miR-471-5p transgenic mice show lower levels of Dock180, LC3, Atg12, Becn1, Rab5 and Rubicon in Sertoli cells. Our results reveal that Dock180 interacts with autophagy member proteins to constitute a functional LC3-dependent phagocytic complex. We find that androgen regulates Sertoli cell phagocytosis by controlling expression of miR-471-5p and its target proteins. These findings suggest that recruitment of autophagy machinery is essential for efficient clearance of apoptotic germ cells by Sertoli cells using LAP.Although phagocytic clearance of apoptotic germ cells by Sertoli cells is essential for spermatogenesis, little of the mechanism is known. Here the authors show that Sertoli cells employ LC3-associated phagocytosis (LAP) by recruiting autophagy member proteins to clear apoptotic germ cells.

  20. Effect of a 2.45-GHz radiofrequency electromagnetic field on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells.

    Science.gov (United States)

    Koyama, Shin; Narita, Eijiro; Suzuki, Yoshihisa; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji

    2015-01-01

    The potential public health risks of radiofrequency (RF) fields have been discussed at length, especially with the use of mobile phones spreading extensively throughout the world. In order to investigate the properties of RF fields, we examined the effect of 2.45-GHz RF fields at the specific absorption rate (SAR) of 2 and 10 W/kg for 4 and 24 h on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. Neutrophil chemotaxis was not affected by RF-field exposure, and subsequent phagocytosis was not affected either compared with that under sham exposure conditions. These studies demonstrated an initial immune response in the human body exposed to 2.45-GHz RF fields at the SAR of 2 W/kg, which is the maximum value recommended by the International Commission for Non-Ionizing Radiation Protection (ICNIRP) guidelines. The results of our experiments for RF-field exposure at an SAR under 10 W/kg showed very little or no effects on either chemotaxis or phagocytosis in neutrophil-like human HL-60 cells. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  1. Antibody-mediated platelet phagocytosis by human macrophages is inhibited by siRNA specific for sequences in the SH2 tyrosine kinase, Syk.

    Science.gov (United States)

    Lu, Ying; Wang, Weiming; Mao, Huiming; Hu, Hai; Wu, Yanling; Chen, Bing-Guan; Liu, Zhongmin

    2011-01-01

    Immune thrombocytopenia depends upon Fc receptor-mediated phagocytosis that involves signaling through the SH2 tyrosine kinase, Syk. We designed small interfering (siRNA) sequences complementary to Syk coding regions to decrease the expression of Syk in the human macrophage cell line, THP-1. To evaluate the functional effect of siRNA on phagocytosis, we developed a new in vitro assay for antibody-mediated platelet ingestion by THP-1 cells. Incubation of THP-1 cells at 37°C with fluorescence-labeled platelets and anti-platelet antibody promoted ingestion of platelets that could be quantitated by flow cytometry. Transfection of THP-1 cells with Syk-specific siRNA resulted in a reduction in the amount of FcγRII-associated Syk protein. Coincident with decreased Syk expression, we observed inhibition of antibody-mediated platelet ingestion. These results confirm a key role for Syk in antibody-mediated phagocytosis and suggest Syk-specific siRNA as a possible therapeutic candidate for immune thrombocytopenia. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Antimicrobial resistance mechanisms among Campylobacter.

    Science.gov (United States)

    Wieczorek, Kinga; Osek, Jacek

    2013-01-01

    Campylobacter jejuni and Campylobacter coli are recognized as the most common causative agents of bacterial gastroenteritis in the world. Humans most often become infected by ingesting contaminated food, especially undercooked chicken, but also other sources of bacteria have been described. Campylobacteriosis is normally a self-limiting disease. Antimicrobial treatment is needed only in patients with more severe disease and in those who are immunologically compromised. The most common antimicrobial agents used in the treatment of Campylobacter infections are macrolides, such as erythromycin, and fluoroquinolones, such as ciprofloxacin. Tetracyclines have been suggested as an alternative choice in the treatment of clinical campylobacteriosis but in practice are not often used. However, during the past few decades an increasing number of resistant Campylobacter isolates have developed resistance to fluoroquinolones and other antimicrobials such as macrolides, aminoglycosides, and beta-lactams. Trends in antimicrobial resistance have shown a clear correlation between use of antibiotics in the veterinary medicine and animal production and resistant isolates of Campylobacter in humans. In this review, the patterns of emerging resistance to the antimicrobial agents useful in treatment of the disease are presented and the mechanisms of resistance to these drugs in Campylobacter are discussed.

  3. Antimicrobial stewardship in small animal veterinary practice

    DEFF Research Database (Denmark)

    Guardabassi, Luca; Prescott, John F

    2015-01-01

    Despite the increasing recognition of the critical role for antimicrobial stewardship in preventing the spread of multidrug-resistant bacteria, examples of effective antimicrobial stewardship programs are rare in small animal veterinary practice. This article highlights the basic requirements...

  4. Antimicrobial effect of lactobacillus and bacillus derived ...

    African Journals Online (AJOL)

    This study focused on the screening, production, extraction of biosurfactants from Lactobacillus and Bacillus bacteria and their antimicrobial properties against causal microorganisms of food borne infections (food borne pathogens). The biosurfactants were investigated for potential antimicrobial activity using disk diffusion.

  5. Measuring the impact of antimicrobial stewardship programs

    NARCIS (Netherlands)

    Dik, Jan-Willem H.; Hendrix, Ron; Poelman, Randy; Niesters, Hubert G.; Postma, Maarten J.; Sinha, Bhanu; Friedrich, Alexander W.

    Antimicrobial Stewardship Programs (ASPs) are being implemented worldwide to optimize antimicrobial therapy, and thereby improve patient safety and quality of care. Additionally, this should counteract resistance development. It is, however, vital that correct and timely diagnostics are performed in

  6. Microbiological surveillance and antimicrobial stewardship minimise ...

    African Journals Online (AJOL)

    Microbiological surveillance and antimicrobial stewardship minimise the need for ultrabroad-spectrum combination therapy for treatment of nosocomial infections in a trauma intensive care unit: An audit of an evidence-based empiric antimicrobial policy.

  7. Postoperative Nosocomial Infections and Antimicrobial Resistance ...

    African Journals Online (AJOL)

    Postoperative Nosocomial Infections and Antimicrobial Resistance Pattern of Bacteria Isolates among Patients Admitted at Felege Hiwot Referral Hospital, Bahirdar, ... Wound swab and venous blood samples were collected and processed for bacterial isolation and antimicrobial susceptibility testing following standard ...

  8. Antimicrobial usage and resistance in beef production

    OpenAIRE

    Cameron, Andrew; McAllister, Tim A.

    2016-01-01

    Antimicrobials are critical to contemporary high-intensity beef production. Many different antimicrobials are approved for beef cattle, and are used judiciously for animal welfare, and controversially, to promote growth and feed efficiency. Antimicrobial administration provides a powerful selective pressure that acts on the microbial community, selecting for resistance gene determinants and antimicrobial-resistant bacteria resident in the bovine flora. The bovine microbiota includes many harm...

  9. Antimicrobial resistance of thermophilic Campylobacter

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Engberg, J.

    2001-01-01

    Campylobacter has become the leading cause of zoonotic enteric infections in developed and developing countries world-wide. Antimicrobial resistance has emerged among Campylobacter mainly as a consequence of the use of antimicrobial agents in food animal production. Resistance to drugs of choice...... for the treatment of infections, macrolides and fluoroquinolones has emerged as a clinical problem and interventions to reduce this are recommended. Resistance to fluoroquinolones and macrolides is mediated by chromosomal mutations. Resistance to other relevant antimicrobial agents, mediated by acquired resistance...... genes, has not become widespread so far. However, resistance genes originating from both Gram-positive and Gram-negative bacterial species have been found, showing the potential for acquired resistance to emerge in Campylobacter....

  10. Synthetic biology of antimicrobial discovery

    Science.gov (United States)

    Zakeri, Bijan; Lu, Timothy K.

    2012-01-01

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore, used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery. PMID:23654251

  11. Synthetic biology of antimicrobial discovery.

    Science.gov (United States)

    Zakeri, Bijan; Lu, Timothy K

    2013-07-19

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.

  12. Delivery systems for antimicrobial peptides

    DEFF Research Database (Denmark)

    Nordström, Randi; Malmsten, Martin

    2017-01-01

    Due to rapidly increasing resistance development against conventional antibiotics, finding novel approaches for the treatment of infections has emerged as a key health issue. Antimicrobial peptides (AMPs) have attracted interest in this context, and there is by now a considerable literature...... on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest. However, such delivery systems...... are likely to play a key role in the development of potent and safe AMP-based therapeutics, e.g., through reducing chemical or biological degradation of AMPs either in the formulation or after administration, by reducing adverse side-effects, by controlling AMP release rate, by promoting biofilm penetration...

  13. Antimicrobial activity of different hydroxyapatites

    International Nuclear Information System (INIS)

    Feitosa, G.T.; Santos, M.V.B.; Barreto, H.M.; Osorio, L.R.; Osajima, J.A.; Silva Filho, E.C. da

    2014-01-01

    Among the applications of ceramics in the technological context, hydroxyapatite (HAp) stands out in the scientific community due to chemical biocompatibility and molecular similarity to the structures of bone and dental tissues. Such features are added to the antimicrobial properties that this brings. This work aimed at the synthesis of hydroxyapatite by two different routes, hydrothermal (HD HAp) and co-precipitation (CP HAp), as well as verification of the antimicrobial properties of these through direct contact of the powders synthesized tests with Staphylococcus aureus (SA10) and Escherichia coli (EC7) bacteria. The materials was characterized by XRD, Raman and TEM, and Antimicrobial tests showed inhibitory efficacy of 97% and 9.5% of CP HAp for SA10 and EC7, respectively. The HD HAp had inhibitory effect of 95% and 0% for EC7 and SA10, respectively. The inhibitory effect on SA10 is based on the hydrophilicity that the material possesses. (author)

  14. Uses of antimicrobial genes from microbial genome

    Science.gov (United States)

    Sorek, Rotem; Rubin, Edward M.

    2013-08-20

    We describe a method for mining microbial genomes to discover antimicrobial genes and proteins having broad spectrum of activity. Also described are antimicrobial genes and their expression products from various microbial genomes that were found using this method. The products of such genes can be used as antimicrobial agents or as tools for molecular biology.

  15. Antimicrobial Drugs in the Home, United Kingdom

    OpenAIRE

    McNulty, Cliodna A.M.; Boyle, Paul; Nichols, Tom; Clappison, Douglas P.; Davey, Peter

    2006-01-01

    A total of 6% of 6,983 households in the United Kingdom had leftover antimicrobial drugs, and 4% had standby antimicrobial drugs. Respondents with leftover drugs were more educated, more knowledgeable about antimicrobial drugs, younger, and female. Of respondents with leftover drugs, 44% kept them in case of future need, and 18% had taken these drugs without medical advice.

  16. Review of antimicrobial and antioxidative activities of chitosans in food.

    Science.gov (United States)

    Friedman, Mendel; Juneja, Vijay K

    2010-09-01

    Interest in chitosan, a biodegradable, nontoxic, non-antigenic, and biocompatible biopolymer isolated from shellfish, arises from the fact that chitosans are reported to exhibit numerous health-related beneficial effects, including strong antimicrobial and antioxidative activities in foods. The extraordinary interest in the chemistry and application in agriculture, horticulture, environmental science, industry, microbiology, and medicine is attested by about 17,000 citations on this subject in the Scopus database. A special need exists to develop a better understanding of the role of chitosans in ameliorating foodborne illness. To contribute to this effort, this overview surveys and interprets our present knowledge of the chemistry and antimicrobial activities of chitosan in solution, as powders, and in edible films and coating against foodborne pathogens, spoilage bacteria, and pathogenic viruses and fungi in several food categories. These include produce, fruit juices, eggs and dairy, cereal, meat, and seafood products. Also covered are antimicrobial activities of chemically modified and nanochitosans, therapeutic properties, and possible mechanisms of the antimicrobial, antioxidative, and metal chelating effects. Further research is suggested in each of these categories. The widely scattered data on the multifaceted aspects of chitosan microbiology, summarized in the text and in 10 tables and 8 representative figures, suggest that low-molecular-weight chitosans at a pH below 6.0 presents optimal conditions for achieving desirable antimicrobial and antioxidative-preservative effects in liquid and solid foods. We are very hopeful that the described findings will be a valuable record and resource for further progress to improve microbial food safety and food quality.

  17. Spermicidal Activity of the Safe Natural Antimicrobial Peptide Subtilosin

    Directory of Open Access Journals (Sweden)

    Michael L. Chikindas

    2008-10-01

    Full Text Available Bacterial vaginosis (BV, a condition affecting millions of women each year, is primarily caused by the gram-variable organism Gardnerella vaginalis. A number of organisms associated with BV cases have been reported to develop multidrug resistance, leading to the need for alternative therapies. Previously, we reported the antimicrobial peptide subtilosin has proven antimicrobial activity against G. vaginalis, but not against the tested healthy vaginal microbiota of lactobacilli. After conducting tissue sensitivity assays using an ectocervical tissue model, we determined that human cells remained viable after prolonged exposures to partially-purified subtilosin, indicating the compound is safe for human use. Subtilosin was shown to eliminate the motility and forward progression of human spermatozoa in a dose-dependent manner, and can therefore be considered a general spermicidal agent. These results suggest subtilosin would be a valuable component in topical personal care products aimed at contraception and BV prophylaxis and treatment.

  18. Antimicrobial drugs for treating cholera.

    Science.gov (United States)

    Leibovici-Weissman, Ya'ara; Neuberger, Ami; Bitterman, Roni; Sinclair, David; Salam, Mohammed Abdus; Paul, Mical

    2014-06-19

    Cholera is an acute watery diarrhoea caused by infection with the bacterium Vibrio cholerae, which if severe can cause rapid dehydration and death. Effective management requires early diagnosis and rehydration using oral rehydration salts or intravenous fluids. In this review, we evaluate the additional benefits of treating cholera with antimicrobial drugs. To quantify the benefit of antimicrobial treatment for patients with cholera, and determine whether there are differences between classes of antimicrobials or dosing schedules. We searched the Cochrane Infectious Disease Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; African Index Medicus; LILACS; Science Citation Index; metaRegister of Controlled Trials; WHO International Clinical Trials Registry Platform; conference proceedings; and reference lists to March 2014. Randomized and quasi-randomized controlled clinical trials in adults and children with cholera that compared: 1) any antimicrobial treatment with placebo or no treatment; 2) different antimicrobials head-to-head; or 3) different dosing schedules or different durations of treatment with the same antimicrobial. Two reviewers independently applied inclusion and exclusion criteria, and extracted data from included trials. Diarrhoea duration and stool volume were defined as primary outcomes. We calculated mean difference (MD) or ratio of means (ROM) for continuous outcomes, with 95% confidence intervals (CI), and pooled data using a random-effects meta-analysis. The quality of evidence was assessed using the GRADE approach. Thirty-nine trials were included in this review with 4623 participants. Antimicrobials versus placebo or no treatment Overall, antimicrobial therapy shortened the mean duration of diarrhoea by about a day and a half compared to placebo or no treatment (MD -36.77 hours, 95% CI -43.51 to -30.03, 19 trials, 1013 participants, moderate quality evidence). Antimicrobial therapy also

  19. Recent updates of marine antimicrobial peptides.

    Science.gov (United States)

    Semreen, Mohammad H; El-Gamal, Mohammed I; Abdin, Shifaa; Alkhazraji, Hajar; Kamal, Leena; Hammad, Saba; El-Awady, Faten; Waleed, Dima; Kourbaj, Layal

    2018-03-01

    Antimicrobial peptides are group of proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens. This class of compounds contributed to solving the microbial resistance dilemma that limited the use of many potent antimicrobial agents. The marine environment is known to be one of the richest sources for antimicrobial peptides, yet this environment is not fully explored. Hence, the scientific research attention should be directed toward the marine ecosystem as enormous amount of useful discoveries could be brought to the forefront. In the current article, the marine antimicrobial peptides reported from mid 2012 to 2017 have been reviewed.

  20. Recent updates of marine antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Mohammad H. Semreen

    2018-03-01

    Full Text Available Antimicrobial peptides are group of proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens. This class of compounds contributed to solving the microbial resistance dilemma that limited the use of many potent antimicrobial agents. The marine environment is known to be one of the richest sources for antimicrobial peptides, yet this environment is not fully explored. Hence, the scientific research attention should be directed toward the marine ecosystem as enormous amount of useful discoveries could be brought to the forefront. In the current article, the marine antimicrobial peptides reported from mid 2012 to 2017 have been reviewed.

  1. Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis.

    Science.gov (United States)

    Sipahi, Rifat; Zupanc, Günther K H

    2018-05-14

    Neural stem and progenitor cells isolated from the central nervous system form, under specific culture conditions, clonal cell clusters known as neurospheres. The neurosphere assay has proven to be a powerful in vitro system to study the behavior of such cells and the development of their progeny. However, the theory of neurosphere growth has remained poorly understood. To overcome this limitation, we have, in the present paper, developed a cellular automata model, with which we examined the effects of proliferative potential, contact inhibition, cell death, and clearance of dead cells on growth rate, final size, and composition of neurospheres. Simulations based on this model indicated that the proliferative potential of the founder cell and its progenitors has a major influence on neurosphere size. On the other hand, contact inhibition of proliferation limits the final size, and reduces the growth rate, of neurospheres. The effect of this inhibition is particularly dramatic when a stem cell becomes encapsulated by differentiated or other non-proliferating cells, thereby suppressing any further mitotic division - despite the existing proliferative potential of the stem cell. Conversely, clearance of dead cells through phagocytosis is predicted to accelerate growth by reducing contact inhibition. A surprising prediction derived from our model is that cell death, while resulting in a decrease in growth rate and final size of neurospheres, increases the degree of differentiation of neurosphere cells. It is likely that the cellular automata model developed as part of the present investigation is applicable to the study of tissue growth in a wide range of systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. ANTIMICROBIAL REAGENTS AS FUNCTIONAL FINISHING FOR TEXTILES INTENDED FOR BIOMEDICAL APPLICATIONS. I. SYNTHETIC ORGANIC COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Madalina Zanoaga

    2014-06-01

    Full Text Available This article offers an overview of some contemporary antimicrobial (biocides and biostatics agents used as functional finishing for textiles intended for biomedical applications. It reviews only synthetic agents, namely quaternary ammonium compounds, halogenated phenols, polybiguanides, N-halamines, and renewable peroxides, as a part of an extensive study currently in progress.

  3. Helical Antimicrobial Sulfono- {gamma} -AApeptides

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaqiong; Wu, Haifan; Teng, Peng; Bai, Ge; Lin, Xiaoyang; Zuo, Xiaobing; Cao, Chuanhai; Cai, Jianfeng

    2015-06-11

    Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, are more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.

  4. Antimicrobial Activity of Resveratrol Analogues

    Directory of Open Access Journals (Sweden)

    Malik Chalal

    2014-06-01

    Full Text Available Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew. Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold. The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups and antimicrobial activity.

  5. Antimicrobial Drug Resistance and Gonorrhea

    Centers for Disease Control (CDC) Podcasts

    2017-12-26

    Dr. Robert Kirkcaldy, a medical officer at CDC, discusses his article on antimicrobial resistance and gonorrhea.  Created: 12/26/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/26/2017.

  6. Antimicrobial Polymers with Metal Nanoparticles

    Science.gov (United States)

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  7. Antimicrobial susceptibility of Lactobacillus rhamnosus

    NARCIS (Netherlands)

    Korhonen, J.M.; Hoek, van A.H.A.M.; Saarela, M.; Huys, G.; Tosi, L.; Mayrhofer, S.; Wright, A.

    2010-01-01

    We aimed to determine the minimum inhibitory concentrations (MICs) of Lactobacillus rhamnosus (n=75) strains, to study their antibiotic resistance genes with microarray, and to assess the microbiological cut-off values of tested antimicrobial agents. L. rhamnosus strains were tested with agar

  8. Molecular Detection of Antimicrobial Resistance

    Science.gov (United States)

    Fluit, Ad C.; Visser, Maarten R.; Schmitz, Franz-Josef

    2001-01-01

    The determination of antimicrobial susceptibility of a clinical isolate, especially with increasing resistance, is often crucial for the optimal antimicrobial therapy of infected patients. Nucleic acid-based assays for the detection of resistance may offer advantages over phenotypic assays. Examples are the detection of the methicillin resistance-encoding mecA gene in staphylococci, rifampin resistance in Mycobacterium tuberculosis, and the spread of resistance determinants across the globe. However, molecular assays for the detection of resistance have a number of limitations. New resistance mechanisms may be missed, and in some cases the number of different genes makes generating an assay too costly to compete with phenotypic assays. In addition, proper quality control for molecular assays poses a problem for many laboratories, and this results in questionable results at best. The development of new molecular techniques, e.g., PCR using molecular beacons and DNA chips, expands the possibilities for monitoring resistance. Although molecular techniques for the detection of antimicrobial resistance clearly are winning a place in routine diagnostics, phenotypic assays are still the method of choice for most resistance determinations. In this review, we describe the applications of molecular techniques for the detection of antimicrobial resistance and the current state of the art. PMID:11585788

  9. Antimicrobial activity of Bryum argenteum.

    Science.gov (United States)

    Sabovljevic, Aneta; Sokovic, Marina; Sabovljevic, Marko; Grubisic, Dragoljub

    2006-02-01

    The antimicrobial activity of Bryum argenteum ethanol extracts was evaluated by microdilution method against four bacterial (Escherichia coli, Bacillus subtilis, Micrococcus luteus and Staphilococcus aureus) and four fungal species (Aspergillus niger, Penicillium ochrochloron, Candida albicans and Trichophyton mentagrophyes). All the investigated ethanol extracts have been proved to be active against all bacteria and fungi tested.

  10. Prevention strategies for antimicrobial resistance: a systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Whitney P Caron

    2010-05-01

    Full Text Available Whitney P Caron1, Shaker A Mousa1,21The Pharmaceutical Research Institute, Center of Excellence of Infection Prevention (CEIP, Albany College of Pharmacy and Health Sciences, Albany, NY, USA; 2King Saud University, Riyadh, Saudi ArabiaAbstract: Antibiotics offer great benefits by reducing the duration and severity of illnesses and aiding in infection transmission control. With this being said, the inexorable process of antimicrobial drug resistance is to some degree unavoidable. Although drug resistance will likely persist and is to be expected, the overall level can be dramatically decreased with increased attention to antibiotic overuse and the pharmacokinetic and pharmacodynamic properties of different drug formulations, and the use of proper hygiene and protective barriers. Implementation of such practices as microbial surveillance and prophylaxis has been shown to result in decreased hospital length of stay, health care costs and mortality due to drug-resistant infections. This review will summarize current progress in preventative techniques aimed at reducing the incidence of infection by antimicrobial-resistant bacteria and the emergence and spread of antimicrobial-resistant strains. By employing a variety of prevention strategies, including proper personal hygiene, prescreening for carrier status before hospital admission, disinfection of hospital rooms, and careful monitoring of antimicrobial prescribing, marked progress can be achieved in the control of drug-resistant pathogens, which can translate into more effective antimicrobial therapy.Keywords: infection prevention, antibiotic, personal hygiene, disinfection, microbial surveillance, drug-resistant pathogen

  11. Downstream components of RhoA required for signal pathway of superoxide formation during phagocytosis of serum opsonized zymosans in macrophages.

    Science.gov (United States)

    Kim, Jun Sub; Kim, Jae Gyu; Jeon, Chan Young; Won, Ha Young; Moon, Mi Young; Seo, Ji Yeon; Kim, Jong Il; Kim, Jaebong; Lee, Jae Yong; Choi, Soo Young; Park, Jinseu; Yoon Park, Jung Han; Ha, Kwon Soo; Kim, Pyeung Hyeun; Park, Jae Bong

    2005-12-31

    Rac1 and Rac2 are essential for the control of oxidative burst catalyzed by NADPH oxidase. It was also documented that Rho is associated with the superoxide burst reaction during phagocytosis of serum- (SOZ) and IgG-opsonized zymosan particles (IOZ). In this study, we attempted to reveal the signal pathway components in the superoxide formation regulated by Rho GTPase. Tat-C3 blocked superoxide production, suggesting that RhoA is essentially involved in superoxide formation during phagocytosis of SOZ. Conversely SOZ activated both RhoA and Rac1/2. Inhibition of RhoA-activated kinase (ROCK), an important downstream effector of RhoA, by Y27632 and myosin light chain kinase (MLCK) by ML-7 abrogated superoxide production by SOZ. Extracellular signaling-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were activated during phagocytosis of SOZ, and Tat-C3 and SB203580 reduced ERK1/2 and p38 MAPK activation, suggesting that RhoA and p38 MAPK may be upstream regulators of ERK1/2. Inhibition of ERK1/2, p38 MAPK, phosphatidyl inositol 3-kinase did not block translocation of RhoA to membranes, suggesting that RhoA is upstream to these kinases. Inhibition of RhoA by Tat-C3 blocked phosphorylation of p47(PHOX). Taken together, RhoA, ROCK, p38MAPK, ERK1/2, and p47(PHOX) may be subsequently activated, leading to activation of NADPH oxidase to produce superoxide.

  12. Antimicrobial activity of Nigerian medicinal plants

    Science.gov (United States)

    Anyanwu, Madubuike Umunna; Okoye, Rosemary Chinazam

    2017-01-01

    Antimicrobial resistance (AMR) is currently one of the major threats facing mankind. The emergence and rapid spread of multi- and pan-drug-resistant organisms (such as vancomycin-, methicillin-, extended-spectrum β-lactam-, carbapenem- and colistin-resistant organisms) has put the world in a dilemma. The health and economic burden associated with AMR on a global scale are dreadful. Available antimicrobials have been misused and are almost ineffective with some of these drugs associated with dangerous side effects in some individuals. Development of new, effective, and safe antimicrobials is one of the ways by which AMR burden can be reduced. The rate at which microorganisms develop AMR mechanisms outpaces the rate at which new antimicrobials are being developed. Medicinal plants are potential sources of new antimicrobial molecules. There is renewed interest in antimicrobial activities of phytochemicals. Nigeria boasts of a huge heritage of medicinal plants and there is avalanche of researches that have been undertaken to screen antimicrobial activities of these plants. Scientific compilation of these studies could provide useful information on the antimicrobial properties of the plants. This information can be useful in the development of new antimicrobial drugs. This paper reviews antimicrobial researches that have been undertaken on Nigerian medicinal plants. PMID:28512606

  13. Antimicrobial Stewardship and Urinary Tract Infections

    Directory of Open Access Journals (Sweden)

    Lilian M. Abbo

    2014-05-01

    Full Text Available Urinary tract infections are the most common bacterial infections encountered in ambulatory and long-term care settings in the United States. Urine samples are the largest single category of specimens received by most microbiology laboratories and many such cultures are collected from patients who have no or questionable urinary symptoms. Unfortunately, antimicrobials are often prescribed inappropriately in such patients. Antimicrobial use, whether appropriate or inappropriate, is associated with the selection for antimicrobial-resistant organisms colonizing or infecting the urinary tract. Infections caused by antimicrobial-resistant organisms are associated with higher rates of treatment failures, prolonged hospitalizations, increased costs and mortality. Antimicrobial stewardship consists of avoidance of antimicrobials when appropriate and, when antimicrobials are indicated, use of strategies to optimize the selection, dosing, route of administration, duration and timing of antimicrobial therapy to maximize clinical cure while limiting the unintended consequences of antimicrobial use, including toxicity and selection of resistant microorganisms. This article reviews successful antimicrobial stewardship strategies in the diagnosis and treatment of urinary tract infections.

  14. Participation of 14-3-3ε and 14-3-3ζ proteins in the phagocytosis, component of cellular immune response, in Aedes mosquito cell lines.

    Science.gov (United States)

    Trujillo-Ocampo, Abel; Cázares-Raga, Febe Elena; Del Angel, Rosa María; Medina-Ramírez, Fernando; Santos-Argumedo, Leopoldo; Rodríguez, Mario H; Hernández-Hernández, Fidel de la Cruz

    2017-08-01

    Better knowledge of the innate immune system of insects will improve our understanding of mosquitoes as potential vectors of diverse pathogens. The ubiquitously expressed 14-3-3 protein family is evolutionarily conserved from yeast to mammals, and at least two isoforms of 14-3-3, the ε and ζ, have been identified in insects. These proteins have been shown to participate in both humoral and cellular immune responses in Drosophila. As mosquitoes of the genus Aedes are the primary vectors for arboviruses, causing several diseases such as dengue fever, yellow fever, Zika and chikungunya fevers, cell lines derived from these mosquitoes, Aag-2 from Aedes aegypti and C6/36 HT from Aedes albopictus, are currently used to study the insect immune system. Here, we investigated the role of 14-3-3 proteins (ε and ζ isoform) in phagocytosis, the main cellular immune responses executed by the insects, using Aedes spp. cell lines. We evaluated the mRNA and protein expression of 14-3-3ε and 14-3-3ζ in C6/36 HT and Aag-2 cells, and demonstrated that both proteins were localised in the cytoplasm. Further, in C6/36 HT cells treated with a 14-3-3 specific inhibitor we observed a notable modification of cell morphology with filopodia-like structure caused through cytoskeleton reorganisation (co-localization of 14-3-3 proteins with F-actin), more importantly the decrease in Salmonella typhimurium, Staphylococcus aureus and E. coli phagocytosis and reduction in phagolysosome formation. Additionally, silencing of 14-3-3ε and 14-3-3ζ expression by mean of specific DsiRNA confirmed the decreased phagocytosis and phagolysosome formation of pHrodo labelled E. coli and S. aureus bacteria by Aag-2 cells. The 14-3-3ε and 14-3-3ζ proteins modulate cytoskeletal remodelling, and are essential for phagocytosis of Gram-positive and Gram-negative bacteria in Aedes spp. cell lines.

  15. Thioester-containing proteins of the tick Ixodes ricinus: Gene expression, response to microbial challenge and their role in phagocytosis of the yeast Candida albicans

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Veronika; Šíma, Radek; Šauman, Ivo; Hajdušek, Ondřej; Kopáček, Petr

    2015-01-01

    Roč. 48, č. 1 (2015), s. 55-64 ISSN 0145-305X R&D Projects: GA ČR GAP506/10/2136; GA ČR GA13-11043S; GA ČR GP13-27630P; GA ČR GP13-12816P; GA MŠk(CZ) EE2.3.30.0032 EU Projects: European Commission(XE) 316304 - MODBIOLIN Institutional support: RVO:60077344 Keywords : Candida albicans * Complement * Innate immunity * Phagocytosis * Thioester-containing proteins * Tick Ixodes ricinus Subject RIV: EC - Immunology Impact factor: 3.620, year: 2015

  16. Antibody dependent cellular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC) of breast cancer cells mediated by bispecific antibody, MDX-210.

    Science.gov (United States)

    Watanabe, M; Wallace, P K; Keler, T; Deo, Y M; Akewanlop, C; Hayes, D F

    1999-02-01

    MDX-210 is a bispecific antibody (BsAb) with specificity for both the proto-oncogene product of HER-2/neu (c-erbB-2) and FcgammaRI (CD64). HER-2/neu is overexpressed in malignant tissue of approximately 30% of patients with breast cancer, and FcgammaRI is expressed on human monocytes, macrophages, and IFN-gamma activated granulocytes. We investigated phagocytosis and cytolysis of cultured human breast cancer cells by human monocyte-derived macrophages (MDM) mediated by BsAb MDX-210, its partially humanized derivative (MDX-H210), and its parent MoAb 520C9 (anti-HER-2/neu) under various conditions. Purified monocytes were cultured with GM-CSF, M-CSF, or no cytokine for five or six days. Antibody dependent cellular phagocytosis (ADCP) and cytolysis (ADCC) assays were performed with the MDM and HER-2/neu positive target cells (SK-BR-3). ADCP was measured by two-color fluorescence flow cytometry using PKH2 (green fluorescent dye) and phycoerythrin-conjugated (red) monoclonal antibodies (MoAb) against human CD14 and CD11b. ADCC was measured with a non-radioactive LDH detection kit. Both BsAb MDX-210 (via FcgammaRI) and MoAb 520C9 (mouse IgG1, via FcgammaRII) mediated similar levels of ADCP and ADCC. ADCP mediated by BsAb MDX-H210 was identical to that mediated by BsAb MDX-210. Confocal microscopy demonstrated that dual-labeled cells represented true phagocytosis. Both ADCP and ADCC were higher when MDM were pre-incubated with GM-CSF than when incubated with M-CSF. BsAb MDX-210 is as active in vitro as the parent MoAb 520C9 in inducing both phagocytosis and cytolysis of MDM. MDX-210 and its partially humanized derivative, MDX-H210, mediated similar levels of ADCP. GM-CSF appears to superior to M-CSF in inducing MDM-mediated ADCC and ADCP. These studies support the ongoing clinical investigations of BsAb MDX-210 and its partially humanized derivative.

  17. Measuring progress

    DEFF Research Database (Denmark)

    Wahlberg, Ayo

    2007-01-01

    In recent years, sociological examinations of genetics, therapeutic cloning, neuroscience and tissue engineering have suggested that 'life itself' is currently being transformed through technique with profound implications for the ways in which we understand and govern ourselves and others...... in much the same way that mortality rates, life expectancy or morbidity rates can. By analysing the concrete ways in which human progress has been globally measured and taxonomised in the past two centuries or so, I will show how global stratifications of countries according to their states...

  18. Trivalent pneumococcal protein recombinant vaccine protects against lethal Streptococcus pneumoniae pneumonia and correlates with phagocytosis by neutrophils during early pathogenesis.

    Science.gov (United States)

    Xu, Qingfu; Surendran, Naveen; Verhoeven, David; Klapa, Jessica; Ochs, Martina; Pichichero, Michael E

    2015-02-18

    Due to the fact that current polysaccharide-based pneumococcal vaccines have limited serotype coverage, protein-based vaccine candidates have been sought for over a decade to replace or complement current vaccines. We previously reported that a trivalent Pneumococcal Protein recombinant Vaccine (PPrV), showed protection against pneumonia and sepsis in an infant murine model. Here we investigated immunological correlates of protection of PPrV in the same model. C57BL/6J infant mice were intramuscularly vaccinated at age 1-3 weeks with 3 doses of PPrV, containing pneumococcal histidine triad protein D (PhtD), pneumococcal choline binding protein A (PcpA), and detoxified pneumolysin mutant PlyD1. 3-4 weeks after last vaccination, serum and lung antibody levels to PPrV components were measured, and mice were intranasally challenged with a lethal dose of Streptococcus pneumoniae (Spn) serotype 6A. Lung Spn bacterial burden, number of neutrophils and alveolar macrophages, phagocytosed Spn by granulocytes, and levels of cytokines and chemokines were determined at 6, 12, 24, and 48h after challenge. PPrV vaccination conferred 83% protection against Spn challenge. Vaccinated mice had significantly elevated serum and lung antibody levels to three PPrV components. In the first stage of pathogenesis of Spn induced pneumonia (6-24h after challenge), vaccinated mice had lower Spn bacterial lung burdens and more phagocytosed Spn in the granulocytes. PPrV vaccination led to lower levels of pro-inflammatory cytokines IL-6, IL-1β, and TFN-α, and other cytokines and chemokines (IL-12, IL-17, IFN-γ, MIP-1b, MIP-2 and KC, and G-CSF), presumably due to a lower lung bacterial burden. Trivalent PPrV vaccination results in increased serum and lung antibody levels to the vaccine components, a reduction in Spn induced lethality, enhanced early clearance of Spn in lungs due to more rapid and thorough phagocytosis of Spn by neutrophils, and correspondingly a reduction in lung inflammation

  19. Anthocyanins from black rice (Oryza sativa) promote immune responses in leukemia through enhancing phagocytosis of macrophages in vivo.

    Science.gov (United States)

    Fan, Ming-Jen; Yeh, Ping-Hsuan; Lin, Jing-Pin; Huang, An-Cheng; Lien, Jin-Cherng; Lin, Hui-Yi; Chung, Jing-Gung

    2017-07-01

    Rice is a staple food in numerous countries around the world. Anthocyanins found in black rice have been reported to reduce the risk of certain diseases, but the effects of crude extract of anthocyanins from Asia University-selected purple glutinous indica rice (AUPGA) on immune responses have not yet been demonstrated. The current study aimed to investigate whether AUPGA treatment could affect immune responses in murine leukemia cells in vivo . Murine acute myelomonocytic leukemia WEHI-3 cells were intraperitoneally injected into normal BALB/c mice to generate leukemia mice. A total of 50 mice were randomly divided into five groups (n=10 in each group) and were fed a diet supplemented with AUPGA at 0, 20, 50 or 100 mg/kg for three weeks. All mice were weighed and the blood, liver and spleen were collected for further experiments. The results indicated that AUPGA did not significantly affect animal body weight, but significantly increased spleen weight (P<0.05) and decreased liver weight (P<0.05) when compared with the control group. AUPGA significantly increased the T cell (CD3) population at treatments of 20 and 100 mg/kg (P<0.05). However, it only significantly increased the B cell (CD19) population at a treatment of 20 mg/kg (P<0.05). Furthermore, AUPGA at 50 and 100 mg/kg significantly increased the monocyte (CD11b) population and the level of macrophages (Mac-3; P<0.05 for both). AUPGA at 50 and 100 mg/kg significantly promoted macrophage phagocytosis in peripheral blood mononuclear cells (P<0.05), and all doses of AUPGA treatment significantly promoted macrophage phagocytotic activity in the peritoneum (P<0.05). AUPGA treatment significantly decreased natural killer cell activity from splenocytes (P<0.05). Finally, AUPGA treatment at 20 mg/kg treatment significantly promoted T cell proliferation (P<0.05), and treatment at 50 and 100 mg/kg significantly decreased B cell proliferation compared with the control group (P<0.05).

  20. Antimicrobial resistance of mastitis pathogens.

    Science.gov (United States)

    Oliver, Stephen P; Murinda, Shelton E

    2012-07-01

    Antibiotics are used extensively in the dairy industry to combat disease and to improve animal performance. Antibiotics such as penicillin, cephalosporin, streptomycin, and tetracycline are used for the treatment and prevention of diseases affecting dairy cows caused by a variety of gram-positive and gram-negative bacteria. Antibiotics are often administrated routinely to entire herds to prevent mastitis during the dry period. An increase in the incidence of disease in a herd generally results in increased use of antimicrobials, which in turn increases the potential for antibiotic residues in milk and the potential for increased bacterial resistance to antimicrobials. Continued use of antibiotics in the treatment and prevention of diseases of dairy cows will continue to be scrutinized. It is clear that strategies employing the prudent use of antimicrobials are needed. This clearly illustrates the importance of effective herd disease prevention and control programs. Based on studies published to date, scientific evidence does not support widespread, emerging resistance among mastitis pathogens to antibacterial drugs even though many of these antibiotics have been used in the dairy industry for treatment and prevention of disease for several decades. However, it is clear that use of antibiotics in dairy cows can contribute to increased antimicrobial resistance. While antimicrobial resistance does occur, we are of the opinion that the advantages of using antibiotics for the treatment of mastitis far outweigh the disadvantages. The clinical consequences of antimicrobial resistance of dairy pathogens affecting humans appear small. Antimicrobial resistance among dairy pathogens, particularly those found in milk, is likely not a human health concern as long as the milk is pasteurized. However, there are an increasing number of people who choose to consume raw milk. Transmission of an antimicrobial-resistant mastitis pathogen and/or foodborne pathogen to humans could occur

  1. Antimicrobial peptides interact with peptidoglycan

    Science.gov (United States)

    Neelay, Om P.; Peterson, Christian A.; Snavely, Mary E.; Brown, Taylor C.; TecleMariam, Ariam F.; Campbell, Jennifer A.; Blake, Allison M.; Schneider, Sydney C.; Cremeens, Matthew E.

    2017-10-01

    Traditional therapeutics are losing effectiveness as bacterial resistance increases, and antimicrobial peptides (AMPs) can serve as an alternative source for antimicrobial agents. Their mode of action is commonly hypothesized to involve pore formation in the lipid membrane, thereby leading to cell death. However, bacterial cell walls are much more complex than just the lipid membrane. A large portion of the wall is comprised of peptidoglycan, yet we did not find any report of AMP-peptidoglycan interactions. Consequently, this work evaluated AMP-peptidoglycan and AMP-phospholipid (multilamellar vesicles) interactions through tryptophan fluorescence. Given that peptidoglycan is insoluble and vesicles are large particles, we took advantage of the unique properties of Trp-fluorescence to use one technique for two very different systems. Interestingly, melittin and cecropin A interacted with peptidoglycan to a degree similar to vancomycin, a positive control. Whether these AMP-peptidoglycan interactions relate to a killing mode of action requires further study.

  2. Phagocytosis: history's lessons.

    Science.gov (United States)

    Garg, Manish; Chandawarkar, Rajiv Y

    2013-01-01

    The assimilation of lessons from the past is an essential component of education for scientists of tomorrow. These lessons are not easy to find. History books on science are few and usually highly dramatized and biographies of scientists tend to exaggerate the pomp of scientific discovery. Both underplay the hard and laborious work that is integral to any scientific pursuit. Here we illustrate one such example. A century ago, the Nobel Prize in Medicine was awarded to two scientists: Ilya Metchnikoff, a Russian zoologist, for the discovery ofphagocytosis-a cell-mediated ingestion ofmicrobes; and Paul Ehrlich, a distinguished physician-scientist, for discovering a highly antigen-specific serum-derived antibody-based immune defense. These two diametrically opposing views of the host-pathogen interaction set the stage for a strife that led to seminal advancements in immunology. Mirrored in this journey are important lessons for scientists today--ubiquitously as applicable to modern scientific life as they were a century ago. This commentaryhighlights these lessons--a fitting centenary to a well-deserved recognition.

  3. Heterogeneous effects of M-CSF isoforms on the progression of MLL-AF9 leukemia.

    Science.gov (United States)

    Wang, Rong; Feng, Wenli; Yang, Feifei; Yang, Xiao; Wang, Lina; Chen, Chong; Hu, Yuting; Ren, Qian; Zheng, Guoguang

    2018-02-01

    Macrophage colony-stimulating factor (M-CSF) regulates both malignant cells and microenvironmental cells. Its splicing isoforms show functional heterogeneity. However, their roles on leukemia have not been well established. Here, the expression of total M-CSF in patients with hematopoietic malignancies was analyzed. The roles of M-CSF isoforms on the progression of acute myeloid leukemia (AML) were studied by establishing MLL-AF9-induced mouse AML models with high level membrane-bound M-CSF (mM-CSF) or soluble M-CSF (sM-CSF). Total M-CSF was highly expressed in myeloid leukemia patients. Furthermore, mM-CSF but not sM-CSF prolonged the survival of leukemia mice. While sM-CSF was more potent to promote proliferation and self-renew, mM-CSF was more potent to promote differentiation. Moreover, isoforms had different effects on leukemia-associated macrophages (LAMs) though they both increase monocytes/macrophages by growth-promoting and recruitment effects. In addition, mM-CSF promoted specific phagocytosis of leukemia cells by LAMs. RNA-seq analysis revealed that mM-CSF enhanced phagocytosis-associated genes and activated oxidative phosphorylation and metabolism pathway. These results highlight heterogeneous effects of M-CSF isoforms on AML progression and the mechanisms of mM-CSF, that is, intrinsically promoting AML cell differentiation and extrinsically enhancing infiltration of macrophages and phagocytosis by macrophages, which may provide potential clues for clinical diagnosis and therapy. © 2017 Australasian Society for Immunology Inc.

  4. Progressivity Enhanced

    Directory of Open Access Journals (Sweden)

    Marko Hren

    2013-09-01

    Full Text Available Rather than a scientific text, the author contributes a concise memorandum from the originator of the idea who has managed the campaign for the conversion of the military barracks into a creative cluster between 1988 and 2002, when he parted ways with Metelkova due to conflicting views on the center’s future. His views shed light on a distant period of time from a perspective of a participant–observer. The information is abundantly supported by primary sources, also available online. However, some of the presented hypotheses are heavily influenced by his personal experiences of xenophobia, elitism, and predatorial behavior, which were already then discernible on the so-called alternative scene as well – so much so that they obstructed the implementation of progressive programs. The author claims that, in spite of the substantially different reality today, the myths and prejudices concerning Metelkova must be done away with in order to enhance its progressive nature. Above all, the paper calls for an objective view on internal antagonisms, mainly originating in deep class divisions between the users. These make a clear distinction between truly marginal ndividuals and the overambitious beau-bourgeois, as the author labels the large part of users of Metelkova of »his« time. On these grounds, he argues for a robust approach to ban all forms of xenophobia and self-ghettoization.

  5. Impact of antimicrobial use during beef production on fecal occurrence of antimicrobial resistance

    Science.gov (United States)

    Objective: To determine the impact of typical antimicrobial use during cattle production on fecal occurrence of antimicrobial resistance by culture, quantitative PCR, and metagenomic sequencing. Experimental Design & Analysis: Feces were recovered from colons of 36 lots of "conventional" (CONV) ca...

  6. A European study on the relationship between antimicrobial use and antimicrobial resistance

    NARCIS (Netherlands)

    Bronzwaer, SLAM; Cars, O; Buchholz, U; Molstad, S; Goettsch, W; Veldhuijzen, IK; Kool, JL; Sprenger, MJW; Degener, JE

    In Europe, antimicrobial resistance has been monitored since 1998 by the European Antimicrobial Resistance Surveillance System (EARSS). We examined the relationship between penicillin nonsusceptibility of invasive isolates of Streptococcus pneumoniae and antibiotic sales. Information was collected

  7. Antimicrobial constituents from buddleja asiatica

    International Nuclear Information System (INIS)

    Ali, F.; Iqbal, M.; Naz, R.; Ali, I.; Malik, A.

    2011-01-01

    Seven compounds have been isolated for the first time from the chloroform soluble fraction of Buddleja asiatica namely, buddlejone (1), dihydrobuddledin-A (2), buddledone-B (3), ursolic acid (4), 2-phenylethyl-beta-D-glucoside (5), 7-deoxy-8-epiloganic acid (6) and scutellarin-7-O-beta-D-glucopyranoside (7). Their structures have been elucidated through spectroscopic studies. All the isolated compounds were tested for their antimicrobial activity. (author)

  8. Production of Antimicrobial Agent by Streptomyces violachromogenes

    International Nuclear Information System (INIS)

    Ahmed, Arwa A.

    2007-01-01

    The isolation of antibiotics from microorganisms improved the discovery of novel antibiotics, which is relatively easy as compared to chemical synthesis of antimicrobial agents. This study starts from isolation and purification of the antimicrobial producing Sterptomycetes obtained from soil habitat of Yemen. The good antimicrobial producing Sterptomycetes isolate was selected from a batch of Sterptomycetes isolates then identified. This isolate has bioactivity against some G+ve and G-ve bacteria. The antimicrobial agent isolated from Streptomyces violachromogenes (isolate no.YA118) was extracted with ethyl acetate at pH 3. The residue was applied to a silica gel column chromatography and eluted stepwise with many solvent systems. The active fractions were tested with B. subtilis NCTC10400. The purification of the antibiotic has been carried out by thin layer chromatography then the physical and chemical properties were studied to identify the antimicrobial agent. The isolated antimicrobial agent is an antibiotic belonging to the neomycin group. (author)

  9. Use of antimicrobial agents in aquaculture.

    Science.gov (United States)

    Park, Y H; Hwang, S Y; Hong, M K; Kwon, K H

    2012-04-01

    The aquaculture industry has grown dramatically, and plays an important role in the world's food supply chain. Antimicrobial resistance in bacteria associated with food animals receives much attention, and drug use in aquaculture is also an important issue. There are many differences between aquatic and terrestrial management systems, such as the methods used for administration of drugs. Unique problems are related to the application of drugs in aquatic environments. Residual drugs in fish products can affect people who consume them, and antimicrobials released into aquatic environments can select for resistant bacteria. Moreover, these antimicrobial-resistant bacteria, or their resistance genes, can be transferred to humans. To decrease the risks associated with the use of antimicrobials, various regulations have been developed. In addition, it is necessary to prevent bacterial diseases in aquatic animals by vaccination, to improve culture systems, and to monitor the amount of antimicrobial drugs used and the prevalence of antimicrobial-resistant bacteria.

  10. Synthetic mimics of antimicrobial peptides.

    Science.gov (United States)

    Som, Abhigyan; Vemparala, Satyavani; Ivanov, Ivaylo; Tew, Gregory N

    2008-01-01

    Infectious diseases and antibiotic resistance are now considered the most imperative global healthcare problem. In the search for new treatments, host defense, or antimicrobial, peptides have attracted considerable attention due to their various unique properties; however, attempts to develop in vivo therapies have been severely limited. Efforts to develop synthetic mimics of antimicrobial peptides (SMAMPs) have increased significantly in the last decade, and this review will focus primarily on the structural evolution of SMAMPs and their membrane activity. This review will attempt to make a bridge between the design of SMAMPs and the fundamentals of SMAMP-membrane interactions. In discussions regarding the membrane interaction of SMAMPs, close attention will be paid to the lipid composition of the bilayer. Despite many years of study, the exact conformational aspects responsible for the high selectivity of these AMPs and SMAMPs toward bacterial cells over mammalian cells are still not fully understood. The ability to design SMAMPs that are potently antimicrobial, yet nontoxic to mammalian cells has been demonstrated with a variety of molecular scaffolds. Initial animal studies show very good tissue distribution along with more than a 4-log reduction in bacterial counts. The results on SMAMPs are not only extremely promising for novel antibiotics, but also provide an optimistic picture for the greater challenge of general proteomimetics.

  11. ACVIM Consensus Statement on Therapeutic Antimicrobial Use in Animals and Antimicrobial Resistance

    OpenAIRE

    Weese, J.S.; Gigu?re, S.; Guardabassi, L.; Morley, P.S.; Papich, M.; Ricciuto, D.R.; Sykes, J.E.

    2015-01-01

    The epidemic of antimicrobial resistant infections continues to challenge, compromising animal care, complicating food animal production and posing zoonotic disease risks. While the overall role of therapeutic antimicrobial use in animals in the development AMR in animal and human pathogens is poorly defined, veterinarians must consider the impacts of antimicrobial use in animal and take steps to optimize antimicrobial use, so as to maximize the health benefits to animals while minimizing the...

  12. Correlations between Income inequality and antimicrobial resistance.

    Science.gov (United States)

    Kirby, Andrew; Herbert, Annie

    2013-01-01

    The aim of this study is to investigate if correlations exist between income inequality and antimicrobial resistance. This study's hypothesis is that income inequality at the national level is positively correlated with antimicrobial resistance within developed countries. Income inequality data were obtained from the Standardized World Income Inequality Database. Antimicrobial resistance data were obtained from the European antimicrobial Resistance Surveillance Network and outpatient antimicrobial consumption data, measured by Defined daily Doses per 1000 inhabitants per day, from the European Surveillance of antimicrobial Consumption group. Spearman's correlation coefficient (r) defined strengths of correlations of: > 0.8 as strong, > 0.5 as moderate and > 0.2 as weak. Confidence intervals and p values were defined for all r values. Correlations were calculated for the time period 2003-10, for 15 European countries. Income inequality and antimicrobial resistance correlations which were moderate or strong, with 95% confidence intervals > 0, included the following. Enterococcus faecalis resistance to aminopenicillins, vancomycin and high level gentamicin was moderately associated with income inequality (r= ≥0.54 for all three antimicrobials). Escherichia coli resistance to aminoglycosides, aminopenicillins, third generation cephalosporins and fluoroquinolones was moderately-strongly associated with income inequality (r= ≥0.7 for all four antimicrobials). Klebsiella pneumoniae resistance to third generation cephalosporins, aminoglycosides and fluoroquinolones was moderately associated with income inequality (r= ≥0.5 for all three antimicrobials). Staphylococcus aureus methicillin resistance and income inequality were strongly associated (r=0.87). As income inequality increases in European countries so do the rates of antimicrobial resistance for bacteria including E. faecalis, E. coli, K. pneumoniae and S. aureus. Further studies are needed to confirm these

  13. Antimicrobial Agents Used in Endodontic Treatment

    Directory of Open Access Journals (Sweden)

    Marina George Kudiyirickal

    2008-01-01

    Full Text Available Biomechanical preparation alone does not completely eradicate microorganisms from the root canal, hence the next logical step is to perform root canal procedures in conjunction with antimicrobials. The use of an antimicrobial agent improves the efficacy and prognosis of endodontic treatment. This review enumerates the most widely used antimicrobial agents, their mechanism of action and their potential use in reducing the microbial load.

  14. ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS

    OpenAIRE

    Dıblan, Sevgin; Kaya, Sevim

    2017-01-01

    Active packaging technology is one of the innovativemethods for preserving of food products, and antimicrobial packaging films is amajor branch and promising application of this technology. In order to controlmicrobial spoilage and also contamination of pathogen onto processed or fresh food,antimicrobial agent(s) is/are incorporated into food packaging structure.Polymer type as a carrier of antimicrobial can be petroleum-based plastic orbiopolymer: because of environmental concerns researcher...

  15. Antimicrobial polymer films for food packaging

    Science.gov (United States)

    Concilio, S.; Piotto, S.; Sessa, L.; Iannelli, P.; Porta, A.; Calabrese, E. C.; Galdi, M. R.; Incarnato, L.

    2012-07-01

    New antimicrobial polymeric systems were realized introducing new antimicrobial azo compounds in PP and LDPE matrices. The polymeric materials containing different percentage of azo compounds were mold-casted and the obtained film were tested in vitro against Gram+ and Gram- bacteria and fungi. These results hold promise for the fabrication of bacteria-resistant polymer films by means of simple melt processing with antimicrobial azo-dyes.

  16. Antimicrobial activity of Diospyros melanoxylon bark from Similipal ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... However, very limited studies on medicinal plants in general and antimicrobial ..... Recio MC (1989). A review of some antimicrobial compounds isolated ... Rwandese medicinal plants for antimicrobial and antiviral properties.

  17. Progress report

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1979-01-01

    Progress Report, covering the period up to the end of 1979 year, was sent to the IAEA according to the research agreement No. 1971 /CF. This work covered the following fields: preparation and dummy irradiation experiments with a new experimental capsule of ''CHOUCA-M'' type; measurement of temperature fields and design of specimen holders; measurement of neutron energy spectrum in the irradiation place in our experimental reactor of VVR-S type (Nuclear Research Institute) using a set of activation detectors; unification and calibration of the measurement of neutron fluence with the use of Fe, Cu, Mn-Mg and Co-Al monitors; development and improvement of the measuring apparatus and technique for the dynamic testing of pre-cracked specimens with determination of dynamic parameters of fracture mechanics; preparation and manufacture of testing specimens from the Japanese steels - forging, plate and weld metal; preparation of the irradiation capsule for assembling

  18. Antimicrobial drugs for treating cholera

    Science.gov (United States)

    Leibovici-Weissman, Ya'ara; Neuberger, Ami; Bitterman, Roni; Sinclair, David; Salam, Mohammed Abdus; Paul, Mical

    2014-01-01

    Background Cholera is an acute watery diarrhoea caused by infection with the bacterium Vibrio cholerae, which if severe can cause rapid dehydration and death. Effective management requires early diagnosis and rehydration using oral rehydration salts or intravenous fluids. In this review, we evaluate the additional benefits of treating cholera with antimicrobial drugs. Objectives To quantify the benefit of antimicrobial treatment for patients with cholera, and determine whether there are differences between classes of antimicrobials or dosing schedules. Search methods We searched the Cochrane Infectious Disease Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; African Index Medicus; LILACS; Science Citation Index; metaRegister of Controlled Trials; WHO International Clinical Trials Registry Platform; conference proceedings; and reference lists to March 2014. Selection criteria Randomized and quasi-randomized controlled clinical trials in adults and children with cholera that compared: 1) any antimicrobial treatment with placebo or no treatment; 2) different antimicrobials head-to-head; or 3) different dosing schedules or different durations of treatment with the same antimicrobial. Data collection and analysis Two reviewers independently applied inclusion and exclusion criteria, and extracted data from included trials. Diarrhoea duration and stool volume were defined as primary outcomes. We calculated mean difference (MD) or ratio of means (ROM) for continuous outcomes, with 95% confidence intervals (CI), and pooled data using a random-effects meta-analysis. The quality of evidence was assessed using the GRADE approach. Main results Thirty-nine trials were included in this review with 4623 participants. Antimicrobials versus placebo or no treatment Overall, antimicrobial therapy shortened the mean duration of diarrhoea by about a day and a half compared to placebo or no treatment (MD -36.77 hours, 95% CI -43

  19. Over-expression of the mycobacterial trehalose-phosphate phosphatase OtsB2 results in a defect in macrophage phagocytosis associated with increased mycobacterial-macrophage adhesion

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-11-01

    Full Text Available Trehalose-6-phosphate phosphatase (OtsB2 is involved in the OtsAB trehalose synthesis pathway to produce free trehalose and is strictly essential for mycobacterial growth. We wished to determine the effects of OtsB2 expression on mycobacterial phenotypes such as growth, phagocytosis and survival in macrophages. Mycobacterium bovis-BCG (BCG over-expressing OtsB2 were able to better survive in stationary phase. Over-expression of OtsB2 led to a decrease in phagocytosis but not survival in THP-1 macrophage-like cells, and this was not due to a decrease in general macrophage phagocytic activity. Surprisingly, when we investigated macrophage-mycobacterial interactions by flow cytometry and atomic force microscopy, we discovered that BCG over-expressing OtsB2 have stronger binding to THP-1 cells than wild-type BCG. These results suggest that altering OtsB2 expression has implications for mycobacterial host-pathogen interactions. Macrophage-mycobacteria phagocytic interactions are complex and merit further study.

  20. Deficiencies of the lipid-signaling enzymes phospholipase D1 and D2 alter cytoskeletal organization, macrophage phagocytosis, and cytokine-stimulated neutrophil recruitment.

    Directory of Open Access Journals (Sweden)

    Wahida H Ali

    Full Text Available Cell migration and phagocytosis ensue from extracellular-initiated signaling cascades that orchestrate dynamic reorganization of the actin cytoskeleton. The reorganization is mediated by effector proteins recruited to the site of activity by locally-generated lipid second messengers. Phosphatidic acid (PA, a membrane phospholipid generated by multiple enzyme families including Phospholipase D (PLD, has been proposed to function in this role. Here, we show that macrophages prepared from mice lacking either of the classical PLD isoforms PLD1 or PLD2, or wild-type macrophages whose PLD activity has been pharmacologically inhibited, display isoform-specific actin cytoskeleton abnormalities that likely underlie decreases observed in phagocytic capacity. Unexpectedly, PA continued to be detected on the phagosome in the absence of either isoform and even when all PLD activity was eliminated. However, a disorganized phagocytic cup was observed as visualized by imaging PA, F-actin, Rac1, an organizer of the F-actin network, and DOCK2, a Rac1 activator, suggesting that PLD-mediated PA production during phagocytosis is specifically critical for the integrity of the process. The abnormal F-actin reorganization additionally impacted neutrophil migration and extravasation from the vasculature into interstitial tissues. Although both PLD1 and PLD2 were important in these processes, we also observed isoform-specific functions. PLD1-driven processes in particular were observed to be critical in transmigration of macrophages exiting the vasculature during immune responses such as those seen in acute pancreatitis or irritant-induced skin vascularization.

  1. Immunomodulatory effect of exo-polysaccharides from submerged cultured Cordyceps sinensis: enhancement of cytokine synthesis, CD11b expression, and phagocytosis.

    Science.gov (United States)

    Kuo, Mei-Chun; Chang, Chien-Yu; Cheng, Tso-Lin; Wu, Ming-Jiuan

    2007-06-01

    Cordyceps sinensis is widely used as a traditional medicine for treatment of a wide variety of diseases or to maintain health. The immunomodulatory activity of polysaccharides prepared from submerged cultured C. sinensis BCRC36421 was investigated in human peripheral blood. Results demonstrated that Fr. A (exo-polysaccharides, 0.025 approximately 0.1 mg/ml) induced the production of tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-6, and IL-10 dose-dependently. Fr. A, as low as 0.025 mg/ml, could significantly augment surface expression of CD11b in monocytes and polymorphonuclear neutrophils. Functional assay revealed that Fr. A (0.05 mg/ml) also elevated phagocytosis in monocytes and PMN. On the other hand, Fr. B (intracellular polysaccharides) only moderately induced TNF-alpha release, CD11b expression, and phagocytosis at the same concentrations. Our results indicate that the immunomodulatory components of submerged cultured C. sinensis mainly reside in the culture filtrate.

  2. PLD$ is involved in phagocytosis of microglia: expression and localization changes of PLD4 are correlated with activation state of microglia.

    Directory of Open Access Journals (Sweden)

    Yoshinori Otani

    Full Text Available Phospholipase D4 (PLD4 is a recently identified protein that is mainly expressed in the ionized calcium binding adapter molecule 1 (Iba1-positive microglia in the early postnatal mouse cerebellar white matter. Unlike PLD1 and PLD2, PLD4 exhibits no enzymatic activity for conversion of phosphatidylcholine into choline and phosphatidic acid, and its function is completely unknown. In the present study, we examined the distribution of PLD4 in mouse cerebellar white matter during development and under pathological conditions. Immunohistochemical analysis revealed that PLD4 expression was associated with microglial activation under such two different circumstances. A primary cultured microglia and microglial cell line (MG6 showed that PLD4 was mainly present in the nucleus, except the nucleolus, and expression of PLD4 was upregulated by lipopolysaccharide (LPS stimulation. In the analysis of phagocytosis of LPS-stimulated microglia, PLD4 was co-localized with phagosomes that contained BioParticles. Inhibition of PLD4 expression using PLD4 specific small interfering RNA (siRNA in MG6 cells significantly reduced the ratio of phagocytotic cell numbers. These results suggest that the increased PLD4 in the activation process is involved in phagocytosis of activated microglia in the developmental stages and pathological conditions of white matter.

  3. Tamm-Horsfall Glycoprotein Enhances PMN Phagocytosis by Binding to Cell Surface-Expressed Lactoferrin and Cathepsin G That Activates MAP Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Chia-Li Yu

    2011-03-01

    Full Text Available The molecular basis of polymorphonuclear neutrophil (PMN phagocytosis-enhancing activity (PEA by human purified urinary Tamm-Horsfall glyco- protein (THP has not been elucidated. In this study, we found human THP bound to lactoferrin (LF and cathepsin G (CG expressed on the surface of PMN, identified by a proteomic study with MALDI-TOF- LC/LC/mass spectrometric analysis. Pre-incubation of 10% SDS-PAGE electrophoresed PMN lysates with monoclonal anti-LF or anti-CG antibody reduced the binding with THP. To elucidate the signaling pathway of THP on PMN activation, we found THP enhanced ERK1/2 phosphorylation, reduced p38 MAP kinase phosphorylation, but had no effect on DNA binding of the five NF-kB family members in PMN. To further clarify whether the carbohydrate-side chains or protein-core structure in THP molecule is responsible for THP-PEA, THP was cleaved by different degrading enzymes with carbohydrate specificity (neuraminidase and β-galactosidase, protein specificity (V8 protease and proteinase K or glycoconjugate specificity (carboxylpeptidase Y and O-sialoglycoprotein endopeptidase. We clearly demonstrated that the intact protein-core structure in THP molecule was more important for THP-PEA than carbohydrate-side chains. Putting these results together, we conclude that THP adheres to surface-expressed LF and CG on PMN and transduces signaling via the MAP kinase pathway to enhance PMN phagocytosis.

  4. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.

    Science.gov (United States)

    Nuti, Ramya; Goud, Nerella S; Saraswati, A Prasanth; Alvala, Ravi; Alvala, Mallika

    2017-01-01

    Antimicrobial resistance (AMR) has posed a serious threat to global public health and it requires immediate action, preferably long term. Current drug therapies have failed to curb this menace due to the ability of microbes to circumvent the mechanisms through which the drugs act. From the drug discovery point of view, the majority of drugs currently employed for antimicrobial therapy are small molecules. Recent trends reveal a surge in the use of peptides as drug candidates as they offer remarkable advantages over small molecules. Newer synthetic strategies like organometalic complexes, Peptide-polymer conjugates, solid phase, liquid phase and recombinant DNA technology encouraging the use of peptides as therapeutic agents with a host of chemical functions, and tailored for specific applications. In the last decade, many peptide based drugs have been successfully approved by the Food and Drug Administration (FDA). This success can be attributed to their high specificity, selectivity and efficacy, high penetrability into the tissues, less immunogenicity and less tissue accumulation. Considering the enormity of AMR, the use of Antimicrobial Peptides (AMPs) can be a viable alternative to current therapeutics strategies. AMPs are naturally abundant allowing synthetic chemists to develop semi-synthetics peptide molecules. AMPs have a broad spectrum of activity towards microbes and they possess the ability to bypass the resistance induction mechanisms of microbes. The present review focuses on the potential applications of AMPs against various microbial disorders and their future prospects. Several resistance mechanisms and their strategies have also been discussed to highlight the importance in the current scenario. Breakthroughs in AMP designing, peptide synthesis and biotechnology have shown promise in tackling this challenge and has revived the interest of using AMPs as an important weapon in fighting AMR. Copyright© Bentham Science Publishers; For any queries

  5. Decoupling Internalization, Acidification and Phagosmal-Endosomal/Iysosomal Phagocytosis of Internalin A coated Beads in epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Blanchette, C D; Woo, Y; Thomas, C; Shen, N; Sulchek, T A; Hiddessen, A L

    2008-12-22

    Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established, and in several cases, it was treated as a one-step process. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells, such as epithelial cells. Therefore, in this study, we developed a simple and novel method to decouple and accurately measure particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) and Caco-2 epithelial cells. Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated internalization. We achieved independent measurements of the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, pH sensitive dyes and endosomal/lysosomal dyes, as follows: the rate of InlA bead internalization was measured via antibody quenching of a pH independent dye (Alexa488) conjugated to InlA-beads, the rate at which phagosomes containing internalized InlA beads became acidified was measured using a pH dependent dye (FITC) conjugated to the beads and the rate of phagosomal-endosomal/lysosomal fusion was measured using a combination of unlabeled InlA-beads and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we also exploited the phagosomal acidification

  6. Antimicrobial use in swine production and its effect on the swine gut microbiota and antimicrobial resistance.

    Science.gov (United States)

    Holman, Devin B; Chénier, Martin R

    2015-11-01

    Antimicrobials have been used in swine production at subtherapeutic levels since the early 1950s to increase feed efficiency and promote growth. In North America, a number of antimicrobials are available for use in swine. However, the continuous administration of subtherapeutic, low concentrations of antimicrobials to pigs also provides selective pressure for antimicrobial-resistant bacteria and resistance determinants. For this reason, subtherapeutic antimicrobial use in livestock remains a source of controversy and concern. The swine gut microbiota demonstrates a number of changes in response to antimicrobial administration depending on the dosage, duration of treatment, age of the pigs, and gut location that is sampled. Both culture-independent and -dependent studies have also shown that the swine gut microbiota contains a large number of antimicrobial resistance determinants even in the absence of antimicrobial exposure. Heavy metals, such as zinc and copper, which are often added at relatively high doses to swine feed, may also play a role in maintaining antimicrobial resistance and in the stability of the swine gut microbiota. This review focuses on the use of antimicrobials in swine production, with an emphasis on the North American regulatory context, and their effect on the swine gut microbiota and on antimicrobial resistance determinants in the gut microbiota.

  7. Plant-Derived Antimicrobials: Insights into Mitigation of Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Shun-Kai Yang

    2018-07-01

    Full Text Available Antibiotic resistance had first been reported not long after the discovery of the first antibiotic and has remained a major public health issue ever since. Challenges are constantly encountered during the mitigation process of antibiotic resistance in the clinical setting; especially with the emergence of the formidable superbug, a bacteria with multiple resistance towards different antibiotics; this resulted in the term multidrug resistant (MDR bacteria. This rapid evolution of the resistance phenomenon has propelled researchers to continuously uncover new antimicrobial agents in a bid to hopefully, downplay the rate of evolution despite a drying pipeline. Recently, there has been a paradigm shift in the mining of potential antimicrobials; in the past, targets for drug discovery were from microorganisms and at current, the focus has moved onto plants, this is mainly due to the beneficial attributes that plants are able to confer over that of microorganisms. This review will briefly discuss antibiotic resistance mechanisms employed by resistant bacteria followed by a detailed expository regarding the use of secondary metabolites from plants as a potential solution to the MDR pathogen. Finally, future prospects recommending enhancements to the usage of plant secondary metabolites to directly target antibiotic resistant pathogens will be discussed.

  8. Antimicrobial resistance issues in beef production

    Science.gov (United States)

    Antimicrobial resistance threats to human health as identified have been recognized as a critical global public health concern. Linkage of some threats to beef production is discussed. The relevance to beef production of recent government actions will be examined. Prominent antimicrobial resistance ...

  9. Mechanisms of bacterial resistance to antimicrobial agents.

    NARCIS (Netherlands)

    van Duijkeren, Engeline; Schink, Anne-Kathrin; Roberts, Marilyn C; Wang, Yang; Schwarz, Stefan

    During the past decades resistance to virtually all antimicrobial agents has been observed in bacteria of animal origin. This chapter describes in detail the mechanisms so far encountered for the various classes of antimicrobial agents. The main mechanisms include enzymatic inactivation by either

  10. Sixty years of antimicrobial use in animals

    DEFF Research Database (Denmark)

    Guardabassi, Luca

    2013-01-01

    This, the last in our series of feature articles celebrating 125 years of Veterinary Record, aims to provide an overview of antimicrobial use in animals. Starting with a journey through the history of antimicrobial use in animals, Luca Guardabassi gives his opinion on the current zoonotic risks...

  11. Phytochemical and antimicrobial screening of crude extracts ...

    African Journals Online (AJOL)

    The bark and wood parts of the root of Terminalia mollis was investigated for its phytochemical and antimicrobial properties. Phytochemical screening showed the presence of tannins and resins as the major secondary metabolites. Test for antimicrobial activity of the plant crude extracts using the agar diffusion method ...

  12. Antimicrobial substances produced by bacteria isolated from ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... We report here the preliminary antimicrobial activity of substances produced by Bacillus subtilis NB-6. (air flora isolate) ... Key words: Antimicrobial activity, Bacillus, Burkholderia, Corynebacterium, methicillin-resistant Staphylococcus aureus. .... products contaminated with animal MRSA is very plausible ...

  13. Quantifying antimicrobial resistance at veal calf farms

    NARCIS (Netherlands)

    Bosman, A.B.; Wagenaar, J.A.; Stegeman, A.; Vernooij, H.; Mevius, D.J.

    2012-01-01

    This study was performed to determine a sampling strategy to quantify the prevalence of antimicrobial resistance on veal calf farms, based on the variation in antimicrobial resistance within and between calves on five farms. Faecal samples from 50 healthy calves (10 calves/farm) were collected. From

  14. antimicrobial resistance patterns and plasmid profiles

    African Journals Online (AJOL)

    hi-tech

    2000-09-01

    Sep 1, 2000 ... antimicrobial agents by use of disc diffusion technique(23). Bacterial strains were ... a roller drum at 37°C. About 1.5 ml of each overnight broth culture was ... antimicrobial agents compared to 36% of milk isolates (p. = 0.0394). A higher .... Hall, B., Greene, R., Potter, M. E. Cohen, M. L. and Brake, B. A..

  15. Synthesis, characterization and antimicrobial activity of mixed ...

    African Journals Online (AJOL)

    Synthesis, characterization and antimicrobial activity of mixed ascorbic acid - nicotinamide metal complexes. ... The result of the antimicrobial studies showed that the mixed complexes have higher inhibitory activity than the original ligands against the tested bacteria and fungi species. KEY WORDS: Ascorbic acid, ...

  16. Antimicrobial chemotherapy and Sustainable Development: The ...

    African Journals Online (AJOL)

    Antimicrobial chemotherapy and Sustainable Development: The past, The Current Trend, and the futu. ... Within the past half century, a wide variety of antimicrobial substances have been discovered, designed and synthesized; literally hundreds of drugs have been successfully used in some fashion over the years. Today ...

  17. Antimicrobial use in Belgian broiler production.

    Science.gov (United States)

    Persoons, Davy; Dewulf, Jeroen; Smet, Annemieke; Herman, Lieve; Heyndrickx, Marc; Martel, An; Catry, Boudewijn; Butaye, Patrick; Haesebrouck, Freddy

    2012-08-01

    The use of antimicrobials in production animals has become a worldwide concern in the face of rising resistance levels in commensal, pathogenic and zoonotic bacteria. In the years 2007 and 2008 antimicrobial consumption records were collected during two non consecutive production cycles in 32 randomly selected Belgian broiler farms. Antimicrobials were used in 48 of the 64 monitored production cycles, 7 farms did not use any antimicrobials in both production cycles, 2 farms only administered antimicrobials in one of the two production cycles, the other 23 farms applied antimicrobial treatment in both production cycles. For the quantification of antimicrobial drug use, the treatment incidences (TI) based on the defined daily doses (the dose as it should be applied: DDD) and used daily doses (the actual dose applied: UDD) were calculated. A mean antimicrobial treatment incidence per 1000 animals of 131.8 (standard deviation 126.8) animals treated daily with one DDD and 121.4 (SD 106.7) animals treated daily with one UDD was found. The most frequently used compounds were amoxicillin, tylosin and trimethoprim-sulphonamide with a mean TI(UDD) of 37.9, 34.8, and 21.7, respectively. The ratio of the UDD/DDD gives an estimate on correctness of dosing. Tylosin was underdosed in most of the administrations whereas amoxicillin and trimethoprim-sulphonamide were slightly overdosed in the average flock. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Antimicrobial resistance among commensal Escherichia coli from ...

    African Journals Online (AJOL)

    Commensal bacteria contribute to the distribution and persistence of antimicrobial resistance in the environment. This study monitored antimicrobial resistance in commensal Escherichia coli from the faeces of on-farm and slaughter cattle and beef. A total of 342 (89.5%) E. coli isolates were obtained from 382 samples.

  19. Antimicrobial stewardship: Strategies for a global response

    Directory of Open Access Journals (Sweden)

    Jenny Grunwald

    2014-01-01

    Full Text Available The increasing antimicrobial resistance worldwide, combined with dwindling antimicrobial armamentarium, has resulted in a critical threat to the public health and safety of patients. To combat this hazard, antimicrobial stewardship programs (ASPs have emerged. Antimicrobial stewardship programs prevent or slow the emergence of antimicrobial resistance by coordinated interventions designed to optimize antimicrobial use to achieve the best clinical outcomes and limiting selective pressures that drive the emergence of resistance. This also reduces excessive costs attributable to suboptimal antimicrobial use. Even though an ideal effective ASP should incorporate more than one element simultaneously, it also requires a multidisciplinary team, which should include an infectious diseases physician, a clinical pharmacist with infectious diseases training, infection control professionals, hospital epidemiologist, a clinical microbiologist and an information specialist. However, for antimicrobial stewardship (AMS programs to be successful, they must address the specific needs of individual institutions, must be built on available resources, the limitations and advantages of each institution, and the available staffing and technological infrastructure.

  20. TESTING ANTIMICROBIAL EFFICACY ON POROUS MATERIALS

    Science.gov (United States)

    The efficacy of antimicrobial treatments to eliminate or control biological growth in the indoor environment can easily be tested on nonporous surfaces. However, the testing of antimicrobial efficacy on porous surfaces, such as those found in the indoor environment [i.e., gypsum ...

  1. Antimicrobial food packaging: potential and pitfalls

    Science.gov (United States)

    Malhotra, Bhanu; Keshwani, Anu; Kharkwal, Harsha

    2015-01-01

    Nowadays food preservation, quality maintenance, and safety are major growing concerns of the food industry. It is evident that over time consumers’ demand for natural and safe food products with stringent regulations to prevent food-borne infectious diseases. Antimicrobial packaging which is thought to be a subset of active packaging and controlled release packaging is one such promising technology which effectively impregnates the antimicrobial into the food packaging film material and subsequently delivers it over the stipulated period of time to kill the pathogenic microorganisms affecting food products thereby increasing the shelf life to severe folds. This paper presents a picture of the recent research on antimicrobial agents that are aimed at enhancing and improving food quality and safety by reduction of pathogen growth and extension of shelf life, in a form of a comprehensive review. Examination of the available antimicrobial packaging technologies is also presented along with their significant impact on food safety. This article entails various antimicrobial agents for commercial applications, as well as the difference between the use of antimicrobials under laboratory scale and real time applications. Development of resistance amongst microorganisms is considered as a future implication of antimicrobials with an aim to come up with actual efficacies in extension of shelf life as well as reduction in bacterial growth through the upcoming and promising use of antimicrobials in food packaging for the forthcoming research down the line. PMID:26136740

  2. Cationic Antimicrobial Polymers and Their Assemblies

    Science.gov (United States)

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  3. antimicrobial susceptibility pattern of Salmonella species

    African Journals Online (AJOL)

    user

    ABSTRACT. Treatment of enteric fever is increasingly becoming very challenging due to the increasing wave of antibiotic resistance. This study is a review of the contemporary antimicrobial susceptibility pattern of. Salmonella species. The antimicrobial susceptibility pattern of Salmonella species to a wide range of.

  4. Antimicrobial resistance among commensal Escherichia coli from ...

    African Journals Online (AJOL)

    user1

    2012-07-19

    Jul 19, 2012 ... Commensal bacteria contribute to the distribution and persistence of antimicrobial resistance in the environment. This study monitored antimicrobial resistance in commensal Escherichia coli from the faeces of on-farm and slaughter cattle and beef. A total of 342 (89.5%) E. coli isolates were obtained.

  5. Antimicrobial resistance patterns and plasmid profiles of ...

    African Journals Online (AJOL)

    Objectives: To determine the frequency of resistance of Staphylococcus aureus to various antimicrobial agents, and the relationship between antimicrobial resistance of the isolates and carriage of plasmids. Design: A random sampling of milk and meat samples was carried out. Setting: Milk was collected from various dairy ...

  6. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  7. Antimicrobial Activity of Girardinia heterophylla

    OpenAIRE

    P. S. Bedi; Neayti Thakur; Balvinder Singh

    2013-01-01

    In the present study an attempt has been made to prepare the crude extracts of leaves and stem of ‘Girardinia heterophylla’ by using various solvents like petroleum ether, ethanol and double distilled water. The samples were given the code NGLS 1, NGLS 2, NGLS 3 and NGSS 1, NGSS 2 and NGSS 3 respectively. All the extracts were used to study their antimicrobial activity against gram positive bacteria e.g. Bacillus subtilis, gram negative bacteria e.g. E. coli and K. pneumonia and antifungal ac...

  8. Antimicrobial Activities of Dorema Auchri

    Directory of Open Access Journals (Sweden)

    A Sharifi

    2011-01-01

    Full Text Available Introduction & Objective: Due to emerging of resistance of microorganisms to antibiotics, investigations for novel antimicrobial agents have always been one of the major preoccupations of the medical society. Traditional medicine systems have played an important role during human evolution and development. Today, a number of medical herbs around the world have been studied for their medicinal activities. Amongst the several herbal medicine used as a medicine, Dorema auchri is yet another potent herbal medicine which has not been extensively studied for the medicinal uses in comparison with other herbal medicine. Dorema auchri has a long history of use as a sore and food additive in Yasuj, Iran. However, not much scientific work has been conducted on Dorema auchri antimicrobial activities. The present study aimed to study the antimicrobial properties of Dorema auchri on some pathogen microorganisms. Materials & Methods: In the present study was conducted at Yasuj University of Medical Sciences in 2009. After collection and preparation of hydro alcoholic extract of Dorena auchri, the extract was used to study its activities against human pathogen microorganisms (overall 10 microorganisms. The determination of minimal inhibitory concentration (MIC and minimum lethal concentration were evaluated for this extract. The antimicrobial potent of Dorema auchri extract was compared with commercial antibiotics. Each experiment was done three times and collected data were analyzed by SPSS using ANOVA and Chi-Square tests. Results: Findings of this study showed that in 10 mg/ml concentration, all bacteria were resistant to Dorema auchri extract. In 20 mg/ml concentration, only Staphylococcus areus and Staphylococcus epidermis showed zone of inhibition (ZOI 10 mm and 13 mm respectively. In 40 mg/ml concentration, the maximum ZOI was 15 mm in Staphylococcus areus and 80 mg/ml concentration, the maximum ZOI was 20 mm in Staphylococcus areus. The acceptable MIC

  9. Antimicrobial Peptides: Multifunctional Drugs for Different Applications

    Directory of Open Access Journals (Sweden)

    Lea-Jessica Albrecht

    2012-02-01

    Full Text Available Antimicrobial peptides (APs are an important part of the innate immune system in epithelial and non-epithelial surfaces. So far, many different antimicrobial peptides from various families have been discovered in non-vertebrates and vertebrates. They are characterized by antibiotic, antifungal and antiviral activities against a variety of microorganisms. In addition to their role as endogenous antimicrobials, APs participate in multiple aspects of immunity. They are involved in septic and non-septic inflammation, wound repair, angiogenesis, regulation of the adaptive immune system and in maintaining homeostasis. Due to those characteristics AP could play an important role in many practical applications. Limited therapeutic efficiency of current antimicrobial agents and the emerging resistance of pathogens require alternate antimicrobial drugs. The purpose of this review is to highlight recent literature on functions and mechanisms of APs. It also shows their current practical applications as peptide therapeutics and bioactive polymers and discusses the possibilities of future clinical developments.

  10. Animal venoms as antimicrobial agents.

    Science.gov (United States)

    Perumal Samy, Ramar; Stiles, Bradley G; Franco, Octavio L; Sethi, Gautam; Lim, Lina H K

    2017-06-15

    Hospitals are breeding grounds for many life-threatening bacteria worldwide. Clinically associated gram-positive bacteria such as Staphylococcus aureus/methicillin-resistant S. aureus and many others increase the risk of severe mortality and morbidity. The failure of antibiotics to kill various pathogens due to bacterial resistance highlights the urgent need to develop novel, potent, and less toxic agents from natural sources against various infectious agents. Currently, several promising classes of natural molecules from snake (terrestrial and sea), scorpion, spider, honey bee and wasp venoms hold promise as rich sources of chemotherapeutics against infectious pathogens. Interestingly, snake venom-derived synthetic peptide/snake cathelicidin not only has potent antimicrobial and wound-repair activity but is highly stable and safe. Such molecules are promising candidates for novel venom-based drugs against S. aureus infections. The structure of animal venom proteins/peptides (cysteine rich) consists of hydrophobic α-helices or β-sheets that produce lethal pores and membrane-damaging effects on bacteria. All these antimicrobial peptides are under early experimental or pre-clinical stages of development. It is therefore important to employ novel tools for the design and the development of new antibiotics from the untapped animal venoms of snake, scorpion, and spider for treating resistant pathogens. To date, snail venom toxins have shown little antibiotic potency against human pathogens. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Antimicrobial compounds of porcine mucosa

    Science.gov (United States)

    Kotenkova, E. A.; Lukinova, E. A.; Fedulova, L. V.

    2017-09-01

    The aim of the study was to investigate porcine oral cavity mucosa (OCM), nasal cavity mucosa (NCM), rectal mucosa (RM) and tongue mucosa (TM) as sources of antimicrobial compounds. Ultrafiltrates with MW >30 kDa, MW 5-30 kDa and MW 30 kDa, the zone of microbial growth inhibition was 7.5 mm, for the MW<5 kDa fraction, it was 7 mm, and for MW 5-30 kDa fraction, it was 4.5 mm. No significant differences were found in high molecular weight proteomic profile, while qualitative and quantitative differences were observed in the medium and low molecular weight areas, especially in OCM and NCM. HPLC showed 221 tissue-specific peptides in OCM, 156 in NCM, 225 in RM, but only 5 in TM. The results observed confirmed porcine mucous tissues as a good source of antimicrobial compounds, which could be an actual alternative for reduction of microbial spoilage of foods.

  12. Far beyond Phagocytosis: Phagocyte-Derived Extracellular Traps Act Efficiently against Protozoan Parasites In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Liliana M. R. Silva

    2016-01-01

    Full Text Available Professional mononuclear phagocytes such as polymorphonuclear neutrophils (PMN, monocytes, and macrophages are considered as the first line of defence against invasive pathogens. The formation of extracellular traps (ETs by activated mononuclear phagocytes is meanwhile well accepted as an effector mechanism of the early host innate immune response acting against microbial infections. Recent investigations showed evidence that ETosis is a widely spread effector mechanism in vertebrates and invertebrates being utilized to entrap and kill bacteria, fungi, viruses, and protozoan parasites. ETs are released in response to intact protozoan parasites or to parasite-specific antigens in a controlled cell death process. Released ETs consist of nuclear DNA as backbone adorned with histones, antimicrobial peptides, and phagocyte-specific granular enzymes thereby producing a sticky extracellular matrix capable of entrapping and killing pathogens. This review summarizes recent data on protozoa-induced ETosis. Special attention will be given to molecular mechanisms of protozoa-induced ETosis and on its consequences for the parasites successful reproduction and life cycle accomplishment.

  13. Antimicrobial Stewardship Initiatives Throughout Europe: Proven Value for Money

    NARCIS (Netherlands)

    Oberje, E.J.M.; Tanke, M.A.C.; Jeurissen, P.P.T.

    2017-01-01

    Antimicrobial stewardship is recognized as a key component to stop the current European spread of antimicrobial resistance. It has also become evident that antimicrobial resistance is a problem that cannot be tackled by single institutions or physicians. Prevention of antimicrobial resistance needs

  14. Antimicrobial use in long-term-care facilities

    NARCIS (Netherlands)

    Nicolle, LE; Bentley, DW; Garibaldi, R; Neuhaus, EG; Smith, PW

    There is intense antimicrobial use in long-term-care facilities (LTCFs), and studies repeatedly document that much of this use is inappropriate. The current crisis in antimicrobial resistance, which encompasses the LTCF, heightens concerns of antimicrobial use. Attempts to improve antimicrobial use

  15. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence

    DEFF Research Database (Denmark)

    Gustafsson, Caj Ulrik Mattias; Lannergård, Jonas; Nilsson, Olof Rickard

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against...... represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited...... to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed...

  16. Local and systemic antimicrobial therapy in periodontics.

    Science.gov (United States)

    Herrera, David; Matesanz, Paula; Bascones-Martínez, Antonio; Sanz, Mariano

    2012-09-01

    This review aimed to update the current evidence on the efficacy of the adjunctive use of local and systemic antimicrobials in the treatment of periodontitis and to assess whether it might improve the clinical limitations and shortcomings of standard nonsurgical treatment in the management of periodontitis. Relevant randomized clinical trials (RCT) with more than 3 months of follow-up, published from 2010 to 2012 for systemic antimicrobials and from 2008 to 2012 for local antimicrobials, were searched in Medline and critically analyzed. Scientific evidence evaluated in different systematic reviews and reviews presented at European and World Workshops were also included. Only adjunctive therapies were considered in the present review: articles comparing debridement alone or plus placebo, versus debridement plus systemic or local antimicrobials were included. Adjunctive systemic antimicrobials have been evaluated both in aggressive and chronic periodontitis: in aggressive periodontitis, amoxicillin and metronidazole have been extensively studied, reporting clinical and microbiological benefits; in chronic periodontitis, different products are under scrutiny, such as azithromycin. The clinical efficacy of local antimicrobials, although extensively demonstrated, is still surrounded by a constant debate on the cost-effectiveness evaluation and on its adequate indications. Despite the clinical efficacy of the adjunctive use of local and systemic antimicrobials, demonstrated in RCTs and in systematic reviews, there is a lack of evidence to support well-defined clinical protocols, including products and dosages. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Commensal Bacteria-Induced Inflammasome Activation in Mouse and Human Macrophages Is Dependent on Potassium Efflux but Does Not Require Phagocytosis or Bacterial Viability.

    Directory of Open Access Journals (Sweden)

    Kejie Chen

    Full Text Available Gut commensal bacteria contribute to the pathogenesis of inflammatory bowel disease, in part by activating the inflammasome and inducing secretion of interleukin-1ß (IL-1ß. Although much has been learned about inflammasome activation by bacterial pathogens, little is known about how commensals carry out this process. Accordingly, we investigated the mechanism of inflammasome activation by representative commensal bacteria, the Gram-positive Bifidobacterium longum subspecies infantis and the Gram-negative Bacteroides fragilis. B. infantis and B. fragilis induced IL-1ß secretion by primary mouse bone marrow-derived macrophages after overnight incubation. IL-1ß secretion also occurred in response to heat-killed bacteria and was only partly reduced when phagocytosis was inhibited with cytochalasin D. Similar results were obtained with a wild-type immortalized mouse macrophage cell line but neither B. infantis nor B. fragilis induced IL-1ß secretion in a mouse macrophage line lacking the nucleotide-binding/leucine-rich repeat pyrin domain containing 3 (NLRP3 inflammasome. IL-1ß secretion in response to B. infantis and B. fragilis was significantly reduced when the wild-type macrophage line was treated with inhibitors of potassium efflux, either increased extracellular potassium concentrations or the channel blocker ruthenium red. Both live and heat-killed B. infantis and B. fragilis also induced IL-1ß secretion by human macrophages (differentiated THP-1 cells or primary monocyte-derived macrophages after 4 hours of infection, and the secretion was inhibited by raised extracellular potassium and ruthenium red but not by cytochalasin D. Taken together, our findings indicate that the commensal bacteria B. infantis and B. fragilis activate the NLRP3 inflammasome in both mouse and human macrophages by a mechanism that involves potassium efflux and that does not require bacterial viability or phagocytosis.

  18. Factor H Binds to the Hypervariable Region of Many Streptococcus pyogenes M Proteins but Does Not Promote Phagocytosis Resistance or Acute Virulence

    Science.gov (United States)

    Kristensen, Bodil M.; Olsen, John E.; Harris, Claire L.; Ufret-Vincenty, Rafael L.; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems. PMID:23637608

  19. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence.

    Directory of Open Access Journals (Sweden)

    Mattias C U Gustafsson

    Full Text Available Many pathogens express a surface protein that binds the human complement regulator factor H (FH, as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems.

  20. Preventive effects of a fermented dairy product against Alzheimer's disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity.

    Directory of Open Access Journals (Sweden)

    Yasuhisa Ano

    Full Text Available Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer's disease and to identify the responsible component. Here, in a mouse model of Alzheimer's disease (5xFAD, intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ and hippocampal inflammation (TNF-α and MIP-1α production, and enhancing hippocampal neurotrophic factors (BDNF and GDNF. A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer's disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia.

  1. Glycogen synthase kinase-3 (GSK3) regulates TNF production and haemocyte phagocytosis in the immune response of Chinese mitten crab Eriocheir sinensis.

    Science.gov (United States)

    Li, Xiaowei; Jia, Zhihao; Wang, Weilin; Wang, Lingling; Liu, Zhaoqun; Yang, Bin; Jia, Yunke; Song, Xiaorui; Yi, Qilin; Qiu, Limei; Song, Linsheng

    2017-08-01

    Glycogen synthase kinase-3 (GSK3) is a serine/threonine protein kinase firstly identified as a regulator of glycogen synthesis. Recently, it has been proved to be a key regulator of the immune reaction. In the present study, a GSK3 homolog gene (designated as EsGSK3) was cloned from Chinese mitten crab, Eriocheir sinensis. The open reading frame (ORF) was 1824 bp, which encoded a predicted polypeptide of 607 amino acids. There was a conserved Serine/Threonine Kinase domain and a DNA binding domain found in EsGSK3. Phylogenetic analysis showed that EsGSK3 was firstly clustered with GSK3-β from oriental river prawn Macrobrachium nipponense in the invertebrate branch, while GSK3s from vertebrates formed the other distinct branch. EsGSK3 mRNA transcripts could be detected in all tested tissues of the crab including haepatopancreas, eyestalk, muscle, gonad, haemocytes and haematopoietic tissue with the highest expression level in haepatopancreas. And EsGSK3 protein was mostly detected in the cytoplasm of haemocyte by immunofluorescence analysis. The expression levels of EsGSK3 mRNA increased significantly at 6 h after Aeromonas hydrophila challenge (p level at 48 h (p > 0.05). The mRNA expression of lipopolysaccharide-induced tumor necrosis factor (TNF)-α factor (EsLITAF) was also induced by A. hydrophila challenge. However, the mRNA expression of EsLITAF and TNF-α production was significantly suppressed after EsGSK3 was blocked in vivo with specific inhibitor lithium, while the phagocytosis of crab haemocytes was significantly promoted. These results collectively demonstrated that EsGSK3 could regulate the innate immune responses of E. sinensis by promoting TNF-α production and inhibiting haemocyte phagocytosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Preventive effects of a fermented dairy product against Alzheimer's disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity.

    Science.gov (United States)

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer's disease and to identify the responsible component. Here, in a mouse model of Alzheimer's disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer's disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia.

  3. Preventive Effects of a Fermented Dairy Product against Alzheimer’s Disease and Identification of a Novel Oleamide with Enhanced Microglial Phagocytosis and Anti-Inflammatory Activity

    Science.gov (United States)

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer’s disease and to identify the responsible component. Here, in a mouse model of Alzheimer’s disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer’s disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia. PMID:25760987

  4. Danish integrated antimicrobial in resistance monitoring and research program

    DEFF Research Database (Denmark)

    Hammerum, Anette Marie; Heuer, Ole Eske; Emborg, Hanne-Dorthe

    2007-01-01

    a systematic and continuous monitoring program of antimicrobial drug consumption and antimicrobial agent resistance in animals, food, and humans, the Danish Integrated Antimicrobial Resistance Monitoring and Research Program (DANMAP). Monitoring of antimicrobial drug resistance and a range of research......Resistance to antimicrobial agents is an emerging problem worldwide. Awareness of the undesirable consequences of its widespread occurrence has led to the initiation of antimicrobial agent resistance monitoring programs in several countries. In 1995, Denmark was the first country to establish...... activities related to DANMAP have contributed to restrictions or bans of use of several antimicrobial agents in food animals in Denmark and other European Union countries....

  5. Nanostructures for delivery of natural antimicrobials in food.

    Science.gov (United States)

    Lopes, Nathalie Almeida; Brandelli, Adriano

    2017-04-10

    Natural antimicrobial compounds are a topic of utmost interest in food science due to the increased demand for safe and high-quality foods with minimal processing. The use of nanostructures is an interesting alternative to protect and delivery antimicrobials in food, also providing controlled release of natural compounds such as bacteriocins and antimicrobial proteins, and also for delivery of plant derived antimicrobials. A diversity of nanostructures are capable of trapping natural antimicrobials maintaining the stability of substances that are frequently sensitive to food processing and storage conditions. This article provides an overview on natural antimicrobials incorporated in nanostructures, showing an effective antimicrobial activity on a diversity of food spoilage and pathogenic microorganisms.

  6. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    Full Text Available As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32 can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized

  7. Bacteriophages show promise as antimicrobial agents.

    Science.gov (United States)

    Alisky, J; Iczkowski, K; Rapoport, A; Troitsky, N

    1998-01-01

    The emergence of antibiotic-resistant bacteria has prompted interest in alternatives to conventional drugs. One possible option is to use bacteriophages (phage) as antimicrobial agents. We have conducted a literature review of all Medline citations from 1966-1996 that dealt with the therapeutic use of phage. There were 27 papers from Poland, the Soviet Union, Britain and the U.S.A. The Polish and Soviets administered phage orally, topically or systemically to treat a wide variety of antibiotic-resistant pathogens in both adults and children. Infections included suppurative wound infections, gastroenteritis, sepsis, osteomyelitis, dermatitis, empyemas and pneumonia; pathogens included Staphylococcus, Streptococcus, Klebsiella, Escherichia, Proteus, Pseudomonas, Shigella and Salmonella spp. Overall, the Polish and Soviets reported success rates of 80-95% for phage therapy, with rare, reversible gastrointestinal or allergic side effects. However, efficacy of phage was determined almost exclusively by qualitative clinical assessment of patients, and details of dosages and clinical criteria were very sketchy. There were also six British reports describing controlled trials of phage in animal models (mice, guinea pigs and livestock), measuring survival rates and other objective criteria. All of the British studies raised phage against specific pathogens then used to create experimental infections. Demonstrable efficacy against Escherichia, Acinetobacter, Pseudomonas and Staphylococcus spp. was noted in these model systems. Two U.S. papers dealt with improving the bioavailability of phage. Phage is sequestered in the spleen and removed from circulation. This can be overcome by serial passage of phage through mice to isolate mutants that resist sequestration. In conclusion, bacteriophages may show promise for treating antibiotic resistant pathogens. To facilitate further progress, directions for future research are discussed and a directory of authors from the reviewed

  8. Signal regulatory protein α associated with the progression of oral leukoplakia and oral squamous cell carcinoma regulates phenotype switch of macrophages.

    Science.gov (United States)

    Ye, Xiaojing; Zhang, Jing; Lu, Rui; Zhou, Gang

    2016-12-06

    Signal regulatory protein α (SIRPα) is a cell-surface protein expressed on macrophages that are regarded as an important component of the tumor microenvironment. The expression of SIRPα in oral leukoplakia (OLK) and oral squamous cell carcinoma (OSCC), and further explored the role of SIRPα on the phenotype, phagocytosis ability, migration, and invasion of macrophages in OSCC were investigated. The expression of SIRPα in OLK was higher than in OSCC, correlating with the expression of CD68 and CD163 on macrophages. After cultured with the conditioned media of oral cancer cells, the expression of SIRPα on THP-1 cells was decreased gradually. In co-culture system, macrophages were induced into M2 phenotype by oral cancer cells. Blockade of SIRPα inhibited phagocytosis ability and IL-6, TNF-α productions of macrophages. In addition, the proliferation, migration, and IL-10, TGF-β productions of macrophages were upregulated after blockade of SIRPα. Macrophages upregulated the expression of SIRPα and phagocytosis ability, and inhibited the migration and invasion when the activation of NF-κB was inhibited by pyrrolidine dithiocarbamate ammonium (PDTC). Hence, SIRPα might play an important role in the progression of OLK and oral cancer, and could be a pivotal therapeutic target in OSCC by regulating the phenotype of macrophages via targeting NF-κB.

  9. Association between selected antimicrobial resistance genes and antimicrobial exposure in Danish pig farms

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla; Hisham Beshara Halasa, Tariq; Græsbøll, Kaare

    2017-01-01

    Bacterial antimicrobial resistance (AMR) in pigs is an important public health concern due to its possible transfer to humans. We aimed at quantifying the relationship between the lifetime exposure of antimicrobials and seven antimicrobial resistance genes in Danish slaughter pig farms. AMR gene...... levels were quantified by qPCR of total-community DNA in faecal samples obtained from 681 batches of slaughter pigs. The lifetime exposure to antimicrobials was estimated at batch level for the piglet, weaner, and finisher periods individually for the sampled batches. We showed that the effect...... of antimicrobial exposure on the levels of AMR genes was complex and unique for each individual gene. Several antimicrobial classes had both negative and positive correlations with the AMR genes. From 10-42% of the variation in AMR gene levels could be explained in the final regression models, indicating...

  10. Comparative evaluation of antimicrobials for textile applications.

    Science.gov (United States)

    Windler, Lena; Height, Murray; Nowack, Bernd

    2013-03-01

    Many antimicrobial technologies are available for textiles. They may be used in many different textile applications to prevent the growth of microorganisms. Due to the biological activity of the antimicrobial compounds, the assessment of the safety of these substances is an ongoing subject of research and regulatory scrutiny. This review aims to give an overview on the main compounds used today for antimicrobial textile functionalization. Based on an evaluation of scientific publications, market data as well as regulatory documents, the potential effects of antimicrobials on the environment and on human health were considered and also life cycle perspectives were taken into account. The characteristics of each compound were summarized according to technical, environmental and human health criteria. Triclosan, silane quaternary ammonium compounds, zinc pyrithione and silver-based compounds are the main antimicrobials used in textiles. The synthetic organic compounds dominate the antimicrobials market on a weight basis. On the technical side the application rates of the antimicrobials used to functionalize a textile product are an important parameter with treatments requiring lower dosage rates offering clear benefits in terms of less active substance required to achieve the functionality. The durability of the antimicrobial treatment has a strong influence on the potential for release and subsequent environmental effects. In terms of environmental criteria, all compounds were rated similarly in effective removal in wastewater treatment processes. The extent of published information about environmental behavior for each compound varies, limiting the possibility for an in-depth comparison of all textile-relevant parameters across the antimicrobials. Nevertheless the comparative evaluation showed that each antimicrobial technology has specific risks and benefits that should be taken into account in evaluating the suitability of different antimicrobial products. The

  11. Antimicrobial activity of Gentiana lutea L. extracts.

    Science.gov (United States)

    Savikin, Katarina; Menković, Nebojsa; Zdunić, Gordana; Stević, Tatjana; Radanović, Dragoja; Janković, Teodora

    2009-01-01

    Methanolic extracts of flowers and leaves of Gentiana lutea L., together with the isolated compounds mangiferin, isogentisin and gentiopicrin, were used to investigate the antimicrobial activity of the plant. A variety of Gram-positive and Gram-negative bacteria as well as the yeast Candida albicans has been included in this study. Both extracts and isolated compounds showed antimicrobial activity with MIC values ranging from 0.12-0.31 mg/ml. Our study indicated that the synergistic activity of the pure compounds may be responsible for the good antimicrobial effect of the extracts. Quantification of the secondary metabolites was performed using HPLC.

  12. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...

  13. From amino acids polymers, antimicrobial peptides, and histones, to their possible role in the pathogenesis of septic shock: a historical perspective

    Directory of Open Access Journals (Sweden)

    Ginsburg I

    2017-02-01

    Full Text Available Isaac Ginsburg,1 Peter Vernon van Heerden,2 Erez Koren1 1Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, 2General Intensive Care Unit, Hadassah University Hospital, Jerusalem, Israel Abstract: This paper describes the evolution of our understanding of the biological role played by synthetic and natural antimicrobial cationic peptides and by the highly basic nuclear histones as modulators of infection, postinfectious sequelae, trauma, and coagulation phenomena. The authors discuss the effects of the synthetic polymers of basic poly α amino acids, poly l-lysine, and poly l-arginine on blood coagulation, fibrinolysis, bacterial killing, and blood vessels; the properties of natural and synthetic antimicrobial cationic peptides as potential replacements or adjuncts to antibiotics; polycations as opsonizing agents promoting endocytosis/phagocytosis; polycations and muramidases as activators of autolytic wall enzymes in bacteria, causing bacteriolysis and tissue damage; and polycations and nuclear histones as potential virulence factors and as markers of sepsis, septic shock, disseminated intravasclar coagulopathy, acute lung injury, pancreatitis, trauma, and other additional clinical disorders Keywords: histones, sepsis, septic shock

  14. Relation between antimicrobial use and resistance in Belgian pig herds

    OpenAIRE

    Callens, Benedicte; Boyen, Filip; Maes, Dominiek; Haesebrouck, Freddy; Butaye, Patrick; Dewulf, Jeroen

    2011-01-01

    The aim of this study was to determine the link between the characteristics of antimicrobial therapy and occurrence of antimicrobial resistance in Escherichia coli of clinically healthy pigs exposed to antimicrobial treatments. A total of 918 Escherichia coli isolates were obtained from faecal samples, collected from 50 pig herds at the end of the fattening period and susceptibility was tested towards 15 different antimicrobial agents, using the disk diffusion method. The Antimicrobial Resist...

  15. Antimicrobial constituents from aerva javanica

    International Nuclear Information System (INIS)

    Sharif, A.; Ahmed, E.; Hussain, M.U.; Malik, A.; Ashraf, M.

    2011-01-01

    In the course of screening program we have isolated six natural products from the whole plant of Aerva javanica. Iso quercetrin (1), 5-methylmellein (2), 2-hydroxy-3-O-beta -primeveroside naphthalene-1,4-dione (3), Apigenin 7-O-glucuronide (4), Kaempferol-3-O-beta-D-glucopyranosyl-(1 -- 2)-alpha-L-rhamnopyranoside-7-O-alpha-L-rhamnopyranoside (5), 7-(1 hydroxyethyl)-2-(2-hydroxyethyl)-3,4-dihydrobenzopyran (6) were isolated for the first time from Aerva javanica. Structural evidences were made by the extensive use of chemical and spectral studies. Different crude extracts (n-hexane, chloroform, ethyl acetate, methanol and water) and the all known isolated compounds were tested for their antimicrobial activity which displayed moderate to weak inhibitory activity. (author)

  16. Antimicrobial Peptide Production and Purification.

    Science.gov (United States)

    Suda, Srinivas; Field, Des; Barron, Niall

    2017-01-01

    Antimicrobial peptides (AMPs) are natural defense compounds which are synthesized as ribosomal gene-encoded pre-peptides and produced by all living organisms. AMPs are small peptides, usually cationic and typically have hydrophobic residues which interact with cell membranes and have either a narrow or broad spectrum of biological activity. AMPs are isolated from the natural host or heterologously expressed in other hosts such as Escherichia coli. The proto-typical lantibiotic Nisin is a widely used AMP that is produced by the food-grade organism Lactococcus lactis. Although AMP production and purification procedures require optimization for individual AMPs, the Nisin production and purification protocol outlined in this chapter can be easily applied with minor modifications for the production and purification of other lantibiotics or AMPs. While Nisin is produced and secreted into the supernatant, steps to recover Nisin from both cell-free supernatant and cell pellet are outlined in detail.

  17. Role of the hospitalist in antimicrobial stewardship: a review of work completed and description of a multisite collaborative.

    Science.gov (United States)

    Rohde, Jeffrey M; Jacobsen, Diane; Rosenberg, David J

    2013-06-01

    Historically, antimicrobial stewardship programs have been led by infectious-disease physicians and pharmacists. With the growing presence of hospitalists in health and hospital systems, combined with their focus on quality improvement and patient safety, this emerging medical specialty has the potential to fill essential roles in antimicrobial stewardship programs. The goal of this article was to present the reasons hospitalists are ideally positioned to fill antimicrobial-stewardship roles, a narrative review of previously reported hospitalist-led antibiotic-stewardship projects, and a description of an ongoing multisite collaborative by the Institute for Healthcare Improvement (IHI) and the Centers for Disease Control and Prevention (CDC). A review of the published literature was performed, including an extensive review of the abstracts submitted to the Society of Hospital Medicine annual meetings. A number of examples of hospitalists developing and leading antimicrobial-stewardship programs are described. The details of a current multisite IHI/CDC hospitalist-focused initiative are discussed in detail. Hospitalists are actively involved with, and even lead, a variety of antimicrobial-stewardship programs in several different hospital systems. A large, multisite collaborative focused on hospitalist-led antimicrobial stewardship is currently in progress. Copyright © 2013 Elsevier HS Journals, Inc. All rights reserved.

  18. Efflux-mediated antimicrobial resistance.

    Science.gov (United States)

    Poole, Keith

    2005-07-01

    Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.

  19. The risk of some veterinary antimicrobial agents on public health associated with antimicrobial resistance and their molecular basis

    OpenAIRE

    Haihong Hao; Zahid Iqbal; Yulian Wang; Guyue Cheng; Zong-Hui Yuan

    2016-01-01

    The risk of antimicrobial agents used in food-producing animals on public health associated with antimicrobial resistance continues to be a current topic of discussion as related to animal and human public health. In the present review, resistance monitoring data and risk assessment result of some important antimicrobial agents were cited to elucidate the possible association of antimicrobial use in food animals and antimicrobial resistance in human. From the selected examples, it was obvious...

  20. Suggested guidelines for using systemic antimicrobials in bacterial skin infections: part?2? antimicrobial choice, treatment regimens and compliance

    OpenAIRE

    Beco, L.; Guagu?re, E.; M?ndez, C. Lorente; Noli, C.; Nuttall, T.; Vroom, M.

    2013-01-01

    Systemic antimicrobials are critically important in veterinary healthcare, and resistance is a major concern. Antimicrobial stewardship will be important in maintaining clinical efficacy by reducing the development and spread of antimicrobial resistance. Bacterial skin infections are one of the most common reasons for using systemic antimicrobials in dogs and cats. Appropriate management of these infections is, therefore, crucial in any policy for responsible antimicrobial use. The goals of t...

  1. Silver nanoparticles: Antimicrobial activity, cytotoxicity, and synergism with N-acetyl cysteine.

    Science.gov (United States)

    Hamed, Selwan; Emara, Mohamed; Shawky, Riham M; El-Domany, Ramadan A; Youssef, Tareq

    2017-08-01

    The fast progression of nanotechnology has led to novel therapeutic interventions. Antimicrobial activities of silver nanoparticles (Ag NPs) were tested against standard ATCC strains of Staphylococcus aureus (ATCC 9144), Escherichia coli (O157:H7), Pseudomonas aeruginosa (ATCC 27853), and Candida albicans (ATCC 90028) in addition to 60 clinical isolates collected from cancer patients. Antimicrobial activity was tested by disk diffusion method and MIC values for Ag NPs alone and in combination with N-acetylcysteine (NAC) against tested pathogens were determined by broth microdilution method. Ag NPs showed a robust antimicrobial activity against all tested pathogens and NAC substantially enhanced the antimicrobial activity of Ag NPs against all tested pathogens. Synergism between Ag NPs and NAC has been confirmed by checkerboard assay. The effect of Ag NPs on tested pathogens was further scrutinized by Transmission Electron Microscope (TEM) which showed disruption of cell wall in both bacteria and fungi. Ag NPs abrogated the activity of respiratory chain dehydrogenase of all tested pathogens and released muramic acid content from S. aureus in culture. The cytotoxic effect of Ag NPs alone and in combination with NAC was examined using human HepG2 cells and this revealed no cytotoxicity at MIC values of Ag NPs and interestingly, NAC reduced the cytotoxic effect of Ag NPs at concentrations higher than their MIC values. Taken together, Ag NPs have robust antimicrobial activity and NAC substantially enhances their antimicrobial activities against MDR pathogens which would provide a novel safe, effective, and inexpensive therapeutic approach to control the prevalence of MDR pathogens. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. antimicrobial susceptibility pattern of Salmonella species

    African Journals Online (AJOL)

    user

    GLOBAL JOURNAL OF COMMUNITY MEDICINE VOL. 2 NO. 1 & 2 2009: 5 - ... This study is a review of the contemporary antimicrobial susceptibility pattern of. Salmonella species. ... south-east Asia, parts of Latin America, the. Caribbean, and ...

  3. Substandard and Counterfeit Antimicrobials: Recent Trends and ...

    African Journals Online (AJOL)

    ... trends in the availability of substandard and counterfeit antimicrobials in the global market ... Literature search using PubMed and Medline databases and Google search engine was conducted to identify related publications on the subject.

  4. Prevalence, Risk Factors and Antimicrobial Resistance of ...

    African Journals Online (AJOL)

    Mubeen

    Background: Asymptomatic bacteriuria (ABU) in antenatal women is microbiological diagnosis ... 287 asymptomatic pregnant women who attended the antenatal clinic at a tertiary care ... that antimicrobial treatment of ABU during pregnancy.

  5. antimicrobial susceptibility pattern of urinary pathogens isolated ...

    African Journals Online (AJOL)

    boaz

    Conclusion: This study justifies the necessity to treat patients with UTI based on antimicrobial susceptibility test result in order ... colonization of the urine and symptomatic infection ... indicated a high incidence of UTIs (54%) in pregnant women ...

  6. Antimicrobially Treated Projects for Military Use

    National Research Council Canada - National Science Library

    Swofford, Wayne; Hanrahan, William; Centola, Duane; Isenhour, Crystal; Smith, Hoshus; Ramey, David; Chandler, Jeff

    2007-01-01

    ... desired in combat environments. The objective of this research was to identify, incorporate, and evaluate emerging and promising, commercially available antimicrobial treatments/technologies on military items to provide...

  7. Synthetic biology platform technologies for antimicrobial applications.

    Science.gov (United States)

    Braff, Dana; Shis, David; Collins, James J

    2016-10-01

    The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant traditional broad-spectrum antibiotics. Efforts in engineering bacteriophages and synthetic probiotics demonstrate targeted antimicrobial approaches that can be fine-tuned using synthetic biology-derived principles. Further, the development of paper-based, cell-free expression systems holds promise in promoting the clinical translation of molecular biology tools for diagnostic purposes. In this review, we highlight emerging synthetic biology platform technologies that are geared toward the generation of new antimicrobial therapies, diagnostics, and discovery channels. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Pyridinium Oxime Compounds as Antimicrobial Agents

    National Research Council Canada - National Science Library

    Berger, Bradley J; Knodel, Marvin H

    2007-01-01

    ... (as a model for Leishmania spp.). In general, the compounds were found to have little to no antimicrobial effect, with KJD-2-11, a thiourea derivative, being the most active in all the test systems.

  9. Bacteriological profile and antimicrobial susceptibility patterns of ...

    African Journals Online (AJOL)

    Bacterial identification and antimicrobial susceptibility patterns were ... setting and there are antibiotic-resistant uropathogens among the studied population. ... used antibiotics must be a continuous process so as to provide physicians with up ...

  10. Antimicrobial activities, toxinogenic potential and sensitivity to ...

    African Journals Online (AJOL)

    Antimicrobial activities, toxinogenic potential and sensitivity to antibiotics of ... Bacillus species showed variable ability to inhibit bacterial and/or fungal species. ... to produce Mbuja in order to better control the fermentation process of Mbuja ...

  11. preliminary phytochemical screening and antimicrobial activity

    African Journals Online (AJOL)

    DR. AMINU

    1Department of Pre-ND and General Studies, School of Technology, Kano State Polytechnic, ... revealed the presence of flavonoids, saponins, tannins, steroids alkaloids and terpenoids. ... phytochemical and antimicrobial activity of extract.

  12. Lipids and essential oils as antimicrobial agents

    National Research Council Canada - National Science Library

    Thormar, Halldor

    2011-01-01

    ... of Antimicrobial Lipids on Cell Membranes 20 1.7 Conclusions 21 Acknowledgements 21 References 22 2 Antibacterial Effects of Lipids: Historical Review (1881 to 1960) Halldor Thormar 2.1 Introduction 2....

  13. Lipolytic and antimicrobial activities of Pseudomonas strains ...

    African Journals Online (AJOL)

    admin

    Purpose: To identify and determine lipolytic and antimicrobial activities, and antibiotic susceptibility of ... reverse-phase C-18 column high-performance liquid chromatography (HPLC). ..... arabinose, D-cellobiose, D-fructose, D-galactose,.

  14. Bioprospecting for culturable actinobacteria with antimicrobial ...

    African Journals Online (AJOL)

    Strains of Fusarium sp. H24, Trichoderma harzianum H5 and Colletotrichum ... Antibiosis was indicated by visually observable growth inhibition of the ... Table 1: Antimicrobial activity of seven selected strains against fungi and bacterial strains.

  15. Biosynthesis, characterization and antimicrobial study of silver ...

    African Journals Online (AJOL)

    Both the characterization and antimicrobial activity test were very successful and could lead to significant economic viability, as well as being environmentally friendly for treatment of some infectious diseases. Keywords: Syzygium guineenses, Green Chemistry, Spectroscopy, Optoelectronics, Biomedical Sensors ...

  16. Antimicrobial activity of some Iranian medicinal plants

    Directory of Open Access Journals (Sweden)

    Ghasemi Pirbalouti Abdollah

    2010-01-01

    Full Text Available The major aim of this study was to determine the antimicrobial activity of the extracts of eight plant species which are endemic in Iran. The antimicrobial activities of the extracts of eight Iranian traditional plants, including Hypericum scabrum, Myrtus communis, Pistachia atlantica, Arnebia euchroma, Salvia hydrangea, Satureja bachtiarica, Thymus daenensis and Kelussia odoratissima, were investigated against Escherichia coli O157:H7, Bacillus cereus, Listeria monocytogenes and Candida albicans by agar disc diffusion and serial dilution assays. Most of the extracts showed a relatively high antimicrobial activity against all the tested bacteria and fungi. Of the plants studied, the most active extracts were those obtained from the essential oils of M. communis and T. daenensis. The MIC values for active extract and essential oil ranged between 0.039 and 10 mg/ml. It can be said that the extract and essential oil of some medicinal plants could be used as natural antimicrobial agents in food preservation. .

  17. Antimicrobial screening of Cichorium intybus seed extracts

    Directory of Open Access Journals (Sweden)

    Tauseef shaikh

    2016-11-01

    Full Text Available Medicinal plants play an important role in the field of natural products and human health care system. Chemical constituents present in the various parts of the plants can resist to parasitic attack by using several defense mechanisms. One such mechanism is the synthesis of antimicrobial compound. Cichorium intybus is one of the important medicinal plants which belong to Asteraceae family. In the present work, antimicrobial screening of C. intybus seed extract was studied by agar well diffusion assay by using aqueous and organic extracts. The pathogenic microorganisms tested include Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Escherichia coli. All the seed extracts showed antimicrobial activity against tested microorganisms whereas S. aureus was found to be most sensitive against aqueous extract and had the widest zone of inhibition. Ethyl acetate and ethanol extract were found to be significant against P. aeruginosa and S. aureus. The results obtained from antimicrobial screening scientifically support the effectiveness of the medicinal plant.

  18. Antioxidant and antimicrobial activities of polyphenols from ...

    African Journals Online (AJOL)

    the medicinal plants were screened for their antioxidant and antimicrobial activities against pathogenic micro organisms (Staphylococcus aureus, Streptococcus pyogenes, Esherichia coli and Candida albicans). The medicinal plants displayed different polyphenols contents and antioxidant activities. In addition, varying ...

  19. Bacteriuria and antimicrobial susceptibility pattern of bacterial ...

    African Journals Online (AJOL)

    Bacterial isolates and drug susceptibility patterns of urinary tract infection among ... Key words: Urinary tract infection, pregnant women, antimicrobial drug ..... and premature labour as well as adverse outcome for the unborn child (Raz, 2003).

  20. Antimicrobial susceptibility in community-acquired bacterial ...

    African Journals Online (AJOL)

    Objectives: To determine the antimicrobial susceptibility patterns of Streptococcus pneumoniae and Haemophilus influenzae, two bacterial pathogens commonly associated with communityacquired pneumonia. Design: Cross-sectional study. Setting: Bacterial isolates were obtained from adults suspected to have ...

  1. The quality of outpatient antimicrobial prescribing

    DEFF Research Database (Denmark)

    Malo, Sara; Bjerrum, Lars; Feja, Cristina

    2013-01-01

    The aim of the study was to analyse and compare the quality of outpatient antimicrobial prescribing in Denmark and Aragón (in northeastern Spain), with the objective of assessing inappropriate prescribing....

  2. Antimicrobial-Coated Granules for Disinfecting Water

    Science.gov (United States)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of preparing antimicrobialcoated granules for disinfecting flowing potable water have been developed. Like the methods reported in the immediately preceding article, these methods involve chemical preparation of substrate surfaces (in this case, the surfaces of granules) to enable attachment of antimicrobial molecules to the surfaces via covalent bonds. A variety of granular materials have been coated with a variety of antimicrobial agents that include antibiotics, bacteriocins, enzymes, bactericides, and fungicides. When employed in packed beds in flowing water, these antimicrobial-coated granules have been proven effective against gram-positive bacteria, gram-negative bacteria, fungi, and viruses. Composite beds, consisting of multiple layers containing different granular antimicrobial media, have proven particularly effective against a broad spectrum of microorganisms. These media have also proven effective in enhancing or potentiating the biocidal effects of in-line iodinated resins and of very low levels of dissolved elemental iodine.

  3. Antimicrobially Treated Projects for Military Use

    National Research Council Canada - National Science Library

    Swofford, Wayne; Hanrahan, William; Centola, Duane; Isenhour, Crystal; Smith, Hoshus; Ramey, David; Chandler, Jeff

    2007-01-01

    Antimicrobial treatment of clothing and other textile gear is intended to provide advanced protection to the Warfighter in the field by controlling microorganisms that cause problems ranging from odor...

  4. Isolation, characterization and antimicrobial activity of Streptomyces ...

    African Journals Online (AJOL)

    DR TONUKARI

    2013-12-18

    Dec 18, 2013 ... Available online at http://www.academicjournals.org/AJB ... Key words: Characterization, streptomyces, antimicrobial activity, hot ... MATERIALS AND METHODS ..... chain reaction (PCR) which is currently used as a sen-.

  5. Statistical metamodeling for revealing synergistic antimicrobial interactions.

    Directory of Open Access Journals (Sweden)

    Hsiang Chia Chen

    2010-11-01

    Full Text Available Many bacterial pathogens are becoming drug resistant faster than we can develop new antimicrobials. To address this threat in public health, a metamodel antimicrobial cocktail optimization (MACO scheme is demonstrated for rapid screening of potent antibiotic cocktails using uropathogenic clinical isolates as model systems. With the MACO scheme, only 18 parallel trials were required to determine a potent antimicrobial cocktail out of hundreds of possible combinations. In particular, trimethoprim and gentamicin were identified to work synergistically for inhibiting the bacterial growth. Sensitivity analysis indicated gentamicin functions as a synergist for trimethoprim, and reduces its minimum inhibitory concentration for 40-fold. Validation study also confirmed that the trimethoprim-gentamicin synergistic cocktail effectively inhibited the growths of multiple strains of uropathogenic clinical isolates. With its effectiveness and simplicity, the MACO scheme possesses the potential to serve as a generic platform for identifying synergistic antimicrobial cocktails toward management of bacterial infection in the future.

  6. Occurrence of antimicrobial resistance among bacterial pathogens

    OpenAIRE

    Hendriksen, Rene S.; Mevius, Dik J.; Schroeter, Andreas; Teale, Christopher; Jouy, Eric; Butaye, Patrick; Franco, Alessia; Utinane, Andra; Amado, Alice; Moreno, Miguel; Greko, Christina; Stärk, Katharina D.C.; Berghold, Christian; Myllyniemi, Anna-Liisa; Hoszowski, Andrzej

    2008-01-01

    Background: The project "Antibiotic resistance in bacteria of animal origin – II" (ARBAO-II) was funded by the European Union (FAIR5-QLK2-2002-01146) for the period 2003–05. The aim of this project was to establish a program for the continuous monitoring of antimicrobial susceptibility of pathogenic and indicator bacteria from food animals using validated and harmonised methodologies. In this report the first data on the occurrence of antimicrobial resistance among bacteria cau...

  7. Report: Antimicrobial activity of Kalanchoe laciniata.

    Science.gov (United States)

    Manan, Maria; Hussain, Liaqat; Ijaz, Hira; Qadir, Muhammad Imran

    2016-07-01

    This study was conducted to identify antimicrobial potential of Kalanchoe laciniata. The plants were extracted with 30-70% aqueous-methanol and n-hexane. The antimicrobial activities were examined using agar well diffusion method against bacteria (Staphylococcus aureus, Escherichia coli) and fungi (Candidaalbicans). Results showed that E. coli were more sensitive than Staphylococcus aureus and Candida albicans. The largest zone of inhibition (52 mm) was recorded against E. coli with the n-hexane extract of Kalanchoe laciniata.

  8. Antimicrobial activity of tempeh gembus hydrolyzate

    Science.gov (United States)

    Noviana, A.; Dieny, F. F.; Rustanti, N.; Anjani, G.; Afifah, D. N.

    2018-02-01

    Tropical disease can be prevented by consumming fermented foods that have antimicrobial activity. One of them is tempeh gembus that has short shelf life. It can be overcome by processing it into hydrolyzate. This study aimed to determine antimicrobial activity of tempeh gembus hydrolyzate. Tempeh gembus was made of local soybean from Grobogan. They were added 5,000 ppm, 8,000 ppm, and 10,000 ppm of bromelain enzyme (TGH BE). Antimicrobial effects of TGH BE were tested against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Steptococcus mutans. Antimicrobial test was carried out using Kirby-Bauer Disc Diffussion method. Soluble protein test used Bradford method. The largest inhibition zone against S. aureus and S. mutans were shown by TGH BE 8,000 ppm, 0.89±0.53 mm and 2.40±0.72 mm. The largest inhibition zone of B. subtilis, 7.33±2,25 mm, was shown by TGH BE 5,000 ppm. There wasn’t antimicrobial effect of TGH BE against E. coli. There weren’t significant differences of soluble protein (P=0.293) and the inhibition zones againt S. aureus (P = 0.967), E. coli (P = 1.000), B. subtilis (P = 0.645), S. mutans (P=0.817) of all treatments. There were antimicrobial activities of TGH BE against S. aureus, B. subtilis, and S. mutans.

  9. The heterologous expression strategies of antimicrobial peptides in microbial systems.

    Science.gov (United States)

    Deng, Ting; Ge, Haoran; He, Huahua; Liu, Yao; Zhai, Chao; Feng, Liang; Yi, Li

    2017-12-01

    Antimicrobial peptides (AMPs) consist of molecules acting on the defense systems of numerous organisms toward tumor and multiple pathogens, such as bacteria, fungi, viruses, and parasites. Compared to traditional antibiotics, AMPs are more stable and have lower propensity for developing resistance through functioning in the innate immune system, thus having important applications in the fields of medicine, food and so on. However, despite of their high economic values, the low yield and the cumbersome extraction process in AMPs production are problems that limit their industrial application and scientific research. To conquer these obstacles, optimized heterologous expression technologies were developed that could provide effective ways to increase the yield of AMPs. In this review, the research progress on heterologous expression of AMPs using Escherichia coli, Bacillus subtilis, Pichia pastoris and Saccharomyces cerevisiae as host cells was mainly summarized, which might guide the expression strategies of AMPs in these cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Antimicrobial factors in bovine colostrum

    Directory of Open Access Journals (Sweden)

    Hannu Korhonen

    1977-12-01

    Full Text Available The study determined the content of certain antimicrobial proteins in the colostrum of five Ayrshire cows during the first 9 milkings and in milk 14 days from parturition. The following factors were analyzed: total whey protein (WP, total immunoglobulins (Ig, lactoferrin (LF, lactoperoxidase (LP, lysozyme (LZM, and Salmonella typhimurium antibody titer towards somatic (04,12 and flagellar (H1.5, Hi antigens. The content of all factors varied considerably in the first milking of the various cows, but the difference in content for all but LP and LZM decreased along with the number of milkings. The concentrations of WP, Ig and LF were at their highest in the first milking and dropped markedly in the following milkings. On the other hand, the LP concentration was on average greatest during the 3rd and 4th milkings, and the LZM concentration during the 7th and 8th milkings. The colostral whey from the first milking had the following concentrations on average: WP 69.2 mg/ml, Ig 52.0 mg/ml, LF 1.53 mg/ml, LP 22.8 µg/ml and LZM 0.40µ/ml. In the milk whey the concentrations were as follows: WP 12.2 mg/ml, Ig 0.95 mg/ml, LF 0.09 mg/ml, LP 20.1 µg/ml and LZM 0.37 µg/ml. Agglutinating antibodies to a human pathogenic strain of S. typhimurium were found against both O and H antigens in the colostrum of all cows. One cow, which had been vaccinated with S. typhimurium before parturition, had significantly higher titers than the unvaccinated animals. The latter were found to have antibodies only in the first two or three milkings post partum while the vaccinated cow still had antibodies in the milk 14 days post partum. The results obtained permit the assumption that in addition to antibodies, the nonspecific antibacterial factors (LF, LP and LZM may contribute to the antimicrobial activity of colostrum and thus enhance the resistance of a newborn calf to microbial infections during the first week of life.

  11. Usage of antimicrobials and occurrence of antimicrobial resistance among bacteria from mink

    DEFF Research Database (Denmark)

    Pedersen, Karl; Hammer, Anne Sofie; Sørensen, Charlotte Mark

    2009-01-01

    , whereas resistance to other antimicrobials was rare. All P aeruginosa were sensitive to gentamicin and colistin and sensitive or intermediate to enrofloxacin. whereas most isolates were resistant to all other antimicrobials. All P. multocida and haemolytic streptococci were sensitive to penicillin...

  12. Improving antimicrobial prescribing: implementation of an antimicrobial i.v.-to-oral switch policy.

    Science.gov (United States)

    McCallum, A D; Sutherland, R K; Mackintosh, C L

    2013-01-01

    Antimicrobial stewardship programmes reduce the risk of hospital associated infections (HAI) and antimicrobial resistance, and include early intravenous-to-oral switch (IVOS) as a key stewardship measure. We audited the number of patients on intravenous antimicrobials suitable for oral switch, assessed whether prescribing guidelines were followed and reviewed prescribing documentation in three clinical areas in the Western General Hospital, Edinburgh, in late 2012. Following this, the first cycle results and local guidelines were presented at a local level and at the hospital grand rounds, posters with recommendations were distributed, joint infection consult and antimicrobial rounds commenced and an alert antimicrobial policy was introduced before re-auditing in early 2013. We demonstrate suboptimal prescribing of intravenous antimicrobials, with 43.9% (43/98) of patients eligible for IVOS at the time of auditing. Only 56.1% (55/98) followed empiric prescribing recommendations. Documentation of antimicrobial prescribing was poor with stop dates recorded in 14.3%, indication on prescription charts in 18.4% and in the notes in 90.8%. The commonest reason for deferring IVOS was deteriorating clinical condition or severe sepsis. Further work to encourage prudent antimicrobial prescribing and earlier consideration of IVOS is required.

  13. Antimicrobial use on Canadian dairy farms.

    Science.gov (United States)

    Saini, V; McClure, J T; Léger, D; Dufour, S; Sheldon, A G; Scholl, D T; Barkema, H W

    2012-03-01

    Antimicrobial use (AMU) data are critical for formulating policies for containing antimicrobial resistance. The present study determined AMU on Canadian dairy farms and characterized variation in AMU based on herd-level factors such as milk production, somatic cell count, herd size, geographic region and housing type. Drug use data were collected on 89 dairy herds in 4 regions of Canada, Alberta, Ontario, Québec, and the Maritime provinces (Prince Edward Island, New Brunswick, and Nova Scotia) for an average of 540 d per herd. Dairy producers and farm personnel were asked to deposit empty drug containers into specially provided receptacles. Antimicrobial use was measured as antimicrobial drug use rate (ADUR), with the unit being number of animal defined-daily doses (ADD)/1,000 cow-days. Antimicrobial drug use rates were determined at farm, region, and national level. Combined ADUR of all antimicrobial classes was 14.35 ADD/1,000 cow-days nationally. National level ADUR of the 6 most commonly used antimicrobial drug classes, cephalosporins, penicillins, penicillin combinations, tetracyclines, trimethoprim-sulfonamide combinations, and lincosamides were 3.05, 2.56, 2.20, 1.83, 0.87, and 0.84 ADD/1,000 cow-days, respectively. Dairy herds in Ontario were higher users of third-generation cephalosporins (ceftiofur) than in Québec. Alberta dairy herds were higher users of tetracyclines in comparison to Maritimes. Antimicrobial drug use rate was higher via systemic route as compared with intramammary and other routes of administration (topical, oral, and intrauterine). The ADUR of antimicrobials used intramammarily was higher for clinical mastitis treatment than dry cow therapy. For dry cow therapy, penicillin ADUR was greater than ADUR of first-generation cephalosporins. For clinical mastitis treatment, ADUR of intramammary penicillin combinations was greater than ADUR of cephapirin. Herd-level milk production was positively associated with overall ADUR, ADUR of

  14. 76 FR 16795 - The National Antimicrobial Resistance Monitoring System Strategic Plan 2011-2015; Request for...

    Science.gov (United States)

    2011-03-25

    ...] The National Antimicrobial Resistance Monitoring System Strategic Plan 2011-2015; Request for Comments..., FDA requested comments on a document for the National Antimicrobial Resistance Monitoring System....fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistance...

  15. Participatory eHealth development to support nurses in antimicrobial stewardship

    NARCIS (Netherlands)

    Wentzel, Jobke; van Velsen, Lex; van Limburg, Maarten; de Jong, Nienke; Karreman, Joyce; Hendrix, Ron; van Gemert-Pi, Julia Elisabeth Wilhelmina Cornelia

    2014-01-01

    Background: Antimicrobial resistance poses a threat to patient safety worldwide. To stop antimicrobial resistance, Antimicrobial Stewardship Programs (ASPs; programs for optimizing antimicrobial use), need to be implemented. Within these programs, nurses are important actors, as they put

  16. Participatory eHealth development to support nurses in antimicrobial stewardship

    NARCIS (Netherlands)

    Wentzel, M.J.; van Velsen, Lex Stefan; van Limburg, A.H.M.; Beerlage-de Jong, Nienke; Karreman, Joyce; Hendrix, Ron; van Gemert-Pijnen, Julia E.W.C.

    2014-01-01

    Background Antimicrobial resistance poses a threat to patient safety worldwide. To stop antimicrobial resistance, Antimicrobial Stewardship Programs (ASPs; programs for optimizing antimicrobial use), need to be implemented. Within these programs, nurses are important actors, as they put

  17. Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes.

    Science.gov (United States)

    Adu-Oppong, Boahemaa; Gasparrini, Andrew J; Dantas, Gautam

    2017-01-01

    Microbial communities contain diverse bacteria that play important roles in every environment. Advances in sequencing and computational methodologies over the past decades have illuminated the phylogenetic and functional diversity of microbial communities from diverse habitats. Among the activities encoded in microbiomes are the abilities to synthesize and resist small molecules, yielding antimicrobial activity. These functions are of particular interest when viewed in light of the public health emergency posed by the increase in clinical antimicrobial resistance and the dwindling antimicrobial discovery and approval pipeline, and given the intimate ecological and evolutionary relationship between antimicrobial biosynthesis and resistance. Here, we review genomic and functional methods that have been developed for accessing the antimicrobial biosynthesis and resistance capacity of microbiomes and highlight outstanding examples of their applications. © 2016 New York Academy of Sciences.

  18. The In Vitro Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents

    Science.gov (United States)

    de Rapper, Stephanie; Viljoen, Alvaro

    2016-01-01

    The paper focuses on the in vitro antimicrobial activity of Lavandula angustifolia Mill. (lavender) essential oil in combination with four commercial antimicrobial agents. Stock solutions of chloramphenicol, ciprofloxacin, nystatin, and fusidic acid were tested in combination with L. angustifolia essential oil. The antimicrobial activities of the combinations were investigated against the Gram-positive bacterial strain Staphylococcus aureus (ATCC 6538) and Gram-negative Pseudomonas aeruginosa (ATCC 27858) and Candida albicans (ATCC 10231) was selected to represent the yeasts. The antimicrobial effect was performed using the minimum inhibitory concentration (MIC) microdilution assay. Isobolograms were constructed for varying ratios. The most prominent interaction was noted when L. angustifolia essential oil was combined with chloramphenicol and tested against the pathogen P. aeruginosa (ΣFIC of 0.29). Lavendula angustifolia essential oil was shown in most cases to interact synergistically with conventional antimicrobials when combined in ratios where higher volumes of L. angustifolia essential oil were incorporated into the combination. PMID:27891157

  19. The In Vitro Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Stephanie de Rapper

    2016-01-01

    Full Text Available The paper focuses on the in vitro antimicrobial activity of Lavandula angustifolia Mill. (lavender essential oil in combination with four commercial antimicrobial agents. Stock solutions of chloramphenicol, ciprofloxacin, nystatin, and fusidic acid were tested in combination with L. angustifolia essential oil. The antimicrobial activities of the combinations were investigated against the Gram-positive bacterial strain Staphylococcus aureus (ATCC 6538 and Gram-negative Pseudomonas aeruginosa (ATCC 27858 and Candida albicans (ATCC 10231 was selected to represent the yeasts. The antimicrobial effect was performed using the minimum inhibitory concentration (MIC microdilution assay. Isobolograms were constructed for varying ratios. The most prominent interaction was noted when L. angustifolia essential oil was combined with chloramphenicol and tested against the pathogen P. aeruginosa (ΣFIC of 0.29. Lavendula angustifolia essential oil was shown in most cases to interact synergistically with conventional antimicrobials when combined in ratios where higher volumes of L. angustifolia essential oil were incorporated into the combination.

  20. Oral administration of antimicrobials increase antimicrobial resistance in E. coli from chicken--a systematic review.

    Science.gov (United States)

    Simoneit, C; Burow, E; Tenhagen, B-A; Käsbohrer, A

    2015-01-01

    Antimicrobials play an important role in animal and human health care. It was the aim of this systematic review to assess the effects of oral administration of antimicrobials on the development of antimicrobial resistance (AMR) in Escherichia coli (E. coli) from chickens. Moreover, the effects of the administration of more than one antimicrobial and of different dosages were studied. Literature was searched in November 2012 from the electronic databases ISI Web of Science, PubMed, Scopus and a national literature database (DIMDI) as well as the database ProQuest LLC. The search was updated in March 2014. Original studies describing a treatment (A) and a control group of either non-treatment (C) or initial value (0) and determining AMR in E. coli at different sample points (SP) were included. The literature search resulted in 35 full text articles on the topic, seven (20%) of which contained sufficient information on the administered antimicrobial and the impact of treatment on AMR. Most papers described the use of more than one antimicrobial, several dosages, controls (non-treatment or pre-treatment) and measured AMR at different SPs leading to a total of 227 SPs on the impact of the use of antimicrobials on AMR in chickens. 74% of the SPs (168/227) described a higher AMR-rate in E. coli from treated animals than from controls. After the administration of a single antimicrobial, AMR increased at 72% of the SPs. Administration of more than one antimicrobial increased AMR at 82% of the SPs. Higher dosages were associated with similar or higher AMR rates. The limited number of studies for each antimicrobial agent and the high variability in the resistance effect call for more well designed studies on the impact of oral administration on AMR development and spread. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Oral antimicrobials increase antimicrobial resistance in porcine E. coli--a systematic review.

    Science.gov (United States)

    Burow, E; Simoneit, C; Tenhagen, B-A; Käsbohrer, A

    2014-03-01

    Administration of antimicrobials to livestock increases the risk of antimicrobial resistance (AMR) in commensal bacteria. Antimicrobials in pig production are usually administered per pen via feed which implies treatment of sick alongside with healthy animals. The objective of this systematic literature review was to investigate the effect of orally administered antimicrobials on AMR in Escherichia coli of swine. Studies published in peer reviewed journals were retrieved from the international online databases ISI Web of Knowledge, PubMed, Scopus and the national electronic literature data base of Deutsches Institut für Medizinische Dokumentation und Information. The studies were assessed using the eligibility criteria English or German language, access to full paper version, defined treatment and control group (initial value or non-treatment) as well as administration and resistance testing of the same antimicrobial class. In the qualitative synthesis, only studies were included presenting the summary measures odds ratio or prevalence of resistance, the category of the applied antimicrobial and the dosage. An effect of the antimicrobial on AMR in E. coli was evaluated as an "increase", "no effect" or "decrease" if the odds or alternatively the prevalence ratio were >1.0, 1.0 or antimicrobial substance and dosage was missing in 4 and 5 of the 11 finally selected studies. The 36 identified trials were inhomogenous in usage and provision of information on sample size. Oral administration of antimicrobials increases the risk of AMR in E. coli from swine. There is however a lack of studies on the impact of dosage and longitudinal effects of treatment. The published studies have a number of issues concerning their scientific quality. More high quality research is needed to better address and quantifiy the effect of orally administered antimicrobials on AMR in swine. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Geothermal progress monitor. Progress report No. 1

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Progress is reported on the following: electrical uses, direct-heat uses, drilling activities, leases, geothermal loan guarantee program, general activities, and legal, institutional, and regulatory activites. (MHR)

  3. Péptidos antimicrobianos Antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Germán Alberto Téllez

    2010-03-01

    Full Text Available Resumen Los péptidos antimicrobianos son las moléculas efectoras del sistema inmune innato, cuyas familias se encuentran en casi todos los organismos, desde bacterias hasta mamíferos. Son una familia de sustancias polifacéticas con complejos mecanismos de acción relacionados con la interacción con el patógeno a través de su membrana, o afectando blancos internos, como la replicación del ADN y la síntesis de proteínas, e interactuando con el huésped con funciones inmunomoduladoras de la regulación del proceso inflamatorio y de la cicatrización. Aunque la generación de resistencia a los péptidos antimicrobianos es mucho menor si se compara con la generada por los antibióticos convencionales, existen mecanismos de resistencia ya descritos, como la degradación por proteasas, la liberación de proteínas inhibidoras o los cambios en la conformación de la membrana externa del patógeno. El estudio de estas sustancias ha permitido evidenciar sus usos potenciales en el ámbito clínico para contrarrestar los inconvenientes de la resistencia a los antibióticos; sin embargo, a pesar de los grandes avances logrados en este campo, aún quedan puntos controversiales por dilucidar.The antimicrobial peptides (AMP are the effectors molecules of the innate immune system, finding groups of this kind of substances in almost all living organisms from bacteria to mammals. They are a family of versatile substances with complexes action mechanisms in the pathogen they interact with membrane, DNA synthesis and protein synthesis and folding, and also with the host showing immunomodulatory functions in wound healing and inflammation process. Even though the generation of resistance to the AMP is lower compare with conventional antibiotics there are resistance mechanism already describe to this kind of substances like degradation by proteases, releasing of inhibitory substances or conformational changes in the external membrane of the pathogen

  4. Identification of acquired antimicrobial resistance genes

    DEFF Research Database (Denmark)

    Zankari, Ea; Hasman, Henrik; Cosentino, Salvatore

    2012-01-01

    ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laborato......ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic...... laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.MethodsWe developed a web-based method, ResFinder that uses BLAST for identification of acquired...... antimicrobial resistance genes in whole-genome data. As input, the method can use both pre-assembled, complete or partial genomes, and short sequence reads from four different sequencing platforms. The method was evaluated on 1862 GenBank files containing 1411 different resistance genes, as well as on 23 de...

  5. Evaluation of antimicrobial properties of cork.

    Science.gov (United States)

    Gonçalves, Filipa; Correia, Patrícia; Silva, Susana P; Almeida-Aguiar, Cristina

    2016-02-01

    Cork presents a range of diverse and versatile properties making this material suitable for several and extremely diverse industrial applications. Despite the wide uses of cork, its antimicrobial properties and potential applications have deserved little attention from industry and the scientific community. Thus, the main purpose of this work was the evaluation of the antibacterial properties of cork, by comparison with commercially available antimicrobial materials (Ethylene-Vinyl Acetate copolymer and a currently used antimicrobial commercial additive (ACA)), following the previous development and optimization of a method for such antimicrobial assay. The AATCC 100-2004 standard method, a quantitative procedure developed for the assessment of antimicrobial properties in textile materials, was used as reference and optimized to assess cork antibacterial activity. Cork displayed high antibacterial activity against Staphylococcus aureus, with a bacterial reduction of almost 100% (96.93%) after 90 minutes of incubation, similar to the one obtained with ACA. A more reduced but time-constant antibacterial action was observed against Escherichia coli (36% reduction of the initial number of bacterial colonies). To complement this study, antibacterial activity was further evaluated for a water extract of cork and an MIC of 6 mg mL(-1) was obtained against the reference strain S. aureus. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Cyclodextrins: A Weapon in the Fight Against Antimicrobial Resistance

    Science.gov (United States)

    Wong, Chew Ee; Dolzhenko, Anton V.; Lee, Sui Mae; Young, David James

    Antimicrobial resistance poses one of the most serious global challenges of our age. Cyclodextrins (CDs) are widely utilized excipients in formulations because of their solubilizing properties, low toxicity, and low inflammatory response. This review summarizes recent investigations of antimicrobial agents involving CDs and CD-based antimicrobial materials. CDs have been employed for antimicrobial applications either through formation of inclusion complexes or by chemical modification of their hydroxyl groups to tailor pharmaceutically active compounds. Applications of these CD inclusion complexes include drug delivery, antimicrobial coatings on materials (e.g., biomedical devices and implants) and antimicrobial dressings that help to prevent wound infections. There are relatively limited studies of chemically modified CDs with antimicrobial activity. The mechanism of action of antimicrobial CD inclusion complexes and derivatives needs further elucidation, but activity of CDs and their derivatives is often associated with their interaction with bacterial cell membranes.

  7. Antimicrobial Testing Methods & Procedures Developed by EPA's Microbiology Laboratory

    Science.gov (United States)

    We develop antimicrobial testing methods and standard operating procedures to measure the effectiveness of hard surface disinfectants against a variety of microorganisms. Find methods and procedures for antimicrobial testing.

  8. Synthesis and evaluation of antimicrobial and anthelmintic activity of ...

    Indian Academy of Sciences (India)

    compounds were screened for antimicrobial activity and anthelmintic activity. The structural assignments of compounds were made on the basis of spectroscopic data and elemental analysis. Keywords. 10H-phenothiazines; Smiles rearrangement; sulphones; ribofuranosides; antimicrobial activity; anthelmintic activity. 1.

  9. An integrated stewardship model : Antimicrobial, infection prevention and diagnostic (AID)

    NARCIS (Netherlands)

    Dik, Jan-Willem H.; Poelman, Randy; Friedrich, Alexander W.; Panday, Prashant Nannan; Lo-Ten-Foe, Jerome R.; van Assen, Sander; van Gemert-Pijnen, Julia E. W. C.; Niesters, Hubert G. M.; Hendrix, Ron; Sinha, Bhanu

    2016-01-01

    Considering the threat of antimicrobial resistance and the difficulties it entails in treating infections, it is necessary to cross borders and approach infection management in an integrated, multidisciplinary manner. We propose the antimicrobial, infection prevention and diagnostic stewardship

  10. An integrated stewardship model: antimicrobial, infection prevention and diagnostic (AID)

    NARCIS (Netherlands)

    Dik, Jan-Willem H.; Poelman, Randy; Friedrich, Alexander W.; Panday, Prashant N.; Lo-Ten-Foe, Jerome R.; van Assen, Sander; van Gemert-Pijnen, Julia E.W.C.; Niesters, Hubert G.M.; Hendrix, Ron; Sinha, Bhanu

    2015-01-01

    Considering the threat of antimicrobial resistance and the difficulties it entails in treating infections, it is necessary to cross borders and approach infection management in an integrated, multidisciplinary manner. We propose the antimicrobial, infection prevention and diagnostic stewardship

  11. Antimicrobial activity of Lycoperdon perlatum whole fruit body on ...

    African Journals Online (AJOL)

    Antimicrobial activities of extracts of fruit bodies of Lycoperdon perlatum against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Bacillus cereus, Candida albicans and Candida glabrata were investigated. Antimicrobial components from the mushrooms were extracted using ethanol, methanol and ...

  12. Assessment of in vitro antitumoral and antimicrobial activities of ...

    African Journals Online (AJOL)

    ONOS

    2010-07-05

    Jul 5, 2010 ... cell line, and it showed less than 10% cell viability after treatment. Antimicrobial ... marine macro algae have also been studied extensively. Antimicrobial ... Algae samples were washed twice with distilled water and air-dried.

  13. Antimicrobial compounds as side products from the agricultural processing industry

    NARCIS (Netherlands)

    Sumthong, Pattarawadee

    2007-01-01

    Antimicrobial compounds have many applications, in medicines, food, agriculture, livestock, textiles, paints, and wood protectants. Microorganisms resistant to most antibiotics are rapidly spreading. Consequently there is an urgent and continuous need for novel antimicrobial compounds. Most

  14. Human antimicrobial peptides and cancer.

    Science.gov (United States)

    Jin, Ge; Weinberg, Aaron

    2018-05-30

    Antimicrobial peptides (AMPs) have long been a topic of interest for entomologists, biologists, immunologists and clinicians because of these agents' intriguing origins in insects, their ubiquitous expression in many life forms, their capacity to kill a wide range of bacteria, fungi and viruses, their role in innate immunity as microbicidal and immunoregulatory agents that orchestrate cross-talk with the adaptive immune system, and, most recently, their association with cancer. We and others have theorized that surveillance through epithelial cell-derived AMPs functions to keep the natural flora of microorganisms in a steady state in different niches such as the skin, the intestines, and the mouth. More recently, findings related to specific activation pathways of some of these AMPs have led investigators to associate them with pro-tumoral activity; i.e., contributing to a tumorigenic microenvironment. This area is still in its infancy as there are intriguing yet contradictory findings demonstrating that while some AMPs have anti-tumoral activity and are under-expressed in solid tumors, others are overexpressed and pro-tumorigenic. This review will introduce a new paradigm in cancer biology as it relates to AMP activity in neoplasia to address the following questions: Is there evidence that AMPs contribute to tumor promoting microenvironments? Can an anti-AMP strategy be of use in cancer therapy? Do AMPs, expressed in and released from tumors, contribute to compositional shifting of bacteria in cancerous lesions? Can specific AMP expression characteristics be used one day as early warning signs for solid tumors? Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Emodin Induces Apoptotic Death in Murine Myelomonocytic Leukemia WEHI-3 Cells In Vitro and Enhances Phagocytosis in Leukemia Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Yuan-Chang Chang

    2011-01-01

    Full Text Available Emodin is one of major compounds in rhubarb (Rheum palmatum L., a plant used as herbal medicine in Chinese population. Although many reports have shown that emodin exhibits anticancer activity in many tumor cell types, there is no available information addressing emodin-affected apoptotic responses in the murine leukemia cell line (WEHI-3 and modulation of the immune response in leukemia mice. We investigated that emodin induced cytotoxic effects in vitro and affected WEHI-3 cells in vivo. This study showed that emodin decreased viability and induced DNA fragmentation in WEHI-3 cells. Cells after exposure to emodin for 24 h have shown chromatin condensation and DNA damage. Emodin stimulated the productions of ROS and Ca2+ and reduced the level of ΔΨm by flow cytometry. Our results from Western blotting suggest that emodin triggered apoptosis of WEHI-3 cells through the endoplasmic reticulum (ER stress, caspase cascade-dependent and -independent mitochondrial pathways. In in vivo study, emodin enhanced the levels of B cells and monocytes, and it also reduced the weights of liver and spleen compared with leukemia mice. Emodin promoted phagocytic activity by monocytes and macrophages in comparison to the leukemia mice group. In conclusions, emodin induced apoptotic death in murine leukemia WEHI-3 cells and enhanced phagocytosis in the leukemia animal model.

  16. Phagocytosis of cholesteryl ester is amplified in diabetic mouse macrophages and is largely mediated by CD36 and SR-A.

    Directory of Open Access Journals (Sweden)

    Christopher B Guest

    Full Text Available Type 2 diabetes (T2D is associated with accelerated atherosclerosis, which accounts for approximately 75% of all diabetes-related deaths. Here we investigate the link between diabetes and macrophage cholesteryl ester accumulation. When diabetic (db/db mice are given cholesteryl ester intraperitoneally (IP, peritoneal macrophages (PerMPhis recovered from these animals showed a 58% increase in intracellular cholesteryl ester accumulation over PerMPhis from heterozygote control (db/+ mice. Notably, PerMPhi fluid-phase endocytosis and large particle phagocytosis was equivalent in db/+and db/db mice. However, IP administration of CD36 and SR-A blocking antibodies led to 37% and 25% reductions in cholesteryl ester accumulation in PerMPhi. Finally, in order to determine if these scavenger receptors (SRs were part of the mechanism responsible for the increased accumulation of cholesteryl esters observed in the diabetic mouse macrophages, receptor expression was quantified by flow cytometry. Importantly, db/db PerMPhis showed a 43% increase in CD36 expression and an 80% increase in SR-A expression. Taken together, these data indicate that direct cholesteryl ester accumulation in mouse macrophages is mediated by CD36 and SR-A, and the magnitude of accumulation is increased in db/db macrophages due to increased scavenger receptor expression.

  17. Complement Receptor 3-Mediated Inhibition of Inflammasome Priming by Ras GTPase-Activating Protein During Francisella tularensis Phagocytosis by Human Mononuclear Phagocytes

    Directory of Open Access Journals (Sweden)

    Ky V. Hoang

    2018-03-01

    Full Text Available Francisella tularensis is a remarkably infectious facultative intracellular bacterium of macrophages that causes tularemia. Early evasion of host immune responses contributes to the success of F. tularensis as a pathogen. F. tularensis entry into human monocytes and macrophages is mediated by the major phagocytic receptor, complement receptor 3 (CR3, CD11b/CD18. We recently determined that despite a significant increase in macrophage uptake following C3 opsonization of the virulent Type A F. tularensis spp. tularensis Schu S4, this phagocytic pathway results in limited pro-inflammatory cytokine production. Notably, MAP kinase/ERK activation is suppressed immediately during C3-opsonized Schu S4-CR3 phagocytosis. A mathematical model of CR3-TLR2 crosstalk predicted early involvement of Ras GTPase-activating protein (RasGAP in immune suppression by CR3. Here, we link CR3-mediated uptake of opsonized Schu S4 by human monocytes and macrophages with inhibition of early signal 1 inflammasome activation, evidenced by limited caspase-1 cleavage and IL-18 release. This inhibition is due to increased RasGAP activity, leading to a reduction in the Ras-ERK signaling cascade upstream of the early inflammasome activation event. Thus, our data uncover a novel signaling pathway mediated by CR3 following engagement of opsonized virulent F. tularensis to limit inflammasome activation in human phagocytic cells, thereby contributing to evasion of the host innate immune system.

  18. Use and Misuse of Antimicrobial Drugs in Poultry and Livestock: Mechanisms of Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Toni Poole* and Cynthia Sheffield

    2013-07-01

    Full Text Available Food safety begins on the farm with management practices that contribute to an abundant, safe, and affordable food supply. To attain this goal antimicrobials have been used in all stages of food animal production in the United States and elsewhere around the world at one time or another. Among food–production animals antimicrobials are used for growth promotion, disease prophylaxis or disease treatment, and are generally administered to the entire flock or herd. Over many decades bacteria have become resistant to multiple antimicrobial classes in a cumulative manner. Bacteria exhibit a number of well characterized mechanisms of resistance to antimicrobials that include: 1 modification of the antimicrobial; 2 alteration of the drug target; 3 decreased access of drug to target; and 4 implementation of an alternative metabolic pathway not affected by the drug. The mechanisms of resistance are complex and depend on the type of bacterium involved (e.g. Gram–positive or Gram–negative and the class of drug. Some bacterial species have accumulated resistance to nearly all antimicrobial classes due to a combination of intrinsic and acquired processes. This has and will continue to lead to clinical failures of antimicrobial treatment in both human and animal medicine.

  19. Antimicrobial stewardship in long term care facilities: what is effective?

    OpenAIRE

    Nicolle, Lindsay E

    2014-01-01

    Intense antimicrobial use in long term care facilities promotes the emergence and persistence of antimicrobial resistant organisms and leads to adverse effects such as C. difficile colitis. Guidelines recommend development of antimicrobial stewardship programs for these facilities to promote optimal antimicrobial use. However, the effectiveness of these programs or the contribution of any specific program component is not known. For this review, publications describing evaluation of antimicro...

  20. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons

    International Nuclear Information System (INIS)

    Zhang, Yuping; Zhang, Chiqian; Parker, David B.; Snow, Daniel D.; Zhou, Zhi; Li, Xu

    2013-01-01

    Livestock manure treatment and storage structures are potential environmental sources of antimicrobials and antimicrobial resistance genes (ARGs). In this study, the occurrence of antimicrobials and ARGs was investigated in the water and the sludge compartments of beef cattle storage ponds and swine lagoons. Analysis was focused on two families of antimicrobials (sulfonamide and tetracycline) and the corresponding ARGs (sul1, sul2, tetO, tetQ and tetX). Results showed that the pseudo-partitioning coefficients of tetracyclines were higher than those of sulfonamides, suggesting different distributions of these two classes of antimicrobials between water and sludge. The ARGs tested were detected in nearly all ponds and lagoons, with the highest relative abundance in sul2 at 6.3 × 10 −1 copies per 16S rRNA gene. A positive correlation was observed between total sul genes and total sulfonamides in water while the correlation was negative in sludge. No significant correlation was found between total tet genes and total tetracyclines in either water or sludge, but significant correlations were observed for certain individual tet genes. Ammonia concentrations strongly correlated with all ARGs except tetX. This study provided quantitative information on the occurrence of antimicrobials and ARGs in the liquid and solid compartments of typical manure treatment and storage structures. - Highlights: • Partitioning of antimicrobials between water and sludge is compound specific. • Antimicrobial resistance genes occurred in both water and sludge. • The ARG abundance varied more substantially in swine lagoons than in cattle ponds. • Correlations between ARGs and antimicrobials are system dependent

  1. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuping; Zhang, Chiqian [Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE (United States); Parker, David B. [USDA Meat Animal Research Center, Clay Center, NE (United States); Snow, Daniel D. [Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, NE (United States); Zhou, Zhi [Department of Civil and Environmental Engineering, National University of Singapore (Singapore); Li, Xu, E-mail: xuli@unl.edu [Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE (United States)

    2013-10-01

    Livestock manure treatment and storage structures are potential environmental sources of antimicrobials and antimicrobial resistance genes (ARGs). In this study, the occurrence of antimicrobials and ARGs was investigated in the water and the sludge compartments of beef cattle storage ponds and swine lagoons. Analysis was focused on two families of antimicrobials (sulfonamide and tetracycline) and the corresponding ARGs (sul1, sul2, tetO, tetQ and tetX). Results showed that the pseudo-partitioning coefficients of tetracyclines were higher than those of sulfonamides, suggesting different distributions of these two classes of antimicrobials between water and sludge. The ARGs tested were detected in nearly all ponds and lagoons, with the highest relative abundance in sul2 at 6.3 × 10{sup −1} copies per 16S rRNA gene. A positive correlation was observed between total sul genes and total sulfonamides in water while the correlation was negative in sludge. No significant correlation was found between total tet genes and total tetracyclines in either water or sludge, but significant correlations were observed for certain individual tet genes. Ammonia concentrations strongly correlated with all ARGs except tetX. This study provided quantitative information on the occurrence of antimicrobials and ARGs in the liquid and solid compartments of typical manure treatment and storage structures. - Highlights: • Partitioning of antimicrobials between water and sludge is compound specific. • Antimicrobial resistance genes occurred in both water and sludge. • The ARG abundance varied more substantially in swine lagoons than in cattle ponds. • Correlations between ARGs and antimicrobials are system dependent.

  2. Bacterial strategies of resistance to antimicrobial peptides.

    Science.gov (United States)

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  3. Antimicrobial peptide capsids of de novo design.

    Science.gov (United States)

    De Santis, Emiliana; Alkassem, Hasan; Lamarre, Baptiste; Faruqui, Nilofar; Bella, Angelo; Noble, James E; Micale, Nicola; Ray, Santanu; Burns, Jonathan R; Yon, Alexander R; Hoogenboom, Bart W; Ryadnov, Maxim G

    2017-12-22

    The spread of bacterial resistance to antibiotics poses the need for antimicrobial discovery. With traditional search paradigms being exhausted, approaches that are altogether different from antibiotics may offer promising and creative solutions. Here, we introduce a de novo peptide topology that-by emulating the virus architecture-assembles into discrete antimicrobial capsids. Using the combination of high-resolution and real-time imaging, we demonstrate that these artificial capsids assemble as 20-nm hollow shells that attack bacterial membranes and upon landing on phospholipid bilayers instantaneously (seconds) convert into rapidly expanding pores causing membrane lysis (minutes). The designed capsids show broad antimicrobial activities, thus executing one primary function-they destroy bacteria on contact.

  4. Antimicrobial Peptides for Therapeutic Applications: A Review

    Directory of Open Access Journals (Sweden)

    Tsogbadrakh Mishig-Ochir

    2012-10-01

    Full Text Available Antimicrobial peptides (AMPs have been considered as potential therapeutic sources of future antibiotics because of their broad-spectrum activities and different mechanisms of action compared to conventional antibiotics. Although AMPs possess considerable benefits as new generation antibiotics, their clinical and commercial development still have some limitations, such as potential toxicity, susceptibility to proteases, and high cost of peptide production. In order to overcome those obstacles, extensive efforts have been carried out. For instance, unusual amino acids or peptido-mimetics are introduced to avoid the proteolytic degradation and the design of short peptides retaining antimicrobial activities is proposed as a solution for the cost issue. In this review, we focus on small peptides, especially those with less than twelve amino acids, and provide an overview of the relationships between their three-dimensional structures and antimicrobial activities. The efforts to develop highly active AMPs with shorter sequences are also described.

  5. Development of antimicrobial optimum glass ionomer

    International Nuclear Information System (INIS)

    Angioletto, E.; Tezza, V.B.; Santos, M.J.; Montedo, O.R.K.; Pich, C.T.; Fiori, M.A.; Angioletto, Ev.

    2010-01-01

    The use of glass ionomer for restorations in dentistry for lower income population is a well established practice in public clinics of Brazil. However the average price of this kind of material and its low durability still have a negative impact on public health for being imported and frequently replaced it becomes expensive for the manufacturers and for public agencies. In glass ionomer the main antimicrobial agent is fluoride, which is released gradually. The material used for filling provides an average life of five years and its durability can be increased if the ionomer contains other oligodynamic elements. It was formulated, merged a new optimized glass ionomer which was characterized by X-ray diffraction, ion measurement and antimicrobial activity. This new product showed promising results, that pointed structural stability an increase of antimicrobial efficiency. (author)

  6. Antimicrobial activity of chemically modified dextran derivatives.

    Science.gov (United States)

    Tuchilus, Cristina G; Nichifor, Marieta; Mocanu, Georgeta; Stanciu, Magdalena C

    2017-04-01

    Cationic amphiphilic dextran derivatives with a long alkyl group attached to the reductive end of the polysaccharide chain and quaternary ammonium groups attached as pendent groups to the main dextran backbone were synthesized and tested for their antimicrobial properties against several bacteria and fungi strains. Dependence of antimicrobial activity on both polymer chemical composition (dextran molar mass, length of end alkyl group and chemical structure of ammonium groups) and type of microbes was highlighted by disc-diffusion method (diameter of inhibition zone) and broth microdilution method (minimum inhibitory concentrations). Polymers had antimicrobial activity for all strains studied, except for Pseudomonas aeruginosa ATCC 27853. The best activity against Staphylococcus aureus (Minimun Inhibitory Concentration 60μg/mL) was provided by polymers obtained from dextran with lower molecular mass (Mn=4500), C 12 H 25 or C 18 H 37 end groups, and N,N-dimethyl-N-benzylammonium pendent groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Recent Developments in Antimicrobial Polymers: A Review

    Directory of Open Access Journals (Sweden)

    Madson R. E. Santos

    2016-07-01

    Full Text Available Antimicrobial polymers represent a very promising class of therapeutics with unique characteristics for fighting microbial infections. As the classic antibiotics exhibit an increasingly low capacity to effectively act on microorganisms, new solutions must be developed. The importance of this class of materials emerged from the uncontrolled use of antibiotics, which led to the advent of multidrug-resistant microbes, being nowadays one of the most serious public health problems. This review presents a critical discussion of the latest developments involving the use of different classes of antimicrobial polymers. The synthesis pathways used to afford macromolecules with antimicrobial properties, as well as the relationship between the structure and performance of these materials are discussed.

  8. Antimicrobial Effect of Extracts of Cruciferous Vegetables

    Directory of Open Access Journals (Sweden)

    Shu-Hui Hu

    2004-12-01

    Full Text Available The cruciferous vegetables cauliflower, broccoli, cabbage, Chinese radish, Chinese kale, and Chinese kitam were used in this study to prepare water-soluble and methanol-water extracts. Crude protein extracts were also obtained by diethylaminoethyl (DEAE anion exchange chromatography. Water-soluble polysaccharides were prepared by ethanol precipitation followed by ultrafiltration. The antimicrobial effects of all these extracts were evaluated against Gram-positive bacteria, Gram-negative bacteria, and yeast. Crude protein extracts exhibited the greatest antimicrobial activity in monoculture experiments. The antimicrobial effects of cruciferous vegetables were also studied by steeping beef, carrot, and celery in chlorine (10 ppm or citric acid solution (1% containing the crude protein extract (500 ppm for different time periods. Total aerobic plate counts and coliform counts on these foods decreased significantly after 10 minutes in all steeping solutions (p < 0.05.

  9. Deep Learning Improves Antimicrobial Peptide Recognition.

    Science.gov (United States)

    Veltri, Daniel; Kamath, Uday; Shehu, Amarda

    2018-03-24

    Bacterial resistance to antibiotics is a growing concern. Antimicrobial peptides (AMPs), natural components of innate immunity, are popular targets for developing new drugs. Machine learning methods are now commonly adopted by wet-laboratory researchers to screen for promising candidates. In this work we utilize deep learning to recognize antimicrobial activity. We propose a neural network model with convolutional and recurrent layers that leverage primary sequence composition. Results show that the proposed model outperforms state-of-the-art classification models on a comprehensive data set. By utilizing the embedding weights, we also present a reduced-alphabet representation and show that reasonable AMP recognition can be maintained using nine amino-acid types. Models and data sets are made freely available through the Antimicrobial Peptide Scanner vr.2 web server at: www.ampscanner.com. amarda@gmu.edu for general inquiries and dan.veltri@gmail.com for web server information. Supplementary data are available at Bioinformatics online.

  10. Secular trends in Klebsiella pneumoniae isolated in a tertiary-care hospital: increasing prevalence and accelerated decline in antimicrobial susceptibility

    Directory of Open Access Journals (Sweden)

    Rodrigo de Carvalho Santana

    2016-04-01

    Full Text Available Abstract: INTRODUCTION Klebsiella pneumoniae has become an increasingly important etiologic agent of nosocomial infections in recent years. This is mainly due to the expression of virulence factors and development of resistance to several antimicrobial drugs. METHODS This retrospective study examines data obtained from the microbiology laboratory of a Brazilian tertiary-care hospital. To assess temporal trends in prevalence and antimicrobial susceptibility, K. pneumoniae isolates were analyzed from 2000 to 2013. The relative frequencies of K. pneumoniae isolation were calculated among all Gram-negative bacilli isolated in each period analyzed. Susceptibility tests were performed using automated systems. RESULTS: From 2000-2006, K. pneumonia isolates comprised 10.7% of isolated Gram-negative bacilli (455/4260. From 2007-2013, this percentage was 18.1% (965/5331. Strictly considering isolates from bloodstream infections, the relative annual prevalence of K. pneumoniae increased from 14-17% to 27-32% during the same periods. A progressive decrease in K. pneumoniae susceptibility to all antimicrobial agents assessed was detected. Partial resistance was also observed to antimicrobial drugs that have been used more recently, such as colistin and tigecycline. CONCLUSIONS Our study indicates that K. pneumoniae has become a major pathogen among hospitalized patients and confirms its recent trend of increasing antimicrobial resistance.

  11. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria

    DEFF Research Database (Denmark)

    Ebbensgaard, Anna Elisabeth; Mordhorst, Hanne; Overgaard, Michael Toft

    2015-01-01

    The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various...... AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram...

  12. Antimicrobial activity of Dracaena cinnabari resin from Soqotra ...

    African Journals Online (AJOL)

    Background: Few studies showed that Dracaena cinnabari resin, collected from Soqotra Island, Yemen, has antimicrobial activity. This study is the first to investigate antimicrobial activity of the resin on both antibiotic multi-resistant human pathogens and on poly-microbial culture. Material and Methods: Antimicrobial activity ...

  13. 75 FR 16109 - Antimicrobial Pesticide Products; Registration Applications

    Science.gov (United States)

    2010-03-31

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2009-0936; FRL-8806-9] Antimicrobial Pesticide...: This notice announces receipt of applications to register new antimicrobial pesticide products... identified. II. Registration Applications EPA received applications as follows to register new antimicrobial...

  14. 75 FR 30829 - Antimicrobial Pesticide Products; Registration Applications

    Science.gov (United States)

    2010-06-02

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2010-0325; FRL-8824-2] Antimicrobial Pesticide...: This notice announces receipt of an application to register new antimicrobial pesticide products... telephone number is (703) 305-5805. FOR FURTHER INFORMATION CONTACT: Demson Fuller, Antimicrobials Division...

  15. 75 FR 16111 - Antimicrobial Pesticide Products; Registration Applications

    Science.gov (United States)

    2010-03-31

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2009-0935; FRL-8807-1] Antimicrobial Pesticide... . List of Subjects Environmental protection, Antimicrobial pesticides and pest. Dated: March 15, 2010. Joan Harrigan Farrelly, Director, Antimicrobial Division, Office of Pesticide Programs. [FR Doc. 2010...

  16. The Antimicrobial Activity of Aliquidambar orientalis mill. Against ...

    African Journals Online (AJOL)

    Background: Medicinal plants are an important source of substances which are claimed to induce antimicrobial, antimutagenic and antioxidant effects. Many plants have been used due to their antimicrobial treatments. Antimicrobial and antioxidant activities of L. orientalis have not been reported to the present day. The aim ...

  17. Antimicrobial Resistance Trend of Bacteria from Clinical Isolates: An ...

    African Journals Online (AJOL)

    For decades, antimicrobials have proven useful for the treatment of bacterial infections. However, the immergence of antimicrobial resistance has become a major challenge to public health in many countries. The aim of this study was to investigate the antimicrobial susceptibility of bacterial isolates from clinical sources.

  18. Dealing with antimicrobial resistance - the Danish experience

    DEFF Research Database (Denmark)

    Bager, Flemming; Aarestrup, Frank Møller; Wegener, Henrik Caspar

    2000-01-01

    (DANMAP), which monitors resistance among bacteria from food animals, food and humans. A programme to monitor all use of prescription medicine in food animals at the herd level is presently being implemented. Another initiative was the elaboration of a series of practical recommendations to veterinarians...... on the prudent use of antimicrobials in order to reduce the development of resistance without compromising therapeutic efficacy. Our experience with avoparcin shows that a restrictive policy on the use of antimicrobials can curb the development of resistance. However, the occurrence and persistence of specific...

  19. Antimicrobial Peptides, Infections and the Skin Barrier

    DEFF Research Database (Denmark)

    Clausen, Maja Lisa; Agner, Tove

    2016-01-01

    The skin serves as a strong barrier protecting us from invading pathogens and harmful organisms. An important part of this barrier comes from antimicrobial peptides (AMPs), which are small peptides expressed abundantly in the skin. AMPs are produced in the deeper layers of the epidermis and trans......The skin serves as a strong barrier protecting us from invading pathogens and harmful organisms. An important part of this barrier comes from antimicrobial peptides (AMPs), which are small peptides expressed abundantly in the skin. AMPs are produced in the deeper layers of the epidermis...

  20. Progressive Pigmentary Purpura

    Science.gov (United States)

    ... Category: Share: Yes No, Keep Private Progressive Pigmentary Purpura Share | Progressive pigmentary purpura (we will call it PPP) is a group ... conditions ( Schamberg's disease , Lichenoid dermatitis of Gourgerot-Blum, purpura annularis telangiectodes of Majocchi and Lichen aureus). Schamberg's ...

  1. Primary Progressive Aphasia

    Science.gov (United States)

    ... which cause different symptoms. Semantic variant primary progressive aphasia Symptoms include these difficulties: Comprehending spoken or written ... word meanings Naming objects Logopenic variant primary progressive aphasia Symptoms include: Having difficulty retrieving words Frequently pausing ...

  2. The progressive tax

    OpenAIRE

    Estrada, Fernando

    2010-01-01

    This article describes the argumentative structure of Hayek on the relationship between power to tax and the progressive tax. It is observed throughout its work giving special attention to two works: The Constitution of Liberty (1959) and Law, Legislation and Liberty, vol3; The Political Order of Free People, 1979) Hayek describes one of the arguments most complete information bout SFP progressive tax systems (progressive tax). According to the author the history of the tax progressive system...

  3. Antimicrobial and Biophysical Properties of Surfactant Supplemented with an Antimicrobial Peptide for Treatment of Bacterial Pneumonia

    NARCIS (Netherlands)

    Banaschewski, Brandon J H; Veldhuizen, Edwin J A; Keating, Eleonora; Haagsman, Henk P; Zuo, Yi Y; Yamashita, Cory M; Veldhuizen, Ruud A W

    2015-01-01

    BACKGROUND: Antibiotic resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multi-drug resistant bacterial infections. Antimicrobial peptides (AMPs) have been

  4. Scottish Antimicrobial Prescribing Group (SAPG): development and impact of the Scottish National Antimicrobial Stewardship Programme.

    Science.gov (United States)

    Nathwani, Dilip; Sneddon, Jacqueline; Malcolm, William; Wiuff, Camilla; Patton, Andrea; Hurding, Simon; Eastaway, Anne; Seaton, R Andrew; Watson, Emma; Gillies, Elizabeth; Davey, Peter; Bennie, Marion

    2011-07-01

    In 2008, the Scottish Management of Antimicrobial Resistance Action Plan (ScotMARAP) was published by the Scottish Government. One of the key actions was initiation of the Scottish Antimicrobial Prescribing Group (SAPG), hosted within the Scottish Medicines Consortium, to take forward national implementation of the key recommendations of this action plan. The primary objective of SAPG is to co-ordinate and deliver a national framework or programme of work for antimicrobial stewardship. This programme, led by SAPG, is delivered by NHS National Services Scotland (Health Protection Scotland and Information Services Division), NHS Quality Improvement Scotland, and NHS National Education Scotland as well as NHS board Antimicrobial Management Teams. Between 2008 and 2010, SAPG has achieved a number of early successes, which are the subject of this review: (i) through measures to optimise prescribing in hospital and primary care, combined with infection prevention measures, SAPG has contributed significantly to reducing Clostridium difficile infection rates in Scotland; (ii) there has been engagement of all key stakeholders at local and national levels to ensure an integrated approach to antimicrobial stewardship within the wider healthcare-associated infection agenda; (iii) development and implementation of data management systems to support quality improvement; (iv) development of training materials on antimicrobial stewardship for healthcare professionals; and (v) improving clinical management of infections (e.g. community-acquired pneumonia) through quality improvement methodology. The early successes achieved by SAPG demonstrate that this delivery model is effective and provides the leadership and focus required to implement antimicrobial stewardship to improve antimicrobial prescribing and infection management across NHS Scotland. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  5. Phytoaccumulation of antimicrobials by hydroponic Cucurbita pepo.

    Science.gov (United States)

    Aryal, Niroj; Reinhold, Dawn

    2013-01-01

    Consumer use of antimicrobial-containing products continuously introduces triclocarban and triclosan into the environment. Triclocarban and triclosan adversely affect plants and animals and have the potential to affect human health. Research examined the phytoaccumulation of triclocarban and triclosan by pumpkin (Cucurbita pepo cultivar Howden) and zucchini (Cucurbita pepo cultivar Gold Rush) grown hydroponically. Pumpkin and zucchini were grown in nutrient solution spiked with 0.315 microg/mL triclocarban and 0.289 microg/mL triclosan for two months. Concentrations of triclocarban and triclosan in nutrient solutions were monitored weekly. At the end of the trial, roots and shoots were analyzed for triclocarban and triclosan. Research demonstrated that pumpkin and zucchini accumulated triclocarban and triclosan. Root accumulation factors were 1.78 and 0.64 and translocation factors were 0.001 and 0.082 for triclocarban and triclosan, respectively. The results of this experiment were compared with a previous soil column study that represented environmentally relevant exposure of antimicrobials from biosolids and had similar root mass. Plants were not as efficient in removing triclocarban and triclosan in hydroponic systems as in soil systems. Shoot concentrations of antimicrobials were the same or lower in hydroponic systems than in soil columns, indicating that hydroponic system does not overpredict the concentrations of antimicrobials.

  6. Antimicrobial Activity of Actinomycetes Against Multidrug Resistant ...

    African Journals Online (AJOL)

    Antimicrobial Activity of Actinomycetes Against Multidrug Resistant Staphylococcus aureus, E. coli and Various Other Pathogens. ... Purpose: The rapid emergence of drug resistance among pathogenic bacteria, especially multidrugresistant bacteria, underlines the need to look for new antibiotics. Methods: In the present ...

  7. Campylobacter Antimicrobial Drug Resistance among Humans in ...

    African Journals Online (AJOL)

    Background: Though Campylobacter enteritis is a self-limiting disease, antimicrobial agents are recommended for extraintestinal infections and for treating immunocompromised persons. ... The in-vitro antibiotic susceptibility testing for all organisms was performed by employing the Kirby- Bauer disc diffusion method.

  8. Nanosilver: Potent antimicrobial agent and its biosynthesis

    African Journals Online (AJOL)

    VIKAS

    2014-01-22

    Jan 22, 2014 ... synthesis of silver nanoparticles, potential and the possible mechanism of antimicrobial actions. NANOSILVER SYNTHESIS- AN OVERVIEW. Nano silver are one of the promising products in the nanotechnology industry. The development of consistent processes for the synthesis of silver nanoparticles is an.

  9. Self-stratifying antimicrobial polyurethane coatings

    NARCIS (Netherlands)

    Yagci, M.B.; Bolca, S.; Heuts, J.P.A.; Ming, W.; With, de G.

    2011-01-01

    In this work antimicrobial polyurethane coatings were prepared aiming at self-stratification. A hydroxyl end-capped liquid oligoester consisting of three equimolar diacids and an excess of 1,4-butanediol has been synthesized by a condensation reaction. A set of quaternary ammonium compounds (QACs)

  10. Polyphenols content, antioxidant and antimicrobial activities of ...

    African Journals Online (AJOL)

    25 wild plants were collected from the south of Tunisia. The dried aerial parts were extracted under a continuous reflux set-up in a Soxhlet extractor with hexane, ethyl acetate, methanol and water. The extracts were screened for total phenolic content, antioxidant and antimicrobial activities. Total phenolic contents were ...

  11. Preliminary phytochemical and antimicrobial screening of 50 ...

    African Journals Online (AJOL)

    Ethanolic extracts of 50 plant species were screened for their antimicrobial activity against Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. The results indicated that of the 50 plant extracts, 28 plant extracts inhibited the growth of one or more test pathogens.

  12. Bacterial Resistance to the Tetracyclines and Antimicrobial ...

    African Journals Online (AJOL)

    Optimizing of tetracycline antibiotics dosing and duration in human and animal healthcare and food production might help minimize the emergence of resistance in some situations. New approaches to antimicrobial chemotherapy are needed if we are to survive the increasing rates of tetracycline antibiotic resistance ...

  13. Structural Basis for Antimicrobial Activity of Lasiocepsin

    Czech Academy of Sciences Publication Activity Database

    Monincová, Lenka; Buděšínský, Miloš; Čujová, Sabína; Čeřovský, Václav; Veverka, Václav

    2014-01-01

    Roč. 15, č. 2 (2014), s. 301-308 ISSN 1439-4227 R&D Projects: GA ČR GA203/08/0536; GA MŠk(CZ) LK11205 Institutional support: RVO:61388963 Keywords : antimicrobial peptides * Lasioglossum laticeps * membranes * NMR spectroscopy * ShK family Subject RIV: CE - Biochemistry Impact factor: 3.088, year: 2014

  14. Molecular Methods for Detection of Antimicrobial Resistance

    DEFF Research Database (Denmark)

    Anjum, Muna F.; Zankari, Ea; Hasman, Henrik

    2017-01-01

    The increase in bacteria harboring antimicrobial resistance (AMR) is a global problem because there is a paucity of antibiotics available to treat multidrug-resistant bacterial infections in humans and animals. Detection of AMR present in bacteria that may pose a threat to veterinary and public...

  15. Global Governance Mechanisms to Address Antimicrobial Resistance.

    Science.gov (United States)

    Padiyara, Ponnu; Inoue, Hajime; Sprenger, Marc

    2018-01-01

    Since their discovery, antibiotics, and more broadly, antimicrobials, have been a cornerstone of modern medicine. But the overuse and misuse of these drugs have led to rising rates of antimicrobial resistance, which occurs when bacteria adapt in ways that render antibiotics ineffective. A world without effective antibiotics can have drastic impacts on population health, global development, and the global economy. As a global common good, antibiotic effectiveness is vulnerable to the tragedy of the commons, where a shared limited resource is overused by a community when each individual exploits the finite resource for their own benefit. A borderless threat like antimicrobial resistance requires global governance mechanisms to mitigate its emergence and spread, and it is the responsibility of all countries and relevant multilateral organizations. These mechanisms can be in the form of legally binding global governance mechanisms such as treaties and regulatory standards or nonbinding mechanisms such as political declarations, resolutions, or guidelines. In this article, we argue that while both are effective methods, the strong, swift, and coordinated action needed to address rising rates of antimicrobial resistance will be better served through legally binding governance mechanisms.

  16. Assessment techniques of antimicrobial properties of natural ...

    African Journals Online (AJOL)

    Medicinal plants have recently received the attention of the pharmaceutical and scientific communities and various publications have documented the therapeutic value of natural compounds in a bid to validate claims of their biological activity. Attention has been drawn to the antimicrobial activity of plants and their ...

  17. Comparative phytochemical screening and antimicrobial activity of ...

    African Journals Online (AJOL)

    The leaves and bark of Carica papaya (Pawpaw) were subjected to solvent extraction using both water and methanol. Preliminary phytochemical evaluation of the extracts was performed followed by antimicrobial studies against some bacteria using the agar-well diffusion method. The phytochemical analysis showed that ...

  18. Antimicrobial resistant bacteria in the food chain

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar

    2003-01-01

    Antimicrobials are used for treatment and prevention of disease in food animals and as feed additives for growth promotion. All uses lead to the development of resistant bacteria, some of which are pathogenic to humans. Current main concerns are with resistance in Salmonella and Campylobacter...

  19. synthesis, characterization, thermal behavior and antimicrobial

    African Journals Online (AJOL)

    It is used for joint and muscle pain than other pain killer and has been ... Benzoic acid and its salts are used to preserve food from growth of .... vibrating sample magnetometer, VSM EG&G model 155 at room temperature and the data were ..... effective antimicrobial agent with less effect on normal cell lines at low levels.

  20. Synthesis and antimicrobial activity of some 2 ...

    African Journals Online (AJOL)

    These compounds were investigated for their antimicrobial activity against ten bacteria and five fungi by serial plate dilution method using standard drugs, namely, ofloxacin and ketoconazole, respectively, and their minimum inhibitory concentrations (MICs) were also determined. Results: A total of eighteen new compounds ...

  1. Efflux pumps as antimicrobial resistance mechanisms.

    Science.gov (United States)

    Poole, Keith

    2007-01-01

    Antibiotic resistance continues to hamper antimicrobial chemotherapy of infectious disease, and while biocide resistance outside of the laboratory is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are not uncommon. Efflux mechanisms, both drug-specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials in important human pathogens. Multidrug efflux mechanisms are generally chromosome-encoded, with their expression typically resultant from mutations in regulatory genes, while drug-specific efflux mechanisms are encoded by mobile genetic elements whose acquisition is sufficient for resistance. While it has been suggested that drug-specific efflux systems originated from efflux determinants of self-protection in antibiotic-producing Actinomycetes, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, are appreciated as having an intended housekeeping function unrelated to drug export and resistance. Thus, it will be important to elucidate the intended natural function of these efflux mechanisms in order, for example, to anticipate environmental conditions or circumstances that might promote their expression and, so, compromise antimicrobial chemotherapy. Given the clinical significance of antimicrobial exporters, it is clear that efflux must be considered in formulating strategies for treatment of drug-resistant infections, both in the development of new agents, for example, less impacted by efflux or in targeting efflux directly with efflux inhibitors.

  2. Chemical composition, antioxidant effects and antimicrobial ...

    African Journals Online (AJOL)

    Thymus vulgaris, Cinnamomum zeylanicum and Ocimum gratissimum are spices widely used as aroma enhancers and food preservatives. This work assessed the chemical composition, antioxidant and antimicrobial effect of their essential oils on some food pathogenic bacteria, namely, Staphylococcus aureus, Citrobacter ...

  3. Antimicrobial drug use in hospitalized children

    NARCIS (Netherlands)

    Liem, T.B.Y.

    2011-01-01

    The discovery of antibiotics represents one of the milestones in modern medicine and has since the beginning of the 20th century made a major contribution to the reduction in mortality and morbidity from infectious diseases. The shadow side of their success is antimicrobial drug resistance which is

  4. Identification of antimicrobial properties of cashew, Anacardium ...

    African Journals Online (AJOL)

    Michael Horsfall

    3 *Department of. Plant Science and Biotechnology, Faculty of Science, University of Port Harcourt, P.M.B. 5323, Port Harcourt, Rivers State, Nigeria. Email: bionyananyo@yahoo.com. ABSTRACT: The antimicrobial capabilities of plant extract derived from the leaves of the cashew plant,. Anacardium occidentale L. (Family ...

  5. Antimicrobial susceptibility of Brachyspira hyodysenteriae in Switzerland.

    Science.gov (United States)

    Kirchgässner, C; Schmitt, S; Borgström, A; Wittenbrink, M M

    2016-06-01

    Brachyspira (B.) hyodysenteriae is the causative agent of swine dysentery (SD), a severe mucohaemorrhagic diarrheal disease in pigs worldwide. So far, the antimicrobial susceptibility patterns of B. hyodysenteriae in Switzerland have not been investigated. Therefore, a panel of 30 porcine B. hyodysenteriae isolates were tested against 6 antimicrobial agents by using the VetMIC Brachy panel, a broth microdilution test. Tiamulin and valnemulin showed high antimicrobial activity inhibiting all isolates at low concentrations. The susceptibility testing of doxycycline revealed values from ≤0.25 μg/ ml (47%) to 2 μg/ml (10%). The MIC values of lincomycin ranged between ≤0.5 μg/ml (30%) and 32 μg/ml (43%). For tylosin, 57% of the isolates could not be inhibited at the highest concentration of ≥128 μg/ml. The MIC values for tylvalosin were between ≤0.25 μg/ml (10%) and 8 μg/ml (20%). These findings reveal Switzerland's favourable situation compared to other European countries. Above all, tiamulin and valnemulin are still effective antimicrobial agents and can be further used for the treatment of SD.

  6. Synthesis and Characterization of Antimicrobial Nanomaterials

    Science.gov (United States)

    2013-01-01

    and silver coatings on surgical steel .30 Uniform antimicrobial coatings were deposited on surgical stainless steel blades and needles using an...electrophoretic deposition technique. Electrodeposited films firmly adhered to stainless steel surfaces even after extensive washing and retained the...as modified materials for personal hygiene to limit biofilm formation on materials exposed to the environment. Two approaches explored within are

  7. Antimicrobial resistance patterns of phenotype Extended Spectrum ...

    African Journals Online (AJOL)

    Methods: From July 2013 to January 2014, urine, pus and blood samples were collected from patients suspected to have bacterial infections at Kilimanjaro Christian Medical Centre in Moshi, Tanzania. The isolates were identified based on standard laboratory procedures. Antimicrobial susceptibility tests were carried out ...

  8. The quest for optimal antimicrobial therapy

    NARCIS (Netherlands)

    Mol, Petrus Gerardus Maria

    2005-01-01

    Since the discovery of sulphonam ides and penicillin in the 1930's, and their widespread use in clinical practice during World War II a plethora of new antimicrobial agents have entered the market. Initial optim ism has faded that these new drugs would eliminate infectious diseases as killer

  9. Antimicrobial lectin from Schinus terebinthifolius leaf.

    Science.gov (United States)

    Gomes, F S; Procópio, T F; Napoleão, T H; Coelho, L C B B; Paiva, P M G

    2013-03-01

    Schinus terebinthifolius leaves are used for treating human diseases caused by micro-organisms. This work reports the isolation, characterization and antimicrobial activity of S. terebinthifolius leaf lectin (SteLL). The isolation procedure involved protein extraction with 0.15 mol l(-1) NaCl, filtration through activated charcoal and chromatography of the filtrate on a chitin column. SteLL is a 14-kDa glycopeptide with haemagglutinating activity that is inhibited by N-acetyl-glucosamine, not affected by ions (Ca(2+) and Mg(2+)) and stable upon heating (30-100 °C) as well as over the pH 5.0-8.0. The antimicrobial effect of SteLL was evaluated by determining the minimal inhibitory (MIC), bactericide (MBC) and fungicide (MFC) concentrations. Lectin was active against Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella enteritidis and Staphylococcus aureus. Highest bacteriostatic and bactericide effects were detected for Salm. enteritidis (MIC: 0.45 μg ml(-1)) and Staph. aureus (MBC: 7.18 μg ml(-1)), respectively. SteLL impaired the growth (MIC: 6.5 μg ml(-1)) and survival (MFC: 26 μg ml(-1)) of Candida albicans. SteLL, a chitin-binding lectin, purified in milligram quantities, showed antimicrobial activity against medically important bacteria and fungi. SteLL can be considered as a new biomaterial for potential antimicrobial applications. © 2012 The Society for Applied Microbiology.

  10. Antimicrobial Peptides with Differential Bacterial Binding Characteristics

    Science.gov (United States)

    2013-03-01

    organisms [5]. AMPs exhibit broad- spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria, viruses, and fungi [6]. Hundreds of...polymerase chain reaction PE: PBS with 1mM EDTA PED: PBS with 1mM EDTA and 0.1µM dithiothreitol PEG: polyethylene glycol PL: pleurocidin RP-HPLC

  11. Antimicrobial packaging for fresh-cut fruits

    Science.gov (United States)

    Fresh-cut fruits are minimally processed produce which are consumed directly at their fresh stage without any further kill step. Microbiological quality and safety are major challenges to fresh-cut fruits. Antimicrobial packaging is one of the innovative food packaging systems that is able to kill o...

  12. Synthesis, characterization, antimicrobial activity and molecular ...

    African Journals Online (AJOL)

    Synthesis, characterization, antimicrobial activity and molecular docking studies of combined pyrazol-barbituric acid pharmacophores. Assem Barakat, Bandar M. Al-Qahtani, Abdullah M. Al-Majid, M. Ali Mohammed Rafi Shaik, Mohamed H.M. Al-Agamy, Abdul Wadood ...

  13. Synthesis, characterization and antimicrobial activity of some ...

    African Journals Online (AJOL)

    Thermogravimetric analyses were also carried out. The data obtained agree with the proposed structures and show that the complexes decomposed to the corresponding metal oxide. The ligand and their metal complexes were screened for their antimicrobial activities by the agar-well diffusion technique using DMSO as a ...

  14. Use of Biopolymers in Antimicrobial Food Packaging

    Science.gov (United States)

    Recent outbreaks of foodborne illness and food recalls continue to push for innovative ways to inhibit microbial growth in foods. As an additional hurdle to food processes, antimicrobial food packaging can play an important role in reducing the risk of pathogen contamination of processed foods. In...

  15. Antimicrobials of Bacillus species: mining and engineering

    NARCIS (Netherlands)

    Zhao, Xin

    2016-01-01

    Bacillus sp. have been successfully used to suppress various bacterial and fungal pathogens. Due to the wide availability of whole genome sequence data and the development of genome mining tools, novel antimicrobials are being discovered and updated,;not only bacteriocins, but also NRPs and PKs. A

  16. Health council report 'Antimicrobial growth promoters'.

    NARCIS (Netherlands)

    Goettsch, W; Degener, JE

    1999-01-01

    The Health Council of the Netherlands has issued a report on the risk of development of resistance among bacteria as result of the use of antibiotics as growth promotors in livestock farming. The committee appointed by the Health Council conclude that the use of antimicrobial growth promotors

  17. Incidence and antimicrobial susceptibility pattern of salmonella ...

    African Journals Online (AJOL)

    A study was carried out to investigate the incidence of Salmonella species among 300 children using stool samples from six hospitals in the metropolitan Kano. The organisms were investigated using cultural, serological biochemical characterization and sensitivity to some antimicrobial agents. The incidence of the bacteria ...

  18. Antimicrobial Activity and Phytochemical Screening of Ficus ...

    African Journals Online (AJOL)

    Prelimlinary phytochemical screening of Ficus exasperata root bark showed that it contains saponin, alkaloids, cardiac glycoside and reducing sugar with no traces of tannin and anthraquinone. The results of the study provide scientific basis for developing a novel broad spectrum antimicrobial herbal formulation in future.

  19. phytochemical and antimicrobial properties of solanum macranthum ...

    African Journals Online (AJOL)

    MR J.O. OLAYEMI

    reducing sugars and anthraquinones. The in vitro antimicrobial activity was done using agar well diffusion technique. Six clinical strains of human pathogenic microorganisms, comprising two Gram positive, two Gram negative bacteria and two fungi were utilized in the studies. The various plant extracts varied in their high ...

  20. Antimicrobial resistance and plasmid profiles of Aeromonas ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate the presence of Aeromonas hydrophila at commonly used water collection points on the River Njoro and to determine the in-vitro antimicrobial susceptibility and plasmid profiles of isolates. In total, 126 samples were collected and 36.5% of them were positive for A. hydrophila.

  1. Antimicrobial susceptibility assessment of compound from ...

    African Journals Online (AJOL)

    Ethyl acetate extract of the culture filtrate of Aspergillus fumigatus on chromatographic analysis has led to the isolation of the compound, AF-1 which exhibited a significant in vitro antimicrobial activity against the tested pathogenic microorganism. The structure of the isolated compound, AF-1 was identified as ...

  2. Synthesis, Characterization, Antimicrobial Activity and Antioxidant ...

    African Journals Online (AJOL)

    MBI

    2015-12-08

    Dec 8, 2015 ... Synthesis, Characterization, Antimicrobial Activity and Antioxidant. Studies of ... Transition metal complexes of Co(II) and Ni(II) with Schiff base ligand (HL) derived from condensation of 2- ..... 2-((5mercapto-1,3,4-thiadiazol-2-.

  3. Prevalence and antimicrobial resistance pattern of coagulase ...

    African Journals Online (AJOL)

    Prevalence and antimicrobial resistance pattern of coagulase negative Staphylococci isolated from pigs and in-contact humans in Jos Metropolis, Nigeria. ... (53/401) of the isolates were CoNS species based on confirmatory test with Microgen biochemical kit and were further subjected to antibiotic susceptibility testing.

  4. Synergistic Antimicrobial Activities Of Phytoestrogens In Crude ...

    African Journals Online (AJOL)

    Ethanolic, methanolic and aqueous extracts of both leaves were studied for their in-vitro synergistic antimicrobial activity against both Gram positive and Gram negative micro-organisms, and Yeast using Agar diffusion method. The GC-MS phytochemical screening of methanolic extract showed that the major compounds in ...

  5. Current resistance issues in antimicrobial therapy | Senekal ...

    African Journals Online (AJOL)

    The human gut contains 1013 - 1014 bacteria that are exposed to selection pressure whenever antibiotics are administered.1 The same selection pressure applies to respiratory flora, which is one of the reasons why antimicrobial therapy prescribed for the treatment of respiratory tract infection should aim to eradicate ...

  6. 3D-Printable Antimicrobial Composite Resins

    NARCIS (Netherlands)

    Yue, Jun; Zhao, Pei; Gerasimov, Jennifer Y.; van de Lagemaat, Marieke; Grotenhuis, Arjen; Rustema-Abbing, Minie; van der Mei, Henny C.; Busscher, Henk J.; Herrmann, Andreas; Ren, Yijin

    2015-01-01

    3D printing is seen as a game-changing manufacturing process in many domains, including general medicine and dentistry, but the integration of more complex functions into 3D-printed materials remains lacking. Here, it is expanded on the repertoire of 3D-printable materials to include antimicrobial

  7. Antimicrobial activity of propolis against Streptococcus mutans

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... Agar well diffusion and minimum inhibitory concentration (MIC) determinations were the methods used in this study. ... being most prevalent in Asian and Latin American countries ... Therefore, this study investigated the antimicrobial activity of .... activity of Turkish propolis and its qualitative and quantitative.

  8. Antimicrobial resistance in Danish pigs: A cross sectional study of the association between antimicrobial resistance and geography, exposure to antimicrobials, and trade

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla

    Antimicrobial resistance is a worldwide problem of paramount importance for both humans and animals. To combat the emergence of antimicrobial resistance, the problem must be targeted in all major reservoirs as it is assumed that a high level of AMR genes in environmental reservoirs can increase...... the risk of human pathogens becoming resistant. Pigs might constitute an important reservoir. Therefore, it is important to manage antimicrobial resistance in pigs. Before effectiveactions can be initiated, it is crucial to know which factors are associated with the levels of antimicrobial resistance...... the collection of information on relevant factors. The aim of this PhD project was to study the relationship between the levels of antimicrobial resistance genes and three factors in Danish pig farms: the geographical location of the farm, the exposure to antimicrobials, and the trade patterns. Data collection...

  9. Antimicrobial Resistance of Faecal Escherichia coli Isolates from Pig Farms with Different Durations of In-feed Antimicrobial Use.

    Science.gov (United States)

    Gibbons, J F; Boland, F; Egan, J; Fanning, S; Markey, B K; Leonard, F C

    2016-05-01

    Antimicrobial use and resistance in animal and food production are of concern to public health. The primary aims of this study were to determine the frequency of resistance to 12 antimicrobials in Escherichia coli isolates from 39 pig farms and to identify patterns of antimicrobial use on these farms. Further aims were to determine whether a categorization of farms based on the duration of in-feed antimicrobial use (long-term versus short-term) could predict the occurrence of resistance on these farms and to identify the usage of specific antimicrobial drugs associated with the occurrence of resistance. Escherichia coli were isolated from all production stages on these farms; susceptibility testing was carried out against a panel of antimicrobials. Antimicrobial prescribing data were collected, and farms were categorized as long term or short term based on these. Resistance frequencies and antimicrobial use were tabulated. Logistic regression models of resistance to each antimicrobial were constructed with stage of production, duration of antimicrobial use and the use of 5 antimicrobial classes included as explanatory variables in each model. The greatest frequencies of resistance were observed to tetracycline, trimethoprim/sulphamethoxazole and streptomycin with the highest levels of resistance observed in isolates from first-stage weaned pigs. Differences in the types of antimicrobial drugs used were noted between long-term and short-term use farms. Categorization of farms as long- or short-term use was sufficient to predict the likely occurrence of resistance to 3 antimicrobial classes and could provide an aid in the control of resistance in the food chain. Stage of production was a significant predictor variable in all models of resistance constructed and did not solely reflect antimicrobial use at each stage. Cross-selection and co-selection for resistance was evident in the models constructed, and the use of trimethoprim/sulphonamide drugs in particular was

  10. National disparities in the relationship between antimicrobial resistance and antimicrobial consumption in Europe: an observational study in 29 countries.

    Science.gov (United States)

    McDonnell, Lucy; Armstrong, David; Ashworth, Mark; Dregan, Alexandru; Malik, Umer; White, Patrick

    2017-11-01

    Antimicrobial resistance in invasive infections is driven mainly by human antimicrobial consumption. Limited cross-national comparative evidence exists about variation in antimicrobial consumption and effect on resistance. We examined the relationship between national community antimicrobial consumption rates (2013) and national hospital antimicrobial resistance rates (2014) across 29 countries in the European Economic Area (EEA). Consumption rates were obtained from the European Surveillance of Antimicrobial Consumption Network (ESAC-Net). Resistance data were obtained from the European Antimicrobial Resistance Surveillance Network (EARS-Net), based on 196480 invasive isolates in 2014. Data availability and consistency were good. Some countries did not report figures for each strain of resistant bacteria. National antimicrobial consumption rates (2013) varied from ≤ 13 DDD (Estonia, the Netherlands and Sweden) to ≥ 30 DDD (France, Greece and Romania) per 1000 inhabitants per day. National antimicrobial resistance rates (hospital isolates, 15 species) also varied from  37.2% (Bulgaria, Greece, Romania and Slovakia). National antimicrobial consumption rates (2013) showed strong to moderate correlation with national hospital antimicrobial resistance rates (2014) in 19 strains of bacteria (r = 0.84 to r = 0.39). Some countries defied the trend with high consumption and low resistance (France, Belgium and Luxembourg) or low consumption and high resistance (Bulgaria, Hungary and Latvia). We found associations between national community antimicrobial consumption and national hospital antimicrobial resistance across a wide range of bacteria. These associations were not uniform. Different mechanisms may drive resistance in hospital-based invasive infections. Future research on international variations in antimicrobial resistance should consider environmental factors, agricultural use, vaccination policies and prescribing quality. © The Author 2017

  11. Phytoalexins: Current Progress and Future Prospects

    Directory of Open Access Journals (Sweden)

    Philippe Jeandet

    2015-02-01

    Full Text Available Phytoalexins are low molecular weight antimicrobial compounds that are produced by plants as a response to biotic and abiotic stresses. As such they take part in an intricate defense system which enables plants to control invading microorganisms. In the 1950s, research on phytoalexins started with progress in their biochemistry and bio-organic chemistry, resulting in the determination of their structure, their biological activity, as well as mechanisms of their synthesis and catabolism by microorganisms. Elucidation of the biosynthesis of numerous phytoalexins also permitted the use of molecular biology tools for the exploration of the genes encoding enzymes of their synthesis pathways and their regulators. This has led to potential applications for increasing plant resistance to diseases. Phytoalexins display an enormous diversity belonging to various chemical families such as for instance, phenolics, terpenoids, furanoacetylenes, steroid glycoalkaloids, sulfur-containing compounds and indoles.[...

  12. FcγRII-binding Centyrins mediate agonism and antibody-dependent cellular phagocytosis when fused to an anti-OX40 antibody.

    Science.gov (United States)

    Zhang, Di; Whitaker, Brian; Derebe, Mehabaw G; Chiu, Mark L

    2018-04-01

    Immunostimulatory antibodies against the tumor necrosis factor receptors (TNFR) are emerging as promising cancer immunotherapies. The agonism activity of such antibodies depends on crosslinking to Fc gamma RIIB receptor (FcγRIIB) to enable the antibody multimerization that drives TNFR activation. Previously, Fc engineering was used to enhance the binding of such antibodies to Fcγ receptors. Here, we report the identification of Centyrins as alternative scaffold proteins with binding affinities to homologous FcγRIIB and FcγRIIA, but not to other types of Fcγ receptors. One Centyrin, S29, was engineered at distinct positions of an anti-OX40 SF2 antibody to generate bispecific and tetravalent molecules named as mAbtyrins. Regardless of the position of S29 on the SF2 antibody, SF2-S29 mAbtyrins could bind FcγRIIB and FcγRIIA specifically while maintaining binding to OX40 receptors. In a NFκB reporter assay, attachment of S29 Centyrin molecules at the C-termini, but not the N-termini, resulted in SF2 antibodies with increased agonism owing to FcγRIIB crosslinking. The mAbtyrins also showed agonism in T-cell activation assays with immobilized FcγRIIB and FcγRIIA, but this activity was confined to mAbtyrins with S29 specifically at the C-termini of antibody heavy chains. Furthermore, regardless of the position of the molecule, S29 Centyrin could equip an otherwise Fc-silent antibody with antibody-dependent cellular phagocytosis activity without affecting the antibody's intrinsic antibody-dependent cell-meditated cytotoxicity and complement-dependent cytotoxicity. In summary, the appropriate adoption FcγRII-binding Centyrins as functional modules represents a novel strategy to engineer therapeutic antibodies with improved functionalities.

  13. Humanised IgG1 antibody variants targeting membrane-bound carcinoembryonic antigen by antibody-dependent cellular cytotoxicity and phagocytosis.

    Science.gov (United States)

    Ashraf, S Q; Umana, P; Mössner, E; Ntouroupi, T; Brünker, P; Schmidt, C; Wilding, J L; Mortensen, N J; Bodmer, W F

    2009-11-17

    The effect of glycoengineering a membrane specific anti-carcinoembryonic antigen (CEA) (this paper uses the original term CEA for the formally designated CEACAM5) antibody (PR1A3) on its ability to enhance killing of colorectal cancer (CRC) cell lines by human immune effector cells was assessed. In vivo efficacy of the antibody was also tested. The antibody was modified using EBNA cells cotransfected with beta-1,4-N-acetylglucosaminyltransferase III and the humanised hPR1A3 antibody genes. The resulting alteration of the Fc segment glycosylation pattern enhances the antibody's binding affinity to the FcgammaRIIIa receptor on human immune effector cells but does not alter the antibody's binding capacity. Antibody-dependent cellular cytotoxicity (ADCC) is inhibited in the presence of anti-FcgammaRIII blocking antibodies. This glycovariant of hPR1A3 enhances ADCC 10-fold relative to the parent unmodified antibody using either unfractionated peripheral blood mononuclear or natural killer (NK) cells and CEA-positive CRC cells as targets. NK cells are far more potent in eliciting ADCC than either freshly isolated monocytes or granulocytes. Flow cytometry and automated fluorescent microscopy have been used to show that both versions of hPR1A3 can induce antibody-dependent cellular phagocytosis (ADCP) by monocyte-derived macrophages. However, the glycovariant antibody did not mediate enhanced ADCP. This may be explained by the relatively low expression of FcgammaRIIIa on cultured macrophages. In vivo studies show the efficacy of glycoengineered humanised IgG1 PR1A3 in significantly improving survival in a CRC metastatic murine model. The greatly enhanced in vitro ADCC activity of the glycoengineered version of hPR1A3 is likely to be clinically beneficial.

  14. Quantifying antimicrobial resistance at veal calf farms.

    Directory of Open Access Journals (Sweden)

    Angela B Bosman

    Full Text Available This study was performed to determine a sampling strategy to quantify the prevalence of antimicrobial resistance on veal calf farms, based on the variation in antimicrobial resistance within and between calves on five farms. Faecal samples from 50 healthy calves (10 calves/farm were collected. From each individual sample and one pooled faecal sample per farm, 90 selected Escherichia coli isolates were tested for their resistance against 25 mg/L amoxicillin, 25 mg/L tetracycline, 0.5 mg/L cefotaxime, 0.125 mg/L ciprofloxacin and 8/152 mg/L trimethoprim/sulfamethoxazole (tmp/s by replica plating. From each faecal sample another 10 selected E. coli isolates were tested for their resistance by broth microdilution as a reference. Logistic regression analysis was performed to compare the odds of testing an isolate resistant between both test methods (replica plating vs. broth microdilution and to evaluate the effect of pooling faecal samples. Bootstrap analysis was used to investigate the precision of the estimated prevalence of resistance to each antimicrobial obtained by several simulated sampling strategies. Replica plating showed similar odds of E. coli isolates tested resistant compared to broth microdilution, except for ciprofloxacin (OR 0.29, p ≤ 0.05. Pooled samples showed in general lower odds of an isolate being resistant compared to individual samples, although these differences were not significant. Bootstrap analysis showed that within each antimicrobial the various compositions of a pooled sample provided consistent estimates for the mean proportion of resistant isolates. Sampling strategies should be based on the variation in resistance among isolates within faecal samples and between faecal samples, which may vary by antimicrobial. In our study, the optimal sampling strategy from the perspective of precision of the estimated levels of resistance and practicality consists of a pooled faecal sample from 20 individual animals, of which

  15. Antimicrobial compounds from Alpinia conchigera.

    Science.gov (United States)

    Aziz, Ahmad Nazif; Ibrahim, Halijah; Rosmy Syamsir, Devi; Mohtar, Mastura; Vejayan, Jaya; Awang, Khalijah

    2013-02-13

    The rhizome of Alpinia conchigerahas been used as a condiment in the northern states of Peninsular Malaysia and occasionally in folk medicine in the east coast to treat fungal infections. In some states of Peninsular Malaysia, the rhizomes are consumed as a post-partum medicine and the young shoots are prepared into a vegetable dish. This study aimed to investigate the chemical constituents of the pseudostems and rhizomes of Malaysian Alpinia conchigera and to evaluate the antimicrobial activity of the dichloromethane (DCM) extracts of the pseudostems, rhizomes and the isolated compounds against three selected fungi and five strains of Staphylococcus aureus. The dried and ground pseudostems (0.8kg) and rhizomes (1.0kg) were successively extracted in Soxhlet extractor using n-hexane, dichloromethane (DCM) and methanol. The n-hexane and DCM extracts of the pseudostem and rhizome were subjected to isolation and purification using column chromatography on silica gel using a stepwise gradient system (n-hexane to methanol). Briefly, a serial two fold dilutions of the test materials dissolved in DMSO were prepared prior to addition of 100μl overnight microbial suspension (108 cfu/ml) followed by incubation at 37°C (bacteria) or 26°C (dermatophytes and candida) for 24h. The highest concentration of DMSO remaining after dilution (5%, v/v) caused no inhibition to bacterial/candida/dermatophytes' growth. Antibiotic cycloheximide was used as reference for anticandidal and antidermatophyte comparison while oxacilin was used as reference for antibacterial testing. DMSO served as negative control. Turbidity was taken as indication of growth, thus the lowest concentration which remains clear after macroscopic evaluation was taken as the minimum inhibitory concentration (MIC). The isolation of n-hexane and DCM extracts of the rhizomes and pseudostems of Alpinia conchigera via column chromatography yielded two triterpenes isolated as a mixture of stigmasterol and

  16. Immune evasion mechanisms of Entamoeba histolytica: progression to disease

    Directory of Open Access Journals (Sweden)

    Sharmin eBegum

    2015-12-01

    Full Text Available Entamoeba histolytica (Eh is a protozoan parasite that infects 10% of the world’s population and results in 100,000 deaths/year from amebic dysentery and/or liver abscess. In most cases, this extracellular parasite colonizes the colon by high affinity binding to MUC2 mucin without disease symptoms, whereas in some cases, Eh triggers an aggressive inflammatory response upon invasion of the colonic mucosa. The specific host-parasite factors critical for disease pathogenesis are still not well characterized. From the parasite, the signature events that lead to disease progression are cysteine protease cleavage of the C-terminus of MUC2 that dissolves the mucus layer followed by Eh binding and cytotoxicity of the mucosal epithelium. The host mounts an ineffective excessive host pro-inflammatory response following contact with host cells that causes tissue damage and participates in disease pathogenesis as Eh escapes host immune clearance by mechanisms that are not completely understood. Ameba can modulate or destroy effector immune cells by inducing neutrophil apoptosis and suppressing respiratory burst or nitric oxide (NO production from macrophages. Eh adherence to the host cells also induce multiple cytotoxic effects that can promote cell death through phagocytosis, apoptosis or by trogocytosis (ingestion of living cells that might play critical roles in immune evasion. This review focuses on the immune evasion mechanisms that Eh uses to survive and induce disease manifestation in the host.

  17. Immune Evasion Mechanisms of Entamoeba histolytica: Progression to Disease.

    Science.gov (United States)

    Begum, Sharmin; Quach, Jeanie; Chadee, Kris

    2015-01-01

    Entamoeba histolytica (Eh) is a protozoan parasite that infects 10% of the world's population and results in 100,000 deaths/year from amebic dysentery and/or liver abscess. In most cases, this extracellular parasite colonizes the colon by high affinity binding to MUC2 mucin without disease symptoms, whereas in some cases, Eh triggers an aggressive inflammatory response upon invasion of the colonic mucosa. The specific host-parasite factors critical for disease pathogenesis are still not well characterized. From the parasite, the signature events that lead to disease progression are cysteine protease cleavage of the C-terminus of MUC2 that dissolves the mucus layer followed by Eh binding and cytotoxicity of the mucosal epithelium. The host mounts an ineffective excessive host pro-inflammatory response following contact with host cells that causes tissue damage and participates in disease pathogenesis as Eh escapes host immune clearance by mechanisms that are not completely understood. Ameba can modulate or destroy effector immune cells by inducing neutrophil apoptosis and suppressing respiratory burst or nitric oxide (NO) production from macrophages. Eh adherence to the host cells also induce multiple cytotoxic effects that can promote cell death through phagocytosis, apoptosis or by trogocytosis (ingestion of living cells) that might play critical roles in immune evasion. This review focuses on the immune evasion mechanisms that Eh uses to survive and induce disease manifestation in the host.

  18. Antimicrobial resistance in Libya: 1970–2011

    Directory of Open Access Journals (Sweden)

    Khalifa Sifaw Ghenghesh

    2013-03-01

    Full Text Available Resistance to antimicrobial agents is a major health problem that affects the whole world. Providing information on the past state of antimicrobial resistance in Libya may assist the health authorities in addressing the problem more effectively in the future. Information was obtained mainly from Highwire Press (including PubMed search for the period 1970–2011 using the terms ‘antibiotic resistance in Libya’, ‘antimicrobial resistance in Libya’, ‘tuberculosis in Libya’, and ‘primary and acquired resistance in Libya’ in title and abstract. From 1970 to 2011 little data was available on antimicrobial resistance in Libya due to lack of surveillance and few published studies. Available data shows high resistance rates for Salmonella species in the late 1970s and has remained high to the present day. High prevalence rates (54–68% of methicillin-resistant Staphylococcus aureus (MRSA were reported in the last decade among S. aureus from patients with burns and surgical wound infections. No reports were found of vancomycin-resistant S. aureus (VRSA or vancomycin-intermediate-resistant S. aureus (VISA using standard methods from Libya up to the end of 2011. Reported rates of primary (i.e. new cases and acquired (i.e. retreatment cases multidrug-resistant tuberculosis (MDR-TB from the eastern region of Libya in 1971 were 16.6 and 33.3% and in 1976 were 8.6 and 14.7%, in western regions in 1984–1986 were 11 and 21.5% and in the whole country in 2011 were estimated at 3.4 and 29%, respectively. The problem of antibiotic resistance is very serious in Libya. The health authorities in particular and society in general should address this problem urgently. Establishing monitoring systems based on the routine testing of antimicrobial sensitivity and education of healthcare workers, pharmacists, and the community on the health risks associated with the problem and benefits of prudent use of antimicrobials are some steps that can be taken to

  19. Antimicrobial stewardship: attempting to preserve a strategic resource

    Directory of Open Access Journals (Sweden)

    Trevor Van Schooneveld, Md

    2011-07-01

    Full Text Available Antimicrobials hold a unique place in our drug armamentarium. Unfortunately the increase in resistance among both gram-positive and gram-negative pathogens coupled with a lack of new antimicrobial agents is threatening our ability to treat infections. Antimicrobial use is the driving force behind this rise in resistance and much of this use is suboptimal. Antimicrobial stewardship programs (ASP have been advocated as a strategy to improve antimicrobial use. The goals of ASP are to improve patient outcomes while minimizing toxicity and selection for resistant strains by assisting in the selection of the correct agent, right dose, and best duration. Two major strategies for ASP exist: restriction/pre-authorization that controls use at the time of ordering and audit and feedback that reviews ordered antimicrobials and makes suggestions for improvement. Both strategies have some limitations, but have been effective at achieving stewardship goals. Other supplemental strategies such as education, clinical prediction rules, biomarkers, clinical decision support software, and institutional guidelines have been effective at improving antimicrobial use. The most effective antimicrobial stewardship programs have employed multiple strategies to impact antimicrobial use. Using these strategies stewardship programs have been able to decrease antimicrobial use, the spread of resistant pathogens, the incidence of C. difficile infection, pharmacy costs, and improved patient outcomes.

  20. Treatment of serum with supernatants from cultures of Candida albicans reduces its serum-dependent phagocytosis Tratamento de soro com sobrenadante de cultura de Candida albicans reduz a fagocitose soro-dependente

    Directory of Open Access Journals (Sweden)

    Aderbal Antonio dos Santos

    2002-01-01

    Full Text Available Candida albicans is a potent activator of the complement system, and heat labile opsonins produced by activation of C3 (C3b and iC3b enhance phagocytosis of C. albicans mediated by complement receptors. In this study we treated mouse serum with supernatants from cultures of a protease producer strain of C. albicans and evaluated the ability of this serum to enhance phagocytosis of C. albicans. Cell-free supernatants from cultures of C. albicans were concentrated 5 fold and added to mouse serum for 30 min at 37ºC, before using this serum for opsonization of glutaraldehyde-fixed yeast cells. We observed that normal mouse serum increased about 3 fold the phagocytosis of C. albicans by mice peritoneal macrophages, whereas supernatant-treated serum did not increase phagocytosis. This effect of supernatants on serum was prevented by addition of pepstatin (5 µg/ ml; an inhibitor of C. albicans acid proteases to the medium. Serum treated with supernatants from cultures of a protease-deficient mutant of C. albicans also increased about 3 fold phagocytosis of the yeast. These results suggest that a protease produced by C. albicans causes proteolysis of serum opsonins, thereby reducing the phagocytosis of the yeast.Candida albicans é um potente ativador do sistema complemento, e opsoninas lábeis ao calor produzidas por ativação de C3 (C3b e iC3b aumentam a fagocitose de C. albicans mediada por receptores de complemento. Neste estudo, tratamos o soro de camundongo com sobrenadante de culturas de uma cepa de C. albicans produtora de proteases e avaliamos a capacidade deste soro reduzir a fagocitose de C. albicans. Sobrenadantes livres de células obtidos de cultura de C. albicans foram concentrados 5 vezes e adicionados ao soro de camundongo por 30 minutos a 37ºC, antes deste soro ser usado para opsonização de C. albicans na forma de levedura e fixadas em glutaraldeido. Nós observamos que soro normal aumentou 3 vezes a fagocitose de C. albicans por