WorldWideScience

Sample records for antimicrobial drug resistance

  1. Antimicrobial Drugs in Fighting against Antimicrobial Resistance.

    Science.gov (United States)

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants), the community level resistance (i.e., bilofilms and persisters) is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals. PMID:27092125

  2. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Guyue eCheng

    2016-04-01

    Full Text Available The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants, the community level resistance (i.e., bilofilms and persisters is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals.

  3. Antimicrobial (Drug) Resistance: Gonorrhea

    Science.gov (United States)

    ... Marketing Share this: Main Content Area Multidrug-Resistant Neisseria gonorrhoeae (Gonorrhea) During the past 50 years, the use ... Gonorrhea is a sexually transmitted disease caused by Neisseria gonorrhoeae , a bacterium that can infect areas of the ...

  4. Klebsiella pneumoniae Antimicrobial Drug Resistance, United States, 1998–2010

    OpenAIRE

    Sanchez, Guillermo V.; Master, Ronald N; Clark, Richard B.; Fyyaz, Madiha; Duvvuri, Padmaraj; Ekta, Gupta; Bordon, Jose

    2013-01-01

    We studied antimicrobial-resistant Klebsiella pneumoniae for 1998–2010 by using data from The Surveillance Network. Susceptibility results (n = 3,132,354) demonstrated significant increases in resistance to all antimicrobial drugs studied, except tetracycline. Cross-resistance among carbapenem-resistant K. pneumoniae was lower for tetracycline and amikacin.

  5. Antimicrobial drug resistance ofStaphylococcus aureus in dairy products

    Institute of Scientific and Technical Information of China (English)

    Sasidharan S; Prema B; Yoga Latha L

    2011-01-01

    Objective:To evaluate the prevalence of multidrug resistantStaphylococcus aureus(S. aureus) in dairy products.Methods:Isolation and identification ofS. aureus were performed in3 dairy-based food products. The isolates were tested for their susceptibility to5 different common antimicrobial drugs.Results:Of50 samples examined,5 (10%) were contaminated with S. aureus. Subsequently, the5 isolates were subjected to antimicrobial resistance pattern using five antibiotic discs (methicillin, vancomycin, kanamycin, chloramphenicol and tetracycline). Sample 29 showed resistance to methicillin and vancomycin. Sample18 showed intermediate response to tetracycline. The other samples were susceptible to all the antibiotics tested.Conclusions:The results provide preliminary data on sources of food contamination which may act as vehicles for the transmission of antimicrobial-resistantStaphylococcus.Therefore, it enables us to develop preventive strategies to avoid the emergence of new strains of resistantS. aureus.

  6. Antimicrobial resistance in commensal Escherichia coli in veal calves is associated with antimicrobial drug use.

    Science.gov (United States)

    Bosman, A B; Wagenaar, J A; Stegeman, J A; Vernooij, J C M; Mevius, D J

    2014-09-01

    The aim of this study was to determine the association between farm management factors, including antimicrobial drug usage, and resistance in commensal Escherichia coli isolates from the faeces of white veal calves. Ninety E. coli isolates from one pooled sample per farm (n = 48) were tested for their phenotypical resistance against amoxicillin, tetracycline, cefotaxime, ciprofloxacin and trimethoprim/sulfamethoxazole (TMP/SMX). Logistic regression analysis revealed the following risk factors (P 40 ADD/pc, tetracyclines (tetracycline, OR 13·1; amoxicillin, OR 6·5). In this study antimicrobial resistance in commensal E. coli was mainly associated with antimicrobial drug use. PMID:24152540

  7. Use and Misuse of Antimicrobial Drugs in Poultry and Livestock: Mechanisms of Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Toni Poole* and Cynthia Sheffield

    2013-07-01

    Full Text Available Food safety begins on the farm with management practices that contribute to an abundant, safe, and affordable food supply. To attain this goal antimicrobials have been used in all stages of food animal production in the United States and elsewhere around the world at one time or another. Among food–production animals antimicrobials are used for growth promotion, disease prophylaxis or disease treatment, and are generally administered to the entire flock or herd. Over many decades bacteria have become resistant to multiple antimicrobial classes in a cumulative manner. Bacteria exhibit a number of well characterized mechanisms of resistance to antimicrobials that include: 1 modification of the antimicrobial; 2 alteration of the drug target; 3 decreased access of drug to target; and 4 implementation of an alternative metabolic pathway not affected by the drug. The mechanisms of resistance are complex and depend on the type of bacterium involved (e.g. Gram–positive or Gram–negative and the class of drug. Some bacterial species have accumulated resistance to nearly all antimicrobial classes due to a combination of intrinsic and acquired processes. This has and will continue to lead to clinical failures of antimicrobial treatment in both human and animal medicine.

  8. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts to select the appropriate antimicrobial ...

  9. Antimicrobial resistance in commensal Escherichia coli in veal calves is associated with antimicrobial drug use

    NARCIS (Netherlands)

    Bosman, A.B.; Wagenaar, J.A.; Stegeman, J.A.; Vernooij, J.C.M.; Mevius, D.J.

    2014-01-01

    The aim of this study was to determine the association between farm management factors, including antimicrobial drug usage, and resistance in commensal Escherichia coli isolates from the faeces of white veal calves. Ninety E. coli isolates from one pooled sample per farm (n = 48) were tested for the

  10. Antimicrobial (Drug) Resistance: Methicillin-Resistant Staphylococcus aureus (MRSA)

    Science.gov (United States)

    ... Marketing Share this: Main Content Area Methicillin-Resistant Staphylococcus aureus (MRSA) During the past four decades, methicillin-resistant Staphylococcus aureus , or MRSA, has evolved from a controllable ...

  11. Antimicrobial Drug Resistance of Vibrio cholerae, Democratic Republic of the Congo.

    Science.gov (United States)

    Miwanda, Berthe; Moore, Sandra; Muyembe, Jean-Jacques; Nguefack-Tsague, Georges; Kabangwa, Ickel Kakongo; Ndjakani, Daniel Yassa; Mutreja, Ankur; Thomson, Nicholas; Thefenne, Helene; Garnotel, Eric; Tshapenda, Gaston; Kakongo, Denis Kandolo; Kalambayi, Guy; Piarroux, Renaud

    2015-05-01

    We analyzed 1,093 Vibrio cholerae isolates from the Democratic Republic of the Congo during 1997-2012 and found increasing antimicrobial drug resistance over time. Our study also demonstrated that the 2011-2012 epidemic was caused by an El Tor variant clonal complex with a single antimicrobial drug susceptibility profile.

  12. Animal Husbandry Practices in Rural Bangladesh: Potential Risk Factors for Antimicrobial Drug Resistance and Emerging Diseases

    OpenAIRE

    Roess, Amira A.; Winch, Peter J.; Ali, Nabeel A.; Akhter, Afsana; Afroz, Dilara; El Arifeen, Shams; Darmstadt, Gary L.; Baqui, Abdullah H

    2013-01-01

    Antimicrobial drug administration to household livestock may put humans and animals at risk for acquisition of antimicrobial drug–resistant pathogens. To describe animal husbandry practices, including animal healthcare-seeking and antimicrobial drug use in rural Bangladesh, we conducted semi-structured in-depth interviews with key informants, including female household members (n = 79), village doctors (n = 10), and pharmaceutical representatives, veterinarians, and government officials (n = ...

  13. Antimicrobial drug resistance of Escherichia coli isolated from poultry abattoir workers at risk and broilers on antimicrobials

    Directory of Open Access Journals (Sweden)

    J.W. Oguttu

    2008-05-01

    Full Text Available Antimicrobial usage in food animals increases the prevalence of antimicrobial drug resistance among their enteric bacteria. It has been suggested that this resistance can in turn be transferred to people working with such animals, e.g. abattoir workers. Antimicrobial drug resistance was investigated for Escherichia coli from broilers raised on feed supplemented with antimicrobials, and the people who carry out evisceration, washing and packing of intestines in a high-throughput poultry abattoir in Gauteng, South Africa. Broiler carcasses were sampled from 6 farms, on each of which broilers are produced in a separate 'grow-out cycle'. Per farm, 100 caeca were randomly collected 5 minutes after slaughter and the contents of each were selectively cultured for E. coli. The minimum inhibitory concentration (MIC of each isolate was determined for the following antimicrobials : doxycycline, trimethoprim, sulphamethoxazole, ampicillin, enrofloxacin, fosfomycin, ceftriaxone and nalidixic acid. The same was determined for the faeces of 29 abattoir workers and 28 persons used as controls. The majority of isolates from broilers were resistant, especially to antimicrobials that were used on the farms in the study. Overall median MICs and the number of resistant isolates from abattoir workers (packers plus eviscerators tended to be higher than for the control group. However, no statistically significant differences were observed when the median MICs of antimicrobials used regularly in poultry and percentage resistance were compared, nor could an association between resistance among the enteric E. coli from packers and those from broilers be demonstrated.

  14. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts to select the appropriate antimicrobial for treatment. Accordingly, efforts are underway in both veterinary and human medicine to preserve the effectiveness of these drugs. ...

  15. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) Chinese Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) ... FEAR Act Site Map Transparency Website Policies U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver ...

  16. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts ... Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance Federal, State & Local Officials Consumers Health ...

  17. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark

    DEFF Research Database (Denmark)

    Skov, Marianne; Andersen, Jens Strodl; Aabo, Søren;

    2007-01-01

    We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from hum...... humans showed resistance rates lower than those found in imported meat but higher than in domestic meat. These findings indicate that programs for controlling resistant Salmonella spp. are a global issue.......We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from...

  18. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark

    DEFF Research Database (Denmark)

    Skov, Marianne Nielsine; Andersen, Jens Strodl; Aabo, Søren;

    2007-01-01

    We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from hum...... humans showed resistance rates lower than those found in imported meat but higher than in domestic meat. These findings indicate that programs for controlling resistant Salmonella spp. are a global issue......We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from...

  19. Antimicrobial resistance

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2014-01-01

    Antimicrobial resistance is a global public health challenge, which has accelerated by the overuse of antibiotics worldwide. Increased antimicrobial resistance is the cause of severe infections, complications, longer hospital stays and increased mortality. Overprescribing of antibiotics...... is associated with an increased risk of adverse effects, more frequent re-attendance and increased medicalization of self-limiting conditions. Antibiotic overprescribing is a particular problem in primary care, where viruses cause most infections. About 90% of all antibiotic prescriptions are issued by general...... practitioners, and respiratory tract infections are the leading reason for prescribing. Multifaceted interventions to reduce overuse of antibiotics have been found to be effective and better than single initiatives. Interventions should encompass the enforcement of the policy of prohibiting the over...

  20. Triple-acting antimicrobial treatment for drug-resistant and intracellular Staphylococcus aureus.

    Science.gov (United States)

    Multi-drug resistant bacteria are a persistent problem in modern health care, food safety and animal health. There is a need for new antimicrobials to replace over-used conventional antibiotics. Staphylococcus aureus (S. aureus) is a notorious pathogen for both animal and human health with multi-d...

  1. Animation of Antimicrobial Resistance

    Science.gov (United States)

    ... Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it ... Veterinary Medicine is cited as the corporate author. Animation Animation of Antimicrobial Resistance (WMV - 19.2MB) 9: ...

  2. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... 08 Animation of Antimicrobial Resistance (text version) Arabic Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) Chinese Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) French ...

  3. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System ... Note: If you need help accessing information in different file formats, see Instructions for Downloading ...

  4. The impact of an antimicrobial stewardship programme on the use of antimicrobials and the evolution of drug resistance.

    Science.gov (United States)

    Del Arco, A; Tortajada, B; de la Torre, J; Olalla, J; Prada, J L; Fernández, F; Rivas, F; García-Alegría, J; Faus, V; Montiel, N

    2015-02-01

    Misuse of antibiotics can provoke increased bacterial resistance. There are no immediate prospects of any new broad-spectrum antibiotics, especially any with activity against enterobacteria, coming onto the market. Therefore, programmes should be implemented to optimise antimicrobial therapy. In a quasi-experimental study, the results for the pre-intervention year were compared with those for the 3 years following the application of an antimicrobial stewardship programme. We describe 862 interventions carried out as part of the stewardship programme at the Hospital Costa del Sol from 2009 to 2011. We examined the compliance of the empirical antimicrobial treatment with the programme recommendations and the treatment optimisation achieved by reducing the antibiotic spectrum and adjusting the dose, dosing interval and duration of treatment. In addition, we analysed the evolution of the sensitivity profile of the principal microorganisms and the financial savings achieved. 93 % of the treatment recommendations were accepted. The treatment actions taken were to corroborate the empirical treatment (46 % in 2009 and 31 % in 2011) and to reduce the antimicrobial spectrum taking into account the antibiogram results (37 % in 2009 and 58 % in 2011). The main drugs assessed were imipenem/meropenem, used in 38.6 % of the cases, and cefepime (20.1 %). The sensitivity profile of imipenem against Pseudomonas aeruginosa increased by 10 % in 2011. Savings in annual drug spending (direct costs) of 30,000 Euros were obtained. Stewardship programmes are useful tools for optimising antimicrobial therapy. They may contribute to preventing increased bacterial resistance and to reducing the long-term financial cost of antibiotic treatment.

  5. Antimicrobial Drugs in the Home

    Centers for Disease Control (CDC) Podcasts

    2006-10-19

    Survey participants in the United Kingdom admitted keeping leftover antimicrobial drugs for future use and taking them without medical advice. Dr. J. Todd Weber, director of CDC's Office of Antimicrobial Resistance, advises against the practice, which can be dangerous and can promote antimicrobial drug resistance.  Created: 10/19/2006 by Emerging Infectious Diseases.   Date Released: 10/26/2006.

  6. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... En Español Search FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, ... Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of ...

  7. Antimicrobial potential of Pakistani medicinal plants against multi-drug resistance Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Rahat Ejaz

    2014-09-01

    Full Text Available Objective: To determine resistance patterns of Staphylococcus aureus (S. aureus isolated from different areas of Pakistan and to identify antimicrobial agents against multi-drug resistant S. aureus strains. Methods: A total of 67 samples (sewerage, nasal and milk were collected from different farm areas of Pakistan to identify local strains of S. aureus. Sixteen out of 67 samples were positive for S. aureus. Only 6 out of 16 S. aureus strains showed resistance to antibiotics. Then the antibacterial effect of 29 medicinal plants was evaluated on these S. aureus isolates and a standard S. aureus strain ATCC 25923. The solvents used for the extraction of plants were acetone, dimethyl sulfoxide and methanol. The in vitro antibacterial activity was performed using agar disc diffusion method. Moreover, minimum inhibitory concentration of effective medicinal plant extracts was identified through micro-dilution method to find out their 50% inhibitory concentration. Results: Plant extracts of 5 medicinal plants (Psidium guajava, Nigella sativa, Piper nigrum, Valeriana jatamansi, and Cucurbita pepo exhibited antibacterial activity against locally isolated multidrug resistant strains of S. aureus. The minimum inhibitory concentration of these extracts was ranged from 0.328 to 5.000 mg/mL. Conclusions: Plant extracts of Psidium guajava, Piper nigrum seed, Valeriana jatamansi, Cucurbita pepo and Nigella sativa showed significant in vitro antibacterial activity and thus, such findings may serve as valuable contribution in the treatment of infection and may contribute to the development of potential antimicrobial agents against multi drug resistant strains of S. aureus

  8. Antimicrobial potential of Pakistani medicinal plants against multi-drug resistance Staphylococcus aureus

    Institute of Scientific and Technical Information of China (English)

    Rahat Ejaz; Usman A Ashfaq; Sobia Idrees

    2014-01-01

    Objective: To determine resistance patterns of Staphylococcus aureus (S. aureus) isolated from different areas of Pakistan and to identify antimicrobial agents against multi-drug resistant S.aureus strains. Methods: A total of 67 samples (sewerage, nasal and milk) were collected from different farm areas of Pakistan to identify local strains of S. aureus. Sixteen out of 67 samples were positive for S.aureus. Only 6 out of 16 S. aureus strains showed resistance to antibiotics. Then the antibacterial effect of 29 medicinal plants was evaluated on these S. aureus isolates and a standard S. aureus strain ATCC 25923. The solvents used for the extraction of plants were acetone, dimethyl sulfoxide and methanol. The in vitro antibacterial activity was performed using agar disc diffusion method. Moreover, minimum inhibitory concentration of effective medicinal plant extracts was identified through micro-dilution method to find out their 50% inhibitory concentration.Results:Plant extracts of 5 medicinal plants (Psidium guajava, Nigella sativa, Piper nigrum, Valeriana jatamansi, and Cucurbita pepo) exhibited antibacterial activity against locally isolated multidrug resistant strains of S. aureus. The minimum inhibitory concentration of these extracts was ranged from 0.328 to 5.000 mg/mL. Conclusions: Plant extracts of Psidium guajava, Piper nigrum seed, Valeriana jatamansi, Cucurbita pepo and Nigella sativa showed significant in vitro antibacterial activity and thus, such findings may serve as valuable contribution in the treatment of infection and may contribute to the development of potential antimicrobial agents against multi drug resistant strains of S. aureus.

  9. Effect of Antimicrobial Use in Agricultural Animals on Drug-resistant Foodborne Campylobacteriosis in Humans: A Systematic Literature Review.

    Science.gov (United States)

    McCrackin, M A; Helke, Kristi L; Galloway, Ashley M; Poole, Ann Z; Salgado, Cassandra D; Marriott, Bernadette P

    2016-10-01

    Controversy continues concerning antimicrobial use in food animals and its relationship to drug-resistant infections in humans. We systematically reviewed published literature for evidence of a relationship between antimicrobial use in agricultural animals and drug-resistant foodborne campylobacteriosis in humans. Based on publications from the United States (U.S.), Canada and Denmark from 2010 to July 2014, 195 articles were retained for abstract review, 50 met study criteria for full article review with 36 retained for which data are presented. Two publications reported increase in macrolide resistance of Campylobacter coli isolated from feces of swine receiving macrolides in feed, and one of these described similar findings for tetracyclines and fluoroquinolones. A study in growing turkeys demonstrated increased macrolide resistance associated with therapeutic dosing with Tylan® in drinking water. One publication linked tetracycline-resistant C. jejuni clone SA in raw cow's milk to a foodborne outbreak in humans. No studies that identified farm antimicrobial use also traced antimicrobial-resistant Campylobacter from farm to fork. Recent literature confirms that on farm antibiotic selection pressure can increase colonization of animals with drug-resistant Campylobacter spp. but is inadequately detailed to establish a causal relationship between use of antimicrobials in agricultural animals and prevalence of drug-resistant foodborne campylobacteriosis in humans. PMID:26580432

  10. Bisphosphocins: novel antimicrobials for enhanced killing of drug-resistant and biofilm-forming bacteria.

    Science.gov (United States)

    Wong, Jonathan P; DiTullio, Paul; Parkinson, Steve

    2015-01-01

    The global prevalence of antibiotic resistance and the threat posed by drug-resistant superbugs are a leading challenge confronting modern medicine in the 21st century. However, the progress on the development of novel antibiotics to combat this problem is severely lagging. A more concerted effort to develop novel therapeutic agents with robust activity and unique mechanisms of action will be needed to overcome the problem of drug resistance. Furthermore, biofilm forming bacteria are known to be increasingly resistant to the actions of antibiotics and are a leading cause of mortality or morbidity in nosocomial infections. Bisphosphocins (also scientifically known as nubiotics) are novel small protonated deoxynucleotide molecules, and exert their antibacterial activity by depolarization of the bacterial cell membrane, causing bacterial cell death. Bisphosphocins may represent an effective weapon against antibiotic-resistant and biofilm-forming pathogenic bacteria. Preclinical efficacy studies in animals have shown that the compounds are safe and, efficacious against various bacterial infections, including drug-resistant pathogens. In vitro biochemical analysis confirmed that the bactericidal activity of bisphosphocins is mediated by depolarization of the bacterial cell membrane, and these compounds are better able to penetrate through bacterial biofilm and kill the biofilm encased bacteria. This article will cover the structure, mode of action, safety, efficacy and the current state of development of bisphosphocins. Together, the information presented here will present a strong case for bisphosphocins to be considered for use as new weapons to complement the existing arsenal of antimicrobial drugs and as a first line defence against drug-resistant and biofilm-forming bacteria. PMID:26597426

  11. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System About NARMS Bacteria (NARMS) NARMS at Work Reports ... Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance Federal, State & Local Officials Consumers Health ...

  12. Veterinary drug usage and antimicrobial resistance in bacteria of animal origin

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    2005-01-01

    countries, which leaves room for considerable reductions in some countries. The emergence of resistant bacteria and resistance genes due to the use of antimicrobial agents are well documented. In Denmark it has been possible to reduce the usage of antimicrobial agents for food animals significantly...

  13. In vitro drug resistance of clinical isolated Brucella against antimicrobial agents

    Institute of Scientific and Technical Information of China (English)

    Xiu-Li Xu; Xiao Chen; Pei-Hong Yang; Jia-Yun Liu; Xiao-Ke Hao

    2013-01-01

    Objective:To explore the antibiotic resistance of Brucella melitensisand instruct rational use of antimicrobial agents in clinical treatment ofBrucella infection.Methods:Bacteria were cultured and identified byBACTEC9120 andVITEKⅡ automicrobic system.E-test was used to detect the minimal inhibitory concentration(MIC) of antimicrobial agents in the drug susceptivity experiment.Results:A total of19 brucella strains(allBrucella melitensis) wereisolated from19 patients, who had fever betweenJanuary2010 andJune2012, and17 samples were blood, one was bone marrow, the other sample was cerebrospinal fluid.TheMIC range of ceftazidime was2.0-8.0 mg/L, rifampicin was0.06-2.0 mg/L, amikacin was4.0-12.0 mg/L, levofloxacin was2.0-8.0 mg/L, doxycycline was8.0-32.0 mg/L, sulfamethoxazole-trimethoprim was4.0-16.0 mg/L, ampicillin was1.5-2.0 mg/L and gentamicin was0.50-0.75 mg/L.Conclusions:The drugs used in this experiment cover common drugs for treatingBrcella.Meanwhile, the results are consistent with clinical efficacy.It is suggested personalized regimen according to patients’ status in treatment of Brucella.

  14. Antimicrobial Resistance

    Science.gov (United States)

    ... others. For example, the emergence of Plasmodium falciparum multidrug resistance, including resistance to ACTs in the Greater Mekong subregion is an urgent public health concern that is threatening global efforts to reduce the burden of malaria. Although MDR-TB is a growing concern, it is still ...

  15. Engineering Antimicrobials Refractory to Resistance

    Science.gov (United States)

    Multi-drug resistant superbugs are a persistent problem in modern health care, demonstrating the need for a new class of antimicrobials that can address this concern. Triple-acting peptidoglycan hydrolase fusions are a novel class of antimicrobials which have qualities well suited to avoiding resis...

  16. ANTIMICROBIAL DRUG RESISTANCE IN STRAINS OF Escherichia coli ISOLATED FROM FOOD SOURCES

    Directory of Open Access Journals (Sweden)

    Mohammed Uddin Rasheed

    2014-07-01

    Full Text Available A variety of foods and environmental sources harbor bacteria that are resistant to one or more antimicrobial drugs used in medicine and agriculture. Antibiotic resistance in Escherichia coli is of particular concern because it is the most common Gram-negative pathogen in humans. Hence this study was conducted to determine the antibiotic sensitivity pattern of E. coli isolated from different types of food items collected randomly from twelve localities of Hyderabad, India. A total of 150 samples comprising; vegetable salad, raw egg-surface, raw chicken, unpasteurized milk, and raw meat were processed microbiologically to isolate E. coli and to study their antibiotic susceptibility pattern by the Kirby-Bauer method. The highest percentages of drug resistance in isolates of E. coli were detected from raw chicken (23.3% followed by vegetable salad (20%, raw meat (13.3%, raw egg-surface (10% and unpasteurized milk (6.7%. The overall incidence of drug resistant E. coli was 14.7%. A total of six (4% Extended Spectrum β-Lactamase (ESBL producers were detected, two each from vegetable salads and raw chicken, and one each from raw egg-surface and raw meat. Multidrug resistant strains of E. coli are a matter of concern as resistance genes are easily transferable to other strains. Pathogen cycling through food is very common and might pose a potential health risk to the consumer. Therefore, in order to avoid this, good hygienic practices are necessary in the abattoirs to prevent contamination of cattle and poultry products with intestinal content as well as forbidding the use of untreated sewage in irrigating vegetables.

  17. Antimicrobial resistance of thermophilic Campylobacter

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Engberg, J.

    2001-01-01

    Campylobacter has become the leading cause of zoonotic enteric infections in developed and developing countries world-wide. Antimicrobial resistance has emerged among Campylobacter mainly as a consequence of the use of antimicrobial agents in food animal production. Resistance to drugs of choice...... for the treatment of infections, macrolides and fluoroquinolones has emerged as a clinical problem and interventions to reduce this are recommended. Resistance to fluoroquinolones and macrolides is mediated by chromosomal mutations. Resistance to other relevant antimicrobial agents, mediated by...... acquired resistance genes, has not become widespread so far. However, resistance genes originating from both Gram-positive and Gram-negative bacterial species have been found, showing the potential for acquired resistance to emerge in Campylobacter....

  18. Plant-derived antimicrobial agents and their synergistic interaction against drug-sensitive and -resistant pathogens

    OpenAIRE

    Mulyaningsih, Sri

    2010-01-01

    Resistance toward antibiotics has become a problem on a global scale. Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE) are a major cause of morbidity and mortality in hospitalized patients. To overcome resistance, many antimicrobial agents have been investigated and Traditional Chinese Medicinal (TCM) plants were also examined as source of alternative agents. Eucalyptus globulus Labill (Myrtaceae) was the most active plant among the 84 T...

  19. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens

    OpenAIRE

    Sambanthamoorthy, Karthik; Feng, Xiaorong; Patel, Ruchi; PATEL, Sneha; Paranavitana, Chrysanthi

    2014-01-01

    Background Biosurfactants (BS) are amphiphilic compounds produced by microbes, either on the cell surface or secreted extracellularly. BS exhibit strong antimicrobial and anti-adhesive properties, making them good candidates for applications used to combat infections. In this study, our goal was to assess the in vitro antimicrobial, anti-adhesive and anti-biofilm abilities of BS produced by Lactobacillus jensenii and Lactobacillus rhamnosus against clinical Multidrug Resistant (MDR) strains o...

  20. Drug Resistance

    Science.gov (United States)

    HIV Treatment Drug Resistance (Last updated 3/1/2016; last reviewed 3/1/2016) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  1. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus.

    Science.gov (United States)

    Mohamed, Mohamed F; Abdelkhalek, Ahmed; Seleem, Mohamed N

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infections present a serious challenge because of the emergence of resistance to numerous conventional antibiotics. Due to their unique mode of action, antimicrobial peptides are novel alternatives to traditional antibiotics for tackling the issue of bacterial multidrug resistance. Herein, we investigated the antibacterial activity of two short novel peptides (WR12, a 12 residue peptide composed exclusively of arginine and tryptophan, and D-IK8, an eight residue β-sheet peptide) against multidrug resistant staphylococci. In vitro, both peptides exhibited good antibacterial activity against MRSA, vancomycin-resistant S. aureus, linezolid-resistant S. aureus, and methicillin-resistant S. epidermidis. WR12 and D-IK8 were able to eradicate persisters, MRSA in stationary growth phase, and showed significant clearance of intracellular MRSA in comparison to both vancomycin and linezolid. In vivo, topical WR12 and D-IK8 significantly reduced both the bacterial load and the levels of the pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in MRSA-infected skin lesions. Moreover, both peptides disrupted established in vitro biofilms of S. aureus and S. epidermidis significantly more so than traditional antimicrobials tested. Taken together, these results support the potential of WR12 and D-IK8 to be used as a topical antimicrobial agent for the treatment of staphylococcal skin infections. PMID:27405275

  2. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... issue of antimicrobial resistance is that the subject material appears abstract and is complex. This video was ... can develop and spread. All FDA CVM produced material may be copied, reproduced, and distributed as long ...

  3. Antimicrobial activity of PVP from an Antarctic bacterium, Janthinobacterium sp. Ant5-2, on multi-drug and methicillin resistant Staphylococcus aureus

    OpenAIRE

    Huang, Jonathan P.; Mojib, Nazia; Goli, Rakesh R.; Watkins, Samantha; Ken B Waites; Ravindra, Rasik; Andersen, Dale T.; Bej, Asim K.

    2012-01-01

    Multiple drug resistant (MDR) and methicillin-resistant Staphylococcus aureus (MRSA) have become increasingly prevalent as a community acquired infection. As a result limited treatment options are available with conventional synthetic antibiotics. Bioprospecting natural products with potent antimicrobial activity show promise for developing new drugs against this pathogen. In this study, we have investigated the antimicrobial activity of a purple violet pigment (PVP) from an Antarctic bacteri...

  4. Antimicrobial resistance in wildlife

    OpenAIRE

    Vittecoq, M.; Godreuil, S.; Prugnolle, Franck; Durand, P.; Brazier, L; Renaud, N; Arnal, A.; Aberkane, S.; Jean-Pierre, H.; Gauthier-Clerc, M; Thomas, F.; Renaud, F.

    2016-01-01

    The spread of antimicrobial resistance is of major concern for human health and leads to growing economic costs. While it is increasingly hypothesized that wildlife could play an important role in antimicrobial-resistant bacteria dynamics, empirical data remain scarce. The present work builds on a systematic review of the available data in order to highlight the main information we have and to suggest research pathways that should be followed if we aim to fill the gaps in our current knowledg...

  5. New antimicrobial drug resistance and epidemiological typing patterns of Staphylococci from clinical isolates and raw meats.

    Science.gov (United States)

    Lee, Do Kyung; Hwang, Jae Ung; Baek, Eun Hye; Lee, Kang Oh; Kim, Kyung Jae; Ha, Nam Joo

    2008-08-01

    The antimicrobial susceptibilities of Staphylococcus isolated from clinical isolates and raw meats were tested for six different antimicrobial agents that are in widespread clinical use in Korea and four new antimicrobials, linezolid, quinupristin/dalfopristin, daptomycin, and tigecycline. And this study analyzed the mecA genes and genetic patterns of MRSA by performing epidemiological studies using the PCR method. 46%, 51%, and 79% of clinical isolates were identified as MRSA in 1998, 1999, and 2005, respectively, and the mecA gene was detected in 82% of these isolates. Of the 133 staphylococci isolated from raw meats, 18% of the isolates were found to be resistant to methicillin, but none of these isolates showed the presence of the mecA gene. New antimicrobials, which have rarely or not yet been used in Korean hospitals, showed high activity against all staphylococcal isolates including methicillin-resistant isolates. The randomly amplified polymorphic DNA (RAPD) patterns of MRSA isolates differed significantly between clinical isolates and raw meat isolates. PMID:18787791

  6. Bacterial profile and patterns of antimicrobial drug resistance in intra-abdominal infections: Current experience in a teaching hospital

    Directory of Open Access Journals (Sweden)

    Neetu Shree

    2013-01-01

    Full Text Available Context: Bacterial isolates from intra-abdominal infections, in particular, peritonitis and their unpredictable antimicrobial resistance patterns, continue to be a matter of concern not only globally but regionally too. Aim: An attempt in the present study was made to study the patterns of drug resistance in bacterial isolates, especially gram negative bacilli in intra-abdominal infections (IAI in our hospital. Materials and Methods: From 100 cases of peritonitis, identification of isolates was done as per recommended methods. Antimicrobial susceptibility and extended-spectrum beta-lactamase (ESBL testing were performed following the CLSI guidelines. Results: A total of 133 clinical isolates were obtained, of which 108 were aerobes and 22 anaerobes. Fungal isolates were recovered in only three cases. Escherichia coli (47/108 emerged as the most predominant pathogen followed by Klebsiella spp. (27/108, while Bacteroides fragilis emerged as the predominant anaerobe (12/22. Among coliforms, 61.7% E. coli and 74.1% Klebsiella spp. were ESBL positive. A high level of resistance was observed for beta lactams, ciprofloxacin, amikacin, and ertapenem. Ertapenem resistance (30-41% seen in coliforms, appears as an important issue. Imipenem, tigecycline, and colistin were the most consistently active agents tested against ESBL producers. Conclusion: Drug resistance continues to be a major concern in isolates from intra-abdominal infections. Treatment with appropriate antibiotics preceded by antimicrobial resistance testing aided by early diagnosis, adequate surgical management, and knowledge of antibiotic - resistant organisms appears effective in reducing morbidity and mortality in IAI cases.

  7. Danish Integrated Antimicrobial Resistance Monitoring and Research Program

    Science.gov (United States)

    Heuer, Ole E.; Emborg, Hanne-Dorthe; Bagger-Skjøt, Line; Jensen, Vibeke F.; Rogues, Anne-Marie; Skov, Robert L.; Agersø, Yvonne; Brandt, Christian T.; Seyfarth, Anne Mette; Muller, Arno; Hovgaard, Karin; Ajufo, Justin; Bager, Flemming; Aarestrup, Frank M.; Frimodt-Møller, Niels; Wegener, Henrik C.; Monnet, Dominique L.

    2007-01-01

    Resistance to antimicrobial agents is an emerging problem worldwide. Awareness of the undesirable consequences of its widespread occurrence has led to the initiation of antimicrobial agent resistance monitoring programs in several countries. In 1995, Denmark was the first country to establish a systematic and continuous monitoring program of antimicrobial drug consumption and antimicrobial agent resistance in animals, food, and humans, the Danish Integrated Antimicrobial Resistance Monitoring and Research Program (DANMAP). Monitoring of antimicrobial drug resistance and a range of research activities related to DANMAP have contributed to restrictions or bans of use of several antimicrobial agents in food animals in Denmark and other European Union countries. PMID:18217544

  8. Analysis of Antimicrobial Resistance Genes in Multiple Drug Resistant (MDR) Salmonella enterica Isolated from Animals and Humans

    Science.gov (United States)

    Background: Multiple Drug Resistant (MDR) foodborne bacteria are a concern in animal and human health. Identification of resistance genes in foodborne pathogens is necessary to determine similarities of resistance mechanisms in animal, food and human clinical isolates. This information will help us ...

  9. Resistance to antimicrobials drugs and control measures of Salmonella spp in the poultry industry

    Directory of Open Access Journals (Sweden)

    Velhner Maja

    2013-01-01

    Full Text Available The worldwide prevalence of multiple resistant Salmonella spp is described. Clonally distributed Salmonella Enteritidis PT4 and Salmonella Typhimurium DT104 are among the most pathogenic strains for humans. Recently there have been reports on the prevalence of ST “like” monophasic 4(5,12:i strains in some countries. Vaccination strategy and antimicorbial agent therapy is also briefly discussed. Products of animal origin must be safe and without the risk of antimicrobial resistance. Subsequently, the good management practice at farm level and HACCP in feed factories are required to cope with salmonella infections. Poultry producers in developed countries have been motivated to participate in salmonella control programs, because of public awareness on safe food and risks in the food chain. Export of poultry and poultry products is more successful in the regions where Salmonella Enteritidis and Salmonella Typhimurium have been eradicated. [Projekat Ministarstva nauke Republike Srbije, br. TR31071

  10. Understanding the mechanisms and drivers of antimicrobial resistance.

    Science.gov (United States)

    Holmes, Alison H; Moore, Luke S P; Sundsfjord, Arnfinn; Steinbakk, Martin; Regmi, Sadie; Karkey, Abhilasha; Guerin, Philippe J; Piddock, Laura J V

    2016-01-01

    To combat the threat to human health and biosecurity from antimicrobial resistance, an understanding of its mechanisms and drivers is needed. Emergence of antimicrobial resistance in microorganisms is a natural phenomenon, yet antimicrobial resistance selection has been driven by antimicrobial exposure in health care, agriculture, and the environment. Onward transmission is affected by standards of infection control, sanitation, access to clean water, access to assured quality antimicrobials and diagnostics, travel, and migration. Strategies to reduce antimicrobial resistance by removing antimicrobial selective pressure alone rely upon resistance imparting a fitness cost, an effect not always apparent. Minimising resistance should therefore be considered comprehensively, by resistance mechanism, microorganism, antimicrobial drug, host, and context; parallel to new drug discovery, broad ranging, multidisciplinary research is needed across these five levels, interlinked across the health-care, agriculture, and environment sectors. Intelligent, integrated approaches, mindful of potential unintended results, are needed to ensure sustained, worldwide access to effective antimicrobials. PMID:26603922

  11. Antimicrobial resistance in Dschang, Cameroon

    Directory of Open Access Journals (Sweden)

    Fusi-Ngwa Catherine Kesah

    2013-01-01

    Full Text Available Background: Health-care-associated and community infections remain problematic in most of Africa where the increasing incidences of diseases, wars, poverty, malnutrition, and general environmental deterioration have led to the gradual collapse of the health-care system. Detection of antimicrobial resistance (AMR remains imperative for the surveillance purposes and optimal management of infectious diseases. This study reports the status of AMR in pathogens in Dschang. Materials and Methods: From May 2009 to March 2010, the clinical specimens collected at two hospitals were processed accorded to the standard procedures. Antibiotic testing was performed by E test, and antimycotics by disc-agar diffusion, as recommended by the Clinical and Laboratory Standards Institute on pathogens comprising Staphylococcus aureus (100 strains, Enterococcus faecalis (35, Klebsiella pneumoniae (75, Escherichia coli (50, Proteus mirabilis (30, Pseudomonas aruginosa (50, Acinetobacter species (20, and Candida albicans (150 against common antimicrobials. Results: There was no vancomycin resistance in the cocci, the minimum inhibitory concentration for 90% of these strains MIC 90 was 3 μg/ml, methicillin-resistant S. aureus (MRSA was 43%, benzyl penicillin 89% resistance in S. aureus as opposed to 5.7% in E. faecalis. Low resistance (<10% was recorded to cefoxitin, cefotaxime, and nalidixic acid (MIC 90 3-8 μg/ml against the coliforms, and to ticarcillin, aztreonam, imipenem, gentamicin, and ciprofloxacin among the non-enterobacteria; tetracycline, amoxicillin, piperacillin, and chloramphenicol were generally ineffective. Resistance rates to fluconazole, clotrimazole, econazole, and miconazole were <55% against C. albicans. The pathogens tested exhibited multidrug-resistance. Conclusion: The present findings were intended to support antimicrobial stewardship endeavors and empiric therapy. The past, present, and the future investigations in drug efficacy will continue

  12. [Neruda and antimicrobial resistance].

    Science.gov (United States)

    Cotera, Alejandro

    2011-07-01

    Antimicrobial resistance has been a problem in medicine, since their incorporation to clinical practice. Numerous papers have been written on the subject. The analysis of two poems by Pablo Neruda "How much does a man live" and "Larynx", included in the volume "Estravagario" and published for the first time in 1957 and 1958, give us an incredible revelation about the concept of resistance. In these poems aureomycin, the first antimicrobial of the family of tetracyclines, was included as a poetic figure and the therapeutic action of antimicrobials was described. "Never so much bugs died I tons of them fell I but the few that remained olive I manifested their perversity". These writings incorporated novel concepts, even for physicians of that time and described the closeness of death that a patient may perceive during the course of a given disease. The capacity of Pablo Neruda to extract the essence of situations and to anticipate to conditions that only years later became clinically relevant problems, is noteworthy.

  13. Antimicrobial activity of green tea extract against isolates of methicillin-resistant Staphylococcus aureus and multi-drug resistant Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Maksum Radji; Rafael Adi Agustama; Berna Elya; Conny Riana Tjampakasari

    2013-01-01

    Objective: To evaluate antibacterial activity of the Indonesian water soluble green tea extract,Camellia sinensis, against clinical isolates of methicillin-resistant Staphylococcus aureus (S. aureus) (MRSA) and multi-drug resistant Pseudomonas aeruginosa (MDR-P. aeruginosa). Methods:Antimicrobial activity of green tea extract was determined by the disc diffusion method and the minimum inhibitory concentration (MIC) was determined by the twofold serial broth dilutions method. The tested bacteria using in this study were the standard strains and multi-drug resistant clinical isolates of S. aureus and P. aeruginosa, obtained from Laboratory of Clinical Microbiology, Faculty of Medicine, University of Indonesia. Results:The results showed that the inhibition zone diameter of green tea extracts for S. aureus ATCC 25923 and MRSA were (18.970±0.287) mm, and (19.130±0.250) mm respectively. While the inhibition zone diameter for P. aeruginosa ATCC 27853 and MDR-P. aeruginosa were (17.550±0.393) mm and (17.670±0.398) mm respectively. The MIC of green tea extracts against S. aureus ATCC 25923 and MRSA were 400 µg/mL and 400 µg/mL, respectively, whereas the MIC for P. aeruginosa ATCC 27853 and MDR-P. aeruginosa were 800 µg/mL, and 800 µg/mL, respectively. Conclusions: Camellia sinensis leaves extract could be useful in combating emerging drug-resistance caused by MRSA and P. aeruginosa.

  14. Antimicrobial and Herbal Drug Resistance in Enteric Bacteria Isolated from Faecal Droppings of Common House Lizard/Gecko (Hemidactylus frenatus

    Directory of Open Access Journals (Sweden)

    Bhoj R. Singh

    2013-01-01

    Full Text Available From 194 faecal dropping samples of common house geckos collected from offices (60, houses (88, integrated farm units (IFS,18 and hostels, guest houses, and dining rooms of different canteen/mess (HGM, 28, 326 bacterial isolates of enteric bacteria belonging to 17 genera and 34 species were detected. Escherichia coli were the most frequently (39 isolated followed by Citrobacter freundii (33, Klebsiella pneumonia (27, Salmonella indica (12, Enterobacter gergoviae (12, and Ent. agglomerans (11. Other important bacteria isolated from gecko droppings were Listonella damsela (2, Raoultella terrigena (3, S. salamae (2, S. houtenae (3, Edwardsiella tarda (4, Edwardsiella hoshinae (1, and Klebsiella oxytoca (2. Of the 223 isolates tested for antimicrobial drug sensitivity, 27 (12.1% had multiple drug resistance (MDR. None of the salmonellae or edwardsiellae had MDR however, MDR strains were significantly more common among Escherichia spp. (P=1.9×10-5 and isolates from IFS units (P=3.58×10-23. The most effective herbal drug, Ageratum conyzoides extract, inhibited growth of only 27.8% of strains tested followed by ethanolic extract of Zanthoxylum rhetsa (13.9%, eucalyptus oil (5.4%, patchouli oil (5.4%, lemongrass oil (3.6%, and sandalwood oil (3.1%, and Artemisia vulgaris essential oil (3.1%.

  15. How to fight antimicrobial resistance.

    Science.gov (United States)

    Foucault, Cédric; Brouqui, Philippe

    2007-03-01

    Antimicrobial misuse results in the development of resistance and superbugs. Over recent decades, resistance has been increasing despite continuing efforts to control it, resulting in increased mortality and cost. Many authorities have proposed local, regional and national guidelines to fight against this phenomenon, and the usefulness of these programmes has been evaluated. Multifaceted intervention seems to be the most efficient method to control antimicrobial resistance. Monitoring of bacterial resistance and antibiotic use is essential, and the methodology has now been homogenized. The implementation of guidelines and infection control measures does not control antimicrobial resistance and needs to be reinforced by associated measures. Educational programmes and rotation policies have not been evaluated sufficiently in the literature. Combination antimicrobial therapy is inefficient in controlling antimicrobial resistance.

  16. Use of antimicrobial growth promoters in food animals and Enterococcus faecium resistance to therapeutic antimicrobial drugs in Europe

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Aarestrup, Frank Møller; Jensen, Lars Bogø;

    1999-01-01

    , clear evidence of a health risk was not available. Accumulating evidence now indicates that the use of the glycopeptide avoparcin as a growth promoter has created in food animals a major reservoir of Enterococcus faecium, which contains the high level glycopeptide resistance determinant vanA, located...

  17. Drug use and antimicrobial resistance among Escherichia coli and Enterococcus spp. isolates from chicken and turkey flocks slaughtered in Quebec, Canada.

    Science.gov (United States)

    Boulianne, Martine; Arsenault, Julie; Daignault, Danielle; Archambault, Marie; Letellier, Ann; Dutil, Lucie

    2016-01-01

    An observational study was conducted of chicken and turkey flocks slaughtered at federal processing plants in the province of Quebec, Canada. The objectives were to estimate prevalence of drug use at hatchery and on farm and to identify antimicrobial resistance (AMR) in cecal Escherichia coli and Enterococcus spp. isolates and factors associated with AMR. Eighty-two chicken flocks and 59 turkey flocks were sampled. At the hatchery, the most used antimicrobial was ceftiofur in chickens (76% of flocks) and spectinomycin in turkeys (42% of flocks). Virginiamycin was the antimicrobial most frequently added to the feed in both chicken and turkey flocks. At least 1 E. coli isolate resistant to third-generation cephalosporins was present in all chicken flocks and in a third of turkey flocks. Resistance to tetracycline, streptomycin, and sulfisoxazole was detected in > 90% of flocks for E. coli isolates. Antimicrobial resistance (AMR) was observed to bacitracin, erythromycin, lincomycin, quinupristin-dalfopristin, and tetracycline in both chicken and turkey flocks for Enterococcus spp. isolates. No resistance to vancomycin was observed. The use of ceftiofur at hatchery was significantly associated with the proportion of ceftiofur-resistant E. coli isolates in chicken flocks. In turkey flocks, ceftiofur resistance was more frequent when turkeys were placed on litter previously used by chickens. Associations between drug use and resistance were observed with tetracycline (turkey) in E. coli isolates and with bacitracin (chicken and turkey), gentamicin (turkey), and tylosin (chicken) in Enterococcus spp. isolates. Further studies are needed to provide producers and veterinarians with alternative management practices and tools in order to reduce the use of antimicrobial feed additives in poultry.

  18. Antimicrobial drug use in a small Indian community hospital

    DEFF Research Database (Denmark)

    Blomberg, M; Jensen, M Blomberg; Henry, A;

    2010-01-01

    Antimicrobial drug use and overuse have been a topic of interest for many years, lately focusing on the growing resistance worldwide. This study was conducted in a small Indian hospital, where more than 80% of all admitted patients received antimicrobial drugs. Penicillin, gentamycin, co-trimoxaz......Antimicrobial drug use and overuse have been a topic of interest for many years, lately focusing on the growing resistance worldwide. This study was conducted in a small Indian hospital, where more than 80% of all admitted patients received antimicrobial drugs. Penicillin, gentamycin, co...

  19. Antimicrobial Peptides: Multifunctional Drugs for Different Applications

    Directory of Open Access Journals (Sweden)

    Lea-Jessica Albrecht

    2012-02-01

    Full Text Available Antimicrobial peptides (APs are an important part of the innate immune system in epithelial and non-epithelial surfaces. So far, many different antimicrobial peptides from various families have been discovered in non-vertebrates and vertebrates. They are characterized by antibiotic, antifungal and antiviral activities against a variety of microorganisms. In addition to their role as endogenous antimicrobials, APs participate in multiple aspects of immunity. They are involved in septic and non-septic inflammation, wound repair, angiogenesis, regulation of the adaptive immune system and in maintaining homeostasis. Due to those characteristics AP could play an important role in many practical applications. Limited therapeutic efficiency of current antimicrobial agents and the emerging resistance of pathogens require alternate antimicrobial drugs. The purpose of this review is to highlight recent literature on functions and mechanisms of APs. It also shows their current practical applications as peptide therapeutics and bioactive polymers and discusses the possibilities of future clinical developments.

  20. Antimicrobial activity of PVP from an Antarctic bacterium, Janthinobacterium sp. Ant5-2, on multi-drug and methicillin resistant Staphylococcus aureus

    KAUST Repository

    Huang, Jonathan P.

    2012-04-11

    Multiple drug resistant (MDR) and methicillin-resistant Staphylococcus aureus (MRSA) have become increasingly prevalent as a community acquired infection. As a result limited treatment options are available with conventional synthetic antibiotics. Bioprospecting natural products with potent antimicrobial activity show promise for developing new drugs against this pathogen. In this study, we have investigated the antimicrobial activity of a purple violet pigment (PVP) from an Antarctic bacterium, Janthinobacterium sp. Ant5-2 on 15 clinical MDR and MRSA strains. The colorimetric resazurin assay was employed to determine the minimum inhibitory concentration (MIC90) of PVP against MDR and MRSA. The MIC90 ranged between 1.57 µg/mL and 3.13 µg/mL, which are significantly lower than many antimicrobials tested from natural sources against this pathogen. The spectrophotometrically determined growth analysis and total microscopic counts using Live/dead® BacLight™ fluorescent stain exhibited a steady decrease in viability of both MDR and MRSA cultures following treatment with PVP at the MIC levels. In silico predictive molecular docking study revealed that PVP could be a DNA-targeting minor groove binding antimicrobial compound. The continued development of novel antimicrobials derived from natural sources with the combination of a suite of conventional antibiotics could stem the rising pandemic of MDR and MRSA along with other deadly microbial pathogens.

  1. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance.

    Science.gov (United States)

    Maddox, T W; Clegg, P D; Williams, N J; Pinchbeck, G L

    2015-11-01

    Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections. While the epidemiology of antimicrobial resistance in bacteria from man has been studied extensively, less work has been undertaken in companion animals, particularly horses. Methicillin-resistant Staphylococcus aureus has been identified as a cause of infections, with a low prevalence of nasal carriage by horses in the community but higher for hospitalised horses. Molecular characterisation has shown methicillin-resistant Staphylococcus aureus strains either to be predominantly of types associated with horses or of sequence type ST398. Antimicrobial-resistant Escherichia coli (including multidrug-resistant and extended spectrum β-lactamase-producing isolates) have caused infections and been documented in faecal carriage by horses, with many significant resistance mechanisms identified. More sporadic reports and molecular characterisation exist for resistance in other bacteria such as enterococci, Salmonella, Acinetobacter and Pseudomonas species. Limited work has been undertaken evaluating risk factors and much of the epidemiology of antimicrobial resistance in bacteria from horses remains to be determined.

  2. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance.

    Science.gov (United States)

    Maddox, T W; Clegg, P D; Williams, N J; Pinchbeck, G L

    2015-11-01

    Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections. While the epidemiology of antimicrobial resistance in bacteria from man has been studied extensively, less work has been undertaken in companion animals, particularly horses. Methicillin-resistant Staphylococcus aureus has been identified as a cause of infections, with a low prevalence of nasal carriage by horses in the community but higher for hospitalised horses. Molecular characterisation has shown methicillin-resistant Staphylococcus aureus strains either to be predominantly of types associated with horses or of sequence type ST398. Antimicrobial-resistant Escherichia coli (including multidrug-resistant and extended spectrum β-lactamase-producing isolates) have caused infections and been documented in faecal carriage by horses, with many significant resistance mechanisms identified. More sporadic reports and molecular characterisation exist for resistance in other bacteria such as enterococci, Salmonella, Acinetobacter and Pseudomonas species. Limited work has been undertaken evaluating risk factors and much of the epidemiology of antimicrobial resistance in bacteria from horses remains to be determined. PMID:26084443

  3. ANTIMICROBIAL RESISTANCE AND ITS GLOBAL SPREAD

    Directory of Open Access Journals (Sweden)

    R P Sharma

    2010-06-01

    Full Text Available Since their discovery during the 20th century, antimicrobial agents (antibiotics and related medicinal drugs have substantially reduced the threat posed by infectious diseases. The use of these “wonder drugs”, combined with improvements in sanitation, housing, and nutrition, and the advent of widespread immunization programmes, has led to a dramatic drop in deaths from diseases that were previously widespread, untreatable, and frequently fatal. Over the years, antimicrobials have saved the lives and eased the suffering of millions of people. By helping to bring many serious infectious diseases under control, these drugs hav also contributed to the major gains in life expectancy experienced during the latter part of the last century. These gains are now seriously jeopardized by another recent development: the emergence and spread of microbes that are resistant to cheap and effective first-choice, or “first- line” drugs. The bacterial infections which contribute most to human disease are also those in which emerging microbial resistance is most evident: diarrhoeal diseases, respiratory tract infections, meningitis, sexually transmitted infections, and hospital-acquired infections. Some important examples include penicillin-resistant Streptococcus pneumoniae, vancomycin-resistant enterococci, methicillin-resistant Staphylococcus aureus, multi-resistant salmonellae, and multi-resistant Mycobacterium tuberculosis. The development of resistance to drugs commonly used to treat malaria is of particular concern, as is the emerging resistance to anti-HIV drugs. Treatment, resu.lting in prolonged illness and greater risk of death, Treatment failures also lead to longer periods of infectivity, which increase the numbers of infected people moving in the community and thus expose the general population to the risk of contracting a resistant strain of infection. When infections become resistant to first-line antimicrobials, treatment has to be switched

  4. Elevated Risk for Antimicrobial Drug-Resistant Shigella Infection among Men Who Have Sex with Men, United States, 2011-2015.

    Science.gov (United States)

    Bowen, Anna; Grass, Julian; Bicknese, Amelia; Campbell, Davina; Hurd, Jacqueline; Kirkcaldy, Robert D

    2016-09-01

    Shigella spp. cause ≈500,000 illnesses in the United States annually, and resistance to ciprofloxacin, ceftriaxone, and azithromycin is emerging. We investigated associations between transmission route and antimicrobial resistance among US shigellosis clusters reported during 2011-2015. Of 32 clusters, 9 were caused by shigellae resistant to ciprofloxacin (3 clusters), ceftriaxone (2 clusters), or azithromycin (7 clusters); 3 clusters were resistant to >1 of these drugs. We observed resistance to any of these drugs in all 7 clusters among men who have sex with men (MSM) but in only 2 of the other 25 clusters (p<0.001). Azithromycin resistance was more common among MSM-associated clusters than other clusters (86% vs. 4% of clusters; p<0.001). For adults with suspected shigellosis, clinicians should culture feces; obtain sex histories; discuss shigellosis prevention; and choose treatment, when needed, according to antimicrobial drug susceptibility. Public health interviews for enteric illnesses should encompass sex practices; health messaging for MSM must include shigellosis prevention. PMID:27533624

  5. Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites.

    Science.gov (United States)

    Allahverdiyev, Adil M; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-08-01

    Nanotechnology is the creation of functional materials, devices and systems at atomic and molecular scales (1-100 nm), where properties differ significantly from those at a larger scale. The use of nanotechnology and nanomaterials in medical research is growing rapidly. Recently, nanotechnologic developments in microbiology have gained importance in the field of chemotherapy. Bacterial strains that are resistant to current antibiotics have become serious public health problems that raise the need to develop new bactericidal materials. Metal oxide nanoparticles, especially TiO(2) and Ag(2)O nanoparticles, have demonstrated significant antibacterial activity. Therefore, it is thought that this property of metal oxide nanoparticles could effectively be used as a novel solution strategy. In this review, we focus on the unique properties of nanoparticles, their mechanism of action as antibacterial agents and recent studies in which the effects of visible and UV-light induced TiO(2) and Ag(2)O nanoparticles on drug-resistant bacteria have been documented. In addition, from to previous results of our studies, antileishmanial effects of metal oxide nanoparticles are also demonstrated, indicating that metal oxide nanoparticles can also be effective against eukaryotic infectious agents. Conversely, despite their significant potential in antimicrobial applications, the toxicity of metal oxide nanoparticles restricts their use in humans. However, recent studies infer that metal oxide nanoparticles have considerable potential to be the first-choice for antibacterial and antiparasitic applications in the future, provided that researchers can bring new ideas in order to cope with their main problem of toxicity. PMID:21861623

  6. Antimicrobial drugs for treating cholera

    OpenAIRE

    Leibovici-Weissman, Ya'ara; Neuberger, Ami; Bitterman, Roni; Sinclair, David; Salam, Mohammed Abdus; Paul, Mical

    2014-01-01

    Background Cholera is an acute watery diarrhoea caused by infection with the bacterium Vibrio cholerae, which if severe can cause rapid dehydration and death. Effective management requires early diagnosis and rehydration using oral rehydration salts or intravenous fluids. In this review, we evaluate the additional benefits of treating cholera with antimicrobial drugs. Objectives To quantify the benefit of antimicrobial treatment for patients with cholera, and determine whether there are diffe...

  7. Using C. elegans for antimicrobial drug discovery

    Science.gov (United States)

    Desalermos, Athanasios; Muhammed, Maged; Glavis-Bloom, Justin; Mylonakis, Eleftherios

    2011-01-01

    Introduction The number of microorganism strains with resistance to known antimicrobials is increasing. Therefore, there is a high demand for new, non-toxic and efficient antimicrobial agents. Research with the microscopic nematode Caenorhabditis elegans can address this high demand for the discovery of new antimicrobial compounds. In particular, C. elegans can be used as a model host for in vivo drug discovery through high-throughput screens of chemical libraries. Areas covered This review introduces the use of substitute model hosts and especially C. elegans in the study of microbial pathogenesis. The authors also highlight recently published literature on the role of C. elegans in drug discovery and outline its use as a promising host with unique advantages in the discovery of new antimicrobial drugs. Expert opinion C. elegans can be used, as a model host, to research many diseases, including fungal infections and Alzheimer’s disease. In addition, high-throughput techniques, for screening chemical libraries, can also be facilitated. Nevertheless, C. elegans and mammals have significant differences that both limit the use of the nematode in research and the degree by which results can be interpreted. That being said, the use of C. elegans in drug discovery still holds promise and the field continues to grow, with attempts to improve the methodology already underway. PMID:21686092

  8. Antimicrobial Drug Resistance of Salmonella enterica Serovar Typhi in Asia and Molecular Mechanism of Reduced Susceptibility to the Fluoroquinolones▿

    OpenAIRE

    Chau, Tran Thuy; Campbell, James Ian; Galindo, Claudia M; Van Minh Hoang, Nguyen; Diep, To Song; Nga, Tran Thu Thi; Vinh Chau, Nguyen Van; Tuan, Phung Quoc; Page, Anne Laure; Ochiai, R Leon; Schultsz, Constance; Wain, John; Bhutta, Zulfiqar A.; Parry, Christopher M.; Sujit K Bhattacharya

    2007-01-01

    This study describes the pattern and extent of drug resistance in 1,774 strains of Salmonella enterica serovar Typhi isolated across Asia between 1993 and 2005 and characterizes the molecular mechanisms underlying the reduced susceptibilities to fluoroquinolones of these strains. For 1,393 serovar Typhi strains collected in southern Vietnam, the proportion of multidrug resistance has remained high since 1993 (50% in 2004) and there was a dramatic increase in nalidixic acid resistance between ...

  9. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... and Human Services FDA U.S. Food and Drug Administration Protecting and Promoting Your Health A to Z ... Pin it Email Print The Food and Drug Administration's (FDA's) Center for Veterinary Medicine (CVM) produced a ...

  10. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & ... back Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products

  11. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ... by Product Area Product Areas back Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ...

  12. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Food and Drug Administration's (FDA's) Center for Veterinary Medicine (CVM) produced a nine-minute animation explaining how ... efforts are underway in both veterinary and human medicine to preserve the effectiveness of these drugs. One ...

  13. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Health and Human Services FDA U.S. Food and Drug Administration Protecting and Promoting Your Health A to ... Search FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics ...

  14. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Website Policies U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver Spring, MD 20993 ... Regulatory Information Safety Emergency Preparedness International ...

  15. Antibiotic / Antimicrobial Resistance Glossary

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  16. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary ... by Product Area Product Areas back Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary ...

  17. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Department of Health and Human Services FDA U.S. Food and Drug Administration Protecting and Promoting Your Health ... Español Search FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & ...

  18. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... U.S. Department of Health and Human Services FDA U.S. Food and Drug Administration Protecting and Promoting Your Health ... No FEAR Act Site Map Transparency Website Policies U.S. Food and Drug Administration 10903 New Hampshire Avenue ...

  19. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... About FDA Contact FDA Browse by Product Area Product Areas back Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products

  20. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary ... The Food and Drug Administration's (FDA's) Center for Veterinary Medicine (CVM) produced a nine-minute animation explaining how ...

  1. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... resistance more real and understandable to veterinarians, livestock producers, lawmakers, consumer representatives and other key audiences. We ... Regulatory Information Safety Emergency Preparedness International Programs News & ... Training & Continuing Education Inspections & Compliance Federal, State & Local ...

  2. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available HHS U.S. Department of Health and Human Services FDA U.S. Food and Drug Administration Protecting and Promoting Your Health A to Z Index Follow FDA En Español Search FDA Submit search Popular Content Home ...

  3. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available HHS U.S. Department of Health and Human Services FDA U.S. Food and Drug Administration Protecting and Promoting Your Health A to Z Index Follow FDA En Español Search FDA Submit search ...

  4. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... back to top Popular Content Home Latest Recalls Report an Adverse Event MedWatch Safety Alerts News Releases Consumer Updates About FDA Contact FDA Browse by Product Area Product Areas back Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ...

  5. Strategies for antimicrobial drug delivery to biofilm.

    Science.gov (United States)

    Martin, Claire; Low, Wan Li; Gupta, Abhishek; Amin, Mohd Cairul Iqbal Mohd; Radecka, Iza; Britland, Stephen T; Raj, Prem; Kenward, Ken M A

    2015-01-01

    Biofilms are formed by the attachment of single or mixed microbial communities to a variety of biological and/or synthetic surfaces. Biofilm micro-organisms benefit from many advantages of the polymicrobial environment including increased resistance against antimicrobials and protection against the host organism's defence mechanisms. These benefits stem from a number of structural and physiological differences between planktonic and biofilm-resident microbes, but two main factors are the presence of extracellular polymeric substances (EPS) and quorum sensing communication. Once formed, biofilms begin to synthesise EPS, a complex viscous matrix composed of a variety of macromolecules including proteins, lipids and polysaccharides. In terms of drug delivery strategies, it is the EPS that presents the greatest barrier to diffusion for drug delivery systems and free antimicrobial agents alike. In addition to EPS synthesis, biofilm-based micro-organisms can also produce small, diffusible signalling molecules involved in cell density-dependent intercellular communication, or quorum sensing. Not only does quorum sensing allow microbes to detect critical cell density numbers, but it also permits co-ordinated behaviour within the biofilm, such as iron chelation and defensive antibiotic activities. Against this backdrop of microbial defence and cell density-specific communication, a variety of drug delivery systems have been developed to deliver antimicrobial agents and antibiotics to extracellular and/or intracellular targets, or more recently, to interfere with the specific mechanisms of quorum sensing. Successful delivery strategies have employed lipidic and polymeric-based formulations such as liposomes and cyclodextrins respectively, in addition to inorganic carriers e.g. metal nanoparticles. This review will examine a range of drug delivery systems and their application to biofilm delivery, as well as pharmaceutical formulations with innate antimicrobial properties

  6. Evaluation of antimicrobial and phytochemical screening of Fennel, Juniper and Kalonji essential oils against multi drug resistant clinical isolates

    Institute of Scientific and Technical Information of China (English)

    Sharmishtha Purkayastha; Rittee Narain; Praveen Dahiya

    2012-01-01

    Objective: The inhibitory effects of essential oils including fennel, juniper and kalonji from Foeniculum Vulgare, Juniperus Osteosperma and Nigella Sativa on multi drug resistant clinical isolates were investigated. All the oils have been evaluated for phytochemical constituents, antibacterial activity and TLC bioautography assay. Methods: Preliminary phytochemical analysis was performed. The antibacterial potential of essential oils from fennel, juniper and kalonji fennel, juniper and kalonji was evaluated by agar well diffusion method against multi drug resistant clinical isolates. The antibacterial effect was investigated using the TLC-bioautographic method. Results: Preliminary phytochemical analysis demonstrated the presence of most of the phytochemicals including saponins, cardiac glycosides, steroids, terpenoids, flavonoids and tannins. Antibacterial activity of essential oils was assessed on eight multi-drug resistant (MDR) clinical isolates from both Gram-positive and Gram-negative bacteria and two standard strains. All the oils tested showed significant to moderate antibacterial activity toward all tested strains except Acinetobacter sp and Staphylococcus aureus MRSA. The maximum zone of inhibition was found to be 25依0.12 mm for juniper oil followed by 21依0.085 mm for kalonji oil againstStaphylococcus aureus 2. Thin layer chromatography and bioautography assay demonstrated well-defined growth inhibition zones against Staphylococcus aureus 2 and E. coli for juniper essential oil in correspondence with tannins observed at Rf values of 0.07 and 0.57. Conclusions: Based on the present study, the essential oils from juniper and kalonji possess antibacterial activity against several multi drug resistant pathogenic bacteria and thus can be used as a base for the development of new potent drugs and phytomedicine.

  7. Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant bacteria from clinical isolates

    Directory of Open Access Journals (Sweden)

    Praveen Dahiya

    2012-01-01

    Full Text Available The in vitro antibacterial activity of various solvents and water extracts of aloe vera, neem, bryophyllum, lemongrass, tulsi, oregano, rosemary and thyme was assessed on 10 multi-drug resistant clinical isolates from both Gram-positive and Gram-negative bacteria and two standard strains including Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. The zone of inhibition as determined by agar well diffusion method varied with the plant extract, the solvent used for extraction, and the organism tested. Klebsiella pneumoniae 2, Escherichia coli 3 and Staphylococcus aureus 3 were resistant to the plant extracts tested. Moreover, water extracts did not restrain the growth of any tested bacteria. Ethanol and methanol extracts were found to be more potent being capable of exerting significant inhibitory activities against majority of the bacteria investigated. Staphylococcus aureus 1 was the most inhibited bacterial isolate with 24 extracts (60% inhibiting its growth whereas Escherichia coli 2 exhibited strong resistance being inhibited by only 11 extracts (28%. The results obtained in the agar diffusion plates were in fair correlation with that obtained in the minimum inhibitory concentration tests. The minimum inhibitory concentration of tulsi, oregano, rosemary and aloe vera extracts was found in the range of 1.56-6.25 mg/ml for the multi-drug resistant Staphylococcus aureus isolates tested whereas higher values (6.25-25 mg/ml were obtained against the multi-drug resistant isolates Klebsiella pneumoniae 1 and Escherichia coli 1 and 2. Qualitative phytochemical analysis demonstrated the presence of tannins and saponins in all plants tested. Thin layer chromatography and bioautography agar overlay assay of ethanol extracts of neem, tulsi and aloe vera indicated flavonoids and tannins as major active compounds against methicillin-resistant Staphylococcus aureus.

  8. Antimicrobial Resistance in the Environment.

    Science.gov (United States)

    Williams, Maggie R; Stedtfeld, Robert D; Guo, Xueping; Hashsham, Syed A

    2016-10-01

    This review summarizes important publications from 2015 pertaining to the occurrence of antimicrobial resistance (AMR) in the environment. Emphasis is placed on sources of antibiotic resistance in the aquatic environment including wastewater treatment plants, hospitals, and agriculture, treatment and mitigation techniques, and surveillance and analysis methodologies for characterizing abundance data. As such, this review is organized into the following sections: i) occurrence of AMR in the environment, including surface waters, aquaculture, and wastewater ii) treatment technologies, and iii) technologies for rapid surveillance of AMR, iv) transmission between matrices, v) databases and analysis methods, and vi) gaps in AMR understanding. PMID:27620115

  9. An economic perspective on policy to reduce antimicrobial resistance.

    Science.gov (United States)

    Coast, J; Smith, R D; Millar, M R

    1998-01-01

    Resistance to antimicrobial drugs is increasing worldwide. This resistance is, at least in part, associated with high antimicrobial usage. Despite increasing awareness, economists (and policy analysts more generally) have paid little attention to the problem. In this paper antimicrobial resistance is conceptualised as a negative externality associated with the consumption of antimicrobials and is set within the broader context of the costs and benefits associated with antimicrobial usage. It is difficult to determine the overall impact of attempting to reduce resistance, given the extremely limited ability to model the epidemiology of resistant and sensitive micro-organisms. It is assumed for the purposes of the paper, however, that dealing with resistance by reducting antimicrobial usage would lead to a positive societal benefit. Three policy options traditionally associated with environmental economics (regulation, permits and charges) are examined in relation to their potential ability to impact upon the problem of resistance. The primary care sector of the U.K.'s National Health Service provides the context for this examination. Simple application of these policies to health care is likely to be problematic, with difficulties resulting particularly from the potential reduction in clinical freedom to prescribe when appropriate, and from the desire for equity in health care provision. The paper tentatively concludes that permits could offer the best policy response to antimicrobial resistance, with the caveat that empirical research is needed to develop the most practical and efficient system. This research must be conducted alongside the required epidemiological research.

  10. Antimicrobial Drug Resistance of Salmonella enterica Serovar Typhi in Asia and Molecular Mechanism of Reduced Susceptibility to the Fluoroquinolones▿

    Science.gov (United States)

    Chau, Tran Thuy; Campbell, James Ian; Galindo, Claudia M.; Van Minh Hoang, Nguyen; Diep, To Song; Nga, Tran Thu Thi; Van Vinh Chau, Nguyen; Tuan, Phung Quoc; Page, Anne Laure; Ochiai, R. Leon; Schultsz, Constance; Wain, John; Bhutta, Zulfiqar A.; Parry, Christopher M.; Bhattacharya, Sujit K.; Dutta, Shanta; Agtini, Magdarina; Dong, Baiqing; Honghui, Yang; Anh, Dang Duc; Canh, Do Gia; Naheed, Aliya; Albert, M. John; Phetsouvanh, Rattanaphone; Newton, Paul N.; Basnyat, Buddha; Arjyal, Amit; La, Tran Thi Phi; Rang, Nguyen Ngoc; Phuong, Le Thi; Van Be Bay, Phan; von Seidlein, Lorenz; Dougan, Gordon; Clemens, John D.; Vinh, Ha; Hien, Tran Tinh; Chinh, Nguyen Tran; Acosta, Camilo J.; Farrar, Jeremy; Dolecek, Christiane

    2007-01-01

    This study describes the pattern and extent of drug resistance in 1,774 strains of Salmonella enterica serovar Typhi isolated across Asia between 1993 and 2005 and characterizes the molecular mechanisms underlying the reduced susceptibilities to fluoroquinolones of these strains. For 1,393 serovar Typhi strains collected in southern Vietnam, the proportion of multidrug resistance has remained high since 1993 (50% in 2004) and there was a dramatic increase in nalidixic acid resistance between 1993 (4%) and 2005 (97%). In a cross-sectional sample of 381 serovar Typhi strains from 8 Asian countries, Bangladesh, China, India, Indonesia, Laos, Nepal, Pakistan, and central Vietnam, collected in 2002 to 2004, various rates of multidrug resistance (16 to 37%) and nalidixic acid resistance (5 to 51%) were found. The eight Asian countries involved in this study are home to approximately 80% of the world's typhoid fever cases. These results document the scale of drug resistance across Asia. The Ser83→Phe substitution in GyrA was the predominant alteration in serovar Typhi strains from Vietnam (117/127 isolates; 92.1%). No mutations in gyrB, parC, or parE were detected in 55 of these strains. In vitro time-kill experiments showed a reduction in the efficacy of ofloxacin against strains harboring a single-amino-acid substitution at codon 83 or 87 of GyrA; this effect was more marked against a strain with a double substitution. The 8-methoxy fluoroquinolone gatifloxacin showed rapid killing of serovar Typhi harboring both the single- and double-amino-acid substitutions. PMID:17908946

  11. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis.

    Science.gov (United States)

    Machado, Diana; Pires, David; Perdigão, João; Couto, Isabel; Portugal, Isabel; Martins, Marta; Amaral, Leonard; Anes, Elsa; Viveiros, Miguel

    2016-01-01

    Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their

  12. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Diana Machado

    Full Text Available Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction

  13. Differential roles of antimicrobials in the acquisition of drug resistance through activation of the SOS response in Acinetobacter baumannii.

    Science.gov (United States)

    Jara, Luis M; Cortés, Pilar; Bou, Germán; Barbé, Jordi; Aranda, Jesús

    2015-07-01

    The effect of antimicrobials on SOS-mediated mutagenesis induction depends on the bacterial species and the antimicrobial group. In this work, we studied the effect of different families of antimicrobial agents used in clinical therapy against Acinetobacter baumannii in the induction of mutagenesis in this multiresistant Gram-negative pathogen. The data showed that ciprofloxacin and tetracycline induce SOS-mediated mutagenesis, whereas colistin and meropenem, which are extensively used in clinical therapy, do not.

  14. Antimicrobial Resistance: Is the World UNprepared?

    Science.gov (United States)

    2016-09-01

    Long Blurb: On September 21st 2016 the United Nations General Assembly convenes in New York, United States to tackle a looming and seemingly inevitable global challenge with the potential to threaten the health and wellbeing of all people: antimicrobial resistance. In an Editorial, the PLOS Medicine Editors reflect on the challenge of coordinating the response to antimicrobial resistance in order to ensure the viability of current antimicrobials and the development of new therapies against resistant pathogens. Short Blurb: In this month's Editorial, the PLOS Medicine Editors reflect on the upcoming United Nations General Assembly meeting which convenes to discuss the global challenge of antimicrobial resistance. PMID:27618631

  15. 我院抗菌药物应用与细菌耐药性分析%The application of antimicrobial drugs and analysis of bacterial resistance in our hospital

    Institute of Scientific and Technical Information of China (English)

    张春英

    2014-01-01

    目的:分析本院抗菌药物应用情况和细菌耐药性相关性,研究抗菌药物用药频度(DDDs)和细菌耐药性之间的关系,为临床应用抗菌药物提出合理化建议。方法对2010~2013年12种抗菌药物年用量和医院常见病原菌对这些药物的耐药性进行统计学分析,分析DDDs与细菌耐药性之间的相关性。结果2010~2013年12种抗菌药物的DDDs呈波动状况,细菌耐药率逐年上升;DDDs排名前列的药物,细菌耐药性较高。结论抗菌药物不合理应用会加速细菌耐药性的发生,合理规范地应用和管理抗菌药物可以延缓耐药菌的产生,对临床治疗有重要意义。%Objective To analyze the application of antimicrobial drugs and analysis of bacterial resistance in our hos-pital,and research the relationship between the antimicrobial drugs DDDs and bacterial resistance,so as to make ratio-nalization proposals for clinical use of antimicrobial drugs. Methods 12 kinds of antibacterial drugs’ annual consump-tion from 2010 to 2013 and resistance of common pathogens to these drug was statistically analyzed,and the correlation between DDDs and bacterial resistance was analyzed. Results The DDDs of 12 kinds of antibacterial drugs from 2010 to 2013 were in fluctuating state,and bacterial resistance rate increased year by year;the higher the rank of DDDs in antimicrobial drugs,the higher the bacterial resistance. Conclusion Unreasonable use of antimicrobial drugs will accel-erate the production of bacterial resistance.Reasonably standardized application and management of antimicrobial drugs can delay the produce of resistant,is of great significance to the clinical treatment.

  16. Salt-resistant short antimicrobial peptides.

    Science.gov (United States)

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  17. Combating Antimicrobial Resistance in Foodborne Microorganisms.

    Science.gov (United States)

    Lai, Edward P C; Iqbal, Zafar; Avis, Tyler J

    2016-02-01

    This review addresses an important public health hazard affecting food safety. Antimicrobial agents are used in foods to reduce or eliminate microorganisms that cause disease. Many traditional organic compounds, novel synthetic organic agents, natural products, peptides, and proteins have been extensively studied for their effectiveness as antimicrobial agents against foodborne Campylobacter spp., Escherichia coli, Listeria spp. and Salmonella. However, antimicrobial resistance can develop in microorganisms, enhancing their ability to withstand the inhibiting or killing action of antimicrobial agents. Knowledge gaps still exist with regard to the actual chemical and microbiological mechanisms that must be identified to facilitate the search for new antimicrobial agents. Technical implementation of antimicrobial active packing films and coatings against target microorganisms must also be improved for extended product shelf life. Recent advances in antimicrobial susceptibility testing can provide researchers with new momentum to pursue their quest for a resistance panacea.

  18. Veterinary Medicine Needs New Green Antimicrobial Drugs.

    Science.gov (United States)

    Toutain, Pierre-Louis; Ferran, Aude A; Bousquet-Melou, Alain; Pelligand, Ludovic; Lees, Peter

    2016-01-01

    Given that: (1) the worldwide consumption of antimicrobial drugs (AMDs) used in food-producing animals will increase over the coming decades; (2) the prudent use of AMDs will not suffice to stem the rise in human antimicrobial resistance (AMR) of animal origin; (3) alternatives to AMD use are not available or not implementable, there is an urgent need to develop novel AMDs for food-producing animals. This is not for animal health reasons, but to break the link between human and animal resistomes. In this review we establish the feasibility of developing for veterinary medicine new AMDs, termed "green antibiotics," having minimal ecological impact on the animal commensal and environmental microbiomes. We first explain why animal and human commensal microbiota comprise a "turnstile" exchange, between the human and animal resistomes. We then outline the ideal physico-chemical, pharmacokinetic, and pharmacodynamic properties of a veterinary green antibiotic and conclude that they can be developed through a rational screening of currently used AMD classes. The ideal drug will be hydrophilic, of relatively low potency, slow clearance and small volume of distribution. It should be eliminated principally by the kidney as inactive metabolite(s). For oral administration, bioavailability can be enhanced by developing lipophilic pro-drugs. For parenteral administration, slow-release formulations of existing eco-friendly AMDs with a short elimination half-life can be developed. These new eco-friendly veterinary AMDs can be developed from currently used drug classes to provide alternative agents to those currently used in veterinary medicine and mitigate animal contributions to the human AMR problem. PMID:27536285

  19. Veterinary Medicine Needs New Green Antimicrobial Drugs.

    Science.gov (United States)

    Toutain, Pierre-Louis; Ferran, Aude A; Bousquet-Melou, Alain; Pelligand, Ludovic; Lees, Peter

    2016-01-01

    Given that: (1) the worldwide consumption of antimicrobial drugs (AMDs) used in food-producing animals will increase over the coming decades; (2) the prudent use of AMDs will not suffice to stem the rise in human antimicrobial resistance (AMR) of animal origin; (3) alternatives to AMD use are not available or not implementable, there is an urgent need to develop novel AMDs for food-producing animals. This is not for animal health reasons, but to break the link between human and animal resistomes. In this review we establish the feasibility of developing for veterinary medicine new AMDs, termed "green antibiotics," having minimal ecological impact on the animal commensal and environmental microbiomes. We first explain why animal and human commensal microbiota comprise a "turnstile" exchange, between the human and animal resistomes. We then outline the ideal physico-chemical, pharmacokinetic, and pharmacodynamic properties of a veterinary green antibiotic and conclude that they can be developed through a rational screening of currently used AMD classes. The ideal drug will be hydrophilic, of relatively low potency, slow clearance and small volume of distribution. It should be eliminated principally by the kidney as inactive metabolite(s). For oral administration, bioavailability can be enhanced by developing lipophilic pro-drugs. For parenteral administration, slow-release formulations of existing eco-friendly AMDs with a short elimination half-life can be developed. These new eco-friendly veterinary AMDs can be developed from currently used drug classes to provide alternative agents to those currently used in veterinary medicine and mitigate animal contributions to the human AMR problem.

  20. Antimicrobial drug susceptibility of Neisseria meningitidis strains isolated from carriers

    Directory of Open Access Journals (Sweden)

    Dayamí García

    2000-06-01

    Full Text Available When it is necessary to determine the susceptibility of Neisseria meningitidis (Nm strains to antimicrobial drugs, it is important to consider that it should be analyzed in a double context. One of them related to the use of drugs in a specific medical treatment; and the other; to chemoprophylatic drugs, both with the same purpose: the accurate selection of the “in vivo” antimicrobial agent. This requires the study of the sensitivity and resistance of strains isolated in both carriers and patients. With the aim of further studying the behavior of the strains that currently circulate in Cuba, an antimicrobial drug susceptibility study was conducted in 90 strains isolated from carriers during the first half of 1998. The agar dilution method was used to determine the minimum inhibitory concentrations (MICs to: penicillin, ampicillin, rifampin, sulfadiazine, chloramphenicol, ciprofloxacin, ceftriaxone, cefotaxime. The study of the three latter drugs was done for the first time in our country. The search for β- lactamase-producer strains was also performed. There was a predominance of penicillin sensitive strains (82,2% with an intermediate sensitivity to ampicillin (57,8%, while 70% of the strains were sensitive to sulfadiazine. Regarding the rest of the antimicrobial drugs, 100% of the strains were sensitive. The paper shows the MICs for each drug as well as the phenotypic characteristics of the strains with the penicillin and sulfadiazine sensitivity and resistance patterns. No β-lactamase-producer strains were found.

  1. The antimicrobial effects of cinnamon oil against multi-drug resistant Salmonella Newport on organic leafy greens

    Science.gov (United States)

    There is generally no kill-step when preparing salad vegetables, so there is a risk for foodborne illness outbreaks due to consumption of these vegetables. Some essential oils have antimicrobial activities and could provide a natural way to reduce pathogens on fresh produce. The use of a cinnamon ...

  2. Drug-Resistant Tuberculosis: Challenges and Progress.

    Science.gov (United States)

    Kurz, Sebastian G; Furin, Jennifer J; Bark, Charles M

    2016-06-01

    Antimicrobial resistance is a natural evolutionary process, which in the case of Mycobacterium tuberculosis is based on spontaneous chromosomal mutations, meaning that well-designed combination drug regimens provided under supervised therapy will prevent the emergence of drug-resistant strains. Unfortunately, limited resources, poverty, and neglect have led to the emergence of drug-resistant tuberculosis throughout the world. The international community has responded with financial and scientific support, leading to new rapid diagnostics, new drugs and regimens in advanced clinical development, and an increasingly sophisticated understanding of resistance mechanisms and their application to all aspects of TB control and treatment. PMID:27208770

  3. Staphylococcus aureus resistance to topical antimicrobials in atopic dermatitis*

    Science.gov (United States)

    Bessa, Giancarlo Rezende; Quinto, Vanessa Petry; Machado, Daiane Corrêa; Lipnharski, Caroline; Weber, Magda Blessmann; Bonamigo, Renan Rangel; D'Azevedo, Pedro Alves

    2016-01-01

    Background Topical antimicrobial drugs are indicated for limited superficial pyodermitis treatment, although they are largely used as self-prescribed medication for a variety of inflammatory dermatoses, including atopic dermatitis. Monitoring bacterial susceptibility to these drugs is difficult, given the paucity of laboratory standardization. Objective To evaluate the prevalence of Staphylococcus aureus topical antimicrobial drug resistance in atopic dermatitis patients. Methods We conducted a cross-sectional study of children and adults diagnosed with atopic dermatitis and S. aureus colonization. We used miscellaneous literature reported breakpoints to define S. aureus resistance to mupirocin, fusidic acid, gentamicin, neomycin and bacitracin. Results A total of 91 patients were included and 100 S. aureus isolates were analyzed. All strains were methicillin-susceptible S. aureus. We found a low prevalence of mupirocin and fusidic acid resistance (1.1% and 5.9%, respectively), but high levels of neomycin and bacitracin resistance (42.6% and 100%, respectively). Fusidic acid resistance was associated with more severe atopic dermatitis, demonstrated by higher EASI scores (median 17.8 vs 5.7, p=.009). Our results also corroborate the literature on the absence of cross-resistance between the aminoglycosides neomycin and gentamicin. Conclusions Our data, in a southern Brazilian sample of AD patients, revealed a low prevalence of mupirocin and fusidic acid resistance of S. aureus atopic eczema colonizer strains. However, for neomycin and bacitracin, which are commonly used topical antimicrobial drugs in Brazil, high levels of resistance were identified. Further restrictions on the use of these antimicrobials seem necessary to keep resistance as low as possible.

  4. Understanding drug resistance in human intestinal protozoa.

    Science.gov (United States)

    El-Taweel, Hend Aly

    2015-05-01

    Infections with intestinal protozoa continue to be a major health problem in many areas of the world. The widespread use of a limited number of therapeutic agents for their management and control raises concerns about development of drug resistance. Generally, the use of any antimicrobial agent should be accompanied by meticulous monitoring of its efficacy and measures to minimize resistance formation. Evidence for the occurrence of drug resistance in different intestinal protozoa comes from case studies and clinical trials, sometimes with a limited number of patients. Large-scale field-based assessment of drug resistance and drug sensitivity testing of clinical isolates are needed. Furthermore, the association of drug resistance with certain geographic isolates or genotypes deserves consideration. Drug resistance has been triggered in vitro and has been linked to modification of pyruvate:ferredoxin oxidoreductase, nitroreductases, antioxidant defense, or cytoskeletal system. Further mechanistic studies will have important implications in the development of second generation therapeutic agents.

  5. Antimicrobial resistance and spread of multi drug resistant Escherichia coli isolates collected from nine urology services in the Euregion Meuse-Rhine.

    Directory of Open Access Journals (Sweden)

    Christina F M van der Donk

    Full Text Available We determined the prevalence and spread of antibiotic resistance and the characteristics of ESBL producing and/or multi drug resistant (MDR Escherichia coli isolates collected from urine samples from urology services in the Euregio Meuse-Rhine, the border region of the Netherlands (n=176, Belgium (n=126 and Germany (n=119. Significant differences in resistance between the three regions were observed. Amoxicillin-clavulanic acid resistance ranged from 24% in the Netherlands to 39% in Belgium (p=0.018, from 20% to 40% (p<0.004 for the fluoroquinolones and from 20% to 40% (p=0.018 for the folate antagonists. Resistance to nitrofurantoin was less than 5%. The prevalence of ESBL producing isolates varied from 2% among the Dutch isolates to 8% among the German ones (p=0.012 and were mainly CTX-M 15. The prevalence of MDR isolates among the Dutch, German and Belgian isolates was 11%, 17% and 27%, respectively (p< =0.001 for the Belgian compared with the Dutch isolates. The majority of the MDR and ESBL producing isolates belonged to ST131. This study indicates that most antibiotics used as first choice oral empiric treatment for UTIs (amoxicillin-clavulanic acid, fluoroquinolones and folate antagonists are not appropriate for this purpose and that MDR strains such as CTX-M producing ST131 have spread in the entire Euregion. Our data stress the importance of ward specific surveillance to optimize empiric treatment. Also, prudent use of antibiotics and further research to alternative agents are warranted.

  6. The antimicrobial effects of cinnamon leaf oil against multi-drug resistant Salmonella Newport on organic leafy greens.

    Science.gov (United States)

    Todd, Jennifer; Friedman, Mendel; Patel, Jitendra; Jaroni, Divya; Ravishankar, Sadhana

    2013-08-16

    There is generally no kill-step when preparing salad vegetables, so there is a greater risk for foodborne illness from contaminated vegetables. Some essential oils have antimicrobial activities and could provide a natural way to reduce pathogens on fresh produce. The objective of this study was to investigate the antimicrobial activity of cinnamon oil wash against Salmonella enterica serotype Newport on organic leafy greens. Organic romaine and iceberg lettuce, and organic baby and mature spinach were inoculated with Salmonella Newport and then dip treated in a phosphate buffered saline (PBS) control and 3 different concentrations (0.1, 0.3, and 0.5% v/v) of cinnamon oil. The treatment time varied at either 1 or 2min, and storage temperature varied at either 4 or 8°C. Samples were collected at days 0, 1, and 3. For romaine and iceberg lettuce, S. Newport was not recovered on day 3 for 2min 0.3% and 0.5% cinnamon oil treatments. For mature spinach, S. Newport was not recovered by day 3 for the 2min 0.3% and 0.5% 4°C treatments. For baby spinach, there was no recovery of S. Newport by day 1 for all 0.5% treatments. Overall, the cinnamon oil treatments were concentration and time dependent with higher concentrations and longer treatment times providing the greatest reduction in S. Newport population on leafy greens. In addition, the treatments had a residual effect with the greatest reduction generally seen on the last day of sampling. Storage temperature did not have a significant effect on the reduction of S. Newport. Based on the results of this study, cinnamon oil has the potential to be used as a treatment option for washing organic baby and mature spinach, and iceberg and romaine lettuces. PMID:23911760

  7. Dealing with antimicrobial resistance - the Danish experience

    DEFF Research Database (Denmark)

    Bager, Flemming; Aarestrup, Frank Møller; Wegener, Henrik Caspar

    2000-01-01

    Following the discovery in 1994 and 1995 that use of the glycopeptide antimicrobial avoparcin for growth promotion was associated with the occurrence of vancomycin resistant Enterococcus faecium in food animals and in food, the Danish Minister of Food, Agriculture and Fisheries banned the use...... of avoparcin in May 1995. The ban was later extended by the European Commission to include all EU member states. In May 1999, the EU Scientific Steering Committee recommended that use for growth promotion of antimicrobials, which are or may be used in human or veterinary medicine should be phased out as soon...... on the prudent use of antimicrobials in order to reduce the development of resistance without compromising therapeutic efficacy. Our experience with avoparcin shows that a restrictive policy on the use of antimicrobials can curb the development of resistance. However, the occurrence and persistence of specific...

  8. Antibacterial Cleaning Products and Drug Resistance

    OpenAIRE

    Aiello, Allison E.; Marshall, Bonnie; Levy, Stuart B.; Della-Latta, Phyllis; Lin, Susan X.; Larson, Elaine

    2005-01-01

    We examined whether household use of antibacterial cleaning and hygiene products is an emerging risk factor for carriage of antimicrobial drug–resistant bacteria on hands of household members. Households (N = 224) were randomized to use of antibacterial or nonantibacterial cleaning and hygiene products for 1 year. Logistic regression was used to assess the influence of antibacterial product use in homes. Antibacterial product use did not lead to a significant increase in antimicrobial drug re...

  9. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kyung-Soo Hahm

    2011-09-01

    Full Text Available Over the last decade, decreasing effectiveness of conventional antimicrobial-drugs has caused serious problems due to the rapid emergence of multidrug-resistant pathogens. Furthermore, biofilms, which are microbial communities that cause serious chronic infections and dental plaque, form environments that enhance antimicrobial resistance. As a result, there is a continuous search to overcome or control such problems, which has resulted in antimicrobial peptides being considered as an alternative to conventional drugs. Antimicrobial peptides are ancient host defense effector molecules in living organisms. These peptides have been identified in diverse organisms and synthetically developed by using peptidomimic techniques. This review was conducted to demonstrate the mode of action by which antimicrobial peptides combat multidrug-resistant bacteria and prevent biofilm formation and to introduce clinical uses of these compounds for chronic disease, medical devices, and oral health. In addition, combinations of antimicrobial peptides and conventional drugs were considered due to their synergetic effects and low cost for therapeutic treatment.

  10. EMERGING ANTIMICROBIAL RESISTANCE IN HOSPITAL A THREAT TO PUBLIC HEALTH

    Directory of Open Access Journals (Sweden)

    Vichal Rastogi

    2013-01-01

    Full Text Available Background: Antimicrobial resistance(AMR threatens the health of many throughout the world, since both old and new infectious diseases remain a formidable public health threat. When pathogenic microorganisms can multiply beyond some critical mass in the face of invading antimicrobials, treatment outcome is compromised. This phenomenon is referred as antimicrobial resistance (AMR. Objective: This retrospective study was conducted to assess the overall antimicrobial resistance in bacterial isolates from tertiary care hospitals as majority of patients here receive empirical antibiotics therapy. Method: This retrospective study was carried out in teaching hospital, Greater Noida to determine prevalence of multidrug resistance in patients in relation to empirical antibiotic therapy in hospital. Various samples (pus,urine,blood were collected for bacterial culture and antibiotic sensitivity. Results: Total 500 bacterial strains isolated from ICU, surgery, obstetrics & gynaecology and orthopaedics and their sensitivity pattern was compared in this study. The highest number of resistant bacterias were of pseudomonas sp. i.e. 21(33.87% followed by 16(25.80% of staphylococcus aureus, 12(19.35% of Escherichia coli, Klebseilla sp & Proteus vulgaris were 05(8.06% each & Citrobacter sp. 03(4.83%. Total 62(12.4% bacterial isolates were found to be resistant to multiple drugs. The 31 (50% of these resistant bacteria were prevalent in ICU, 12(19.35% in Surgery, 11(17.74% in Gynaecology, 08(12.90% in Orthopaedics.. All the bacterial strains were resistant to common antibiotics like Penicillin, Amoxicillin, Doxycycline & Cotrimoxazole and some were even resistant to Imipenem. Conclusion: Therefore we have outlined the nature of the antimicrobial resistance problem as an important health issue for national and international community. It is advised to avoid use of empirical antibiotics therapy.

  11. Antifungal Drug Resistance - Concerns for Veterinarians

    Directory of Open Access Journals (Sweden)

    Bharat B. Bhanderi

    2009-10-01

    Full Text Available In the 1990s, there were increased incidences of fungal infectious diseases in human population which might be due to increase in immunosuppressive diseases. But the major concern was increase in prevalence of resistance to antifungal drugs which were reported both in the fungal isolates of human beings and that of animal origin. In both animals and human beings, resistance to antimicrobial agents has important implications for morbidity, mortality and health care costs, because resistant strains are responsible for bulk of infection in animals and human beings, and large number of antimicrobial classes offers more diverse range of resistance mechanisms to study and resistance determinants move into standard well-characterized strains that facilitates the detailed study of molecular mechanisms of resistance in microorganisms. Studies on resistance to antifungal agents has been lagging behind that of antibacterial resistance for several reasons, the foremost reason might be fungal agents were not recognized as important animal and human pathogens, until relatively in recent past. But the initial studies of antifungal drug resistance in the early 1980s, have accumulated a wealth of knowledge concerning the clinical, biochemical, and genetic aspects of this phenomenon. Presently, exploration of the molecular aspects for antifungal drug resistance has been undertaken. Recently, the focus was on several points like developing a more detailed understanding of the mechanisms of antimicrobial resistance, improved methods to detect resistance when it occurs, methods to prevent the emergence and spread of resistance and new antimicrobial options for the treatment of infections caused by resistant organisms. [Vet. World 2009; 2(5.000: 204-207

  12. Analysis of patients with antimicrobial drug use and drug resistance in 2011%2011年住院患者抗菌药物使用及耐药情况分析

    Institute of Scientific and Technical Information of China (English)

    游亮; 赵雪竹

    2014-01-01

    Objective To improve the rational use level of antimicrobial agents through analysis of antimicrobial agents application and drug resistance of the patients in our hospital in 2011 .Methods The patients′antimicrobial agents application statistics were analyzed by using defined daily dose(DDD) and drug resistance was analyzed accordingly .Results The submission of microbiologi-cal testing sample in our hospital was low ,and the selection of antibiotics was not in accordance with susceptibility results .Resist-ance rates of Gram-positive bacteria to vancomycin ,linezolid ,furan ,cotrimoxazole were less than 30% ,and the others were higher than 65% .Resistance rates of pseudomonas aeruginosa to imipenem and meropenem were 37 .8% and 43 .5% .Resistance rates of Acinetobacter baumannii to the two carbapenem were 66 .7% and 72 .3% .Conclusion We must strengthen the management of an-tibiotics usage to further improve the antibacterial drug classification management level and slow down the occurrence of antibacte-rial resistance .%目的:通过对2011年住院患者抗菌药物使用及耐药情况的分析,以期提高对抗菌药物的合理使用水平。方法统计2011年住院患者抗菌药物使用的相关数据,使用限定日剂量值(DDD值)分析方法,并结合抗菌药物耐药情况进行分析。结果我院的微生物样本送检率较低,抗菌药物选用未严格按照药敏结果。革兰氏阳性菌对万古霉素、利奈唑胺、呋喃妥因、复方新诺明的耐药性均小于30%,其他均高于65%。亚胺培南、美罗培南对铜绿假单胞菌的耐药率分别为37.8%和43.5%。两个碳青霉烯类鲍曼不动杆菌的耐药率分别为66.7%和72.3%,高于平均水平。结论我院须加强抗菌药物使用的管理,进一步提高抗菌药物分级管理水平,减缓细菌耐药性的发生。

  13. Antimicrobial resistant bacteria in the food chain

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar

    2003-01-01

    Antimicrobials are used for treatment and prevention of disease in food animals and as feed additives for growth promotion. All uses lead to the development of resistant bacteria, some of which are pathogenic to humans. Current main concerns are with resistance in Salmonella and Campylobacter...

  14. Quantifying antimicrobial resistance at veal calf farms.

    Directory of Open Access Journals (Sweden)

    Angela B Bosman

    Full Text Available This study was performed to determine a sampling strategy to quantify the prevalence of antimicrobial resistance on veal calf farms, based on the variation in antimicrobial resistance within and between calves on five farms. Faecal samples from 50 healthy calves (10 calves/farm were collected. From each individual sample and one pooled faecal sample per farm, 90 selected Escherichia coli isolates were tested for their resistance against 25 mg/L amoxicillin, 25 mg/L tetracycline, 0.5 mg/L cefotaxime, 0.125 mg/L ciprofloxacin and 8/152 mg/L trimethoprim/sulfamethoxazole (tmp/s by replica plating. From each faecal sample another 10 selected E. coli isolates were tested for their resistance by broth microdilution as a reference. Logistic regression analysis was performed to compare the odds of testing an isolate resistant between both test methods (replica plating vs. broth microdilution and to evaluate the effect of pooling faecal samples. Bootstrap analysis was used to investigate the precision of the estimated prevalence of resistance to each antimicrobial obtained by several simulated sampling strategies. Replica plating showed similar odds of E. coli isolates tested resistant compared to broth microdilution, except for ciprofloxacin (OR 0.29, p ≤ 0.05. Pooled samples showed in general lower odds of an isolate being resistant compared to individual samples, although these differences were not significant. Bootstrap analysis showed that within each antimicrobial the various compositions of a pooled sample provided consistent estimates for the mean proportion of resistant isolates. Sampling strategies should be based on the variation in resistance among isolates within faecal samples and between faecal samples, which may vary by antimicrobial. In our study, the optimal sampling strategy from the perspective of precision of the estimated levels of resistance and practicality consists of a pooled faecal sample from 20 individual animals, of which

  15. Antimicrobial resistance in Scandinavia after ban of antimicrobial growth promoters.

    Science.gov (United States)

    Bengtsson, Björn; Wierup, Martin

    2006-01-01

    The banned use of antimicrobial growth promoters resulted in a considerably decreased use of antimicrobials in food animal production in Sweden (65%), Denmark (47%), Norway (40%) and Finland (27%). The current prevalence of antimicrobial resistance in animal bacterial populations is also considerably lower than in some other countries in the EU. In the swine production, no or limited effect was found in the finisher production (>25 to 30 kg). Temporary negative effects occurred during the post weaning period (7-30 kg). In Denmark, the cost of production from birth to slaughter per pig produced increased by approximately 1.0 euro with a high variability between pig producers. In the broiler production the termination had no significant negative effect on animal health and welfare or on production economy.

  16. Clinical impact of antimicrobial resistance in animals.

    Science.gov (United States)

    Vaarten, J

    2012-04-01

    It is almost impossible to imagine veterinary medicine today without the use of antimicrobials. Shortly after their discovery, antimicrobials found their way into the veterinary world. They have brought many benefits for the health and welfare of both animals and people, such as the lessening of pain and suffering, reduction in shedding of (zoonotic) bacteria and the containment of potentially large-scale epidemics. Indirectly, they also contribute to food security, protection of livelihoods and animal resources, and poverty alleviation. Given the broad range of animal species under veterinary care and the enormous variety of infectious agents, a complete range of antimicrobials is needed in veterinary medicine. Losing products, either through the occurrence of resistance or through a prohibition on their use, will have serious consequences for the health and welfare of all animals. It will also seriously affect people who depend on these animals. It is a great challenge to everyone involved to stop the growing trend of antimicrobial resistance and to safeguard the effectiveness of antimicrobials for the future. Transparent and responsible use of antimicrobials, together with continuous monitoring and surveillance of the occurrence of resistance, are key elements of any strategy. The current situation also urges us to re-think unsustainable practices and to work on the development of alternatives, in the interests of the health and welfare of both animals and people. PMID:22849278

  17. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes.

    Science.gov (United States)

    Rudramurthy, Gudepalya Renukaiah; Swamy, Mallappa Kumara; Sinniah, Uma Rani; Ghasemzadeh, Ali

    2016-01-01

    Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals). Antimicrobials are considered "miracle drugs" and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs) depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future. PMID:27355939

  18. Eight-year Surveillance of Antimicrobial Resistance among Enterococcus Spp. Isolated in the First Bethune Hospital

    Science.gov (United States)

    Xu, Jiancheng; Wang, Liqiang; Wang, Kai; Zhou, Qi

    This study was to investigate the antimicrobial resistance of Enterococcus spp. isolated in 8 consecutive years in the First Bethune Hospital. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). Most of 1446 strains of Enterococcus spp. were collected from urine 640 (44.3%), sputum 315 (21.8%), secretions and pus 265 (18.3%) during the past 8 years. The rates of high-level aminoglycoside resistance in Enterococcus faecalis and Enterococcus faecium were 57.4%∼75.9% and 69.0%∼93.8% during the past 8 years, respectively. No Enterococcus spp. was resistant to vancomycin. The antimicrobial resistance of Enterococcus spp. had increased in recent 8 years. The change of the antimicrobial resistance should be investigated in order to direct rational drug usage in the clinic and prevent bacterial strain of drug resistance from being transmitted.

  19. A European study on the relationship between antimicrobial use and antimicrobial resistance

    NARCIS (Netherlands)

    Bronzwaer, SLAM; Cars, O; Buchholz, U; Molstad, S; Goettsch, W; Veldhuijzen, IK; Kool, JL; Sprenger, MJW; Degener, JE

    2002-01-01

    In Europe, antimicrobial resistance has been monitored since 1998 by the European Antimicrobial Resistance Surveillance System (EARSS). We examined the relationship between penicillin nonsusceptibility of invasive isolates of Streptococcus pneumoniae and antibiotic sales. Information was collected o

  20. Antimicrobial resistance in Libya: 1970-2011.

    Science.gov (United States)

    Ghenghesh, Khalifa Sifaw; Rahouma, Amal; Tawil, Khaled; Zorgani, Abdulaziz; Franka, Ezzedin

    2013-01-01

    Resistance to antimicrobial agents is a major health problem that affects the whole world. Providing information on the past state of antimicrobial resistance in Libya may assist the health authorities in addressing the problem more effectively in the future. Information was obtained mainly from Highwire Press (including PubMed) search for the period 1970-2011 using the terms 'antibiotic resistance in Libya', 'antimicrobial resistance in Libya', 'tuberculosis in Libya', and 'primary and acquired resistance in Libya' in title and abstract. From 1970 to 2011 little data was available on antimicrobial resistance in Libya due to lack of surveillance and few published studies. Available data shows high resistance rates for Salmonella species in the late 1970s and has remained high to the present day. High prevalence rates (54-68%) of methicillin-resistant Staphylococcus aureus (MRSA) were reported in the last decade among S. aureus from patients with burns and surgical wound infections. No reports were found of vancomycin-resistant S. aureus (VRSA) or vancomycin-intermediate-resistant S. aureus (VISA) using standard methods from Libya up to the end of 2011. Reported rates of primary (i.e. new cases) and acquired (i.e. retreatment cases) multidrug-resistant tuberculosis (MDR-TB) from the eastern region of Libya in 1971 were 16.6 and 33.3% and in 1976 were 8.6 and 14.7%, in western regions in 1984-1986 were 11 and 21.5% and in the whole country in 2011 were estimated at 3.4 and 29%, respectively. The problem of antibiotic resistance is very serious in Libya. The health authorities in particular and society in general should address this problem urgently. Establishing monitoring systems based on the routine testing of antimicrobial sensitivity and education of healthcare workers, pharmacists, and the community on the health risks associated with the problem and benefits of prudent use of antimicrobials are some steps that can be taken to tackle the problem in the future.

  1. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes

    Directory of Open Access Journals (Sweden)

    Gudepalya Renukaiah Rudramurthy

    2016-06-01

    Full Text Available Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals. Antimicrobials are considered “miracle drugs” and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future.

  2. Prevalence of antimicrobial resistance and integrons in Escherichia Coli from Punjab, Pakistan

    Directory of Open Access Journals (Sweden)

    Idrees Muhammad

    2011-06-01

    Full Text Available Antimicrobial resistance was studied in Escherichia coli strains isolated from urine samples of 457 patients suffering from urinary tract infection. High prevalence of class 1 integrons (43.56%, sulfamethoxazole resistance genes sul1 (45.54% and sul2 (51.48% along with occurrence of quinolone resistance genes was detected in multi drug resistance isolates.

  3. Synthetic RNA silencing in bacteria - antimicrobial discovery and resistance breaking

    Directory of Open Access Journals (Sweden)

    James E.M. Stach

    2011-09-01

    Full Text Available The increasing incidence and prevalence of antibiotic resistance in bacteria threatens the antibiotic miracle. Conventional antimicrobial drug development has failed to replace the armamentarium needed to combat this problem, and novel solutions are urgently required. Here we review both natural and synthetic RNA silencing and its potential to provide new antibacterials through improved target selection, evaluation and screening. Furthermore, we focus on synthetic RNA silencers as a novel class of antibacterials and review their unique properties.

  4. Prevalence of enterobacteriaceae in Tupinambis merianae (Squamata: Teiidae from a captive facility in Central Brazil, with a profile of antimicrobial drug resistance in Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Andréa de Moraes Carvalho

    2013-06-01

    Full Text Available The present study reports the presence of enterobacteriaceae in Tegu Lizards (Tupinambis merianaefrom a captive facility in central Brazil. From a total of 30 animals, 10 juveniles and 20 adults (10 males, 10 females, 60 samples were collected, in two periods separated by 15 days. The samples were cultivated in Xylose-lysine-deoxycholate agar (XLT4 and MacConkey agar. The Salmonella enterica were tested for antimicrobial susceptibility. A total of 78 bacteria was isolated, of wich 27 were from juveniles of T. merianae, 30 from adult males and 21 from adult females. Salmonella enterica was the most frequent bacteria followed by Citrobacter freundii, Escherichia coli, Enterobacter sakasakii, Kluivera sp., Citrobacter amalonaticus, Serratia marcescens, Citrobacter diversus, Yersinia frederiksenii, Serratia odorifera, and Serratia liquefaciens. Salmonella enterica subsp. diarizonae and houtenae showed resistance to cotrimoxazole, and serum Salmonella enterica Worthington showed resistance to tetracycline and gentamicin. Salmonella enterica Panama and S. enterica subsp. diarizonae showed intermediate sensitivity to cotrimoxazole. In addition to Enterobacteriaceae in the Tegu lizard, pathogenic serotypes of S. enterica also occur, and their antimicrobial resistance was confirmed.

  5. Antimicrobial resistance of bacterial strains isolated from avian cellulitis

    Directory of Open Access Journals (Sweden)

    MM Santos

    2014-03-01

    Full Text Available Avian cellulitis is an inflammatory process in the subcutaneous tissue, mainly located in the abdomen and thighs. This problem is commonly observed in poultry at slaughter and it is considered one of the major causes of condemnation of carcasses in Brazil. The aim of this study was to perform the microbial isolation of lesions of avian cellulitis from a processing plant located in the State of Goiás in order to analyze antimicrobial resistance by antibiogram test and to detect resistance genes by polymerase chain reaction. A total of 25 samples of avian cellulitis lesions were analyzed, from which 30 bacterial strains were isolated. There were eleven (44% strains of Escherichia coli, nine (36% strains of Staphylococcus epidermidis, seven (28% strains of Proteus mirabilis and three (12% strains of Manheimiahaemolytica. The antibiogram test showed that all strains were resistant to at least one antimicrobial. The gene of antimicrobial resistance tetB was detected in E. coli, S. epidermidis and P. mirabilis strains, and was the most frequently observed gene. The gene of antimicrobial resistance Sul1 was detected in all bacterial species, while tetA was found in E. coli and S. epidermidis strains, SHV in E. coli strains, S. epidermidis and P. mirabilis,and cat1 in one P. mirabilis strain. The results suggest a potential public health hazard due to the ability of these microorganisms to transmit antimicrobial resistancegenes to other microorganisms present in the intestinal tract of humans and animals, which may affect clinical-medical usage of these drugs.

  6. Development of a DNA microarray to detect antimicrobial resistance genes identified in the national center for biotechnology information database

    Science.gov (United States)

    High density genotyping techniques are needed for investigating antimicrobial resistance especially in the case of multi-drug resistant (MDR) isolates. To achieve this all antimicrobial resistance genes in the NCBI Genbank database were identified by key word searches of sequence annotations and the...

  7. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Rajmohan Rajamuthiah

    Full Text Available Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC: 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs. The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively, but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections.

  8. EMERGING ANTIMICROBIAL RESISTANCE IN HOSPITAL A THREAT TO PUBLIC HEALTH

    OpenAIRE

    Vichal Rastogi; Pankaj Kumar Mishra; Shalini Bhatia

    2013-01-01

    Background: Antimicrobial resistance(AMR) threatens the health of many throughout the world, since both old and new infectious diseases remain a formidable public health threat. When pathogenic microorganisms can multiply beyond some critical mass in the face of invading antimicrobials, treatment outcome is compromised. This phenomenon is referred as antimicrobial resistance (AMR). Objective: This retrospective study was conducted to assess the overall antimicrobial resistance in bacteri...

  9. An insight into the drug resistance profile & mechanism of drug resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Patel, Achchhe Lal; Chaudhry, Uma; Sachdev, Divya; Sachdeva, Poonam Nagpal; Bala, Manju; Saluja, Daman

    2011-10-01

    Among the aetiological agents of treatable sexually transmitted diseases (STDs), Neissseria gonorrhoeae is considered to be most important because of emerging antibiotic resistant strains that compromise the effectiveness of treatment of the disease - gonorrhoea. In most of the developing countries, treatment of gonorrhoea relies mainly on syndromic management rather than the aetiological based therapy. Gonococcal infections are usually treated with single-dose therapy with an agent found to cure > 95 per cent of cases. Unfortunately during the last few decades, N. gonorrhoeae has developed resistance not only to less expensive antimicrobials such as sulphonamides, penicillin and tetracyclines but also to fluoroquinolones. The resistance trend of N. gonorrhoeae towards these antimicrobials can be categorised into pre-quinolone, quinolone and post-quinolone era. Among the antimicrobials available so far, only the third-generation cephalosporins could be safely recommended as first-line therapy for gonorrhoea globally. However, resistance to oral third-generation cephalosporins has also started emerging in some countries. Therefore, it has become imperative to initiate sustained national and international efforts to reduce infection and misuse of antibiotics so as to prevent further emergence and spread of antimicrobial resistance. It is necessary not only to monitor drug resistance and optimise treatment regimens, but also to gain insight into how gonococcus develops drug resistance. Knowledge of mechanism of resistance would help us to devise methods to prevent the occurrence of drug resistance against existing and new drugs. Such studies could also help in finding out new drug targets in N. gonorrhoeae and also a possibility of identification of new drugs for treating gonorrhoea. PMID:22089602

  10. Identification of acquired antimicrobial resistance genes

    DEFF Research Database (Denmark)

    Zankari, Ea; Hasman, Henrik; Cosentino, Salvatore;

    2012-01-01

    antimicrobial resistance genes in whole-genome data. As input, the method can use both pre-assembled, complete or partial genomes, and short sequence reads from four different sequencing platforms. The method was evaluated on 1862 GenBank files containing 1411 different resistance genes, as well as on 23 de......-novo-sequenced isolates.ResultsWhen testing the 1862 GenBank files, the method identified the resistance genes with an ID = 100% (100% identity) to the genes in ResFinder. Agreement between in silico predictions and phenotypic testing was found when the method was further tested on 23 isolates of five different bacterial...

  11. Kinetically Controlled Drug Resistance

    DEFF Research Database (Denmark)

    Sun, Xin E.; Hansen, Bjarne Gram; Hedstrom, Lizbeth

    2011-01-01

    The filamentous fungus Penicillium brevicompactum produces the immunosuppressive drug mycophenolic acid (MPA), which is a potent inhibitor of eukaryotic IMP dehydrogenases (IMPDHs). IMPDH catalyzes the conversion of IMP to XMP via a covalent enzyme intermediate, E-XMP*; MPA inhibits by trapping E...... of resistance is not apparent. Here, we show that, unlike MPA-sensitive IMPDHs, formation of E-XMP* is rate-limiting for both PbIMPDH-A and PbIMPDH-B. Therefore, MPA resistance derives from the failure to accumulate the drug-sensitive intermediate....

  12. Antimicrobial Resistance in the Food Chain: A Review

    Directory of Open Access Journals (Sweden)

    Lieve Herman

    2013-06-01

    Full Text Available Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages. A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance.

  13. Antimicrobial Resistance in the Food Chain: A Review

    Science.gov (United States)

    Verraes, Claire; Van Boxstael, Sigrid; Van Meervenne, Eva; Van Coillie, Els; Butaye, Patrick; Catry, Boudewijn; de Schaetzen, Marie-Athénaïs; Van Huffel, Xavier; Imberechts, Hein; Dierick, Katelijne; Daube, George; Saegerman, Claude; De Block, Jan; Dewulf, Jeroen; Herman, Lieve

    2013-01-01

    Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance. PMID:23812024

  14. Antimicrobial resistance in the food chain: a review.

    Science.gov (United States)

    Verraes, Claire; Van Boxstael, Sigrid; Van Meervenne, Eva; Van Coillie, Els; Butaye, Patrick; Catry, Boudewijn; de Schaetzen, Marie-Athénaïs; Van Huffel, Xavier; Imberechts, Hein; Dierick, Katelijne; Daube, George; Saegerman, Claude; De Block, Jan; Dewulf, Jeroen; Herman, Lieve

    2013-06-28

    Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance.

  15. Enhancing US-Japan cooperation to combat antimicrobial resistance.

    Science.gov (United States)

    Gerbin, C Sachi

    2014-01-01

    The Global Health Security Agenda (GHSA) is aimed at preventing, detecting, and responding to infectious disease threats. To move toward these goals, the United States has committed to partner with at least 30 countries around the world. One of the objectives of the GHSA includes "[p]reventing the emergence and spread of antimicrobial drug resistant organisms." Antimicrobial resistance (AMR) has become a growing global health security problem, with inappropriate use of antimicrobial medications in humans and animals and a lack of new antimicrobial medications contributing to this problem. While AMR is a growing global concern, working on it regionally can make this multifaceted problem more manageable. The United States and Japan, both world leaders in the life sciences, are close allies that have established cooperative programs in medical research and global health that can be used to work on combating AMR and advance the GHSA. Although the United States and Japan have cooperated on health issues in the past, their cooperation on the growing problem of AMR has been limited. Their existing networks, cooperative programs, and close relationships can and should be used to work on combating this expanding problem.

  16. Resistance to Antimicrobial Peptides in Vibrios

    Directory of Open Access Journals (Sweden)

    Delphine Destoumieux-Garzón

    2014-10-01

    Full Text Available Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.

  17. Drug resistance in malaria

    Directory of Open Access Journals (Sweden)

    S C Parija

    2011-01-01

    Full Text Available Antimalarial chemotherapy is an important component of all malaria control programmes throughout the world. This is especially so in light of the fact that there are no antimalarial vaccines which are available for clinical use at present. Emergence and spread of malaria parasites which are resistant to many of the available antimalarials today is, therefore, a major cause for concern. Till date, resistance to all groups of antimalarials excluding artemisinin has been reported. In recent years, in vitro resistance to even artemisinin has been described. While resistance to antibacterial agents has come to prominence as a clinical problem in recent years, antiparasitic resistance in general and antimalarial resistance in particular has not received much attention, especially in the Indian scenario. The present review deals with commonly used antimalarial drugs and the mechanisms of resistance to them. Various methods of detecting antimalarial resistance and avoiding the same have also been dealt with. Newer parasite targets which can be used in developing newer antimalarial agents and antimalarials obtained from plants have also been mentioned.

  18. Emerging antimicrobial resistance pattern of Helicobacter pylori in central Gujarat

    Directory of Open Access Journals (Sweden)

    H B Pandya

    2014-01-01

    Full Text Available Background: Antimicrobial resistance is a growing problem in H. pylori treatment. The study was intended to evaluate the prevalence of resistance amongst 80 H.pylori isolates cultured from biopsy taken during routine endoscopies in 2008-2011. Materials and Methods: 855 gastro duodenal biopsies were collected and cultured on H.pylori selective medium (containing Brucella agar and Columbia agar (Hi media, with Skirrow′s supplement (antibiotic supplement and 7% human blood cells. H.pylori was isolated from 80 specimens. The antimicrobial susceptibility of H.pylori isolates was carried out by the Kirby Bauer technique against metronidazole (5 µg, clarithromycin (15 µg, ciprofloxacin (5 µg, amoxicillin (10 µg, tetracycline (30 µg, erythromycin (15 µg, levofloxacin (5 µg, and furazolidone (50 µg (Sigma- Aldrich, MO. Results: 83.8% isolates were resistant to metronidazole, 58.8% were resistant to Clarithromycin 72.5% were resistant to Amoxicillin, 50% to Ciprofloxacin and 53.8% to tetracycline. furazolidone, erythromycin and Levofloxacin showed only 13.8% resistance to H.pylori. Multi drug resistance with metronidazole+ clarithromycin+ tetracycline was 85%. For all the drugs Antimicrobial resistance rate was found higher in males compare to females. Metronidazole and amoxicillin resistance was found noteworthy in patients with duodenal ulcer (p = 0.018, gastritis (P = 0.00, and in reflux esophagitis (P = 0.00. clarithromycin and tetracycline resistance was suggestively linked with duodenitis (P = 0.018, while furazolidone, erythromycin and levofloxacin showed excellent sensitivity in patients with duodenitis (P value- 0.018, gastritis (P= 0.00 and reflux esophagitis (P = 0.00. Resistance with metronidazole (P = 0.481, clarithromycin (P= 0.261, amoxicillin (P = 0.276, tetracycline (P = 0.356, ciprofloxacin (P = 0.164 was not correlated well with Age-group and Gender of the patients. Conclusion: A very high percentage of patients were infected

  19. Impact of media: self-medication and the rising problem of antimicrobial resistance

    OpenAIRE

    Manali M Mahajan; Sujata Dudhgaonkar

    2014-01-01

    Antimicrobial agents (AMAs) are one of the most commonly used as well as misused drugs. Antimicrobial resistance is an important growing global health issue which needs urgent addressal. Self-medication involves the use of medicinal products by the patient to treat self-recognized disorders, symptoms, recurrent diseases, or minor health problems. Medicines for self-medication are often called over the counter (OTC) drugs, which are available without a doctor's prescription through pharmaci...

  20. Using data on resistance prevalence per sample in the surveillance of antimicrobial resistance

    DEFF Research Database (Denmark)

    Vieira, Antonio; Shuyu, Wu; Jensen, Lars Bogø;

    2008-01-01

    Objectives: In most existing antimicrobial resistance monitoring programmes, one single bacterial colony from each collected sample is susceptibility tested against a panel of antimicrobials. Detecting the proportion of colonies resistant to different antimicrobials in each sample can provide...... and occurrence of resistance, there is a need to move towards a more quantitative approach when dealing with antimicrobial resistance in a population, and the resistance prevalence per sample method can provide some of this additional information....

  1. Analysis on the utilization of antimicrobials and bacterial drug resistance in our hospital in 2010%我院2010年抗菌药物应用与细菌耐药性分析

    Institute of Scientific and Technical Information of China (English)

    王霞

    2012-01-01

    目的 总结首都医科大学附属北京佑安医院抗菌药物应用及细菌耐药情况.方法 采用回顾性调查方法,对2010年住院药房抗菌药物的消耗量、用药频度(DDDs)及病原菌耐药情况进行统计分析.结果 头孢菌素类、喹诺酮类和头霉素类抗菌药物的DDDs排在前3位,分别为33 508.2、32 630.5及27 135.3.临床分离的常见病原菌是大肠埃希菌、葡萄球菌、肺炎克雷伯菌、铜绿假单胞菌和屎肠球菌.除铜绿假单胞菌对亚胺培南、美罗培南耐药率达30%外.大肠埃希菌、肺炎克雷伯菌和阴沟肠杆菌对阿米卡星、亚胺培南和美罗培南耐药率最低,革兰阳性球菌对万古霉素和利奈唑胺耐药率最低.结论 应加强抗菌药物分级管理和细菌耐药监测工作,根据病原菌种类及细菌药敏试验结果选择抗菌药物.%Objective To investigate the utilization of antimicrobials and the situations of drug- resistance bacteria in Beijing You'an hospital and to provide reference for use of drugs in the clinic. Methods The consumption of antimicrobials, defined daily doses (DDDs) and drug-resistance bacteria for inpatients in the hospital 2010 were analyzed statistically. Results The top three categories of antimicrobials in the list of DDDs were cephalosporins (33 508.2), quinolones (32 630.5) and cephalomycin (27 135.3). The general bacteria were Escherichia coli, Klebsiella pneumoniae, Pseudomonsa aeruginosa. The resistance rates of Escherichia coli, Klebsiella pneumaniae, and Enterobacter cloacae were the lowest to amikacin, imipenem and meropenem. For gram -positive bacteria, the vancomycin -resistance and linezolid-resistance were minimum. Conclusions Great importance should be attached to classification management of antimicrobials and bacterial drug resistance monitoring. Rational use of antibacterials should base on the kinds of pathogenic bacteria and results of drug susceptibility.

  2. Antimicrobial drugs usage in a tertiary care hospital –A descriptive study

    Directory of Open Access Journals (Sweden)

    Priestly Vivekkumar

    2015-10-01

    Full Text Available Background: Emergence of resistant organisms is alarmingly high all over the world. Irrational and inappropriate prescription of antimicrobials is the major contributing factor for developing drug resistance in addition to poor patient compliance. It is the high time to create awareness of antimicrobial resistance among physicians and patients. Encouraging physicians/surgeons to undergo training programmes on infectious disease control periodically would be beneficial to combat the resistant organisms, so called super bugs.Objectives: To assess the pattern of antimicrobial usage in a tertiary care hospital, to determine whether antimicrobials are prescribed judiciously.Methods: A retrospective study was conducted to determine the current antimicrobial prescribing practices at Tagore Medical College Hospital. A randomised sample of 100 inpatient case sheets of General Medicine, OBG, General Surgery, Paediatrics, Chest Medicine, Skin, and ENT from Medical Records Department was analysed with respect to oral and parenteral (iv administration of antimicrobials.Results: In this study, 53% were males and 47% were females. Majority of patients were middle aged (17-60yrs. A total of 16 antimicrobials were prescribed for 100 inpatients. The most frequently used were Metronidazole and Ciprofloxacin. Duration of treatment was minimum 3 days, maximum of 13 days and mean duration was 5.5 days. The common route by which antimicrobials were administered was Parenteral as the patients were inpatients. The Parenteral (iv drugs were Metronidazole (52%, Ciprofloxacin (42%, Cefotaxime (27%, Amikacin (7%, Ceftriaxone (7%. Among 100 prescriptions, 63% were empirical prescriptions, 12% were directed and 25% were targeted prescriptions.Conclusions: The most frequently used antimicrobials were Metronidazole and Ciprofloxacin and the condition for which the antimicrobials were commonly used was acute gastroenteritis. The proportion of targeted prescriptions was low

  3. Determination of the Antimicrobial Effects of Hydro-Alcoholic Extract of Cannabis Sativa on Multiple Drug Resistant Bacteria Isolated from Nosocomial Infections

    Directory of Open Access Journals (Sweden)

    Hossein Sarmadyan

    2014-02-01

    Full Text Available Background: The science of identification and employment of medicinal plants dates back to the early days of man on earth. Cannabis (hashish is the most common illegal substance used in the United States and was subjected to extensive research as a powerful local disinfecting agent for mouth cavity and skin and an anti-tubercular agent in 1950. Methods: Clinical strains were isolated from hospitalized patients in Vali-e-Asr Hospital of Arak. The hydro-alcoholic extract of cannabis (5 g was prepared following liquid-liquid method and drying in 45˚C. The antimicrobial properties of the extract were determined through disk diffusion and determination of MIC (Minimum Inhibitory Concentration. Results: First, the sensitivity of bacteria was detected based on disk diffusion method and the zone of inhibition was obtained for MRSA (12 mm, S.aureus 25923 (14 mm, E. coli ESBL+: (10 mm, and Klebsiella pneumoniae (7 mm. Disk diffusion for Pseudomonas and Acinetobacter demonstrated no inhibitory zones. Through Broth dilution method, MIC of cannabis extract on the bacteria was determined: E.coli 25922: 50µg/ml, E.coli ESBL+:100 µg/ml, S.aureus 25923:25 µg/ml, MRSA: 50 µg/ml, Pseudomona aeroginosaESBL+> 100 µg/ml, Pseudomonas: 100 µg/ml, Klebsiella pneumoniae: 100 µg/ml, and Acinetobacter baumannii> 1000. Conclusion: The maximum anti-microbial effect of the hydro-alcoholic extract of cannabis was seen for gram positive cocci, especially S. aureus, whereas non-fermentative gram negatives presented resistance to the extract. This extract had intermediate effect on Enterobacteriacae family. Cannabis components extracted through chemical analysis can perhaps be effective in treatment of nosocomial infections.

  4. How Can Vaccines Contribute to Solving the Antimicrobial Resistance Problem?

    Science.gov (United States)

    Siber, George R.

    2016-01-01

    ABSTRACT There is a growing appreciation for the role of vaccines in confronting the problem of antimicrobial resistance (AMR). Vaccines can reduce the prevalence of resistance by reducing the need for antimicrobial use and can reduce its impact by reducing the total number of cases. By reducing the number of pathogens that may be responsible for a particular clinical syndrome, vaccines can permit the use of narrower-spectrum antibiotics for empirical therapy. These effects may be amplified by herd immunity, extending protection to unvaccinated persons in the population. Because much selection for resistance is due to selection on bystander members of the normal flora, vaccination can reduce pressure for resistance even in pathogens not included in the vaccine. Some vaccines have had disproportionate effects on drug-resistant lineages within the target species, a benefit that could be more deliberately exploited in vaccine design. We describe the effects of current vaccines in controlling AMR, survey some vaccines in development with the potential to do so further, and discuss strategies to amplify these benefits. We conclude with a discussion of research and policy priorities to more fully enlist vaccines in the battle against AMR. PMID:27273824

  5. How Can Vaccines Contribute to Solving the Antimicrobial Resistance Problem?

    Directory of Open Access Journals (Sweden)

    Marc Lipsitch

    2016-06-01

    Full Text Available There is a growing appreciation for the role of vaccines in confronting the problem of antimicrobial resistance (AMR. Vaccines can reduce the prevalence of resistance by reducing the need for antimicrobial use and can reduce its impact by reducing the total number of cases. By reducing the number of pathogens that may be responsible for a particular clinical syndrome, vaccines can permit the use of narrower-spectrum antibiotics for empirical therapy. These effects may be amplified by herd immunity, extending protection to unvaccinated persons in the population. Because much selection for resistance is due to selection on bystander members of the normal flora, vaccination can reduce pressure for resistance even in pathogens not included in the vaccine. Some vaccines have had disproportionate effects on drug-resistant lineages within the target species, a benefit that could be more deliberately exploited in vaccine design. We describe the effects of current vaccines in controlling AMR, survey some vaccines in development with the potential to do so further, and discuss strategies to amplify these benefits. We conclude with a discussion of research and policy priorities to more fully enlist vaccines in the battle against AMR.

  6. 细菌耐药性与抗菌药物使用及手卫生关系的研究%Analysis of the effect of antimicrobial drug use and hand hygiene to the bacterial resistance

    Institute of Scientific and Technical Information of China (English)

    谢多双; 张蓬华; 胡荍; 符湘云; 王惠芳; 罗清钦; 杨宏伟

    2014-01-01

    Objective To preliminarily analyze the effect of antimicrobial drug use and the hand hygiene compliance of medical staff to the degrees of bacterial resistance and provide reference for clinical rational drug use and hospital in-fection control. Methods The statistics of the antibiotic resistance of pathogens, the intensity of use of antimicrobial a-gents, the hand hygiene compliance of the medical staff from July 2011 to December 2013 in a hospital, and their mathematical statistical correlations were conducted. Results During the study period, it was found that both the an-tibacterial use density of inpatients and the bacterial resistance of some pathogens continued to decline from 73.6 to 41.3, and the hand hygiene compliance rate of the medical staff continued to improve from 25% to 55% and above. In the same period, the bacterial resistances correlated the intensity of antimicrobial drug use and the hand hygiene com-pliance rates, and the correlation coefficients for r were among 0.332- 0.924 and-0.181 - -0.983 respectively. Con-clusion Comprehensive interventions can effectively reduce bacterial drug resistance, including regulating the use of antimicrobial agents, the implementation of multi-resistant isolation measures especially hand hygiene.%目的:探讨细菌耐药性与住院患者抗菌药物使用强度及医务人员手卫生依从性之间的关系,为遏制细菌耐药性加剧及医院感染控制工作提供参考。方法收集2011年7月~2013年12月某院住院患者中分离的病原菌耐药率及同期住院患者中抗菌药物使用强度和医务人员手卫生依从率,并统计其数理相关关系。结果抗菌药物使用强度从73.6%持续下降到41.3%,医务人员手卫生依从率从25%左右持续提高到55%以上;同期细菌对部分抗菌药物耐药率与该抗菌药物使用强度相关系数r在0.332~0.924之间,与手卫生依从率相关系数r在-0.181~-0.983之间。结论规范抗菌药物使用、落

  7. Does variation among provincial drug formulary antimicrobial listings in Canada influence prescribing rates?

    Directory of Open Access Journals (Sweden)

    Shiona K Glass-Kaastra

    Full Text Available BACKGROUND: The financial accessibility of antimicrobial drugs to the outpatient community in Canada is governed at the provincial level through formularies. Each province may choose to list particular drugs or impose restriction criteria on products in order to guide prescribing and/or curtail costs. Although changes to formularies have been shown to change patterns in the use of individual products and alter costs, no comparison has been made among the provincial antimicrobial formularies with regards to flexibility/stringency, or an assessment of how these formularies impact overall antimicrobial use in the provinces. OBJECTIVES: To summarize provincial antimicrobial formularies and assess whether their relative flexibility/stringency had a statistical impact upon provincial prescription volume during a one year period. METHODS: Provincial drug plan formularies were accessed and summarized for all prescribed antimicrobials in Canada during 2010. The number of general and restricted benefits for each plan was compiled by antimicrobial classification. Population-adjusted prescription rates for all individual antimicrobials and by antimicrobial class were obtained from the Canadian Integrated Program for Antimicrobial Resistance Surveillance. Correlations between the number of general benefits, restricted benefits, and total benefits with the prescription rate in the provinces were assessed by Spearman rank correlation coefficients. RESULTS: Formularies varied considerably among the Canadian provinces. Quebec had the most flexible formulary, offering the greatest number of general benefits and fewest restrictions. In contrast, Saskatchewan's formulary displayed the lowest number of general benefits and most restrictions. Correlation analyses detected a single significant result; macrolide prescription rates decreased as the number of general macrolide benefits increased. All other rates of provincial antimicrobial prescribing and measures of

  8. Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Khaledi, Ariane; Schniederjans, Monika; Pohl, Sarah; Rainer, Roman; Bodenhofer, Ulrich; Xia, Boyang; Klawonn, Frank; Bruchmann, Sebastian; Preusse, Matthias; Eckweiler, Denitsa; Dötsch, Andreas; Häussler, Susanne

    2016-08-01

    Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance status of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technologies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, and the implementation of optimized infection control measures. In this study, qualitative RNA sequencing was used to identify key genetic determinants of antibiotic resistance in 135 clinical Pseudomonas aeruginosa isolates from diverse geographic and infection site origins. By applying transcriptome-wide association studies, adaptive variations associated with resistance to the antibiotic classes fluoroquinolones, aminoglycosides, and β-lactams were identified. Besides potential novel biomarkers with a direct correlation to resistance, global patterns of phenotype-associated gene expression and sequence variations were identified by predictive machine learning approaches. Our research serves to establish genotype-based molecular diagnostic tools for the identification of the current resistance profiles of bacterial pathogens and paves the way for faster diagnostics for more efficient, targeted treatment strategies to also mitigate the future potential for resistance evolution. PMID:27216077

  9. 阳离子抗菌肽的杀菌及抗药性机制的研究进展%Research Progress on Cationic Antimicrobial Peptides in Antibacterial and Drug-resistant Mechanism

    Institute of Scientific and Technical Information of China (English)

    洪军; 胡建业

    2012-01-01

    阳离子抗菌肽是生物体抵御外源性病原微生物入侵而产生的一类小分子多肽,广泛分布于生物体内,具有广谱抗菌活性,是生物体先天性免疫防御系统的重要组成部分.除了具有抗细菌功能外,还具有抗真菌、抗原虫、抗病毒及抑制肿瘤细胞等功能,并对正常的真核细胞毒性较低,是新一代抗生素的理想替代品,但是同抗生素一样,部分细菌也能对抗菌肽产生抗药性.作者将从阳离子抗菌肽的杀菌及抗药性机制等方面进行阐述.%Cationic antimicrobial peptides were a class of small peptides with anti-extrogenous pathogen invasion. As an important component of congenital immune defense system against infections, they were widely distributed in vivo. It exhibited potent and broad-spectrum activities against both Gram-positive and Gram-negative bacteria, fungi, viruses, protozoa, and cancer cells,and normal eukaryotic cells with low toxicity. It was an ideal alternative to a new generation of antibiotics. However, the same as antibiotics, some bacteria were resistant to certain antimicrobial peptides. The antibacterial and drug-resistant mechanism of the cationic antimicrobial peptides were summarized in the article to provide certain reference.

  10. The challenges of antimicrobial resistance in Brazil.

    Science.gov (United States)

    Rossi, Flávia

    2011-05-01

    Brazil is a country with continental proportions with high geographic and economic diversity. Despite its medical centers of excellence, antimicrobial resistance poses a major therapeutic challenge. Rates of methicillin-resistant Staphylococcus aureus are up to 60% and are related to an endemic Brazilian clone. Local resistance to vancomycin in Enterococci was first related to Enterococcus faecalis, which differs from European and American epidemiology. Also, local Klebsiella pneumoniae and Escherichia coli isolates producing extended-spectrum β-lactamases have a much higher prevalence (40%-50% and 10%-18%, respectively). Carbapenem resistance among the enterobacteriaceae group is becoming a major problem, and K. pneumoniae carbapenemase isolates have been reported in different states. Among nonfermenters, carbapenem resistance is strongly related to SPM-1 (Pseudomonasaeruginosa) and OXA-23 (Acinetobacter baumannii complex) enzymes, and a colistin-only susceptible phenotype has also emerged in these isolates, which is worrisome. Local actions without loosing the global resistance perspective will demand multidisciplinary actions, new policies, and political engagement.

  11. Aqueous and Organic Solvent-Extracts of Selected South African Medicinal Plants Possess Antimicrobial Activity against Drug-Resistant Strains of Helicobacter pylori: Inhibitory and Bactericidal Potential

    Directory of Open Access Journals (Sweden)

    Collise Njume

    2011-09-01

    Full Text Available The aim of this study was to identify sources of cheap starting materials for the synthesis of new drugs against Helicobacter pylori. Solvent-extracts of selected medicinal plants; Combretum molle, Sclerocarya birrea, Garcinia kola, Alepidea amatymbica and a single Strychnos species were investigated against 30 clinical strains of H. pylori alongside a reference control strain (NCTC 11638 using standard microbiological techniques. Metronidazole and amoxicillin were included in these experiments as positive control antibiotics. All the plants demonstrated anti-H. pylori activity with zone diameters of inhibition between 0 and 38 mm and 50% minimum inhibitory concentration (MIC50 values ranging from 0.06 to 5.0 mg/mL. MIC50 values for amoxicillin and metronidazole ranged from 0.001 to 0.63 mg/mL and 0.004 to 5.0 mg/mL respectively. The acetone extracts of C. molle and S. birrea exhibited a remarkable bactericidal activity against H. pylori killing more than 50% of the strains within 18 h at 4× MIC and complete elimination of the organisms within 24 h. Their antimicrobial activity was comparable to the control antibiotics. However, the activity of the ethanol extract of G. kola was lower than amoxicillin (P < 0.05 as opposed to metronidazole (P > 0.05. These results demonstrate that S. birrea, C. molle and G. kola may represent good sources of compounds with anti-H. pylori activity.

  12. Targeting imperfect vaccines against drug-resistance determinants: a strategy for countering the rise of drug resistance.

    Directory of Open Access Journals (Sweden)

    Regina Joice

    Full Text Available The growing prevalence of antimicrobial resistance in major pathogens is outpacing discovery of new antimicrobial classes. Vaccines mitigate the effect of antimicrobial resistance by reducing the need for treatment, but vaccines for many drug-resistant pathogens remain undiscovered or have limited efficacy, in part because some vaccines selectively favor pathogen strains that escape vaccine-induced immunity. A strain with even a modest advantage in vaccinated hosts can have high fitness in a population with high vaccine coverage, which can offset a strong selection pressure such as antimicrobial use that occurs in a small fraction of hosts. We propose a strategy to target vaccines against drug-resistant pathogens, by using resistance-conferring proteins as antigens in multicomponent vaccines. Resistance determinants may be weakly immunogenic, offering only modest specific protection against resistant strains. Therefore, we assess here how varying the specific efficacy of the vaccine against resistant strains would affect the proportion of drug-resistant vs. -sensitive strains population-wide for three pathogens--Streptococcus pneumoniae, Staphylococcus aureus, and influenza virus--in which drug resistance is a problem. Notably, if such vaccines confer even slightly higher protection (additional efficacy between 1% and 8% against resistant variants than sensitive ones, they may be an effective tool in controlling the rise of resistant strains, given current levels of use for many antimicrobial agents. We show that the population-wide impact of such vaccines depends on the additional effect on resistant strains and on the overall effect (against all strains. Resistance-conferring accessory gene products or resistant alleles of essential genes could be valuable as components of vaccines even if their specific protective effect is weak.

  13. Marine echinoderms as reservoirs of antimicrobial resistant bacteria

    Directory of Open Access Journals (Sweden)

    Catarina Marinho

    2014-06-01

    Full Text Available Echinoderms are benthic animals that play an important ecological role in marine communities occupying diverse trophic levels in the marine food chains. The majority of echinoderms feed on small particles of edible matter, although they can eat many kinds of food (Clark, 1968. Although, some echinoderms species has been facing an emerging demand for human consumption, particularly in Asian and Mediterranean cuisine, where these animals can be eaten raw (Kelly, 2005; Micael et al., 2009. Echinoderms own an innate immune mechanism that allows them to defend themselves from high concentrations of bacteria, viruses and fungus they are often exposed, on marine sediment (Janeway and Medzhitov, 1998, Cooper, 2003. The most frequent genera of gut bacteria in echinoderms are Vibrio, Pseudomonas, Flavobacterium, and Aeromonas; nevertheless Enterococcus spp. and Escherichia coli are also present (Harris, 1993; Marinho et al., 2013. Moreover, fecal resistant bacteria found in the aquatic environment might represent an index of marine pollution (Foti et al., 2009, Kummerer, 2009. Several studies had been lead in order to identify environmental reservoirs for antibiotic-resistant bacteria in populations of fish, echinoderms and marine mammals, and they all support the thesis that these animals may serve as reservoirs since they had acquired resistant microbial species (Johnson et al., 1998, Marinho et al., 2013, Miranda and Zemelman, 2001. However, to our knowledge, there are only available in bibliography one study of antimicrobial resistant bacteria isolated from marine echinoderms (Marinho et al., 2013, which stats that their provenience in this environment is still unclear. Antimicrobial resistance outcomes from the intensive use of antimicrobial drugs in human activities associated with various mechanisms for bacteria genetic transfer (Barbosa and Levy, 2000, Coque et al., 2008. Antibiotic-resistant bacteria enter into water environments where they are

  14. Salmonella and Campylobacter: Antimicrobial resistance and bacteriophage control in poultry.

    Science.gov (United States)

    Grant, Ar'Quette; Hashem, Fawzy; Parveen, Salina

    2016-02-01

    Salmonella and Campylobacter are major causes of foodborne related illness and are traditionally associated with consuming undercooked poultry and/or consuming products that have been cross contaminated with raw poultry. Many of the isolated Salmonella and Campylobacter that can cause disease have displayed antimicrobial resistance phenotypes. Although poultry producers have reduced on-the-farm overuse of antimicrobials, antimicrobial resistant Salmonella and Campylobacter strains still persist. One method of bio-control, that is producing promising results, is the use of lytic bacteriophages. This review will highlight the current emergence and persistence of antimicrobial resistant Salmonella and Campylobacter recovered from poultry as well as bacteriophage research interventions and limitations.

  15. Comparison of antimicrobial resistant Escherichia coli in wild and captive Japanese serows.

    Science.gov (United States)

    Kinjo, T; Minamoto, N; Sugiyama, M; Sugiyama, Y

    1992-10-01

    The fecal Escherichia coli isolated from wild Japanese serows living in mountainous areas away from humans and those from captive serows kept in human areas were examined for antimicrobial resistance and the possession of transferable R plasmids. Of 874 E. coli strains isolated from 283 wild serows in 1980-1981, only 11 (1.3%) were resistant to at least one of 6 antimicrobial drugs; ampicillin, streptomycin, tetracycline, chloramphenicol, kanamycin and sulfadimethoxin. Seven (2.5%) individuals were found to carry resistant E. coli. To heighten the isolation frequency of drug-resistant strains, fecal samples of 244 wild serows in 1983-1984 were cultured directly onto drug-supplemented media. Only 12 (4.9%) serows were shown to have drug-resistant E. coli. No transferable R plasmid was detected among a total of 87 resistant strains from wild serows. In contrast, all 33 captive serows except one which was kept only one day after capture, showed resistant E. coli and 20 (60.6%) serows were excreting R plasmid-carrying E. coli. Of 161 drug-resistant strains from captive serows, 50 (31.1%) were found to carry R plasmids. Wild serows seemed to readily change to harbor resistant E. coli almost as soon they were reared in human areas without direct exposure to drugs. These results lead to the conclusion that drug-resistant E. coli can probably be used as microbial indicator for natural environmental pollution. PMID:1420561

  16. [Travellers and multi-drug resistance bacteria].

    Science.gov (United States)

    Takeshita, Nozomi

    2012-02-01

    The number of international travellers has increased. There is enormous diversity in medical backgrounds, purposes of travel, and travelling styles among travellers. Travellers are hospitalized abroad because of exotic and common diseases via medical tourism. This is one way of transporting and importing human bacteria between countries, including multi-drug resistant organisms. In developing countries, the antimicrobial resistance in Shigella sp. and Salmonella sp. have been a problem, because of this trend, the first choice of antibiotics has changed in some countries. Community acquired infections as well as hospital acquired infections with MRSA, multi-drug resistance (MDR) Pseudomonas aeruginosa, and ESBL have been a problem. This review will discuss the risk of MDR bacterial infectious diseases for travellers. PMID:22413540

  17. 77 FR 44177 - Antimicrobial Animal Drug Sales and Distribution Reporting

    Science.gov (United States)

    2012-07-27

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 514 Antimicrobial Animal Drug Sales and Distribution Reporting AGENCY: Food and Drug Administration, HHS. ACTION: Advance notice of proposed rulemaking. SUMMARY: The Food and Drug Administration (FDA or Agency) is soliciting comments regarding...

  18. Salmon aquaculture and antimicrobial resistance in the marine environment.

    Science.gov (United States)

    Buschmann, Alejandro H; Tomova, Alexandra; López, Alejandra; Maldonado, Miguel A; Henríquez, Luis A; Ivanova, Larisa; Moy, Fred; Godfrey, Henry P; Cabello, Felipe C

    2012-01-01

    Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments.

  19. Antimicrobial resistances do not affect colonization parameters of intestinal E. coli in a small piglet group

    Directory of Open Access Journals (Sweden)

    Schierack Peter

    2009-10-01

    Full Text Available Abstract Background Although antimicrobial resistance and persistence of resistant bacteria in humans and animals are major health concerns worldwide, the impact of antimicrobial resistance on bacterial intestinal colonization in healthy domestic animals has only been rarely studied. We carried out a retrospective analysis of the antimicrobial susceptibility status and the presence of resistance genes in intestinal commensal E. coli clones from clinically healthy pigs from one production unit with particular focus on effects of pheno- and/or genotypic resistance on different nominal and numerical intestinal colonization parameters. In addition, we compared the occurrence of antimicrobial resistance phenotypes and genotypes with the occurrence of virulence associated genes typical for extraintestinal pathogenic E. coli. Results In general, up to 72.1% of all E. coli clones were resistant to ampicillin, chloramphenicol, kanamycin, streptomycin, sulfamethoxazole or tetracycline with a variety of different resistance genes involved. There was no significant correlation between one of the nominal or numerical colonization parameters and the absence or presence of antimicrobial resistance properties or resistance genes. However, there were several statistically significant associations between the occurrence of single resistance genes and single virulence associated genes. Conclusion The demonstrated resistance to the tested antibiotics might not play a dominant role for an intestinal colonization success in pigs in the absence of antimicrobial drugs, or cross-selection of other colonization factors e.g. virulence associated genes might compensate "the cost of antibiotic resistance". Nevertheless, resistant strains are not outcompeted by susceptible bacteria in the porcine intestine. Trial Registration The study was approved by the local animal welfare committee of the "Landesamt für Arbeitsschutz, Gesundheitsschutz und technische Sicherheit" Berlin

  20. Challenges with gonorrhea in the era of multi-drug and extensively drug resistance - are we on the right track?

    Science.gov (United States)

    Unemo, Magnus; Golparian, Daniel; Shafer, William M

    2014-06-01

    Neisseria gonorrhoeae has retained antimicrobial resistance to drugs previously recommended for first-line empiric treatment of gonorrhea, and resistance to ceftriaxone, the last option for monotherapy, is evolving. Crucial actions to combat this developing situation include implementing response plans; considering use of dual antimicrobial regimens; enhancing surveillance of gonorrhea, gonococcal antimicrobial resistance, treatment failures and antimicrobial use/misuse and improving prevention, early diagnosis, contact tracing and treatment. The ways forward also include an intensified research to identify novel antimicrobial resistance determinants and develop and evaluate appropriate use of molecular antimicrobial resistance testing, ideally point-of-care and with simultaneous detection of gonococci, to supplement culture-based methods and ideally guide tailored treatment. It is crucial with an enhanced understanding of the dynamics of the national and international emergence, transmission and evolution of antimicrobial-resistant gonococcal strains. Genome sequencing combined with epidemiological metadata will detail these issues and might also revolutionize the molecular antimicrobial resistance testing. Ultimately, novel antimicrobials are essential and some antimicrobials in development have shown potent in vitro activity against gonococci. Several of these antimicrobials deserve further attention for potential future treatment of gonorrhea. PMID:24702589

  1. Drug resistance in mycobacterium tuberculosis

    OpenAIRE

    Abate, Getahun

    1999-01-01

    Drug-resistant tuberculosis is a global public health problem. This investigation was performed to find ways of improving regimens that could be used for the treatment of drug- and multidrug-resistant TB and also to find a rapid method of diagnosis of drug resistant TB, particularly MDR-TB. Among 107 isolates of M. tuberculosis from re-treatment cases of pulmonary TB in Ethiopia (study 1), 48% were resistant at least to one of the four first-line drugs tested and 12 % were A...

  2. ANTIMICROBIAL RESISTANT PATTERN OF FECAL ESCHERICHIA COLI IN SELECTED BROILER FARMS OF EASTERN HARARGE ZONE, ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Tesfaheywet Zeryehun

    2013-12-01

    Full Text Available A study was conducted to determine the pattern of antimicrobial resistance in Escherichia coli isolated from Cloacal swab of broiler chickens in selected farms of Eastern Harrarge zone of Ethiopia. Isolation and identification of Escherichia coli were done by using enrichment media, selective media, and biochemical tests. 65 selected isolates were subjected to 9 antimicrobial agents to determine their resistance by the disk diffusion method. Accordingly, the resistance of E.coli was tetracycline (90%, streptomycin (78%, ampicillin (60%, amoxicillin (56%, erythromycin (45%, ciprofloxacin (38%, and chloramphenicol (15%. None of the isolates showed resistance to gentamicin. Sensitivity was observed in case of 80%, 77%, 44%, 32%, 26%, 20%, 20%, 15%, and 10% of the isolates for chloramphenicol, gentamicin, ciprofloxacin, amoxicillin, ampicillin, streptomycin, erythromycin, and tetracycline, respectively. Intermediate resistance/susceptibility was recorded for 5-35% of the isolates. 92.3% of the isolates tested showed multidrug resistance for 2 or more antimicrobials and the highest levels (18.5% of multidrug-resistant E. coli were observed for 3 antimicrobials accounting 7.7% for tetracycline-ampicillin-streptomycin and 10.8% for tetracycline-ampicillin-amoxicillin. This study showed resistance against the antibiotics that are commonly used in poultry. Furthermore, it was concluded that gentamicin, chloramphenicole and ciproflaxin will be the first drugs of choice to resist infections caused by E. coli in chicken in Ethiopia. These findings confirm significant increase in the incidence of antimicrobial resistance in the E. coli isolates which is most probably due to increased use of antibiotics as feed additives for growth promotion and prevention of diseases and use of inappropriate antibiotics for treatment of diseases. Hence, excess or abusive use of antimicrobials should be guarded through judicious application of antimicrobials

  3. Workshop report: the 2012 antimicrobial agents in veterinary medicine: exploring the consequences of antimicrobial drug use: a 3-D approach.

    Science.gov (United States)

    Martinez, M; Blondeau, J; Cerniglia, C E; Fink-Gremmels, J; Guenther, S; Hunter, R P; Li, X-Z; Papich, M; Silley, P; Soback, S; Toutain, P-L; Zhang, Q

    2014-02-01

    Antimicrobial resistance is a global challenge that impacts both human and veterinary health care. The resilience of microbes is reflected in their ability to adapt and survive in spite of our best efforts to constrain their infectious capabilities. As science advances, many of the mechanisms for microbial survival and resistance element transfer have been identified. During the 2012 meeting of Antimicrobial Agents in Veterinary Medicine (AAVM), experts provided insights on such issues as use vs. resistance, the available tools for supporting appropriate drug use, the importance of meeting the therapeutic needs within the domestic animal health care, and the requirements associated with food safety and food security. This report aims to provide a summary of the presentations and discussions occurring during the 2012 AAVM with the goal of stimulating future discussions and enhancing the opportunity to establish creative and sustainable solutions that will guarantee the availability of an effective therapeutic arsenal for veterinary species.

  4. Regional, Seasonal, and Temporal Variations in the Prevalence of Antimicrobial-Resistant Escherichia coli Isolated from Pigs at Slaughter in Denmark (1997-2005)

    DEFF Research Database (Denmark)

    Abatih, E. N.; Emborg, Hanne-Dorthe; Jensen, Vibeke Frøkjær;

    2009-01-01

    Antimicrobial Resistance Monitoring and Research Programme database. The Cochran-Armitage trend test was used to detect the presence and evaluate the significance of regional, seasonal, and annual trends in the occurrence of antimicrobial-resistant E. coli for four drugs. Associations between resistance...

  5. Study of antimicrobial property of some hypoglycemic drugs

    Directory of Open Access Journals (Sweden)

    Arun Kumar Dash

    2011-01-01

    Full Text Available In the present work, a comparative antimicrobial study of different hypoglycemic drugs (Metformin, Phenformin, and Rosiglitazone was carried out. The main objective was to ascertain the antimicrobial activity by using "non-antibiotics" as the test substances. The antimicrobial activity was carried out against different bacteria and fungi namely Bacillus liceniformis, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Shigella flexneri, Bacillus subtilis, Staphylococcus aureus subspp., and Staphylococcus epidermidis by using disc diffusion method and agar dilution method. Ciprofloxacin was taken as the standard antibiotic. The entire procedure was carried out in an aseptic area under the laminar flow by inoculating the bacterial strain to the agar media in which the drug solution was added. Different concentrations (300 and 400 μg/ml of the standard antibiotic and selected drugs were subjected for minimum inhibitory concentration, and zone of inhibition tests and the antimicrobial activity of the selected drugs were determined.

  6. Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp.

    Science.gov (United States)

    Zhao, S; Tyson, G H; Chen, Y; Li, C; Mukherjee, S; Young, S; Lam, C; Folster, J P; Whichard, J M; McDermott, P F

    2016-01-01

    The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2″)-Ib, aph(2″)-Ic, aph(2')-If, aph(2″)-Ig, aph(2″)-Ih, aac(6')-Ie-aph(2″)-Ia, aac(6')-Ie-aph(2″)-If, aac(6')-Im, aadE, sat4, ant(6'), aad9, aph(3')-Ic, and aph(3')-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs. PMID:26519386

  7. Prevalence and Antimicrobial Resistance in Escherichia coli from Food Animals in Lagos, Nigeria.

    Science.gov (United States)

    Adenipekun, Eyitayo O; Jackson, Charlene R; Oluwadun, Afolabi; Iwalokun, Bamidele A; Frye, Jonathan G; Barrett, John B; Hiott, Lari M; Woodley, Tiffanie A

    2015-06-01

    Foodborne bacteria are often associated with human infections; these infections can become more complicated to treat if the bacteria are also resistant to antimicrobials. In this study, prevalence, antimicrobial resistance, and genetic relatedness of Escherichia coli among food producing animals from Lagos, Nigeria, was investigated. From December 2012 to June 2013, E. coli were isolated from fecal samples of healthy cattle, chicken, and swine. Antimicrobial susceptibility testing against 22 antimicrobials was performed using broth microdilution with the Sensititre™ system. Clonal types were determined by pulsed-field gel electrophoresis (PFGE). From the analysis, 211/238 (88.7%), 170/210 (81%), and 136/152 (89.5%) samples from cattle, chicken, and swine, respectively, were positive for E. coli. A subset of those isolates (n=211) selected based on β-lactamase production was chosen for further study. Overall, E. coli exhibited the highest resistance to tetracycline (124/211; 58.8%), trimethoprim/sulfamethoxazole (84/211; 39.8%), and ampicillin (72/211; 34.1%). Approximately 40% of the isolates were pan-susceptible, and none of the isolates were resistant to amikacin, cefepime, ceftazidime, ertapenem, meropenem, or tigecycline. Among the resistant isolates, 28 different resistance patterns were observed; 26 of those were characterized as multi-drug resistant (MDR; resistance to ≥2 antimicrobials). One isolate was resistant to 13 different antimicrobials representing five different antimicrobial classes. Using PFGE, MDR E. coli were genetically diverse and overall did not group based on source; identical PFGE patterns were detected among isolates from different sources. These results suggest that isolates cannot be attributed to specific sources, and some may be present across all of the sources. Results from this study indicate that food-producing animals in Nigeria are a reservoir of MDR E. coli that may be transferred to humans via the food chain. PMID

  8. Antimicrobial resistance-a threat to the world's sustainable development.

    Science.gov (United States)

    Jasovský, Dušan; Littmann, Jasper; Zorzet, Anna; Cars, Otto

    2016-08-01

    This commentary examines how specific sustainable development goals (SDGs) are affected by antimicrobial resistance and suggests how the issue can be better integrated into international policy processes. Moving beyond the importance of effective antibiotics for the treatment of acute infections and health care generally, we discuss how antimicrobial resistance also impacts on environmental, social, and economic targets in the SDG framework. The paper stresses the need for greater international collaboration and accountability distribution, and suggests steps towards a broader engagement of countries and United Nations agencies to foster global intersectoral action on antimicrobial resistance. PMID:27416324

  9. Antimicrobial resistance-a threat to the world's sustainable development.

    Science.gov (United States)

    Jasovský, Dušan; Littmann, Jasper; Zorzet, Anna; Cars, Otto

    2016-08-01

    This commentary examines how specific sustainable development goals (SDGs) are affected by antimicrobial resistance and suggests how the issue can be better integrated into international policy processes. Moving beyond the importance of effective antibiotics for the treatment of acute infections and health care generally, we discuss how antimicrobial resistance also impacts on environmental, social, and economic targets in the SDG framework. The paper stresses the need for greater international collaboration and accountability distribution, and suggests steps towards a broader engagement of countries and United Nations agencies to foster global intersectoral action on antimicrobial resistance.

  10. Monitoring of antimicrobial resistance among food animals: Principles and limitations

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    2004-01-01

    Large amounts of antimicrobial agents are in the production of food animals used for therapy and prophylactics of bacterial infections and in feed to promote growth. The use of antimicrobial agents causes problems in the therapy of infections through the selection for resistance among bacteria...... pathogenic for animals or humans. Current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimes to limit the development of resistance...... is incomplete. Programmes monitoring the occurrence and development of resistance are essential to determine the most important areas for intervention and to monitor the effects of interventions. When designing a monitoring programme it is important to decide on the purpose of the programme. Thus...

  11. Drugs reverting multidrug resistance (chemosensitizers)

    Energy Technology Data Exchange (ETDEWEB)

    Gualtieri, F. [Florence Univ. (Italy). Dip. di Scienze Farmaceutiche

    1996-12-01

    Drug resistance is a phenomenon that frequently impairs proper treatment of cancer. Multidrug resistance (MDR) is a particular case of acquired drug resistance, resulting from overexpression of a protein (P-170) that functions as a pump, clearing cells from the chemotherapic. The P-170 protein functions can be inhibited by a variety of lipophilic drugs containing a hydrophilic nitrogen, protonated at physiological pH. A considerable effort is underway to identify new drugs able to reverse MDR. Few of these molecules are already undergoing clinical trials.

  12. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    International Nuclear Information System (INIS)

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08–5.30 mg cadmium, 1.1–32.0 mg chrome, 22.4–3387.6 mg copper, <2.0–26.7 mg lead, <0.01–0.11 mg mercury, 3.1–97.3 mg nickel and 93.0–8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against β-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against β-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  13. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzel, Christina S., E-mail: Christina.Hoelzel@wzw.tum.de [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mueller, Christa [Institute for Agroecology, Organic Farming and Soil Protection, Bavarian State Research Center for Agriculture (LfL), Lange Point 12, 85354 Freising (Germany); Harms, Katrin S. [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mikolajewski, Sabine [Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 4, 85354 Freising (Germany); Schaefer, Stefanie; Schwaiger, Karin; Bauer, Johann [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany)

    2012-02-15

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  14. Usage of antimicrobials and occurrence of antimicrobial resistance among bacteria from mink

    DEFF Research Database (Denmark)

    Pedersen, Karl; Hammer, Anne Sofie; Sørensen, Charlotte Mark;

    2009-01-01

    The usage of antimicrobials for treatment of mink and the occurrence of antimicrobial resistance among the most important bacterial pathogens in mink was investigated. The aim of the study was to provide data, which may serve as a basis for the formulation of recommendations for prudent Use...

  15. Laboratory-based nationwide surveillance of antimicrobial resistance in Ghana

    Directory of Open Access Journals (Sweden)

    Opintan JA

    2015-11-01

    >256 µg/mL. A range of clinical bacterial isolates were resistant to important commonly used antimicrobials in the country, necessitating an effective surveillance to continuously monitor AMR in Ghana. With local and international support, Ghana can participate in global AMR surveillance. Keywords: antimicrobial resistance, ESBL-producing, quinolone, multiple drug resistance

  16. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    Directory of Open Access Journals (Sweden)

    Getahun E Agga

    Full Text Available This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie. Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR Gram-negative (Escherichia coli and Salmonella enterica and Gram-positive (enterococci bacteria were determined from individual samples (n = 174. The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44 by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine, low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05 in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar

  17. Elaboration of a global strategy for containing microbial drug resistance.

    Science.gov (United States)

    Zabicki, W

    2001-01-01

    The World Health Organization is engaged in developing the Global Strategy for Containment of Antimicrobial Resistance. The preliminary document WHO/CDC/CSR/DRS/2000.I Draft has already been distributed, and remarks have been solicited. The World Health Assembly Resolution of 1998 urged Member States to encourage the appropriate and cost-effective use of antimicrobials. Member States were requested to implement effective systems of microbial resistance surveillance and to monitor volumes and patterns of antimicrobial drug use. The phenomenon of antimicrobial resistance is rising rapidly and causing growing international concern. Many countries have undertaken their own national plans to address the problem. The overall aim of the strategy being developed is to find the most effective forms and to prevent the spread of antimicrobial resistance and resistant microbes. The strategy covers the following topics: patients and general community, prescribers, hospitals, veterinarians, manufacturers and drug dispensers, and international aspects. The strategy is being developed on the basis of expert opinions, published reports, reviews of specific topics specially commissioned by various international and national bodies, and a large body of literature with a list of publications containing over 100 items. PMID:17986973

  18. Prevalence of enterobacteriaceae in Tupinambis merianae (Squamata: Teiidae) from a captive facility in Central Brazil, with a profile of antimicrobial drug resistance in Salmonella enterica

    OpenAIRE

    Andréa de Moraes Carvalho; Ayrton Klier Péres Júnior; Maria Auxiliadora Andrade; Valéria de Sá Jayme

    2013-01-01

    The present study reports the presence of enterobacteriaceae in Tegu Lizards (Tupinambis merianae)from a captive facility in central Brazil. From a total of 30 animals, 10 juveniles and 20 adults (10 males, 10 females), 60 samples were collected, in two periods separated by 15 days. The samples were cultivated in Xylose-lysine-deoxycholate agar (XLT4) and MacConkey agar. The Salmonella enterica were tested for antimicrobial susceptibility. A total of 78 bacteria was isolated, of wich 27 were ...

  19. Antimicrobial resistance programs in canada 1995-2010: a critical evaluation

    Directory of Open Access Journals (Sweden)

    Conly John M

    2012-02-01

    Full Text Available Abstract Background In Canada, systematic efforts for controlling antibiotic resistance began in 1997 following a national Consensus Conference. The Canadian strategy produced 27 recommendations, one of which was the formation of the Canadian Committee on Antibiotic Resistance (CCAR. In addition several other organizations began working on a national or provincial basis over the ensuing years on one or more of the 3 identified core areas of the strategy. Critical evaluation of the major programs within Canada which focused on antimicrobial resistance and the identified core components has not been previously conducted. Findings Data was collected from multiple sources to determine the components of four major AMR programs that were considered national based on their scope or in the delivery of their mandates. Assessment of program components was adapted from the report from the International Forum on Antibiotic Resistance colloquium. Most of the programs used similar tools but only the Do Bugs Need Drugs Program (DBND had components directed towards day cares and schools. Surveillance programs for antimicrobial resistant pathogens have limitations and/or significant sources of bias. Overall, there has been a 25.3% decrease in oral antimicrobial prescriptions in Canada since 1995, mainly due to decreases in β lactams, sulphonamides and tetracyclines in temporal association with multiple programs with the most comprehensive and sustained national programs being CCAR and DBND. Conclusions Although there has been a substantial decrease in oral antimicrobial prescriptions in Canada since 1995, there remains a lack of leadership and co-ordination of antimicrobial resistance activities.

  20. Identification and antimicrobial resistance of microflora colonizing feral pig (Sus scrofa of Brazilian Pantanal

    Directory of Open Access Journals (Sweden)

    SS Lessa

    2011-06-01

    Full Text Available Antimicrobial resistance of bacteria is a worldwide problem affecting wild life by living with resistant bacteria in the environment. This study presents a discussion of outside factors environment on microflora of feral pigs (Sus scrofa from Brazilian Pantanal. Animals had samples collected from six different body sites coming from two separated geographic areas, Nhecolandia and Rio Negro regions. With routine biochemical tests and commercial kits 516 bacteria were identified, with 240 Gram-positive, predominantly staphylococci (36 and enterococci (186 strains. Among Gram-negative (GN bacteria the predominant specimens of Enterobacteriaceae (247 mainly represented by Serratia spp. (105, Escherichia coli (50, and Enterobacter spp. (40 and specimens not identified (7. Antimicrobial susceptibility was tested against 17 drugs by agar diffusion method. Staphylococci were negative to production of enterotoxins and TSST-1, with all strains sensitive towards four drugs and highest resistance toward ampicillin (17%. Enterococci presented the highest sensitivity against vancomycin (98%, ampicillin (94% and tetracycline (90%, and highest resistance pattern toward oxacillin (99%, clindamycin (83%, and cotrimoxazole (54%. In GN the highest resistance was observed with Serratia marcescens against CFL (98%, AMC (66% and AMP (60% and all drugs was most effective against E. coli SUT, TET (100%, AMP, TOB (98%, GEN, CLO (95%, CFO, CIP (93%. The results show a new profile of oxacillin-resistant enterococci from Brazilian feral pigs and suggest a limited residue and spreading of antimicrobials in the environment, possibly because of low anthropogenic impact reflected by the drug susceptibility profile of bacteria isolated.

  1. Mechanisms of antimicrobial resistance in finfish aquaculture environments

    Directory of Open Access Journals (Sweden)

    Claudio D. Miranda

    2013-08-01

    Full Text Available Consumer demand for affordable fish drives the ever-growing global aquaculture industry. The intensification and expansion of culture conditions in the production of several finfish species has been coupled with an increase in bacterial fish disease and the need for treatment with antimicrobials. Understanding the molecular mechanisms of antimicrobial resistance prevalent in aquaculture environments is important to design effective disease treatment strategies, to prioritize the use and registration of antimicrobials for aquaculture use, and to assess and minimize potential risks to public health. In this brief article we provide an overview of the molecular mechanisms of antimicrobial resistance mechanisms in finfish aquaculture environments and highlight specific research that should provide the basis of sound, science-based policies for the use of antimicrobials in aquaculture.

  2. The global threat of antimicrobial resistance: science for intervention

    Directory of Open Access Journals (Sweden)

    I. Roca

    2015-07-01

    Full Text Available In the last decade we have witnessed a dramatic increase in the proportion and absolute number of bacterial pathogens resistant to multiple antibacterial agents. Multidrug-resistant bacteria are currently considered as an emergent global disease and a major public health problem. The B-Debate meeting brought together renowned experts representing the main stakeholders (i.e. policy makers, public health authorities, regulatory agencies, pharmaceutical companies and the scientific community at large to review the global threat of antibiotic resistance and come up with a coordinated set of strategies to fight antimicrobial resistance in a multifaceted approach. We summarize the views of the B-Debate participants regarding the current situation of antimicrobial resistance in animals and the food chain, within the community and the healthcare setting as well as the role of the environment and the development of novel diagnostic and therapeutic strategies, providing expert recommendations to tackle the global threat of antimicrobial resistance.

  3. A new strategy to fight antimicrobial resistance: the revival of old antibiotics

    Directory of Open Access Journals (Sweden)

    Nadim eCassir

    2014-10-01

    Full Text Available The increasing prevalence of hospital- and community-acquired infections caused by multidrug-resistant bacterial pathogens is limiting the options for effective antibiotic therapy. Moreover, this alarming spread of antimicrobial resistance has not been paralleled by the development of novel antimicrobials. Resistance to the scarce new antibiotics is also emerging. In this context, the rational use of older antibiotics could represent an alternative for the treatment of multidrug-resistant bacterial pathogens. This strategy would help to optimize the armamentarium of antibiotics so as to preserve the effectiveness of new antibiotics and avoid the prescription of drugs known to favor the spread of resistance (i.e., quinolones. Furthermore, from a global economic perspective, this strategy could be useful in public health, given that several of these cheapest forgotten antibiotics are not available in many countries. We will review here the successful treatment of multidrug-resistant bacterial infections with old antibiotics and discuss their place in current practice.

  4. Study on the relationship between the use of antimicrobial agents and the bacterial drug resistance in 2012-2014%对2012-2014年抗菌药物使用情况与细菌耐药相关性的研究

    Institute of Scientific and Technical Information of China (English)

    孙璇; 陈强; 蒋学林; 张裕祥

    2016-01-01

    Objective:To explore the relationship between the medication frequency of antimicrobial agents and the drug resistance rate in hospital.Methods:The related data of number of pharmacy store,bacteria detection and drug resistance were analyzed.Results:Beginning in 2013,with the medication frequency of antimicrobial agents decreased significantly,especially the reduction of cephalosporins drug dosage,the sensitivity of the bacteria to antimicrobial agents was recovered.The medication frequency ranked the top 4 were cephalosporins,quinolones,penicillins and aminoglycosides.Conclusion:The clinical use of antimicrobial agents should be strictly reasonable,strengthening the supervision of the use of antimicrobial agents can delay the occurrence of bacterial drug resistance.%目的:探讨抗菌药物用药频度和医院耐药率的关系。方法:分析药库出库数量和细菌检出和耐药情况相关数据。结果:从2013年开始,随着抗菌药物的用药频度明显下降,尤其是头孢菌素类药物用量的减少,细菌对于抗菌药物的敏感性在恢复。用药频度排名前4位分别为头孢菌素类、喹诺酮类、青霉素类、氨基糖苷类。结论:临床使用抗菌药物应严格、合理,加强抗菌药物使用的监管,能够延缓细菌耐药性的发生。

  5. Analysis on Antimicrobial Resistance of Clinical Bacteria Isolated from County Hospitals and a Teaching Hospital

    Institute of Scientific and Technical Information of China (English)

    SUN Ziyong; LI Li; ZHU Xuhui; MA Yue; LI Jingyun; SHEN Zhengyi; JIN Shaohong

    2006-01-01

    The distinction of antimicrobial resistance of clinical bacteria isolated from county hospitals and a teaching hospital was investigated. Disc diffusion test was used to study the antimicrobial resistance of isolates collected from county hospitals and a teaching hospital. The data was analyzed by WHONET5 and SPSS statistic software. A total of 655 strains and 1682 strains were collected from county hospitals and a teaching hospital, respectively, in the year of 2003. The top ten pathogens were Coagulase negative staphylococci (CNS), E. coli, Klebsiella spp. , S. areus, P. aeruginosa, Enterococcus spp. , Enterobacter spp. , otherwise Salmonella spp. , Proteus spp. , Shigella spp. in county hospitals and Streptococcus spp. , Acinetobacter spp. , X. maltophilia in the teaching hospital. The prevalence of multi-drug resistant bacteria was 5% (4/86) of methicillin-resistant S. areus (MRSA), 12% (16/133) and 15.8 % (9/57) of extended-spectrum β-lactamases producing strains of E. coli and Klebsiella spp. , respectively, in county hospitals. All of the three rates were lower than that in the teaching hospital and the difference was statistically significant (P<0.01). However, the incidence of methicillin-resistant CNS (MRCNS) reached to 70 % (109/156) in the two classes of hospitals. Generally, the antimicrobial resistant rates in the county hospitals were lower than those in the teaching hospital, except the resistant rates of ciprofloxacin, erythromycin, clindamycin, SMZco which were similar in the two classes of hospitals. There were differences between county hospitals and the teaching hospital in the distribution of clinical isolates and prevalence of antimicrobial resistance. It was the basis of rational use of antimicrobial agents to monitor antimicrobial resistance by each hospital.

  6. Towards the establishment and standardization of a veterinary antimicrobial resistance surveillance and monitoring programme in South Africa

    Directory of Open Access Journals (Sweden)

    H. Nel

    2004-11-01

    Full Text Available The objective of this study was to establish a repeatable, standardized laboratory procedure for monitoring the development of antimicrobial resistance in bacteria isolated from animals and food of animal origin in South Africa, with reagents prepared in-house. The emergence of resistance and the spread of resistant bacteria can be limited by implementing a veterinary antimicrobial drug policy, in which inter alia systematic monitoring and prudent use play essential roles. The bacteria included in this study represented three different categories, namely zoonotic bacteria (Salmonella, indicator bacteria (Escherichia coli, Enterococcus faecalis and Enterococcus faecium and veterinary pathogens (Mannheimia haemolytica. Thirty isolates of each species were collected with the aim of standardizing the laboratory methodology for a future national veterinary surveillance and monitoring programme. Susceptibility to ten selected antimicrobial drugs was determined by means of minimum inhibitory concentrations (MICs using the microdilution method. The method according to the National Committee for Clinical Laboratory Standards was used as the standard. Multi-well plates containing varying dilutions of antimicrobial drugs and prepared in-house for MIC determinations, yielded repeatable results. Storage of plates for 2 months at -70 oC did not influence results meaningfully. Within this limited sample of bacteria, MIC results did not indicate meaningful resistance against any of the ten selected antimicrobial drugs. The findings of the study will be used to establish a national veterinary antimicrobial resistance surveillance and monitoring programme in South Africa. To allow for international comparison of data, harmonisation of the surveillance and monitoring programme in accordance with global trends is encouraged. Ideally it should be combined with a programme monitoring the quantities of antimicrobial drugs used. The aim is to contribute to slowing down

  7. Repurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens.

    Directory of Open Access Journals (Sweden)

    Shankar Thangamani

    Full Text Available Without a doubt, our current antimicrobials are losing the battle in the fight against newly-emerged multidrug-resistant pathogens. There is a pressing, unmet need for novel antimicrobials and novel approaches to develop them; however, it is becoming increasingly difficult and costly to develop new antimicrobials. One strategy to reduce the time and cost associated with antimicrobial innovation is drug repurposing, which is to find new applications outside the scope of the original medical indication of the drug. Ebselen, an organoselenium clinical molecule, possesses potent antimicrobial activity against clinical multidrug-resistant Gram-positive pathogens, including Staphylococcus, Streptococcus, and Enterococcus, but not against Gram-negative pathogens. Moreover, the activity of ebselen against Gram-positive pathogens exceeded those activities determined for vancomycin and linezolid, drugs of choice for treatment of Enterococcus and Staphylococcus infections. The minimum inhibitory concentrations of ebselen at which 90% of clinical isolates of Enterococcus and Staphylococcus were inhibited (MIC90 were found to be 0.5 and 0.25 mg/L, respectively. Ebselen showed significant clearance of intracellular methicillin-resistant S. aureus (MRSA in comparison to vancomycin and linezolid. We demonstrated that ebselen inhibits the bacterial translation process without affecting mitochondrial biogenesis. Additionally, ebselen was found to exhibit excellent activity in vivo in a Caenorhabditis elegans MRSA-infected whole animal model. Finally, ebselen showed synergistic activities with conventional antimicrobials against MRSA. Taken together, our results demonstrate that ebselen, with its potent antimicrobial activity and safety profiles, can be potentially used to treat multidrug resistant Gram-positive bacterial infections alone or in combination with other antibiotics and should be further clinically evaluated.

  8. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.

    Science.gov (United States)

    Magiorakos, A-P; Srinivasan, A; Carey, R B; Carmeli, Y; Falagas, M E; Giske, C G; Harbarth, S; Hindler, J F; Kahlmeter, G; Olsson-Liljequist, B; Paterson, D L; Rice, L B; Stelling, J; Struelens, M J; Vatopoulos, A; Weber, J T; Monnet, D L

    2012-03-01

    Many different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided.

  9. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.

    Science.gov (United States)

    Lam, Shu J; O'Brien-Simpson, Neil M; Pantarat, Namfon; Sulistio, Adrian; Wong, Edgar H H; Chen, Yu-Yen; Lenzo, Jason C; Holden, James A; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-01-01

    With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria. PMID:27617798

  10. Associations between host characteristics and antimicrobial resistance of Salmonella typhimurium.

    Science.gov (United States)

    Ruddat, I; Tietze, E; Ziehm, D; Kreienbrock, L

    2014-10-01

    A collection of Salmonella Typhimurium isolates obtained from sporadic salmonellosis cases in humans from Lower Saxony, Germany between June 2008 and May 2010 was used to perform an exploratory risk-factor analysis on antimicrobial resistance (AMR) using comprehensive host information on sociodemographic attributes, medical history, food habits and animal contact. Multivariate resistance profiles of minimum inhibitory concentrations for 13 antimicrobial agents were analysed using a non-parametric approach with multifactorial models adjusted for phage types. Statistically significant associations were observed for consumption of antimicrobial agents, region type and three factors on egg-purchasing behaviour, indicating that besides antimicrobial use the proximity to other community members, health consciousness and other lifestyle-related attributes may play a role in the dissemination of resistances. Furthermore, a statistically significant increase in AMR from the first study year to the second year was observed.

  11. Emerging Infectious Diseases, Antimicrobial Resistance and Millennium Development Goals: Resolving the Challenges through One Health

    OpenAIRE

    G. V. Asokan; R. K. Kasimanickam

    2014-01-01

    Most emerging infectious diseases are zoonoses, which could severely hamper reaching the targets of millennium development goals (MDG). Five out of the total eight MDG’s are strongly associated with the Emerging Infectious Diseases (EIDs). Recent emergence and dissemination of drug-resistant pathogens has accelerated and prevent reaching the targets of MDG, with shrinking of therapeutic arsenal, mostly due to antimicrobial resistance (AMR). World Health Organization (WHO has identified AMR a...

  12. Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua.

    Science.gov (United States)

    Tajkarimi, Mehrdad; Harrison, Scott H; Hung, Albert M; Graves, Joseph L

    2016-01-01

    A majority of antibiotic-resistant bacterial infections in the United States are associated with biofilms. Nanoscale biophysical measures are increasingly revealing that adhesive and viscoelastic properties of bacteria play essential roles across multiple stages of biofilm development. Atomic Force Microscopy (AFM) applied to strains with variation in antimicrobial resistance enables new opportunities for investigating the function of adhesive forces (stickiness) in biofilm formation. AFM force spectroscopy analysis of a field strain of Listeria innocua and the strain Escherichia coli K-12 MG1655 revealed differing adhesive forces between antimicrobial resistant and nonresistant strains. Significant increases in stickiness were found at the nanonewton level for strains of Listeria innocua and Escherichia coli in association with benzalkonium chloride and silver nanoparticle resistance respectively. This advancement in the usage of AFM provides for a fast and reliable avenue for analyzing antimicrobial resistant cells and the molecular dynamics of biofilm formation as a protective mechanism.

  13. Increased survival of experimentally evolved antimicrobial peptide-resistant Staphylococcus aureus in an animal host.

    Science.gov (United States)

    Dobson, Adam J; Purves, Joanne; Rolff, Jens

    2014-09-01

    Antimicrobial peptides (AMPs) have been proposed as new class of antimicrobial drugs, following the increasing prevalence of bacteria resistant to antibiotics. Synthetic AMPs are functional analogues of highly evolutionarily conserved immune effectors in animals and plants, produced in response to microbial infection. Therefore, the proposed therapeutic use of AMPs bears the risk of 'arming the enemy': bacteria that evolve resistance to AMPs may be cross-resistant to immune effectors (AMPs) in their hosts. We used a panel of populations of Staphylococcus aureus that were experimentally selected for resistance to a suite of individual AMPs and antibiotics to investigate the 'arming the enemy' hypothesis. We tested whether the selected strains showed higher survival in an insect model (Tenebrio molitor) and cross-resistance against other antimicrobials in vitro. A population selected for resistance to the antimicrobial peptide iseganan showed increased in vivo survival, but was not more virulent. We suggest that increased survival of AMP-resistant bacteria almost certainly poses problems to immune-compromised hosts.

  14. Multirresistência antimicrobiana em cepas de Escherichia coli isoladas de cadelas com piometra Antimicrobial multi-resistance of Escherichia coli strains isolated from bitches with pyometra

    Directory of Open Access Journals (Sweden)

    V.M. Lara

    2008-08-01

    Full Text Available The antimicrobial sensibility of Escherichia coli strains isolated from the uterine content of bitches was evaluated. Fifteen E. coli strains were tested in relation to their susceptibility to different antimicrobials. The results demonstrated 100% of resistance to all tested drugs, being a quite conflicting finding compared to other works, which observed variable resistance of those bacteria to different antimicrobials but not the same multi-resistance pattern. The detection of those multi-resistance strains configures a problem, with important implications on the antimicrobial therapy. Therefore, additional investigations for a best characterization and extension of this problem are needed.

  15. Antimicrobial resistance of Enterococcus faecalis isolated from meat

    OpenAIRE

    Różańska Hanna; Lewtak-Piłat Aleksandra; Osek Jacek

    2015-01-01

    The aim of the study was the evaluation of the antimicrobial resistance of Enterococcus faecalis strains isolated from cattle, pig, and poultry meat. A test was performed on 111 strains using the minimum inhibitory concentration technique. The highest number of isolates (94 strains) were resistant to lincomycin, the second-highest resistance was to quinupristin/dalfopristin (88 strains), tetracycline followed (65 strains), and erythromycin resistance was also notable (40 strains). All isolate...

  16. Supramolecular Antibiotic Switches: A Potential Strategy for Combating Drug Resistance.

    Science.gov (United States)

    Bai, Haotian; Lv, Fengting; Liu, Libing; Wang, Shu

    2016-08-01

    Bacterial infectious disease is a serious public health concern throughout the world. Pathogen drug resistance, arising from both rational use and abuse/misuse of germicides, complicates the situation. Aside from developing novel antibiotics and antimicrobial agents, molecular approaches have become another significant method to overcome the problem of pathogen drug resistance. Established supramolecular systems, the antibiotic properties of which can be switched "on" and "off" through host-guest interactions, show great potential in combating issues regarding antibiotic resistance in the long term, as indicated by several recent studies. In this Concept, recently developed strategies for antibacterial regulation are summarized and further directions for research into antibiotic switches are proposed. PMID:27312106

  17. Oral administration of antimicrobials increase antimicrobial resistance in E. coli from chicken--a systematic review.

    Science.gov (United States)

    Simoneit, C; Burow, E; Tenhagen, B-A; Käsbohrer, A

    2015-01-01

    Antimicrobials play an important role in animal and human health care. It was the aim of this systematic review to assess the effects of oral administration of antimicrobials on the development of antimicrobial resistance (AMR) in Escherichia coli (E. coli) from chickens. Moreover, the effects of the administration of more than one antimicrobial and of different dosages were studied. Literature was searched in November 2012 from the electronic databases ISI Web of Science, PubMed, Scopus and a national literature database (DIMDI) as well as the database ProQuest LLC. The search was updated in March 2014. Original studies describing a treatment (A) and a control group of either non-treatment (C) or initial value (0) and determining AMR in E. coli at different sample points (SP) were included. The literature search resulted in 35 full text articles on the topic, seven (20%) of which contained sufficient information on the administered antimicrobial and the impact of treatment on AMR. Most papers described the use of more than one antimicrobial, several dosages, controls (non-treatment or pre-treatment) and measured AMR at different SPs leading to a total of 227 SPs on the impact of the use of antimicrobials on AMR in chickens. 74% of the SPs (168/227) described a higher AMR-rate in E. coli from treated animals than from controls. After the administration of a single antimicrobial, AMR increased at 72% of the SPs. Administration of more than one antimicrobial increased AMR at 82% of the SPs. Higher dosages were associated with similar or higher AMR rates. The limited number of studies for each antimicrobial agent and the high variability in the resistance effect call for more well designed studies on the impact of oral administration on AMR development and spread. PMID:25433717

  18. Isolation of bacteriophages to multi-drug resistant Enterococci obtained from diabetic foot: A novel antimicrobial agent waiting in the shelf?

    Directory of Open Access Journals (Sweden)

    C S Vinodkumar

    2011-01-01

    Full Text Available Introduction: While foot infections in persons with diabetes are initially treated empirically, therapy directed at known causative organisms may improve the outcome. Many studies have reported on the bacteriology of diabetic foot infections (DFIs, but the results have varied and have often been contradictory. The purpose of the research work is to call attention to a frightening twist in the antibiotic-resistant Enterococci problem in diabetic foot that has not received adequate attention from the medical fraternity and also the pharmaceutical pipeline for new antibiotics is drying up. Materials and Methods: Adult diabetic patients admitted for lower extremity infections from July 2008 to December 2009 in the medical wards and intensive care unit of medical teaching hospitals were included in the study. The extent of the lower extremity infection on admission was assessed based on Wagner′s classification from grades I to V. Specimens were collected from the lesions upon admission prior to the initiation of antibiotic therapy or within the first 48 h of admission. Results: During the 18-month prospective study, 32 strains of Enterococcus spp. (26 Enterococcus faecalis and 06 E. faecium were recovered. Antibiotic sensitivity testing was done by Kirby-Bauer′s disk diffusion method. Isolates were screened for high-level aminoglycoside resistance (HLAR. A total of 65.6% of Enterococcus species showed HLAR. Multidrug resistance and concomitant resistance of HLAR strains to other antibiotics were quite high. None of the Enterococcus species was resistant to vancomycin. Conclusion: Multidrug-resistant Enterococci are a real problem and continuous surveillance is necessary. Today, resistance has rendered most of the original antibiotics obsolete for many infections, mandating the development of alternative anti-infection modalities. One of such alternatives stemming up from an old idea is the bacteriophage therapy. In the present study, we could

  19. Antimicrobial resistance among enterococci from pigs in three European countries

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hasman, Henrik; Jensen, Lars Bogø;

    2002-01-01

    Enterococci from pigs in Denmark, Spain, and Sweden were examined for susceptibility to antimicrobial agents and copper and the presence of selected resistance genes. The greatest levels of resistance were found among isolates from Spain and Denmark compared to those from Sweden, which correspond...

  20. Mycoplasma bovis: Mechanisms of Resistance and Trends in Antimicrobial Susceptibility

    Science.gov (United States)

    Lysnyansky, Inna; Ayling, Roger D.

    2016-01-01

    Mycoplasma bovis is a cell-wall-less bacterium and belongs to the class Mollicutes. It is the most important etiological agent of bovine mycoplasmoses in North America and Europe, causing respiratory disease, mastitis, otitis media, arthritis, and reproductive disease. Clinical disease associated with M. bovis is often chronic, debilitating, and poorly responsive to antimicrobial therapy, resulting in significant economic loss, the full extent of which is difficult to estimate. Until M. bovis vaccines are universally available, sanitary control measures and antimicrobial treatment are the only approaches that can be used in attempts to control M. bovis infections. However, in vitro studies show that many of the current M. bovis isolates circulating in Europe have high minimum inhibitory concentrations (MIC) for many of the commercially available antimicrobials. In this review we summarize the current MIC trends indicating the development of antimicrobial resistance in M. bovis as well as the known molecular mechanisms by which resistance is acquired. PMID:27199926

  1. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England

    Directory of Open Access Journals (Sweden)

    Williams Nicola J

    2010-04-01

    Full Text Available Abstract Background Escherichia coli isolates of equine faecal origin were investigated for antibiotic resistance, resistance genes and their ability to perform horizontal transfer. Methods In total, 264 faecal samples were collected from 138 horses in hospital and community livery premises in northwest England, yielding 296 resistant E. coli isolates. Isolates were tested for susceptibility to antimicrobial drugs by disc diffusion and agar dilution methods in order to determine minimum inhibitory concentrations (MIC. PCR amplification was used to detect genes conferring resistance to: ampicillin (TEM and SHV beta-lactamase, chloramphenicol (catI, catII, catIII and cml, tetracycline (tetA, tetB, tetC, tetD, tet E and tetG, and trimethoprim (dfrA1, dfrA9, dfrA12, dfrA13, dfr7, and dfr17. Results The proportion of antibiotic resistant isolates, and multidrug resistant isolates (MDR was significantly higher in hospital samples compared to livery samples (MDR: 48% of hospital isolates; 12% of livery isolates, p dfr, TEM beta-lactamase, tet and cat, conferring resistance to trimethoprim, ampicillin, tetracycline and chloramphenicol, respectively. Within each antimicrobial resistance group, these genes occurred at frequencies of 93% (260/279, 91%, 86.8% and 73.5%, respectively; with 115/296 (38.8% found to be MDR isolates. Conjugation experiments were performed on selected isolates and MDR phenotypes were readily transferred. Conclusions Our findings demonstrate that E. coli of equine faecal origin are commonly resistant to antibiotics used in human and veterinary medicine. Furthermore, our results suggest that most antibiotic resistance observed in equine E. coli is encoded by well-known and well-characterized resistant genes common to E. coli from man and domestic animals. These data support the ongoing concern about antimicrobial resistance, MDR, antimicrobial use in veterinary medicine and the zoonotic risk that horses could potentially pose to

  2. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    Science.gov (United States)

    Agga, Getahun E; Arthur, Terrance M; Durso, Lisa M; Harhay, Dayna M; Schmidt, John W

    2015-01-01

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P waste streams, but a higher diversity of antimicrobial resistance genes are present in treated human waste discharged from municipal wastewater treatment plants than in

  3. RETROSPECTIVE STUDY OF ANTIMICROBIAL RESIDUES AND RESISTANCE IN SWINE IN ABA ABIA STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    P. NWIYI

    2014-05-01

    Full Text Available Antimicrobials are used by livestock farmers to prevent and control infection. Antimicrobials are also included at sub-therapeutic doses in animal feed as growth promoters and to improve feed efficiency in intensive farming. The aim of this study was to evaluate the antimicrobial residues and resistance that could arise due to antimicrobial use in swine. The study was carried out between September 10th and December 10th 2013 in some selected swine farms in Ogbor Hill water side in Aba, Abia state. The study involved visiting the various farms, evaluating the records of previous treatment. Also the state zonal veterinary clinics visited and record of farms was collected for analysis. From the result obtained, in raining season in a given year, the frequency of tetracycline usage recorded 83.3%, penicillin recorded 75.0%, while sulfonamide recorded 25.0%. Tylosin and ivermox were the least and recorded 8.4% usage each. The swine treatment was done by the farmers hence there was consistent over-dosage of antimicrobials to the pigs as the manufacture’s guide was not complied with. The report from the records showed that some of the pigs were slaughtered and sold in the market at any time without recourse to drug with-draw. This result could be one of the responsible reasons for antimicrobial residues and resistance in swine and indeed livestock.

  4. Intraperiodontal pocket: An ideal route for local antimicrobial drug delivery

    Directory of Open Access Journals (Sweden)

    Sreeja C Nair

    2012-01-01

    Full Text Available Periodontal pockets act as a natural reservoir filled with gingival crevicular fluid for the controlled release delivery of antimicrobials directly. This article reflects the present status of nonsurgical controlled local intrapocket delivery of antimicrobials in the treatment of periodontitis. These sites have specialty in terms of anatomy, permeability, and their ability to retain a delivery system for a desired length of time. A number of antimicrobial products and the composition of the delivery systems, its use, clinical results, and their release are summarized. The goal in using an intrapocket device for the delivery of an antimicrobial agent is the achievement and maintenance of therapeutic drug concentration for the desired period of time. Novel controlled drug delivery system are capable of improving patient compliance as well as therapeutic efficacy with precise control of the rate by which a particular drug dosage is released from a delivery system without the need for frequent administration. These are considered superior drug delivery system because of low cost, greater stability, non-toxicity, biocompatibility, non-immunogenicity, and are biodegradable in nature. This review also focus on the importance and ideal features of periodontal pockets as a drug delivery platform for designing a suitable dosage form along with its potential advantage and limitations. The microbes in the periodontal pocket could destroy periodontal tissues, and a complete knowledge of these as well as an ideal treatment strategy could be helpful in treating this disease.

  5. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuping; Zhang, Chiqian [Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE (United States); Parker, David B. [USDA Meat Animal Research Center, Clay Center, NE (United States); Snow, Daniel D. [Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, NE (United States); Zhou, Zhi [Department of Civil and Environmental Engineering, National University of Singapore (Singapore); Li, Xu, E-mail: xuli@unl.edu [Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE (United States)

    2013-10-01

    Livestock manure treatment and storage structures are potential environmental sources of antimicrobials and antimicrobial resistance genes (ARGs). In this study, the occurrence of antimicrobials and ARGs was investigated in the water and the sludge compartments of beef cattle storage ponds and swine lagoons. Analysis was focused on two families of antimicrobials (sulfonamide and tetracycline) and the corresponding ARGs (sul1, sul2, tetO, tetQ and tetX). Results showed that the pseudo-partitioning coefficients of tetracyclines were higher than those of sulfonamides, suggesting different distributions of these two classes of antimicrobials between water and sludge. The ARGs tested were detected in nearly all ponds and lagoons, with the highest relative abundance in sul2 at 6.3 × 10{sup −1} copies per 16S rRNA gene. A positive correlation was observed between total sul genes and total sulfonamides in water while the correlation was negative in sludge. No significant correlation was found between total tet genes and total tetracyclines in either water or sludge, but significant correlations were observed for certain individual tet genes. Ammonia concentrations strongly correlated with all ARGs except tetX. This study provided quantitative information on the occurrence of antimicrobials and ARGs in the liquid and solid compartments of typical manure treatment and storage structures. - Highlights: • Partitioning of antimicrobials between water and sludge is compound specific. • Antimicrobial resistance genes occurred in both water and sludge. • The ARG abundance varied more substantially in swine lagoons than in cattle ponds. • Correlations between ARGs and antimicrobials are system dependent.

  6. Antiviral Drug Resistance: Mechanisms and Clinical Implications

    OpenAIRE

    Strasfeld, Lynne; Chou, Sunwen

    2010-01-01

    Antiviral drug resistance is an increasing concern in immunocompromised patient populations, where ongoing viral replication and prolonged drug exposure lead to the selection of resistant strains. Rapid diagnosis of resistance can be made by associating characteristic viral mutations with resistance to various drugs as determined by phenotypic assays. Management of drug resistance includes optimization of host factors and drug delivery, selection of alternative therapies based on knowledge of...

  7. Antimicrobial resistance predicts death in Tanzanian children with bloodstream infections: a prospective cohort study

    Directory of Open Access Journals (Sweden)

    Msangi Viola

    2007-05-01

    Full Text Available Abstract Background Bloodstream infection is a common cause of hospitalization, morbidity and death in children. The impact of antimicrobial resistance and HIV infection on outcome is not firmly established. Methods We assessed the incidence of bloodstream infection and risk factors for fatal outcome in a prospective cohort study of 1828 consecutive admissions of children aged zero to seven years with signs of systemic infection. Blood was obtained for culture, malaria microscopy, HIV antibody test and, when necessary, HIV PCR. We recorded data on clinical features, underlying diseases, antimicrobial drug use and patients' outcome. Results The incidence of laboratory-confirmed bloodstream infection was 13.9% (255/1828 of admissions, despite two thirds of the study population having received antimicrobial therapy prior to blood culture. The most frequent isolates were klebsiella, salmonellae, Escherichia coli, enterococci and Staphylococcus aureus. Furthermore, 21.6% had malaria and 16.8% HIV infection. One third (34.9% of the children with laboratory-confirmed bloodstream infection died. The mortality rate from Gram-negative bloodstream infection (43.5% was more than double that of malaria (20.2% and Gram-positive bloodstream infection (16.7%. Significant risk factors for death by logistic regression modeling were inappropriate treatment due to antimicrobial resistance, HIV infection, other underlying infectious diseases, malnutrition and bloodstream infection caused by Enterobacteriaceae, other Gram-negatives and candida. Conclusion Bloodstream infection was less common than malaria, but caused more deaths. The frequent use of antimicrobials prior to blood culture may have hampered the detection of organisms susceptible to commonly used antimicrobials, including pneumococci, and thus the study probably underestimates the incidence of bloodstream infection. The finding that antimicrobial resistance, HIV-infection and malnutrition predict fatal

  8. Thiamin (Vitamin B1 Biosynthesis and Regulation: A Rich Source of Antimicrobial Drug Targets?

    Directory of Open Access Journals (Sweden)

    Qinglin Du, Honghai Wang, Jianping Xie

    2011-01-01

    Full Text Available Drug resistance of pathogens has necessitated the identification of novel targets for antibiotics. Thiamin (vitamin B1 is an essential cofactor for all organisms in its active form thiamin diphosphate (ThDP. Therefore, its metabolic pathways might be one largely untapped source of antibiotics targets. This review describes bacterial thiamin biosynthetic, salvage, and transport pathways. Essential thiamin synthetic enzymes such as Dxs and ThiE are proposed as promising drug targets. The regulation mechanism of thiamin biosynthesis by ThDP riboswitch is also discussed. As drug targets of existing antimicrobial compound pyrithiamin, the ThDP riboswitch might serves as alternative targets for more antibiotics.

  9. Emerging Infectious Diseases, Antimicrobial Resistance and Millennium Development Goals: Resolving the Challenges through One Health

    Directory of Open Access Journals (Sweden)

    G. V. Asokan

    2014-01-01

    Full Text Available Most emerging infectious diseases are zoonoses, which could severely hamper reaching the targets of millennium development goals (MDG. Five out of the total eight MDG’s are strongly associated with the Emerging Infectious Diseases (EIDs. Recent emergence and dissemination of drug-resistant pathogens has accelerated and prevent reaching the targets of MDG, with shrinking of therapeutic arsenal, mostly due to antimicrobial resistance (AMR. World Health Organization (WHO has identified AMR as 1 of the 3 greatest threats to global health. Until now, methicillin-resistant staphylococcus aureus (MRSA and vancomycin-resistant enterococci (VRE have been observed in hospital-acquired infections. In India, within a span of three years, New Delhi metallo-β-lactamase prevalence has risen from three percent in hospitals to twenty- fifty percent and is found to be colistin resistant as well. Routine use of antimicrobials in animal husbandry accounts for more than 50% in tonnage of all antimicrobial production to promote growth and prophylaxis. This has consequences to human health and environmental contamination with a profound impact on the environmental microbiome, resulting in resistance. Antibiotic development is now considered a global health crisis. The average time required to receive regulatory approval is 7.2 years. Moreover, the clinical approval success is only 16%. To overcome resistance in antimicrobials, intersectoral partnerships among medical, veterinary, and environmental disciplines, with specific epidemiological, diagnostic, and therapeutic approaches are needed. Joint efforts under “One Health”, beyond individual professional boundaries are required to stop antimicrobial resistance against zoonoses (EID and reach the MDG.

  10. Extensively drug-resistant tuberculosis.

    Science.gov (United States)

    Jassal, Mandeep; Bishai, William R

    2009-01-01

    Extensively drug-resistant (XDR) tuberculosis is defined as disease caused by Mycobacterium tuberculosis with resistance to at least isoniazid and rifampicin, any fluoroquinolone, and at least one of three injectable second-line drugs (amikacin, capreomycin, or kanamycin). The definition has applicable clinical value and has allowed for more uniform surveillance in varied international settings. Recent surveillance data have indicated that the prevalence of tuberculosis drug resistance has risen to the highest rate ever recorded. The gold standard for drug-susceptibility testing has been the agar proportion method; however, this technique requires several weeks for results to be determined. More sensitive and specific diagnostic tests are still unavailable in resource-limited settings. Clinical manifestations, although variable in different settings and among different strains, have in general shown that XDR tuberculosis is associated with greater morbidity and mortality than non-XDR tuberculosis. The treatment of XDR tuberculosis should include agents to which the organism is susceptible, and should continue for a minimum of 18-24 months. However, treatment continues to be limited in tuberculosis-endemic countries largely because of weaknesses in national tuberculosis health-care models. The ultimate strategy to control drug-resistant tuberculosis is one that implements a comprehensive approach incorporating innovation from the political, social, economic, and scientific realms. PMID:18990610

  11. Antibiotic therapeutic options for infections caused by drug-resistant Gram-positive cocci.

    Science.gov (United States)

    Banwan, K; Senok, A C; Rotimi, V O

    2009-01-01

    Serious infections caused by Gram-positive bacteria are currently difficult to treat because many of these pathogens are now resistant to standard antimicrobial agents. As a result of the emergence and spread of multidrug-resistant Gram-positive pathogens, new antimicrobial agents are urgently needed for clinical use. In recent years, there has been an increase in the number of drugs that have activity against these Gram-positive pathogens. Daptomycin, tigecycline, linezolid, quinupristin/dalfopristin and dalbavancin are five antimicrobial agents that are useful for the treatment of infections due to drug-resistant Gram-positive cocci. This review focuses on their mechanism of action, pharmacokinetics, spectrum of activity, clinical effectiveness, drug interaction and safety. These antimicrobial agents provide the clinician with additional treatment options among the limited therapies for resistant Gram-positive bacterial infection. PMID:20701863

  12. Self-medication with antimicrobial drugs in Europe

    NARCIS (Netherlands)

    Grigoryan, L; Haaijer-Ruskamp, FM; Burgerhof, JGM; Mechtler, R; Deschepper, R; Tambic-Andrasevic, A; Andrajati, R; Monnet, DL; Cunney, R; Di Matteo, A; Edelstein, H; Valinteliene, R; Alkerwi, A; Scicluna, EA; Grzesiowski, P; Bara, AC; Tesar, T; Cizman, M; Campos, J; Lundborg, CS; Birkin, J

    2006-01-01

    We surveyed the populations of 19 European countries to compare the prevalence of antimicrobial drug self-medication in the previous 12 months and intended self-medication and storage and to identify the associated demographic characteristics. By using a multistage sampling design, 1,000-3,000 adult

  13. Investigation on Antimicrobial Drug Resistance to Escherichia coli Isolates from A Farm in Tacheng Xinj iang%新疆塔城某规模化养殖场大肠埃希菌耐药性调查

    Institute of Scientific and Technical Information of China (English)

    南海辰; 夏利宁; 刘英玉; 翟少华; 底丽娜

    2014-01-01

    为了解新疆塔城某规模化养殖场分离的大肠埃希菌对临床常用抗菌药物的耐药情况,从该规模化养殖场中采集的水样、饲料样、牛粪样及羊粪样中分离大肠埃希菌。采用微量肉汤法检测其对抗菌药物的耐药情况。结果表明,采集牛源饮用水样35份,分离率100.0%(35/35),分离的大肠埃希菌仅对阿莫西林/克拉维酸(31.4%)和氨苄西林(20.0%)2种抗菌药物耐药;牛源饲料样15份,分离率86.7%(13/15),分离的大肠埃希菌对氨苄西林(30.8%)、阿莫西林/克拉维酸(23.1%)、安普霉素(15.4%)、诺氟沙星(7.7%)、恩诺沙星(7.7%)和庆大霉素(7.7%)6种抗菌药物耐药;牛粪样20份,分离率100.0%(20/20),分离的大肠埃希菌对氨苄西林(60.0%)、阿莫西林/克拉维酸(50.0%)、恩诺沙星(40.0%)、庆大霉素(40.0%)、头孢噻呋(35.0%)、阿米卡星(25.0%)、诺氟沙星(10.0%)和环丙沙星(10.0%)8种抗菌药物耐药;羊粪样55份,分离率100.0%(55/55),分离的大肠埃希菌对阿莫西林/克拉维酸(25.5%)、氨苄西林(12.7%)、庆大霉素(5.5%)、头孢噻呋(3.6%)、诺氟沙星(1.8%)、恩诺沙星(1.8%)和阿米卡星(1.8%)7种抗菌药物耐药。新疆塔城牛源大肠埃希菌对常用抗菌药物多药耐药情况较严重,临床用药需谨慎,且可能存在粪源菌污染水源和饲料的风险。%In order to investigate commonly used antimicrobial drug resistance to Escherichia coli isolates from a farm in Tacheng,Xinj iang,the minimal inhibitory concentrations (MIC)of the antimicrobial drugs to these isolates from drinking water,feed,bovine feces and ovine feces were determined by the broth mi-cro-dilution method.The results showed that:3 5 E.coli isolates were confirmed

  14. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota

    Directory of Open Access Journals (Sweden)

    Leon eCantas

    2013-05-01

    Full Text Available The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting from use, misuse and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance genes have been suggested to originate from environmental bacteria, as clinically relevant resistance genes have been detected on the chromosome of environmental bacteria. As only a few new antimicrobials have been developed in the last decade, the further evolution of resistance poses a serious threat to public health. Urgent measures are required not only to minimize the use of antimicrobials for prophylactic and therapeutic purposes but also to look for alternative strategies for the control of bacterial infections. This review examines the global picture of antibacterial resistance, factors that favor its spread, strategies and limitations for its control and the need for continuous training of all stake-holders i.e. medical, veterinary, public health and other relevant professionals as well as human consumers of antibiotic drugs, in the appropriate use of antimicrobials.

  15. The antimicrobial resistance crisis: causes, consequences and management.

    Directory of Open Access Journals (Sweden)

    Carolyn Anne Michael

    2014-09-01

    Full Text Available The Antimicrobial Resistance (AMR crisis is the increasing global incidence of infectious diseases affecting the human population, which are untreatable with any known antimicrobial agent. This crisis will have a devastating cost on human society as both debilitating and lethal diseases increase in frequency and scope. Three major factors determine this crisis: 1/ The increasing frequency of AMR phenotypes amongst microbes is an evolutionary response to the widespread use of antimicrobials. 2/ The large and globally connected human population allows pathogens in any environment access to all of humanity. 3/ The extensive and often unnecessary use of antimicrobials by humanity provides the strong selective pressure that is driving the evolutionary response in the microbial world. Of these factors, the size of the human population is least amenable to rapid change. In contrast the remaining two factors may be affected, so offering a means of managing the crisis: The rate at which AMR, as well as virulence factors evolve in microbial world may be slowed by reducing the applied selective pressure. This may be accomplished by radically reducing the global use of current and prospective antimicrobials. Current management measures to legislate the use of antimicrobials and to educate the healthcare world in the issues, while useful, have not comprehensively addressed the problem of achieving an overall reduction in the human use of antimicrobials. We propose that in addition to current measures and increased research into new antimicrobials and diagnostics, a comprehensive education programme will be required to change the public paradigm of antimicrobial usage from that of a first line treatment to that of a last resort when all other therapeutic options have failed.

  16. Analysis of Drug Resistance and Resistant Genes of Salmonella toβ-lactams Antimicrobial Agents Isolated from Pigs in Guizhou Province%贵州省猪源沙门氏菌对β-内酰胺类药耐药性及耐药基因分析

    Institute of Scientific and Technical Information of China (English)

    曹正花; 谭艾娟; 吕世明; 王雄; 杜国琴

    2016-01-01

    In order to analyse the resistance toβ-lactams antimicrobial agents and the prevalence of resistant genes of Salmonella in Guizhou province,130 Salmonella strains were isolated and iden-tified from 9 different regions of scale pig farms.The drug sensitivity to 8 kinds ofβ-lactams anti-microbial agents were determined by using the broth microdilution method.Allβ-lactams resistant isolates were detected for the presences of TEM,OXA,CTX-M and SHV genes by PCR.The re-sults showed that drug resistance of Salmonella to the commonly usedβ-lactams antimicrobial agents was very serious,and the resistance rate to ceftazidime was the highest (100%),followed by ampicillin and amoxicillin,were 76.15% and 80.77%,respectively.The resistance rates of ceft-iofur and cephalexin were the lowest (46.15%).Salmonella strains were all of multiple drug re-sistance,of which double resistance was at lowest (2.31%),and eightfold resistance was highest (4.62%),multidrug resistance mainly concentrated in fourfold to sevenfold,accounted for 88.46%.PCR results showed that TEM,OXA,CTX-M genes detection rate were 85%,75% and 46%,respectively,while the SHV gene was not inspected.Resistant phenotype was basically con-sistent with resistant genes.The results indicated that the resistance of Salmonella stains from pig toβ-lactams antimicrobial agents were widespread,and ceftazidime was particularly serious. The TEM,OXA and CTX-M genes were mainly carriedβ-lactams resistant genes in Salmonella isolates from Guizhou province.It had a great relationship between the prevalence of resistance genes and growth of antimicrobial resistance.%为了解贵州省猪源沙门氏菌对β-内酰胺类抗菌药物耐药性及其耐药基因的流行情况,本试验从贵州省9个地区规模养猪场中分离鉴定130株沙门氏菌,采用微量肉汤稀释法测定其对常用的8种β-内酰胺类抗菌药物的敏感性,并用PCR法对β-内酰胺酶耐药基因进行检测。结果显示,沙门氏菌对常

  17. Oral antimicrobials increase antimicrobial resistance in porcine E. coli--a systematic review.

    Science.gov (United States)

    Burow, E; Simoneit, C; Tenhagen, B-A; Käsbohrer, A

    2014-03-01

    Administration of antimicrobials to livestock increases the risk of antimicrobial resistance (AMR) in commensal bacteria. Antimicrobials in pig production are usually administered per pen via feed which implies treatment of sick alongside with healthy animals. The objective of this systematic literature review was to investigate the effect of orally administered antimicrobials on AMR in Escherichia coli of swine. Studies published in peer reviewed journals were retrieved from the international online databases ISI Web of Knowledge, PubMed, Scopus and the national electronic literature data base of Deutsches Institut für Medizinische Dokumentation und Information. The studies were assessed using the eligibility criteria English or German language, access to full paper version, defined treatment and control group (initial value or non-treatment) as well as administration and resistance testing of the same antimicrobial class. In the qualitative synthesis, only studies were included presenting the summary measures odds ratio or prevalence of resistance, the category of the applied antimicrobial and the dosage. An effect of the antimicrobial on AMR in E. coli was evaluated as an "increase", "no effect" or "decrease" if the odds or alternatively the prevalence ratio were >1.0, 1.0 or <1.0, respectively. Eleven studies, describing 36 different trials, fulfilled the eligibility criteria and were finally assessed. An increase of AMR in E. coli was found in 10 out of 11 trials comparing AMR after with AMR prior to oral treatment and in 22 of the 25 trials comparing orally treated with untreated groups. Effects expressed as odds or prevalence ratios were highest for the use of aminoglycosides, quinolones and tetracycline. There was no clear association between the reported dosage and AMR towards tetracycline. Information on antimicrobial substance and dosage was missing in 4 and 5 of the 11 finally selected studies. The 36 identified trials were inhomogenous in usage and

  18. Antibiotic and Antimicrobial Resistance: Threat Report 2013

    Science.gov (United States)

    ... this? Submit What's this? Submit Button Antibiotic Resistance Threats in the United States, 2013 Recommend on Facebook Tweet Share Compartir This report, Antibiotic resistance threats in the United States, 2013 gives a first- ...

  19. How Fitness Reduced, Antimicrobial Resistant Bacteria Survive and Spread

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Nielsen, Søren Saxmose; Toft, Nils;

    2014-01-01

    More than 30% of E. coli strains sampled from pig farms in Denmark over the last five years were resistant to the commonly used antimicrobial tetracycline. This raises a number of questions: How is this high level sustained if resistant bacteria have reduced growth rates? Given that there are mul......More than 30% of E. coli strains sampled from pig farms in Denmark over the last five years were resistant to the commonly used antimicrobial tetracycline. This raises a number of questions: How is this high level sustained if resistant bacteria have reduced growth rates? Given...... for the individual strains in each pig were implemented. We demonstrate how competitive growth between multiple bacterial strains in individual pigs, and the transmission between pigs in a pen allow for strains of antimicrobial resistant bacteria to persist in a pig population to different extents, and how quickly...... homogenous and how resistant the bacterial population becomes. Most important: resistant bacteria are demonstrated to survive with a disadvantage in growth rate of well over 10%....

  20. Prevalence and Antimicrobial Resistance of Enterococcus Species: A Hospital-Based Study in China

    Directory of Open Access Journals (Sweden)

    Wei Jia

    2014-03-01

    Full Text Available Objective: to investigate the prevalence and antimicrobial resistance of Enterococcus species isolated from a university hospital, and explore the mechanisms underlying the antimicrobial resistance, so as to provide clinical evidence for the inappropriate clinical use of antimicrobial agents and the control and prevention of enterococcal infections. Methods: a total of 1,157 enterococcal strains isolated from various clinical specimens from January 2010 to December 2012 in the General Hospital of Ningxia Medical University were identified to species level with a VITEK-2 COMPACT fully automated microbiological system, and the antimicrobial susceptibility of Enterococcus species was determined using the Kirby-Bauer disc diffusion method. The multiple-drug resistant enterococcal isolates were screened from the clinical isolates of Enterococcus species from the burns department. The minimal inhibitory concentration (MIC of Enterococcus species to the three fluoroquinolones, including ciprofloxacin, gatifloxacin and levofloxacin was determined with the agar dilution method, and the changes in the MIC of Enterococcus species to the three fluoroquinolones following reserpine treatment were evaluated. The β-lactam, aminoglycoside, tetracycline, macrolide, glycopeptide resistance genes and the efflux pump emeA genes were detected in the enterococcal isolates using a polymerase chain reaction (PCR assay. Results: the 1,157 clinical isolates of Enterococcus species included 679 E. faecium isolates (58.7%, 382 E. faecalis isolates (33%, 26 E. casseliflavus isolates (2.2%, 24 E. avium isolates (2.1%, and 46 isolates of other Enterococcus species (4%. The prevalence of antimicrobial resistance varied significantly between E. faecium and E. faecalis, and ≤1.1% of these two Enterococcus species were found to be resistant to vancomycin, teicoplanin or linezolid. In addition, the Enterococcus species isolated from different departments of the hospital

  1. Antimicrobial resistance of fecal aerobic gram-negative bacilli in different age groups in a community.

    OpenAIRE

    Leistevuo, T; Leistevuo, J; Osterblad, M; Arvola, T. (Timo); Toivonen, P; Klaukka, T; Lehtonen, A; Huovinen, P.

    1996-01-01

    We measured the occurrence of antimicrobial resistance in fecal aerobic gram-negative bacilli by age in community subjects. For none of the eight antimicrobial agents studied were there any statistically significant differences in the carriage rates of resistance in different age groups. Bacterial resistance was common in all age groups, including the children, and occurred for all antimicrobial agents tested.

  2. Antimicrobial resistance patterns in Danish isolates of Flavobacterium psychrophilum

    DEFF Research Database (Denmark)

    Bruun, Morten Sichlau; Schmidt, A.S.; Madsen, Lone;

    2000-01-01

    were tested and the resulting antibiograms were used to predict the theoretical therapeutic efficacy and to evaluate if resistance had changed as a course of time. Antimicrobial agents included in this investigation were oxolinic acid (OXA), amoxicillin (AMX), potentiated sulfadiazine, oxytetracycline......The resistance pattern of Flavobacterium psychrophilum to the antimicrobial agents used in fish farming in Denmark was assessed in vitro using an agar dilution method. After identification of 387 isolates from clinical outbreaks of rainbow trout fry syndrome (RTFS) and the environment, the isolates...... (OTC) and florfenicol (FLO). We found that F. psychrophilum isolates divided in susceptible and resistant clusters reflecting the reduced efficacy in practice when using OTC and AMX. The most recent isolates were less susceptible to AMX and OXA, whereas resistance to OTC seemed stable over the last 5...

  3. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons.

    Science.gov (United States)

    Zhang, Yuping; Zhang, Chiqian; Parker, David B; Snow, Daniel D; Zhou, Zhi; Li, Xu

    2013-10-01

    Livestock manure treatment and storage structures are potential environmental sources of antimicrobials and antimicrobial resistance genes (ARGs). In this study, the occurrence of antimicrobials and ARGs was investigated in the water and the sludge compartments of beef cattle storage ponds and swine lagoons. Analysis was focused on two families of antimicrobials (sulfonamide and tetracycline) and the corresponding ARGs (sul1, sul2, tetO, tetQ and tetX). Results showed that the pseudo-partitioning coefficients of tetracyclines were higher than those of sulfonamides, suggesting different distributions of these two classes of antimicrobials between water and sludge. The ARGs tested were detected in nearly all ponds and lagoons, with the highest relative abundance in sul2 at 6.3×10(-1) copies per 16S rRNA gene. A positive correlation was observed between total sul genes and total sulfonamides in water while the correlation was negative in sludge. No significant correlation was found between total tet genes and total tetracyclines in either water or sludge, but significant correlations were observed for certain individual tet genes. Ammonia concentrations strongly correlated with all ARGs except tetX. This study provided quantitative information on the occurrence of antimicrobials and ARGs in the liquid and solid compartments of typical manure treatment and storage structures. PMID:23838056

  4. In vitro activity of antimicrobial combinations against multidrug-resistant Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Denissani Aparecida Ferrari dos Santos Lima

    2013-06-01

    Full Text Available Introduction Pseudomonas aeruginosa isolates related to nosocomial infections are often resistant to multiple antibacterial agents. In this study, antimicrobial combinations were evaluated to detect in vitro synergy against clinical isolates of P. aeruginosa. Methods Four clinical P. aeruginosa isolates were selected at random among other isolates from inpatients treated at the public University hospital in Ribeirão Preto, SP, Brazil. Two isolates were susceptible to imipenem (IPM-S and several other antimicrobials, while the other two isolates were imipenem and multidrug resistant (IPM-R. The checkerboard method was used to assess the interactions between antimicrobials. Results Combinations of imipenem or other anti-Pseudomonas drugs with complementary antibiotics, such as aminoglycosides, fosfomycin and rifampin, reached synergy rates of 20.8%, 50%, 62.5% and 50% for the two IPM-S and two IPM-R Pseudomonas isolates, respectively. Imipenem, piperacillin-tazobactam and ceftazidime yielded a greater synergy rate than cefepime or ciprofloxacin. Synergist combinations were more commonly observed when the complementary drug was tobramycin (65% or fosfomycin (57%. Conclusions Some antibacterial combinations led to significant reductions of the minimum inhibitory concentrations of both drugs, suggesting that they could be clinically applied to control infections caused by multidrug-resistant P. aeruginosa.

  5. Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options.

    Directory of Open Access Journals (Sweden)

    Jianghui Wang

    Full Text Available BACKGROUND: To overcome the increasing resistance of pathogens to existing antibiotics the 10×'20 Initiative declared the urgent need for a global commitment to develop 10 new antimicrobial drugs by the year 2020. Naturally occurring animal antibiotics are an obvious place to start. The recently sequenced genomes of mammals that are divergent from human and mouse, including the tammar wallaby and the platypus, provide an opportunity to discover novel antimicrobials. Marsupials and monotremes are ideal potential sources of new antimicrobials because they give birth to underdeveloped immunologically naïve young that develop outside the sterile confines of a uterus in harsh pathogen-laden environments. While their adaptive immune system develops innate immune factors produced either by the mother or by the young must play a key role in protecting the immune-compromised young. In this study we focus on the cathelicidins, a key family of antimicrobial peptide genes. PRINCIPAL FINDING: We identified 14 cathelicidin genes in the tammar wallaby genome and 8 in the platypus genome. The tammar genes were expressed in the mammary gland during early lactation before the adaptive immune system of the young develops, as well as in the skin of the pouch young. Both platypus and tammar peptides were effective in killing a broad range of bacterial pathogens. One potent peptide, expressed in the early stages of tammar lactation, effectively killed multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. CONCLUSIONS AND SIGNIFICANCE: Marsupial and monotreme young are protected by antimicrobial peptides that are potent, broad spectrum and salt resistant. The genomes of our distant relatives may hold the key for the development of novel drugs to combat multidrug-resistant pathogens.

  6. Aedesin: structure and antimicrobial activity against multidrug resistant bacterial strains.

    Directory of Open Access Journals (Sweden)

    Sylvain Godreuil

    Full Text Available Multidrug resistance, which is acquired by both Gram-positive and Gram-negative bacteria, causes infections that are associated with significant morbidity and mortality in many clinical settings around the world. Because of the rapidly increasing incidence of pathogens that have become resistant to all or nearly all available antibiotics, there is a need for a new generation of antimicrobials with a broad therapeutic range for specific applications against infections. Aedesin is a cecropin-like anti-microbial peptide that was recently isolated from dengue virus-infected salivary glands of the Aedes aegypti mosquito. In the present study, we have refined the analysis of its structural characteristics and have determined its antimicrobial effects against a large panel of multidrug resistant bacterial strains, directly isolated from infected patients. Based the results from nuclear magnetic resonance spectroscopy analysis, Aedesin has a helix-bend-helix structure typical for a member of the family of α-helix anti-microbial peptides. Aedesin efficiently killed Gram-negative bacterial strains that display the most worrisome resistance mechanisms encountered in the clinic, including resistance to carbapenems, aminoglycosides, cephalosporins, 4th generation fluoroquinolones, folate inhibitors and monobactams. In contrast, Gram-positive strains were insensitive to the lytic effects of the peptide. The anti-bacterial activity of Aedesin was found to be salt-resistant, indicating that it is active under physiological conditions encountered in body fluids characterized by ionic salt concentrations. In conclusion, because of its strong lytic activity against multidrug resistant Gram-negative bacterial strains displaying all types of clinically relevant resistance mechanisms known today, Aedesin might be an interesting candidate for the development of alternative treatment for infections caused by these types of bacteria.

  7. Emerging antimicrobial resistance pattern of Helicobacter pylori in central Gujarat

    OpenAIRE

    H B Pandya; Harihar Har Agravat; J S Patel; NRK Sodagar

    2014-01-01

    Background: Antimicrobial resistance is a growing problem in H. pylori treatment. The study was intended to evaluate the prevalence of resistance amongst 80 H.pylori isolates cultured from biopsy taken during routine endoscopies in 2008-2011. Materials and Methods: 855 gastro duodenal biopsies were collected and cultured on H.pylori selective medium (containing Brucella agar and Columbia agar (Hi media), with Skirrow′s supplement (antibiotic supplement) and 7% human blood cells). H.pylori was...

  8. Multi-Drug Resistant Bacteria Isolated from Fish and Fish Handlers in Maiduguri, Nigeria

    Directory of Open Access Journals (Sweden)

    Hafsat Ali Grema

    2015-07-01

    Full Text Available Multi-drug resistant bacteria were isolated from fresh fish and fish handlers using conventional methods of bacterial isolation such as colonial morphology, gram staining and biochemical tests. The bacteria isolated include Staphylococcus aureus, Streptococcus sp, E. coli, Klebsiella sp, Proteus sp. and Brucella sp. bacterial isolates were subjected to antibiotic susceptibility testing using disc diffusion technique against ten antimicrobial agents. S. aureus isolates showed resistance to gentamycin, tetracycline, oxacillin, ciprofloxacin and cefoxitin while Streptococcus sp were resistant to tetracycline, chloramphenicol and clindamycin. All the bacterial isolates were resistant to tetracycline while susceptible to cefoxitin, cephazolin, erythromycin and clindamycin. The multi drug resistance pattern of Staphylococcus aureus isolates showed resistance to three and more antimicrobial agents while none was resistant to 10 antimicrobial agents. All other isolates were resistant to four and more different antimicrobial agents while no isolates was resistant to one and ten antimicrobial agents. Therefore the continuous monitoring and surveillance of multi-drug resistant bacteria in fish and fish handlers will not only reduce the risk of disease to the fishes but public health hazard to fish handlers and consumers in general.

  9. Monitoring of antimicrobial resistance in pathogenic bacteria from livestock animals.

    Science.gov (United States)

    Wallmann, Jürgen

    2006-06-01

    Facing the problem of development and spreading of bacterial resistance, preventive strategies are considered the most appropriate means to counteract. The establishment of corresponding management options relies on scientifically defensible efforts to obtain objective data on the prevalence of bacterial resistance in healthy and diseased livestock. Additionally, detailed statistics are needed on the overall amount of antimicrobial agents dispensed in Germany. The collection of valid data on the prevalence of resistance requires representative and cross-sectional studies. The German national antimicrobial resistance monitoring of the Federal Office of Consumer Protection and Food Safety (BVL) determines the current quantitative resistance level of life-stock pathogens, in order to permit the evaluation and surveillance of the distribution of resistances on a valid basis. Essential key features determining the design of these studies comprise (1) a statistically valid sampling program. This incorporates regional differences in animal population density, (2) the avoidance of "copy strains", (3) testing of no more than two bacterial strains belonging to one species per herd, (4) testing only if no antimicrobial therapy preceded sample collection, and (5) the use of standardized methods [e.g. microdilution broth method to determine the minimal inhibitory concentration (MIC)]. The analysis and interpretation of this data permits reliable identification and definition of epidemiological characteristics of resistance and its development in animal associated bacteria, such as geographically and time wise differentiated profiles on its prevalence, the emergence of unknown phenotypes of resistance and an assessment of the threat resistant bacteria from animals pose for humans. In applied antimicrobial therapy, the data can serve as a decision guidance in choosing the antimicrobial agent most adapted to the prevailing epidemiological situation. The susceptibility testing

  10. ANTIMICROBIAL RESISTANCE PATTERN OF STAPHYLOCOCCUS AUREUS ISOLATES FROM DAKSHINA KANNADA

    Directory of Open Access Journals (Sweden)

    Rao Venkatakrishna

    2011-03-01

    Full Text Available Methicillin resistant Staphylococcus aureus (MRSA is an important cause of infections in hospitals and pose a great challenge to the treating clinicians; even emergence of vancomycin resistance has been reported. Therefore the knowledge of prevalence of MRSA and their antimicrobial profile becomes necessary. This study is aimed to determine prevalence of MRSA and their antimicrobial sensitivity pattern in Dakshina Kannada.Clinical specimens and carrier samples were cultured as per standard methods. The isolates were identified by using catalase test, coagulase tube test, mannitol fermentation and DNAase test. Antimicrobial susceptibility test was done for the isolates as per Kirby-Bauer disc diffusion method; the isolates were also tested for methicillin resistance using oxacillin and cefoxitin discs.A total of 250 isolates were tested (200 clinical isolates and 50 from carriers and 67 MRSA isolates were obtained (52 clinical samples and 15 from carriers. The degree of resistance to penicillin, ampicillin, ciprofloxacin, clindamycin and erythromycin were 100%, 100%, 53-56%, 14-16 % and 45-48% respectively. Resistance to vancomycin was not found. As the degree of resistance of MRSA towards antibiotics varies from region to region, in vitro susceptibility testing of every isolate of MRSA in clinical laboratories is inevitable.

  11. Multi-drug resistant Acinetobacter ventilator-associated pneumonia

    OpenAIRE

    Shete, Vishal B.; Dnyaneshwari P Ghadage; Vrishali A Muley; Bhore, Arvind V.

    2010-01-01

    Background: Ventilator-associated pneumonia (VAP) due to a multi-drug resistant (MDR) Acinetobacter is one of the most dreadful complications, which occurs in the critical care setting. Aims and objectives: To find out the incidence of Acinetobacter infection in VAP cases, to determine various risk factors responsible for acquisition of Acinetobacter infection and to determine the antimicrobial susceptibility pattern of Acinetobacter. Materials and Methods: A total of 60 endotracheal aspirate...

  12. Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites.

    Science.gov (United States)

    Shah, Syed Q A; Cabello, Felipe C; L'abée-Lund, Trine M; Tomova, Alexandra; Godfrey, Henry P; Buschmann, Alejandro H; Sørum, Henning

    2014-05-01

    Antimicrobial resistance (AR) detected by disc diffusion and antimicrobial resistance genes detected by DNA hybridization and polymerase chain reaction with amplicon sequencing were studied in 124 marine bacterial isolates from a Chilean salmon aquaculture site and 76 from a site without aquaculture 8 km distant. Resistance to one or more antimicrobials was present in 81% of the isolates regardless of site. Resistance to tetracycline was most commonly encoded by tetA and tetG; to trimethoprim, by dfrA1, dfrA5 and dfrA12; to sulfamethizole, by sul1 and sul2; to amoxicillin, by blaTEM ; and to streptomycin, by strA-strB. Integron integrase intl1 was detected in 14 sul1-positive isolates, associated with aad9 gene cassettes in two from the aquaculture site. intl2 Integrase was only detected in three dfrA1-positive isolates from the aquaculture site and was not associated with gene cassettes in any. Of nine isolates tested for conjugation, two from the aquaculture site transferred AR determinants to Escherichia coli. High levels of AR in marine sediments from aquaculture and non-aquaculture sites suggest that dispersion of the large amounts of antimicrobials used in Chilean salmon aquaculture has created selective pressure in areas of the marine environment far removed from the initial site of use of these agents.

  13. Azorean wild rabbits as reservoirs of antimicrobial resistant Escherichia coli.

    Science.gov (United States)

    Marinho, Catarina; Igrejas, Gilberto; Gonçalves, Alexandre; Silva, Nuno; Santos, Tiago; Monteiro, Ricardo; Gonçalves, David; Rodrigues, Tiago; Poeta, Patrícia

    2014-12-01

    Antibiotic resistance in bacteria is an increasing problem that is not only constrained to the clinical setting but also to other environments that can lodge antibiotic resistant bacteria and therefore they may serve as reservoirs of genetic determinants of antibiotic resistance. One hundred and thirty-six faecal samples from European wild rabbits (Oryctolagus cuniculus algirus) were collected on São Jorge Island in Azores Archipelago, and analysed for Escherichia coli isolates. Seventy-seven isolates (56.6%) were recovered and studied for antimicrobial resistance, one isolate per positive sample. Thirteen (16.9%), 19 (24.7%), 25 (32.4%) and 20 (26%) isolates were ascribed to A, B1, B2 and D phylogenetic groups, respectively, by specific primer polymerase chain reaction. Different E. coli isolates were found to be resistant to ampicillin (16.9%), tetracycline (1.3%), streptomycin (42.9%), sulfamethoxazole-trimethoprim (1.3%), amikacin (1.3%), tobramycin (2.6%) and nalidixic acid (1.3%). Additionally, the blaTEM, tetA, strA/strB, aadA, sul1, intI, intI2 and qacEΔ+sul1 genes were found in most resistant isolates. This study showed that E. coli from the intestinal tract of wild rabbits from Azores Archipelago are resistant to widely prescribed antibiotics in medicine and they constitute a reservoir of antimicrobial resistant genes, which may play a significant role in the spread of antimicrobial resistance. Therefore, antibiotic resistant E. coli from Azorean wild rabbits may represent an ecological and public health problem.

  14. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil

    Directory of Open Access Journals (Sweden)

    Oliver T. Zishiri

    2016-03-01

    Full Text Available Salmonellosis is a significant public health concern around the world. The injudicious use of antimicrobial agents in poultry production for treatment, growth promotion and prophylaxis has resulted in the emergence of drug resistant strains of Salmonella. The current study was conducted to investigate the prevalence of virulence and antimicrobial resistance genes from Salmonella isolated from South African and Brazilian broiler chickens as well as human clinical isolates. Out of a total of 200 chicken samples that were collected from South Africa 102 (51% tested positive for Salmonella using the InvA gene. Of the overall 146 Salmonella positive samples that were screened for the iroB gene most of them were confirmed to be Salmonella enterica with the following prevalence rates: 85% of human clinical samples, 68.6% of South African chicken isolates and 70.8% of Brazilian chicken samples. All Salmonella isolates obtained were subjected to antimicrobial susceptibility testing with 10 antibiotics. Salmonella isolates from South African chickens exhibited resistance to almost all antimicrobial agents used, such as tetracycline (93%, trimethoprim-sulfamthoxazole (84%, trimethoprim (78.4%, kanamycin (74%, gentamicin (48%, ampicillin (47%, amoxicillin (31%, chloramphenicol (31%, erythromycin (18% and streptomycin (12%. All samples were further subjected to PCR in order to screen some common antimicrobial and virulence genes of interest namely spiC, pipD, misL, orfL, pse-1, tet A, tet B, ant (3"-la, sul 1 and sul. All Salmonella positive isolates exhibited resistance to at least one antimicrobial agent; however, antimicrobial resistance patterns demonstrated that multiple drug resistance was prevalent. The findings provide evidence that broiler chickens are colonised by pathogenic Salmonella harbouring antimicrobial resistance genes. Therefore, it is evident that there is a need for prudent use of antimicrobial agents in poultry production systems in

  15. Prevalence of antimicrobial resistance of non-typhoidal Salmonella serovars in retail aquaculture products.

    Science.gov (United States)

    Zhang, Jianmin; Yang, Xiaowei; Kuang, Dai; Shi, Xianming; Xiao, Wenjia; Zhang, Jing; Gu, Zhen; Xu, Xuebin; Meng, Jianghong

    2015-10-01

    Aquaculture products can become sources of Salmonella by exposure to contaminated water or through processing practices, thus representing a public health hazard. A study was conducted on Salmonella contamination in aquaculture products sampled from marketplaces and retailers in Shanghai, China. A total of 730 samples (including fish, shellfish, bullfrog, clam, shrimp and others) were obtained from 2006 to 2011. Among them, 217 (29.7%) were positive for Salmonella. Thirty-eight serovars were identified in the 217 Salmonella isolates. The most prevalent were Salmonella Aberdeen (18.4%), S. Wandsworth (12.0%), S. Thompson (9.2%), S. Singapore (5.5%), S. Stanley (4.6%), S. Schwarzengrund (4.6%), S. Hvittingfoss (4.1%) and S. Typhimurium (4.1%). Many resistant isolates were detected, with 69.6% resistant to at least one antimicrobial drug. We observed high resistance to sulfonamides (56.5%), tetracycline (34.1%), streptomycin (28.6%), ampicillin (23.5%) and nalidixic acid (21.2%). Lower levels of resistance were found for gentamicin (3.2%), ciprofloxacin (2.3%), ceftiofur (1.3%), cefotaxime (0.9%), ceftazidime (0.5%) and cefepime (0.5%). A total of 43.3% of the Salmonella isolates were multidrug-resistant and 44 different resistance patterns were found. This study provided data on the prevalence, serovars and antimicrobial resistance of Salmonella from retail aquaculture products in Shanghai, and indicated the need for monitoring programs for microbiologic safety in such projects and for more prudent drug use in aquaculture production in order to reduce the risk of development and spread of antimicrobial resistance.

  16. Monitoring Antimicrobial Resistance in the Food Supply Chain and Its Implications for FDA Policy Initiatives.

    Science.gov (United States)

    Zawack, Kelson; Li, Min; Booth, James G; Love, Will; Lanzas, Cristina; Gröhn, Yrjö T

    2016-09-01

    In response to concerning increases in antimicrobial resistance (AMR), the Food and Drug Administration (FDA) has decided to increase veterinary oversight requirements for antimicrobials and restrict their use in growth promotion. Given the high stakes of this policy for the food supply, economy, and human and veterinary health, it is important to rigorously assess the effects of this policy. We have undertaken a detailed analysis of data provided by the National Antimicrobial Resistance Monitoring System (NARMS). We examined the trends in both AMR proportion and MIC between 2004 and 2012 at slaughter and retail stages. We investigated the makeup of variation in these data and estimated the sample and effect size requirements necessary to distinguish an effect of the policy change. Finally, we applied our approach to take a detailed look at the 2005 withdrawal of approval for the fluoroquinolone enrofloxacin in poultry water. Slaughter and retail showed similar trends. Both AMR proportion and MIC were valuable in assessing AMR, capturing different information. Most variation was within years, not between years, and accounting for geographic location explained little additional variation. At current rates of data collection, a 1-fold change in MIC should be detectable in 5 years and a 6% decrease in percent resistance could be detected in 6 years following establishment of a new resistance rate. Analysis of the enrofloxacin policy change showed the complexities of the AMR policy with no statistically significant change in resistance of both Campylobacter jejuni and Campylobacter coli to ciprofloxacin, another second-generation fluoroquinolone. PMID:27324772

  17. Antimicrobial peptides: a new class of antimalarial drugs?

    Directory of Open Access Journals (Sweden)

    Nuno eVale

    2014-12-01

    Full Text Available A range of antimicrobial peptides (AMP exhibit activity on malaria parasites, Plasmodium spp, in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs.

  18. Antimicrobial resistance and clonality in Acinetobacter baumannii

    OpenAIRE

    Nemec, Alexandr

    2009-01-01

    The aim of this thesis was to obtain insight into the epidemiology and molecular basis of multidrug resistance of Acinetobacter baumannii at the population level. To this aim a number of studies were performed on strains mainly from the Czech Republic (CR) which have shown in particular that (i) the vast majority of multidrug resistant (MDR) clinical isolates of A. baumannii from CR belong to clonal lineages termed EU clone I and II; (ii) these two clones have predominated among MDR hospital ...

  19. World Health Organization Ranking of Antimicrobials According to Their Importance in Human Medicine: A Critical Step for Developing Risk Management Strategies to Control Antimicrobial Resistance From Food Animal Production.

    Science.gov (United States)

    Collignon, Peter C; Conly, John M; Andremont, Antoine; McEwen, Scott A; Aidara-Kane, Awa

    2016-10-15

    Antimicrobial use in food animals selects for antimicrobial resistance in bacteria, which can spread to people. Reducing use of antimicrobials-particularly those deemed to be critically important for human medicine-in food production animals continues to be an important step for preserving the benefits of these antimicrobials for people. The World Health Organization ranking of antimicrobials according to their relative importance in human medicine was recently updated. Antimicrobials considered the highest priority among the critically important antimicrobials were quinolones, third- and fourth-generation cephalosporins, macrolides and ketolides, and glycopeptides. The updated ranking allows stakeholders in the agriculture sector and regulatory agencies to focus risk management efforts on drugs used in food animals that are the most important to human medicine. In particular, the current large-scale use of fluoroquinolones, macrolides, and third-generation cephalosporins and any potential use of glycopeptides and carbapenems need to be addressed urgently.

  20. Role of Antimicrobial Selective Pressure and Secondary Factors on Antimicrobial Resistance Prevalence in Escherichia coli from Food-Producing Animals in Japan

    OpenAIRE

    Harada, Kazuki; Asai, Tetsuo

    2010-01-01

    The use of antimicrobial agents in the veterinary field affects the emergence, prevalence, and dissemination of antimicrobial resistance in bacteria isolated from food-producing animals. To control the emergence, prevalence, and dissemination of antimicrobial resistance, it is necessary to implement appropriate actions based on scientific evidence. In Japan, the Japanese Veterinary Antimicrobial Resistance Monitoring System (JVARM) was established in 1999 to monitor the antimicrobial suscepti...

  1. Resistance of Streptococcus sanguis biofilms to antimicrobial agents

    DEFF Research Database (Denmark)

    Larsen, T; Fiehn, N E

    1996-01-01

    Bacteria living in biofilms as dental plaque on tooth surfaces are generally more resistant to antimicrobial agents than bacteria in batch culture normally used for in vitro susceptibility testing. In order to compare the resistance of free-living and surface-grown oral bacteria, the MIC of Strep......Bacteria living in biofilms as dental plaque on tooth surfaces are generally more resistant to antimicrobial agents than bacteria in batch culture normally used for in vitro susceptibility testing. In order to compare the resistance of free-living and surface-grown oral bacteria, the MIC...... of Streptococcus sanguis 804 and ATCC 10556 to amoxicillin, doxycycline and chlorhexidine was determined by a broth dilution method. Subsequently, S. sanguis biofilms established in an in vitro flow model were perfused with the antimicrobial agents for 48 h at concentrations equal to and up to 500 times the MIC......, and biofilm cell number was determined during this period. The antibiotics at the MIC did not affect the cell number of S. sanguis biofilms compared to the starting point, and only after 48 h at 500 times the MIC were the biofilm bacteria eliminated. At intermediate concentrations biofilm cell number...

  2. Efficacy of triclosan as an antimicrobial hand soap and its potential impact on antimicrobial resistance: a focused review.

    Science.gov (United States)

    Giuliano, Christopher A; Rybak, Michael J

    2015-03-01

    Triclosan is a synthetic biocide found in many household products, including antimicrobial hand soap. Levels of triclosan have been found throughout the environment and in human urine, blood, and even breast milk. Increasing levels of exposure to triclosan have led to concerns over the development of resistance to triclosan and cross-resistance to other antimicrobials. We performed a literature search to assess whether the widespread use of triclosan displays a favorable benefit: risk ratio, defined by evaluation of triclosan's efficacy as an antimicrobial hand soap and its potential effect on the development of antimicrobial resistance. Data from laboratory-based studies regarding the efficacy of triclosan are conflicting, although well-designed studies suggest no significant difference in efficacy over nonantimicrobial soap. In addition, when triclosan was introduced in a community setting, no beneficial effects were observed on the reduction of infections over nonantimicrobial soap. Resistance to triclosan and cross-resistance to antimicrobials have been consistently demonstrated in laboratory settings, although overall resistance rates and cross-resistance rates in the community setting are low. Based on the available evidence, the risk of potential antimicrobial resistance outweighs the benefit of widespread triclosan use in antimicrobial soaps.

  3. Growing Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance.

    Directory of Open Access Journals (Sweden)

    Chakrit Sawasdidoln

    Full Text Available BACKGROUND: Burkholderia pseudomallei, a gram-negative bacterium that causes melioidosis, was reported to produce biofilm. As the disease causes high relapse rate when compared to other bacterial infections, it therefore might be due to the reactivation of the biofilm forming bacteria which also provided resistance to antimicrobial agents. However, the mechanism on how biofilm can provide tolerance to antimicrobials is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: The change in resistance of B. pseudomallei to doxycycline, ceftazidime, imipenem, and trimethoprim/sulfamethoxazole during biofilm formation were measured as minimum biofilm elimination concentration (MBEC in 50 soil and clinical isolates and also in capsule, flagellin, LPS and biofilm mutants. Almost all planktonic isolates were susceptible to all agents studied. In contrast, when they were grown in the condition that induced biofilm formation, they were markedly resistant to all antimicrobial agents even though the amount of biofilm production was not the same. The capsule and O-side chains of LPS mutants had no effect on biofilm formation whereas the flagellin-defective mutant markedly reduced in biofilm production. No alteration of LPS profiles was observed when susceptible form was changed to resistance. The higher amount of N-acyl homoserine lactones (AHLs was detected in the high biofilm-producing isolates. Interestingly, the biofilm mutant which produced a very low amount of biofilm and was sensitive to antimicrobial agents significantly resisted those agents when grown in biofilm inducing condition. CONCLUSIONS/SIGNIFICANCE: The possible drug resistance mechanism of biofilm mutants and other isolates is not by having biofilm but rather from some factors that up-regulated when biofilm formation genes were stimulated. The understanding of genes related to this situation may lead us to prevent B. pseudomallei biofilms leading to the relapse of melioidosis.

  4. Isolation of Helicobacter pylori in gastric mucosa and susceptibility to five antimicrobial drugs in Southern Chile

    Directory of Open Access Journals (Sweden)

    Laura Otth

    2011-06-01

    Full Text Available Helicobacter pylori colonizes more than 50% of the world population thus, it is considered an important cause of gastric cancer. The aim of this study was to determine the isolation frequency of H. pylori in Southern Chile from patients with symptomatology compatible with gastritis or gastric ulcer and to correlate these findings with demographic parameters of infected patients and the susceptibility profiles of the isolated strains to the antimicrobial drugs used in the eradication treatments. A total of 240 patients were enrolled in the study. Each gastric biopsy was homogenized and seeded onto blood agar plates containing a selective antibiotics mixture (DENT supplement. Plates were incubated at 37° C in a microaerophilic environment for five days. The susceptibility profiles to amoxicillin, ciprofloxacin, clarithromycin, tetracycline and metronidazole were determined using the E-test method. H. pylori was isolated from 99 patients (41.3% with slightly higher frequency in female (42% positive cultures than male (40.2% positive cultures. With regard to age and educational level, the highest isolation frequencies were obtained in patients between 21-30 (55% and 41-50 (52.6% years old, and patients with secondary (43.9% and university (46.2% educational levels. Nineteen (21.6% strains showed resistance to at least one antimicrobial drug. Tetracycline was the most active antimicrobial in vitro, whereas metronidazole was the less active. One strain (5.3% showed resistance to amoxicillin, clarithomycin and metronidazole, simultaneously.

  5. Antimicrobial resistance and clonality in Acinetobacter baumannii

    NARCIS (Netherlands)

    Nemec, Alexandr

    2009-01-01

    The aim of this thesis was to obtain insight into the epidemiology and molecular basis of multidrug resistance of Acinetobacter baumannii at the population level. To this aim a number of studies were performed on strains mainly from the Czech Republic (CR) which have shown in particular that (i) the

  6. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance.

    Science.gov (United States)

    Cabello, Felipe C; Godfrey, Henry P; Buschmann, Alejandro H; Dölz, Humberto J

    2016-07-01

    Aquaculture uses hundreds of tonnes of antimicrobials annually to prevent and treat bacterial infection. The passage of these antimicrobials into the aquatic environment selects for resistant bacteria and resistance genes and stimulates bacterial mutation, recombination, and horizontal gene transfer. The potential bridging of aquatic and human pathogen resistomes leads to emergence of new antimicrobial-resistant bacteria and global dissemination of them and their antimicrobial resistance genes into animal and human populations. Efforts to prevent antimicrobial overuse in aquaculture must include education of all stakeholders about its detrimental effects on the health of fish, human beings, and the aquatic ecosystem (the notion of One Health), and encouragement of environmentally friendly measures of disease prevention, including vaccines, probiotics, and bacteriophages. Adoption of these measures is a crucial supplement to efforts dealing with antimicrobial resistance by developing new therapeutic agents, if headway is to be made against the increasing problem of antimicrobial resistance in human and veterinary medicine. PMID:27083976

  7. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance.

    Science.gov (United States)

    Cabello, Felipe C; Godfrey, Henry P; Buschmann, Alejandro H; Dölz, Humberto J

    2016-07-01

    Aquaculture uses hundreds of tonnes of antimicrobials annually to prevent and treat bacterial infection. The passage of these antimicrobials into the aquatic environment selects for resistant bacteria and resistance genes and stimulates bacterial mutation, recombination, and horizontal gene transfer. The potential bridging of aquatic and human pathogen resistomes leads to emergence of new antimicrobial-resistant bacteria and global dissemination of them and their antimicrobial resistance genes into animal and human populations. Efforts to prevent antimicrobial overuse in aquaculture must include education of all stakeholders about its detrimental effects on the health of fish, human beings, and the aquatic ecosystem (the notion of One Health), and encouragement of environmentally friendly measures of disease prevention, including vaccines, probiotics, and bacteriophages. Adoption of these measures is a crucial supplement to efforts dealing with antimicrobial resistance by developing new therapeutic agents, if headway is to be made against the increasing problem of antimicrobial resistance in human and veterinary medicine.

  8. First antimicrobial resistance data and genetic characteristics of Neisseria gonorrhoeae isolates from Estonia, 2009–2013

    Directory of Open Access Journals (Sweden)

    D. Golparian

    2014-09-01

    Full Text Available Gonorrhoea is a sexually transmitted infection with major public health implications and Neisseria gonorrhoeae has developed resistance to all antimicrobials introduced for treatment. Enhanced surveillance of antimicrobial resistance in N. gonorrhoeae is crucial globally. This is the first internationally reported antimicrobial resistance data for N. gonorrhoeae from Estonia (44 isolates cultured in 2009–2013. A high prevalence of resistance was observed for azithromycin, ciprofloxacin and tetracycline. One and two isolates with resistance and decreased susceptibility to the last remaining first-line treatment option ceftriaxone, respectively, were identified. It is crucial to implement surveillance of gonococcal antimicrobial resistance (ideally also treatment failures in Estonia.

  9. Extensively Drug-Resistant Tuberculosis: Principles of Resistance, Diagnosis, and Management.

    Science.gov (United States)

    Wilson, John W; Tsukayama, Dean T

    2016-04-01

    Extensively drug-resistant (XDR) tuberculosis (TB) is an unfortunate by-product of mankind's medical and pharmaceutical ingenuity during the past 60 years. Although new drug developments have enabled TB to be more readily curable, inappropriate TB management has led to the emergence of drug-resistant disease. Extensively drug-resistant TB describes Mycobacterium tuberculosis that is collectively resistant to isoniazid, rifampin, a fluoroquinolone, and an injectable agent. It proliferates when established case management and infection control procedures are not followed. Optimized treatment outcomes necessitate time-sensitive diagnoses, along with expanded combinations and prolonged durations of antimicrobial drug therapy. The challenges to public health institutions are immense and most noteworthy in underresourced communities and in patients coinfected with human immunodeficiency virus. A comprehensive and multidisciplinary case management approach is required to optimize outcomes. We review the principles of TB drug resistance and the risk factors, diagnosis, and managerial approaches for extensively drug-resistant TB. Treatment outcomes, cost, and unresolved medical issues are also discussed.

  10. Ru(II)-based antimicrobials: looking beyond organic drugs.

    Science.gov (United States)

    Ramos, A I; Braga, T M; Braga, S S

    2012-03-01

    This review deals with the bactericidal, anti-fungal and even anti-parasitary properties of ruthenium complexes, both inorganic and organometallic, establishing comparisons between these and the available commercial drugs. The description is mostly composed of results found in the literature of the past two decades, complemented with relevant results from our group's research on antimicrobial ruthenium complexes. The complexes are divided into five groups according to the kind of ligands, geometry and chemical nature. The first group comprises ruthenium octahedral complexes with Schiff bases, the most well explored kind of ruthenium antimicrobials. The second group comprises complexes with planar ligands and an overall more flattened geometry, designed for DNA intercalation. In the following two groups, ruthenium complexes feature a particular functionality, which is, in one case, the presence of the PTA ligand for higher solubility in water, and, in the second, the mimicry of an active organic drug. Finally, a small section presents the most recent results on supramolecular antimicrobials comprising ruthenium, in particular a polymer and a cyclodextrin adduct. PMID:22356193

  11. Methodological comparisons for antimicrobial resistance surveillance in feedlot cattle

    OpenAIRE

    Katharine M Benedict; Gow, Sheryl P.; Checkley, Sylvia; Booker, Calvin W.; McAllister, Tim A; Morley, Paul S.

    2013-01-01

    Background The purpose of this study was to objectively compare methodological approaches that might be utilized in designing an antimicrobial resistance (AMR) surveillance program in beef feedlot cattle. Specifically, four separate comparisons were made to investigate their potential impact on estimates for prevalence of AMR. These included investigating potential differences between 2 different susceptibility testing methods (broth microdilution and disc diffusion), between 2 different targ...

  12. Antimicrobial resistance of Staphylococcus spp. from small ruminant mastitis in Brazil

    Directory of Open Access Journals (Sweden)

    Chirles A. França

    2012-08-01

    Full Text Available The study aimed to determine the antimicrobial resistance patterns and to identify molecular resistance markers in Staphylococcus spp. (n=210 isolated from small ruminant mastitis in Brazil. The antimicrobial resistance patterns were evaluated by the disk diffusion test and by detection of the presence of mecA, blaZ, ermA, ermB, ermC and msrA genes by PCR. The efflux pump test was performed using ethidium bromide and biofilm production was determined by Congo red agar test along with PCR for detection of the icaD gene. The isolates were most resistant to amoxicillin (50.0%, streptomycin (42.8%, tetracycline (40.4%, lincomycin (39.0% and erythromycin (33.8%. Pan-susceptibility to all tested drugs was observed in 71 (33.8% isolates and 41 Staphylococcus isolates were positive for the efflux pump. Although phenotypic resistance to oxacillin was observed in 12.8% of the isolates, none harbored the mecA gene. However, 45.7% of the isolates harbored blaZ indicating that beta-lactamase production was the main mechanism associated with staphylococci resistance to beta-lactams in the present study. The other determinants of resistance to antimicrobial agents ermA, ermB, ermC, and msrA were observed in 1.4%, 10.4%, 16.2%, and 0.9% of the isolates, respectively. In addition, the icaD gen was detected in 32.9% of the isolates. Seventy three isolates (54 from goats and 19 from sheep were negative for all resistance genes tested and 69 isolates presented two or more resistance genes. Association among blaZ, ermA, ermB, ermC and efflux pump were observed in 17 isolates, 14 of which originated from goats and three from sheep. The data obtained in this study show the resistance of the isolates to beta-lactamics, which may be associated with the use of antimicrobial drugs without veterinary control.

  13. Resistance of Antimicrobial Peptide Gene Transgenic Rice to Bacterial Blight

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; WU Chao; LIU Mei; LIU Xu-ri; Hu Guo-cheng; SI Hua-min; SUN Zong-xiu; LIU Wen-zhen; Fu Ya-ping

    2011-01-01

    Antimierobial peptide is a polypeptide with antimicrobial activity.Antimicrobial peptide genes Np3 and Np5 from Chinese shrimp (Fenneropenaeus Chinensis) were integrated into Oryza sativa L.subsp.japonica cv.Aichi ashahi by Agrobacterium mediated transformation system.PCR analysis showed that the positive ratios of Np3 and Np5 were 36% and 45% in T0 generation,respectively.RT-PCR analysis showed that the antimicrobial peptide genes were expressed in T1 generation,and there was no obvious difference in agronomic traits between transgenic plants and non-transgenic plants.Four Np3 and Np5 transgenic lines in T1 generation were inoculated with ×anthomonas oryzae pv.oryzae strain CR4,and all the four transgenic lines had significantly enhanced resistance to bacterial blight caused by the strain CR4.The Np5 transgenic lines also showed higher resistance to bacterial blight caused by strains JS97-2,Zhe 173 and OS-225.It is suggested that transgenic lines with Np5 gene might possess broad spectrum resistance to rice bacterial blight.

  14. Intrinsic Antimicrobial Resistance Determinants in the Superbug Pseudomonas aeruginosa

    OpenAIRE

    Murray, Justine L.; Kwon, Taejoon; Marcotte, Edward M.; Whiteley, Marvin

    2015-01-01

    ABSTRACT Antimicrobial-resistant bacteria pose a serious threat in the clinic. This is particularly true for opportunistic pathogens that possess high intrinsic resistance. Though many studies have focused on understanding the acquisition of bacterial resistance upon exposure to antimicrobials, the mechanisms controlling intrinsic resistance are not well understood. In this study, we subjected the model opportunistic superbug Pseudomonas aeruginosa to 14 antimicrobials under highly controlled...

  15. The relationship between antimicrobial consumption and the rates of resistance of Klebsiela pneumoniae in respiratory unit

    Institute of Scientific and Technical Information of China (English)

    YANG Xin-yun; ZHUO Chao; XIAO Xiang-lin; YUAN Jin-Ping; YANG Ling

    2008-01-01

    Objective To investigate the relationship between the consumption of antibacterial agents and resistance rate of Klebsiela pneumoniae(KP)in the hospital respiratory unit for 3 consecutive years in 2005-2007. Methods The total antibacterial consumption expressed as defined DDDs/100BD, as well as resistance rate of total KP and producing ESBLs KP were collected, and their correlation was analyzed. Results The rate of resistance of KP to cefoperazone/sulbactam, Cefepime, Imipenem, Moxifloxacin was significantly positively associated with the consumption of Cefotaxime, Ceftazidime, Moxifloxacin, Amikacin respectively;A significant positive association was observed between the rate of resistance of KP to Piperacillin/Tazobactam, Ceftriaxone and the consumption of Imipenem; The rate of resistance of KP to Piperacillin, Cefotaxime, Ciprofloxacin was significantly positively associated with the consumption of Levofloxacin. ESBLs producing bacilli of KP were detected in 44 of 75 isolates (58.7%), The rate of resistance of producing ES-BLs KP to Piperacillin/Tazobactarn, Ceftriaxone was significantly positively associated with the consumption of Imipenem, Ceftazidime; A significant positive association was observed between the rate of resistance of producing ESBLs KP to Piperacillin, Imipenem and the consumption of Moxifloxacin. There was no significant correlation in other drugs. Conclusions A relationship existed between antimicrobial consumption and rates of resistance of KP in the hospital respiratory unit. We must use antibiotics carefully and with reason to control and lessen the drug resistance of bacterial.

  16. STUDIES ON ANTIBACTERIAL EFFECT OF APAMARGA (ACHYRANTHES ASPERA ON MULTI-DRUG RESISTANT CLINICAL ISOLATES

    Directory of Open Access Journals (Sweden)

    Patil Usha

    2013-04-01

    Full Text Available Recent reports on emergence of multidrug resistant bacteria are cause of concern in medical world. Several ayurvedic drugs have been proved to contain the antimicrobial activity. Literature on effect of ayurvedic drugs on multidrug resistant bacterial pathogens is limited. Present study reports the antimicrobial effect of Achyranthes aspera (Apamarga crude extracts on the clinical isolates of multidrug resistant bacteria. The drug was evaluated by using phytochemical tests. Crude extracts of aqueous, methanol, ethanol and chloroform was prepared. Antibacterial activity against clinically isolated multidrug resistant bacteria belonging to groups of bacillus, citrobacter, E.coli, klebsiella, proteus and salmonella was tested. The drug showed highest efficacy against Bacillus organism while least effectiveness on Proteus spp bacteria. Results of the study conclude that the medicinal plant A. aspera might be useful against multidrug resistance in pathogens of clinical importance.

  17. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil.

    Science.gov (United States)

    Zishiri, Oliver T; Mkhize, Nelisiwe; Mukaratirwa, Samson

    2016-01-01

    Salmonellosis is a significant public health concern around the world. The injudicious use of antimicrobial agents in poultry production for treatment, growth promotion and prophylaxis has resulted in the emergence of drug resistant strains of Salmonella. The current study was conducted to investigate the prevalence of virulence and antimicrobial resistance genes from Salmonella isolated from South African and Brazilian broiler chickens as well as human clinical isolates. Out of a total of 200 chicken samples that were collected from South Africa 102 (51%) tested positive for Salmonella using the InvA gene. Of the overall 146 Salmonella positive samples that were screened for the iroB gene most of them were confirmed to be Salmonella enterica with the following prevalence rates: 85% of human clinical samples, 68.6% of South African chicken isolates and 70.8% of Brazilian chicken samples. All Salmonella isolates obtained were subjected to antimicrobial susceptibility testing with 10 antibiotics. Salmonella isolates from South African chickens exhibited resistance to almost all antimicrobial agents used, such as tetracycline (93%), trimethoprim-sulfamthoxazole (84%), trimethoprim (78.4%), kanamycin (74%), gentamicin (48%), ampicillin (47%), amoxicillin (31%), chloramphenicol (31%), erythromycin (18%) and streptomycin (12%). All samples were further subjected to PCR in order to screen some common antimicrobial and virulence genes of interest namely spiC, pipD, misL, orfL, pse-1, tet A, tet B, ant (3")-la, sul 1 and sul. All Salmonella positive isolates exhibited resistance to at least one antimicrobial agent; however, antimicrobial resistance patterns demonstrated that multiple drug resistance was prevalent. The findings provide evidence that broiler chickens are colonised by pathogenic Salmonella harbouring antimicrobial resistance genes. Therefore, it is evident that there is a need for prudent use of antimicrobial agents in poultry production systems in order to

  18. Isolates of Staphylococcus aureus and saprophyticus resistant to antimicrobials isolated from the Lebanese aquatic environment.

    Science.gov (United States)

    Harakeh, Steve; Yassine, Hadi; Hajjar, Shady; El-Fadel, Mutasem

    2006-08-01

    The indiscriminate use of antimicrobials especially in developing countries has evoked serious bacterial resistance and led to the emergence of new and highly resistant strains of bacteria to commonly used antimicrobials. In Lebanon, pollution levels and bacterial infections are increasing at a high rate as a result of inadequate control measures to limit untreated effluent discharges into the sea or freshwater resources. The aim of this study was to isolate and molecularly characterize various Staphylococcus strains isolated from sea water, fresh water, sediments, and crab samples collected from representative communities along the coast of Lebanon. The results on the antimicrobial resistance indicated that the level of resistance of Staphylococcus aureus varied with various antimicrobials tested. The resistance patterns ranged between 45% in freshwater isolates and 54.8% in seawater ones. Fifty one percent of the tested isolates have shown resistance to at least one of the five tested antimicrobials; with seawater isolates exhibiting the highest rates of antimicrobial resistance.

  19. [MOLECULAR MECHANISMS OF DRUG RESISTANCE NEISSERIA GONORRHOEAE HISTORY AND PROSPECTS].

    Science.gov (United States)

    Bodoev, I N; Il'ina, E N

    2015-01-01

    Neisseria gonorrhoeae (gonococcus) is a strict human pathogen, which causes gonorrhea--an infectious disease, whose origin dates back to more than two thousand years. Due to the unique plasticity of the genetic material, these bacteria have acquired the capacity to adapt to the host immune system, cause repeated infections, as well as withstand antimicrobials. Since the introduction of antibiotics in 1930s, gonococcus has displayed its propensity to develop resistance to all clinically useful antibiotics. It is important to note that the known resistance determinants of N. gonorrhoeae were acquired through horizontal gene transfer, recombination and spontaneous mutagenesis, and may be located both in the chromosome and on the plasmid. After introduction of a new antimicrobial drug, gonococcus becomes resistant within two decades and replaces sensitive bacterial population. Currently Ceftriaxone is the last remaining antibiotic for first-line treatment of gonorrhea. However, the first gonococcus displaying high-level resistance to Ceftriaxone was isolated in Japan a few years ago. Therefore, in the near future, gonorrhea may become untreatable. In the present review, we discuss the chronology of the anti-gonorrhea drugs (antibiotics) replacement, the evolution of resistance mechanisms emergence and future perspectives of N. gonorrhoeae treatment.

  20. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine.

    Science.gov (United States)

    Garcia-Migura, Lourdes; Hendriksen, Rene S; Fraile, Lorenzo; Aarestrup, Frank M

    2014-05-14

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1 kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite the withdrawn of a specific antimicrobial from "on farm" use, persistence over the years of bacteria resistant to this particular antimicrobial agent, was still observed. There were also differences in trends of resistance associated to specific animal species. In order to correlate the use of antimicrobial agents to the presence of resistance, surveillance of antimicrobial consumption by animal species should be established. Subsequently, intervention strategies could be designed to minimize the occurrence of resistance.

  1. Human Health Hazards from Antimicrobial-Resistant Escherichia coli of Animal Origin

    DEFF Research Database (Denmark)

    Hammerum, A. M.; Heuer, Ole Eske

    2009-01-01

    Because of the intensive use of antimicrobial agents in food animal production, meat is frequently contaminated with antimicrobial-resistant Escherichia coli. Humans can be colonized with E. coli of animal origin, and because of resistance to commonly used antimicrobial agents, these bacteria may...... cause infections for which limited therapeutic options are available. This may lead to treatment failure and can have serious consequences for the patient. Furthermore, E. coli of animal origin may act as a donor of antimicrobial resistance genes for other pathogenic E. coli. Thus, the intensive use...... of antimicrobial agents in food animals may add to the burden of antimicrobial resistance in humans. Bacteria from the animal reservoir that carry resistance to antimicrobial agents that are regarded as highly or critically important in human therapy (e.g., aminoglycosides, fluoroquinolones, and third- and fourth...

  2. Burkholderia cenocepacia zinc metalloproteases influence resistance to antimicrobial peptides.

    Science.gov (United States)

    Kooi, Cora; Sokol, Pamela A

    2009-09-01

    Burkholderia cenocepacia secretes two zinc-dependent metalloproteases, designated ZmpA and ZmpB. Previously, ZmpA and ZmpB have been shown to cleave several proteins important in host defence. In this study, the ability of ZmpA and ZmpB to digest and inactivate antimicrobial peptides involved in innate immunity was examined. ZmpB but not ZmpA cleaved beta-defensin-1. ZmpA but not ZmpB cleaved the cathelicidin LL-37. Both enzymes cleaved elafin and secretory leukocyte inhibitor, which are antimicrobial peptides as well as neutrophil elastase inhibitors. Both ZmpA and ZmpB cleaved protamine, a fish antimicrobial peptide, and a zmpA zmpB mutant was more sensitive to protamine killing than the parental strain. ZmpA or ZmpB cleavage of elafin inactivated its anti-protease activity. The effect of ZmpA and ZmpB on the neutrophil proteases elastase and cathepsin G was also examined but neither enzyme was active against these host proteases. These studies suggest that ZmpA and ZmpB may influence the resistance of B. cenocepacia to host antimicrobial peptides as well as alter the host protease/anti-protease balance in chronic respiratory infections.

  3. Antimicrobial Resistance and Antimicrobial Use Associated with Laboratory-Confirmed Cases of Campylobacter Infection in Two Health Units in Ontario

    Directory of Open Access Journals (Sweden)

    Anne E Deckert

    2013-01-01

    Full Text Available AIM: A population-based study was conducted over a two-year period in the Perth District (PD and Wellington-Dufferin-Guelph (WDG health units in Ontario to document antimicrobial resistance and antimicrobial use associated with clinical cases of laboratory-confirmed campylobacteriosis.

  4. Detection of Multi-drug Resistant Acinetobacter Lwoffii Isolated from Soil of Mink Farm.

    Science.gov (United States)

    Sun, Na; Wen, Yong Jun; Zhang, Shu Qin; Zhu, Hong Wei; Guo, Li; Wang, Feng Xue; Chen, Qiang; Ma, Hong Xia; Cheng, Shi Peng

    2016-07-01

    There were 4 Acinetobacter lwoffii obtained from soil samples. The antimicrobial susceptibility of the strains to 16 antimicrobial agents was investigated using K-B method. Three isolates showed the multi-drug resistance. The presence of resistance genes and integrons was determined using PCR. The aadA1, aac(3')-IIc, aph(3')-VII, aac(6')-Ib, sul2, cat2, floR, and tet(K) genes were detected, respectively. Three class 1 integrons were obtained. The arr-3-aacA4 and blaPSE-1 gene cassette, which cause resistance to aminoglycoside and beta-lactamase antibiotics. Our results reported the detection of multi-drug resistant and carried resistant genes Acinetobacter lwoffii from soil. The findings suggested that we should pay close attention to the prevalence of multi-drug resistant bacterial species of environment. PMID:27554122

  5. Antimicrobial resistance in community and nosocomial Escherichia coli urinary tract isolates, London 2005 – 2006

    Directory of Open Access Journals (Sweden)

    Wareham David W

    2008-06-01

    Full Text Available Abstract Background Escherichia coli is the commonest cause of community and nosocomial urinary tract infection (UTI. Antibiotic treatment is usually empirical relying on susceptibility data from local surveillance studies. We therefore set out to determine levels of resistance to 8 commonly used antimicrobial agents amongst all urinary isolates obtained over a 12 month period. Methods Antimicrobial susceptibility to ampicillin, amoxicillin/clavulanate, cefalexin, ciprofloxacin, gentamicin, nitrofurantoin, trimethoprim and cefpodoxime was determined for 11,865 E. coli urinary isolates obtained from community and hospitalised patients in East London. Results Nitrofurantoin was the most active agent (94% susceptible, followed by gentamicin and cefpodoxime. High rates of resistance to ampicillin (55% and trimethoprim (40%, often in combination were observed in both sets of isolates. Although isolates exhibiting resistance to multiple drug classes were rare, resistance to cefpodoxime, indicative of Extended spectrum β-lactamase production, was observed in 5.7% of community and 21.6% of nosocomial isolates. Conclusion With the exception of nitrofurantoin, resistance to agents commonly used as empirical oral treatments for UTI was extremely high. Levels of resistance to trimethoprim and ampicillin render them unsuitable for empirical use. Continued surveillance and investigation of other oral agents for treatment of UTI in the community is required.

  6. [Antimicrobial resistance forever? Judicious and appropriate use of antibiotics].

    Science.gov (United States)

    Cagliano, Stefano

    2015-06-01

    This article takes its cue from the original work of sir Alexander Fleming on penicillin, published in the first issue of Recenti Progressi in Medicina in 1946 and reproduced here on the occasion of the approaching 70-year anniversary of the journal. In 1928, at the time when penicillin was discovered, it could not be imagined that bacterial resistance to antibiotics would develop so rapidly: the introduction of every new class of antibiotics has been shortly followed by the emergence of new strains of bacteria resistant to that class. Bacterial resistance to antibiotic treatment is a huge concern. In this respect, an action plan against antimicrobial resistance has been devised in the United States that is targeted for a 50% reduction over the next five years.

  7. Antimicrobial resistance profiling and molecular subtyping of Campylobacter spp. from processed turkey

    Directory of Open Access Journals (Sweden)

    Sherwood Julie S

    2009-09-01

    Full Text Available Abstract Background Campylobacter is a major cause of human disease worldwide and poultry are identified as a significant source of this pathogen. Most disease in humans is associated with the consumption of contaminated poultry or cross-contamination with other foods. The primary drugs of choice for treatment of human campylobacteriosis include erythromycin and ciprofloxacin. In this study, we investigated the prevalence of resistance to erythromycin and ciprofloxacin in Campylobacter isolates recovered from turkey carcasses at two processing plants in the Upper Midwest US. Further analysis of a subset of isolates was carried out to assess resistance and genotype profiles. Results Campylobacter isolates from plant A (n = 439; including 196 C. coli and 217 C. jejuni and plant B (n = 362, including 281 C. coli and 62 C. jejuni were tested for susceptibility to ciprofloxacin and erythromycin using agar dilution. C. coli were more frequently resistant than C. jejuni in both plants, including resistance to ciprofloxacin (28% of C. jejuni and 63% of C. coli, plant B; and 11% of C. coli, plant A. Erythromycin resistance was low among C. jejuni (0% plant A and 0.3% plant B compared to C. coli (41%, plant A and 17%, plant B. One hundred resistant and susceptible isolates were selected for additional antimicrobial susceptibility testing, restriction fragment length polymorphism analysis of the flaA gene (fla typing, and pulsed-field gel electrophoresis (PFGE. Fla-PFGE types obtained (n = 37 were associated with a specific plant with the exception of one type that was isolated from both plants. C. coli isolates (n = 65 were grouped into 20 types, while C. jejuni isolates (n = 35 were grouped into 17 types. Most isolates with identical fla-PFGE patterns shared identical or very similar antimicrobial resistance profiles. PFGE alone and composite analysis using fla-PFGE with resistance profiles separated C. jejuni and C. coli into distinct groups. Conclusion

  8. Antimicrobial Activity of a Halocidin-Derived Peptide Resistant to Attacks by Proteases ▿

    Science.gov (United States)

    Shin, Yong Pyo; Park, Ho Jin; Shin, Seo Hwa; Lee, Young Shin; Park, Seungmi; Jo, Sungho; Lee, Yong Ho; Lee, In Hee

    2010-01-01

    Cationic antimicrobial peptides (AMPs) have attracted a great deal of interest as a promising candidate for a novel class of antibiotics that might effectively treat recalcitrant infections caused by a variety of microbes that are resistant to currently available drugs. However, the AMPs are inherently limited in that they are inevitably susceptible to attacks by proteases generated by human and pathogenic microbes; this vulnerability severely hinders their pharmaceutical use in human therapeutic protocols. In this study, we report that a halocidin-derived AMP, designated HG1, was found to be resistant to proteolytic degradation. As a result of its unique structural features, HG1 proved capable of preserving its antimicrobial activity after incubation with trypsin, chymotrypsin, and human matrix metalloprotease 7 (MMP-7). Additionally, HG1 was observed to exhibit profound antimicrobial activity in the presence of fluid from human skin wounds or proteins extracted from the culture supernatants of Staphylococcus aureus and Pseudomonas aeruginosa. Greater understanding of the structural motifs of HG1 required for its protease resistance might provide feasible ways to solve the problems intrinsic to the development of an AMP-based antibiotic. PMID:20385874

  9. Self-medication with Antimicrobial Drugs in Europe

    OpenAIRE

    Grigoryan, L.; Haaijer-Ruskamp, FM; Burgerhof, JGM; Mechtler, R; Deschepper, R.; Tambic-Andrasevic, A; Andrajati, R; Monnet, DL; Cunney, R; Di Matteo, A.; Edelstein, H; Valinteliene, R.; Alkerwi, A; Scicluna, EA; Grzesiowski, P

    2006-01-01

    We surveyed the populations of 19 European countries to compare the prevalence of antimicrobial drug self-medication in the previous 12 months and intended self-medication and storage and to identify the associated demographic characteristics. By using a multistage sampling design, 1,000-3,000 adults in each country were randomly selected. The prevalence of actual self-medication varied from 1 to 210 per 1,000 and intended self-medication from 73 to 449 per 1,000; both rates were high in east...

  10. Drug-resistant tuberculosis in Sindh

    International Nuclear Information System (INIS)

    Objective: To assess the prevalence of primary and secondary drug resistance amongst the clinical isolates of M.tuberculosis, to identify risk factors and how to overcome this problem. Design: A case series of 50 indoor patients with sputum smear-positive pulmonary tuberculosis. Place and duration of Study: Department of Medicine, Liaquat University of Medical and Health Sciences Jamshoro, Sindh, (Pakistan) from January 1999 to December 2000. Patients and methods: Four first line anti-tuberculous drugs rifampicine, ethambutol and streptomycin were tested for sensitivity pattern. Results: Twelve (26.66%) were sensitive to all four drugs, 12(26.66%) were resistant to one drug, 14 (31.11%) were resistant to two drugs, 2 (4.44%) were resistant to three drugs, and 5(11.11%) were resistant to all four drugs. Resistance to isoniazid was the most common in 27 cases (60%) with primary resistance in 6(13.33%) and secondary resistance in 21(46.66%), followed by resistance to streptomycin in 17 cases (37.77%) with primary resistance in 5(11.11%) and secondary resistance in 12 (26.66%). Resistance to ethambutol in 10 cases (22.22%) and rifampicine in 11 (24.44%) and all cases were secondary. Similarly multi-drugs resistance (MRD) TB was found in 11(24.44%) isolates. Conclusion: This study showed high prevalence of drug resistance among clinical isolates of M. tuberculosis. Their is a need to establish centers at number of places with adequate facilities for susceptibility testing so that the resistant pattern could be ascertained and treatment regimens tailored accordingly. (author)

  11. Anatomical Distribution and Genetic Relatedness of Antimicrobial Resistant E. coli from Healthy Companion Animals

    Science.gov (United States)

    Aims: Escherichia coli have been targeted for studying antimicrobial resistance in companion animals due to opportunistic infections and as a surrogate for resistance patterns in zoonotic organisms. The aim of our study examined antimicrobial resistance in E. coli isolated from various anatomical ...

  12. Engineering MRSA antimicrobials that are refractory to resistance development

    Science.gov (United States)

    Methicillin resistant Staphylococcus aureus (MRSA) is one of the most costly multi-drug resistant pathogens to both human animal health, with billions of dollars are spent annually to treat human infections. MRSA is also appearing in livestock (bovine, porcine, poultry) as well as companion animal...

  13. Antimicrobial growth promoter ban and resistance to macrolides and vancomycin in enterococci from pigs

    DEFF Research Database (Denmark)

    Boerlin, P.; Wissing, A.; Aarestrup, Frank Møller;

    2001-01-01

    Ninety-six enterococcus isolates from fecal samples of pigs receiving tylosin as an antimicrobial growth promoter and 59 isolates obtained in the same farms 5 to 6 months after the ban of antimicrobial growth promoters in Switzerland were tested for susceptibility to nine antimicrobial agents. A ....... A clear decrease in resistance to macrolides, lincosamides, and tetracycline was visible after the ban. Vancomycin-resistant Enterococcus faecium belonged to the same clonal lineage as vancomycin-resistant isolates previously isolated from Danish pigs....

  14. Relationship between antimicrobial resistance and aminoglycoside-modifying enzyme gene expressions in Acinetobacter baumannii

    Institute of Scientific and Technical Information of China (English)

    SHI Wei-feng; JIANG Jian-ping; MI Zu-huang

    2005-01-01

    Background Acinetobacter baumannii is one of the main gram-negative bacilli in clinical practice. Nosocomial infections caused by multi-drug resistance Acinetobacter baumannii is very difficult to treat. This study was designed to investigate the antimicrobial resistance characteristics and four resistant gene expressions of aminoglycoside-modifying enzymes including N-acetyltransferases and O-phosphotransferases in Acinetobacter baumannii. Methods Bacterial identification and antimicrobial susceptibility test were performed by PhoenixTM system in 247 strains of Acinetobacter baumannii. Minimal inhibitory concentrations (MICs) of seven aminoglycosides including gentamicin, amikacin, kanamycin, tobramycin, netilmicin, neomycin and streptomycin in 15 strains of multi-drug resistant Acinetobacter baumannii were detected by agar dilution. Four aminoglycoside-modifying enzyme genes were amplified by polymerase chain reaction (PCR) and verified by DNA sequencer.Results The resistance rates of 247 strains of Acinetobacter baumannii against cefotaxime, levofloxacin, piperacillin, aztreonam, tetracycline, ciprofloxacin and chloramphenicol were more than 50%. Imipenem and meropenem showed high antibacterial activities with resistance rates of 3.2% and 4.1%. MIC50 and MIC90 of gentamicin, amikacin, streptomycin and kanamycin in 15 strains of multi-drug resistant Acinetobacter baumanii were all more than 1024 mg/L, and the resistance rates were 100%, 100%, 100% and 93.3%, respectively. But their resistance rates to tobramycin, netilmicin and neomycin were 86.7%, 93.3% and 46.7%, respectively. Three modifying enzyme genes, including aacC1, aacC2 and aacA4 genes, were found in 15 strains, but aphA6 had not been detected. Their positive rates were 93.3%, 20.0% and 20.0%, respectively. These three genes existed simultaneously in No.19 strain. Nucleotide sequences of aacC1, aacC2 and aacA4 genes shared 100%, 97.9% and 99.7% identities with GenBank genes (AY307113, S68058 and AY

  15. Drug resistance of bacteria——present situation and treatment

    Directory of Open Access Journals (Sweden)

    Min ZHAO

    2011-02-01

    Full Text Available Antimicrobial resistance of bacteria is a serious problem worldwide.It has become the difficulty of anti-infection that multidrug-resistance(MDR and drug wide-resistance(DWR gram-negative bacteria are increasing year and year.Alarm has been knolled again on the emerging of Gram-negative pathogens producing the NDM-1 worldwide in 2010.NDM-1 is a new metallo-carbapenemase which is highly resistant to all antibiotics,and has been mostly found among Escherichia coli and Klebsiella pneumoniae.Infections of MDR and DWR Enterobacteriaceae can be effectively treated with tigecycline,polymyxin and fosfomycin on clinic trail.Prevention is very important for reducing the occurring and spreading of MDR and DWR bacteria.

  16. Pharmacokinetic drug interactions of antimicrobial drugs : a systematic review on oxazolidinones, rifamycines, macrolides, fluoroquinolones, and Beta-lactams

    NARCIS (Netherlands)

    Bolhuis, Mathieu S; Panday, Prashant N; Pranger, Arianna D; Kosterink, Jos G W; Alffenaar, Jan-Willem C

    2011-01-01

    Like any other drug, antimicrobial drugs are prone to pharmacokinetic drug interactions. These drug interactions are a major concern in clinical practice as they may have an effect on efficacy and toxicity. This article provides an overview of all published pharmacokinetic studies on drug interactio

  17. In vivo selection of resistant E. coli after ingestion of milk with added drug residues.

    Directory of Open Access Journals (Sweden)

    Richard Van Vleck Pereira

    Full Text Available Antimicrobial resistance represents a major global threat to modern medicine. In vitro studies have shown that very low concentrations of drugs, as frequently identified in the environment, and in foods and water for human and animal consumption, can select for resistant bacteria. However, limited information is currently available on the in vivo impact of ingested drug residues. The objective of our study was to evaluate the effect of feeding preweaned calves milk containing antimicrobial drug residues (below the minimum inhibitory concentration, similar to concentrations detected in milk commonly fed to dairy calves, on selection of resistant fecal E. coli in calves from birth to weaning. At birth, thirty calves were randomly assigned to a controlled feeding trial where: 15 calves were fed raw milk with no drug residues (NR, and 15 calves were fed raw milk with drug residues (DR by adding ceftiofur, penicillin, ampicillin, and oxytetracycline at final concentrations in the milk of 0.1, 0.005, 0.01, and 0.3 µg/ml, respectively. Fecal samples were rectally collected from each calf once a week starting at birth prior to the first feeding in the trial (pre-treatment until 6 weeks of age. A significantly greater proportion of E. coli resistant to ampicillin, cefoxitin, ceftiofur, streptomycin and tetracycline was observed in DR calves when compared to NR calves. Additionally, isolates from DR calves had a significant decrease in susceptibility to ceftriaxone and ceftiofur when compared to isolates from NR calves. A greater proportion of E. coli isolates from calves in the DR group were resistant to 3 or more antimicrobial drugs when compared to calves in the ND group. These findings highlight the role that low concentrations of antimicrobial drugs have on the evolution and selection of resistance to multiple antimicrobial drugs in vivo.

  18. Antimicrobial resistance and in vitro biofilm-forming ability of enterococci from intensive and extensive farming broilers.

    Science.gov (United States)

    Oliveira, M; Santos, V; Fernandes, A; Bernardo, F; Vilela, C L

    2010-05-01

    Enterococci, major broiler intestinal colonizers, play a recognized role in antimicrobial resistance transmission. Several virulence mechanisms, such as biofilm expression, have been identified. Minimum inhibitory concentrations of vancomycin, enrofloxacin, oxytetracycline, streptomycin, and gentamicin and biofilm production of 34 isolates from intensive and extensive farming system broilers were evaluated. All isolates were susceptible to vancomycin. In extensive-reared broilers (n = 18), resistance to enrofloxacin, oxytetracycline, streptomycin, and gentamicin was high (83.33, 55.56, 100, and 83.33%, respectively). Intensive farming broilers (n = 16) showed a lower resistance level for enrofloxacin and streptomycin and a higher resistance level for oxytetracycline and gentamicin. The relation between antimicrobial susceptibility and farming system was not significant for all drugs tested (P > or = 0.05). Enterococci produced biofilm at 24 h (47.0%), 48 h (55.9%), and 72 h (58.8%). Resistance to gentamicin and streptomycin was related to biofilm production at all time points (P or = 0.05). Poultry are colonized by biofilm-producing and antimicrobial-resistant enterococci, independently of the farming system. Results show a relation between resistance to the majority of the drugs tested and biofilm production, which reenforces the importance of these virulence factors in animal and public health.

  19. Impact of media: self-medication and the rising problem of antimicrobial resistance

    Directory of Open Access Journals (Sweden)

    Manali M. Mahajan

    2014-10-01

    Self-medication involves the use of medicinal products by the patient to treat self-recognized disorders, symptoms, recurrent diseases, or minor health problems. Medicines for self-medication are often called over the counter (OTC drugs, which are available without a doctor's prescription through pharmacies, mostly in the developing countries. Self-medication particularly with antibiotics has been widely reported, leading the World Health Organization to call attention to its dangers as a cause of antimicrobial resistance. [Int J Basic Clin Pharmacol 2014; 3(5.000: 921-922

  20. Evidence-based policy for controlling antimicrobial resistance in the food chain in Denmark

    DEFF Research Database (Denmark)

    Wielinga, Pieter; Jensen, Vibeke Frøkjær; Aarestrup, Frank Møller;

    2014-01-01

    Emergence of antimicrobial resistance (AMR) in the animal reservoir forms a risk for human health. The use of antimicrobials in animals is the major cause of development of AMR in animals. In the 1990s, the use of antimicrobials in animals, particularly as a growth promoter, led to alarming level...

  1. Surveillance of antimicrobial resistance in Escherichia coli strains isolated from pigs at Spanish slaughterhouses.

    Science.gov (United States)

    Teshager, T; Herrero, I A; Porrero, M C; Garde, J; Moreno, M A; Domínguez, L

    2000-07-01

    Antimicrobial resistance can make the efficient treatment of bacterial infections in humans and animals more difficult. Antimicrobial use in food animals may be one of the factors contributing to resistance. The Spanish surveillance network VAV has established a baseline of antimicrobial resistance in Escherichia coli strains from healthy pigs. Minimum inhibitory concentration and patterns of resistance to antimicrobials used in animals and humans were determined for 205 faecal strains isolated in a sampling frame of four slaughterhouses in Spain from 220 pigs in 1998. Higher levels of resistance were seen against antimicrobial agents authorised for use in food animals especially tetracycline, sulphonamides, trimethoprim and amoxycillin. All isolates were susceptible to antimicrobials employed mainly in humans such as ceftazidime, cefotaxime, imipenem, aztreonam and amikacin.

  2. Risk assessment of antimicrobial usage in Danish pig production on the human exposure to antimicrobial resistant bacteria from pork

    DEFF Research Database (Denmark)

    Struve, Tina

    During the last decades, bacteria with resistance to all commonly used antimicrobial agents have been detected, thereby posing a major threat to public health. In worst case, infections with resistant bacteria can lead to treatment failure and death of humans. The evolution of bacteria resistant...... to antimicrobials are influenced by the use of antimicrobial agents, and the prudence of antimicrobial use have been emphasized since the Swann report in 1969 recommended that antibiotics used in human medicine should not be used as growth promoters in food-producing animals. In 2007, the World Health Organisation...... was investigated using selective agar plates supplemented with ceftriaxone. The occurrence of ESC producing E. coli was used as the outcome in the data analysis, where the effect of using cephalosporins, extended spectrum penicillins and tetracyclines was estimated using regression analysis. In Objective 2...

  3. Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin “Trojan Horse” antibiotics and synthetic desferridanoxamine-antibiotic conjugates

    OpenAIRE

    Wencewicz, Timothy A.; Möllmann, Ute; Long, Timothy E.; Miller, Marvin J.

    2009-01-01

    The recent rise in drug resistance found amongst community acquired infections has sparked renewed interest in developing antimicrobial agents that target resistant organisms and limit the natural selection of immune variants. Recent discoveries have shown that iron uptake systems in bacteria and fungi are suitable targets for developing such therapeutic agents. The use of siderophore-drug conjugates as “Trojan Horse” drug delivery agents has attracted particular interest in this area. This r...

  4. Nanostructured mesoporous silica: new perspectives for fighting antimicrobial resistance

    Energy Technology Data Exchange (ETDEWEB)

    Voicu, Georgeta; Dogaru, Ionuţ; Meliţă, Daniela; Meştercă, Raluca; Spirescu, Vera; Stan, Eliza; Tote, Eliza [Politehnica University of Bucharest, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science (Romania); Mogoantă, Laurenţiu [University of Medicine and Pharmacy of Craiova, Research Center for Microscopic Morphology and Immunology (Romania); Mogoşanu, George Dan [University of Medicine and Pharmacy of Craiova, Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy (Romania); Grumezescu, Alexandru Mihai, E-mail: grumezescu@yahoo.com [Politehnica University of Bucharest, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science (Romania); Truşcă, Roxana [Metav SA-CD S.A. (Romania); Vasile, Eugeniu [Politehnica University of Bucharest, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science (Romania); Iordache, Florin [Institute of Cellular Biology and Pathology of Romanian Academy, “Nicolae Simionescu”, Department of Fetal and Adult Stem Cell Therapy (Romania); Chifiriuc, Mariana-Carmen [University of Bucharest, Microbiology Department, Faculty of Biology (Romania); Holban, Alina Maria [Politehnica University of Bucharest, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science (Romania)

    2015-05-15

    This paper investigates the antimicrobial potential of nanostructured mesoporous silica (NMS) functionalized with essential oils (EOs) and antibiotics (ATBs). The NMS networks were obtained by the basic procedure from cetyltrimethylammonium bromide and tetraethyl orthosilicate in the form of granules with diameters ranging from 100 to 300 nm with an average pore diameter of 2.2 nm, as confirmed by the BET–TEM analyses. The Salvia officinalis (SO) and Coriandrum sativum (CS) EOs and the streptomycin and neomycin ATBs were loaded in the NMS pores. TG analysis was performed in order to estimate the amount of the entrapped volatile EOs. The results of the biological analyses revealed that NMS/SO and NMS/CS exhibited a very good antimicrobial activity to an extent comparable or even superior to the one triggered by ATB, and a good in vitro and in vivo biocompatibility. Due to their regular pores, high biocompatibility, antimicrobial activity, and capacity to stabilize the volatile EOs, the obtained NMS can be used as an efficient drug delivery system for further biomedical applications.

  5. Nanostructured mesoporous silica: new perspectives for fighting antimicrobial resistance

    International Nuclear Information System (INIS)

    This paper investigates the antimicrobial potential of nanostructured mesoporous silica (NMS) functionalized with essential oils (EOs) and antibiotics (ATBs). The NMS networks were obtained by the basic procedure from cetyltrimethylammonium bromide and tetraethyl orthosilicate in the form of granules with diameters ranging from 100 to 300 nm with an average pore diameter of 2.2 nm, as confirmed by the BET–TEM analyses. The Salvia officinalis (SO) and Coriandrum sativum (CS) EOs and the streptomycin and neomycin ATBs were loaded in the NMS pores. TG analysis was performed in order to estimate the amount of the entrapped volatile EOs. The results of the biological analyses revealed that NMS/SO and NMS/CS exhibited a very good antimicrobial activity to an extent comparable or even superior to the one triggered by ATB, and a good in vitro and in vivo biocompatibility. Due to their regular pores, high biocompatibility, antimicrobial activity, and capacity to stabilize the volatile EOs, the obtained NMS can be used as an efficient drug delivery system for further biomedical applications

  6. Synergistic Antimicrobial Activity of Camellia sinensis and Juglans regia against Multidrug-Resistant Bacteria

    OpenAIRE

    Amber Farooqui; Adnan Khan; Ilaria Borghetto; Kazmi, Shahana U.; Salvatore Rubino; Bianca Paglietti

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, ...

  7. Oral biofilms: a reservoir of transferable, bacterial, antimicrobial resistance.

    Science.gov (United States)

    Roberts, Adam P; Mullany, Peter

    2010-12-01

    Oral microbes are responsible for dental caries and periodontal diseases and have also been implicated in a range of other diseases beyond the oral cavity. These bacteria live primarily as complex, polymicrobial biofilms commonly called dental plaque. Cells growing within a biofilm often exhibit altered phenotypes, such as increased antibiotic resistance. The stable structural properties and close proximity of the bacterial cells within the biofilm appears to be an excellent environment for horizontal gene transfer, which can lead to the spread of antibiotic resistance genes amongst the biofilm inhabitants. This article will present an overview of the different types and amount of resistance to antibiotics that have been found in the human oral microbiota and will discuss the oral inhabitants' role as a reservoir of antimicrobial resistance genes. In addition, data on the genetic support for these resistance genes will be detailed and the evidence for horizontal gene transfer reviewed, demonstrating that the bacteria inhabiting the oral cavity are a reservoir of transferable antibiotic resistance.

  8. Potential Sources and Transmission of Salmonella and Antimicrobial Resistance in Kampala, Uganda.

    Science.gov (United States)

    Afema, Josephine A; Byarugaba, Denis K; Shah, Devendra H; Atukwase, Esther; Nambi, Maria; Sischo, William M

    2016-01-01

    In sub‒Saharan Africa, non‒typhoidal Salmonellae (NTS) cause invasive disease particularly in children and HIV infected adults, but the disease epidemiology is poorly understood. Between 2012 and 2013, we investigated NTS sources and transmission in Kampala. We detected Salmonella in 60% of the influent and 60% of the effluent samples from a wastewater treatment plant and 53.3% of the influent and 10% of the effluent samples from waste stabilization ponds that serve the human population; 40.9% of flush‒water samples from ruminant slaughterhouses, 6.6% of the poultry fecal samples from live bird markets and 4% of the fecal samples from swine at slaughter; and in 54.2% of the water samples from a channel that drains storm-water and effluents from the city. We obtained 775 Salmonella isolates, identified 32 serovars, and determined resistance to 15 antimicrobials. We genotyped common serovars using multiple‒locus variable number tandem repeats analysis or pulsed‒field gel electrophoresis. In addition, we analyzed 49 archived NTS isolates from asymptomatic livestock and human clinical cases. Salmonella from ruminant and swine sources were mostly pan‒susceptible (95%) while poultry isolates were generally more resistant. Salmonella Kentucky isolated from poultry exhibited extensive drug resistance characterized by resistance to 10 antimicrobials. Interestingly, similar genotypes of S. Kentucky but with less antimicrobial resistance (AMR) were found in poultry, human and environmental sources. The observed AMR patterns could be attributed to host or management factors associated with production. Alternatively, S. Kentucky may be prone to acquiring AMR. The factors driving AMR remain poorly understood and should be elucidated. Overall, shared genotypes and AMR phenotypes were found in NTS from human, livestock and environmental sources, suggesting zoonotic and environmental transmissions most likely occur. Information from this study could be used to control

  9. Potential Sources and Transmission of Salmonella and Antimicrobial Resistance in Kampala, Uganda.

    Directory of Open Access Journals (Sweden)

    Josephine A Afema

    Full Text Available In sub‒Saharan Africa, non‒typhoidal Salmonellae (NTS cause invasive disease particularly in children and HIV infected adults, but the disease epidemiology is poorly understood. Between 2012 and 2013, we investigated NTS sources and transmission in Kampala. We detected Salmonella in 60% of the influent and 60% of the effluent samples from a wastewater treatment plant and 53.3% of the influent and 10% of the effluent samples from waste stabilization ponds that serve the human population; 40.9% of flush‒water samples from ruminant slaughterhouses, 6.6% of the poultry fecal samples from live bird markets and 4% of the fecal samples from swine at slaughter; and in 54.2% of the water samples from a channel that drains storm-water and effluents from the city. We obtained 775 Salmonella isolates, identified 32 serovars, and determined resistance to 15 antimicrobials. We genotyped common serovars using multiple‒locus variable number tandem repeats analysis or pulsed‒field gel electrophoresis. In addition, we analyzed 49 archived NTS isolates from asymptomatic livestock and human clinical cases. Salmonella from ruminant and swine sources were mostly pan‒susceptible (95% while poultry isolates were generally more resistant. Salmonella Kentucky isolated from poultry exhibited extensive drug resistance characterized by resistance to 10 antimicrobials. Interestingly, similar genotypes of S. Kentucky but with less antimicrobial resistance (AMR were found in poultry, human and environmental sources. The observed AMR patterns could be attributed to host or management factors associated with production. Alternatively, S. Kentucky may be prone to acquiring AMR. The factors driving AMR remain poorly understood and should be elucidated. Overall, shared genotypes and AMR phenotypes were found in NTS from human, livestock and environmental sources, suggesting zoonotic and environmental transmissions most likely occur. Information from this study could be

  10. Prevalence and antimicrobial resistance of Mycoplasmas and Chlamydiae in patients with genital tract infections in Shanghai, China.

    Science.gov (United States)

    He, Meiling; Xie, Yanping; Zhang, Ruixia; Gao, Song; Xu, Guangmei; Zhang, Lei; Liu, Peipei; Li, Yuanyuan; Wu, Shuyan

    2016-08-01

    The infections of Mycoplasmas and Chlamydiae are still severe in patients with genital tract diseases and antimicrobial resistance for these organisms has been changing in recent years. In this study, we reported the prevalence status of Ureaplasma urealyticum, Mycoplasma hominis and Chlamydia trachomatis in 965 patients with genital tract infection in Shanghai from January 2011 to December 2014 and analyzed the antimicrobial resistance of U. urealyticum and M. hominis to 12 kinds of antimicrobial drugs by using commercial kits and SPSS13.0 software. Here, we found the infection of U. urealyticum was the most frequent among these three organisms. The total infection rate for containing any organisms of them was 49.5%, and it has been increasing in recent 4 years. Positive rate in female (53.3%) was higher than male's (34.8%), and the high risk population was 20-39 years old (56.7%). Besides, U. urealyticum and M. hominis displayed relative lower resistance rates to minocycline, doxycycline, josamycin and gatifloxacin (6.5%, 7.2%, 13.5% and 8.6%, respectively). However, for erythromycin, roxithromycin, thiamphenicol and clindamycin, the resistance rates were relatively high (41.9%, 47.2%, 62.3% and 74.9%, respectively). U. urealyticum and M. hominis displayed a declined trend of the antimicrobial resistance to 12 kinds of drugs detected in this study. In total, these preliminary data showed the prevalence of Mycoplasmas and Chlamydiae in patients and the antimicrobial resistance status of Mycoplasmas, which has use for reference on both prevention and treatment of diseases caused by them. PMID:27324895

  11. Susceptibility of Aeromonas Hydophila Isolates to Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Igor Stojanov

    2010-05-01

    Full Text Available Aeromonas hydrophila is a microorganism widely distributed in nature: in water, soil, food. It is also part of the normal bacterial flora of many animals. As an opportune microorganism it is a secondary biological agent that contributes to the occurrence of a fish disease and its deterioration. Frequently, its presence is an indication of bad zoohygiene and zootechnical conditions in fish ponds. Reduced quality and quantity of feed, mechanical injuries, parasitosis, seasonal oscillation in temperature present some of the factors that produce favorable conditions for bacterial proliferation of aeromonas in fish ponds, so clinical symptoms of the disease occur. Aeromonas is almost always present in clinical isolates and may be unjustly accused for bad health of fish. Antibiotic therapy is applied even when the clinical findings are clear, what certainly effects the susceptibility to chemotherapeutics. The subject of our work was bacteriological examination of the material obtained from the carps with the observed skin changes and the carps without these changes. Also, antimicrobial susceptibility of Aeromonas hydrophila was tested. The aim of this research was to determined the presence of Aeromonas hydrophilia in the carp ponds and to test antibiotic susceptibility. The material consisted of the samples from the fish ponds where the carps were with and without changed skin. The method the isolation of Aeromonas hydrophila was used. The diffusion disk technique was used for testing antibiotic susceptibility. The isolates were tested for their susceptibility to Florephenikol, Flumequine, Olaqindox and Oxitetracycline. The obtained results point that antimicrobial susceptibility was the same regardless of the origin of the samples, i.e. the resistance was the same for both groups of samples (the strains isolated from the fish with skin changes and the strains from fish without changes on skin. The strains were highly resistant: 35% were resistant to

  12. Antimicrobial Resistance of Escherichia fergusonii Isolated from Broiler Chickens.

    Science.gov (United States)

    Simmons, Karen; Islam, M Rashedul; Rempel, Heidi; Block, Glenn; Topp, Edward; Diarra, Moussa S

    2016-06-01

    The objective of this study was to investigate the antibiotic resistance of Escherichia fergusonii isolated from commercial broiler chicken farms. A total of 245 isolates from cloacal and cecal samples of 28- to 36-day-old chickens were collected from 32 farms. Isolates were identified using PCR, and their susceptibility to 16 antibiotics was determined by disk diffusion assay. All isolates were susceptible to meropenem, amikacin, and ciprofloxacin. The most common resistances were against ampicillin (75.1%), streptomycin (62.9%), and tetracycline (57.1%). Of the 184 ampicillin-resistant isolates, 127 were investigated using a DNA microarray carrying 75 probes for antibiotic resistance genetic determinants. Of these 127 isolates, the β-lactamase blaCMY2, blaTEM, blaACT, blaSHV, and blaCTX-M-15 genes were detected in 120 (94.5%), 31 (24.4%), 8 (6.3%), 6 (4.7%), and 4 (3.2%) isolates, respectively. Other detected genes included those conferring resistance to aminoglycosides (aadA1, strA, strB), trimethoprims (dfrV, dfrA1), tetracyclines (tetA, tetB, tetC, tetE), and sulfonamides (sul1, sul2). Class 1 integron was found in 35 (27.6%) of the ampicillin-resistant isolates. However, our data showed that the tested E. fergusonii did not carry any carbapenemase blaOXA genes. Pulsed-field gel electrophoresis revealed that the selected ampicillin-resistant E. fergusonii isolates were genetically diverse. The present study indicates that the monitoring of antimicrobial-resistant bacteria should include enteric bacteria such as E. fergusonii, which could be a reservoir of antibiotic resistance genes. The detection of isolates harboring extended-spectrum β-lactamase genes, particularly blaCTX-M-15, in this work suggests that further investigations on the occurrence of such genes in broilers are warranted.

  13. CHARACTERIZATION OF VIRULENCE GENES AND ANTIMICROBIAL RESISTANCE OF LUNG PATHOGENIC ESCHERICHIA COLI ISOLATES IN FOREST MUSK DEER (MOSCHUS BEREZOVSKII).

    Science.gov (United States)

    Luo, Xi; Wang, Peng; Cheng, Jian-guo; Luo, Yan; Dai, Lei; Zhou, Xin; Zou, Li-kou; Li, Bei; Xiao, Jiu-Jin

    2016-06-01

    This study investigated genotypic diversity, 26 virulence genes, and antimicrobial susceptibility of lung pathogenic Escherichia coli (LPEC) isolated from forest musk deer. Associations between virulence factors (VFs) and phylogenetic group, between antimicrobial resistance (AMR) and phylogenetic group, and between AMR and VFs were subsequently assessed. The results showed 30 LPEC isolated were grouped into seven different clusters (A, B, C, D, E, F, and G). The detection rates of crl (90%), kpsMT II (76.67%), mat (76.67%), and ompA (80%) were over 75%. The most frequent types of resistance were to amoxicillin (100%), sulfafurazole (100%), ampicillin (96.67%), and tetracycline (96.67%), with 93.33% (n = 28) of isolates resistant to more than eight types of drugs. There were significant relationships between resistance to cefalotin and the presence of iucD(a) (P < 0.001), papC (P = 0.032), and kpsMT II (P = 0.028); between resistance to chloromycetin and the presence of irp2 (P = 0.004) and vat (P = 0.047); between resistance to nalidixic acid and the presence of crl (P = 0.002) and iucD(a) (P = 0.004); and between resistance to ampicillin/sulbactam and the presence of vat (P = 0.013). These results indicated there could be some association between resistance and VFs, and there is a great need for the prudent use of antimicrobial agents in LPEC.

  14. CHARACTERIZATION OF VIRULENCE GENES AND ANTIMICROBIAL RESISTANCE OF LUNG PATHOGENIC ESCHERICHIA COLI ISOLATES IN FOREST MUSK DEER (MOSCHUS BEREZOVSKII).

    Science.gov (United States)

    Luo, Xi; Wang, Peng; Cheng, Jian-guo; Luo, Yan; Dai, Lei; Zhou, Xin; Zou, Li-kou; Li, Bei; Xiao, Jiu-Jin

    2016-06-01

    This study investigated genotypic diversity, 26 virulence genes, and antimicrobial susceptibility of lung pathogenic Escherichia coli (LPEC) isolated from forest musk deer. Associations between virulence factors (VFs) and phylogenetic group, between antimicrobial resistance (AMR) and phylogenetic group, and between AMR and VFs were subsequently assessed. The results showed 30 LPEC isolated were grouped into seven different clusters (A, B, C, D, E, F, and G). The detection rates of crl (90%), kpsMT II (76.67%), mat (76.67%), and ompA (80%) were over 75%. The most frequent types of resistance were to amoxicillin (100%), sulfafurazole (100%), ampicillin (96.67%), and tetracycline (96.67%), with 93.33% (n = 28) of isolates resistant to more than eight types of drugs. There were significant relationships between resistance to cefalotin and the presence of iucD(a) (P < 0.001), papC (P = 0.032), and kpsMT II (P = 0.028); between resistance to chloromycetin and the presence of irp2 (P = 0.004) and vat (P = 0.047); between resistance to nalidixic acid and the presence of crl (P = 0.002) and iucD(a) (P = 0.004); and between resistance to ampicillin/sulbactam and the presence of vat (P = 0.013). These results indicated there could be some association between resistance and VFs, and there is a great need for the prudent use of antimicrobial agents in LPEC. PMID:27468027

  15. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter

    DEFF Research Database (Denmark)

    Li, Lili; Olsen, Rikke Heidemann; Ye, Lei;

    2016-01-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bac...... of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies.......The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram......-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across...

  16. Antimicrobial resistance and prevalence of resistance genes in intestinal Bacteroidales strains

    Directory of Open Access Journals (Sweden)

    Viviane Nakano

    2011-01-01

    Full Text Available OBJECTIVE: This study examined the antimicrobial resistance profile and the prevalence of resistance genes in Bacteroides spp. and Parabacteroides distasonis strains isolated from children's intestinal microbiota. METHODS: The susceptibility of these bacteria to 10 antimicrobials was determined using an agar dilution method. β-lactamase activity was assessed by hydrolysis of the chromogenic cephalosporin of 114 Bacteriodales strains isolated from the fecal samples of 39 children, and the presence of resistance genes was tested using a PCR assay. RESULTS: All strains were susceptible to imipenem and metronidazole. The following resistance rates were observed: amoxicillin (93%, amoxicillin/clavulanic acid (47.3%, ampicillin (96.4%, cephalexin (99%, cefoxitin (23%, penicillin (99%, clindamycin (34.2% and tetracycline (53.5%. P-lactamase production was verified in 92% of the evaluated strains. The presence of the cfiA, cepA, ermF, tetQ and nim genes was observed in 62.3%, 76.3%, 27%, 79.8% and 7.8% of the strains, respectively. CONCLUSIONS: Our results indicate an increase in the resistance to several antibiotics in intestinal Bacteroides spp. and Parabacteroides distasonis and demonstrate that these microorganisms harbor antimicrobial resistance genes that may be transferred to other susceptible intestinal strains.

  17. A Multidisciplinary Hospital-based Antimicrobial Use Program: Impact on Hospital Pharmacy Expenditures and Drug Use

    Directory of Open Access Journals (Sweden)

    Suzette Salama

    1996-01-01

    Full Text Available The authors’ hospital embarked on a three-component, multidisciplinary, hospital-based antimicrobial use program to cut costs and reduce inappropriate antimicrobial use. Initially, antimicrobial use patterns and costs were monitored for 12 months. For the next two years, an antimicrobial use program was implemented consisting of three strategies: automatic therapeutic interchanges; antimicrobial restriction policies; and parenteral to oral conversion. The program resulted in a reduction in the antimicrobial portion of the total pharmacy drug budget from 41.6% to 28.2%. Simultaneously, the average cost per dose per patient day dropped from $11.88 in 1991 to $10.16 in 1994. Overall, mean monthly acquisition cost savings rose from $6,810 in 1992 to $27,590 in 1994. This study demonstrates that a multidisciplinary antimicrobial use program in a Canadian hospital can effect dramatic cost savings and serve as a quality assurance activity of physician antimicrobial prescribing behaviour.

  18. Temporal profile of antimicrobial resistance exhibited by strains of Staphylococcus spp. isolated from cases of bovine mastitis for 20 years (1992-2011

    Directory of Open Access Journals (Sweden)

    Ananda Paula Kowalski

    2015-06-01

    Full Text Available Records of in vitro susceptibility tests performed between 1992 and 2011 were retrospectively reviewed in order to evaluate the dynamic profiles of possible changes in antimicrobial resistance of Staphylococcus spp. isolated from milk samples of cows with mastitis during two decades. The results of 2,430 isolates tested by disk diffusion technique for susceptibility to oxacillin, penicillin, ampicillin, cephalexin, norfloxacin, tetracycline, sulfazotrim, gentamicin, and neomycin were analysed. Comparisons were performed between the percentages of resistance to antimicrobials and their classes and also between the decades studied. Additionally, the possible tendency or changes in the behaviour of these pathogens against the major drugs used in the last two decades were evaluated using regression analysis. The highest rates of resistance (P<0.0001 were observed for the beta-lactams (34.3%, with exception of cephalexin (6.9%, and for the tetracyclines (28%. Similar resistance rates (7.6% to 15.7% were observed among the other drugs. Regression analysis showed a reduction in resistance to penicillin and ampicillin throughout the period, whilst for oxacillin and neomycin a decrease in the resistance was observed during the first decade, followed by an increase. A trend towards decreased resistance was found for sulfazotrim, whereas for the other antimicrobials no decrease was observed. The results indicated no trend towards increased resistance for most antimicrobials tested. Nevertheless, it is necessary to monitor the resistance patterns of these pathogens in order to save these drugs as a therapeutic reserve

  19. Antimicrobial-resistant Listeria species from retail meat in metro Detroit.

    Science.gov (United States)

    da Rocha, Liziane S; Gunathilaka, Gayathri U; Zhang, Yifan

    2012-12-01

    A total of 138 Listeria isolates from retail meat, including 58 Listeria welshimeri, 44 Listeria monocytogenes, and 36 Listeria innocua isolates, were characterized by antimicrobial susceptibility tests against nine antimicrobials. In addition, the 44 L. monocytogenes isolates were analyzed by serotype identification using PCR and genotyping using pulsed-field gel electrophoresis. Resistance to one or two antimicrobials was observed in 32 Listeria isolates (23.2%). No multidrug resistance was identified. Tetracycline resistance was the most common resistance phenotype and was identified in 22 Listeria isolates. A low prevalence of resistance to ciprofloxacin, erythromycin, gentamicin, and vancomycin was also detected. L. innocua isolates demonstrated the highest overall prevalence of antimicrobial resistance, 36.1%, followed by 34.1% in L. monocytogenes isolates and 6.9% in L. welshimeri isolates. Serotypes 1/2a, 1/2b, and 4b were identified in 19, 23, and 1 L. monocytogenes isolate, respectively. One isolate was untypeable. Fifteen L. monocytogenes isolates were antimicrobial resistant (12 were serotype 1/2b, 2 were 1/2a, and 1 was untypeable). A diverse population of L. monocytogenes isolates was identified, as evidenced by multiple pulsed-field gel electrophoresis patterns in the 44 isolates. The data indicate that Listeria contamination is common in retail meat. Although antimicrobial resistance still occurs at a low prevalence, multiple Listeria species can serve as reservoirs of antimicrobial resistance. Various antimicrobial susceptibilities may exist in L. monocytogenes isolates of different serotypes.

  20. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture

    DEFF Research Database (Denmark)

    Noor Uddin, Gazi Md; Larsen, Marianne Halberg; Christensen, Henrik;

    2015-01-01

    Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance...... antimicrobial resistance and associated transferable resistance genes. The bacterial species was established by 16S rRNA sequence analysis of 125 representative bacterial isolates. MIC testing was done for a range of antimicrobials and whole genome sequencing of six multiple antimicrobial resistant Bacillus spp...... missed a few bacterial species present in the tested products this would represent minor bias, but future studies may apply culture independent identification methods like pyro sequencing. Only 6/60 isolates were resistant to more than four antimicrobials and whole genome sequencing showed...

  1. Overcoming drug resistance by regulating nuclear receptors

    OpenAIRE

    Chen, Taosheng

    2010-01-01

    Drug resistance involves multiple mechanisms. Multidrug resistance (MDR) is the leading cause of treatment failure in cancer therapy. Elevated levels of MDR proteins [members of the ATP-binding cassette (ABC) transporter family] increase cellular efflux and decrease the effectiveness of chemotherapeutic agents. As a salvage approach to overcome drug resistance, inhibitors of MDR proteins have been developed, but have had limited success mainly due to undesired toxicities. Nuclear receptors (N...

  2. Antimicrobial Resistance of Staphylococcal Strains Isolated from Various Pathological Products

    Directory of Open Access Journals (Sweden)

    Laura-Mihaela SIMON

    2010-12-01

    Full Text Available Background: The optimal choice of antimicrobial therapy is an important problem in hospital environment in which the selection of resistant and virulent strains easy occurs. S. aureus and especially MRSA(methicillin-resistant S. aureus creates difficulties in both treatment and prevention of nosocomial infections. Aim: The purpose of this study is to determine the sensitivity and the resistance to chemotherapy of staphylococci strains isolated from various pathological products. Material and Method: We identified Staphylococccus species after morphological appearance, culture properties, the production of coagulase, hemolisines and the enzyme activity. The susceptibility tests were performed on Mueller-Hinton medium according to CLSI (Clinical and Laboratory Standards Institute. Results: The strains were: MSSA (methicillin-susceptible S. aureus (74%, MRSA (8%, MLS B (macrolides, lincosamides and type B streptogramines resistance (12% and MRSA and MLS B (6%. MRSA strains were more frequently isolated from sputum. MRSA associated with the MLS B strains were more frequently isolated from pus. MLS B strains were more frequently isolated from sputum and throat secretions. All S. aureus strains were susceptible to vancomycin and teicoplanin. Conclusions: All staphylococcal infections require resistance testing before treatment. MLS B shows a high prevalence among strains of S. aureus. The association between MLS B and MRSA remains a major problem in Romania.

  3. Drug Resistance Characteristics and Macrolide-Resistant Mechanisms of Streptococcus pneumoniae in Wenzhou City, China.

    Science.gov (United States)

    Hu, Dakang; Sun, Zheng; Luo, Xinhua; Liu, Shuangchun; Yu, Lianhua; Qu, Ying; Yang, Jinhong; Yu, Jian; Li, Xiangyang; Zhang, Jin

    2016-01-01

    BACKGROUND Streptococcus pneumoniae (SP) is a Gram-positive, alpha-hemolytic, facultative anaerobic member of the genus Streptococcus. The erythromycin-resistant methylase (erm) gene and macrolide efflux (mef) gene are the 2 main genes that can mediate SP. Transposon (Tn) also plays an important role in the collection and metastasis of the gene. In the present study we investigated the drug resistance characteristics and the macrolide-resistant mechanisms of SP in Wenzhou City, China. MATERIAL AND METHODS Sixty-eight strains of SP were isolated from sputum samples of hospitalized children in the Second Affiliated Hospital of Wenzhou Medical University. These strains were analyzed using antimicrobial susceptibility tests to determine their drug resistance to 10 kinds of antibacterials. Macrolide-resistant phenotypes were identified using K-B method. PCR method was used to analyze the erm B gene, mef A gene, and int Tn gene. RESULTS Drug resistance rates of 68 strains of SP were 98.5%, 100.0%, 63.2%, 52.9%, 94.1%, 89.7%, 0.0%, 0.0%, 16.2%, and 14.7% for clindamycin, erythromycin, penicillin G, cefotaxime, tetracycline, sulfamethoxazole/trimethoprim, levofloxacin, vancomycin, chloramphenicol, and amoxicillin, respectively. Total detection rates of the erm B gene, mef A gene, and int Tn gene were 98.5%, 91.2%, and 100.0%, respectively. CONCLUSIONS SP shows significant multi-drug resistance in Wenzhou City, whereas there is no clinical value of macrolides antibiotics for SP. cMLSB mediated by erm B gene is the most predominant phenotype among macrolide-resistant SP. The int Tn gene may play an important role in horizontal transfer and clonal dissemination of SP drug resistance genes in Wenzhou City. PMID:27483416

  4. WATER SOLUBLE MAGNETITE NANOPARTICLES FOR ANTIMICROBIAL DRUGS DELIVERY

    Directory of Open Access Journals (Sweden)

    Dan Eduard Mihaiescu

    2012-06-01

    Full Text Available Water-soluble magnetite has been prepared through precipitation approach. These nanoparticles coated with sulfanilic acid could be dispersed in hydrated aqueous systems. The product was characterized with X-ray powder diffraction (XRD, Dynamic Light Scattering (DLS and the in vitro efficacy as antibiotic delivery vehicles as well as their influence on the eukariotic cells. The XRD pattern confirm the product to be Fe3O4. The nanoparticles with average size 10.45 nanometers are not cytotoxic and do not influence the eukariotic HeLa cell cycle, representing potential tools for the delivery of drugs in a safe manner. Water soluble magnetite improves the activity of currently used antibiotics, representing potential as a nanocarrier for these antimicrobial substances, to achieve extracellular and intracellular targets.

  5. Susceptibility of Urinary Tract Bacteria to Newer Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Manjula Mehta

    2016-01-01

    Full Text Available Urinary tract infections (UTIs are among the commonest types of bacterial infections. The antibiotic treatment for UTIs is associated with important medical and economic implications. Many different microorganisms can cause UTIs though the most common pathogens are E. coli and members of family Enterobacteriaceae. The knowledge of etiology and antibiotic resistance pattern of the organisms causing urinary tract infection is essential. The present study was undertaken to evaluate trends of antibiotic susceptibility of commonly isolated uropathogens using newer antimicrobial agents, prulifloxacin, fosfomycin (FOM and doripenem. We conclude that maintaining a record of culture results and the antibiogram may help clinicians to determine the empirical and/or specific treatment based on the antibiogram of the isolate for better therapeutic outcome.

  6. Susceptibility of Urinary Tract Bacteria to Newer Antimicrobial Drugs.

    Science.gov (United States)

    Mehta, Manjula; Sharma, Jyoti; Bhardwaj, Sonia

    2016-03-15

    Urinary tract infections (UTIs) are among the commonest types of bacterial infections. The antibiotic treatment for UTIs is associated with important medical and economic implications. Many different microorganisms can cause UTIs though the most common pathogens are E. coli and members of family Enterobacteriaceae. The knowledge of etiology and antibiotic resistance pattern of the organisms causing urinary tract infection is essential. The present study was undertaken to evaluate trends of antibiotic susceptibility of commonly isolated uropathogens using newer antimicrobial agents, prulifloxacin, fosfomycin (FOM) and doripenem. We conclude that maintaining a record of culture results and the antibiogram may help clinicians to determine the empirical and/or specific treatment based on the antibiogram of the isolate for better therapeutic outcome. PMID:27275323

  7. Drug resistance mechanisms of fungal biofilms

    OpenAIRE

    Seneviratne, CJ; Samaranayake, LP

    2011-01-01

    Fungi are ubiquitous in nature and exist in soil, water, plants, and in animals and humans. Similar to bacteria, fungi also form confluent biofilms either singly (mono-species) or with other microbial species (mixed-species). Fungal biofilms are known to be highly resistant to the adverse environmental conditions including antimicrobials and biocide compared to its planktonic (free-floating) counterparts. Although bacterial biofilms have been studied in detail, relatively little is known of f...

  8. A Transporter Interactome Is Essential for the Acquisition of Antimicrobial Resistance to Antibiotics

    Science.gov (United States)

    Shuster, Yonatan; Steiner-Mordoch, Sonia; Alon Cudkowicz, Noemie; Schuldiner, Shimon

    2016-01-01

    Awareness of the problem of antimicrobial resistance (AMR) has escalated and drug-resistant infections are named among the most urgent problems facing clinicians today. Our experiments here identify a transporter interactome and portray its essential function in acquisition of antimicrobial resistance. By exposing E. coli cells to consecutive increasing concentrations of the fluoroquinolone norfloxacin we generated in the laboratory highly resistant strains that carry multiple mutations, most of them identical to those identified in clinical isolates. With this experimental paradigm, we show that the MDTs function in a coordinated mode to provide an essential first-line defense mechanism, preventing the drug reaching lethal concentrations, until a number of stable efficient alterations occur that allow survival. Single-component efflux transporters remove the toxic compounds from the cytoplasm to the periplasmic space where TolC-dependent transporters expel them from the cell. We postulate a close interaction between the two types of transporters to prevent rapid leak of the hydrophobic substrates back into the cell. The findings change the prevalent concept that in Gram-negative bacteria a single multidrug transporter, AcrAB-TolC type, is responsible for the resistance. The concept of a functional interactome, the process of identification of its members, the elucidation of the nature of the interactions and its role in cell physiology will change the existing paradigms in the field. We anticipate that our work will have an impact on the present strategy searching for inhibitors of AcrAB-TolC as adjuvants of existing antibiotics and provide novel targets for this urgent undertaking. PMID:27050393

  9. Prevalence of antimicrobial resistance of Streptococcus pneumoniae in Chinese children: four hospitals surveillance

    Institute of Scientific and Technical Information of China (English)

    沈叙庄; 陆权; 叶启慈; 张国成; 俞桑洁; 张泓; 邓秋莲; 杨永弘

    2003-01-01

    Objective To investigate the nasal carriage of antibiotic-resistant pneumococci in children of <5 years old in the following four cities, Beijing, Shanghai, Guangzhou and Xi'an.Methods A total of 647 pneumococci strains were isolated and detected. Minimal inhibition concentrations (MICs) of antibiotics were determined by E-test. Disk diffusion test was used for the measurement of antimicrobial susceptibility.Results Prevalence of penicillin non-susceptible Streptococcus pneumoniae in the four cities was 41%, with Guangzhou (60.8%) ranking first, followed by Xi'an (45%), Shanghai (37%) and Beijing (25.9%). The majority of penicillin non-susceptibility isolates (23.9%-53.8%) had a low level of resistance (MIC 0.64-1.5 μg/ml). The most sensitive antimicrobials in terms of percentage of susceptible organisms were amoxicillin-clavulanic acid (99.4%), followed by ceftriaxone (92.1%); cefurxime and cefaclor were slightly more sensitive than penicillin with susceptibility of 74.8% and 77.9%. Erythromycin, tetracycline and TMP-SMZ were highly resistant (83.6%, 82.1% and 76.2% respectively). Among erythromycin resistant isolates, 100% were resistant to azithromycin, 98.6% to clarithromycin, 97.2% to roxithromycin and spiramycin, and 96.6% to clindamycin. 97.2% (141/145) were typical of the macrolides-lincosamides-streptogramons B (MLSB ) resistance phenotype, and 2.8% (4/145) were M phenotype. The group of PRSP was with significantly higher rates of non-susceptibility for ceftriaxone (18.4%), cefurxime (58.6%), cefaclor (53.4%), compared with the group of PEN-S (0.5%, 1.8% and 0.2%, respectively) and the rate of multi-drug resistance in the isolates of PRSP group (92.9%) was significantly higher than that of PEN-S group (59.2%).Conclusion The rates of penicillin and multi-drug resistance among isolates of pneumococci carried nasally in are high children and the high prevalence of multi-drug resistance in the Chinese population may be becoming one of the most serious

  10. Isolation and Characterization of Antimicrobial-Resistant Nontyphoidal Salmonella enterica Serovars from Imported Food Products.

    Science.gov (United States)

    Bae, Dongryeoul; Kweon, Ohgew; Khan, Ashraf A

    2016-08-01

    The objective of this study was to determine antimicrobial resistance and elucidate the resistance mechanism in nontyphoidal Salmonella enterica serovars isolated from food products imported into the United States from 2011 to 2013. Food products contaminated with antimicrobial-resistant nontyphoidal S. enterica were mainly imported from Taiwan, Indonesia, Vietnam, and China. PCR, DNA sequencing, and plasmid analyses were used to characterize antimicrobial resistance determinants. Twentythree of 110 S. enterica isolates were resistant to various antimicrobial classes, including β-lactam, aminoglycoside, phenicol, glycopeptide, sulfonamide, trimethoprim, and/or fluoroquinolone antimicrobial agents. Twelve of the isolates were multidrug resistant strains. Antimicrobial resistance determinants blaTEM-1, blaCTX-M-9, blaOXA-1, tetA, tetB, tetD, dfrA1, dfrV, dhfrI, dhfrXII, drf17, aadA1, aadA2, aadA5, orfC, qnrS, and mutations of gyrA and parC were detected in one or more antimicrobial-resistant nontyphoidal S. enterica strains. Plasmid profiles revealed that 12 of the 23 antimicrobial-resistant strains harbored plasmids with incompatibility groups IncFIB, IncHI1, IncI1, IncN, IncW, and IncX. Epidemiologic and antimicrobial resistance monitoring data combined with molecular characterization of antimicrobial resistance determinants in Salmonella strains isolated from imported food products may provide information that can be used to establish or implement food safety programs to improve public health.

  11. Isolation and Characterization of Antimicrobial-Resistant Nontyphoidal Salmonella enterica Serovars from Imported Food Products.

    Science.gov (United States)

    Bae, Dongryeoul; Kweon, Ohgew; Khan, Ashraf A

    2016-08-01

    The objective of this study was to determine antimicrobial resistance and elucidate the resistance mechanism in nontyphoidal Salmonella enterica serovars isolated from food products imported into the United States from 2011 to 2013. Food products contaminated with antimicrobial-resistant nontyphoidal S. enterica were mainly imported from Taiwan, Indonesia, Vietnam, and China. PCR, DNA sequencing, and plasmid analyses were used to characterize antimicrobial resistance determinants. Twentythree of 110 S. enterica isolates were resistant to various antimicrobial classes, including β-lactam, aminoglycoside, phenicol, glycopeptide, sulfonamide, trimethoprim, and/or fluoroquinolone antimicrobial agents. Twelve of the isolates were multidrug resistant strains. Antimicrobial resistance determinants blaTEM-1, blaCTX-M-9, blaOXA-1, tetA, tetB, tetD, dfrA1, dfrV, dhfrI, dhfrXII, drf17, aadA1, aadA2, aadA5, orfC, qnrS, and mutations of gyrA and parC were detected in one or more antimicrobial-resistant nontyphoidal S. enterica strains. Plasmid profiles revealed that 12 of the 23 antimicrobial-resistant strains harbored plasmids with incompatibility groups IncFIB, IncHI1, IncI1, IncN, IncW, and IncX. Epidemiologic and antimicrobial resistance monitoring data combined with molecular characterization of antimicrobial resistance determinants in Salmonella strains isolated from imported food products may provide information that can be used to establish or implement food safety programs to improve public health. PMID:27497122

  12. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes

    Science.gov (United States)

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J. M.; Paulsen, Peter; Szostak, Michael P.; Humphrey, Tom

    2015-01-01

    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health. PMID:25934615

  13. Microarray Evaluation of Antimicrobial Resistance and Virulence of Escherichia coli Isolates from Portuguese Poultry

    OpenAIRE

    Nuno Mendonça; Rui Figueiredo; Catarina Mendes; Card, Roderick M.; Anjum, Muna F.; Gabriela Jorge da Silva

    2016-01-01

    The presence of antimicrobial resistance and virulence factors of 174 Escherichia coli strains isolated from healthy Portuguese Gallus gallus was evaluated. Resistance profiles were determined against 33 antimicrobials by microbroth dilution. Resistance was prevalent for tetracycline (70%) and ampicillin (63%). Extended-spectrum beta-lactamase (ESBL) phenotype was observed in 18% of the isolates. Multidrug resistance was found in 56% of isolates. A subset of 74 isolates were screened by DNA m...

  14. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes.

    Science.gov (United States)

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J M; Paulsen, Peter; Szostak, Michael P; Humphrey, Tom; Hilbert, Friederike

    2015-07-01

    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health.

  15. Prevalence and antimicrobial resistance of listeria species isolated from different types of raw meat in Iran.

    Science.gov (United States)

    Rahimi, Ebrahim; Yazdi, Farzad; Farzinezhadizadeh, Hussein

    2012-12-01

    Listeria and particularly Listeria monocytogenes are important foodborne pathogens that can cause listeriosis and severe complications in immunocompromised individuals, children, pregnant women, and the elderly. The objective of this study was to determine the prevalence of Listeria spp. in raw meat in Iran. From July 2010 to November 2011, a total of 1,107 samples of various raw meats were obtained from randomly selected retail butcher shops. The results of conventional bacteriologic and PCR methods revealed that 141 samples (12.7%) were positive for Listeria spp. The highest prevalence of Listeria was found in raw buffalo meat samples (7 of 24 samples; 29.2%) followed by quail meat (26 of 116 samples; 22.4%), partridge meat (13 of 74 samples; 17.6%), and chicken meat (27 of 160 samples; 16.9%). The most common species recovered was Listeria innocua (98 of 141 strains; 75.9 % ); the remaining isolates were L. monocytogenes (19.1% of strains), Listeria welshimeri (6.4% of strains), Listeria seeligeri (3.5% of strains), and Listeria grayi (1.4% of strains). Susceptibilities of the 141 strains to 11 antimicrobial drugs were determined using the disk diffusion assay. Overall, 104 (73.8%) of the Listeria isolates were resistant to one or more antimicrobials, and 17.0% of the isolates were resistant to three or more antimicrobials. The present study provides the first baseline data on the prevalence of Listeria in raw meat derived from sheep, goat, buffalo, quail, partridge, chicken, and ostrich in Iran and the susceptibility of these isolates to antimicrobials.

  16. Resistance to antimicrobial peptides in Gram-negative bacteria.

    Science.gov (United States)

    Gruenheid, Samantha; Le Moual, Hervé

    2012-05-01

    Antimicrobial peptides (AMPs) are present in virtually all organisms and are an ancient and critical component of innate immunity. In mammals, AMPs are present in phagocytic cells, on body surfaces such as skin and mucosa, and in secretions and body fluids such as sweat, saliva, urine, and breast milk, consistent with their role as part of the first line of defense against a wide range of pathogenic microorganisms including bacteria, viruses, and fungi. AMPs are microbicidal and have also been shown to act as immunomodulators with chemoattractant and signaling activities. During the co-evolution of hosts and bacterial pathogens, bacteria have developed the ability to sense and initiate an adaptive response to AMPs to resist their bactericidal activity. Here, we review the various mechanisms used by Gram-negative bacteria to sense and resist AMP-mediated killing. These mechanisms play an important role in bacterial resistance to host-derived AMPs that are encountered during the course of infection. Bacterial resistance to AMPs should also be taken into consideration in the development and use of AMPs as anti-infective agents, for which there is currently a great deal of academic and commercial interest.

  17. Safety and effectiveness of colistin compared with tobramycin for multi-drug resistant Acinetobacter baumannii infections

    OpenAIRE

    Cohen Karen; van Zyl-Smit Richard; Bamford Colleen; Gounden Ronald; Maartens Gary

    2009-01-01

    Abstract Background Nosocomial infections due to multi-drug resistant Acinetobacter baumannii are often treated with colistin, but there are few data comparing its safety and efficacy with other antimicrobials. Methods A retrospective cohort study of patients treated with colistin or tobramycin for A. baumannii infections in intensive care units (ICUs) at Groote Schuur hospital. Colistin was used for A. baumannii isolates which were resistant to all other available antimicrobials. In the tobr...

  18. Antimicrobial resistance profiles and genetic characterisation of macrolide resistant isolates of Streptococcus agalactiae

    Directory of Open Access Journals (Sweden)

    Priscila AM Nakamura

    2011-03-01

    Full Text Available In this study, 100 clinical isolates of Streptococcus agalactiae recovered from genitourinary tract specimens of non-pregnant individuals living in Rio de Janeiro were submitted for antimicrobial susceptibility testing, detection of macrolide resistance genes and evaluation of the genetic diversity of erythromycin-resistant isolates. By agar diffusion method, all isolates were susceptible to ceftazidime, penicillin and vancomycin. Isolates were resistant to levofloxacin (1%, clindamycin (5%, erythromycin (11% and tetracycline (83% and were intermediated to erythromycin (4% and tetracycline (6%. Erythromycin-resistant and intermediated isolates presented the following phenotypes: M (n = 3, constitutive macrolide-lincosamide-streptogramin B (MLS B, n = 5 and inductive MLS B (n = 7. Determinants of macrolide resistance genes, erm and mef, were detected in isolates presenting MLS B and M phenotypes, respectively. Randomly amplified polymorphic DNA profiles of erythromycin-resistant isolates were clustered into two major groups of similarity.

  19. 'Disperse abroad in the land': the role of wildlife in the dissemination of antimicrobial resistance.

    Science.gov (United States)

    Arnold, Kathryn E; Williams, Nicola J; Bennett, Malcolm

    2016-08-01

    Antimicrobial resistance (AMR) has been detected in the microbiota of many wildlife species, including long-distance migrants. Inadequately treated wastes from humans and livestock dosed with antimicrobial drugs are often assumed to be the main sources of AMR to wildlife. While wildlife populations closely associated with human populations are more likely to harbour clinically important AMR related to that found in local humans and livestock, AMR is still common in remote wildlife populations with little direct human influence. Most reports of AMR in wildlife are survey based and/or small scale, so researchers can only speculate on possible sources and sinks of AMR or the impact of wildlife AMR on clinical resistance. This lack of quantitative data on the flow of AMR genes and AMR bacteria across the natural environment could reflect the numerous AMR sources and amplifiers in the populated world. Ecosystems with relatively simple and well-characterized potential inputs of AMR can provide tractable, but realistic, systems for studying AMR in the natural environment. New tools, such as animal tracking technologies and high-throughput sequencing of resistance genes and mobilomes, should be integrated with existing methodologies to understand how wildlife maintains and disperses AMR.

  20. Ecological study on antimicrobial-resistant zoonotic bacteria transmitted by flies in cattle farms.

    Science.gov (United States)

    Mohammed, Asmaa N; Abdel-Latef, Gihan K; Abdel-Azeem, Naglaa M; El-Dakhly, Khaled Mohamed

    2016-10-01

    Flies were qualitatively and quantitatively monitored on both livestock animals and the surrounding environment to investigate their role as a potential carrier for antimicrobial-resistant bacteria of zoonotic importance in cattle farms. This was done by the use of visual observations and animal photography; meanwhile, in the surrounding environment, flies were collected using sticky cards and then microscopically identified. Representative fly samples were cultured for bacterial isolation, biochemical identification, and then tested against common 12 antibiotics. The total average of dipterous flies in examined farms was 400.42 ± 6.2. Culicoides biting midges were the most common existing species (70.01 %) followed by house flies, stable flies, and mosquitoes (18.31, 7.74, and 3.91 %, respectively) at X (2) = 9.0, P house flies could be considered as a potential carrier for multi-drug-resistant bacteria of zoonotic importance. Furthermore, cows' environment has an essential role in propagation and wide spread of antimicrobial-resistant bacterial pathogens.

  1. 'Disperse abroad in the land': the role of wildlife in the dissemination of antimicrobial resistance.

    Science.gov (United States)

    Arnold, Kathryn E; Williams, Nicola J; Bennett, Malcolm

    2016-08-01

    Antimicrobial resistance (AMR) has been detected in the microbiota of many wildlife species, including long-distance migrants. Inadequately treated wastes from humans and livestock dosed with antimicrobial drugs are often assumed to be the main sources of AMR to wildlife. While wildlife populations closely associated with human populations are more likely to harbour clinically important AMR related to that found in local humans and livestock, AMR is still common in remote wildlife populations with little direct human influence. Most reports of AMR in wildlife are survey based and/or small scale, so researchers can only speculate on possible sources and sinks of AMR or the impact of wildlife AMR on clinical resistance. This lack of quantitative data on the flow of AMR genes and AMR bacteria across the natural environment could reflect the numerous AMR sources and amplifiers in the populated world. Ecosystems with relatively simple and well-characterized potential inputs of AMR can provide tractable, but realistic, systems for studying AMR in the natural environment. New tools, such as animal tracking technologies and high-throughput sequencing of resistance genes and mobilomes, should be integrated with existing methodologies to understand how wildlife maintains and disperses AMR. PMID:27531155

  2. Antimicrobial Resistant Pattern of Escherichia Coli Strains Isolated from Pediatric Patients in Jordan

    Directory of Open Access Journals (Sweden)

    Mohammad Alshara

    2011-05-01

    Full Text Available The present study was conducted to investigate antimicrobial resistant pattern of Escherichia coli (E. coli strains isolated from clinical specimens of Jordanian pediatric patients during the period from January to December 2008. A total of 444 E. coli strains were isolated from clinical specimens and tested for their susceptibility to different antimicrobial drugs. Overall, high resistance rate was observed for ampicillin (84%, followed by amoxicillin-clavulanic acid (74.3%, cotrimoxazole (71%, nalidixic acid (47.3%, cephalothin (41%. Lower resistance rates were observed for amikacin (0% followed by Cefotaxime (11%, Ceftriaxone (11.7%, ciprofloxacin (14.5%, Norfloxacin (16.5%, gentamicin (17.3% cephalexin (20.9%, Ceftazidime (22.5%, cefixime (29.6%, and cefaclor (32.8%. Ampicillin, amoxicillin-clavulanic acid and cotrimoxazole were found to be ineffective at in vitro inhibition of the E. coli of pediatric origin. Amikacin was highly effective for E. coli with susceptibility rate of 100%. The majority of E. coli strains were susceptible to third generation cephalosporins and fluoroquinolones.

  3. Ventilator associated pneumonia caused by extensive-drug resistant Acinetobacter species: Colistin is the remaining choice

    Directory of Open Access Journals (Sweden)

    Ahmed Hasanin

    2016-07-01

    Conclusions: XDR AB-VAP is endemic in our ICU without a definite factor associated with increased risk of infection. Given that almost half of the strains are also resistant to tigecycline, colistin appears to be an appropriate first-line antimicrobial drug in critically ill patients developing VAP based on invitro results.

  4. Multidrug resistant to extensively drug resistant tuberculosis: What is next?

    Indian Academy of Sciences (India)

    Amita Jain; Pratima Dixit

    2008-11-01

    Drug resistant tuberculosis is a man made problem. While tuberculosis is hundred percent curable, multidrug resistant tuberculosis (MDR-TB) is difficult to treat. Inadequate and incomplete treatment and poor treatment adherence has led to a newer form of drug resistance known as extensively drug resistant tuberculosis (XDR-TB). XDR-TB is defined as tuberculosis caused by Mycobacterium tuberculosis strain, which is resistant to at least rifampicin and isoniazid among the first line anti tubercular drugs (MDR-TB) in addition to resistance to any fluroquinolones and at least one of three injectable second line anti tubercular drugs i.e. amikacin, kanamycin and/or capreomycin. Mismanagement of tuberculosis paves the way to drug resistant tuberculosis. Emergence of XDR-TB is reported world wide. Reported prevalence rates of XDR-TB of total MDR cases are; 6.6% overall worldwide, 6.5% in industrialized countries, 13.6% in Russia and Eastern Europe, 1.5% in Asia, 0.6% in Africa and Middle East and 15.4% in Republic of Korea. Better management and control of tuberculosis specially drug resistant TB by experienced and qualified doctors, access to standard microbiology laboratory, co-morbitidy of HIV and tuberculosis, new anti-TB drug regimens, better diagnostic tests, international standards for second line drugs (SLD)-susceptibility testing, invention of newer anti-tubercular molecules and vaccines and knowing the real magnitude of XDR-TB are some of the important issues to be addressed for effective prevention and management of XDR-TB.

  5. Emerging pathogens: Dynamics, mutation and drug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Perelson, A.S.; Goldstein, B.; Korber, B.T. [and others

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were to develop models of the spread of pathogens, such as HIV-1 and influenza, in humans, and then to use the models to address the possibility of designing appropriate drug therapies that may limit the ability of the pathogen to escape treatment by mutating into a drug resistant form. We have developed a model of drug-resistance to amantidine and rimantadine, the two major antiviral drugs used to treat influenza, and have used the model to suggest treatment strategies during an epidemic.

  6. Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections.

    Science.gov (United States)

    Ng, Victor W L; Chan, Julian M W; Sardon, Haritz; Ono, Robert J; García, Jeannette M; Yang, Yi Yan; Hedrick, James L

    2014-11-30

    The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Treatment with conventional antibiotics often leads to resistance development as the majority of these antibiotics act on intracellular targets, leaving the bacterial morphology intact. Thus, they are highly prone to develop resistance through mutation. Much effort has been made to develop macromolecular antimicrobial agents that are less susceptible to resistance as they function by microbial membrane disruption. Antimicrobial hydrogels constitute an important class of macromolecular antimicrobial agents, which have been shown to be effective in preventing and treating multidrug-resistant infections. Advances in synthetic chemistry have made it possible to tailor molecular structure and functionality to impart broad-spectrum antimicrobial activity as well as predictable mechanical and rheological properties. This has significantly broadened the scope of potential applications that range from medical device and implant coating, sterilization, wound dressing, to antimicrobial creams for the prevention and treatment of multidrug-resistant infections. In this review, advances in both chemically and physically cross-linked natural and synthetic hydrogels possessing intrinsic antimicrobial properties or loaded with antibiotics, antimicrobial polymers/peptides and metal nanoparticles are highlighted. Relationships between physicochemical properties and antimicrobial activity/selectivity, and possible antimicrobial mechanisms of the hydrogels are discussed. Approaches to mitigating toxicity of metal nanoparticles that are encapsulated in hydrogels are reviewed. In addition, challenges and future perspectives in the development of safe and effective antimicrobial hydrogel systems especially involving co-delivery of antimicrobial polymers/peptides and conventional antimicrobial agents for eventual clinical applications are presented.

  7. Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections.

    Science.gov (United States)

    Ng, Victor W L; Chan, Julian M W; Sardon, Haritz; Ono, Robert J; García, Jeannette M; Yang, Yi Yan; Hedrick, James L

    2014-11-30

    The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Treatment with conventional antibiotics often leads to resistance development as the majority of these antibiotics act on intracellular targets, leaving the bacterial morphology intact. Thus, they are highly prone to develop resistance through mutation. Much effort has been made to develop macromolecular antimicrobial agents that are less susceptible to resistance as they function by microbial membrane disruption. Antimicrobial hydrogels constitute an important class of macromolecular antimicrobial agents, which have been shown to be effective in preventing and treating multidrug-resistant infections. Advances in synthetic chemistry have made it possible to tailor molecular structure and functionality to impart broad-spectrum antimicrobial activity as well as predictable mechanical and rheological properties. This has significantly broadened the scope of potential applications that range from medical device and implant coating, sterilization, wound dressing, to antimicrobial creams for the prevention and treatment of multidrug-resistant infections. In this review, advances in both chemically and physically cross-linked natural and synthetic hydrogels possessing intrinsic antimicrobial properties or loaded with antibiotics, antimicrobial polymers/peptides and metal nanoparticles are highlighted. Relationships between physicochemical properties and antimicrobial activity/selectivity, and possible antimicrobial mechanisms of the hydrogels are discussed. Approaches to mitigating toxicity of metal nanoparticles that are encapsulated in hydrogels are reviewed. In addition, challenges and future perspectives in the development of safe and effective antimicrobial hydrogel systems especially involving co-delivery of antimicrobial polymers/peptides and conventional antimicrobial agents for eventual clinical applications are presented. PMID:25450263

  8. in Silico analysis of Escherichia coli polyphosphate kinase (PPK) as a novel antimicrobial drug target and its high throughput virtual screening against PubChem library

    OpenAIRE

    Saha, Saurav Bhaskar; Verma, Vivek

    2013-01-01

    Multiple drug resistance (MDR) in bacteria is a global health challenge that needs urgent attention. The 2011 outbreak caused by Escherichia coli O104:H4 in Europe has exposed the inability of present antibiotic arsenal to tackle the problem of antimicrobial infections. It has further posed a tremendous burden on entire pharmaceutical industry to find novel drugs and/or drug targets. Polyphosphate kinase (PPK) in bacteria plays a crucial role in helping latter to adapt to stringent conditions...

  9. Characterization of antimicrobial resistance in Klebsiella species isolated from chicken broilers.

    Science.gov (United States)

    Wu, Hao; Wang, Mingyu; Liu, Yuqing; Wang, Xinhua; Wang, Yunkun; Lu, Jinxing; Xu, Hai

    2016-09-01

    class 1 integrons (p<0.01). Additional conjugation experiments confirmed this relationship (p<0.01) in transconjugants by finding that a high percentage of PMQR genes (74.0%) and class 1 integrons (73.7%) were co-transferred with ESBL genes. Finally, multilocus sequence typing (MLST) was performed, and it revealed that the isolates from chickens are widely distributed in humans, and that antimicrobial resistance is not only disseminated by clonal spreading, but largely by horizontal gene transfer. These results suggest that horizontal transfer of antimicrobial resistance genes by mobile genetic elements, such as integrons, plays a major role in the spread of antimicrobial resistance. Therefore, elucidating the structures of drug resistance integrons is of great importance to the commercial broiler slaughter plant in Shandong, China. PMID:27289192

  10. Antimicrobial resistance and biological governance: explanations for policy failure.

    Science.gov (United States)

    Wallinga, D; Rayner, G; Lang, T

    2015-10-01

    The paper reviews the state of policy on antimicrobial use and the growth of antimicrobial resistance (AMR). AMR was anticipated at the time of the first use of antibiotics by their originators. For decades, reports and scientific papers have expressed concern about AMR at global and national policy levels, yet the problem, first exposed a half-century ago, worsened. The paper considers the explanations for this policy failure and the state of arguments about ways forward. These include: a deficit of economic incentivisation; complex interventions in behavioural dynamics; joint and separate shifts in medical and animal health regimes; consumerism; belief in technology; and a narrative that in a 'war on bugs' nature can be beaten by human ingenuity. The paper suggests that these narratives underplay the biological realities of the human-animal-biosphere being in constant flux, an understanding which requires an ecological public health analysis of AMR policy development and failure. The paper suggests that effective policy change requires simultaneous actions across policy levels. No single solution is possible, since AMR is the result of long-term human intervention which has accelerated certain trends in the evolution of a microbial ecosystem shared by humans, animals and other biological organisms inhabiting that ecosystem. Viewing the AMR crisis today through an ecological public health lens has the advantage of reuniting the social-ecological and bio-ecological perspectives which have been separated within public health. PMID:26454427

  11. Control of Neisseria gonorrhoeae in the era of evolving antimicrobial resistance.

    Science.gov (United States)

    Barbee, Lindley A; Dombrowski, Julia C

    2013-12-01

    Neisseria gonorrhoeae has developed resistance to all previous first-line antimicrobial therapies over the past 75 years. Today the cephalosporins, the last available antibiotic class that is sufficiently effective, are also threatened by evolving resistance. Screening for asymptomatic gonorrhea in women and men who have sex with men, treating with a dual antibiotic regimen, ensuring effective partner therapy, and remaining vigilant for treatment failures constitute critical activities for clinicians in responding to evolving antimicrobial resistance. This article reviews the epidemiology, history of antimicrobial resistance, current screening and treatment guidelines, and future treatment options for gonorrhea.

  12. Facing multi-drug resistant tuberculosis.

    Science.gov (United States)

    Sotgiu, Giovanni; Migliori, Giovanni Battista

    2015-06-01

    Multi-drug resistant tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis strains resistant to at least two of the most effective anti-tuberculosis drugs (i.e., isoniazid and rifampicin). Therapeutic regimens based on second- and third-line anti-tuberculosis medicines showed poor efficacy, safety, and tolerability profiles. It was estimated that in 2012 the multi-drug resistant tuberculosis incidence ranged from 300,000 to 600,000 cases, mainly diagnosed in the Eastern European and Central Asian countries. The highest proportion of cases is among individuals previously exposed to anti-tuberculosis drugs. Three main conditions can favour the emergence and spread of multi-drug resistant tuberculosis: the poor implementation of the DOTS strategy, the shortage or the poor quality of the anti-tuberculosis drugs, and the poor therapeutic adherence of the patients to the prescribed regimens. Consultation with tuberculosis experts (e.g., consilium) is crucial to tailor the best anti-tuberculosis therapy. New therapeutic options are necessary: bedaquiline and delamanid seem promising drugs; in particular, during the development phase they demonstrated a protective effect against the emergence of further resistances towards the backbone drugs. In the recent past, other antibiotics have been administered off-label: the most relevant efficacy, safety, and tolerability profile was proved in linezolid-, meropenem/clavulanate-, cotrimoxazole-containing regimens. New research and development activities are needed in the diagnostic, therapeutic, preventive fields. PMID:24792579

  13. A database of antimalarial drug resistance

    Directory of Open Access Journals (Sweden)

    Ringwald Pascal

    2006-06-01

    Full Text Available Abstract A large investment is required to develop, license and deploy a new antimalarial drug. Too often, that investment has been rapidly devalued by the selection of parasite populations resistant to the drug action. To understand the mechanisms of selection, detailed information on the patterns of drug use in a variety of environments, and the geographic and temporal patterns of resistance is needed. Currently, there is no publically-accessible central database that contains information on the levels of resistance to antimalaria drugs. This paper outlines the resources that are available and the steps that might be taken to create a dynamic, open access database that would include current and historical data on clinical efficacy, in vitro responses and molecular markers related to drug resistance in Plasmodium falciparum and Plasmodium vivax. The goal is to include historical and current data on resistance to commonly used drugs, like chloroquine and sulfadoxine-pyrimethamine, and on the many combinations that are now being tested in different settings. The database will be accessible to all on the Web. The information in such a database will inform optimal utilization of current drugs and sustain the longest possible therapeutic life of newly introduced drugs and combinations. The database will protect the valuable investment represented by the development and deployment of novel therapies for malaria.

  14. Susceptibility of Staphylococcus aureus Clinical Isolates to Propolis Extract Alone or in Combination with Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Mieczysław Sajewicz

    2013-08-01

    Full Text Available The objective of this study was to assess in vitro the antimicrobial activity of ethanolic extract of Polish propolis (EEPP against methicillin-sensitive Staphylococcus aureus (MSSA and methicillin-resistant Staphylococcus aureus (MRSA clinical isolates. The combined effect of EEPP and 10 selected antistaphylococcal drugs on S. aureus clinical cultures was also investigated. EEPP composition was analyzed by a High Performance Liquid Chromatography (HPLC method. The flavonoid compounds identified in Polish Propolis included flavones, flavonones, flavonolols, flavonols and phenolic acids. EEPP displayed varying effectiveness against twelve S. aureus strains, with minimal inhibitory concentration (MIC within the range from 0.39 to 0.78 mg/mL, determined by broth microdilution method. The average MIC was 0.54 ± 0.22 mg/mL, while calculated MIC50 and MIC90 were 0.39 mg/mL and 0.78 mg/mL, respectively. The minimum bactericidal concentration (MBC of the EEPP ranged from 0.78 to 3.13 mg/mL. The in vitro combined effect of EEPP and 10 antibacterial drugs was investigated using disk diffusion method-based assay. Addition of EEPP to cefoxitin (FOX, clindamycin (DA, tetracycline (TE, tobramycin (TOB, linezolid (LIN, trimethoprim+sulfamethoxazole (SXT, penicillin (P, erythromycin (E regimen, yielded stronger, cumulative antimicrobial effect, against all tested S. aureus strains than EEPP and chemotherapeutics alone. In the case of ciprofloxacin (CIP and chloramphenicol (C no synergism with EEPP was observed.

  15. Analysis on Application of Antimicrobial Drugs and Bacterial Resistance in Orthopedics Department of A TCM Hospital in 2013%2013年某中医院骨科病区抗菌药物使用与细菌耐药性分析

    Institute of Scientific and Technical Information of China (English)

    孙毅东; 张美容; 张劲新; 叶凌云; 林爱华

    2015-01-01

    ABSTRACTObjective:To investigate the application of antimicrobial drugs and bacteriology in orthopedics de-partment of our hospital so as to provide a clinical reference for the rational use of antimicrobial agents.Methods:The application of antimicrobial drugs,the results of bacterial examination and bacterial resistance in orthopedics department of our hospital in 2013 were analyzed statistically by a retrospective investigation method.Results:The top three drug categories based on the DDDs sequence of the use of antibacterials were cephalosporins(9 536.4), penicillins(613.9)and quinolones(445.0),and the top three drugs were cefathiamidine(3 036.7),cefazolin (2 293.0)and cefuroxime(1 688.5). In l46 strains of detected bacteria,100 strains were Gram-negative bacteria (68.5%),includingEscherichiacoli,KlebsiellapneumoniaeandPseudomonasaeruginosa,31 strains were Gram-positive bacteria(21.2%)which was mainlyStaphylococcus,and 15 strains of fungi(10.3%),of which Candidaalbicanswas the main part. The drug sensitive rate of Gram-positive bacteria was higher,but Gram-nega-tive bacteria and fungi had a lower drug sensitivity rate of antimicrobial agents ranked at forefront of DDDs.Con-clusion:The application of antimicrobial drugs did not lead to an extensive bacterial resistance in orthopedics de-partment of our hospital in 2013. The strict grasp of drug use indications and reasonable administration of antimicro-bial drugs were critical points to obtain a low rate of bacterial resistance. Traditional Chinese medicine syndrome differentiation was one of the possible reasons.%目的:调查我院骨科病区抗菌药物的应用及细菌学情况,为提高抗菌药物合理应用水平提供依据。方法:采用回顾性调查方法,对骨科病区2013年1-12月抗菌药物的使用情况、细菌学检查结果及其耐药性进行统计、分析。结果:各类抗菌药物使用按用药频度(DDDs)排序,前3位分别为头孢菌素类(9536.4

  16. Intrinsic Antimicrobial Resistance Determinants in the Superbug Pseudomonas aeruginosa

    Science.gov (United States)

    Murray, Justine L.; Kwon, Taejoon; Marcotte, Edward M.

    2015-01-01

    ABSTRACT Antimicrobial-resistant bacteria pose a serious threat in the clinic. This is particularly true for opportunistic pathogens that possess high intrinsic resistance. Though many studies have focused on understanding the acquisition of bacterial resistance upon exposure to antimicrobials, the mechanisms controlling intrinsic resistance are not well understood. In this study, we subjected the model opportunistic superbug Pseudomonas aeruginosa to 14 antimicrobials under highly controlled conditions and assessed its response using expression- and fitness-based genomic approaches. Our results reveal that gene expression changes and mutant fitness in response to sub-MIC antimicrobials do not correlate on a genomewide scale, indicating that gene expression is not a good predictor of fitness determinants. In general, fewer fitness determinants were identified for antiseptics and disinfectants than for antibiotics. Analysis of gene expression and fitness data together allowed the prediction of antagonistic interactions between antimicrobials and insight into the molecular mechanisms controlling these interactions. PMID:26507235

  17. Antifungal drugs and resistance: Current concepts

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Nigam

    2015-04-01

    Full Text Available Recently, clinical failure and relapses have been observed in patients treated with antifungals. Drug resistance has become an important problem leading to significant negative social, psychological, and occupational health effects and quality of life. Early recognition and treatment is essential to reduce morbidity and possibility of transmission. The increased use, inappropriate prescribing and over the counter sale of antifungal agents has also added in the development of resistance to these drugs. The main biochemical and molecular mechanisms that contribute to antifungal resistance include reduced uptake of the drug, an active transport out of the cell or modified drug metabolic degradation of the cell, changes in the interaction of the drug to the target site or other enzymes involved in the process by point mutations, overexpression of the target molecule, overproduction or mutation of the target enzyme, amplification and gene conversion (recombination, and increased cellular efflux and occurrence of biofilm. Although, there is considerable knowledge concerning the biochemical, genetic and clinical aspects of resistance to antifungal agents, expansion of our understanding of the mechanisms by which antifungal resistance emerges and spreads, quicker methods for the determination of resistance, targetting efflux pumps, especially ATP binding cassette (ABC transporters and heat shock protein 90, new drug delivery systems, optimizing therapy according to pharmacokinetic and pharmacodynamic characteristics, new classes of antifungal drugs that are active against azole-resistant isolates, and use of combinations of antifungal drugs or use of adjunctive immunostimulatory therapy and other modalities of treatment will clearly be important for future treatment strategies and in preventing development of resistance.

  18. Antimalarial drug resistance and combination chemotherapy.

    OpenAIRE

    White, N.

    1999-01-01

    Antimarial drug resistance develops when spontaneously occurring parasite mutants with reduced susceptibility are selected, and are then transmitted. Drugs for which a single point mutation confers a marked reduction in susceptibility are particularly vulnerable. Low clearance and a shallow concentration-effect relationship increase the chance of selection. Use of combinations of antimalarials that do not share the same resistance mechanisms will reduce the chance of selection because the cha...

  19. Plasmodium falciparum drug resistance in Angola

    OpenAIRE

    Fançony, Cláudia; Brito, Miguel; Gil, Jose Pedro

    2016-01-01

    Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information ...

  20. Emergence of Extensively Drug Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    2007-03-01

    Extensively drug-resistant tuberculosis (XDR TB) outbreaks have been reported in South Africa, and strains have been identified on 6 continents. Dr. Peter Cegielski, team leader for drug-resistant TB with the Division of Tuberculosis Elimination at CDC, comments on a multinational team's report on this emerging global public health threat.  Created: 3/1/2007 by Emerging Infectious Diseases.   Date Released: 3/26/2007.

  1. Antimicrobial profiles of bacterial clinical isolates from the Gabonese National Laboratory of Public Health: data from routine activity

    Directory of Open Access Journals (Sweden)

    Léonard Kouegnigan Rerambiah

    2014-12-01

    Conclusions: The antimicrobial resistance profiles seen here are of concern. To control the spread of drug-resistant bacteria, clinicians should be cognizant of their local antimicrobial resistance patterns.

  2. Essential Oils and Non-volatile Compounds Derived from Chamaecyparis obtusa: Broad Spectrum Antimicrobial Activity against Infectious Bacteria and MDR(multidrug resistant) Strains.

    Science.gov (United States)

    Bae, Min-Suk; Park, Dae-Hun; Choi, Chul-Yung; Kim, Gye-Yeop; Yoo, Jin-Cheol; Cho, Seung-Sik

    2016-05-01

    The aim of this study was to evaluate the antibacterial activity of essential oil from Chamaecyparis obtusa against general infectious microbes and drug resistant strains of clinical origin. The results indicate that both essential oil and non-volatile residue have broad inhibitory activity against test strains. Essential oil and non-volatile residues showed antimicrobial activity not only against general infectious bacteria, but also against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains. PMID:27319153

  3. Potential impact of antimicrobial resistance in wildlife, environment and human health

    OpenAIRE

    Hajer eRadhouani; Nuno eSilva; Patrícia ePoeta; Carmen eTorres; Susana eCorreia; Gilberto eIgrejas

    2014-01-01

    Given the significant spatial and temporal heterogeneity in antimicrobial resistance distribution and the factors that affect its evolution, dissemination, and persistence, it is important to highlight that antimicrobial resistance must be viewed as an ecological problem. Monitoring the resistance prevalence of indicator bacteria such as Escherichia coli and enterococci in wild animals makes it possible to show that wildlife has the potential to serve as an environmental reservoir and melting...

  4. Antimicrobial-Resistant Escherichia coli in Public Beach Waters in Quebec

    Directory of Open Access Journals (Sweden)

    Patricia Turgeon

    2012-01-01

    Full Text Available INTRODUCTION: Human exposure to antimicrobial-resistant bacteria may result in the transfer of resistance to commensal or pathogenic microbes present in the gastrointestinal tract, which may lead to severe health consequences and difficulties in treatment of future bacterial infections. It was hypothesized that the recreational waters from beaches represent a source of antimicrobial-resistant Escherichia coli for people engaging in water activities.

  5. Changing trends in antimicrobial-resistant pneumococci: it's not all bad news.

    Science.gov (United States)

    Low, Donald E

    2005-08-15

    In the early 1990s, we witnessed a dramatic and relentless increase in multidrug-resistant pneumococci worldwide. However, there is now evidence of decreasing resistance to some antimicrobials in some regions of the world. This may well be a result of several initiatives to promote the judicious use of antimicrobials, as well as the introduction of the pneumococcal conjugate vaccine, suggesting that the fight against resistance is maybe not futile.

  6. Haemophilus paragallinarum in chickens in Indonesia: III. Antimicrobial drug sensitivity test ofHaemophilus paragallinarum from chickens suffering of coryza

    Directory of Open Access Journals (Sweden)

    Sri Poernomo

    1998-12-01

    Full Text Available An agar disc diffusion method was used to examine the sensitivity of 27 Haemophilus paragallinarum (Hpg isolates consisted of 23 local isolates, 4 standard isolates (serotype A and Escherichia coli ATCC 24922 as a control to eight antimicrobial drugs (ampicillin, erythromycin, oxytetracycline, doxycycline, neomycin, streptomycin, colistine and sulphanlethoxazole-trimethoprim . Twenty one out of 23 local isolates of Hpg were sensitive to doxycycline, 19 isolates to ampsllin, 18 isolates to oxytetracycline, 17 isolates to sulphametoxazole-trimethoprim, 16 isolates to erythromycin, and 13 isolates to neomycin, while 13 isolates were resistance to colistine and 11 isolates were also resistance to streptomycin .

  7. Drug resistance in Schistosomiasis: a review

    Directory of Open Access Journals (Sweden)

    John I. Bruce

    1987-01-01

    Full Text Available Drug resistance associated with the treatment of human schistosomiasis appears to be an emerging problem requiring more attention from the scientific community than the subject currently receives. Drug-resistant strains of Schistosoma mansoni have been isolated by various investigators as a result of laboratory experimentation or from a combination of field and laboratory studies. Review of this data appears to indicate that the lack of susceptibility observed for some of the isolated strains cannot be ascribed solely to previous administration of antischistosome drugs and thus further studies are required to elucidate this phenomena. Strains of S. mansoni have now been identified from Brazil which are resistant to oxamniquine, hycanthone and niridazole; from Puerto Rico which are resistant to hycanthone and oxamniquine; and from Kenya which are resistant to niridazole and probably oxamniquine. Strains derived by in vitro selection and resistant to oxamniquine and possibly to oltipraz are also available. All of these strains are currently maintained in the laboratory in snails and mice, thus providing for the first time an opportunity for indepth comparative studies. Preliminary data indicates that S. haematobium strains resistant to metrifonate may be occurring in Kenya. This problem could poise great difficulty in the eventual development of antischistosomal agents. Biomphalaria glabrata from Puerto Rico and Brazil were found to be susceptible to drug-resistant S. mansoni from each country.

  8. Drug Resistance Proteins and Refractory Epilepsy

    OpenAIRE

    J Gordon Millichap

    2002-01-01

    Expression of multi-drug resistance gene-1 P-glycoprotein (MDR1) and multidrug resistance-associated protein 1 (MRP1) in refractory epilepsy was studied at the Epilepsy Research Group, Institutes of Neurology and Child Health, University College, London, and Radcliffe Infirmary, Oxford, UK.

  9. Malaria Epidemic and Drug Resistance, Djibouti

    OpenAIRE

    Rogier, Christophe; Pradines, Bruno; Bogreau, H.; Koeck, Jean-Louis; Kamil, Mohamed-Ali; Mercereau-Puijalon, Odile

    2005-01-01

    Analysis of Plasmodium falciparum isolates collected before, during, and after a 1999 malaria epidemic in Djibouti shows that, despite a high prevalence of resistance to chloroquine, the epidemic cannot be attributed to a sudden increase in drug resistance of local parasite populations.

  10. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future.

    Science.gov (United States)

    Unemo, Magnus; Shafer, William M

    2014-07-01

    Neisseria gonorrhoeae is evolving into a superbug with resistance to previously and currently recommended antimicrobials for treatment of gonorrhea, which is a major public health concern globally. Given the global nature of gonorrhea, the high rate of usage of antimicrobials, suboptimal control and monitoring of antimicrobial resistance (AMR) and treatment failures, slow update of treatment guidelines in most geographical settings, and the extraordinary capacity of the gonococci to develop and retain AMR, it is likely that the global problem of gonococcal AMR will worsen in the foreseeable future and that the severe complications of gonorrhea will emerge as a silent epidemic. By understanding the evolution, emergence, and spread of AMR in N. gonorrhoeae, including its molecular and phenotypic mechanisms, resistance to antimicrobials used clinically can be anticipated, future methods for genetic testing for AMR might permit region-specific and tailor-made antimicrobial therapy, and the design of novel antimicrobials to circumvent the resistance problems can be undertaken more rationally. This review focuses on the history and evolution of gonorrhea treatment regimens and emerging resistance to them, on genetic and phenotypic determinants of gonococcal resistance to previously and currently recommended antimicrobials, including biological costs or benefits; and on crucial actions and future advances necessary to detect and treat resistant gonococcal strains and, ultimately, retain gonorrhea as a treatable infection. PMID:24982323

  11. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future.

    Science.gov (United States)

    Unemo, Magnus; Shafer, William M

    2014-07-01

    Neisseria gonorrhoeae is evolving into a superbug with resistance to previously and currently recommended antimicrobials for treatment of gonorrhea, which is a major public health concern globally. Given the global nature of gonorrhea, the high rate of usage of antimicrobials, suboptimal control and monitoring of antimicrobial resistance (AMR) and treatment failures, slow update of treatment guidelines in most geographical settings, and the extraordinary capacity of the gonococci to develop and retain AMR, it is likely that the global problem of gonococcal AMR will worsen in the foreseeable future and that the severe complications of gonorrhea will emerge as a silent epidemic. By understanding the evolution, emergence, and spread of AMR in N. gonorrhoeae, including its molecular and phenotypic mechanisms, resistance to antimicrobials used clinically can be anticipated, future methods for genetic testing for AMR might permit region-specific and tailor-made antimicrobial therapy, and the design of novel antimicrobials to circumvent the resistance problems can be undertaken more rationally. This review focuses on the history and evolution of gonorrhea treatment regimens and emerging resistance to them, on genetic and phenotypic determinants of gonococcal resistance to previously and currently recommended antimicrobials, including biological costs or benefits; and on crucial actions and future advances necessary to detect and treat resistant gonococcal strains and, ultimately, retain gonorrhea as a treatable infection.

  12. Occurrence of antimicrobial resistance in bacteria from diagnostic samples from dogs

    DEFF Research Database (Denmark)

    Pedersen, Karl; Pedersen, Kristina; Jensen, Helene;

    2007-01-01

    Objectives: To study the occurrence of antimicrobial resistance among common bacterial pathogens from dogs and relate resistance patterns to data on consumption of antimicrobials. Methods: The antimicrobial susceptibility patterns of 201 Staphylococcus intermedius, 37 Streptococcus canis, 39...... Pseudomonas aeruginosa, 25 Pasteurella multocida, 29 Proteus spp. and 449 Escherichia coli isolates from clinical submissions from dogs were determined by a broth-dilution method for determination of minimal inhibitory concentration. Data for consumption of antimicrobials were retrieved from Vet......Stat, a national database for reporting antimicrobial prescriptions. Results: The majority of the antimicrobials prescribed for dogs were broad-spectrum compounds, and extended-spectrum penicillins, cephalosporins and sulphonamides 1 trimethoprim together accounted for 81% of the total amount used for companion...

  13. Antimicrobial Resistance and Molecular Characteristics of Nasal Staphylococcus aureus Isolates From Newly Admitted Inpatients.

    Science.gov (United States)

    Chen, Xu; Sun, Kangde; Dong, Danfeng; Luo, Qingqiong; Peng, Yibing; Chen, Fuxiang

    2016-05-01

    Staphylococcus aureus, or methicillin-resistant S. aureus (MRSA), is a significant pathogen in both nosocomial and community infections. Community-associated MRSA (CA-MRSA) strains tend to be multi-drug resistant and to invade hospital settings. This study aimed to assess the antimicrobial resistance and molecular characteristicsof nasal S. aureus among newlyadmitted inpatients.In the present study, 66 S. aureus isolates, including 10 healthcare-associated MRSA (HA-MRSA), 8 CA-MRSA, and 48 methicillin-sensitive S. aureus (MSSA) strains, were found in the nasal cavities of 62 patients by screening 292 newlyadmitted patients. Antimicrobial resistance and molecular characteristics of these isolates, including spa-type, sequence type (ST) and SCCmec type, were investigated. All isolates were sensitive to linezolid, teicoplanin, and quinupristin/dalfopristin, but high levels of resistance to penicillin and erythromycin were detected. According to D-test and erm gene detection results, the cMLS(B) and iMLS(B) phenotypes were detected in 24 and 16 isolates, respectively. All 10 HA-MRSA strains displayed the cMLS(B) phenotypemediated by ermA or ermA/ermC, while the cMLS(B) CA-MRSA and MSSA strains carried the ermB gene. Molecular characterization revealedall 10 HA-MRSA strains were derived from the ST239-SCCmec III clone, and four out of eight CA-MRSA strains were t437-ST59-SCCmec V. The results suggest that patients play an indispensable role in transmitting epidemic CA-MRSA and HA-MRSA strains. PMID:26915614

  14. Drug-resistant Salmonella in the United States: an epidemiologic perspective.

    Science.gov (United States)

    Cohen, M L; Tauxe, R V

    1986-11-21

    Salmonellosis poses a health problem of large proportions in the United States. Annually, it accounts for more than 40,000 reported cases, 500 deaths, and financial costs well in excess of $50 million. Antimicrobial resistance is increasing in Salmonella strains, a finding that has important public health implications. Although the chain of transmission of the bacteria is often complex, combined epidemiologic and laboratory studies with the use of new methods in molecular biology make it possible to trace antimicrobial-resistant salmonellae to their primary source--foods of animal origin. These studies suggest that the antimicrobial drugs to which food animals are exposed provide selective pressure that leads to the appearance and persistence of resistant strains.

  15. Atividade antimicrobiana do extrato de Anacardium occidentale Linn. em amostras multiresistentes de Staphylococcus aureus Antimicrobial activity of the hydroalcoholic extract of Anacardium occidentale Linn. against multi-drug resistant strains of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Jackeline G. da Silva

    2007-12-01

    Full Text Available Plantas medicinais com propriedades terapêuticas são de grande relevância em todo o mundo, principalmente em países em desenvolvimento. A planta Anacardium occidentale Linn. é largamente usada na medicina tradicional na nossa região, como antidiarréico, para amigdalite, bronquites, artrites, e antiiflamatório. No presente estudo avaliou-se a ação antimicrobiana do extrato hidroalcóolico da casca do caule do cajueiro frente a amostras de Staphylococcus aureus resistentes e sensíveis à meticilina, obtidas a partir de pacientes internados do Hospital Universitário/Universidade Federal da Paraíba. A atividade antimicrobiana foi determinada pelo método de difusão em meio sólido para a determinação da Concentração Inibitória Mínima do extrato, e foi observada no total de 30 amostras, pela presença ou não do halo de inibição. Todas as amostras ensaiadas mostraram-se sensíveis à ação do extrato do cajueiro, com diâmetros dos halos de inibição variando de 10 a 20 mm, demonstrando grande eficácia do cajueiro. Assim, o uso desta planta na nossa região pode inferir uma alternativa terapêutica eficiente e de baixo custo, contra infecções bacterianas causadas por Staphylococcus aureus.Medicinal plants with therapeutical properties are of great significance in the whole world, especially in developing countries. Anacardium occidentale Linn. is a plant widely used in the traditional medicine in our region against diarrhea, tonsillitis, bronchitis, arthritis, and inflammation. In this paper, the antimicrobial activity of the hydroalcoholic extract of the cashew tree stem was evaluated against samples of meticillin-resistant and meticillin-sensible Staphylococcus aureus, attained from patients interned at Hospital Universitário/Universidade Federal da Paraíba. The antimicrobial activity was determined by the diffusion method in solid milieu to determine the Minimum Inhibitory Concentration (MIC of the extract, and it was

  16. Antimicrobial resistance in methicillin susceptible and methicillin resistant Staphylococcus pseudintermedius of canine origin

    DEFF Research Database (Denmark)

    Moodley, Arshnee; Damborg, Peter Panduro; Nielsen, Søren Saxmose

    2014-01-01

    from dogs in 27 countries between 1980 and 2013. Resistance to the most common antimicrobials tested for in published studies and important for the treatment of staphylococcal infections in dogs were assessed separately for methicillin resistant (MRSP) and methicillin susceptible (MSSP) isolates...... are collected and presented in a more harmonized way to allow more precise comparison of susceptibility patterns between studies. One way to accomplish this would be through systematic surveillance either at the country-level or at a larger scale across countries e.g. EU level....

  17. Multiple drug resistance and bacterial infection

    Institute of Scientific and Technical Information of China (English)

    Asad U Khan

    2008-01-01

    Drug resistance is becoming a great problem in developing countries due to excessive use and misuse of antibi-otics.The emergence of new pathogenic strains with resistance developed against most of the antibiotics which may cause,difficult to treat infection.To understand the current scenario in different mode of infection is most important for the clinicians and medical practitioners.This article summarized some common infections and an-tibiotic resistance pattern found among these pathogens.

  18. Prevalence and risk factors for carriage of antimicrobial-resistant Escherichia coli on household and small-scale chicken farms in the Mekong Delta of Vietnam

    NARCIS (Netherlands)

    V.T. Nguyen; J.J. Carrique-Mas; T.H Ngo; H.M. Ho; T.T. Ha; J.I. Campbell; T.N. Nguyen; N.N. Hoang; V.M. Pham; J.A. Wagenaar; A. Hardon; Q.H. Thai; C. Schultsz

    2015-01-01

    Objectives: To describe the prevalence of antimicrobial resistance among commensal Escherichia coli isolates on household and small-scale chicken farms, common in southern Vietnam, and to investigate the association of antimicrobial resistance with farming practices and antimicrobial usage. Methods:

  19. Prevalence and risk factors for carriage of antimicrobial-resistant Escherichia coli on household and small-scale chicken farms in the Mekong Delta of Vietnam

    NARCIS (Netherlands)

    Trung, Nguyen Vinh; Carrique-Mas, Juan J; Thi Hoa, Ngo; Mai, Ho Huynh; Tuyen, Ha Thanh; Campbell, James I; Nhung, Nguyen Thi; Nhung, Hoang Ngoc; Van Minh, Pham; Wagenaar, Jaap A; Hardon, Anita; Hieu, Thai Quoc; Schultsz, Constance

    2015-01-01

    OBJECTIVES: To describe the prevalence of antimicrobial resistance among commensal Escherichia coli isolates on household and small-scale chicken farms, common in southern Vietnam, and to investigate the association of antimicrobial resistance with farming practices and antimicrobial usage. METHODS:

  20. An assessment of antimicrobial resistant disease threats in Canada.

    Directory of Open Access Journals (Sweden)

    Michael J Garner

    Full Text Available Antimicrobial resistance (AMR of infectious agents is a growing concern for public health organizations. Given the complexity of this issue and how widespread the problem has become, resources are often insufficient to address all concerns, thus prioritization of AMR pathogens is essential for the optimal allocation of risk management attention. Since the epidemiology of AMR pathogens differs between countries, country-specific assessments are important for the determination of national priorities.To develop a systematic and transparent approach to AMR risk prioritization in Canada.Relevant AMR pathogens in Canada were selected through a transparent multi-step consensus process (n=32. Each pathogen was assessed using ten criteria: incidence, mortality, case-fatality, communicability, treatability, clinical impact, public/political attention, ten-year projection of incidence, economic impact, and preventability. For each pathogen, each criterion was assigned a numerical score of 0, 1, or 2, and multiplied by criteria-specific weighting determined through researcher consensus of importance. The scores for each AMR pathogen were summed and ranked by total score, where a higher score indicated greater importance. A sensitivity analysis was conducted to determine the effects of changing the criteria-specific weights.The AMR pathogen with the highest total weighted score was extended spectrum B-lactamase-producing (ESBL Enterobacteriaceae (score=77. When grouped by percentile, ESBL Enterobacteriaceae, Clostridium difficile, carbapenem-resistant Enterobacteriaceae, and methicillin-resistant Staphylococcus aureus were in the 80-100th percentile.This assessment provides useful information for prioritising public health strategies regarding AMR resistance at the national level in Canada. As the AMR environment and challenges change over time and space, this systematic and transparent approach can be adapted for use by other stakeholders domestically and

  1. Studies on Antimicrobial Resistance Transfer In vitro and Existent Selectivity of Avian Antimicrobial-Resistant Enterobacteriaccae In vivo

    Institute of Scientific and Technical Information of China (English)

    SONG Li; NING Yi-bao; ZHANG Qi-jing; YANG Cheng-huai; GAO Guang; HAN Jian-feng

    2008-01-01

    Increasing antimicrobial resistance (AR) has become a severe problem of public health in the world, whereas control of the AR of bacteria will be based on investigation of the AR mechanism. Furthermore, understanding the existent selectivity of AR organisms from animals can prevent the emergence and diffusion of AR effectively. PCR amplifications of gyrA and parC genes have been performed for detecting fluoroquinolones-resistance (FR) genes. A conjugational transfer test has been carried out using a donor which is resistant to tetracycline (TE), ampicillin (AMP), sulfamethoxazole-trimethoprim (SXT), and a recipient which is sensitive to TE, AMP, and SXT. The AR strains have been passed 20 passages. Two groups of chicken inoculated multi-AR Escherichia coli (E. Coli) and multi-AR Salmonella, respectively, are mix-fed. The result shows that amino acid codons of Ser-83 and Asp-87 are mutations from gyrA and there are no mutations from parCgenes in all the FR strains. Resistance to TE, AM, and SXT can transfer among E. Coli and the conjugal transfer frequency of TE is 3 × 10-7. AR can inherit in 20 passages at least. The multi-AR E. Coli and Salmonella can be isolated from all chickens three days after inoculation but CIP-resistant strains decrease during the time run out and disappear at 23 days after inoculation. The results indicate that the mutations of gene gyrA are correlative with the FR phenotype. AR genes that are not connected to the chromosome can transfer horizontally and vertically. AR bacteria can diffuse quickly and eliminate naturally from the host if the chicken is not under the pressure of this antibiotic.

  2. [Drug resistant epilepsy. Clinical and neurobiological concepts].

    Science.gov (United States)

    Espinosa-Jovel, Camilo A; Sobrino-Mejía, Fidel E

    2015-08-16

    Drug-resistant epilepsy, is a condition defined by the International League Against Epilepsy as persistent seizures despite having used at least two appropriate and adequate antiepileptic drug treatments. Approximately 20-30% of patients with epilepsy are going to be resistant to antiepileptic drugs, with different patterns of clinical presentation, which are related to the biological basis of this disease (de novo resistance, relapsing-remitting and progressive). Drug resistant epilepsy, impacts negatively the quality of life and significantly increases the risk of premature death. From the neurobiological point of view, this medical condition is the result of the interaction of multiple variables related to the underlying disease, drug interactions and proper genetic aspects of each patient. Thanks to advances in pharmacogenetics and molecular biology research, currently some hypotheses may explain the cause of this condition and promote the study of new therapeutic options. Currently, overexpression of membrane transporters such as P-glycoprotein, appears to be one of the most important mechanisms in the development of drug resistant epilepsy. The objective of this review is to deepen the general aspects of this clinical condition, addressing the definition, epidemiology, differential diagnosis and the pathophysiological bases.

  3. Antimicrobial resistance in Pseudomonas sp. causing infections in trauma patients: A 6 year experience from a south asian country

    Directory of Open Access Journals (Sweden)

    Nonika Rajkumari

    2014-01-01

    Full Text Available Drug resistance to Pseudomonas sp. has spread to such a level irrespective of the type of patients, that its pattern of distribution and antibiotic resistance needs to be studied in detail, especially in trauma patients and hence the study. A 6 year study was carried out among trauma patients to see the trend and type of resistance prevalent in the apex hospital for trauma care in India among nonduplicate isolates where multidrug-resistance (MDR, cross-resistance and pan-drug resistance in Pseudomonas sp. were analyzed. Of the total 2,269 isolates obtained, the species, which was maximally isolated was Pseudomonas aeruginosa (2,224, 98%. The highest level of resistance was seen in tetracycline (2,166, 95.5%, P < 0.001 and chloramphenicol (2,160, 95.2%, P < 0.001 and least in meropenem (1,739, 76.7%, P < 0.003. Of the total, 1,692 (74.6% isolates were MDR in which P. aeruginosa (75% were maximum. MDR Pseudomonas is slowing increasing since the beginning of the study period. Of 1,797 imipenem-resistant P. aeruginosa isolated during the study period, 1,763 (98% showed resistance to ciprofloxacin or levofloxacin, suggesting that cross-resistance may have developed for imipenem due to prior use of fluoroquinolones. Antibiotic resistance in Pseudomonas sp. is fast becoming a problem in trauma patients, especially in those who requires prolong hospital stay, which calls for proper antimicrobial stewardship.

  4. STAPHYLOCOCCUS AUREUS NASAL CARRIAGE AMONG INJECTING AND NON-INJECTING DRUG USERS AND ANTIMICROBIAL SUSCEPTIBILITY

    Directory of Open Access Journals (Sweden)

    Mojtaba Varshochi

    2013-01-01

    Full Text Available Staphylococcus Aureus (SA is one of the most prevalent bacterial pathogens in human beings. Approximately 20% of healthy persons are persistent carriers and 60% are intermittent carriers of SA. Nasal cavity is one of the most important sites of its colonization. Intravenous (IV drug abuse has been proposed as a risk factor for colonization of SA in the nasal mucosa. The goal of this study was to determine the frequency of SA carriers in nasal cavity among IV and non-IV drug abusers (addicts, as well as to assess the antimicrobial susceptibility pattern of the positive cases. In a cross-sectional analysis of 300 drug addicts (Group I: 100 non-injecting addicts, Group II: 100 IV injecting drug addicts in rehab, Group III: 100 IV injecting drug addicts not in rehab in the infectious diseases clinics of Tabriz’s Imam Reza and Sina teaching hospitals and the rehabilitation center of Razi hospital, were investigated. Hospitalized addicts, insulin-dependent diabetic cases, HIV positive patients and those on chronic hemodialysis were excluded. The nasal mucosal sample was prepared from each case for SA isolation and its antimicrobial susceptibility was investigated by antibiogram. Eighty-four cases (28% were culture positive for SA, including 26 cases in group one, 32 cases in group two and 26 cases in group three (p = 0.55. There was only one MRSA isolate present in all the cases studied (1.2%. No resistance to linozolid, rifampin and vancomycin was observed. The resistance to erythromycin, cefoxitin, ciprofloxacin, clindamycin, co-trimoxazol and gentamicin were 3.6, 4.8, 2.4, 3.6, 1.2 and 2.4% respectively. No statistically significant differences existed between the three groups in antibacterial susceptibility pattern. Sensitivity to oxacillin using the E-test results and disc diffusion were completely consistent. The percentage of carries of SA in the anterior nasal mucosa among IV and non-IV drug addicts is not considerably higher than the

  5. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    Directory of Open Access Journals (Sweden)

    Veitch Zachary

    2008-11-01

    Full Text Available Abstract Background Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7DOX-2, epirubicin (MCF-7EPI, paclitaxel (MCF-7TAX-2, or docetaxel (MCF-7TXT. During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. Results In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. Conclusion This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does

  6. EARSS: European Antimicrobial Resistance Surveillance System; data from the Netherlands .Incidence and resistance rates for Streptococcus pneumoniae and Staphylococcus aureus

    NARCIS (Netherlands)

    Goettsch WG; Neeling AJ de; CIE; LIO

    2001-01-01

    In a porspective prevalence and incidence survey in The Netherlands in 1999 antimicrobial susceptibility data on invasive Streptococcus pneumoniae and Staphylococcus aureus infections were collected sithin the framework of European Antomicrobial Resistance Surveillance System (EARSS). The EARSS proj

  7. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    Introduction: A frightening increase in the number of isolated multidrug resistant bacterial strains linked to the decline in novel antimicrobial drugs entering the market is a great cause for concern. Cationic antimicrobial peptides (AMPs) have lately been introduced as a potential new class of ...

  8. A new class of nifuroxazide analogues: synthesis of 5-nitrothiophene derivatives with antimicrobial activity against multidrug-resistant Staphylococcus aureus.

    Science.gov (United States)

    Masunari, Andrea; Tavares, Leoberto Costa

    2007-06-15

    Hospital-acquired methicillin-resistant Staphylococcus aureus (MRSA) has been an increasing problem worldwide since the initial reports over 40 years ago. To examine new drug leads with potential antibacterial activities, 14 p-substituted benzoic acid [(5-nitro-thiophen-2-yl)-methylene]-hydrazides were designed, synthesized, and tested against standard and multidrug-resistant S. aureus strains by serial dilution tests. All compounds exhibited significant bacteriostatic activity and some of them also showed bactericidal activity. The results confirmed the potential of this class of compounds as an alternative for the development of selective antimicrobial agents. PMID:17419064

  9. Combined antimicrobial susceptibility test against pan-drug-resistant Acinetobacter baumannii with E-test and microdilution checkerboard assay%应用E-test法、肉汤微量稀释棋盘法检测泛耐药鲍曼不动杆菌的试验

    Institute of Scientific and Technical Information of China (English)

    王铁山; 苏建荣

    2013-01-01

    Objective To evaluate the activity of antibiotics against pan-drug-resistant (PDR) Acinetobacter baumannii by combination antimicrobial susceptibility test in viro with epsilometric methods (Etest method) and microdilution checkerboard (CB method),and to detect a good correlation between timekill curve with the above mentioned two assays.Methods Thirty-one clinical isolates of PDR Acinetobacter baumannii were selected for mono and combination antimicrobial susceptibility test in vitro by E-test and CB method,then a comparison was conducted between the test results and the time-kill curve.Mono drugs involved tigecycline,colistin,imipenem and amikacin,and combinations involved two of drugs above,and three drugs involved imipenem/tigecycline,plus amikacin combination.Results Synergistic effect was detected in imipenem plus colistin and tigecycline plus imipenem combination.A high comparability was revealed between the E-test method with antimicrobial drugs added into the culture medium and the time-kill curves.Synergy in the combination of imipenem/tigecycline,plus amikacin was detected by the CB method and time-kill curves.Conclusion The results showed that the effect of specific combination of antibiotics against PDR Acinetobacter baumannii could be predicted by testing their synergistic effect with combination antimicrobial susceptibility test.%目的 比较E-test法和肉汤微量稀释棋盘法(CB法)检测体外联合药敏试验并与时间杀菌曲线对比的观察.方法 选择31株泛耐药(PDR)鲍曼不动杆菌临床株进行体外试验,分为替加环素、可立其丁、亚胺培南、阿米卡星单用和两药组合,亚胺培南+替加环素+阿米卡星三药组合也由CB法测试.这些测试的结果与时间杀菌曲线进行比较.结果 亚胺培南+可立其丁、替加环素+亚胺培南能检测到协同作用.培养基中加入抗菌药物的E-test法联合药敏试验与时间杀菌曲线更具有可比性.在三药组合中由CB法和

  10. Coinfection and the evolution of drug resistance.

    Science.gov (United States)

    Hansen, J; Day, T

    2014-12-01

    Recent experimental work in the rodent malaria model has shown that when two or more strains share a host, there is competitive release of drug-resistant strains upon treatment. In other words, the propagule output of a particular strain is repressed when competing with other strains and increases upon the removal of this competition. This within-host effect is predicted to have an important impact on the evolution and growth of resistant strains. However, how this effect translates to epidemiological parameters at the between-host level, the level at which disease and resistance spread, has yet to be determined. Here we present a general, between-host epidemiological model that explicitly takes into account the effect of coinfection and competitive release. Although our model does show that when there is coinfection competitive release may contribute to the emergence of resistance, it also highlights an additional between-host effect. It is the combination of these two effects, the between-host effect and the within-host effect, that determines the overall influence of coinfection on the emergence of resistance. Therefore, even when competitive release of drug-resistant strains occurs, within an infected individual, it is not necessarily true that coinfection will result in the increased emergence of resistance. These results have important implications for the control of the emergence and spread of drug resistance. PMID:25417787

  11. Association between antimicrobial resistance and virulence genes in Escherichia coli obtained from blood and faeces

    DEFF Research Database (Denmark)

    Bagger-Skjøt, Line; Sandvang, Dorthe; Frimodt-Møller, Niels;

    2007-01-01

    Escherichia coli isolates obtained from faeces (n = 85) and blood (n = 123) were susceptibility tested against 17 antimicrobial agents and the presence of 9 virulence genes was determined by PCR. Positive associations between several antimicrobial resistances and 2 VF genes (iutA and traT) were...

  12. A 5-year Surveillance Study on Antimicrobial Resistance of Acinetobacter baumannii Clinical Isolates from a Tertiary Greek Hospital

    Science.gov (United States)

    2016-01-01

    Background Acinetobacter baumannii has emerged as a major cause of nosocomial outbreaks. It is particularly associated with nosocomial pneumonia and bloodstream infections in immunocompromised and debilitated patients with serious underlying pathologies. Over the last two decades, a remarkable rise in the rates of multidrug resistance to most antimicrobial agents that are active against A. baumannii has been noted worldwide. We evaluated the rates of antimicrobial resistance and changes in resistance over a 5-year period (2010–2014) in A. baumannii strains isolated from hospitalized patients in a tertiary Greek hospital. Materials and Methods Identification of A. baumannii was performed by standard biochemical methods and the Vitek 2 automated system, which was also used for susceptibility testing against 18 antibiotics: ampicillin/sulbactam, ticarcillin, ticarcillin/clavulanic acid, piperacillin, piperacillin/tazobactam, cefotaxime, ceftazidime, cefepime, imipenem, meropenem, gentamicin, amikacin, tobramycin, ciprofloxacin, tetracycline, tigecycline, trimethoprim/sulfamethoxazole, and colistin. Interpretation of susceptibility results was based on the Clinical and Laboratory Standards Institute criteria, except for tigecycline, for which the Food and Drug Administration breakpoints were applied. Multidrug resistance was defined as resistance to ≥3 classes of antimicrobial agents. Results Overall 914 clinical isolates of A. baumannii were recovered from the intensive care unit (ICU) (n = 493), and medical (n = 252) and surgical (n = 169) wards. Only 4.9% of these isolates were fully susceptible to the antimicrobials tested, while 92.89% of them were multidrug resistant (MDR), i.e., resistant to ≥3 classes of antibiotics. ICU isolates were the most resistant followed by isolates from surgical and medical wards. The most effective antimicrobial agents were, in descending order: colistin, amikacin, trimethoprim/sulfamethoxazole, tigecycline, and tobramycin

  13. Frequency of bacterial isolates and pattern of antimicrobial resistance in patients with hematological malignancies: A snapshot from tertiary cancer center

    Directory of Open Access Journals (Sweden)

    M Sengar

    2015-01-01

    Full Text Available BACKGROUND: Infections are the most important cause of mortality in patients with high-risk febrile neutropenia. Emergence of multi-drug resistant organisms (MDROs has become a major challenge for hemato-oncologists. Knowledge of the prevalent organisms and their antimicrobial sensitivity can help deciding the empirical therapy at individual centers and allows timely measures to reduce the risk of antimicrobial resistance. AIMS: To evaluate the frequency of bacterial isolates from all the samples and the pattern of bacterial bloodstream infections and incidence of MDROs. SETTINGS AND DESIGN: This is a retrospective analysis from a tertiary care cancer center. MATERIALS AND METHODS: From January to June 2014 information on all the samples received in Department of Microbiology was collected retrospectively. The data from samples collected from patients with hematological cancers were analyzed for types of bacterial isolates and antimicrobial sensitivity. RESULTS: A total of 739 isolates were identified with 67.9% of isolates being Gram-negative. The predominant Gram-negative organisms were Escherichia coli, Psuedomonas spp. and Klebsiella spp. Among the bacterial bloodstream infections, 66% were Gram-negative isolates. MDROs constituted 22% of all isolates in blood cultures. Incidence of resistant Gram-positive organisms was low in the present dataset (methicillin resistant Staphylococcus aureus and vancomycin-resistant enterococci-1.3%. CONCLUSIONS: The analysis reconfirms the Gram-negative organisms as the predominant pathogens in bacteremia seen in patients with hematological cancers. The high frequency of multi-drug resistance in the dataset calls for the need of emergency measures to curtail further development and propagation of resistant organisms.

  14. Epithelial-mesenchymal Transition and Tumor Drug Resistance

    Directory of Open Access Journals (Sweden)

    Linlin ZHANG

    2013-01-01

    Full Text Available Resistance to antineoplastic drugs is a common problem in cancer treatments. Epithelial-mesenchymal transition (EMT, which plays an important role in the process of drug resistance, may provide opportunity to solve this problem. This article reviews the characteristics of EMT, relationship between EMT and drug resistance, mechanism of EMT in tumor drug resistance in details.

  15. Epithelial-mesenchymal Transition and Tumor Drug Resistance

    OpenAIRE

    Zhang, Linlin; Wu, Zhihao; Zhou, Qinghua

    2013-01-01

    Resistance to antineoplastic drugs is a common problem in cancer treatments. Epithelial-mesenchymal transition (EMT), which plays an important role in the process of drug resistance, may provide opportunity to solve this problem. This article reviews the characteristics of EMT, relationship between EMT and drug resistance, mechanism of EMT in tumor drug resistance in details.

  16. Prevalence, risk factors, and antimicrobial resistance profiles of Salmonella from commercial broiler farms in two important poultry-producing regions of Colombia.

    Science.gov (United States)

    Donado-Godoy, P; Gardner, I; Byrne, B A; Leon, M; Perez-Gutierrez, E; Ovalle, M V; Tafur, M A; Miller, W

    2012-05-01

    Salmonella is one of the most common foodborne pathogens associated with diarrheal disease in humans. Food animals, especially poultry, are important direct and indirect sources of human salmonellosis, and antimicrobial resistance is an emerging problem of public health concern. The use of antimicrobials benefits producers but contributes to the emergence of antimicrobial resistant bacteria. As a step toward implementing the Colombian Integrated Program for Antimicrobial Resistance Surveillance, this study was conducted to establish the prevalence, distribution of serovars, antimicrobial resistance profiles, and risk factors for Salmonella on poultry farms in the two largest states of poultry production in Colombia. Salmonella was isolated from 41% of farms and 65% of the 315 chicken houses sampled. Salmonella Paratyphi B variant Java was the most prevalent serovar (76%), followed by Salmonella Heidelberg (23%). All Salmonella isolates were resistant to 2 to 15 of the antimicrobial drugs tested in this study. For Salmonella Paratyphi B variant Java, 34 drug resistance patterns were present. The predominant resistance pattern was ciprofloxacin, nitrofurantoin, tetracycline, trimethoprim-sulfamethoxazole, ceftiofur, streptomycin, enrofloxacin, and nalidixic acid; this pattern was detected in 15% of isolates. The resistance pattern of tetracycline, ceftiofur, and nalidixic acid was found in over 40% of the isolates of Salmonella Heidelberg. Of the biosecurity practices considered, two factors were significantly associated with reduction in Salmonella: cleaning of fixed equipment and composting of dead birds on the farm. Findings from the present study provide scientific evidence to inform implementation of official policies that support new biosecurity legislation in an effort to decrease the prevalence of Salmonella on Colombian poultry farms.

  17. Drug resistance genomics of the antimalarial drug artemisinin.

    Science.gov (United States)

    Winzeler, Elizabeth A; Manary, Micah J

    2014-01-01

    Across the globe, over 200 million annual malaria infections result in up to 660,000 deaths, 77% of which occur in children under the age of five years. Although prevention is important, malaria deaths are typically prevented by using antimalarial drugs that eliminate symptoms and clear parasites from the blood. Artemisinins are one of the few remaining compound classes that can be used to cure multidrug-resistant Plasmodium falciparum infections. Unfortunately, clinical trials from Southeast Asia are showing that artemisinin-based treatments are beginning to lose their effectiveness, adding renewed urgency to the search for the genetic determinants of parasite resistance to this important drug class. We review the genetic and genomic approaches that have led to an improved understanding of artemisinin resistance, including the identification of resistance-conferring mutations in the P. falciparum kelch13 gene. PMID:25470531

  18. Distinguishing Antimicrobial Models with Different Resistance Mechanisms via Population Pharmacodynamic Modeling.

    Directory of Open Access Journals (Sweden)

    Matthieu Jacobs

    2016-03-01

    Full Text Available Semi-mechanistic pharmacokinetic-pharmacodynamic (PK-PD modeling is increasingly used for antimicrobial drug development and optimization of dosage regimens, but systematic simulation-estimation studies to distinguish between competing PD models are lacking. This study compared the ability of static and dynamic in vitro infection models to distinguish between models with different resistance mechanisms and support accurate and precise parameter estimation. Monte Carlo simulations (MCS were performed for models with one susceptible bacterial population without (M1 or with a resting stage (M2, a one population model with adaptive resistance (M5, models with pre-existing susceptible and resistant populations without (M3 or with (M4 inter-conversion, and a model with two pre-existing populations with adaptive resistance (M6. For each model, 200 datasets of the total bacterial population were simulated over 24h using static antibiotic concentrations (256-fold concentration range or over 48h under dynamic conditions (dosing every 12h; elimination half-life: 1h. Twelve-hundred random datasets (each containing 20 curves for static or four curves for dynamic conditions were generated by bootstrapping. Each dataset was estimated by all six models via population PD modeling to compare bias and precision. For M1 and M3, most parameter estimates were unbiased (<10% and had good imprecision (<30%. However, parameters for adaptive resistance and inter-conversion for M2, M4, M5 and M6 had poor bias and large imprecision under static and dynamic conditions. For datasets that only contained viable counts of the total population, common statistical criteria and diagnostic plots did not support sound identification of the true resistance mechanism. Therefore, it seems advisable to quantify resistant bacteria and characterize their MICs and resistance mechanisms to support extended simulations and translate from in vitro experiments to animal infection models and

  19. Prevalence, Antimicrobial Resistance, and Genotypic Characterization of Vancomycin-Resistant Enterococci in Meat Preparations.

    Science.gov (United States)

    Guerrero-Ramos, Emilia; Molina-González, Diana; Blanco-Morán, Sonia; Igrejas, Gilberto; Poeta, Patrícia; Alonso-Calleja, Carlos; Capita, Rosa

    2016-05-01

    A total of 160 samples of poultry (80), pork (40), and beef (40) preparations (red sausages, white sausages, hamburgers, meatballs, nuggets, minced meat, escalope, and crepes) were tested in northwestern Spain to determine the prevalence of vancomycin-resistant enterococci (VRE). VRE were detected in 38 (23.8%) samples (37.5% of poultry, 15.0% of pork, and 5.0% of beef samples). One strain per food sample was further characterized. Isolates were identified as Enterococcus faecium (14 strains), E. durans (10), E. hirae (7), E. gallinarum (5), and E. casseliflavus-E. flavescens (2). All strains showed resistance or intermediate susceptibility to three or more antimicrobials of clinical significance, in addition to vancomycin. High rates of resistance or intermediate susceptibility were observed for teicoplanin (81.6% of isolates), chloramphenicol (81.6%), erythromycin (100%), quinupristin-dalfopristin (89.5%), and ciprofloxacin (81.6%). A moderate rate of resistance or intermediate susceptibility emerged for ampicillin (34.2%) and tetracycline (36.8%). Genes encoding antimicrobial resistance and virulence were studied by PCR. The vanA, vanB, vanC-1, and vanC-2/3 genes were identified in 27, 1, 5, and 2 isolates, respectively. Other resistance genes or transposon sequences found were tet(L), tet(M), Tn5397 (tetracycline), erm(A), erm(B) (erythromycin), vat(D), and vat(E) (quinupristin-dalfopristin). Most isolates were free of virulence determinants (agg, hyl, and efaAfm genes were detected in one, one, and five strains, respectively). Strains were classified as not biofilm producers (crystal violet assay; 4 isolates) or weak biofilm producers (34 isolates). Cluster analysis (EcoRI ribotyping) suggested a strong genetic relationship among isolates from different types of meat preparations, animal species, and retail outlets. Meat preparations might play a role in the spread through the food chain of VRE with several resistance and virulence genes.

  20. Prevalence, Antimicrobial Resistance, and Genotypic Characterization of Vancomycin-Resistant Enterococci in Meat Preparations.

    Science.gov (United States)

    Guerrero-Ramos, Emilia; Molina-González, Diana; Blanco-Morán, Sonia; Igrejas, Gilberto; Poeta, Patrícia; Alonso-Calleja, Carlos; Capita, Rosa

    2016-05-01

    A total of 160 samples of poultry (80), pork (40), and beef (40) preparations (red sausages, white sausages, hamburgers, meatballs, nuggets, minced meat, escalope, and crepes) were tested in northwestern Spain to determine the prevalence of vancomycin-resistant enterococci (VRE). VRE were detected in 38 (23.8%) samples (37.5% of poultry, 15.0% of pork, and 5.0% of beef samples). One strain per food sample was further characterized. Isolates were identified as Enterococcus faecium (14 strains), E. durans (10), E. hirae (7), E. gallinarum (5), and E. casseliflavus-E. flavescens (2). All strains showed resistance or intermediate susceptibility to three or more antimicrobials of clinical significance, in addition to vancomycin. High rates of resistance or intermediate susceptibility were observed for teicoplanin (81.6% of isolates), chloramphenicol (81.6%), erythromycin (100%), quinupristin-dalfopristin (89.5%), and ciprofloxacin (81.6%). A moderate rate of resistance or intermediate susceptibility emerged for ampicillin (34.2%) and tetracycline (36.8%). Genes encoding antimicrobial resistance and virulence were studied by PCR. The vanA, vanB, vanC-1, and vanC-2/3 genes were identified in 27, 1, 5, and 2 isolates, respectively. Other resistance genes or transposon sequences found were tet(L), tet(M), Tn5397 (tetracycline), erm(A), erm(B) (erythromycin), vat(D), and vat(E) (quinupristin-dalfopristin). Most isolates were free of virulence determinants (agg, hyl, and efaAfm genes were detected in one, one, and five strains, respectively). Strains were classified as not biofilm producers (crystal violet assay; 4 isolates) or weak biofilm producers (34 isolates). Cluster analysis (EcoRI ribotyping) suggested a strong genetic relationship among isolates from different types of meat preparations, animal species, and retail outlets. Meat preparations might play a role in the spread through the food chain of VRE with several resistance and virulence genes. PMID:27296421

  1. Clonal spread of antimicrobial-resistant Escherichia coli isolates among pups in two kennels

    Directory of Open Access Journals (Sweden)

    Takahashi Toshio

    2011-02-01

    Full Text Available Abstract Although the dog breeding industry is common in many countries, the presence of antimicrobial resistant bacteria among pups in kennels has been infrequently investigated. This study was conducted to better understand the epidemiology of antimicrobial-resistant Escherichia coli isolates from kennel pups not treated with antimicrobials. We investigated susceptibilities to 11 antimicrobials, and prevalence of extended-spectrum β-lactamase (ESBL in 86 faecal E. coli isolates from 43 pups in two kennels. Genetic relatedness among all isolates was assessed using pulsed-field gel electrophoresis (PFGE. Susceptibility tests revealed that 76% of the isolates were resistant to one or more of tested antimicrobials, with resistance to dihydrostreptomycin most frequently encountered (66.3% followed by ampicillin (60.5%, trimethoprim-sulfamethoxazole (41.9%, oxytetracycline (26.7%, and chloramphenicol (26.7%. Multidrug resistance, defined as resistance against two or more classes of antimicrobials, was observed in 52 (60.5% isolates. Three pups in one kennel harboured SHV-12 ESBL-producing isolates. A comparison between the two kennels showed that frequencies of resistance against seven antimicrobials and the variation in resistant phenotypes differed significantly. Analysis by PFGE revealed that clone sharing rates among pups of the same litters were not significantly different in both kennels (64.0% vs. 88.9%, whereas the rates among pups from different litters were significantly different between the two kennels (72.0% vs. 33.3%, P E. coli clones, including multidrug-resistant and ESBL-producing clones. It is likely that resistant and susceptible bacteria can clonally spread among the same and/or different litters thus affecting the resistance prevalence.

  2. 76 FR 14402 - Draft Action Plan-A Public Health Action Plan To Combat Antimicrobial Resistance

    Science.gov (United States)

    2011-03-16

    ... without change, including any personal or proprietary information provided. To download an electronic... reached with individual input from State and local health agencies, universities, professional societies... To Combat Antimicrobial Resistance AGENCY: Centers for Disease Control and Prevention...

  3. Prevalence and Incidence of Antimicrobial-Resistant Organisms among Hospitalized Inflammatory Bowel Disease Patients

    Directory of Open Access Journals (Sweden)

    Alon Vaisman

    2013-01-01

    Full Text Available BACKGROUND: Patients with inflammatory bowel disease (IBD experience frequent hospitalizations and use of immunosuppressive medications, which may predispose them to colonization with antimicrobial-resistant organisms (ARO.

  4. The changing epidemiology of bacteraemias in Europe : trends from the European Antimicrobial Resistance Surveillance System

    NARCIS (Netherlands)

    de Kraker, M. E. A.; Jarlier, V.; Monen, J. C. M.; Heuer, O. E.; van de Sande, N.; Grundmann, H.

    2013-01-01

    We investigated bacteraemia trends for five major bacterial pathogens, Staphylococcus aureus, Escherichia coli, Streptococcus pneumoniae, Enterococcus faecalis and Enterococcus faecium, and determined how expanding antimicrobial resistance influenced the total burden of bacteraemias in Europe. Aetio

  5. Pharmacokinetic-Pharmacodynamic Model To Evaluate Intramuscular Tetracycline Treatment Protocols To Prevent Antimicrobial Resistance in Pigs

    DEFF Research Database (Denmark)

    Ahmad, Amais; Græsbøll, Kaare; Christiansen, Lasse Engbo;

    2015-01-01

    to which resistant strains outcompete susceptible strains under antimicrobial pressure may depend not only on the antimicrobial treatment strategies but also on the epidemiological parameters, such as the composition of the bacterial strains in a pig. This study evaluated how variation in the dosing...... protocol for intramuscular administration of tetracycline and the composition of bacterial strains in a pig affect the level of resistance in the intestine of a pig. Predictions were generated by a mathematical model of competitive growth of Escherichia coli strains in pigs under specified plasma......High instances of antimicrobial resistance are linked to both routine and excessive antimicrobial use, but excessive or inappropriate use represents an unnecessary risk. The competitive growth advantages of resistant bacteria may be amplified by the strain dynamics; in particular, the extent...

  6. Reduced Susceptibility to Rifampicin and Resistance to Multiple Antimicrobial Agents among Brucella abortus Isolates from Cattle in Brazil

    Science.gov (United States)

    Barbosa Pauletti, Rebeca; Reinato Stynen, Ana Paula; Pinto da Silva Mol, Juliana; Seles Dorneles, Elaine Maria; Alves, Telma Maria; de Sousa Moura Souto, Monalisa; Minharro, Silvia; Heinemann, Marcos Bryan; Lage, Andrey Pereira

    2015-01-01

    This study aimed to determine the susceptibility profile of Brazilian Brucella abortus isolates from cattle to eight antimicrobial agents that are recommended for the treatment of human brucellosis and to correlate the susceptibility patterns with origin, biotype and MLVA16-genotype of the strains. Screening of 147 B. abortus strains showed 100% sensitivity to doxycycline and ofloxacin, one (0.68%) strain resistant to ciprofloxacin, two strains (1.36%) resistant to streptomycin, two strains (1.36%) resistant to trimethoprim-sulfamethoxazole and five strains (3.40%) resistant to gentamicin. For rifampicin, three strains (2.04%) were resistant and 54 strains (36.73%) showed reduced sensitivity. Two strains were considered multidrug resistant. In conclusion, the majority of B. abortus strains isolated from cattle in Brazil were sensitive to the antimicrobials commonly used for the treatment of human brucellosis; however, a considerable proportion of strains showed reduced susceptibility to rifampicin and two strains were considered multidrug resistant. Moreover, there was no correlation among the drug susceptibility pattern, origin, biotype and MLVA16-genotypes of these strains. PMID:26181775

  7. Antimicrobial resistance of Listeria monocytogenes and Listeria innocua from meat products and meat-processing environment.

    Science.gov (United States)

    Gómez, Diego; Azón, Ester; Marco, Noelia; Carramiñana, Juan J; Rota, Carmina; Ariño, Agustín; Yangüela, Javier

    2014-09-01

    A total of 336 Listeria isolates from ready-to-eat (RTE) meat products and meat-processing environments, consisting of 206 Listeria monocytogenes, and 130 Listeria innocua isolates, were characterized by disc diffusion assay and minimum inhibitory concentration (MIC) values for antimicrobial susceptibility against twenty antimicrobials. Resistance to one or two antimicrobials was observed in 71 L. monocytogenes isolates (34.5%), and 56 L. innocua isolates (43.1%). Multidrug resistance was identified in 24 Listeria isolates, 18 belonging to L. innocua (13.9%) and 6 to L. monocytogenes (2.9%). Oxacillin resistance was the most common resistance phenotype and was identified in 100% Listeria isolates. A medium prevalence of resistance to clindamycin (39.3% isolates) and low incidence of resistance to tetracycline (3.9% isolates) were also detected. Listeria isolates from RTE meat products displayed higher overall antimicrobial resistance (31.3%) than those from the environment (13.4%). All the strains assayed were sensitive to the preferred antibiotics used to treat listeriosis. Results showed that although antimicrobial resistance in L. monocytogenes still occurs at a low prevalence, L. innocua can form a reservoir of resistance genes which may transfer between bacterial species, including transference to organisms capable of causing disease in humans.

  8. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health.

    Science.gov (United States)

    Cabello, Felipe C; Godfrey, Henry P; Tomova, Alexandra; Ivanova, Larisa; Dölz, Humberto; Millanao, Ana; Buschmann, Alejandro H

    2013-07-01

    The worldwide growth of aquaculture has been accompanied by a rapid increase in therapeutic and prophylactic usage of antimicrobials including those important in human therapeutics. Approximately 80% of antimicrobials used in aquaculture enter the environment with their activity intact where they select for bacteria whose resistance arises from mutations or more importantly, from mobile genetic elements containing multiple resistance determinants transmissible to other bacteria. Such selection alters biodiversity in aquatic environments and the normal flora of fish and shellfish. The commonality of the mobilome (the total of all mobile genetic elements in a genome) between aquatic and terrestrial bacteria together with the presence of residual antimicrobials, biofilms, and high concentrations of bacteriophages where the aquatic environment may also be contaminated with pathogens of human and animal origin can stimulate exchange of genetic information between aquatic and terrestrial bacteria. Several recently found genetic elements and resistance determinants for quinolones, tetracyclines, and β-lactamases are shared between aquatic bacteria, fish pathogens, and human pathogens, and appear to have originated in aquatic bacteria. Excessive use of antimicrobials in aquaculture can thus potentially negatively impact animal and human health as well as the aquatic environment and should be better assessed and regulated.

  9. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: The missing link between consumption and resistance in veterinary medicine

    DEFF Research Database (Denmark)

    Garcia-Migura, Lourdes; Hendriksen, Rene S.; Fraile, Lorenzo;

    2014-01-01

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents...... used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria...... in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different...

  10. Bovine salmonellosis in Northeast of Iran: Frequency, genetic fingerprinting and antimicrobial resistance patterns of Salmonella spp.

    Directory of Open Access Journals (Sweden)

    Hessam A. Halimi

    2014-01-01

    Conclusion: The emergence of multiple antibiotic-resistant strains of Salmonella Typhimurium should be of great concern to the public. No correlation between ERIC fingerprinting and resistance patterns of Salmonella isolates was found, which indicates resistance to antimicrobial agents was not related to specific genetic background.

  11. Duration of colonization with antimicrobial-resistant bacteria after ICU discharge

    NARCIS (Netherlands)

    Haverkate, Manon R; Derde, Lennie P G; Brun-Buisson, Christian; Bonten, Marc J M; Bootsma, Martin C J

    2014-01-01

    PURPOSE: Readmission of patients colonized with antimicrobial-resistant bacteria (AMRB) is important in the nosocomial dynamics of AMRB. We assessed the duration of colonization after discharge from the intensive care unit (ICU) with highly resistant Enterobacteriaceae (HRE), methicillin-resistant S

  12. Associations of Streptococcus suis serotype 2 ribotype profiles with clinical disease and antimicrobial resistance

    DEFF Research Database (Denmark)

    Rasmussen, S. R.; Aarestrup, Frank Møller; Jensen, N. E.;

    1999-01-01

    A total of 122 Streptococcus suis serotype 2 strains were characterized thoroughly by comparing clinical and pathological observations, ribotype profiles, and antimicrobial resistance. Twenty-one different ribotype profiles were found and compared by cluster analysis, resulting in the identificat......A total of 122 Streptococcus suis serotype 2 strains were characterized thoroughly by comparing clinical and pathological observations, ribotype profiles, and antimicrobial resistance. Twenty-one different ribotype profiles were found and compared by cluster analysis, resulting in the...

  13. PREVALENCE AND ANTIMICROBIAL RESISTANCE ASSESSMENT OF SUBCLINICAL MASTITIS IN MILK SAMPLES FROM SELECTED DAIRY FARMS

    OpenAIRE

    Murugaiyah Marimuthu; Faez Firdaus Jesse Abdullah; Konto Mohammed; Sangeetha D/O Sarvananthan Poshpum; Lawan Adamu; Abdinasir Yusuf Osman; Yusuf Abba; Abdulnasir Tijjani

    2014-01-01

    This study was conducted in order to determine the prevalence and bacteriological assessment of subclinical mastitis and antimicrobial resistance of bacterial isolates from dairy cows in different farms around Selangor, Malaysia. A total of 120 milk samples from 3 different farms were randomly collected and tested for subclinical mastitis using California Mastitis Test (CMT), as well as for bacterial culture for isolation, identification and antimicrobial resistance. The most prevalent bacter...

  14. Distribution of antimicrobial-resistant lactic acid bacteria in natural cheese in Japan.

    Science.gov (United States)

    Ishihara, Kanako; Nakajima, Kumiko; Kishimoto, Satoko; Atarashi, Fumiaki; Muramatsu, Yasukazu; Hotta, Akitoyo; Ishii, Satomi; Takeda, Yasuyuki; Kikuchi, Masanori; Tamura, Yutaka

    2013-10-01

    To determine and compare the extent of contamination caused by antimicrobial-resistant lactic acid bacteria (LAB) in imported and domestic natural cheeses on the Japanese market, LAB were isolated using deMan, Rogosa and Sharpe (MRS) agar and MRS agar supplemented with six antimicrobials. From 38 imported and 24 Japanese cheeses, 409 LAB isolates were obtained and their antimicrobial resistance was tested. The percentage of LAB resistant to dihydrostreptomycin, erythromycin, and/or oxytetracycline isolated from imported cheeses (42.1%) was significantly higher than that of LAB resistant to dihydrostreptomycin or oxytetracycline from cheeses produced in Japan (16.7%; P=0.04). Antimicrobial resistance genes were detected in Enterococcus faecalis (tetL, tetM, and ermB; tetL and ermB; tetM) E. faecium (tetM), Lactococcus lactis (tetS), Lactobacillus (Lb.), casei/paracasei (tetM or tetW), and Lb. rhamnosus (ermB) isolated from seven imported cheeses. Moreover, these E. faecalis isolates were able to transfer antimicrobial resistance gene(s). Although antimicrobial resistance genes were not detected in any LAB isolates from Japanese cheeses, Lb. casei/paracasei and Lb. coryniformis isolates from a Japanese farm-made cheese were resistant to oxytetracycline (minimal inhibitory concentration [MIC], 32 µg/mL). Leuconostoc isolates from three Japanese farm-made cheeses were also resistant to dihydrostreptomycin (MIC, 32 to >512 µg/mL). In conclusion, the present study demonstrated contamination with antimicrobial-resistant LAB in imported and Japanese farm-made cheeses on the Japanese market, but not in Japanese commercial cheeses.

  15. Serotypes and Antimicrobial Resistance of Human Nontyphoidal Isolates of Salmonella enterica from Crete, Greece

    Directory of Open Access Journals (Sweden)

    Sofia Maraki

    2014-01-01

    Full Text Available We report on the serotype distribution and the antimicrobial resistance patterns to 20 different antimicrobials of 150 Salmonella enterica strains isolated from stools of diarrhoeal patients on the island of Crete over the period January 2011-December 2012. Among the S. enterica serotypes recovered, Enteritidis was the most prevalent (37.3%, followed by Typhimurium (28.7% and Newport (8.7%. No resistance was detected to extended-spectrum cephalosporins and carbapenems. Rates of resistance to ampicillin, amoxicillin/clavulanic acid, chloramphenicol, tetracycline, and cotrimoxazole were 9.3%, 4%, 2%, 15.3%, and 8.7%, respectively. Resistance to ≥4 antibiotics was primarily observed for serotypes Typhimurium and Hadar. Enteritidis remains the predominant serotype in Crete. Although low resistance to most antimicrobials was detected, continued surveillance of susceptibility is needed due to the risk of resistance.

  16. Biotic stress resistance in agriculture through antimicrobial peptides.

    Science.gov (United States)

    Sarika; Iquebal, M A; Rai, Anil

    2012-08-01

    Antimicrobial peptides (AMPs) are the hosts' defense molecules against microbial pathogens and gaining extensive research attention worldwide. These have been reported to play vital role of host innate immunity in response to microbial challenges. AMPs can be used as a natural antibiotic as an alternative of their chemical counterpart for protection of plants/animals against diseases. There are a number of sources of AMPs including prokaryotic and eukaryotic organisms and are present, both in vertebrates and invertebrates. AMPs can be classified as cationic or anionic, based on net charges. Large number of databases and tools are available in the public domain which can be used for development of new genetically modified disease resistant varieties/breeds for agricultural production. The results of the biotechnological research as well as genetic engineering related to AMPs have shown high potential for reduction of economic losses of agricultural produce due to pathogens. In this article, an attempt has been made to introduce the role of AMPs in relation to plants and animals. Their functional and structural characteristics have been described in terms of its role in agriculture. Different sources of AMPs and importance of these sources has been reviewed in terms of its availability. This article also reviews the bioinformatics resources including different database tools and algorithms available in public domain. References of promising biotechnology research in relation to AMPs, prospects of AMPs for further development of genetically modified varieties/breeds are highlighted. AMPs are valuable resource for students, researchers, educators and medical and industrial personnel.

  17. Antifungal drugs and resistance: Current concepts

    OpenAIRE

    Pramod Kumar Nigam

    2015-01-01

    Recently, clinical failure and relapses have been observed in patients treated with antifungals. Drug resistance has become an important problem leading to significant negative social, psychological, and occupational health effects and quality of life. Early recognition and treatment is essential to reduce morbidity and possibility of transmission. The increased use, inappropriate prescribing and over the counter sale of antifungal agents has also added in the development of resistance to the...

  18. Challenges of drug-resistant malaria

    OpenAIRE

    Sinha Shweta; Medhi Bikash; Sehgal Rakesh

    2014-01-01

    Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia–Thailand border threatened all the previous success. This review addresses the glob...

  19. Superbugs: should antimicrobial resistance be included as a cost in economic evaluation?

    Science.gov (United States)

    Coast, J; Smith, R D; Millar, M R

    1996-01-01

    This paper argues that increasing resistance to antimicrobials is an important social externality that has not been captured at the level of economic appraisal. The paper explicitly considers reasons why the externality of antimicrobial resistance has not generally been included as a cost in economic evaluations comparing management strategies for infectious diseases. Four reasons are considered: first, that the absolute cost of antimicrobial resistance is too small to be worth including; second, that there is an implicit discounting of the costs of antimicrobial resistance on the basis of time preference which makes the cost too small to be worth including; third, that there is an implicit discounting of the costs of antimicrobial resistance on the basis of uncertainty which makes the cost too small to be worth including; and fourth, that the costs are too difficult to measure. Although there does not appear to be methodological justification for excluding the costs of antimicrobial resistance, it seems likely that, because of the practical difficulties associated with measuring these costs, they will continue to be ignored. The paper concludes with a discussion of the applicability of standard policy responses used to deal with externalities in other areas of welfare economics.

  20. Pharmacodynamics of fosfomycin: insights into clinical use for antimicrobial resistance.

    Science.gov (United States)

    Docobo-Pérez, F; Drusano, G L; Johnson, A; Goodwin, J; Whalley, S; Ramos-Martín, V; Ballestero-Tellez, M; Rodriguez-Martinez, J M; Conejo, M C; van Guilder, M; Rodríguez-Baño, J; Pascual, A; Hope, W W

    2015-09-01

    The aim of this study was to improve the understanding of the pharmacokinetic-pharmacodynamic relationships of fosfomycin against extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strains that have different fosfomycin MICs. Our methods included the use of a hollow fiber infection model with three clinical ESBL-producing E. coli strains. Human fosfomycin pharmacokinetic profiles were simulated over 4 days. Preliminary studies conducted to determine the dose ranges, including the dose ranges that suppressed the development of drug-resistant mutants, were conducted with regimens from 12 g/day to 36 g/day. The combination of fosfomycin at 4 g every 8 h (q8h) and meropenem at 1 g/q8h was selected for further assessment. The total bacterial population and the resistant subpopulations were determined. No efficacy was observed against the Ec42444 strain (fosfomycin MIC, 64 mg/liter) at doses of 12, 24, or 36 g/day. All dosages induced at least initial bacterial killing against Ec46 (fosfomycin MIC, 1 mg/liter). High-level drug-resistant mutants appeared in this strain in response to 12, 15, and 18 g/day. In the study arms that included 24 g/day, once or in a divided dose, a complete extinction of the bacterial inoculum was observed. The combination of meropenem with fosfomycin was synergistic for bacterial killing and also suppressed all fosfomycin-resistant clones of Ec2974 (fosfomycin MIC, 1 mg/liter). We conclude that fosfomycin susceptibility breakpoints (≤64 mg/liter according to CLSI [for E. coli urinary tract infections only]) should be revised for the treatment of serious systemic infections. Fosfomycin can be used to treat infections caused by organisms that demonstrate lower MICs and lower bacterial densities, although relatively high daily dosages (i.e., 24 g/day) are required to prevent the emergence of bacterial resistance. The ratio of the area under the concentration-time curve for the free, unbound fraction of fosfomycin versus the MIC

  1. Molecular Characterization and Antimicrobial Resistance Profile of Methicillin-Resistant Staphylococcus aureus in Retail Chicken.

    Science.gov (United States)

    Sallam, Khalid Ibrahim; Abd-Elghany, Samir Mohammed; Elhadidy, Mohamed; Tamura, Tomohiro

    2015-10-01

    The emergence of livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) in food-producing animals is of increasing interest, raising questions about the presence of MRSA in food of animal origin and potential sources of transmission to humans via the food chain. In this study, the prevalence, molecular characterization, virulence factors, and antimicrobial susceptibility patterns of MRSA isolates from 200 retail raw chicken samples in Egypt were determined. MRSA was detected by positive amplification of the mecA gene in 38% (76 of 200) of chicken samples analyzed. This represents a potential public health threat in Egypt, as this contamination rate seems to be the highest among other studies reported worldwide. Furthermore, genes encoding α-hemolysin (hla) and staphylococcal enterotoxins (sea, seb, and sec) were detected in all of the 288 MRSA isolates. Nonetheless, none of the strains tested carried tst, the gene encoding toxic shock syndrome toxin 1. Antimicrobial resistance of MRSA isolates was most frequently detected against penicillin (93.4%), ampicillin (88.9%), and cloxacillin (83.3%). These results suggest that retail chicken might be a significant potential source for transmission of multidrug-resistant and toxigenic S. aureus in Egypt. This underlines the need for stricter hygienic measures in chicken production in Egypt to minimize the risk of transmission of these strains to consumers. To the best of our knowledge, this is the first study that reports the isolation and molecular characterization of MRSA in retail chicken samples in Egypt.

  2. Distinguishing Antimicrobial Models with Different Resistance Mechanisms via Population Pharmacodynamic Modeling.

    Science.gov (United States)

    Jacobs, Matthieu; Grégoire, Nicolas; Couet, William; Bulitta, Jurgen B

    2016-03-01

    Semi-mechanistic pharmacokinetic-pharmacodynamic (PK-PD) modeling is increasingly used for antimicrobial drug development and optimization of dosage regimens, but systematic simulation-estimation studies to distinguish between competing PD models are lacking. This study compared the ability of static and dynamic in vitro infection models to distinguish between models with different resistance mechanisms and support accurate and precise parameter estimation. Monte Carlo simulations (MCS) were performed for models with one susceptible bacterial population without (M1) or with a resting stage (M2), a one population model with adaptive resistance (M5), models with pre-existing susceptible and resistant populations without (M3) or with (M4) inter-conversion, and a model with two pre-existing populations with adaptive resistance (M6). For each model, 200 datasets of the total bacterial population were simulated over 24h using static antibiotic concentrations (256-fold concentration range) or over 48h under dynamic conditions (dosing every 12h; elimination half-life: 1h). Twelve-hundred random datasets (each containing 20 curves for static or four curves for dynamic conditions) were generated by bootstrapping. Each dataset was estimated by all six models via population PD modeling to compare bias and precision. For M1 and M3, most parameter estimates were unbiased (sound identification of the true resistance mechanism. Therefore, it seems advisable to quantify resistant bacteria and characterize their MICs and resistance mechanisms to support extended simulations and translate from in vitro experiments to animal infection models and ultimately patients. PMID:26967893

  3. Antimicrobial resistance and molecular analysis of methicillin-resistant Staphylococcus aureus collected in a Spanish hospital.

    Science.gov (United States)

    Hernández-Porto, Miriam; Lecuona, María; Aguirre-Jaime, Armando; Castro, Beatriz; Delgado, Teresa; Cuervo, Milagros; Pedroso, Yanet; Arias, Ángeles

    2015-04-01

    Clonal distribution of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals may differ according to the geographic location and time period. Knowledge of MRSA clonal epidemiology in hospital settings involves much more than the study of healthcare-associated MRSA (HA-MRSA) clones. In recent years, investigators have documented the introduction of both community-associated MRSA (CA-MRSA) and livestock-associated MRSA (LA-MRSA) clones, the emergence of clones carrying Staphylococcal cassette chromosome mec (SCCmec) XI, and the genetic diversity among sporadic MRSA isolates. The allocation of certain antibiotypes to dominant MRSA clones in an institution allows their use as phenotypic markers for a preliminary search for new clones, early detection of clonal shift, and as a guide for better empirical therapy, infection control, and treatment within a particular institution. For these reasons, we identified 938 strains detected in a System of Universal Active Surveillance of MRSA in clinical samples during the period 2009-2010, obtaining the clonal distribution of MRSA at the Hospital Universitario de Canarias (Tenerife, Spain) and the relationship between antimicrobial susceptibility and three major clones present. The antibiotypes that best defined the ST5-MRSA-IV (Pediatric) clone showed resistance to tobramycin and susceptibility to clindamycin, erythromycin, gentamicin, rifampin, trimethoprim-sulfamethoxazole, vancomycin, quinupristin/dalfopristin, and linezolid, whereas the ST22-MRSA-IV clone (EMRSA-15) showed susceptibility to these antibiotics, and finally, the ST36-MRSA-II clone (EMRSA-16) was resistant to clindamycin, erythromycin, and tobramycin and susceptible to the remaining antimicrobials. Similar observations would allow the early detection of changes in clonal epidemiology by analysis of antimicrobial susceptibility of the isolates within a single institution. PMID:25365597

  4. Molecular epidemiology and antimicrobial resistance of methicillin-resistant Staphylococcus aureus bloodstream isolates in Taiwan, 2010.

    Directory of Open Access Journals (Sweden)

    Chih-Jung Chen

    Full Text Available The information of molecular characteristics and antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus (MRSA is essential for control and treatment of diseases caused by this medically important pathogen. A total of 577 clinical MRSA bloodstream isolates from six major hospitals in Taiwan were determined for molecular types, carriage of Panton-Valentine leukocidin (PVL and sasX genes and susceptibilities to 9 non-beta-lactam antimicrobial agents. A total of 17 genotypes were identified in 577 strains by pulsotyping. Five major pulsotypes, which included type A (26.2%, belonging to sequence type (ST 239, carrying type III staphylococcal chromosomal cassette mec (SCCmec, type F (18.9%, ST5-SCCmecII, type C (18.5%, ST59-SCCmecIV, type B (12.0%, ST239-SCCmecIII and type D (10.9%, ST59-SCCmecVT/IV, prevailed in each of the six sampled hospitals. PVL and sasX genes were respectively carried by ST59-type D strains and ST239 strains with high frequencies (93.7% and 99.1%, respectively but rarely detected in strains of other genotypes. Isolates of different genotypes and from different hospitals exhibited distinct antibiograms. Multi-resistance to ≥3 non-beta-lactams was more common in ST239 isolates (100% than in ST5 isolates (97.2%, P = 0.0347 and ST59 isolates (8.2%, P<0.0001. Multivariate analysis further indicated that the genotype, but not the hospital, was an independent factor associated with muti-resistance of the MRSA strains. In conclusion, five common MRSA clones with distinct antibiograms prevailed in the major hospitals in Taiwan in 2010. The antimicrobial susceptibility pattern of invasive MRSA was mainly determined by the clonal distribution.

  5. Antimicrobial resistance and resistance genes of pathogenic Salmonella recently isolated from chicken%鸡源致病性沙门氏菌新近分离株的耐药性与耐药基因

    Institute of Scientific and Technical Information of China (English)

    廖成水; 程相朝; 张春杰; 李银聚; 吴庭才; 李小康; 王晓利; 胡阿勇

    2011-01-01

    The aim of this study was to study antimicrobial susceptibility and resistance gene of the clinical isolates of Salmonella recently isolated from chicken and to provide materials for further studies on the molecular mechanisms of bacterial resistance and development of the new antimicrobial agents.The isolates were evaluated for antimicrobial sensitivity by K-B disc diffusion method against 22 antimicrobial drugs.Then,13 resistance genes of the isolates were detected by PCR.All isolates were resistance to erythromycin and penicillin,among them resistance to azithromycin and ampicillin was found from 60% to 70%,but susceptible to polymyxin B,amikacin,gentamicin and nalidixic acid.96.94% of the isolates were resis-tant to 3 or more antimicrobial agents,56.12% of them were resistant to 7 or more antimicrobial agents and 2 isolates were resistant to 18 of the 22 antimicrobial agents.A total of 11 different antimicrobial resistance genes were amplified.The above results showed that Salmonella was easy to form the resistance to drug,and resistance genes were widely existed in these resistant strains,but there was no correlation between resistant phenotype and resistance genes.%为了了解河南省鸡源沙门氏菌新近分离株的药物敏感性和耐药基因的存在情况,为进一步研究细菌耐药的分子机制和新型抗菌药物的研制提供资料,利用K-B法检测了98株鸡源沙门氏菌对22种药物的敏感性,采用PCR方法检测了13种常见耐药基因在分离株中的分布情况。结果显示,所有菌株对红霉素、青霉素、阿齐霉素和氨苄西林的耐药率均在60%~100%之间。三重以上耐药的菌株高达96.94%,七重以上耐药的菌株为56.12%,耐药最多的菌株可耐受18种抗生素。从13种常见耐药基因中扩增到3种四环素类、2种氨基糖苷类、2种β-内酰

  6. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota.

    OpenAIRE

    LeonCantas; LinaM.Cavaco; CéliaManaia; FionaWalsh; MagdalenaPopowska; HemdaGarelick; HelmutBürgmann

    2013-01-01

    The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting from use, misuse and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance genes have been suggested to originate from environmental bacteria, as clinicall...

  7. Antimicrobial treatment of nosocomial meticillin-resistant Staphylococcus aureus (MRSA) pneumonia: current and future options.

    Science.gov (United States)

    Welte, Tobias; Pletz, Mathias W

    2010-11-01

    Meticillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of nosocomial pneumonia. Inadequate or inappropriate antimicrobial therapy, often caused by antimicrobial resistance, is associated with increased mortality for these infections. Agents currently recommended for the treatment of MRSA pneumonia include vancomycin and linezolid in the USA, and vancomycin, linezolid, teicoplanin and quinupristin/dalfopristin in Europe. Antimicrobials such as tigecycline and daptomycin, although approved for the treatment of some MRSA infections, have not demonstrated efficacy equivalent to the approved agents for MRSA pneumonia. Further agents lack data from randomised controlled trials (e.g. fosfomycin, fusidic acid or rifampicin in combination with vancomycin). Antimicrobial agents that have recently been approved or are being investigated as treatments for MRSA infections include the lipoglycopeptides telavancin (approved for the treatment of complicated skin and skin-structure infections in the USA and Canada), dalbavancin and oritavancin, the cephalosporins ceftobiprole and ceftaroline, and the dihydrofolate reductase inhibitor iclaprim. To be an effective treatment for MRSA pneumonia, antimicrobial agents must have activity against antimicrobial-resistant S. aureus, penetrate well into the lung, have a low potential for resistance development and have a good safety profile. Here, the available data for current and potential future MRSA pneumonia antimicrobials are reviewed and discussed. PMID:20724119

  8. Incidence of antimicrobial-resistance genes and integrons in antibiotic-resistant bacteria isolated from eels and aquaculture ponds.

    Science.gov (United States)

    Lin, Mao; Wu, Xiaomei; Yan, Qingpi; Ma, Ying; Huang, Lixing; Qin, Yingxue; Xu, Xiaojin

    2016-07-01

    The overuse of antimicrobials in aquaculture has promoted the selection of antimicrobial-resistant bacteria. Here we investigated the abundance of antimicrobial-resistance genes and integrons in 108 strains of antibiotic-resistant bacteria isolated from eels and aquaculture ponds in China. Conventional PCR was implemented to examine common antibiotic-resistance genes, integrons, and their gene cassette arrays. The results showed that the antibiotic-resistance genes blaTEM, tetC, sulI, aadA, floR, and qnrB were detected at high percentages, as were a number of other resistance genes. Class I integrons were present in 79.63% of the strains, and 10 out of 108 isolates carried class II integrons. Class III integrons were not detected. Three strains carried both class I and class II integrons, and 73.26% of the class I integron-positive isolates contained the qacEΔ1/sul1 gene. Fourteen types of integron cassette arrays were found among class I integron-positive isolates. A new array, dfrB4-catB3-blaOXA-10-aadA1, was discovered in this study. The gene cassette array dfrA12-orfF-aadA2 was the most widely distributed. In summary, 23 different gene cassettes encoding resistance to 8 classes of antibiotics were identified in the class I integrons, and the main cassettes contained genes encoding resistance to aminoglycosides (aad) and trimethoprim (dfr). All class II integron-positive strains had only a single gene cassette array, viz. dfrA1-catB2-sat2-aadA1. High levels of antimicrobial-resistance genes and integrons in eels and auqauculture ponds suggest that the overuse of antimicrobials should be strictly controlled and that the levels of bacterial antimicrobial-resistance genes in aquaculture should be monitored. PMID:27409235

  9. Antimicrobial resistance among invasive Haemophilus influenzae strains: results of a Brazilian study carried out from 1996 through 2000

    Directory of Open Access Journals (Sweden)

    Casagrande S.T.

    2002-01-01

    Full Text Available A total of 1712 strains of Haemophilus influenzae isolated from patients with invasive diseases were obtained from ten Brazilian states from 1996 to 2000. ß-Lactamase production was assessed and the minimum inhibitory concentrations (MIC of ampicillin, chloramphenicol, ceftriaxone and rifampin were determined using a method for broth microdilution of Haemophilus test medium. The prevalence of strains producing ß-lactamase ranged from 6.6 to 57.7%, with an overall prevalence of 18.4%. High frequency of ß-lactamase-mediated ampicillin resistance was observed in Distrito Federal (25%, São Paulo (21.7% and Paraná (18.5%. Of the 1712 strains analyzed, none was ß-lactamase negative, ampicillin resistant. A total of 16.8% of the strains were resistant to chloramphenicol, and 13.8% of these also presented resistance to ampicillin, and only 3.0% were resistant to chloramphenicol alone. All strains were susceptible to ceftriaxone and rifampin and the MIC90 were 0.015 µg/ml and 0.25 µg/ml, respectively. Ceftriaxone is the drug of choice for empirical treatment of bacterial meningitis in pediatric patients who have not been screened for drug susceptibility. The emergence of drug resistance is a serious challenge for the management of invasive H. influenzae disease, which emphasizes the fundamental role of laboratory-based surveillance for antimicrobial resistance.

  10. Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome.

    Science.gov (United States)

    Hartmann, Erica M; Hickey, Roxana; Hsu, Tiffany; Betancourt Román, Clarisse M; Chen, Jing; Schwager, Randall; Kline, Jeff; Brown, G Z; Halden, Rolf U; Huttenhower, Curtis; Green, Jessica L

    2016-09-20

    Antibiotic resistance is increasingly widespread, largely due to human influence. Here, we explore the relationship between antibiotic resistance genes and the antimicrobial chemicals triclosan, triclocarban, and methyl-, ethyl-, propyl-, and butylparaben in the dust microbiome. Dust samples from a mixed-use athletic and educational facility were subjected to microbial and chemical analyses using a combination of 16S rRNA amplicon sequencing, shotgun metagenome sequencing, and liquid chromatography tandem mass spectrometry. The dust resistome was characterized by identifying antibiotic resistance genes annotated in the Comprehensive Antibiotic Resistance Database (CARD) from the metagenomes of each sample using the Short, Better Representative Extract Data set (ShortBRED). The three most highly abundant antibiotic resistance genes were tet(W), blaSRT-1, and erm(B). The complete dust resistome was then compared against the measured concentrations of antimicrobial chemicals, which for triclosan ranged from 0.5 to 1970 ng/g dust. We observed six significant positive associations between the concentration of an antimicrobial chemical and the relative abundance of an antibiotic resistance gene, including one between the ubiquitous antimicrobial triclosan and erm(X), a 23S rRNA methyltransferase implicated in resistance to several antibiotics. This study is the first to look for an association between antibiotic resistance genes and antimicrobial chemicals in dust. PMID:27599587

  11. HT-SPOTi: A Rapid Drug Susceptibility Test (DST) to Evaluate Antibiotic Resistance Profiles and Novel Chemicals for Anti-Infective Drug Discovery.

    Science.gov (United States)

    Danquah, Cynthia A; Maitra, Arundhati; Gibbons, Simon; Faull, Jane; Bhakta, Sanjib

    2016-01-01

    Antibiotic resistance is one of the major threats to global health and well-being. The past decade has seen an alarming rise in the evolution and spread of drug-resistant strains of pathogenic microbes. The emergence of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis and antimicrobial resistance among the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter species) as well as fungal pathogens (such as certain species of Candida, Aspergillus, Cryptococcus, and Trichophyton) poses a significant 21st century scientific challenge. With an extremely limited arsenal of efficacious antibiotics, techniques that can (a) identify novel antimicrobials and (b) detect antimicrobial resistance are becoming increasingly important. In this article, we illustrate the HT-SPOTi, an assay that is principally based on the growth of an organism on agar medium containing a range of different concentrations of drugs or inhibitors. The simple methodology makes this assay ideal for evaluating novel antimicrobial compounds as well as profiling an organism's antibiotic resistance profile. PMID:26855282

  12. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    Directory of Open Access Journals (Sweden)

    Morales Eva

    2012-05-01

    Full Text Available Abstract Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain. All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros. In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively. Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  13. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    Science.gov (United States)

    2012-01-01

    Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact. PMID:22621745

  14. Prevalence and antimicrobial susceptibility pattern of methicillin resistant Staphylococcus aureus isolates from Trinidad & Tobago

    Directory of Open Access Journals (Sweden)

    Monteil Michele

    2006-07-01

    Full Text Available Abstract Background Methicillin-resistant Staphylococcus aureus (MRSA has become increasingly prevalent worldwide since it was first reported in a British hospital. The prevalence however, varies markedly in hospitals in the same country, and from one country to another. We therefore sought to document comprehensively the prevalence and antimicrobial susceptibility pattern of MRSA isolates in Trinidad and Tobago. Methods All Staphylococcus aureus isolates encountered in routine clinical specimens received at major hospitals in the country between 2000 and 2001 were identified morphologically and biochemically by standard laboratory procedures including latex agglutination test (Staphaurex Plus; Murex Diagnostics Ltd; Dartford, England; tube coagulase test with rabbit plasma (Becton, Dickinson & Co; Sparks, MD, USA, and DNase test using DNase agar (Oxoid Ltd; Basingstoke, Hampshire, England. MRSA screening was performed using Mueller-Hinton agar containing 6 μg oxacillin and 4% NaCl, latex agglutination test (Denka Seiken Co. Ltd, Tokyo, Japan and E-test system (AB Biodisk, Solna, Sweden. Susceptibility to antimicrobial agents was determined by the modified Kirby Bauer disc diffusion method while methicillin MICs were determined with E-test system. Results Of 1,912 S. aureus isolates received, 12.8% were methicillin (oxacillin resistant. Majority of the isolates were recovered from wound swabs (86.9% and the least in urine (0.4% specimens. Highest number of isolates was encountered in the surgical (62.3% and the least from obstetrics and gynaecology (1.6% facilities respectively. Large proportions of methicillin sensitive isolates are >85% sensitive to commonly used and available antimicrobials in the country. All MRSA isolates were resistant to ceftriaxone, erythromycin, gentamicin and penicillin but were 100% sensitive to vancomycin, rifampin and chloramphenicol. Conclusion There is a progressive increase in MRSA prevalence in the country but

  15. Diversity of Plasmids and Antimicrobial Resistance Genes in Multidrug-Resistant Escherichia coli Isolated from Healthy Companion Animals.

    Science.gov (United States)

    Jackson, C R; Davis, J A; Frye, J G; Barrett, J B; Hiott, L M

    2015-09-01

    The presence and transfer of antimicrobial resistance genes from commensal bacteria in companion animals to more pathogenic bacteria may contribute to dissemination of antimicrobial resistance. The purpose of this study was to determine antimicrobial resistance gene content and the presence of genetic elements in antimicrobial resistant Escherichia coli from healthy companion animals. In our previous study, from May to August, 2007, healthy companion animals (155 dogs and 121 cats) from three veterinary clinics in the Athens, GA, USA area were sampled and multidrug-resistant E. coli (n = 36; MDR, resistance to ≥ 2 antimicrobial classes) were obtained. Of the 25 different plasmid replicon types tested by PCR, at least one plasmid replicon type was detected in 94% (34/36) of the MDR E. coli; four isolates contained as many as five different plasmid replicons. Nine replicon types (FIA, FIB, FII, I2, A/C, U, P, I1 and HI2) were identified with FIB, FII, I2 as the most common pattern. The presence of class I integrons (intI) was detected in 61% (22/36) of the isolates with eight isolates containing aminoglycoside- and/or trimethoprim-resistance genes in the variable cassette region of intI. Microarray analysis of a subset of the MDR E. coli (n = 9) identified the presence of genes conferring resistance to aminoglycosides (aac, aad, aph and strA/B), β-lactams (ampC, cmy, tem and vim), chloramphenicol (cat), sulfonamides (sulI and sulII), tetracycline [tet(A), tet(B), tet(C), tet(D) and regulator, tetR] and trimethoprim (dfrA). Antimicrobial resistance to eight antimicrobials (ampicillin, cefoxitin, ceftiofur, amoxicillin/clavulanic acid, streptomycin, gentamicin, sulfisoxazole and trimethoprim-sulfamethoxazole) and five plasmid replicons (FIA, FIB, FII, I1 and I2) were transferred via conjugation. The presence of antimicrobial resistance genes, intI and transferable plasmid replicons indicate that E. coli from companion animals may play an important role in the

  16. Antibacterial activities of some plant extracts alone and in combination with different antimicrobials against multidrug-resistantPseudomonas aeruginosa strains

    Institute of Scientific and Technical Information of China (English)

    Ghaleb Adwan; Bassam Abu-Shanab; Kamel Adwan

    2010-01-01

    Objective:To evaluate the possible in vitro interaction between ethanolic extracts ofRhus coriaria(R. coriaria) (seed),Sacropoterium spinosum(S. spinosum) (seed),Rosa damascena (R. damascene) (flower) and certain known antimicrobial drugs including oxytetracycline HCl, penicillin G, cephalexin, sulfadimethoxine as sodium, and enrofloxacin. This synergy study was carried out against 3 clinical strains of multidrug-resistantPseudomonas aeruginosa (P. aeruginosa).Methods: Evaluation of synergy interaction between plant extracts and antimicrobial agents was carried out using microdilution method.Results: The results of this study showed that there is a decrease in the MIC in case of combination of ethanolic plant extracts and test antimicrobial agents. The most interesting result was that the combination betweenR. coriaria and these antibiotics, showed a high decrease in minimum inhibitory concentration (MIC), and a strong bactericidal activity against these strains.Conclusions: These results may indicate that combinations betweenR. coriaria extract and these antibiotics could be useful in fighting emerging drug-resistanceP. aeruginosa, which may due to thatR. coriaria extract contain natural inhibitors working by different mechanisms or inhibiting efflux pumps. Now we have experiments underway leading to the identification of the active molecules present inR. coriaria. Further,in vivo experiments are needed to confirm pseudomonal protection.

  17. A real-time PCR antibiogram for drug-resistant sepsis.

    Directory of Open Access Journals (Sweden)

    John R Waldeisen

    Full Text Available Current molecular diagnostic techniques for susceptibility testing of septicemia rely on genotyping for the presence of known resistance cassettes. This technique is intrinsically vulnerable due to the inability to detect newly emergent resistance genes. Traditional phenotypic susceptibility testing has always been a superior method to assay for resistance; however, relying on the multi-day growth period to determine which antimicrobial to administer jeopardizes patient survival. These factors have resulted in the widespread and deleterious use of broad-spectrum antimicrobials. The real-time PCR antibiogram, described herein, combines universal phenotypic susceptibility testing with the rapid diagnostic capabilities of PCR. We have developed a procedure that determines susceptibility by monitoring pathogenic load with the highly conserved 16S rRNA gene in blood samples exposed to different antimicrobial drugs. The optimized protocol removes heme and human background DNA from blood, which allows standard real-time PCR detection systems to be employed with high sensitivity (<100 CFU/mL. Three strains of E. coli, two of which were antimicrobial resistant, were spiked into whole blood and exposed to three different antibiotics. After real-time PCR-based determination of pathogenic load, a ΔC(t<3.0 between untreated and treated samples was found to indicate antimicrobial resistance (P<0.01. Minimum inhibitory concentration was determined for susceptible bacteria and pan-bacterial detection was demonstrated with 3 gram-negative and 2 gram-positive bacteria. Species identification was performed via analysis of the hypervariable amplicons. In summary, we have developed a universal diagnostic phenotyping technique that assays for the susceptibility of drug-resistant septicemia with the speed of PCR. The real-time PCR antibiogram achieves detection, susceptibility testing, minimum inhibitory concentration determination, and identification in less than 24

  18. In-vitro antimicrobial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus

    Institute of Scientific and Technical Information of China (English)

    Sathish Kumar S.R; Kokati Venkata Bhaskara Rao

    2012-01-01

    Objective: To investigate the antibacterial activity of marine actinobacteria against Multidrug resistance Staphylococcus aureus (MDRSA). Methods: Fifty one actinobacterial strains were isolated from salt pans soil, costal area in Kothapattanam, Ongole, Andhra Pradesh. Primary screening was done using cross-streak method against MDRSA. The bioactive compounds are extracted from efficient actinobacteria using solvent extraction. The antimicrobial activity of crude and solvent extracts was performed using Kirby-Bauer method. MIC for ethyl acetate extract was determined by modified agar well diffusion method. The potent actinobacteria are identified using Nonomura key, Shirling and Gottlieb 1966 with Bergey’s manual of Determinative Bacteriology. Results: Among the fifty one isolates screened for antibacterial activity, SRB25 were found efficient against MDRSA. The ethyl acetate extracts showed high inhibition against test organism. MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1000μg/ml. The isolated actinobacteria are identified as Streptomyces sp with the help of Nonomura key. Conclusion: The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms.

  19. In-vitro antimicrobial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus

    Institute of Scientific and Technical Information of China (English)

    Sathish; Kumar; SR; Kokati; Venkata; Bhaskara; Rao

    2012-01-01

    Objective:To investigate the antibacterial aclivily of marine actinobacteria against multidrug resistance Staphylococcus aureus(MDRSA).Methods:Fifty one actinobacterial strains were isolated from salt pans soil,costal area in Kothapattanam,Ongole,Andhra Pradesh.Primary screening was done using cross-streak method against MDRSA.The bioaclive compounds are extracted from efficient actinobacteria using solvent extraction.The antimicrobial activity of crude and solvent extracts was perfomied using Kirby-Bauer method.MIC for ethyl acetate extract was determined by modified agar well diffusion method.The potent actinobacteria are identified using Nonomura key,Shirling and Gottlieb 1966 with Bergey’s manual of determinative bacteriology.Results:Among the fifty one isolates screened for antibacterial activity,SRB25were found efficient against MDRSA.The ethyl acetate extracts showed high inhibition against test organism.MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1 000μg/mL.The isolaled actinobacteria are identified as Streptomyces sp with the help of Nonomura key.Conclusions:The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms.

  20. In-vitro antimicrobial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus

    Institute of Scientific and Technical Information of China (English)

    Sathish Kumar SR; Kokati Venkata Bhaskara Rao

    2012-01-01

    To investigate the antibacterial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus (MDRSA). Methods: Fifty one actinobacterial strains were isolated from salt pans soil, costal area in Kothapattanam, Ongole, Andhra Pradesh. Primary screening was done using cross-streak method against MDRSA. The bioactive compounds are extracted from efficient actinobacteria using solvent extraction. The antimicrobial activity of crude and solvent extracts was performed using Kirby-Bauer method. MIC for ethyl acetate extract was determined by modified agar well diffusion method. The potent actinobacteria are identified using Nonomura key, Shirling and Gottlieb 1966 with Bergey's manual of determinative bacteriology. Results: Among the fifty one isolates screened for antibacterial activity, SRB25 were found efficient against MDRSA. The ethyl acetate extracts showed high inhibition against test organism. MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1 000 μg/mL. The isolated actinobacteria are identified as Streptomyces sp with the help of Nonomura key. Conclusions: The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms.

  1. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Jesline, A.; John, Neetu P.; Narayanan, P. M.; Vani, C.; Murugan, Sevanan

    2015-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major nosocomial pathogens responsible for a wide spectrum of infections and the emergence of bacterial resistance to antibiotics has lead to treatment drawbacks towards large number of drugs. Formation of biofilms is the main contributing factor to antibiotic resistance. The development of reliable processes for the synthesis of zinc oxide nanoparticles is an important aspect of nanotechnology today. Zinc oxide and titanium dioxide nanoparticles comprise well-known inhibitory and bactericidal effects. Emergence of antimicrobial resistance by pathogenic bacteria is a major health problem in recent years. This study was designed to determine the efficacy of zinc and titanium dioxide nanoparticles against biofilm producing methicillin-resistant S. aureus. Biofilm production was detected by tissue culture plate method. Out of 30 MRSA isolates, 22 isolates showed strong biofilm production and 2 showed weak and moderate biofilm formation. Two strong and weak biofilm-producing methicillin-resistant S. aureus isolates were subjected to antimicrobial activity using commercially available zinc and titanium dioxide nanoparticles. Thus, the nanoparticles showed considerably good activity against the isolates, and it can be concluded that they may act as promising, antibacterial agents in the coming years.

  2. Blastocystis Isolate B Exhibits Multiple Modes of Resistance against Antimicrobial Peptide LL-37.

    Science.gov (United States)

    Yason, John Anthony; Ajjampur, Sitara Swarna Rao; Tan, Kevin Shyong Wei

    2016-08-01

    Blastocystis is one of the most common eukaryotic organisms found in humans and many types of animals. Several reports have identified its role in gastrointestinal disorders, although its pathogenicity is yet to be clarified. Blastocystis is transmitted via the fecal-to-oral route and colonizes the large intestines. Epithelial cells lining the intestine secrete antimicrobial peptides (AMPs), including beta-defensins and cathelicidin, as a response to infection. This study explores the effects of host colonic antimicrobial peptides, particularly LL-37, a fragment of cathelicidin, on different Blastocystis subtypes. Blastocystis is composed of several subtypes that have genetic, metabolic, and biological differences. These subtypes also have various outcomes in terms of drug treatment and immune response. In this study, Blastocystis isolates from three different subtypes were found to induce intestinal epithelial cells to secrete LL-37. We also show that among the antimicrobial peptides tested, only LL-37 has broad activity on all the subtypes. LL-37 causes membrane disruption and causes Blastocystis to change shape. Blastocystis subtype 7 (ST7), however, showed relative resistance to LL-37. An isolate, ST7 isolate B (ST7-B), from this subtype releases proteases that can degrade the peptide. It also makes the environment acidic, which causes attenuation of LL-37 activity. The Blastocystis ST7-B isolate was also observed to have a thicker surface coat, which may protect the parasite from direct killing by LL-37. This study determined the effects of LL-37 on different Blastocystis isolates and indicates that AMPs have significant roles in Blastocystis infections. PMID:27217421

  3. Pilot Screening to Determine Antimicrobial Synergies in a Multidrug-Resistant Bacterial Strain Library

    Science.gov (United States)

    Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861

  4. Treatment of complicated intra-abdominal infections in the era of multi-drug resistant Bacteria

    Directory of Open Access Journals (Sweden)

    Herzog T

    2010-11-01

    Full Text Available Abstract The management of severe intra-abdominal infections remains a major challenge facing surgeons and intensive care physicians, because of its association with high morbidity and mortality. Surgical management and intensive care medicine have constantly improved, but in the recent years a rapidly continuing emergence of resistant pathogens led to treatment failure secondary to infections with multi-drug resistant bacteria. In secondary peritonitis the rate of resistant germs at the initial operation is already 30%. The lack of effective antibiotics against these pathogens resulted in the development of new broad-spectrum compounds and antibiotics directed against resistant germs. But so far no "super-drug" with efficacy against all resistant bacteria exists. Even more, soon after their approval, reports on resistance against these novel drugs have been reported, or the drugs were withdrawn from the market due to severe side effects. Since pharmaceutical companies reduced their investigations on antibiotic research, only few new antimicrobial derivates are available. In abdominal surgery you may be in fear that in the future more and more patients with tertiary peritonitis secondary to multi-drug resistant species are seen with an increase of mortality after secondary peritonitis. This article reviews the current treatment modalities for complicated intra-abdominal infections with special reference to the antibiotic treatment of complicated intra-abdominal infections with multi-drug resistant species.

  5. 77 FR 59156 - Antimicrobial Animal Drug Sales and Distribution Reporting; Extension of Comment Period

    Science.gov (United States)

    2012-09-26

    ... notice of proposed rulemaking that published July 27, 2012 (77 FR 44177) is extended. Submit written or... . SUPPLEMENTARY INFORMATION: I. Background In the Federal Register of July 27, 2012 (77 FR 44177), FDA published... HUMAN SERVICES Food and Drug Administration 21 CFR Part 514 Antimicrobial Animal Drug Sales...

  6. Comparative Research on Serogroups Distribution and Antimicrobial Resistance of Escherichia coil Isolates from Poultry in Different Areas of China

    Institute of Scientific and Technical Information of China (English)

    SONG Li; FENG Zhong-wu; NING Yi-bao; ZHANG Xiu-ying; SHENG Qing-chun; ZHANG Guang-chuan; LIN Shu-mao; WU Hao-ting; ZHAO Hui; GAO Guang

    2008-01-01

    A total of 241 Escherichia coli(E. coli)isolates from 349 avian samples(292 from cloacae,29 from feed and water,28 from dust and padding)were collected from Northeast,South,North,and Central China in recent years.The percentage of isolation was 69.1%.There are 67 serogroups each with 1-2 isolates distributed in different regions.and some of these regions had the preponderant serogroups.Antimicrobial-resistance(AR)of E. coli was so severe that the majority were multi-AR.Fifty percent strains were resistant to 10-19 antimicrobial drugs.Overall,the isolates represented resistance to nalidixic acid(88.1%),tetracycline(85.7%),sulfamethoxazole(81.0%),trimethoprim-sulfamethpxazole(77.1%),ampicillin (76.2%),amoxilline(74.3%),streplomycin(66.2%),fluoroquinolones(57.1-66.7%),chloramphenicol(52.9%),gentamicin (39.0%),and kanamycin(36.2%).The isolates were sensitive to cefalexin,amoxilline-clavulanic acid,amikacin,and florfenicol with all AR rate of 0-19.5%only.The results showed that the AR was more severe in chicken farms in which the antibiotics were used broadly and repeatedly.This study indicated the AR characterization of E. coli in different areas of China.It will be a foundation for studying AR mechanism and regulating the usage of antimicrobial in the poultry industry.

  7. Diversity of antimicrobial resistance and virulence genes in methicillin-resistant non-Staphylococcus aureus staphylococci from veal calves.

    Science.gov (United States)

    Argudín, M Angeles; Vanderhaeghen, Wannes; Butaye, Patrick

    2015-04-01

    In this study we determined whether methicillin-resistant non-Staphylococcus aureus (MRNAS) from veal calves may be a potential reservoir of antimicrobial-resistance and virulence genes. Fifty-eight MRNAS were studied by means of DNA-microarray and PCR for detection of antimicrobial resistance and virulence genes. The isolates carried a variety of antimicrobial-resistance genes [aacA-aphD, aadD, aph3, aadE, sat, spc, ampA, erm(A), erm(B), erm(C), erm(F), erm(T), lnu(A), msr(A)-msr(B), vga(A), mph(C), tet(K), tet(M), tet(L), cat, fexA, dfrA, dfrD, dfrG, dfrK, cfr, fusB, fosB, qacA, qacC, merA-merB]. Some isolates carried resistance genes without showing the corresponding resistance phenotype. Most MRNAS carried typical S. aureus virulence factors like proteases (sspP) and enterotoxins (seg) genes. Most Staphylococcus epidermidis isolates carried the arginine catabolic element, and nearly 40% of the Staphylococcus sciuri isolates carried leukocidins, and/or fibronectin-binding protein genes. MRNAS were highly multi-resistant and represent an important reservoir of antimicrobial resistance and virulence genes. PMID:25637268

  8. Isolation and characterization of antimicrobial-resistant Escherichia coli from national horse racetracks and private horse-riding courses in Korea

    Science.gov (United States)

    Chung, Yeon Soo; Song, Jae Won; Kim, Dae Ho; Shin, Sook; Park, Young Kyung; Yang, Soo Jin; Lim, Suk Kyung

    2016-01-01

    Limited information is available regarding horse-associated antimicrobial resistant (AR) Escherichia (E.) coli. This study was designed to evaluate the frequency and characterize the pattern of AR E. coli from healthy horse-associated samples. A total of 143 E. coli (4.6%) were isolated from 3,078 samples collected from three national racetracks and 14 private horse-riding courses in Korea. Thirty of the E. coli isolates (21%) showed antimicrobial resistance to at least one antimicrobial agent, and four of the AR E. coli (13.3%) were defined as multi-drug resistance. Most of the AR E. coli harbored AR genes corresponding to their antimicrobial resistance phenotypes. Four of the AR E. coli carried class 1 integrase gene (intI1), a gene associated with multi-drug resistance. Pulsed-field gel electrophoretic analysis showed no genetic relatedness among AR E. coli isolated from different facilities; however, cross-transmissions between horses or horses and environments were detected in two facilities. Although cross-transmission of AR E. coli in horses and their environments was generally low, our study suggests a risk of transmission of AR bacteria between horses and humans. Further studies are needed to evaluate the risk of possible transmission of horse-associated AR bacteria to human communities through horse riders and horse-care workers. PMID:26645344

  9. Isolation and characterization of antimicrobial-resistant Escherichia coli from national horse racetracks and private horse-riding courses in Korea.

    Science.gov (United States)

    Chung, Yeon Soo; Song, Jae Won; Kim, Dae Ho; Shin, Sook; Park, Young Kyung; Yang, Soo Jin; Lim, Suk Kyung; Park, Kun Taek; Park, Yong Ho

    2016-06-30

    Limited information is available regarding horse-associated antimicrobial resistant (AR) Escherichia (E.) coli. This study was designed to evaluate the frequency and characterize the pattern of AR E. coli from healthy horse-associated samples. A total of 143 E. coli (4.6%) were isolated from 3,078 samples collected from three national racetracks and 14 private horse-riding courses in Korea. Thirty of the E. coli isolates (21%) showed antimicrobial resistance to at least one antimicrobial agent, and four of the AR E. coli (13.3%) were defined as multi-drug resistance. Most of the AR E. coli harbored AR genes corresponding to their antimicrobial resistance phenotypes. Four of the AR E. coli carried class 1 integrase gene (intI1), a gene associated with multi-drug resistance. Pulsed-field gel electrophoretic analysis showed no genetic relatedness among AR E. coli isolated from different facilities; however, cross-transmissions between horses or horses and environments were detected in two facilities. Although cross-transmission of AR E. coli in horses and their environments was generally low, our study suggests a risk of transmission of AR bacteria between horses and humans. Further studies are needed to evaluate the risk of possible transmission of horse-associated AR bacteria to human communities through horse riders and horse-care workers. PMID:26645344

  10. [Estimation of Probiotic Lactobacilli Drug Resistance].

    Science.gov (United States)

    Bruslik, N L; Akhatova, D R; Toimentseva, A A; Abdulkhakov, S R; Ilyinskaya, O N; Yarullina, D R

    2015-01-01

    An actual problem of analysis of probiotic lactobacilli resistance to antibiotics and other drugs used in the treatment of gastro-intestinal disturbances has been for the first time solved. The levels of resistance of 19 strains of Lactobacillus (14 strains of L. fermentum, 4 strains of L.plantarum and 1 strain of L.rhamnosus) isolated from commercial probiotics and sour milk products to 14 antibiotics of various nature, i.e. β-lactams, aminoglycosides, macrolides, clindamycin, vancomycin, rifampicin, ciprofloxacin, tetracycline and chloramphenicol were determined. All the isolates were practically susceptible to the drugs of the first line antihelicobacterial therapy, i.e. amoxicillin and clarithromycin, that makes inexpedient the parallel use of the probiotics containing the above lactobacilli in the treatment of gastritis and gastric ulcer, despite the lactobacilli antagonism with respect to Helicobacter pylory. Lactobacilli are as well resistant to mesalazin and can be used for correction of dysbiosis in inflammatory affections of the intestine.

  11. Characterisation of antimicrobial resistance-associated integrons and mismatch repair gene mutations in Salmonella serotypes.

    Science.gov (United States)

    Yang, Baowei; Zheng, Jie; Brown, Eric W; Zhao, Shaohua; Meng, Jianghong

    2009-02-01

    In this study, we examined the presence of integrons and Salmonella genomic island 1 (SGI1) and assessed their contribution to antimicrobial resistance as well as determining the extent of the mutator phenotype in Salmonella isolates. A total of 81 Salmonella enterica serotype Typhimurium isolates were examined for the presence of integrons and SGI1 and for hypermutators using polymerase chain reaction (PCR) and the mutator assay, respectively. An additional 336 Salmonella isolates were also used to screen for hypermutators. Fourteen S. Typhimurium isolates carried class 1 integrons, of which six were shown to possess SGI1. Five putative mutators, S. Typhimurium ST20751, S. enterica serotype Heidelberg 22396 and S. enterica serotype Enteritidis 17929, 17929N and 17929R, were identified among the 417 Salmonella isolates. Complementation analysis with the wild-type mutH, mutL, mutS and uvrD genes indicated that none of the five mutators contained defective mismatch repair (MMR) system alleles. DNA sequence analysis revealed that single point mutations resulting in aspartic acid (codon 87) substitution in the gyrA gene conferred resistance to nalidixic acid and/or other fluoroquinolone drugs (ciprofloxacin and enrofloxacin) among four isolates. Our findings indicated that integrons and SGI1 play an important role in multidrug resistance in Salmonella. The incidence of hypermutators owing to defective MMR in Salmonella appears to be rare. PMID:19013057

  12. The mechanism of antimicrobial activity of sophoraflavanone B against methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Mun, Su-Hyun; Joung, Dae-Ki; Kim, Sung-Bae; Park, Sung-Joo; Seo, Yun-Soo; Gong, Ryong; Choi, Jang-Gi; Shin, Dong-Won; Rho, Jung-Rae; Kang, Ok-Hwa; Kwon, Dong-Yeul

    2014-03-01

    Sophoraflavanone B (SPF-B), a prenylated flavonoid, can be isolated from the roots of Desmodium caudatum. The aim of this study was to determine the mechanism of SPF-B's antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). MRSA is a multidrug-resistant pathogen and the main cause of hospital- and community-acquired infections. The minimum inhibitory concentration (MIC) of SPF-B was assessed using the broth microdilution method. The mechanism of action of SPF-B on S. aureus was analyzed in combination assays incorporating detergents, ATPase inhibitors, and peptidoglycan (PGN) derived from S. aureus. Furthermore, morphological changes in the SPF-B-treated MRSA strains were investigated using transmission electron microscopy. The MIC of SPF-B for MRSA was in the range of 15.6-31.25 μg/mL. The mechanism of action of SPF-B on MRSA was investigated using combination assays with detergent and ATPase inhibitors. The optical density at 600 nm of MRSA suspensions treated with a combination of detergent and SPF-B reduced the MRSA by 63%-73%. In the SPF-B and PGN combination assay, direct binding of SPF-B with PGN from S. aureus was evident. These data may be validated for the development of new antibacterial drugs for low MRSA resistance. PMID:24601672

  13. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    Science.gov (United States)

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  14. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Amber Farooqui

    Full Text Available Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  15. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    Science.gov (United States)

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens. PMID:25719410

  16. Prevalência, quantificação e resistência a antimicrobianos de sorovares de Salmonella isolados de lingüiça frescal suína Prevalence, quantification, and antimicrobial drug resistance of Salmonella serovars isolated from fresh pork sausage

    Directory of Open Access Journals (Sweden)

    Denis Augusto Spricigo

    2008-12-01

    Full Text Available A Salmonella sp. é uma das principais causas mundiais de toxinfecção alimentar. Nos últimos anos, as preocupações têm se voltado para a carne e produtos suínos tanto no aspecto de saúde pública como na sua comercialização/exportação. O presente estudo tem como objetivos: 1 verificar a prevalência de sorovares de Salmonella sp. em lingüiças tipo frescal de matéria-prima suína comercializadas em Lages (SC, bem como o seu nível de contaminação; e 2 verificar o perfil de resistência aos antimicrobianos destes isolados. Para tanto, foram coletadas 200 amostras de nove marcas, em diferentes estabelecimentos comerciais. Foram isoladas Salmonella sp. em 27% (54, sendo o sorovar Derby o mais encontrado. Apenas uma amostra apresentou uma concentração de microorganismos maior que 1,100 NMP.g-1, valor normalmente tido como necessário para causar infecção por Salmonella do grupo não-tifóide. Posteriormente, os 60 isolados foram submetidos ao teste de susceptibilidade in vitro, frente a 14 antimicrobianos. Entre esses isolados, 56,67% apresentaram resistência a pelo menos um dos antimicrobianos testados e o perfil de multirresistência foi encontrado em 20%. A prevalência elevada de produtos positivos para Salmonella sp. pode representar um risco ao consumidor, principalmente considerando-se o alto número de isolados resistentes encontrado neste estudo.Salmonella sp. is one of the main causes of food poisoning. In the last years, the main focus has been on beef and swine products because of both public health concerns and commercialization/exportation. This study was conducted in order to: 1 verify the prevalence of Salmonella serovars in fresh pork sausages commercialized in Lages, state of Santa Catarina and analyze its level of contamination; and 2 determine the profile of antimicrobial resistance of Salmonella sp. isolates. For this purpose, 200 samples of nine brands were collected from different commercial stores

  17. Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases

    OpenAIRE

    Joyce Elaine Cristina Betoni; Rebeca Passarelli Mantovani; Lidiane Nunes Barbosa; Luiz Claudio Di Stasi; Ary Fernandes Junior

    2006-01-01

    Searches for substances with antimicrobial activity are frequent, and medicinal plants have been considered interesting by some researchers since they are frequently used in popular medicine as remedies for many infectious diseases. The aim of this study was to verify the synergism between 13 antimicrobial drugs and 8 plant extracts - "guaco" (Mikania glomerata), guava (Psidium guajava), clove (Syzygium aromaticum), garlic (Allium sativum), lemongrass (Cymbopogon citratus), ginger (Zingiber o...

  18. Dana Cole, Georgia Division of Public Health, Notifiable Disease Section, Department of Human Resources, 2 Peachtree Free-living Canada Geese and Antimicrobial Resistance

    OpenAIRE

    Cole, Dana; Drum, David J.V.; Stallknecht, David E.; White, David G.; Lee, Margie D.; Ayers, Sherry; Sobsey, Mark; Maurer, John J

    2005-01-01

    We describe antimicrobial resistance among Escherichia coli isolated from free-living Canada Geese in Georgia and North Carolina (USA). Resistance patterns are compared to those reported by the National Antimicrobial Resistance Monitoring System. Canada Geese may be vectors of antimicrobial resistance and resistance genes in agricultural environments.

  19. ANTIMICROBIAL, PHYSICAL AND CHEMICAL QUALITIES OF MEDICINAL ANTISEPTIC DRUGS

    Directory of Open Access Journals (Sweden)

    Paliy D. V.

    2014-12-01

    Full Text Available In our research results of the study of antimicrobial, physical and chemical qualities of antiseptic medicines of decamethoxin (DCM. Antimicrobial activity of DCM, palisan, decasan, deseptol against srains of S.aureus (n 56, S.epidermidis (n 26, E.coli (n 24, P.mirabilis (n 11, P.vulgaris (n 8 was studied by means of method of serial dilutions. Obtained data of mass spectrometry study of antimicrobial compositions with constant concentrations of DCM have shown that medicinal forms of DCM are complex physical and chemical systems, because of different origin and number of adjuvant ingredients used during their fabrication. Among synthetic quaternary ammonium agents there have been found the substance (commercial name of medicine is decamethoxin to have high antimicrobial activity against strains of grampositive and gram-negative microorganisms, an also C.albicans. There was found that antimicrobial activity of antiseptic palisan had been higher comparably to DCM in equivalent concentration. The composition and concentrations of acting agents and the methodology of preparation of palisan have been substantiated on the basis of microbiological, mass spectrometry characteristics of antiseptics DCM, palisan.

  20. From Bench-Top to Bedside: A Prospective In Vitro Antibiotic Combination Testing (iACT) Service to Guide the Selection of Rationally Optimized Antimicrobial Combinations against Extensively Drug Resistant (XDR) Gram Negative Bacteria (GNB)

    Science.gov (United States)

    Lim, Tze-Peng; Teo, Jocelyn Qi-Min; Lee, Winnie; Kurup, Asok; Koh, Tse-Hsien; Tan, Thuan-Tong; Kwa, Andrea L.

    2016-01-01

    Introduction Combination therapy is increasingly utilized against extensively-drug resistant (XDR) Gram negative bacteria (GNB). However, choosing a combination can be problematic as effective combinations are often strain-specific. An in vitro antibiotic combination testing (iACT) service, aimed to guide the selection of individualized and rationally optimized combination regimens within 48 hours, was developed. We described the role and feasibility of the iACT service in guiding individualized antibiotic combination selection in patients with XDR-GNB infections. Methods A retrospective case review was performed in two Singapore hospitals from April 2009–June 2014. All patients with XDR-GNB and antibiotic regimen guided by iACT for clinical management were included. The feasibility and role of the prospective iACT service was evaluated. The following patient outcomes were described: (i) 30-day in-hospital all-cause and infection-related mortality, (ii) clinical response, and (iii) microbiological eradication in patients with bloodstream infections. Results From 2009–2014, the iACT service was requested by Infectious Disease physicians for 39 cases (20 P. aeruginosa, 13 A. baumannii and 6 K. pneumoniae). Bloodstream infection was the predominant infection (36%), followed by pneumonia (31%). All iACT recommendations were provided within 48h from request for the service. Prior to iACT-guided therapy, most cases were prescribed combination antibiotics empirically (90%). Changes in the empiric antibiotic regimens were recommended in 21 (54%) cases; in 14 (36%) cases, changes were recommended as the empiric regimens were found to be non-bactericidal in vitro. In 7 (18%) cases, the number of antibiotics used in combination empirically was reduced by the iACT service. Overall, low 30-day infection-related mortality (15%) and high clinical response (82%) were observed. Microbiological eradication was observed in 79% of all bloodstream infections. Conclusions The i

  1. Antimicrobial Susceptibility of Multi-drug Resistant Acinetobacter Baumannii and Pseudomonas Aeruginosa Isolates from 27 Hospitals in China%全国27所医院多重耐药鲍曼不动杆菌及铜绿假单胞菌对12种抗菌药物的敏感性

    Institute of Scientific and Technical Information of China (English)

    范欣; 张琪; 肖永红; 徐英春; 肖盟; 杨启文; 窦红涛; 郭莉娜; 王贺; 原英; 王澎; 赵颖

    2014-01-01

    目的:研究医院感染相关多重耐药鲍曼不动杆菌(multi-drug resistant Acinetobacter baumannii, MDR-AB)及多重耐药铜绿假单胞菌( multi-drug resistant Pseudomonas aeruginosa, MDR-PA)对12种抗菌药物的敏感性。方法收集2011年8月至2012年7月全国27所教学医院分离的医院感染相关MDR-AB及MDR-PA菌株。所有菌株均分离自有明确感染意义的临床标本,严格排除痰及筛查性拭子。菌株收集后统一在微生物实验室采用微量肉汤稀释法,测定其对12种抗菌药物的最小抑菌浓度(minimum inhibitory concentration, MIC),并同时用CLSI M100-S24及M100-S23/S21鲍曼不动杆菌和铜绿假单胞菌的碳青霉烯类新旧折点进行对比分析。结果本研究共收集到MDR-AB 664株,未发现全耐药鲍曼不动杆菌;收集到MDR-PA 268株,其中有4株全耐药铜绿假单胞菌。外科病房及ICU病房是多重耐药菌株的主要来源。 MDR-AB对黏菌素的敏感率最高,为96.8%;替加环素的敏感率为72.6%,其余药物的敏感率均低于55%。 MDR-PA对黏菌素的敏感率仅为72.4%,但对阿米卡星的敏感率(64.2%)明显高于MDR-AB (16.7%)。在CLSI折点改变后, MDR-AB对亚胺培南及美罗培南的敏感率仅分别下降了1.3%和0.6%,但MDR-PA对亚胺培南及美罗培南的敏感率分别下降了5.5%和8.6%。 ICU病房来源的MDR-AB及MDR-PA对碳青霉烯酶类药物敏感率都明显低于外科及其他病房。不同地域来源多重耐药菌株的耐药谱有所差异。结论黏菌素和替加环素对MDR-AB有良好的抗菌活性,黏菌素及阿米卡星对MDR-PA抗菌活性较好。%Objective To investigate the antimicrobial susceptibilities of nosocomial multi-drug resistant Acinetobacter baumannii ( MDR-AB) and multi-drug resistant Pseudomonas aeruginosa ( MDR-PA) isolates. Methods MDR-AB and MDR-PA isolates were collected between August 2011 and July 2012

  2. The prevalence of antimicrobial resistance in clinical isolates from Gulf Corporation Council countries

    Directory of Open Access Journals (Sweden)

    Aly Mahmoud

    2012-07-01

    Full Text Available Abstract Background The burden of antimicrobial resistance worldwide is substantial and is likely to grow. Many factors play a role in the emergence of resistance. These resistance mechanisms may be encoded on transferable genes, which facilitate the spread of resistance between bacterial strains of the same and/or different species. Other resistance mechanisms may be due to alterations in the chromosomal DNA which enables the bacteria to withstand the environment and multiply. Many, if not most, of the Gulf Corporation Council (GCC countries do not have clear guidelines for antimicrobial use, and lack policies for restricting and auditing antimicrobial prescriptions. Objective The aim of this study is to review the prevalence of antibiotic resistance in GCC countries and explore the reasons for antibiotic resistance in the region. Methodology The PubMed database was searched using the following key words: antimicrobial resistance, antibiotic stewardship, prevalence, epidemiology, mechanism of resistance, and GCC country (Saudi Arabia, Qatar, Bahrain, Kuwait, Oman, and United Arab Emirates. Results From January1990 through April 2011, there were 45 articles published reviewing antibiotic resistance in the GCC countries. Among all the GCC countries, 37,295 bacterial isolates were studied for antimicrobial resistance. The most prevalent microorganism was Escherichia coli (10,073/44%, followed by Klebsiella pneumoniae (4,709/20%, Pseudomonas aeruginosa (4,287/18.7%, MRSA (1,216/5.4%, Acinetobacter (1,061/5%, with C. difficile and Enterococcus representing less than 1%. Conclusion In the last 2 decades, E. coli followed by Klebsiella pneumoniae were the most prevalent reported microorganisms by GCC countries with resistance data.

  3. Antimicrobial resistance in eight US hospitals along the US-Mexico border, 2000-2006.

    Science.gov (United States)

    Benoit, S R; Ellingson, K D; Waterman, S H; Pearson, M L

    2014-11-01

    Antimicrobial resistance (AR) is a growing problem worldwide and international travel, cross-border migration, and antimicrobial use may contribute to the introduction or emergence of AR. We examined AR rates and trends along the US-Mexico border by analysing microbiology data from eight US hospitals in three states bordering Mexico. Microbiology data were ascertained for the years 2000-2006 and for select healthcare and community pathogens including, three Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and three Gram-positive (Staphylococcus aureus, Enterococcus, Streptococcus pneumoniae) pathogens and 10 antimicrobial-pathogen combinations. Resistance was highest in S. aureus (oxacillin resistance 45·7%), P. aeruginosa (quinolone resistance 22·3%), and E. coli (quinolone resistance 15·6%); six (60%) of the 10 antimicrobial-pathogen combinations studied had a significantly increasing trend in resistance over the study period. Potential contributing factors in the hospital and community such as infection control practices and antimicrobial use (prescription and non-prescription) should be explored further in the US-Mexico border region.

  4. Laboratory survey of drug-resistant Streptococcus pneumoniae in New York City, 1993-1995.

    OpenAIRE

    Heffernan, R.; Henning, K; Labowitz, A.; Hjelte, A.; Layton, M.

    1998-01-01

    Wide geographic variation in the prevalence of drug-resistant Streptococcus pneumoniae demonstrates the importance of tracking antimicrobial resistance locally. This survey of hospital microbiology laboratories in New York City found that penicillin resistance (MIC > or = 2.0 micrograms/ml) increased from 1.5% of S. pneumoniae isolates in 1993 to 6.3% in 1995 and that in 1995, one-third of isolates nonsusceptible to penicillin (MIC > or = 0.1 microgram/ml) were also nonsusceptible to an exten...

  5. Challenges of drug-resistant malaria.

    Science.gov (United States)

    Sinha, Shweta; Medhi, Bikash; Sehgal, Rakesh

    2014-01-01

    Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia-Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria. PMID:25402734

  6. Prevalence, molecular characterization and antimicrobial resistance of Salmonella serovars isolated from northwestern Spanish broiler flocks (2011-2015).

    Science.gov (United States)

    Lamas, A; Fernandez-No, I C; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M

    2016-09-01

    The present study investigated the prevalence, antimicrobial resistance to twenty antibiotics, and class 1 integron and virulence genes of Salmonella isolated from poultry houses of broilers in northwestern Spain between 2011 and 2015. Strains were classified to the serotype level using the Kauffman-White typing scheme and subtyping with enterobacterial repetitive intergenic consensus PCR. The prevalence of Salmonella spp. was 1.02%. Sixteen different serotypes were found, with S. typhimurium and S. arizonae 48:z4, z23:- being the most prevalent. A total of 59.70% of strains were resistant to at least one, and 19.70% were resistant to multiple drugs. All Salmonella spp. were susceptible to cefotaxime, ciprofloxacin, gentamicin, kanamycin, levofloxacin, neomycin, and trimethoprim. The highest level of resistance was to sulfamethoxazole (40.29%), doxycycline (17.91%), and nalidixic acid (17.91%). None of the isolates carried class 1 integron and only isolates of S. enterica subspecies enterica were positive for all virulence factors tested, whereas S. arizonae lacked genes related to replication and invasion in nonphagocytic cells. This study demonstrates that the prevalence and antimicrobial resistance of Salmonella spp. in poultry houses of broilers of northwestern Spain is low compared with those found in other studies and in other steps of the food chain. PMID:27143768

  7. Prevalence of antimicrobial resistance in faecal enterococci from vet-visiting pets and assessment of risk factors.

    Science.gov (United States)

    Leite-Martins, L; Mahú, M I; Costa, A L; Bessa, L J; Vaz-Pires, P; Loureiro, L; Niza-Ribeiro, J; de Matos, A J F; Martins da Costa, P

    2015-06-27

    The objective of this study was to determine the prevalence of antimicrobial resistance (AMR) exhibited by enterococci isolated from faeces of pets and its underlying risk factors. From September 2009 to May 2012, rectal swabs were collected from 74 dogs and 17 cats, selected from the population of animals visiting the Veterinary Hospital of University of Porto, UPVet, through a systematic random procedure. Animal owners answered a questionnaire about the risk factors that could influence the presence of AMR in faecal enterococci. Enterococci isolation, identification and antimicrobial (AM) susceptibility testing were performed. Data analyses of multilevel, univariable and multivariable generalised linear mixed models were conducted. From all enterococci isolated (n=315), 61 per cent were considered multidrug-resistant, whereas only 9.2 per cent were susceptible to all AMs tested. Highest resistance was found to tetracycline (67.0 per cent), rifampicin (60.3 per cent), azithromycin (58.4 per cent), quinupristin/dalfopristin (54.0 per cent) and erythromycin (53.0 per cent). Previous fluoroquinolone treatments and coprophagic habits were the features more consistently associated with the presence of AMR for three (chloramphenicol, ciprofloxacin and azithromycin) and seven (tetracycline, rifampicin, gentamicin, chloramphenicol, ciprofloxacin, erythromycin and azithromycin), respectively, out of nine AMs assessed. Evaluating risk factors that determine the presence of drug-resistant bacteria in pets, a possible source of resistance determinants to human beings, is crucial for the selection of appropriate treatment guidelines by veterinary practitioners. PMID:26078332

  8. Streptococcus pneumoniae from Palestinian nasopharyngeal carriers: serotype distribution and antimicrobial resistance.

    Directory of Open Access Journals (Sweden)

    Abedelmajeed Nasereddin

    Full Text Available Infections of Streptococcus pneumoniae in children can be prevented by vaccination; left untreated, they cause high morbidity and fatalities. This study aimed at determining the nasopharyngeal carrier rates, serotype distribution and antimicrobial resistance patterns of S. pneumoniae in healthy Palestinian children under age two prior to the full introduction of the pneumococcal 7-valent conjugate vaccine (PCV7, which was originally introduced into Palestine in a pilot trial in September, 2010. In a cross sectional study, nasopharyngeal specimens were collected from 397 healthy children from different Palestinian districts between the beginning of November 2012 to the end of January 2013. Samples were inoculated into blood agar and suspected colonies were examined by amplifying the pneumococcal-specific autolysin gene using a real-time PCR. Serotypes were identified by a PCR that incorporated different sets of specific primers. Antimicrobial susceptibility was measured by disk diffusion and MIC methods. The resulting carrier rate of Streptococcus pneumoniae was 55.7% (221/397. The main serotypes were PCV7 serotypes 19F (12.2%, 23F (9.0%, 6B (8.6% and 14 (4% and PCV13 serotypes 6A (13.6% and 19A (4.1%. Notably, serotype 6A, not included in the pilot trial (PCV7 vaccine, was the most prevalent. Resistance to more than two drugs was observed for bacteria from 34.1% of the children (72/211 while 22.3% (47/211 carried bacteria were susceptible to all tested antibiotics. All the isolates were sensitive to cefotaxime and vancomycin. Any or all of these might impinge on the type and efficacy of the pneumococcal conjugate vaccines and antibiotics to be used for prevention and treatment of pneumococcal disease in the country.

  9. Drug resistance genomics of the antimalarial drug artemisinin

    OpenAIRE

    Elizabeth A Winzeler; Manary, Micah J

    2014-01-01

    Across the globe, over 200 million annual malaria infections result in up to 660,000 deaths, 77% of which occur in children under the age of five years. Although prevention is important, malaria deaths are typically prevented by using antimalarial drugs that eliminate symptoms and clear parasites from the blood. Artemisinins are one of the few remaining compound classes that can be used to cure multidrug-resistant Plasmodium falciparum infections. Unfortunately, clinical trials from Southeast...

  10. Multistrain models predict sequential multidrug treatment strategies to result in less antimicrobial resistance than combination treatment

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo;

    2016-01-01

    Background: Combination treatment is increasingly used to fight infections caused by bacteria resistant to two or more antimicrobials. While multiple studies have evaluated treatment strategies to minimize the emergence of resistant strains for single antimicrobial treatment, fewer studies have...... generated by a mathematical model of the competitive growth of multiple strains of Escherichia coli.Results: Simulation studies showed that sequential use of tetracycline and ampicillin reduced the level of double resistance, when compared to the combination treatment. The effect of the cycling frequency...... frequency did not play a role in suppressing the growth of resistant strains, but the specific order of the two antimicrobials did. Predictions made from the study could be used to redesign multidrug treatment strategies not only for intramuscular treatment in pigs, but also for other dosing routes....

  11. The effects of tertiary wastewater treatment on the prevalence of antimicrobial resistant bacteria

    DEFF Research Database (Denmark)

    Guardabassi, L.; Wong, Danilo Lo Fo; Dalsgaard, A.

    2002-01-01

    The effects of tertiary wastewater treatment on the prevalence of antimicrobial resistant bacteria were investigated in two large-scale municipal treatment plants during a period of six months. Total and relative numbers of resistant bacteria were determined in raw sewage, treated sewage and anae...

  12. Proteomics as the final step in the functional metagenomics study of antimicrobial resistance

    Directory of Open Access Journals (Sweden)

    Fiona eFouhy

    2015-03-01

    Full Text Available The majority of clinically applied antimicrobial agents are derived from natural products generated by soil microorganisms and therefore resistance is likely to be ubiquitous in such environments. This is supported by the fact that numerous clinically important resistance mechanisms are encoded within the chromosomes of such bacteria. Advances in genomic sequencing have enabled the in silico identification of putative resistance genes present in these microorganisms. However, it is not sufficient to rely on the identification of putative resistance genes, we must also determine if the resultant proteins confer a resistant phenotype. This will require an analysis pipeline that extends from the extraction of environmental DNA, to the identification and analysis of potential resistance genes and their resultant proteins and phenotypes. This review focuses on the application of functional metagenomics and proteomics to study antimicrobial resistance in diverse environments.

  13. Distribution, detection of enterotoxigenic strains and antimicrobial drug susceptibility patterns of Bacteroides fragilis group in diarrheic and non-diarrheic feces from Brazilian infants

    Directory of Open Access Journals (Sweden)

    Débora Paula Ferreira

    2010-10-01

    Full Text Available Despite the importance of gastrointestinal diseases and their global distribution, affecting millions of individuals around the world, the role and antimicrobial susceptibility patterns of anaerobic bacteria such as those in the Bacteroides fragilis group (BFG are still unclear in young children. This study investigated the occurrence and distribution of species in the BFG and enterotoxigenic strains in the fecal microbiota of children and their antimicrobial susceptibility patterns. Diarrheic (n=110 and non-diarrheic (n=65 fecal samples from children aged 0-5 years old were evaluated. BFG strains were isolated and identified by conventional biochemical, physiological and molecular approaches. Alternatively, bacteria and enterotoxigenic strains were detected directly from feces by molecular biology. Antimicrobial drug susceptibility patterns were determined by the agar dilution method according to the guidelines for isolated bacteria. BFG was detected in 64.3% of the fecal samples (55% diarrheic and 80.4% non-diarrheic, and 4.6% were enterotoxigenic. Antimicrobial resistance was observed against ampicillin, ampicillin/sulbactam, piperacillin/tazobactam, meropenem, ceftriaxone, clindamycin and chloramphenicol. The data show that these bacteria are prevalent in fecal microbiota at higher levels in healthy children. The molecular methodology was more effective in identifying the B. fragilis group when compared to the biochemical and physiological techniques. The observation of high resistance levels stimulates thoughts about the indiscriminate use of antimicrobial drugs in early infancy. Further quantitative studies are needed to gain a better understanding of the role of these bacteria in acute diarrhea in children.

  14. Distribution, detection of enterotoxigenic strains and antimicrobial drug susceptibility patterns of bacteroides fragilis group in diarrheic and non-diarrheic feces from brazilian infants.

    Science.gov (United States)

    Ferreira, Débora Paula; Silva, Vânia Lúcia; Guimarães, Danielle Aparecida; Coelho, Cíntia Marques; Zauli, Danielle Alves Gomes; Farias, Luiz Macêdo; Carvalho, Maria Auxiliadora Roque; Diniz, Claudio Galuppo

    2010-07-01

    Despite the importance of gastrointestinal diseases and their global distribution, affecting millions of individuals around the world, the role and antimicrobial susceptibility patterns of anaerobic bacteria such as those in the Bacteroides fragilis group (BFG) are still unclear in young children. This study investigated the occurrence and distribution of species in the BFG and enterotoxigenic strains in the fecal microbiota of children and their antimicrobial susceptibility patterns. Diarrheic (n=110) and non-diarrheic (n=65) fecal samples from children aged 0-5 years old were evaluated. BFG strains were isolated and identified by conventional biochemical, physiological and molecular approaches. Alternatively, bacteria and enterotoxigenic strains were detected directly from feces by molecular biology. Antimicrobial drug susceptibility patterns were determined by the agar dilution method according to the guidelines for isolated bacteria. BFG was detected in 64.3% of the fecal samples (55% diarrheic and 80.4% non-diarrheic), and 4.6% were enterotoxigenic. Antimicrobial resistance was observed against ampicillin, ampicillin/sulbactam, piperacillin/tazobactam, meropenem, ceftriaxone, clindamycin and chloramphenicol. The data show that these bacteria are prevalent in fecal microbiota at higher levels in healthy children. The molecular methodology was more effective in identifying the B. fragilis group when compared to the biochemical and physiological techniques. The observation of high resistance levels stimulates thoughts about the indiscriminate use of antimicrobial drugs in early infancy. Further quantitative studies are needed to gain a better understanding of the role of these bacteria in acute diarrhea in children.

  15. Bovine salmonellosis in Northeast of Iran:Frequency, genetic fingerprinting and antimicrobial resistance patterns of Salmonella spp.

    Institute of Scientific and Technical Information of China (English)

    Hessam A Halimi; Hesam A Seifi; Mehrnaz Rad

    2014-01-01

    Objective:To evaluate serovar and antimicrobial resistance patterns of Salmonella spp isolated from healthy, diseased and necropsied cows and calves in this observational study. Methods:Nineteen isolates recovered from feces and tissues of salmonellosis-affected animals of two commercial farms in north-east of Iran. In second part of the study, the two farms were sampled 4 times with an interval of 2 month. The samples included calves’ feces, adult cows’ feces, feeds, water, milk filters, and milk fed to calves. Five Salmonella were isolated from 332 fecal samples collected from calves and peri-parturient cows. No Salmonella was recovered from water, feed, milk filers and milk fed to calves. Results:Salmonella Typhimurium was the most frequently isolate among all sero-groups. S. Dublin was only accounted for 8%(two out of 24) of isolates. Isolated Salmonella strains were used for the ERIC PCR DNA fingerprinting assay. Our results grouped Salmonella isolates into 3 clusters, suggesting that specific genotypes were responsible for each sero-group of Salmonella. The results also revealed diversity among Salmonella isolates in cluster III (sero-group B). Eighteen out of 19 Salmonella spp. were resistant to oxytetracycline. Five isolates out of 19 showed more than one drug resistance. Multi-drug resistance was seen only among Salmonella Typhimurium isolates. Enrofloxacin was the most susceptible antibiotic against all isolates in this study. Conclusion:The emergence of multiple antibiotic-resistant strains of Salmonella Typhimurium should be of great concern to the public. No correlation between ERIC fingerprinting and resistance patterns of Salmonella isolates was found, which indicates resistance to antimicrobial agents was not related to specific genetic background.

  16. Patterns of antimicrobial resistance in pathogenic Escherichia coli isolates from cases of calf enteritis during the spring-calving season.

    Science.gov (United States)

    Gibbons, James F; Boland, Fiona; Buckley, James F; Butler, Francis; Egan, John; Fanning, Séamus; Markey, Bryan K; Leonard, Finola C

    2014-05-14

    Neonatal enteritis is a common condition of young calves and can be caused by pathogenic strains of Escherichia coli. We hypothesised that on-farm antimicrobial use would result in an increased frequency of resistance in these strains during the calving season. We also sought to determine if the frequency of resistance reflected on-farm antimicrobial use. Faecal samples were collected from cases of calf enteritis on 14 spring-calving dairy farms during two 3 week periods: Period 1 - February 11th through March 2nd 2008 and Period 2 - April 14th through May 5th 2008. E. coli were cultured from these samples, pathogenic strains were identified and antimicrobial susceptibility testing was carried out on these pathogenic isolates. Antimicrobial prescribing data were collected from each farm for the previous 12 months as an indicator of antimicrobial use. The correlation between antimicrobial use and resistance was assessed using Spearman's correlation coefficient. Logistic regression analysis was used to investigate the relationship between resistance, sampling period and pathotype. Penicillins and aminopenicillins, streptomycin, and tetracyclines were the most frequently prescribed antimicrobials and the greatest frequencies of resistance were detected to these 3 antimicrobial classes. A strong correlation (ρ=0.879) was observed between overall antimicrobial use and frequencies of antimicrobial resistance on farms. Sampling period was significant in the regression model for ampicillin resistance while pathotype was significant in the models for streptomycin, tetracycline and trimethoprim/sulphamethoxazole resistance. The frequencies of resistance observed have implications for veterinary therapeutics and prudent antimicrobial use. Resistance did not increase during the calving season and factors other than antimicrobial use, such as calf age and bacterial pathotype, may influence the occurrence of resistance in pathogenic E. coli.

  17. Multi-drug resistant Acinetobacter ventilator-associated pneumonia

    OpenAIRE

    Shete Vishal; Ghadage Dnyaneshwari; Muley Vrishali; Bhore Arvind

    2010-01-01

    Background: Ventilator-associated pneumonia (VAP) due to a multi-drug resistant (MDR) Acinetobacter is one of the most dreadful complications, which occurs in the critical care setting. Aims and objectives: To find out the incidence of Acinetobacter infection in VAP cases, to determine various risk factors responsible for acquisition of Acinetobacter infection and to determine the antimicrobial susceptibility pattern of Acinetobacter. Materials and Methods: A total of 60 endotracheal aspirate...

  18. Re-sensitizing drug-resistant bacteria to antibiotics by designing Antisense Therapeutics

    Science.gov (United States)

    Courtney, Colleen; Chatterjee, Anushree

    2014-03-01

    ``Super-bugs'' or ``multi-drug resistant organisms'' are a serious international health problem, with devastating consequences to patient health care. The Center for Disease Control has identified antibiotic resistance as one of the world's most pressing public health problems as a significant fraction of bacterial infections contracted are drug resistant. Typically, antibiotic resistance is encoded by ``resistance-genes'' which express proteins that carryout the resistance causing functions inside the bacterium. We present a RNA based therapeutic strategy for designing antimicrobials capable of re-sensitizing resistant bacteria to antibiotics by targeting labile regions of messenger RNAs encoding for resistance-causing proteins. We perform in silico RNA secondary structure modeling to identify labile target regions in an mRNA of interest. A synthetic biology approach is then used to administer antisense nucleic acids to our model system of ampicillin resistant Escherichia coli. Our results show a prolonged lag phase and decrease in viability of drug-resistant E. colitreated with antisense molecules. The antisense strategy can be applied to alter expression of other genes in antibiotic resistance pathways or other pathways of interest.

  19. Bacterial flora and antimicrobial resistance in raw frozen cultured seafood imported to Denmark.

    Science.gov (United States)

    Noor Uddin, Gazi M; Larsen, Marianne Halberg; Guardabassi, Luca; Dalsgaard, Anders

    2013-03-01

    Intensified aquaculture includes the use of antimicrobials for disease control. In contrast to the situation in livestock, Escherichia coli and enterococci are not part of the normal gastrointestinal flora of fish and shrimp and therefore not suitable indicators of antimicrobial resistance in seafood. In this study, the diversity and phenotypic characteristics of the bacterial flora in raw frozen cultured and wild-caught shrimp and fish were evaluated to identify potential indicators of antimicrobial resistance. The bacterial flora cultured on various agar media at different temperatures yielded total viable counts of 4.0 × 10(4) to 3.0 × 10(5) CFU g(-1). Bacterial diversity was indicated by 16S rRNA sequence analysis of 84 isolates representing different colony types; 24 genera and 51 species were identified. Pseudomonas spp. (23% of isolates), Psychrobacter spp. (17%), Serratia spp. (13%), Exiguobacterium spp. (7%), Staphylococcus spp. (6%), and Micrococcus spp. (6%) dominated. Disk susceptibility testing of 39 bacterial isolates to 11 antimicrobials revealed resistance to ampicillin, amoxicillin-clavulanic acid, erythromycin, and third generation cephalosporins. Resistance to third generation cephalosporins was found in Pseudomonas, a genus naturally resistant to most β-lactam antibiotics, and in Staphylococcus hominis. Half of the isolates were susceptible to all antimicrobials tested. Results indicate that identification of a single bacterial resistance indicator naturally present in seafood at point of harvest is unlikely. The bacterial flora found likely represents a processing rather than a raw fish flora because of repeated exposure of raw material to water during processing. Methods and appropriate indicators, such as quantitative PCR of resistance genes, are needed to determine how antimicrobials used in aquaculture affect resistance of bacteria in retailed products.

  20. Antimicrobial Resistance Profile of Planktonic and Biofilm Cells of Staphylococcus aureus and Coagulase-Negative Staphylococci

    Science.gov (United States)

    de Oliveira, Adilson; Cataneli Pereira, Valéria; Pinheiro, Luiza; Moraes Riboli, Danilo Flávio; Benini Martins, Katheryne; Ribeiro de Souza da Cunha, Maria de Lourdes

    2016-01-01

    The objective of the present study was to determine the antimicrobial resistance profile of planktonic and biofilm cells of Staphylococcus aureus and coagulase-negative staphylococci (CoNS). Two hundred Staphylococcus spp. strains were studied, including 50 S. aureus and 150 CoNS strains (50 S. epidermidis, 20 S. haemolyticus, 20 S. warneri, 20 S. hominis, 20 S. lugdunensis, and 20 S. saprophyticus). Biofilm formation was investigated by adherence to polystyrene plates. Positive strains were submitted to the broth microdilution method to determine the minimum inhibitory concentration (MIC) for planktonic and biofilm cells and the minimal bactericidal concentration for biofilm cells (MBCB). Forty-nine Staphylococcus spp. strains (14 S. aureus, 13 S. epidermidis, 13 S. saprophyticus, 3 S. haemolyticus, 1 S. hominis, 3 S. warneri, and 2 S. lugdunensis) were biofilm producers. These isolates were evaluated regarding their resistance profile. Determination of planktonic cell MIC identified three (21.4%) S. aureus strains that were resistant to oxacillin and six (42.8%) that were resistant to erythromycin. Among the CoNS, 31 (88.6%) strains were resistant to oxacillin, 14 (40%) to erythromycin, 18 (51.4%) to gentamicin, and 8 (22.8%) to sulfamethoxazole/trimethoprim. None of the planktonic isolates were resistant to vancomycin or linezolid. MICs were 2-, 4-, 8-, and up to 16-fold higher for biofilm cells than for planktonic cells. This observation was more common for vancomycin and erythromycin. The MBCB ranged from 8 to >256 µg/mL for oxacillin, 128 to >128 µg/mL for vancomycin, 256 to >256 µg/mL for erythromycin and gentamicin, >64 µg/mL for linezolid, and 32/608 to >32/608 µg/mL for sulfamethoxazole/trimethoprim. The results showed considerably higher MICs for S. aureus and CoNS biofilm cells compared to planktonic cells. Analysis of MBCM confirmed that even high concentrations of vancomycin were unable to eliminate the biofilms of S. aureus and CoNS species

  1. Antimicrobial Resistance Profile of Planktonic and Biofilm Cells of Staphylococcus aureus and Coagulase-Negative Staphylococci

    Directory of Open Access Journals (Sweden)

    Adilson de Oliveira

    2016-09-01

    Full Text Available The objective of the present study was to determine the antimicrobial resistance profile of planktonic and biofilm cells of Staphylococcus aureus and coagulase-negative staphylococci (CoNS. Two hundred Staphylococcus spp. strains were studied, including 50 S. aureus and 150 CoNS strains (50 S. epidermidis, 20 S. haemolyticus, 20 S. warneri, 20 S. hominis, 20 S. lugdunensis, and 20 S. saprophyticus. Biofilm formation was investigated by adherence to polystyrene plates. Positive strains were submitted to the broth microdilution method to determine the minimum inhibitory concentration (MIC for planktonic and biofilm cells and the minimal bactericidal concentration for biofilm cells (MBCB. Forty-nine Staphylococcus spp. strains (14 S. aureus, 13 S. epidermidis, 13 S. saprophyticus, 3 S. haemolyticus, 1 S. hominis, 3 S. warneri, and 2 S. lugdunensis were biofilm producers. These isolates were evaluated regarding their resistance profile. Determination of planktonic cell MIC identified three (21.4% S. aureus strains that were resistant to oxacillin and six (42.8% that were resistant to erythromycin. Among the CoNS, 31 (88.6% strains were resistant to oxacillin, 14 (40% to erythromycin, 18 (51.4% to gentamicin, and 8 (22.8% to sulfamethoxazole/trimethoprim. None of the planktonic isolates were resistant to vancomycin or linezolid. MICs were 2-, 4-, 8-, and up to 16-fold higher for biofilm cells than for planktonic cells. This observation was more common for vancomycin and erythromycin. The MBCB ranged from 8 to >256 µg/mL for oxacillin, 128 to >128 µg/mL for vancomycin, 256 to >256 µg/mL for erythromycin and gentamicin, >64 µg/mL for linezolid, and 32/608 to >32/608 µg/mL for sulfamethoxazole/trimethoprim. The results showed considerably higher MICs for S. aureus and CoNS biofilm cells compared to planktonic cells. Analysis of MBCM confirmed that even high concentrations of vancomycin were unable to eliminate the biofilms of S. aureus and Co

  2. Antimicrobial Resistance Profile of Planktonic and Biofilm Cells of Staphylococcus aureus and Coagulase-Negative Staphylococci.

    Science.gov (United States)

    de Oliveira, Adilson; Cataneli Pereira, Valéria; Pinheiro, Luiza; Moraes Riboli, Danilo Flávio; Benini Martins, Katheryne; Ribeiro de Souza da Cunha, Maria de Lourdes

    2016-01-01

    The objective of the present study was to determine the antimicrobial resistance profile of planktonic and biofilm cells of Staphylococcus aureus and coagulase-negative staphylococci (CoNS). Two hundred Staphylococcus spp. strains were studied, including 50 S. aureus and 150 CoNS strains (50 S. epidermidis, 20 S. haemolyticus, 20 S. warneri, 20 S. hominis, 20 S. lugdunensis, and 20 S. saprophyticus). Biofilm formation was investigated by adherence to polystyrene plates. Positive strains were submitted to the broth microdilution method to determine the minimum inhibitory concentration (MIC) for planktonic and biofilm cells and the minimal bactericidal concentration for biofilm cells (MBCB). Forty-nine Staphylococcus spp. strains (14 S. aureus, 13 S. epidermidis, 13 S. saprophyticus, 3 S. haemolyticus, 1 S. hominis, 3 S. warneri, and 2 S. lugdunensis) were biofilm producers. These isolates were evaluated regarding their resistance profile. Determination of planktonic cell MIC identified three (21.4%) S. aureus strains that were resistant to oxacillin and six (42.8%) that were resistant to erythromycin. Among the CoNS, 31 (88.6%) strains were resistant to oxacillin, 14 (40%) to erythromycin, 18 (51.4%) to gentamicin, and 8 (22.8%) to sulfamethoxazole/trimethoprim. None of the planktonic isolates were resistant to vancomycin or linezolid. MICs were 2-, 4-, 8-, and up to 16-fold higher for biofilm cells than for planktonic cells. This observation was more common for vancomycin and erythromycin. The MBCB ranged from 8 to >256 µg/mL for oxacillin, 128 to >128 µg/mL for vancomycin, 256 to >256 µg/mL for erythromycin and gentamicin, >64 µg/mL for linezolid, and 32/608 to >32/608 µg/mL for sulfamethoxazole/trimethoprim. The results showed considerably higher MICs for S. aureus and CoNS biofilm cells compared to planktonic cells. Analysis of MBCM confirmed that even high concentrations of vancomycin were unable to eliminate the biofilms of S. aureus and CoNS species

  3. Antimicrobial-resistant enterococci in animals and meat: a human health hazard?

    Science.gov (United States)

    Hammerum, Anette M; Lester, Camilla H; Heuer, Ole E

    2010-10-01

    Enterococcus faecium and Enterococcus faecalis belong to the gastrointestinal flora of humans and animals. Although normally regarded harmless commensals, enterococci may cause a range of different infections in humans, including urinary tract infections, sepsis, and endocarditis. The use of avoparcin, gentamicin, and virginiamycin for growth promotion and therapy in food animals has lead to the emergence of vancomycin- and gentamicin-resistant enterococci and quinupristin/dalfopristin-resistant E. faecium in animals and meat. This implies a potential risk for transfer of resistance genes or resistant bacteria from food animals to humans. The genes encoding resistance to vancomycin, gentamicin, and quinupristin/dalfopristin have been found in E. faecium of human and animal origin; meanwhile, certain clones of E. faecium are found more frequently in samples from human patients, while other clones predominate in certain animal species. This may suggest that antimicrobial-resistant E. faecium from animals could be regarded less hazardous to humans; however, due to their excellent ability to acquire and transfer resistance genes, E. faecium of animal origin may act as donors of antimicrobial resistance genes for other more virulent enterococci. For E. faecalis, the situation appears different, as similar clones of, for example, vancomycin- and gentamicin-resistant E. faecalis have been obtained from animals and from human patients. Continuous surveillance of antimicrobial resistance in enterococci from humans and animals is essential to follow trends and detect emerging resistance. PMID:20578915

  4. Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    1999-01-01

    Antimicrobial agents are used in food animals for therapy and prophylaxis of bacterial infections and in feed to promote growth. The use of antimicrobial agents for food animals may cause problems in the therapy of infections by selecting for resistance among bacteria pathogenic for animals...... animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimens to limit the development of resistance is incomplete. Surveillance programmes monitoring the occurrence and development of resistance and consumption...... of antimicrobial agents are urgently needed, as is research into the most appropriate ways to use antimicrobial agents in veterinary medicine to limit the emergence and spread of antimicrobial resistance. (C) 1999 Elsevier Science B.V. and International Society of Chemotherapy. All rights reserved....

  5. New antimicrobial contact catalyst killing antibiotic resistant clinical and waterborne pathogens

    International Nuclear Information System (INIS)

    Microbial growth on medical and technical devices is a big health issue, particularly when microorganisms aggregate to form biofilms. Moreover, the occurrence of antibiotic-resistant bacteria in the clinical environment is dramatically growing, making treatment of bacterial infections very challenging. In search of an alternative, we studied a novel antimicrobial surface coating based on micro galvanic elements formed by silver and ruthenium with surface catalytic properties. The antimicrobial coating efficiently inhibited the growth of the nosocomial pathogens Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Enterococcus faecium as demonstrated by the growth inhibition on agar surface and in biofilms of antibiotic resistant clinical E. faecalis, E. faecium, and S. aureus isolates. It also strongly reduced the growth of Legionella in a drinking water pipeline and of Escherichia coli in urine. We postulate a mode of action of the antimicrobial material, which is independent of the release of silver ions. Thus, the novel antimicrobial coating could represent an alternative to combat microbial growth avoiding the toxic side effects of high levels of silver ions on eukaryotic cells. - Highlights: • The novel antimicrobial inhibits growth of clinical staphylococci and enterococci. • The novel antimicrobial inhibits growth of Legionella in drinking water. • A putative mode of action of the antimicrobial coating is presented

  6. New antimicrobial contact catalyst killing antibiotic resistant clinical and waterborne pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Guridi, A. [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); Diederich, A.-K. [University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany); Aguila-Arcos, S.; Garcia-Moreno, M. [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); Blasi, R.; Broszat, M. [University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany); Schmieder, W.; Clauss-Lendzian, E. [Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany); Sakinc-Gueler, T. [University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Andrade, R. [Advanced Research Facilities (SGIker), University of the Basque Country, UPV/EHU, 48940 Leioa (Spain); Alkorta, I. [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); Meyer, C.; Landau, U. [Largentec GmbH, Am Waldhaus 32, 14129 Berlin (Germany); Grohmann, E., E-mail: elisabeth.grohmann@googlemail.com [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany)

    2015-05-01

    Microbial growth on medical and technical devices is a big health issue, particularly when microorganisms aggregate to form biofilms. Moreover, the occurrence of antibiotic-resistant bacteria in the clinical environment is dramatically growing, making treatment of bacterial infections very challenging. In search of an alternative, we studied a novel antimicrobial surface coating based on micro galvanic elements formed by silver and ruthenium with surface catalytic properties. The antimicrobial coating efficiently inhibited the growth of the nosocomial pathogens Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Enterococcus faecium as demonstrated by the growth inhibition on agar surface and in biofilms of antibiotic resistant clinical E. faecalis, E. faecium, and S. aureus isolates. It also strongly reduced the growth of Legionella in a drinking water pipeline and of Escherichia coli in urine. We postulate a mode of action of the antimicrobial material, which is independent of the release of silver ions. Thus, the novel antimicrobial coating could represent an alternative to combat microbial growth avoiding the toxic side effects of high levels of silver ions on eukaryotic cells. - Highlights: • The novel antimicrobial inhibits growth of clinical staphylococci and enterococci. • The novel antimicrobial inhibits growth of Legionella in drinking water. • A putative mode of action of the antimicrobial coating is presented.

  7. Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium.

    OpenAIRE

    Parra-Lopez, C; Baer, M. T.; Groisman, E A

    1993-01-01

    The innate immunity of vertebrates and invertebrates to microbial infection is mediated in part by small cationic peptides with antimicrobial activity. Successful pathogens have evolved mechanisms to withstand the antibiotic activity of these molecules. We have isolated a set of genes from Salmonella typhimurium which are required for virulence and resistance to the antimicrobial peptides melittin and protamine. Sequence analysis of a 5.7 kb segment from the wild-type plasmid conferring resis...

  8. In vitro antimicrobial activity of linezolid tested against vancomycin-resistant enterococci isolated in Brazilian hospitals

    OpenAIRE

    Reis Adriana O.; Cordeiro Julio C. R.; Machado Antonia M.O.; Sader Helio S.

    2001-01-01

    The emergence of vancomycin-resistant enterococci (VRE) has been described recently in Brazil. This is in contrast to the USA and Europe, where the VRE appeared in the late 1980s. The progressive increase in VRE isolation poses important problems in the antimicrobial therapy of nosocomial infections. Treatment options and effective antimicrobial agents for VRE are often limited and the possibility of transfer of vancomycin genes to other Gram-positive microorganisms continues. In the search f...

  9. CNS SPECIES AND ANTIMICROBIAL RESISTANCE IN CLINICAL AND SUBCLINICAL BOVINE MASTITIS

    OpenAIRE

    Persson Waller, K.; Aspán, A; Nyman, A.; Persson, Y.; Grönlund Andersson, U.

    2011-01-01

    Abstract Coagulase-negative staphylococci (CNS) are often associated with bovine mastitis. Knowledge about the relative importance of specific CNS species in different types of mastitis, and differences in antimicrobial resistance among CNS species is, however, scarce. Therefore, the aims of this study were to compare prevalence and antimicrobial susceptibility of CNS species in clinical and subclinical mastitis using material from two national surveys. Overall, S. chromogenes and ...

  10. Multi Drug Resistant (MDR and Extensively Resistant (XDR Tuberculosis

    Directory of Open Access Journals (Sweden)

    Salih Cesur

    2013-08-01

    Full Text Available Multi drug resistant tuberculosis (MDR-TB is defined as tuberculosis that is resistant to at least isoniazid and rifampicin, the two most powerful first-line anti-TB drugs. Extensively drug resistant tuberculosis (XDR-TB is defined as tuberculosis that is resistant to resistant to isoniazid and rifampin and to any fluoroquinolone and at least one of three injectable second-line drugs (namely, amikacin, kanamicin, or capreomycin. MDR-TB and XDR- TB are great dangers that threaten the public health. XDR-TB has been reported from many countries including the United States. In Turkey, among newly diagnosed cases, it was reported that the number of MDR-TB patients was 101 (3.1%, MDR-TB rate in the retreatment cases was 17.7% (90 patients, and MDR-TB rate in all cases was 5.1 (191 patients in 2005. The percentages were calculated through the number of patients who were tested in terms of susceptibility for both isoniazide and rifampin. In 2009, it was reported that the number of MDR-TB patients was 99 (2.7% among newly diagnosed cases, it was 123 (20.5 % in the retreatment cases and the total number of MDR-TB cases was 222 (5.1%. The first patient with XDR-TB was identified in 2010 in Turkey. Diagnosis of XDR TB takes several weeks by using conventional culture-based methods, although (however some molecular test can detect it rapidly. Treatment of XDR-TB patients is difficult and usually requiring at least 18-24 months of four to six second-line anti-TB drugs. The success rate with the treatment is about 30-50%, and mortality rate is higher in HIV-infected patients. Prevention of contact to XDR-TB patients is more complicated by the lack of a proven effective preventive treatment for XDR latent tuberculosis infection. Rapid diagnostic tests and new anti-TB drugs are needed to control the spread of this worldwide public health problem. [Dis Mol Med 2013; 1(4.000: 72-76

  11. Antituberculosis drug resistance patterns in adults with tuberculous meningitis

    DEFF Research Database (Denmark)

    Senbayrak, Seniha; Ozkutuk, Nuri; Erdem, Hakan;

    2015-01-01

    BACKGROUND: Tuberculous meningitis (TBM) caused by Mycobacterium tuberculosis resistant to antituberculosis drugs is an increasingly common clinical problem. This study aimed to evaluate drug resistance profiles of TBM isolates in adult patients in nine European countries involving 32 centers to ...

  12. Microbiota and anthropic interference on antimicrobial resistance profile of bacteria isolated from Brazilian maned-wolf (Chrysocyon brachyurus

    Directory of Open Access Journals (Sweden)

    Olney Vieira-da-Motta

    2013-12-01

    Full Text Available Both the study of Brazilian wild mammal fauna and the conditions that foster the preservation of endangered species, such as Brazilian Maned-wolf (Chrysocyon brachyurus, in wild life are of extreme importance. In order to study the resistance profile of microbiota bacterial colonizing Brazilian Maned-wolf, this work investigated samples from eight male captive and free roaming animals originating from different Brazilian geographical regions. Samples for microbiological purposes were collected with swabs and kept in appropriate transport medium. Using routine microbiological techniques, the isolated bacteria were tested toward antimicrobial drugs by the agar disk diffusion method. Results showed that all samples from wild animals were sensitive toward all drugs tested. Conversely, the resistance profile of bacteria isolated from captive animals varied among strains and animal body site location. Escherichia coli samples from prepuce, anus and ear showed multi-resistance toward at least four drugs, especially against erythromycin and tetracycline, followed by Proteus mirabilis and P. vulgaris strains isolated from anus and ear. Among Gram-positive bacteria, strains of coagulase-negative staphylococci showed multi-resistance mainly toward erythromycin and amoxicillin. The work discusses these findings and suggests that profile of multi-resistance bacteria from captive subjects may be attributed to direct contact with human or through lifestyle factors such as feeding, predation or contact of animals with urban animals such as birds, rodents, and insects from surrounding environments.

  13. Microbiota and anthropic interference on antimicrobial resistance profile of bacteria isolated from Brazilian Maned-wolf (Chrysocyon brachyurus).

    Science.gov (United States)

    Vieira-da-Motta, Olney; Eckhardt-de-Pontes, Luiz Antonio; Petrucci, Melissa Paes; dos Santos, Israel Pereira; da Cunha, Isabel Candia Nunes; Morato, Ronaldo Gonçalves

    2013-12-01

    Both the study of Brazilian wild mammal fauna and the conditions that foster the preservation of endangered species, such as Brazilian Maned-wolf (Chrysocyon brachyurus), in wild life are of extreme importance. In order to study the resistance profile of microbiota bacterial colonizing Brazilian Maned-wolf, this work investigated samples from eight male captive and free roaming animals originating from different Brazilian geographical regions. Samples for microbiological purposes were collected with swabs and kept in appropriate transport medium. Using routine microbiological techniques, the isolated bacteria were tested toward antimicrobial drugs by the agar disk diffusion method. Results showed that all samples from wild animals were sensitive toward all drugs tested. Conversely, the resistance profile of bacteria isolated from captive animals varied among strains and animal body site location. Escherichia coli samples from prepuce, anus and ear showed multi-resistance toward at least four drugs, especially against erythromycin and tetracycline, followed by Proteus mirabilis and P. vulgaris strains isolated from anus and ear. Among Gram-positive bacteria, strains of coagulase-negative staphylococci showed multi-resistance mainly toward erythromycin and amoxicillin. The work discusses these findings and suggests that profile of multi-resistance bacteria from captive subjects may be attributed to direct contact with human or through lifestyle factors such as feeding, predation or contact of animals with urban animals such as birds, rodents, and insects from surrounding environments. PMID:24688529

  14. Human health risks associated with antimicrobial-resistant enterococci and Staphylococcus aureus on poultry meat.

    Science.gov (United States)

    Bortolaia, V; Espinosa-Gongora, C; Guardabassi, L

    2016-02-01

    Enterococci and staphylococci are frequent contaminants on poultry meat. Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are also well-known aetiological agents of a wide variety of infections resulting in major healthcare costs. This review provides an overview of the human health risks associated with the occurrence of these opportunistic human pathogens on poultry meat with particular focus on the risk of food-borne transmission of antimicrobial resistance. In the absence of conclusive evidence of transmission, this risk was inferred using data from scientific articles and national reports on prevalence, bacterial load, antimicrobial resistance and clonal distribution of these three species on poultry meat. The risks associated with ingestion of antimicrobial-resistant enterococci of poultry origin comprise horizontal transfer of resistance genes and transmission of multidrug-resistant E. faecalis lineages such as sequence type ST16. Enterococcus faecium lineages occurring in poultry meat products are distantly related to those causing hospital-acquired infections but may act as donors of quinupristin/dalfopristin resistance and other resistance determinants of clinical interest to the human gut microbiota. Ingestion of poultry meat contaminated with S. aureus may lead to food poisoning. However, antimicrobial resistance in the toxin-producing strains does not have clinical implications because food poisoning is not managed by antimicrobial therapy. Recently methicillin-resistant S. aureus of livestock origin has been reported on poultry meat. In theory handling or ingestion of contaminated meat is a potential risk factor for colonization by methicillin-resistant S. aureus. However, this risk is presently regarded as negligible by public health authorities. PMID:26706616

  15. Drug utilization pattern of antimicrobial drugs in intensive care unit of a tertiary care hospital attached with a medical college

    Directory of Open Access Journals (Sweden)

    Rutvij Hedamba

    2016-02-01

    Conclusions: Despite of limitations of present study it gives important conclusion about how antimicrobial drugs are used in GGGH ICU. This information can be used for improvement of current treatment strategies. [Int J Basic Clin Pharmacol 2016; 5(1.000: 169-172

  16. Prevalence and characterization of antimicrobial-resistant Escherichia coli isolated from conventional and organic vegetables.

    Science.gov (United States)

    Kim, Sara; Woo, Gun-Jo

    2014-10-01

    To compare the characteristics and to identify the epidemiological relationships of Escherichia coli isolated from organic and conventional vegetables, the antimicrobial resistance and genetic properties of E. coli were investigated from 2010 to 2011. E. coli was isolated from 1 of 111 (0.9%) organic vegetables and from 20 of 225 (8.9%) conventional vegetables. The majority of strains were isolated from the surrounding farming environment (n=27/150 vs. 49/97 in organic vs. conventional samples). The majority of the vegetable strains were isolated from the surrounding farming environments. E. coli isolated from organic vegetables showed very low antimicrobial resistance rates except for cephalothin, ranging from 0% to 17.9%, while the resistance rates to cephalothin (71%) were extremely high in both groups. E. coli isolates expressed various resistance genes, which most commonly included blaTEM, tet(A), strA, strB, and qnrS. However, none of the isolates harbored tet(D), tet(E), tet(K), tet(L), tet(M), or qnrA. The transferability of tet gene, tet(A), and tet(B) was identified in tetracycline-resistant E. coli, and the genetic relationship was confirmed in a few cases from different sources. With regard to the lower antimicrobial resistance found in organic produce, this production mode seems able to considerably reduce the selection of antimicrobial-resistant bacteria on vegetables. PMID:25140978

  17. Pharmacodynamic profiling of commonly prescribed antimicrobial drugs against Escherichia coli isolates from urinary tract

    Directory of Open Access Journals (Sweden)

    Gabriel Trova Cuba

    2014-09-01

    Full Text Available Since antimicrobial resistance among uropathogens against current first line agents has affected the management of severe urinary tract infection, we determined the likelihood that antibiotic regimens achieve bactericidal pharmacodynamic exposures using Monte Carlo simulation for five antimicrobials (ciprofloxacin, ceftriaxone, piperacillin/tazobactam, ertapenem, and meropenem commonly prescribed as initial empirical treatment of inpatients with severe community acquired urinary tract infections. Minimum inhibitory concentration determination by Etest was performed for 205 Brazilian community urinary tract infection Escherichia coli strains from 2008 to 2012 and 74 E. coli bloodstream strains recovered from a surveillance study. Pharmacodynamic exposure was modeled via a 5000 subject Monte Carlo simulation. All isolates were susceptible to ertapenem and meropenem. Piperacillin/tazobactam, ceftriaxone and ciprofloxacin showed 100%, 97.5% and 83.3% susceptibility among outpatient isolates and 98.6%, 75.7% and 64.3% among inpatient isolates, respectively. Against outpatient isolates, all drugs except ciprofloxacin (82.7% in aggressive and 77.6% in conservative scenarios achieved high cumulative fraction of response: car-bapenems and piperacillin/tazobactam cumulative fraction of responses were close to 100%, and ceftriaxone cumulative fraction of response was 97.5%. Similar results were observed against inpatients isolates for carbapenems (100% and piperacillin/tazobactam (98.4%, whereas ceftriaxone achieved only 76.9% bactericidal cumulative fraction of response and ciprofloxacin 61.9% (aggressive scenario and 56.7% (conservative scenario respectively. Based on this model, standard doses of beta-lactams were predicted to deliver sufficient pharmacodynamic exposure for outpatients. However, ceftriaxone should be avoided for inpatients and ciprofloxacin empirical prescription should be avoided in both inpatients and outpatients with complicated

  18. The challenge of developing robust drugs to overcome resistance

    OpenAIRE

    Anderson, Amy C; Schiffer, Celia; Pollastri, Michael; Peet, Norton P.

    2011-01-01

    Drug resistance is problematic in microbial disease, viral disease and cancer. Understanding at the outset that resistance will impact the effectiveness of any new drug that is developed for these disease categories is imperative. In this Feature, we detail approaches that have been taken with selected drug targets to reduce the susceptibility of new drugs to resistance mechanisms. We will also define the concepts of robust drugs and resilient targets, and discuss how the design of robust dru...

  19. Multi-Drug Resistance Mediated by Class 1 Integrons in Aeromonas Isolated from Farmed Freshwater Animals.

    Science.gov (United States)

    Deng, Yuting; Wu, Yali; Jiang, Lan; Tan, Aiping; Zhang, Ruiquan; Luo, Li

    2016-01-01

    Aeromonas is regarded as an important pathogen of freshwater animals but little is known about the genetics of its antimicrobial resistance in Chinese aquaculture. The aim of this study was to investigate the presence of integrons and characterize multidrug resistant Aeromonas spp. isolated from diseased farmed freshwater animals. These animal samples included fish, ornamental fish, shrimp, turtles, and amphibians which were collected from 64 farms in Guangdong province of South China. One hundred and twelve Aeromonas spp. isolates were examined for antimicrobial resistance phenotypes and the presence of class 1 integron sequences. Twenty-two (19.6%) of these isolates carried a class 1 integron comprising six different gene insertion cassettes including drfA12-orfF-aadA2, drfA12-orfF, aac(6')-II-bla OXA-21 -cat3, catB3, arr-3, and dfrA17. Among these, drfA12-orfF-aadA2 was the dominant gene cassette array (63.6%, 14/22) and this is the first report of aac(6')-II-bla OXA-21 -cat3 in an Aeromonas hydrophila isolate from a Chinese giant salamander (Andrias davidianus). All the integron-positive strains were resistant to more than five agents and 22 contained other resistance genes including bla CTX-M-3, bla TEM-1, aac(6')-Ib-cr, and tetA. All integron-positive isolates also contained mutations in the quinolone resistance determining regions (QRDR). Our investigation demonstrates that freshwater animals can serve as a reservoir for pathogenic Aeromonas strains containing multiple drug-resistance integrons. This data suggests that surveillance for antimicrobial resistance of animal origin and a prudent and responsible use of antimicrobials in aquaculture is necessary in these farms. PMID:27379065

  20. Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhea

    OpenAIRE

    Unemo, Magnus; Nicholas, Robert A

    2012-01-01

    The new superbug Neisseria gonorrhoeae has retained resistance to antimicrobials previously recommended for first-line treatment and has now demonstrated its capacity to develop resistance to the extended-spectrum cephalosporin, ceftriaxone, the last remaining option for first-line empiric treatment of gonorrhea. An era of untreatable gonorrhea may be approaching, which represents an exceedingly serious public health problem. Herein, we review the evolution, origin and spread of antimicrobial...

  1. 抗菌药物不合理使用现状分析及对策%Antimicrobial unreasonable use present situation analysis and Countermeasures of drug

    Institute of Scientific and Technical Information of China (English)

    张雪艳

    2015-01-01

    目的:对不合理使用抗菌药物对疾病进行治疗的现象进行分析,并为减少此类情况的发生提出相应对策。方法通过对过去积累的抗菌药物不合理使用情况的归纳,对不合理使用抗菌药物的情况进行分析,并针对现状施以相应对策。结果经过调查统计发现,抗菌药物不合理利用的情况十分严重。结论由于抗菌药物应用不合理导致了一些细菌耐药性的增高,为临床上对细菌感染的治疗带来了较大困难,需要及时给予相应措施,尽量使抗菌药的使用合理正常。%Objective Irrational use of antimicrobial drugs for the treatment of diseases of the phenomenon analyzed, and to reduce the occurrence of such cases put forward corresponding countermeasures. Methods Through the accumulation of past irrational use of antimicrobial drugs induction, irrational use of antimicrobial agents in the case of the analysis, and to impose countermeasures against the status quo. Results After a survey found that irrational use of antimicrobial drugs situation is very serious. Conclusion Due to the unreasonable application of antimicrobial drugs has led to some increase in bacterial resistance, for the clinical treatment of bacterial infections caused great difficulties, the need for timely given the appropriate measures to try to make rational use of antimicrobial drugs properly.

  2. Occurrence of antimicrobial resistance among bacterial pathogens and indicator bacteria in pigs in different European countries from year 2002 – 2004: the ARBAO-II study

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Mevius, Dik J; Schroeter, Andreas;

    2008-01-01

    Background: The project "Antibiotic resistance in bacteria of animal origin - II" (ARBAO-II) was funded by the European Union (FAIR5-QLK2-2002-01146) for the period 2003-05. The aim of this project was to establish a program for the continuous monitoring of antimicrobial susceptibility...... of pathogenic and indicator bacteria from food animals using validated and harmonised methodologies. In this report the first data on the occurrence of antimicrobial resistance among bacteria causing infections in pigs are reported. Methods: Susceptibility data from 17,642 isolates of pathogens and indicator...... susceptible to all d