WorldWideScience

Sample records for antimicrobial agents

  1. Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Sigrid Mayrhofer

    2011-01-01

    Full Text Available Strains of the genus Bifidobacterium are frequently used as probiotics, for which the absence of acquired antimicrobial resistance has become an important safety criterion. This clarifies the need for antibiotic susceptibility data for bifidobacteria. Based on a recently published standard for antimicrobial susceptibility testing of bifidobacteria with broth microdilution method, the range of susceptibility to selected antibiotics in 117 animal bifidobacterial strains was examined. Narrow unimodal MIC distributions either situated at the low-end (chloramphenicol, linezolid, and quinupristin/dalfopristin or high-end (kanamycin, neomycin concentration range could be detected. In contrast, the MIC distribution of trimethoprim was multimodal. Data derived from this study can be used as a basis for reviewing or verifying present microbiological breakpoints suggested by regulatory agencies to assess the safety of these micro-organisms intended for the use in probiotics.

  2. Antimicrobials for bacterial bioterrorism agents.

    Science.gov (United States)

    Sarkar-Tyson, Mitali; Atkins, Helen S

    2011-06-01

    The limitations of current antimicrobials for highly virulent pathogens considered as potential bioterrorism agents drives the requirement for new antimicrobials that are suitable for use in populations in the event of a deliberate release. Strategies targeting bacterial virulence offer the potential for new countermeasures to combat bacterial bioterrorism agents, including those active against a broad spectrum of pathogens. Although early in the development of antivirulence approaches, inhibitors of bacterial type III secretion systems and cell division mechanisms show promise for the future.

  3. Pharmacogenomics of antimicrobial agents.

    Science.gov (United States)

    Aung, Ar Kar; Haas, David W; Hulgan, Todd; Phillips, Elizabeth J

    2014-01-01

    Antimicrobial efficacy and toxicity varies between individuals owing to multiple factors. Genetic variants that affect drug-metabolizing enzymes may influence antimicrobial pharmacokinetics and pharmacodynamics, thereby determining efficacy and/or toxicity. In addition, many severe immune-mediated reactions have been associated with HLA class I and class II genes. In the last two decades, understanding of pharmacogenomic factors that influence antimicrobial efficacy and toxicity has rapidly evolved, leading to translational success such as the routine use of HLA-B*57:01 screening to prevent abacavir hypersensitivity reactions. This article examines recent advances in the field of antimicrobial pharmacogenomics that potentially affect treatment efficacy and toxicity, and challenges that exist between pharmacogenomic discovery and translation into clinical use.

  4. Repurposing celecoxib as a topical antimicrobial agent

    Directory of Open Access Journals (Sweden)

    Mohamed N. Seleem

    2015-07-01

    Full Text Available There is an urgent need for new antibiotics and alternative strategies to combat multidrug-resistant bacterial pathogens, which are a growing clinical issue. Repurposing existing approved drugs with known pharmacology and toxicology is an alternative strategy to accelerate antimicrobial research and development. In this study, we show that celecoxib, a marketed inhibitor of cyclooxygenase-2, exhibits broad-spectrum antimicrobial activity against Gram-positive pathogens from a variety of genera, including Staphylococcus, Streptococcus, Listeria, Bacillus, and Mycobacterium, but not against Gram-negative pathogens. However, celecoxib is active against all of the Gram-negative bacteria tested, including strains of, Acinetobacter, and Pseudomonas, when their intrinsic resistance is artificially compromised by outer membrane permeabilizing agents such as colistin. The effect of celecoxib on incorporation of radioactive precursors into macromolecules in Staphylococcus aureus was examined. The primary antimicrobial mechanism of action of celecoxib was the dose-dependent inhibition of RNA, DNA, and protein synthesis. Further, we demonstrate the in vivo efficacy of celecoxib in a methicillin-resistant S. aureus (MRSA infected Caenorhabditis elegans whole animal model. Topical application of celecoxib (1 and 2% significantly reduced the mean bacterial count in a mouse model of MRSA skin infection. Further, celecoxib decreased the levels of all inflammatory cytokines tested, including tumor necrosis factor-α, interleukin-6, interleukin-1 beta, and monocyte chemo attractant protein-1 in wounds caused by MRSA infection. Celecoxib also exhibited synergy with many conventional antimicrobials when tested against four clinical isolates of S. aureus. Collectively, these results demonstrate that celecoxib alone, or in combination with traditional antimicrobials, has a potential to use as a topical drug for the treatment of bacterial skin infections.

  5. Risk factors in the management of antimicrobial agents in nursing

    Directory of Open Access Journals (Sweden)

    Regina Consolação dos Santos

    2016-06-01

    Full Text Available Current retrospective, descriptive, document-based study identified the risk factors in the administration of antimicrobial drugs by the nursing team. The hospital records at the Hematology and Oncology clinics of patients treated with antimicrobial agents in a hospital in the center-western region of the state of Minas Gerais, Brazil, between January 2008 and December 2011, were analyzed. Data were investigated with IBM program, Statistical Package of Social Sciences (SPSS 21.0 and inferential statistics. Chi-square and Fisher´s exact tests were employed to assess the differences between the categorical variables. Risk factors related to the administration of antimicrobial agents by the nursing team comprised lack of records of phlogistic infection signs; inadequate schedules for the administration of antimicrobial drugs; lack of precaution and isolation measures and of swab sampling. Continuous education programs for nurses, focusing on safe administration of antimicrobial agents, are highly relevant.

  6. SPICES AS ANTIMICROBIAL AGENTS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Saha Rajsekhar

    2012-02-01

    Full Text Available The sources of drug are classified as plant, animal, minerals sources. The products from plants are used in many ways by human in there day today life. The best and the most important use are as food, and as spices. It does not matter which ever the civilization, what ever be the race and color of humans the main food comes from the plant. The spices are the vegetative substances used for to flavor the food. They are also used as preservative and are useful for the humans in many other ways. A spice could be dried seed, fruit, root, bark, or vegetative substance used in nutritionally insignificant quantities as a food additive for flavor, color, or as a preservative that kills harmful bacteria or prevents their growth. It may be used to flavor a dish or to hide other flavors. In the kitchen, spices are distinguished from herbs, which are leafy, green plant parts used for flavoring or as garnish. The above article is an effort to bring out the importance of some daily used spices as antimicrobial agents.

  7. Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology.

    Science.gov (United States)

    Khelaifia, S; Drancourt, M

    2012-09-01

    We herein review the state of knowledge regarding the in vitro and in vivo susceptibility of archaea to antimicrobial agents, including some new molecules. Indeed, some archaea colonizing the human microbiota have been implicated in diseases such as periodontopathy. Archaea are characterized by their broad-spectrum resistance to antimicrobial agents. In particular, their cell wall lacks peptidoglycan, making them resistant to antimicrobial agents interfering with peptidoglycan biosynthesis. Archaea are, however, susceptible to the protein synthesis inhibitor fusidic acid and imidazole derivatives. Also, squalamine, an antimicrobial agent acting on the cell wall, proved effective against human methanogenic archaea. In vitro susceptibility data could be used to design protocols for the decontamination of complex microbiota and the selective isolation of archaea in anaerobic culture. PMID:22748132

  8. In vitro susceptibility of Citrobacter species to various antimicrobial agents.

    OpenAIRE

    Samonis, G.; Ho, D H; Gooch, G F; Rolston, K V; Bodey, G P

    1987-01-01

    The in vitro activities of 16 antimicrobial agents against 14 clinical isolates of Citrobacter diversus and 27 isolates of Citrobacter freundii were studied. C. freundii isolates were more resistant, being susceptible only to amikacin, netilmicin, gentamicin, imipenem, ciprofloxacin, and enoxacin. C. diversus isolates were susceptible to many more of the agents tested.

  9. Preparation of Antimicrobial Agent Loaded Microcapsules For Medical Textiles

    OpenAIRE

    Güldemet Başal; Senem Karagönlü

    2013-01-01

    The aim of this work is to develop microcapsules loaded with antimicrobial agent to apply medical textile products. For this purpose St. John's Wort oil (Hypericum perforatum) with antimicrobial activity was encapsulated by complex coacervation method using gelatin (GE) and gum arabic (GA) as wall material. The effect of various processing parameters, including the amount of oil, amount of surfactant and stirring rate at hardening stage on the encapsulation yield, particle size distribution a...

  10. Scope of Hydrolysable Tannins as Possible Antimicrobial Agent.

    Science.gov (United States)

    Ekambaram, Sanmuga Priya; Perumal, Senthamil Selvan; Balakrishnan, Ajay

    2016-07-01

    Hydrolysable tannins (HTs) are secondary metabolites from plants, which are roughly classified into gallotannins and ellagitannins having gallic acid and ellagic acid residues respectively attached to the hydroxyl group of glucose by ester linkage. The presence of hexahydroxydiphenoyl and nonahydroxyterphenoyl moieties is considered to render antimicrobial property to HTs. HTs also show considerable synergy with antibiotics. Nevertheless, they have low pharmacokinetic property. The present review presents the scope of HTs as future antimicrobial agent. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27062587

  11. Human Health Consequences of Use of Antimicrobial Agents in Aquaculture

    DEFF Research Database (Denmark)

    Heuer, Ole Eske; Kruse, H.; Grave, K.;

    2009-01-01

    Intensive use of antimicrobial agents in aquaculture provides a selective pressure creating reservoirs of drug-resistant bacteria and transferable resistance genes in fish pathogens and other bacteria in the aquatic environment. From these reservoirs, resistance genes may disseminate by horizontal...... gene transfer and reach human pathogens, or drug-resistant pathogens from the aquatic environment may reach humans directly. Horizontal gene transfer may occur in the aquaculture environment, in the food chain, or in the human intestinal tract. Among the antimicrobial agents commonly used...... in aquaculture, several are classified by the World Health Organisation as critically important for use in humans. Occurrence of resistance to these antimicrobial agents in human pathogens severely limits the therapeutic options in human infections. Considering the rapid growth and importance of aquaculture...

  12. Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics

    Directory of Open Access Journals (Sweden)

    Ziwei Liu

    2013-01-01

    Full Text Available Chitosan (CS is a linear polysaccharide with good biodegradability, biocompatibility and antimicrobial activity, which makes it potentially useful for biomedical applications, including an antimicrobial agent either alone or blended with other polymers. However, the poor solubility of CS in most solvents at neutral or high pH substantially limits its use. Quaternary ammonium CS, which was prepared by introducing a quaternary ammonium group on a dissociative hydroxyl group or amino group of the CS, exhibited improved water solubility and stronger antibacterial activity relative to CS over an entire range of pH values; thus, this quaternary modification increases the potential biomedical applications of CS in the field of anti-infection. This review discusses the current findings on the antimicrobial properties of quaternized CS synthesized using different methods and the mechanisms of its antimicrobial actions. The potential antimicrobial applications in the orthopedic field and perspectives regarding future studies in this field are also considered.

  13. Plant antimicrobial peptides as potential anticancer agents.

    Science.gov (United States)

    Guzmán-Rodríguez, Jaquelina Julia; Ochoa-Zarzosa, Alejandra; López-Gómez, Rodolfo; López-Meza, Joel E

    2015-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy.

  14. Ecological Effects of Antimicrobial Agents on the Human Intestinal Microflora

    OpenAIRE

    Nord, C E; Edlund, C

    2011-01-01

    Administration of antimicrobial agents may seriously disturb the balance of the normal intestinal microflora. This may cause bacterial overgrowth and emergence of resistant microorganisms which may lead to serious infections and also encourage transfer of resistance factors among bacteria. This review article summarises published scientific reports on the ecological effect of penicillins, cephalosporins, monobactams, carbapenems, macrolides, tetracyclines, nitroimidazoles, clindamycin and qui...

  15. Chemerin is an antimicrobial agent in human epidermis.

    Directory of Open Access Journals (Sweden)

    Magdalena Banas

    Full Text Available Chemerin, a chemoattractant ligand for chemokine-like receptor 1 (CMKLR1 is predicted to share similar tertiary structure with antibacterial cathelicidins. Recombinant chemerin has antimicrobial activity. Here we show that endogenous chemerin is abundant in human epidermis, and that inhibition of bacteria growth by exudates from organ cultures of primary human skin keratinocytes is largely chemerin-dependent. Using a panel of overlapping chemerin-derived synthetic peptides, we demonstrate that the antibacterial activity of chemerin is primarily mediated by Val(66-Pro(85, which causes direct bacterial lysis. Therefore, chemerin is an antimicrobial agent in human skin.

  16. Synthesis and Evaluation of Some Coumarin Containing Potential Antimicrobial Agents

    OpenAIRE

    Kudale, Sayali D.; Meenakshi N. Deodhar

    2012-01-01

    A series of the Schiff’s bases incorporating coumarin and chalcone moeities, 3-(4-(4-(substituted phenyl)prop-1-ene-3-one) phenylimino) methyl)-4-chloro-2h-chromen-2-one 4(a-g) were synthesized as potential antimicrobial agents. These compounds were characterized on the basis of their spectral (IR, 1H NMR) data and evaluated for antimicrobial activity in vitro against gram positive and gram negative bacteria and fungi. Compound 4b was found to be most active with an MIC of 20 µg/mL against al...

  17. Current and future challenges in the development of antimicrobial agents.

    Science.gov (United States)

    Rennie, Robert P

    2012-01-01

    Micro-organisms exist to survive. Even in the absence of antimicrobial agents, many have determinants of resistance that may be expressed phenotypically, should the need arise. With the advent of the antibiotic age, as more and more drugs were developed to treat serious infections, micro-organisms (particularly bacteria) rapidly developed resistance determinants to prevent their own demise.The most important determinants of resistance have been in the Gram-positive and Gram-negative bacteria. Among Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE) and penicillin-resistant Streptococcus pneumoniae (PRSP) have taxed researchers and pharmaceutical companies to develop new agents that are effective against these resistant strains. Among the Gram-negative bacteria, extended-spectrum beta-lactamase (ESBL) enzymes, carbapenemases (CREs) and the so-called amp-C enzymes that may be readily transferred between species of enterobacteriaceae and other facultative species have created multi-drug resistant organisms that are difficult to treat. Other resistance determinants have been seen in other clinically important bacterial species such as Neisseria gonorrhoeae, Clostridium difficile, Haemophilus influenzae and Mycobacterium tuberculosis. These issues have now spread to fungal agents of infection.A variety of modalities have been used to stem the tide of resistance. These include the development of niche compounds that target specific resistance determinants. Other approaches have been to find new targets for antimicrobial activity, use of combination agents that are effective against more than one target in the cell, or new delivery mechanism to maximize the concentration of antimicrobial agents at the site of infection without causing toxicity to the host. It is important that such new modalities have been proved effective for clinical therapy. Animal models and non-mammalian systems have been developed to

  18. Resistance of Streptococcus sanguis biofilms to antimicrobial agents

    DEFF Research Database (Denmark)

    Larsen, T; Fiehn, N E

    1996-01-01

    Bacteria living in biofilms as dental plaque on tooth surfaces are generally more resistant to antimicrobial agents than bacteria in batch culture normally used for in vitro susceptibility testing. In order to compare the resistance of free-living and surface-grown oral bacteria, the MIC of Strep......Bacteria living in biofilms as dental plaque on tooth surfaces are generally more resistant to antimicrobial agents than bacteria in batch culture normally used for in vitro susceptibility testing. In order to compare the resistance of free-living and surface-grown oral bacteria, the MIC...... of Streptococcus sanguis 804 and ATCC 10556 to amoxicillin, doxycycline and chlorhexidine was determined by a broth dilution method. Subsequently, S. sanguis biofilms established in an in vitro flow model were perfused with the antimicrobial agents for 48 h at concentrations equal to and up to 500 times the MIC......, and biofilm cell number was determined during this period. The antibiotics at the MIC did not affect the cell number of S. sanguis biofilms compared to the starting point, and only after 48 h at 500 times the MIC were the biofilm bacteria eliminated. At intermediate concentrations biofilm cell number...

  19. Essential oils as natural food antimicrobial agents: a review.

    Science.gov (United States)

    Vergis, Jess; Gokulakrishnan, P; Agarwal, R K; Kumar, Ashok

    2015-01-01

    Food-borne illnesses pose a real scourge in the present scenario as the consumerism of packaged food has increased to a great extend. Pathogens entering the packaged foods may survive longer, which needs a check. Antimicrobial agents either alone or in combination are added to the food or packaging materials for this purpose. Exploiting the antimicrobial property, essential oils are considered as a "natural" remedy to this problem other than its flavoring property instead of using synthetic agents. The essential oils are well known for its antibacterial, antiviral, antimycotic, antiparasitic, and antioxidant properties due to the presence of phenolic functional group. Gram-positive organisms are found more susceptible to the action of the essential oils. Essential oils improve the shelf-life of packaged products, control the microbial growth, and unriddle the consumer concerns regarding the use of chemical preservatives. This review is intended to provide an overview of the essential oils and their role as natural antimicrobial agents in the food industry. PMID:24915323

  20. Glycosylated Nanoparticles as Efficient Antimicrobial Delivery Agents.

    Science.gov (United States)

    Eissa, Ahmed M; Abdulkarim, Ali; Sharples, Gary J; Cameron, Neil R

    2016-08-01

    Synthetic polymer nanoparticles that can be tailored through multivalent ligand display on the surface, while at the same time allowing encapsulation of desired bioactive molecules, are especially useful in providing a versatile and robust platform in the design of specific delivery vehicles for various purposes. Glycosylated nanoparticles (glyco-NPs) of a poly(n-butyl acrylate) (pBA) core and poly(N-2-(β-d-glucosyloxy)ethyl acrylamide) (p(NβGlcEAM)) or poly(N-2-(β-D-galactosyloxy)ethyl acrylamide) (p(NβGalEAM)) corona were prepared via nanoprecipitation in aqueous solutions of preformed amphiphilic glycopolymers. Well-defined block copolymers of (poly(pentafluorophenyl acrylate) (pPFPA) and pBA were first prepared by RAFT polymerization followed by postpolymerization functionalization with aminoethyl glycosides to yield p(NβGlcEAM-b-BA) and p(NβGalEAM-b-BA), which were then used to form glyco-NPs (glucosylated and galactosylated NPs, Glc-NPs and Gal-NPs, respectively). The glyco-NPs were characterized by dynamic light scattering (DLS) and TEM. Encapsulation and release of ampicillin, leading to nanoparticles that we have termed "glyconanobiotics", were studied. The ampicillin-loaded glyco-NPs were found to induce aggregation of Staphylococcus aureus and Escherichia coli and resulted in antibacterial activity approaching that of ampicillin itself. This glyconanobiotics strategy represents a potential new approach for the delivery of antibiotics close to the surface of bacteria by promoting bacterial aggregation. Defined release in the proximity of the bacterial envelope may thus enhance antibacterial efficiency and potentially reduce the quantities of agent required for potency. PMID:27434596

  1. Development of non-natural flavanones as antimicrobial agents.

    Directory of Open Access Journals (Sweden)

    Zachary L Fowler

    Full Text Available With growing concerns over multidrug resistance microorganisms, particularly strains of bacteria and fungi, evolving to become resistant to the antimicrobial agents used against them, the identification of new molecular targets becomes paramount for novel treatment options. Recently, the use of new treatments containing multiple active ingredients has been shown to increase the effectiveness of existing molecules for some infections, often with these added compounds enabling the transport of a toxic molecule into the infecting species. Flavonoids are among the most abundant plant secondary metabolites and have been shown to have natural abilities as microbial deterrents and anti-infection agents in plants. Combining these ideas we first sought to investigate the potency of natural flavonoids in the presence of efflux pump inhibitors to limit Escherichia coli growth. Then we used the natural flavonoid scaffold to synthesize non-natural flavanone molecules and further evaluate their antimicrobial efficacy on Escherichia coli, Bacillus subtilis and the fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus. Of those screened, we identified the synthetic molecule 4-chloro-flavanone as the most potent antimicrobial compound with a MIC value of 70 µg/mL in E. coli when combined with the inhibitor Phe-Arg-ß-naphthylamide, and MICs of 30 µg/mL in S. cerevesiae and 30 µg/mL in C. neoformans when used alone. Through this study we have demonstrated that combinatorial synthesis of non-natural flavonones can identify novel antimicrobial agents with activity against bacteria and fungi but with minimal toxicity to human cells.

  2. Essential oil nanoemulsions as antimicrobial agents in food.

    Science.gov (United States)

    Donsì, Francesco; Ferrari, Giovanna

    2016-09-10

    The crescent interest in the use of essential oils (EOs) as natural antimicrobials and preservatives in the food industry has been driven in the last years by the growing consumers' demand for natural products with improved microbial safety, and fresh-like organoleptic properties. Nanoemulsions efficiently contribute to support the use of EOs in foods by increasing their dispersibility in the food areas where microorganisms grow and proliferate, by reducing the impact on the quality attributes of the product, as well as by enhancing their antimicrobial activity. Understanding how nanoemulsions intervene on the mass transfer of EOs to the cell membrane and on the mechanism of antimicrobial action will support the engineering of more effective delivery systems and foster the application of EOs in real food systems. This review focuses on the enabling contribution of nanoemulsions to the use of EOs as natural preservative agents in food, (a) specifically addressing the formulation and fabrication of stable EO nanoemulsions, (b) critically analyzing the reported antimicrobial activity data, both in vitro and in product, to infer the impact of the delivery system on the mechanisms of action of EOs, as well as (c) discussing the regulatory issues associated with their use in food systems.

  3. Essential oil nanoemulsions as antimicrobial agents in food.

    Science.gov (United States)

    Donsì, Francesco; Ferrari, Giovanna

    2016-09-10

    The crescent interest in the use of essential oils (EOs) as natural antimicrobials and preservatives in the food industry has been driven in the last years by the growing consumers' demand for natural products with improved microbial safety, and fresh-like organoleptic properties. Nanoemulsions efficiently contribute to support the use of EOs in foods by increasing their dispersibility in the food areas where microorganisms grow and proliferate, by reducing the impact on the quality attributes of the product, as well as by enhancing their antimicrobial activity. Understanding how nanoemulsions intervene on the mass transfer of EOs to the cell membrane and on the mechanism of antimicrobial action will support the engineering of more effective delivery systems and foster the application of EOs in real food systems. This review focuses on the enabling contribution of nanoemulsions to the use of EOs as natural preservative agents in food, (a) specifically addressing the formulation and fabrication of stable EO nanoemulsions, (b) critically analyzing the reported antimicrobial activity data, both in vitro and in product, to infer the impact of the delivery system on the mechanisms of action of EOs, as well as (c) discussing the regulatory issues associated with their use in food systems. PMID:27416793

  4. Comparisons of Halogenated β-Nitrostyrenes as Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Hugh Cornell

    2014-08-01

    Full Text Available The influence of three types of halogen-substituted E-β-methyl-β-nitrostyrenes (such as Compounds B, D, H to overcome bacterial activity that is currently a significant health threat was studied. The evaluations of their bio-potency was measured and related to their structure and activity relationships for the purposes of serving to inhibit and overcoming resistant microorganisms. In particular, fluorine-containing β-nitrostyrenes were found to be highly active antimicrobial agents. The addition of the β-bromo group enhanced the antibacterial activity significantly. Our work has illustrated that halogen substituents at both the 4-position in the aromatic ring and also at the β-position on the alkene side chain of nitropropenyl arenes enhanced the antimicrobial activity of these compounds.

  5. Preparation of Antimicrobial Agent Loaded Microcapsules For Medical Textiles

    Directory of Open Access Journals (Sweden)

    Güldemet Başal

    2013-04-01

    Full Text Available The aim of this work is to develop microcapsules loaded with antimicrobial agent to apply medical textile products. For this purpose St. John's Wort oil (Hypericum perforatum with antimicrobial activity was encapsulated by complex coacervation method using gelatin (GE and gum arabic (GA as wall material. The effect of various processing parameters, including the amount of oil, amount of surfactant and stirring rate at hardening stage on the encapsulation yield, particle size distribution and capsule loading was investigated. In general, at high oil content the encapsulation yield, capsule size and oil loading increased. As expected an increase in the amount of surfactant decreased the capsule size. In this case, the loading was low, as well. High stirring rate increased the encapsulation yield and capsule siz.

  6. Positively charged co-polymers for use as antimicrobial agents

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides a positively charged co-polymer for use as an antimicrobial agent, wherein said positively charged co-polymer is composed of amino acids and/or derivatives thereof and wherein at least 75 molar percent of said amino acids are selected from the group consisting...... of alanine, lysine, glutamate, arginine and tyrosine and/or derivatives thereof. The present invention also provides methods for treating, preventing or ameliorating a microbial infection comprising administration of positively charged random co-polymers as well as a pharmaceutical composition comprising...... said co-polymer. The invention further provides a kit of parts comprising the positively charged random co-polymer....

  7. Bio-inspired nanomaterials and their applications as antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Smita Sachin Zinjarde

    2012-01-01

    Full Text Available In the recent decades, the interdisciplinary field of nanotechnology has expanded extensively. A variety of nanoparticles (NPs have been used for a number of specialized applications. In this era facing a major problem of microorganisms developing antibiotic resistance, NPs are a lucrative option. Most physical and chemical processes of NP synthesis are associated with drawbacks and bio-inspired NPs have now become popular. This review summarizes the recent developments on the biosynthesis, characterization, and applications of NPs with particular reference to their use as antimicrobial agents. Reviewed here is the synthesis of gold and silver NPs (AgNPs by a variety of biological forms and biomolecules as well as their effectiveness toward different fungal and bacterial pathogens. The use of gold NPs (bio-inspired by plants, fungi, and bacteria and AgNPs, synthesized by carbohydrates (of plant, animal, and microbial origin, plant parts (bark, callus, leaves, peels, and tubers, fungi, and bacteria have been highlighted. In addition, the use of zinc oxide NPs (although not bio-inspired as novel antimicrobial agents have also been discussed.

  8. Comparative in vitro activities of twelve antimicrobial agents against Campylobacter species.

    OpenAIRE

    Fliegelman, R M; Petrak, R M; Goodman, L. J.; Segreti, J; Trenholme, G M; Kaplan, R L

    1985-01-01

    The in vitro susceptibility of 27 Campylobacter jejuni, 31 Campylobacter coli, and 30 Campylobacter fetus subsp. fetus strains to 12 antimicrobial agents was determined. Ciprofloxacin, a new quinoline derivative, was the most active agent tested. Antimicrobial susceptibility differed among the three species tested.

  9. Oxygen tension during biofilm growth influences the efficacy antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Raquel Pippi ANTONIAZZI

    Full Text Available Abstract Objective To compare the antimicrobial efficacy of a 0.12% chlorhexidine (CHX and herbal green tea (Camellia sinensis solution on established biofilms formed at different oxygen tensions in an in situ model. Method Twenty-five dental students were eligible for the study. In situ devices with standardized enamel specimens (ES facing the palatal and buccal sides were inserted in the mouths of volunteers for a 7 day period. No agent was applied during the first four days. From the fifth day onward, both agents were applied to the test ES group and no agent was applied to the control ES group. After 7 days the ES fragments were removed from the devices, sonicated, plated on agar, and incubated for 24 h at 37 °C to determine and quantify the colony forming units (CFUs. Result CHX had significantly higher efficacy compared to green tea on the buccal (1330 vs. 2170 CFU/µL and palatal (2250 vs. 2520 CFU/µL ES. In addition, intragroup comparisons showed significantly higher efficacy in buccal ES over palatal ES (1330 vs. 2250 CFU/µL for CHX and 2170 vs, 2520 CFU/µL for CV for both solutions. Analysis of the ES controls showed significantly higher biofilm formation in palatal ES compared to buccal ES. Conclusion CHX has higher efficacy than green tea on 4-day biofilms. The efficacy of both agents was reduced for biofilms grown in a low oxygen tension environment. Therefore, the oxygen tension environment seems to influence the efficacy of the tested agents.

  10. THE STUDY THE EFFICACY AND SAFETY OF ANTIMICROBIAL AGENTS

    Directory of Open Access Journals (Sweden)

    V. V. Bagaeva

    2015-01-01

    Full Text Available Abstract:Effective treatment of patients with infectious and inflammatory diseases of the skin and mucous membranes often involves the use of antimicrobial agents.The purpose of the study was an in vitro estimation of cytotoxicity and the efficiency of national resources for local use: gel with bacteriophages («Otofag», «Fagogin», «Fagoderm», «Fagodent» and antiseptic — «Сhlorhexidine» and «Miramistin».Materials and Methods. To study the effectiveness of antimicrobial agents they used to provide crop strains of Staphylococcus aureus and Streptococcus pyogenes as one of the most common representatives of pathogens. The study of cell viability and cytotoxicity antimicrobials performed on cell lines KB — epidermoid carcinoma of the oral cavity of a human. For this purpose we use mikrotetrazoly test, which is widely used in the assessment of the effects on the cells of toxins, pharmaceuticals, adverse environmental factors, allowing to evaluate the toxicity of investigational drugs in vitro.The results showed that the efficacy against pathogens Staphylococcus aureus and Streptococcus pyogenes, has even a 10‑fold dilution of «Сhlorhexidine» 0.05% and gels with bacteriophages. Antiseptic «Miramistin» is effective only on the initial concentration. The study of cytotoxicity showed that the processing of epidermoid carcinoma cells with «Chlorhexidine» and «Мiramistin» invokes the irreversible reactions, while the composition processing of gels based on bacteriophages not further affect cell viability.Conclusions The results of the experiment confirmed the significant toxicity of tools such as «Сhlorhexidine» and «Miramistin» in proposed concentrations in the pharmacy network. Despite the high efficiency of these vehicles with regard to the studied pathogens, their long-term use in treatment of inflammatory diseases of the skin and mucous membranes can cause a slowing of repair processes. Gel means with bacteriophages

  11. In vitro susceptibility of Streptococcus mutans to chlorhexidine and six other antimicrobial agents.

    OpenAIRE

    Järvinen, H; Tenovuo, J; Huovinen, P

    1993-01-01

    The susceptibility of Streptococcus mutans to chlorhexidine and to six commonly used, systemic antibacterial agents (amoxicillin, cefuroxime, penicillin, sulfamethoxazole-trimethoprim, tetracycline, and erythromycin) was studied for 424 clinical isolates from 116 children and students. The MIC of chlorhexidine for all isolates was < or = 1 micrograms/ml. No resistance to the other antimicrobial agents was detected. Although widely exposed to various antimicrobial agents, S. mutans has remaine...

  12. Novel Zinc(II Complexes of Heterocyclic Ligands as Antimicrobial Agents: Synthesis, Characterisation, and Antimicrobial Studies

    Directory of Open Access Journals (Sweden)

    Ramesh S. Yamgar

    2014-01-01

    Full Text Available The synthesis and antimicrobial activity of novel Zn(II metal complexes derived from three novel heterocyclic Schiff base ligands 8-[(Z-{[3-(N-methylaminopropyl]imino}methyl]-7-hydroxy-4-methyl-2H-chromen-2-one, 2-[(E-{[4-(1H-1,2,4-triazol-1-ylmethylphenyl]imino}methyl]phenol, and (4S-4-{4-[(E-(2-hydroxybenzylideneamino]benzyl}-1,3-oxazolidin-2-one have been described. These Schiff base ligands and metal complexes are characterised by spectroscopic techniques. According to these data, we propose an octahedral geometry to all the metal complexes. Antimicrobial activity of the Schiff base ligand and its metal complexes was studied against Gram negative bacteria: E. coli and Pseudomonas fluorescens, Gram positive bacteria: Staphylococcus aureus, and also against fungi, that is, C. albicans and A. niger. Some of the metal complexes show significant antifungal activity (MIC < 0.2 μg/mL. The “in vitro” data has identified [Zn(NMAPIMHMC2]·2H2O, [Zn(TMPIMP2]·2H2O, and [Zn(HBABO2]·2H2O as potential therapeutic antifungal agents against C. albicans and A. niger.

  13. Animals living in polluted environments are potential source of antimicrobials against infectious agents

    OpenAIRE

    Lee, Simon; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2012-01-01

    The antimicrobials crisis is a ticking time bomb which could lead to millions of people dying from untreatable infections. With the worsening trends of antimicrobial resistance, we are heading towards a pre-antibiotic era. Thus, there is a need for newer and more powerful antibiotic agents. The search for new antibiotic compounds originating from natural resources is a promising research area. Animals living in germ-infested environments are a potent source of antimicrobials. Under polluted m...

  14. Comparative physiological disposition of two nitrofuran anti-microbial agents.

    Science.gov (United States)

    Labaune, J P; Moreau, J P; Byrne, R

    1986-01-01

    The physiological disposition of two nitrofuran derivatives used as antimicrobial agents for the treatment of acute infectious diarrhoea was evaluated in humans and animals. Upon administration of a single oral dose (600 mg) of nifurzide or nifuroxazide, no unchanged parent drug was detected in human blood or urine. In rats given 14C-nifurzide and 14C-nifuroxazide at a dose of 10 mg kg-1, 5 per cent and 17 per cent of the dose of nifurzide and nifuroxazide, respectively, were excreted in urine over a 48-hour period. None of this radioactivity was present as unchanged drug, indicating that renal excretion of both drugs occurs as metabolites. In the faeces 20 per cent of the radioactivity recovered was associated with unchanged nifuroxazide as compared with 100 per cent for nifurzide. Whole body autoradiography using rats showed that after oral administration of 14C-nifurzide and 14C-nifuroxazide, most of the radioactivity remained in the gastrointestinal lumen. PMID:3779034

  15. In vitro susceptibility of Campylobacter jejuni from Kuwait to tigecycline & other antimicrobial agents

    Directory of Open Access Journals (Sweden)

    M John Albert

    2013-01-01

    Full Text Available Background & objectives: There is an increasing frequency of resistance of Campylobacter jejuni to antimicrobial agents making treatment difficult. In this study, the in vitro susceptibility of C. jejuni isolates collected over an eight year period was tested against tigecycline, a glycylcycline, the previously tested antimicrobial agents in Kuwait, ciprofloxacin, erythromycin and tetracycline, and other antimicrobial agents not previously tested in Kuwait, amoxicillin-clavulanic acid, gentamicin, imipenem and meropenem. Methods: A total of 97 C. jejuni isolates from diarrhoeal stools of Kuwaiti patients during 2002-2010 were studied for susceptibility to the above antimicrobial agents by E test. Results: Erythromycin resistance increased from 5.0 per cent in 2002-2003 to 13.8 per cent in 2007-2010. The figures for ciprofloxacin resistance for the same periods were 53 and 65.5 per cent, respectively. Tetracycline resistance increased from 40.0 per cent in 2003-2006 to 62.1 per cent in 2007-2010 (P=0.05. However, all isolates were uniformly susceptible to tigecycline and other antimicrobial agents. Interpretation & conclusions: There was a progressive increase in the prevalence of resistance to ciprofloxacin, erythromycin and tetracycline. As all isolates were uniformly susceptible to tigecycline, this antimicrobial agent can be considered as a potential candidate for treatment in clinical studies.

  16. In vitro potency and combination testing of antimicrobial agents against Neisseria gonorrhoeae.

    Science.gov (United States)

    Bharat, Amrita; Martin, Irene; Zhanel, George G; Mulvey, Michael R

    2016-03-01

    Antimicrobial resistant Neisseria gonorrhoeae is a major concern to public health due to decreased susceptibility to frontline antimicrobials. To find agents that are active against N. gonorrhoeae, we tested antimicrobials alone or in combination by Etest gradient strips. The potencies (as assessed by minimum inhibitory concentrations) of twenty-five antimicrobials were evaluated against nine reference strains of N. gonorrhoeae (WHO F, G, K, L, M, N, O, P and ATCC 49226). Potency was greatest for netilmicin, quinupristin-dalfopristin, ceftriaxone, ertapenem and piperacillin-tazobactam. Combinations of azithromycin, moxifloxacin, or gentamicin with ceftriaxone, doripenem, or aztreonam were tested against reference isolates and the fractional inhibitory concentration index (FICI) was calculated. All nine combinations resulted in indifference (>0.5 FICI ≤ 4). Combinations with FICI gonorrhoeae. These data on antimicrobials with higher potency and combinations that did not show antagonism can help to guide larger scale susceptibility studies for antimicrobial resistant N. gonorrhoeae.

  17. Susceptibility of bacterial etiological agents to commonly-used antimicrobial agents in children with sepsis at the Tamale Teaching Hospital

    OpenAIRE

    Acquah, Samuel EK; Quaye, Lawrence; Sagoe, Kenneth; Juventus B. Ziem; Bromberger, Patricia I; Amponsem, Anthony A

    2013-01-01

    Background Bloodstream infections in neonates and infants are life-threatening emergencies. Identification of the common bacteria causing such infections and their susceptibility patterns will provide necessary information for timely intervention. This study is aimed at determining the susceptibilities of bacterial etiological agents to commonly-used antimicrobial agents for empirical treatment of suspected bacterial septicaemia in children. Methods This is a hospital based retrospective anal...

  18. ASSAY FOR RAPID SCREENING OF PHYTOCHEMICALS AS ANTIMICROBIAL AGENTS

    Directory of Open Access Journals (Sweden)

    Ghosh Saurav

    2013-01-01

    Full Text Available The present study aims to develop a rapid method for antibiotic sensitivity detection and screening of natural products for antimicrobial activity. The dimension of WBC in blood film was found to get altered when seeded with bacteria and monitored under light microscope. The shrinkage was prevented in response to antibiotic treatment and validated using statistical analysis (two sample one tailed Z test. Thus here is a prompt (4 h assay system for detection of blood infection, antibiotic sensitivity detection as well as natural antimicrobial candidate molecule screening using identical procedure. The antimicrobial activity of ethanolic leaf extract of Mentha spicata against multidrug resistant Pseudomonas auregenosa from clinical origin was screened using both conventional disc diffusion method and the rapid shrinkage method. Both the methods showed equal efficiency with the later being much faster (4 h than the conventional method (72 h.

  19. Ammonium derivatives of chromenones and quinolinones as lead antimicrobial agents

    Indian Academy of Sciences (India)

    Shilpi Gupta; Seema Singh; Abha Kathuria; Manish Kumar; Sweta Sharma; Ram Kumar; Virinder S Parmar; Bharat Singh; Anjali Gupta; Erik Van Der Eycken; Gainda L Sharma; Sunil K Sharma

    2012-03-01

    A series of novel ammonium derivatives were synthesized and examined for their antimicrobial efficacy. Comparison of antimicrobial spectrum revealed that compounds 9, 11, 16 and 23 had strong potential against pathogens in vitro. Cytotoxicity results showed compound 9 to be least toxic, it is non-toxic to A549 and U87 cells in MTT assay and exhibits marginal toxicity (15-20%) to human erythrocytes at a concentration of 1000 g/ml as compared to 100% lysis of cells by 31.25 g/ml of the standard drug amphotericin B. This compound has MIC values in the range of 1.95-31.25 g/disc in DDA against different pathogens and may considered to be an important lead antimicrobial molecule for further exploration.

  20. Staphylococcus aureus small colony variants are susceptible to light activated antimicrobial agents

    OpenAIRE

    Tubby, S.; Wilson, M.; Wright, J A; Zhang, P.; Nair, S. P.

    2013-01-01

    Background: Antibiotic therapy can select for small colony variants of Staphylococcus aureus that are more resistant to antibiotics and can result in persistent infections, necessitating the development of more effective antimicrobial strategies to combat small colony variant infections. Photodynamic therapy is an alternative treatment approach which utilises light in combination with a light-activated antimicrobial agent to kill bacteria via a non-specific mechanism of action. In...

  1. A novel approach to pharmacodynamic assessment of antimicrobial agents: new insights to dosing regimen design.

    Directory of Open Access Journals (Sweden)

    Vincent H Tam

    Full Text Available Pharmacodynamic modeling has been increasingly used as a decision support tool to guide dosing regimen selection, both in the drug development and clinical settings. Killing by antimicrobial agents has been traditionally classified categorically as concentration-dependent (which would favor less fractionating regimens or time-dependent (for which more frequent dosing is preferred. While intuitive and useful to explain empiric data, a more informative approach is necessary to provide a robust assessment of pharmacodynamic profiles in situations other than the extremes of the spectrum (e.g., agents which exhibit partial concentration-dependent killing. A quantitative approach to describe the interaction of an antimicrobial agent and a pathogen is proposed to fill this unmet need. A hypothetic antimicrobial agent with linear pharmacokinetics is used for illustrative purposes. A non-linear functional form (sigmoid Emax of killing consisted of 3 parameters is used. Using different parameter values in conjunction with the relative growth rate of the pathogen and antimicrobial agent concentration ranges, various conventional pharmacodynamic surrogate indices (e.g., AUC/MIC, Cmax/MIC, %T>MIC could be satisfactorily linked to outcomes. In addition, the dosing intensity represented by the average kill rate of a dosing regimen can be derived, which could be used for quantitative comparison. The relevance of our approach is further supported by experimental data from our previous investigations using a variety of gram-negative bacteria and antimicrobial agents (moxifloxacin, levofloxacin, gentamicin, amikacin and meropenem. The pharmacodynamic profiles of a wide range of antimicrobial agents can be assessed by a more flexible computational tool to support dosing selection.

  2. Squalamine as an example of a new potent antimicrobial agents class: a critical review.

    Science.gov (United States)

    Alhanout, K; Rolain, J M; Brunel, J M

    2010-01-01

    An important strategy to circumvent the problem of antimicrobial resistance is to search for new compounds with antimicrobial activity. In this context, aminosterols, which include squalamine-like compounds and ceragenins, have gained interest due to their wide spectrum of antibacterial and antifungal properties. In light of recently reported data, we decided to analyze the mechanism of action of these compounds as well as their antimicrobial properties. Aminosterols are active against both bacterial reference strains and multidrug-resistant antibiotics as they disrupt the integrity of the bacterial membrane. Thus, these compounds could be useful in the development of new topical decontaminants or disinfecting agents. PMID:20858213

  3. Synthesis and characterization of barbitones as antimicrobial agents

    Directory of Open Access Journals (Sweden)

    H. G. SANGANI

    2006-06-01

    Full Text Available Barbitones (3 were synthesised by the condensation of chalcones (2 with barbituric acid. The structure of the synthesized compounds were assigned on the basis of elemental analyses, IR, NMR and mass spectral studies. All the products were evaluated for their in vitro antimicrobial activity against various strains of bacteria and fungi.

  4. Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    1999-01-01

    Antimicrobial agents are used in food animals for therapy and prophylaxis of bacterial infections and in feed to promote growth. The use of antimicrobial agents for food animals may cause problems in the therapy of infections by selecting for resistance among bacteria pathogenic for animals...... animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimens to limit the development of resistance is incomplete. Surveillance programmes monitoring the occurrence and development of resistance and consumption...... of antimicrobial agents are urgently needed, as is research into the most appropriate ways to use antimicrobial agents in veterinary medicine to limit the emergence and spread of antimicrobial resistance. (C) 1999 Elsevier Science B.V. and International Society of Chemotherapy. All rights reserved....

  5. Aerosol delivery of antimicrobial agents during mechanical ventilation: current practice and perspectives.

    Science.gov (United States)

    Michalopoulos, Argyris; Metaxas, Eugenios I; Falagas, Matthew E

    2011-03-01

    Critically ill patients, who develop ventilator-associated pneumonia during prolonged mechanical ventilation, often require antimicrobial agents administered through the endotracheal or the tracheotomy tube. The delivery of antibiotics via the respiratory tract has been established over the past years as an alternative route in order to deliver high concentrations of antimicrobial agents directly to the lungs and avoid systemic toxicity. Since the only formal indications for inhaled/aerosolized antimicrobial agents is for patients suffering from cystic fibrosis, consequently the majority of research and published studies concerns this group of patients. Newer devices and new antibiotic formulations are currently off-label used in ambulatory cystic fibrosis patients whereas similar data for the mechanically ventilated patients do not yet exist. PMID:21235473

  6. In Vitro Susceptibility of Equine-Obtained Isolates of Corynebacterium pseudotuberculosis to Gallium Maltolate and 20 Other Antimicrobial Agents

    Science.gov (United States)

    Batista, M.; Lawhon, S. D.; Zhang, S.; Kuskie, K. R.; Swinford, A. K.; Bernstein, L. R.; Cohen, N. D.

    2014-01-01

    This study's objective was to determine the in vitro antimicrobial activities of gallium maltolate (GaM) and 20 other antimicrobial agents against clinical equine isolates of Corynebacterium pseudotuberculosis. The growth of cultured isolates was not inhibited by any concentration of GaM. MIC data revealed susceptibility to commonly used antimicrobials. PMID:24829243

  7. Susceptibility to antimicrobial agents and plasmid carrying in Aeromonas hydrophila isolated from two estuarine systems.

    Science.gov (United States)

    Montoya, R; Dominguez, M; Gonzalez, C; Mondaca, M A; Zemelman, R

    1992-01-01

    Susceptibility to various antimicrobial agents and the presence of plasmids was investigated in eleven strains of Aeromonas hydrophila isolated from samples of sea water and these strains isolated from Aulacomya ater. Transference of resistance to Escherichia coli was attempted by conjugation and transformation experiments. The strains showed multiple resistance toward beta-lactam antibiotics and susceptibility to other antimicrobial agents. Five strains harboured plasmids with molecular weights below 5.7 MD. It was not possible to relate the resistance of the strains with the presence of their plasmids. PMID:1593967

  8. Synthesis of New Macrocyclic Polyamides as Antimicrobial Agent Candidates

    Directory of Open Access Journals (Sweden)

    Osama I. Abd El-Salam

    2012-12-01

    Full Text Available A series of macrocyclic imides and Schiff-bases have been prepared via the cyclocondensation of pyridine-2,6-dicarbonyl dichloride (1 with L-ornithine methyl ester to give the corresponding macrocyclic bisester 2. Treatment of 2 with hydrazine hydrate gave macrocyclic bisacid hydrazide 3, which was used as starting material. Condensation of bishydrazide 3 with diacid anhydrides or aromatic aldehydes in refluxing acetic acid or ethanol gave the corresponding macrocyclic bisimides 4, 5a,b and macrocyclic bis- hydrazones 6a–j, respectively. The structure assignments of the new compounds were based on chemical and spectroscopic evidence. The antimicrobial screening showed that many of these newly synthesized compounds have good antimicrobial activities, comparable to ampicillin and ketaconazole used as reference drugs.

  9. Susceptibility of bifidobacteria of animal origin to selected antimicrobial agents.

    Science.gov (United States)

    Mayrhofer, Sigrid; Mair, Christiane; Kneifel, Wolfgang; Domig, Konrad J

    2011-01-01

    Strains of the genus Bifidobacterium are frequently used as probiotics, for which the absence of acquired antimicrobial resistance has become an important safety criterion. This clarifies the need for antibiotic susceptibility data for bifidobacteria. Based on a recently published standard for antimicrobial susceptibility testing of bifidobacteria with broth microdilution method, the range of susceptibility to selected antibiotics in 117 animal bifidobacterial strains was examined. Narrow unimodal MIC distributions either situated at the low-end (chloramphenicol, linezolid, and quinupristin/dalfopristin) or high-end (kanamycin, neomycin) concentration range could be detected. In contrast, the MIC distribution of trimethoprim was multimodal. Data derived from this study can be used as a basis for reviewing or verifying present microbiological breakpoints suggested by regulatory agencies to assess the safety of these micro-organisms intended for the use in probiotics. PMID:22312561

  10. Pectin functionalized with natural fatty acids as antimicrobial agent.

    Science.gov (United States)

    Calce, Enrica; Mignogna, Eleonora; Bugatti, Valeria; Galdiero, Massimiliano; Vittoria, Vittoria; De Luca, Stefania

    2014-07-01

    Several pectin derivatives were prepared by chemical modifications of the polysaccharide with natural fatty acids. The obtained biodegradable pectin-based materials, pectin-linoleate, pectin-oleate and pectin-palmitate, were investigated for their antimicrobial activity against several bacterial strains, Staphylococcus aureus and Escherichia coli. Good results were obtained for pectin-oleate and pectin-linoleate, which inhibit the growth of the selected microorganisms by 50-70%. They exert the better antimicrobial activity against S. aureus. Subsequently, the pectin-oleate and the pectin-linoleate samples were coated on polyethylene films and were assessed for their capacity to capture the oxygen molecules, reducing its penetration into the polymeric support. These results confirmed a possible application of the new materials in the field of active food packaging.

  11. ASSAY FOR RAPID SCREENING OF PHYTOCHEMICALS AS ANTIMICROBIAL AGENTS

    OpenAIRE

    Ghosh Saurav; Indranil Mukherjee; Ashoke Ranjan Thakur; Shaon Ray Chaudhuri

    2013-01-01

    The present study aims to develop a rapid method for antibiotic sensitivity detection and screening of natural products for antimicrobial activity. The dimension of WBC in blood film was found to get altered when seeded with bacteria and monitored under light microscope. The shrinkage was prevented in response to antibiotic treatment and validated using statistical analysis (two sample one tailed Z test). Thus here is a prompt (4 h) assay system for detection of blood infection, antibiotic se...

  12. Carbon nanodots as molecular scaffolds for development of antimicrobial agents.

    Science.gov (United States)

    Ngu-Schwemlein, Maria; Chin, Suk Fun; Hileman, Ryan; Drozdowski, Chris; Upchurch, Clint; Hargrove, April

    2016-04-01

    We report the potential of carbon nanodots (CNDs) as a molecular scaffold for enhancing the antimicrobial activities of small dendritic poly(amidoamines) (PAMAM). Carbon nanodots prepared from sago starch are readily functionalized with PAMAM by using N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Electron microscopy images of these polyaminated CNDs show that they are approximately 30-60nm in diameter. Infrared and fluorescence spectroscopy analyses of the water-soluble material established the presence of the polyamidoaminated moiety and the intrinsic fluorescence of the nanodots. The polyaminated nanodots (CND-PAM1 and CND-PAM2) exhibit in vitro antimicrobial properties, not only to non-multidrug resistant bacteria but also to the corresponding Gram-negative multidrug bacteria. Their minimum inhibitory concentration (MIC) ranges from 8 to 64μg/mL, which is much lower than that of PAMAM G1 or the non-active PAMAM G0 and CNDs. Additionally, they show synergistic effect in combination with tetracycline or colistin. These preliminary results imply that CNDs can serve as a promising scaffold for facilitating the rational design of antimicrobial materials for combating the ever-increasing threat of antibiotic resistance. Moreover, their fluorescence could be pertinent to unraveling their mode of action for imaging or diagnostic applications. PMID:26923697

  13. Workshop report: the 2012 antimicrobial agents in veterinary medicine: exploring the consequences of antimicrobial drug use: a 3-D approach.

    Science.gov (United States)

    Martinez, M; Blondeau, J; Cerniglia, C E; Fink-Gremmels, J; Guenther, S; Hunter, R P; Li, X-Z; Papich, M; Silley, P; Soback, S; Toutain, P-L; Zhang, Q

    2014-02-01

    Antimicrobial resistance is a global challenge that impacts both human and veterinary health care. The resilience of microbes is reflected in their ability to adapt and survive in spite of our best efforts to constrain their infectious capabilities. As science advances, many of the mechanisms for microbial survival and resistance element transfer have been identified. During the 2012 meeting of Antimicrobial Agents in Veterinary Medicine (AAVM), experts provided insights on such issues as use vs. resistance, the available tools for supporting appropriate drug use, the importance of meeting the therapeutic needs within the domestic animal health care, and the requirements associated with food safety and food security. This report aims to provide a summary of the presentations and discussions occurring during the 2012 AAVM with the goal of stimulating future discussions and enhancing the opportunity to establish creative and sustainable solutions that will guarantee the availability of an effective therapeutic arsenal for veterinary species.

  14. Synthesis of Novel Quinazoline Derivatives as Antimicrobial Agents

    Institute of Scientific and Technical Information of China (English)

    ALY,A.A

    2003-01-01

    Quinazoline isothiocyanate 1 reacts with various nucleophiles(nitrogen nucleophiles,oxygen nucleophiles and sulphur nucleophiles)to afford heterocyclic systemes 2-13,Also,the [4+2] cycloaddition reaction of 1 with phenyl isocyanate,benzylidene aryl amine and cinnamic acid derivatives gave novel heterocyclic compounds 14-16,Moreover,the reaction of 1 with active methylene compounds under Michael reaction conditions also was investigated to yield 17 and 18 and it was found that all these reactions proceede via isothiocyanate heterocyclization to furnish non-condensed heterocyclic compoundes,Some of the newly synthesized compounds were tested for their antimicrobial activities.

  15. The in vitro activity of 15 antimicrobial agents against bacterial isolates from dogs.

    Science.gov (United States)

    Awji, Elias Gebru; Damte, Dereje; Lee, Seung-Jin; Lee, Joong-Su; Kim, Young-Hoan; Park, Seung-Chun

    2012-08-01

    The in vitro activity of 15 antimicrobial agents against clinical isolates of Staphylococcus pseudintermedius, Staphylococcus aureus, Escherichia coli, Pasteurella spp. and Streptococcus canis from dogs was investigated. For Staphylococcus spp., the highest frequency of resistance was observed for penicillin, followed by ampicillin, tetracycline and chloramphenicol. The highest frequency of resistance in E. coli isolates was recorded for tetracycline and streptomycin. Pasteurella spp. and S. canis had the highest resistance rate for tetracycline and chloramphenicol. Most isolates showed full susceptibility to low-level resistance to colistin, florfenicol and fluoroquinolones. Further studies using larger number of isolates from both healthy and diseased dogs would provide a broader picture of antimicrobial resistance at a national level and promote prudent use of antimicrobial agents in companion animals. PMID:22516694

  16. Benzofuran as a promising scaffold for the synthesis of antimicrobial and antibreast cancer agents: A review

    Directory of Open Access Journals (Sweden)

    Ghadamali Khodarahmi

    2015-01-01

    Full Text Available Benzofuran as an important heterocyclic compound is extensively found in natural products as well as synthetic materials. Since benzofuran drivatives display a diverse array of pharmacological activities, an interest in developing new biologically active agents from benzofuran is still under consideration. This review highlights recent findings on biological activities of benzofuran derivatives as antimicrobial and antibreast cancer agents and lays emphasis on the importance of benzofurans as a major source for drug design and development.

  17. Effectiveness of Cinnamon Oil Coating on K-wire as an Antimicrobial Agent against Staphylococcus Epidermidis

    OpenAIRE

    Magetsari, R

    2013-01-01

    Abstract Background: Chronic osteomyelitis remains one of the common problems with the use of orthopaedic implants. Staphylococcus epidermidis is notorious for its biofilm formation on indwelling medical devices and is one of the most frequent pathogenic agents in chronic osteomyelitis. Cinnamon oil has been proven to be an effective antimicrobial agent against several bacteria, including S. epidermidis. The eradication of S. epidermidis and prevention of biofilm formation on medical devices ...

  18. Plant-derived antimicrobial agents and their synergistic interaction against drug-sensitive and -resistant pathogens

    OpenAIRE

    Mulyaningsih, Sri

    2010-01-01

    Resistance toward antibiotics has become a problem on a global scale. Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE) are a major cause of morbidity and mortality in hospitalized patients. To overcome resistance, many antimicrobial agents have been investigated and Traditional Chinese Medicinal (TCM) plants were also examined as source of alternative agents. Eucalyptus globulus Labill (Myrtaceae) was the most active plant among the 84 T...

  19. Inhibitory effects of antimicrobial agents against Fusarium species.

    Science.gov (United States)

    Kawakami, Hideaki; Inuzuka, Hiroko; Hori, Nobuhide; Takahashi, Nobumichi; Ishida, Kyoko; Mochizuki, Kiyofumi; Ohkusu, Kiyofumi; Muraosa, Yasunori; Watanabe, Akira; Kamei, Katsuhiko

    2015-08-01

    We investigated the inhibitory effects of antibacterial, biocidal, and antifungal agents against Fusarium spp. Seven Fusarium spp: four F. falciforme (Fusarium solani species complex), one Fusarium spp, one Fusarium spp. (Fusarium incarnatum-equiseti species complex), and one F. napiforme (Gibberella fujikuroi species complex), isolated from eyes with fungal keratitis were used in this study. Their susceptibility to antibacterial agents: flomoxef, imipenem, gatifloxacin, levofloxacin, moxifloxacin, gentamicin, tobramycin, and Tobracin® (contained 3,000 μg/ml of tobramycin and 25 μg/ml of benzalkonium chloride (BAK), a biocidal agent: BAK, and antifungal agents: amphotericin B, pimaricin (natamycin), fluconazole, itraconazole, miconazole, voriconazole, and micafungin, was determined by broth microdilution tests. The half-maximal inhibitory concentration (IC50), 100% inhibitory concentration (IC100), and minimum inhibitory concentration (MIC) against the Fusarium isolates were determined. BAK had the highest activity against the Fusarium spp. except for the antifungal agents. Three fluoroquinolones and two aminoglycosides had inhibitory effects against the Fusarium spp. at relatively high concentrations. Tobracin® had a higher inhibitory effect against Fusarium spp. than tobramycin alone. Amphotericin B had the highest inhibitory effect against the Fusarium spp, although it had different degrees of activity against each isolate. Our findings showed that fluoroquinolones, aminoglycosides, and BAK had some degree of inhibitory effect against the seven Fusarium isolates, although these agents had considerably lower effect than amphotericin B. However, the inhibitory effects of amphotericin B against the Fusarium spp. varied for the different isolates. Further studies for more effective medications against Fusarium, such as different combinations of antibacterial, biocidal, and antifungal agents are needed.

  20. Animals living in polluted environments are potential source of antimicrobials against infectious agents

    Science.gov (United States)

    Lee, Simon; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2012-01-01

    The antimicrobials crisis is a ticking time bomb which could lead to millions of people dying from untreatable infections. With the worsening trends of antimicrobial resistance, we are heading towards a pre-antibiotic era. Thus, there is a need for newer and more powerful antibiotic agents. The search for new antibiotic compounds originating from natural resources is a promising research area. Animals living in germ-infested environments are a potent source of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of bacteria, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances which show potent activity in the nervous system. We hope that the discovery of antimicrobial activity in the cockroach brain will stimulate research in finding antimicrobials from unusual sources, and has potential for the development of novel antibiotics. Nevertheless, intensive research in the next few years will be required to approach or realize these expectations. PMID:23265422

  1. Metabolic network analysis-based identification of antimicrobial drug targets in category A bioterrorism agents.

    Science.gov (United States)

    Ahn, Yong-Yeol; Lee, Deok-Sun; Burd, Henry; Blank, William; Kapatral, Vinayak

    2014-01-01

    The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents.

  2. Metabolic network analysis-based identification of antimicrobial drug targets in category A bioterrorism agents.

    Directory of Open Access Journals (Sweden)

    Yong-Yeol Ahn

    Full Text Available The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents.

  3. Synthesis of modified pyridine and bipyridine substituted coumarins as potent antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Lad Hemali B.

    2015-01-01

    Full Text Available In search for new antimicrobial agents a series of new modified pyridine and bipyridine substituted coumarins 5a-y was designed and synthesized by adopting molecular hybridization strategy. All the synthesized compounds were evaluated for their in vitro antimicrobial activity using broth dilution method against selected bacterial (Gram-positive and Gram-negative and fungal strains. Compounds 5a, 5f, 5g, 5n, 5r, 5t, 5w, 5x and 5y demonstrated promising antibacterial activity while other derivatives showed comparable activity to standard drugs used as reference.

  4. Small Antimicrobial Agents Based on Acylated Reduced Amide Scaffold.

    Science.gov (United States)

    Teng, Peng; Huo, Da; Nimmagadda, Alekhya; Wu, Jianfeng; She, Fengyu; Su, Ma; Lin, Xiaoyang; Yan, Jiyu; Cao, Annie; Xi, Chuanwu; Hu, Yong; Cai, Jianfeng

    2016-09-01

    Prevalence of drug-resistant bacteria has emerged to be one of the greatest threats in the 21st century. Herein, we report the development of a series of small molecular antibacterial agents that are based on the acylated reduced amide scaffold. These molecules display good potency against a panel of multidrug-resistant Gram-positive and Gram-negative bacterial strains. Meanwhile, they also effectively inhibit the biofilm formation. Mechanistic studies suggest that these compounds kill bacteria by compromising bacterial membranes, a mechanism analogous to that of host-defense peptides (HDPs). The mechanism is further supported by the fact that the lead compounds do not induce resistance in MRSA bacteria even after 14 passages. Lastly, we also demonstrate that these molecules have therapeutic potential by preventing inflammation caused by MRSA induced pneumonia in a rat model. This class of compounds could lead to an appealing class of antibiotic agents combating drug-resistant bacterial strains. PMID:27526720

  5. Chitosan as an antimicrobial agent for footwear leather components

    OpenAIRE

    Barros, M.C.; Fernandes, I.P.; Amaral, J.S.; Barreiro, M.F.; De Pinto, V; Ferreira, M. J.

    2009-01-01

    In the footwear industry, microorganisms’ growth can pose problems of material deterioration with associated unpleasant smell and generate possible infections in susceptible individuals. Generally, footwear presents high relative humidity conditions that enable the growth of bacteria and fungi. Additionally, leather itself and some tannery agents such as oils and greases, provide a substrate where microorganisms can grow. In the foot, microtraumas caused by ingrown nails, abrasions and lacera...

  6. STUDY OF PRESCRIBING PATTERNS OF ANTIMICROBIAL AGENTS IN THE PAEDIATRIC WARDS AT TERTIARY TEACHING CARE HOSPITAL, GUJARAT

    Directory of Open Access Journals (Sweden)

    Vipul Prajapati* and J.D. Bhatt

    2012-07-01

    Full Text Available Background: Prescription of drugs, which needs to be continuously assessed and refined according to disease progression. It not only reflects the physician’s knowledge about drugs but also his/her skill in diagnose and attitude towards selecting the most appropriate cost-effective treatment. Antimicrobials are among the most commonly prescribed drugs in hospital. As per literature, they account for over 50% of total value of drugs sold in our country. Such studies have been sparse from Gujarat and hence, this study was undertaken.Methods: Retrospective study was carried out by collecting 350 prescriptions containing antimicrobial agents in paediatric department at Sir Sayajirao General (SSG Hospital, Vadodara to assess the prescribing patterns of antimicrobial agents. All information about the drugs details recorded in pre-tested Proforma that was finalized by our Pharmacology department. Results: Total 350 prescriptions containing 690 antimicrobial drugs were prescribed in patients during study. Of them aminoglycosides (233; 33.77% was frequently prescribed followed by β-lactam group (191; 27.68 and cephalosporins (176; 25.5%. Average numbers of antimicrobials per prescription was 1.97.Out of 690 antimicrobial prescribed, 576(83.48% were prescribed by generic name, while 114(16.52% were prescribed by trade name. Total numbers of antimicrobial prescribed by parenteral route were 599 (86.81%, while only 91(13.18% antimicrobial agents were prescribed by oral route. Out of 350 prescriptions two or more than two antimicrobial agents were prescribed in 249(71.14% prescriptions, while 101(28.85% prescriptions constitute one antimicrobial agent. Conclusion: Results indicates need for improving the prescribing pattern of drugs and minimizing the use of antimicrobial agents. It is suggested that further detail analysis to judge the rationality of the therapy is necessary.

  7. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

    Science.gov (United States)

    Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan

    2009-07-01

    Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

  8. Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents

    Science.gov (United States)

    Valdivia-Silva, Julio; Medina-Tamayo, Jaciel; Garcia-Zepeda, Eduardo A.

    2015-01-01

    Chemokines are a burgeoning family of chemotactic cytokines displaying a broad array of functions such as regulation of homeostatic leukocyte traffic and development, as well as activating the innate immune system. Their role in controlling early and late inflammatory stages is now well recognized. An improper balance either in chemokine synthesis or chemokine receptor expression contributes to various pathological disorders making chemokines and their receptors a useful therapeutic target. Research in this area is progressing rapidly, and development of novel agents based on chemokine/chemokine receptors antagonist functions are emerging as attractive alternative drugs. Some of these novel agents include generation of chemokine-derived peptides (CDP) with potential agonist and antagonist effects on inflammation, cancer and against bacterial infections. CDP have been generated mainly from N- and C-terminus chemokine sequences with subsequent modifications such as truncations or elongations. In this review, we present a glimpse of the different pharmacological actions reported for CDP and our current understanding regarding the potential use of CDP alone or as part of the novel therapies proposed in the treatment of microbial infections and cancer. PMID:26062132

  9. Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents

    Directory of Open Access Journals (Sweden)

    Julio Valdivia-Silva

    2015-06-01

    Full Text Available Chemokines are a burgeoning family of chemotactic cytokines displaying a broad array of functions such as regulation of homeostatic leukocyte traffic and development, as well as activating the innate immune system. Their role in controlling early and late inflammatory stages is now well recognized. An improper balance either in chemokine synthesis or chemokine receptor expression contributes to various pathological disorders making chemokines and their receptors a useful therapeutic target. Research in this area is progressing rapidly, and development of novel agents based on chemokine/ chemokine receptors antagonist functions are emerging as attractive alternative drugs. Some of these novel agents include generation of chemokine-derived peptides (CDP with potential agonist and antagonist effects on inflammation, cancer and against bacterial infections. CDP have been generated mainly from N- and C-terminus chemokine sequences with subsequent modifications such as truncations or elongations. In this review, we present a glimpse of the different pharmacological actions reported for CDP and our current understanding regarding the potential use of CDP alone or as part of the novel therapies proposed in the treatment of microbial infections and cancer.

  10. MEDICINAL PLANTS USED AS ANTIMICROBIAL AGENTS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Parmar Namita

    2012-01-01

    Full Text Available Infectious diseases are caused by pathogenic microorganisms, such as bacteria, viruses, parasites or fungi. Diseases can spread, directly or indirectly, from one person to another. Infectious diseases are the second leading cause of death worldwide. About one-fourth of all the medicines we use, come from rainforest plants. However, scientific studies have been conducted only to a limited extent with few medicinal plants. The development of bacterial resistance to presently available antibiotics has necessitated the search of new antibacterial agents. In rural and backward area of India, several plants are commonly used as herbal medicine for the treatment of infectious diseases. Four such plants commonly used by the people of the area were screened for potential antibacterial activity.

  11. Synthesis and In Vitro Evaluation of New Thiosemicarbazone Derivatives as Potential Antimicrobial Agents

    OpenAIRE

    Zafer Asım Kaplancıklı; Mehlika Dilek Altıntop; Belgin Sever; Zerrin Cantürk; Ahmet Özdemir

    2016-01-01

    In an effort to develop potent antimicrobial agents, new thiosemicarbazone derivatives were synthesized via the reaction of 4-[4-(trifluoromethyl)phenyl]thiosemicarbazide with aromatic aldehydes. The compounds were evaluated for their inhibitory effects on pathogenic bacteria and yeasts using the CLSI broth microdilution method. Microplate Alamar Blue Assay was also carried out to determine the antimycobacterial activities of the compounds against Mycobacterium tuberculosis H37Rv. Among these...

  12. Effects of antimicrobial agents on growth and chemotaxis of Trichomonas vaginalis.

    OpenAIRE

    Sugarman, B; Mummaw, N

    1988-01-01

    The motility of viable Trichomonas vaginalis organisms is readily demonstrable in a clinical wet mount or cultured specimens. We attempted to determine whether migration is a dynamic process such that the organisms move to avoid exposure to toxic antimicrobial agents. With the use of axenic cultures of T. vaginalis that were radiolabeled and assayed for chemotaxis in plastic multiwelled plates with a membrane filter inserted to trap organisms, the response of clinical isolates to various anti...

  13. Comparative in vitro activities of six new fluoroquinolones and other oral antimicrobial agents against Campylobacter pylori.

    OpenAIRE

    Simor, A E; Ferro, S.; Low, D E

    1989-01-01

    The in vitro susceptibilities of 56 clinical isolates of Campylobacter pylori to six new fluoroquinolones and other oral antimicrobial agents were determined by an agar dilution technique. Ciprofloxacin was the most active of the fluoroquinolones (MIC for 90% of strains tested [MIC90], 0.05 microgram/ml). Other fluoroquinolones had variable activities, although most isolates were moderately susceptible to fleroxacin (MIC90, 4 micrograms/ml) and lomefloxacin (MIC90, 4 micrograms/ml).

  14. Inactivation of staphylococcal virulence factors using a light-activated antimicrobial agent

    OpenAIRE

    Wilson Michael; Tubby Sarah; Nair Sean P

    2009-01-01

    Abstract Background One of the limitations of antibiotic therapy is that even after successful killing of the infecting microorganism, virulence factors may still be present and cause significant damage to the host. Light-activated antimicrobials show potential for the treatment of topical infections; therefore if these agents can also inactivate microbial virulence factors, this would represent an advantage over conventional antibiotic therapy. Staphylococcus aureus produces a wide range of ...

  15. Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs.

    Science.gov (United States)

    Singh, Ravina; Nalwa, Hari Singh

    2011-08-01

    This article reviews the applications of nanotechnology in the fields of medical and life sciences. Nanoparticles have shown promising applications from diagnosis to treatment of various types of diseases including cancer. In this review, we discuss the applications of nanostructured materials such as nanoparticles, quantum dots, nanorods, nanowires, and carbon nanotubes in diagnostics, biomarkers, cell labeling, contrast agents for biological imaging, antimicrobial agents, drug delivery systems, and anticancer nanodrugs for treatment of cancer and other infectious diseases. The adverse affects of nanoparticles on human skin from daily use in cosmetics and general toxicology of nanoscale materials are also reviewed. PMID:21870454

  16. The effect of antimicrobial agents on bond strength of orthodontic adhesives: a meta-analysis of in vitro studies.

    Science.gov (United States)

    Altmann, A S P; Collares, F M; Leitune, V C B; Samuel, S M W

    2016-02-01

    Antimicrobial orthodontic adhesives aim to reduce white spot lesions' incidence in orthodontic patients, but they should not jeopardizing its properties. Systematic review and meta-analysis were performed to answer the question whether the association of antimicrobial agents with orthodontic adhesives compromises its mechanical properties and whether there is a superior antimicrobial agent. PubMed and Scopus databases. In vitro studies comparing shear bond strength of conventional photo-activated orthodontic adhesives to antimicrobial photo-activated orthodontic adhesives were considered eligible. Search terms included the following: orthodontics, orthodontic, antimicrobial, antibacterial, bactericidal, adhesive, resin, resin composite, bonding agent, bonding system, and bond strength. The searches yielded 494 citations, which turned into 467 after duplicates were discarded. Titles and abstracts were read and 13 publications were selected for full-text reading. Twelve studies were included in the meta-analysis. The global analysis showed no statistically significant difference between control and experimental groups. In the subgroup analysis, only the chlorhexidine subgroup showed a statistically significant difference, where the control groups had higher bond strength than the experimental groups. Many studies on in vitro orthodontic bond strength fail to report test conditions that could affect their outcomes. The pooled in vitro data suggest that adding an antimicrobial agent to an orthodontic adhesive system does not influence bond strength to enamel. It is not possible to state which antimicrobial agent is better to be associated.

  17. NATURAL ANTIMICROBIAL AGENT USE IN THE PRESERVATION OF FRUITS AND VEGETABLES

    Directory of Open Access Journals (Sweden)

    Elvia Nereyda Rodríguez Sauceda

    2011-01-01

    Full Text Available Today has been a need to find alternatives of conservation, because it has been associated with consumption of poison chemical preservatives. The demand for minimally processed fresh products is increasing, and interest in natural antimicrobial agents (derived from plants, so now looking for the combination of two or more factors that interact additively or synergistically controlling population microbial, allowing it to fresh produce similar products with less additives, it should be noted that the rate of microbial spoilage depends not only on microorganisms but also the chemical combination of product and type of initial microbial load. That is why the main aim of food processing is to provide comfort to humans through a safe, nutritionally adequate and meet the expectations of taste, aroma and appearance, so the use of natural food additives involves the isolation, purification, stabilization and incorporation of these compounds to food antimicrobial purposes, without adversely affecting the sensory characteristics. In general, every time we discover more plants or parts thereof which contain natural antimicrobials, such as including phenolic compounds from bark, stems, leaves, flowers, organic acids present in fruits and phytoalexins produced in plants, so as will not only safer, but better food quality and type of antimicrobials that are regarded as potentially safer sources.

  18. Comparative diffusion assay to assess efficacy of topical antimicrobial agents against Pseudomonas aeruginosa in burns care

    Directory of Open Access Journals (Sweden)

    Godreuil Sylvain

    2011-06-01

    Full Text Available Abstract Background Severely burned patients may develop life-threatening nosocomial infections due to Pseudomonas aeruginosa, which can exhibit a high-level of resistance to antimicrobial drugs and has a propensity to cause nosocomial outbreaks. Antiseptic and topical antimicrobial compounds constitute major resources for burns care but in vitro testing of their activity is not performed in practice. Results In our burn unit, a P. aeruginosa clone multiresistant to antibiotics colonized or infected 26 patients over a 2-year period. This resident clone was characterized by PCR based on ERIC sequences. We investigated the susceptibility of the resident clone to silver sulphadiazine and to the main topical antimicrobial agents currently used in the burn unit. We proposed an optimized diffusion assay used for comparative analysis of P. aeruginosa strains. The resident clone displayed lower susceptibility to silver sulphadiazine and cerium silver sulphadiazine than strains unrelated to the resident clone in the unit or unrelated to the burn unit. Conclusions The diffusion assay developed herein detects differences in behaviour against antimicrobials between tested strains and a reference population. The method could be proposed for use in semi-routine practice of medical microbiology.

  19. Antimicrobial activities of Rhizobium sp. strains against Pseudomonas savastanoi, the agent responsible for the olive knot disease in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, K.; Fadhila, K.; Chahinez, M.; Merien, R.; Philippe, L. de; Abdelkader, B.

    2009-07-01

    In the present investigation, six Rhizobium strains isolated from Algerian soil were checked for their antimicrobial activity against Pseudomonas savastanoi, the agent responsible for olive knot disease. Rhizobium sp. ORN 24 and ORN 83 were found to produce antimicrobial activities against Pseudomonas savastanoi. The antimicrobial activity produced by Rhizobium sp. ORN24 was precipitable with ammonium sulfate, between 1,000 and 10,000 KDa molecular weight, heat resistant but sensitive to proteases and detergents. These characteristics suggest the bacteriocin nature of the antimicrobial substance produced by Rhizobium sp. ORN24, named rhizobiocin 24. In contrast, the antimicrobial activity produced by Rhizobium sp. ORN83 was not precipitable with ammonium sulfate; it was smaller than 1,000 KDa molecular weight, heat labile, and protease and detergent resistant. These characteristics could indicate the relationship between the antimicrobial substance produced by Rhizobium sp. ORN 83 and the small bacteriocins described in other rhizobia. (Author) 51 refs.

  20. Effect of Antimicrobial Agents on Physical and Chemical Properties of Ready-to-eat Bologna

    Directory of Open Access Journals (Sweden)

    Ayca Gedikoglu

    2015-05-01

    Full Text Available Quality and safety of ready-to-eat meat products can be altered by antimicrobial agents such as lactates, diacetates and citrates. This project evaluated the effect of Ional (1.5, 2.5, 3.5%, Ional LC (1.5, 2.5, 3.5% and Optiform SD4 (2.5% compared to a control on selected physical and chemical characteristics of ready-to-eat vacuum-packaged bologna slices stored less than 4°C for up to 112 days of retail display. Water activity (aw, expressible moisture (WHC, pH, fat and moisture content, cooking yield, texture profile analysis, puncture test, Hunter color values were evaluated. Addition of antimicrobials decreased pH. Product with Optiform SD4 (2.5% had the highest cooking yield. Bologna formulated with Optiform SD4 (2.5% had the highest springiness and hardness values after control and the highest puncture value. Water activity was not significantly different (p>0.05 between treatments. Furthermore, day of display had no significant effect on aw. L and a values were not significantly different between treatments, except for Ional LC (3.5% compared to the control. Overall, treatments with Ional (1.5%, (2.5% and Optiform SD4 (2.5% were most effective for preserving the quality of the bologna (s. Also, the highest levels of antimicrobial agents had a detrimental effect on the quality of ready-to-eat bolognas.

  1. Sensitivity of bacterial biofilms and planktonic cells to a new antimicrobial agent, Oxsil 320N.

    Science.gov (United States)

    Surdeau, N; Laurent-Maquin, D; Bouthors, S; Gellé, M P

    2006-04-01

    The effective concentrations of disinfectants were determined for planktonic bacteria using the norms EN 1040 and NF T 72-150. This concentration corresponds to biocide efficacy after 5 min of contact, followed by neutralization. However, micro-organisms often colonize a substratum and form microcolonies or biofilms where they are enclosed in exopolymer matrices. Biofilms are commonly resistant to a broad range of antimicrobial agents, and resistance mechanisms involve exopolymer matrices, changes in gene expression and metabolic alterations. Due to these different resistance mechanisms, it is difficult to select and titrate antimicrobial agents to be effective against biofilms. In this context, SODIFRA developed a new disinfectant, Oxsil 320N (French patent 94 15 193). Oxsil 320N is an association of three active principles: hydrogen peroxide, acetic acid/peracetic acid and silver. This biocide was tested on planktonic bacteria and on 24-h biofilms formed on AISI 304 stainless steel surfaces. The effective concentration of Oxsil 320N was also determined on biofilms using SODIFRA recommendations (without neutralization of the biocide). Data showed that the antimicrobial efficacy measured on planktonic bacteria is not a reliable indicator of performance when biofilm is present. When biofilms were exposed to Oxsil 320N, the concentration needed to achieve a 10(5)-fold decrease in concentration was 10 times higher than that for bacterial suspensions (0.313% Oxsil 320N). An effective concentration of Oxsil 320N of 3.13% was required. PMID:16478644

  2. Discovery of novel berberine imidazoles as safe antimicrobial agents by down regulating ROS generation.

    Science.gov (United States)

    Wen, Si-Qi; Jeyakkumar, Ponmani; Avula, Srinivasa Rao; Zhang, Ling; Zhou, Cheng-He

    2016-06-15

    A series of novel berberine-based imidazole derivatives as new type of antimicrobial agents were developed and characterized. Most of them gave good antibacterial activity toward the Gram-positive and negative bacteria. Noticeably, imidazolyl berberine 3a exhibited low MIC value of 1μg/mL against Eberthella typhosa, which was even superior to reference drugs berberine, chloromycin and norfloxacin. The cell toxicity and ROS generation assay indicated that compound 3a showed low cell toxicity. The interactive investigation by UV-vis spectroscopic method revealed that compound 3a could effectively intercalate into calf thymus DNA to form 3a-DNA complex which might further block DNA replication to exert the powerful antimicrobial activities. The binding behavior of compound 3a to DNA topoisomerase IB revealed that hydrogen bonds and electrostatic interactions played important roles in the association of compound 3a with DNA topoisomerase IB. PMID:27156777

  3. Bioactive and wood-associated stilbenes as multifunctional antimicrobial and health promoting agents - BIOSTIMUL

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. von (Univ. of Kuopio, Dept. of Biosciences (Finland)), email: atte.vonWright@uku.fi

    2009-10-15

    Plant polyphenolics have a wide range of bioactivities. Coniferous trees are a rich source of stilbenes, such as pinosylvin in the genus Pinus. Pinosylvin is structurally very similar to resveratrol, a stilbene found in grapes and red berries, and which is reported to have beneficial health effects such as prevention of cardiovascular diseases, tumourigenesis, and according to recent findings, also type 2 diabetes. In our previous studies the bioactivities of pinosylvin (antimicrobial effects and cytotoxic activities against cancer cells) were very similar to those of resveratrol. In this project we elucidate the potential of pinosylvin and its derivatives in food applications as multifunctional antimicrobial agents with positive health effects (including prevention of type 2 diabetes) highlighting results. (orig.)

  4. Bioactive and wood-associated stilbenes as multifunctional antimicrobial and health promoting agents (BIOSTIMUL)

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. von (Kuopio Univ., Department of Biosciences (Finland))

    2008-07-01

    Plant polyphenolics have a wide range of bioactivities. Coniferous trees are a rich source of stilbenes, such as pinosylvin in the genus Pinus. Pinosylvin is structurally very similar to resveratrol, a stilbene found in grapes and red berries, and which is reported to have beneficial health effects such as prevention of cardiovascular diseases, tumourigenesis, and according to recent findings, also type II diabetes. In our previous studies the bioactivities of pinosylvin (antimicrobial effects and cytotoxic activities against cancer cells) were very similar to those of resveratrol. In this project we elucidate the potential of pinosylvin and as derivatives in food applications as multifunctional antimicrobial agents with positive health effects (including prevention of type II diabetes) highlighting results. (orig.)

  5. Bioactive and wood-associated stilbenes as multifunctional antimicrobial and health promoting agents - BIOSTIMUL

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. von (Univ. of Eastern Finland, Kuopio (Finland). Dept. of Biosciences.), Email: atte.vonWright@uef.fi

    2010-10-15

    Plant polyphenolics have a wide range of bioactivities. Coniferous trees are a rich source of stilbenes, such as pinosylvin in the genus Pinus. Pinosylvin is structurally very similar to resveratrol, a stilbene found in grapes and red berries, and which is reported to have beneficial health effects such as prevention of cardiovascular diseases, tumourigenesis, and according to recent findings, also type II diabetes. In our previous studies the bioactivities of pinosylvin (antimicrobial effects and cytotoxic activities against cancer cells) were very similar to those of resveratrol. In this project we elucidate the potential of pinosylvin and its derivatives in food applications as multifunctional antimicrobial agents with positive health effects (including prevention of type II diabetes) highlighting results. (orig.)

  6. Antimicrobial agents used in the control of periodontal biofilms: effective adjuncts to mechanical plaque control?

    Directory of Open Access Journals (Sweden)

    Ricardo Palmier Teles

    2009-06-01

    Full Text Available The control of biofilm accumulation on teeth has been the cornerstone of periodontal disease prevention for decades. However, the widespread prevalence of gingivitis suggests the inefficiency of self-performed mechanical plaque control in preventing gingival inflammation. This is particularly relevant in light of recent evidence suggesting that long standing gingivitis increases the risk of loss of attachment and that prevention of gingival inflammation might reduce the prevalence of mild to moderate periodontitis. Several antimicrobials have been tested as adjuncts to mechanical plaque control in order to improve the results obtained with oral home care. Recent studies, including meta-analyses, have indicated that home care products containing chemical antimicrobials can provide gingivitis reduction beyond what can be accomplished with brushing and flossing. Particularly, formulations containing chlorhexidine, mouthrinses containing essential oils and triclosan/copolymer dentifrices have well documented clinical antiplaque and antigingivitis effects. In vivo microbiological tests have demonstrated the ability of these antimicrobial agents to penetrate the biofilm mass and to kill bacteria growing within biofilms. In addition, chemical antimicrobials can reach difficult-to-clean areas such as interproximal surfaces and can also impact the growth of biofilms on soft tissue. These agents have a positive track record of safety and their use does not seem to increase the levels of resistant species. Further, no study has been able to establish a correlation between mouthrinses containing alcohol and oral cancer. In summary, the adjunct use of chemical plaque control should be recommended to subjects with well documented difficulties in achieving proper biofilm control using only mechanical means.

  7. Activities of New Antimicrobial Agents (Trovafloxacin, Moxifloxacin, Sanfetrinem, and Quinupristin-Dalfopristin) against Bacteroides fragilis Group: Comparison with the Activities of 14 Other Agents

    OpenAIRE

    Betriu, Carmen; Gómez, María; Palau, M. Luisa; Sánchez, Ana; Picazo, Juan J.

    1999-01-01

    The antimicrobial activities of trovafloxacin, moxifloxacin, sanfetrinem, quinupristin-dalfopristin, and 14 other antimicrobial agents against 218 Bacteroides fragilis group strains were determined. A group of 10 imipenem-resistant strains were also tested. Imipenem, meropenem, and sanfetrinem had the lowest MICs of all of the β-lactams. Quinupristin-dalfopristin inhibited all of the strains at 2 μg/ml. Overall, the MICs of trovafloxacin and moxifloxacin for 90% of the strains tested were 1 a...

  8. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    Science.gov (United States)

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria. PMID:22029522

  9. Effects of Slime Produced by Clinical Isolates of Coagulase-Negative Staphylococci on Activities of Various Antimicrobial Agents

    OpenAIRE

    Souli, Maria; Giamarellou, Helen

    1998-01-01

    A novel in vitro semiquantitative method was developed to investigate the influence of staphylococcal slime on the activities of 22 antimicrobial agents. Pefloxacin, teicoplanin, and vancomycin demonstrated remarkable decreases in efficacy: 30, 52, and 63%, respectively. The activity of rifampin was not significantly reduced (0.99%), whereas all other agents tested were modestly affected (

  10. Efflux pump inhibitors (EPIs as new antimicrobial agents against Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Momen Askoura

    2011-05-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic human pathogen and one of the leading causes of nosocomial infections worldwide. The difficulty in treatment of pseudomonas infections arises from being multidrug resistant (MDR and exhibits resistance to most antimicrobial agents due to the expression of different mechanisms overcoming their effects. Of these resistance mechanisms, the active efflux pumps in Pseudomonas aeruginosa that belong to the resistance nodulation division (RND plays a very important role in extruding the antibiotics outside the bacterial cells providing a protective means against their antibacterial activity. Beside its role against the antimicrobial agents, these pumps can extrude biocides, detergents, and other metabolic inhibitors. It is clear that efflux pumps can be targets for new antimicrobial agents. Peptidomimetic compounds such as phenylalanine arginyl β-naphthylamide (PAβN have been introduced as efflux pump inhibitors (EPIs; their mechanism of action is through competitive inhibition with antibiotics on the efflux pump resulting in increased intracellular concentration of antibiotic, hence, restoring its antibacterial activity. The advantage of EPIs is the difficulty to develop bacterial resistance against them, but the disadvantage is their toxic property hindering their clinical application. The structure activity relationship of these compounds showed other derivatives from PAβN that are higher in their activity with higher solubility in biological fluids and decreased toxicity level. This raises further questions on how can we compact Pseudomonas infections. Of particular importance, the recent resurgence in the use of older antibiotics such as polymyxins and probably applying stricter control measures in order to prevent their spread in clinical sittings.

  11. In Vitro Activities of the Everninomicin SCH 27899 and Other Newer Antimicrobial Agents against Borrelia burgdorferi

    OpenAIRE

    Lisa L. Dever; Torigian, Christine V.; Barbour, Alan G.

    1999-01-01

    The in vitro activity of the everninomicin antibiotic SCH 27899 against 17 isolates of Borrelia spp. was investigated. MICs ranged from 0.06 to 0.5 μg/ml. Time-kill studies with the B31 strain of B. burgdorferi demonstrated ≥3-log10-unit killing after 72 h with concentrations representing four times the MIC. The in vitro activity of four other newer antimicrobial agents, meropenem, cefepime, quinupristin-dalfopristin, and linezolid, was also tested against the B31 strain. Meropenem was the mo...

  12. Comparison of the antimicrobial effect of heavy silicone oil and conventional silicone oil against endophthalmitis-causing agents

    OpenAIRE

    Nurgül Örnek; Teoman Apan; Reyhan Oğurel; Kemal Örnek

    2014-01-01

    Purpose: To conduct an in vitro experimental study comparing the effectiveness of conventional silicone oil and heavy silicone oil against endophthalmitis-causing agents. Materials and Methods: The antimicrobial activity of conventional silicone oil (RS OIL 5000) and heavy silicone oil (heavySil 1500) was tested. The antimicrobial effects of both silicone oils were determined by the growing capability of the microorganism. Results: The number of Staphylococcus aureus, Staphylococcus epidermid...

  13. Trends in the resistance to antimicrobial agents of Streptococcus suis isolates from Denmark and Sweden.

    Science.gov (United States)

    Aarestrup, F M; Rasmussen, S R; Artursson, K; Jensen, N E

    1998-08-28

    This study was conducted to determine the MIC values of historical and contemporary Streptoccocus suis (serotypes 2 and 7) from Denmark and S. suis (serotype 2) from Sweden. A total of 52 isolates originating from 1967 through 1981 and 156 isolates from 1992 through 1997 in Denmark and 13 isolates from Sweden were examined for their MICs against 20 different antimicrobial agents. Most antimicrobials were active against most isolates. A frequent occurrence of resistance to sulphamethoxazole was observed, with most resistance among historic isolates of serotype 7 and least resistance among isolates from Sweden. A large number of the isolates was resistant to macrolides. However, all historic serotype 2 isolates from Denmark were susceptible, whereas 20.4% of the contemporary isolates were resistant. Among serotype 7 isolates 23.3% of the historic isolates were resistant to macrolides, whereas resistance was found in 44.8% of the contemporary isolates. All isolates from Sweden were susceptible to macrolides. Time-associated frequency of resistance to tetracycline was also found. Only a single historic isolate of serotype 2 was resistant to tetracycline, whereas 43.9% of the contemporary serotype 2 isolates and 15.5% of the contemporary serotype 7 isolates were resistant. Only one (7.7%) of the isolates from Sweden was resistant. The differences in resistance between historic and contemporary isolates from Denmark were statistically significant. This study demonstrated a significant serotype-associated difference in the susceptibility to macrolides and tetracycline and demonstrated that an increase in resistance among S. suis isolates has taken place during the last 15 years to the two most commonly used antimicrobial agents (tylosin and tetracycline) in pig production in Denmark. PMID:9810623

  14. In vitro drug resistance of clinical isolated Brucella against antimicrobial agents

    Institute of Scientific and Technical Information of China (English)

    Xiu-Li Xu; Xiao Chen; Pei-Hong Yang; Jia-Yun Liu; Xiao-Ke Hao

    2013-01-01

    Objective:To explore the antibiotic resistance of Brucella melitensisand instruct rational use of antimicrobial agents in clinical treatment ofBrucella infection.Methods:Bacteria were cultured and identified byBACTEC9120 andVITEKⅡ automicrobic system.E-test was used to detect the minimal inhibitory concentration(MIC) of antimicrobial agents in the drug susceptivity experiment.Results:A total of19 brucella strains(allBrucella melitensis) wereisolated from19 patients, who had fever betweenJanuary2010 andJune2012, and17 samples were blood, one was bone marrow, the other sample was cerebrospinal fluid.TheMIC range of ceftazidime was2.0-8.0 mg/L, rifampicin was0.06-2.0 mg/L, amikacin was4.0-12.0 mg/L, levofloxacin was2.0-8.0 mg/L, doxycycline was8.0-32.0 mg/L, sulfamethoxazole-trimethoprim was4.0-16.0 mg/L, ampicillin was1.5-2.0 mg/L and gentamicin was0.50-0.75 mg/L.Conclusions:The drugs used in this experiment cover common drugs for treatingBrcella.Meanwhile, the results are consistent with clinical efficacy.It is suggested personalized regimen according to patients’ status in treatment of Brucella.

  15. Inactivation of staphylococcal virulence factors using a light-activated antimicrobial agent

    Directory of Open Access Journals (Sweden)

    Wilson Michael

    2009-10-01

    Full Text Available Abstract Background One of the limitations of antibiotic therapy is that even after successful killing of the infecting microorganism, virulence factors may still be present and cause significant damage to the host. Light-activated antimicrobials show potential for the treatment of topical infections; therefore if these agents can also inactivate microbial virulence factors, this would represent an advantage over conventional antibiotic therapy. Staphylococcus aureus produces a wide range of virulence factors that contribute to its success as a pathogen by facilitating colonisation and destruction of host tissues. Results In this study, the ability of the light-activated antimicrobial agent methylene blue in combination with laser light of 665 nm to inactivate staphylococcal virulence factors was assessed. A number of proteinaceous virulence factors were exposed to laser light in the presence of methylene blue and their biological activities re-determined. The activities of V8 protease, α-haemolysin and sphingomyelinase were shown to be inhibited in a dose-dependent manner by exposure to laser light in the presence of methylene blue. Conclusion These results suggest that photodynamic therapy could reduce the harmful impact of preformed virulence factors on the host.

  16. Inactivation of staphylococcal virulence factors using a light-activated antimicrobial agent

    Science.gov (United States)

    2009-01-01

    Background One of the limitations of antibiotic therapy is that even after successful killing of the infecting microorganism, virulence factors may still be present and cause significant damage to the host. Light-activated antimicrobials show potential for the treatment of topical infections; therefore if these agents can also inactivate microbial virulence factors, this would represent an advantage over conventional antibiotic therapy. Staphylococcus aureus produces a wide range of virulence factors that contribute to its success as a pathogen by facilitating colonisation and destruction of host tissues. Results In this study, the ability of the light-activated antimicrobial agent methylene blue in combination with laser light of 665 nm to inactivate staphylococcal virulence factors was assessed. A number of proteinaceous virulence factors were exposed to laser light in the presence of methylene blue and their biological activities re-determined. The activities of V8 protease, α-haemolysin and sphingomyelinase were shown to be inhibited in a dose-dependent manner by exposure to laser light in the presence of methylene blue. Conclusion These results suggest that photodynamic therapy could reduce the harmful impact of preformed virulence factors on the host. PMID:19804627

  17. Synthesis of bio-based nanocomposites for controlled release of antimicrobial agents in food packaging

    Science.gov (United States)

    DeGruson, Min Liu

    The utilization of bio-based polymers as packaging materials has attracted great attention in both scientific and industrial areas due to the non-renewable and nondegradable nature of synthetic plastic packaging. Polyhydroxyalkanoate (PHA) is a biobased polymer with excellent film-forming and coating properties, but exhibits brittleness, insufficient gas barrier properties, and poor thermal stability. The overall goal of the project was to develop the polyhydroxyalkanoate-based bio-nanocomposite films modified by antimicrobial agents with improved mechanical and gas barrier properties, along with a controlled release rate of antimicrobial agents for the inhibition of foodborne pathogens and fungi in food. The ability for antimicrobial agents to intercalate into layered double hydroxides depended on the nature of the antimicrobial agents, such as size, spatial structure, and polarity, etc. Benzoate and gallate anions were successfully intercalated into LDH in the present study and different amounts of benzoate anion were loaded into LDH under different reaction conditions. Incorporation of nanoparticles showed no significant effect on mechanical properties of polyhydroxybutyrate (PHB) films, however, significantly increased the tensile strength and elongation at break of polyhydroxybutyrate-co-valerate (PHBV) films. The effects of type and concentration of LDH nanoparticles (unmodified LDH and LDH modified by sodium benzoate and sodium gallate) on structure and properties of PHBV films were then studied. The arrangement of LDH in the bio-nanocomposite matrices ranged from exfoliated to phase-separated depending on the type and concentration of LDH nanoparticles. Intercalated or partially exfoliated structures were obtained using modified LDH, however, only phase-separated structures were formed using unmodified LDH. The mechanical (tensile strength and elongation at break) and thermo-mechanical (storage modulus) properties were significantly improved with low

  18. Prevalence of multi-antimicrobial-agent resistant, shiga toxin and enterotoxin producing Escherichia coli in surface waters of river Ganga.

    Science.gov (United States)

    Ram, Siya; Vajpayee, Poornima; Shanker, Rishi

    2007-11-01

    The consumption of polluted surface water for domestic and recreational purposes by large populations in developing nations is a major cause of diarrheal disease related mortality. The river Ganga and its tributaries meet 40% of the water requirement for drinking and irrigation in India. In this study, Escherichia coli isolates (n=75) of the river Ganga water were investigated for resistance to antimicrobial agents (n=15) and virulence genes specific to shiga toxin (STEC) and enterotoxin producing E. coli (ETEC). E. coli isolates from the river Ganga water exhibit resistance to multiple antimicrobial agents. The distribution of antimicrobial agent resistance in E. colivaries significantly (chi2: 81.28 at df = 24, p river Ganga water poses increased risk of infections in the human population.

  19. Prevalence of multi-antimicrobial-agent resistant, shiga toxin and enterotoxin producing Escherichia coli in surface waters of river Ganga.

    Science.gov (United States)

    Ram, Siya; Vajpayee, Poornima; Shanker, Rishi

    2007-11-01

    The consumption of polluted surface water for domestic and recreational purposes by large populations in developing nations is a major cause of diarrheal disease related mortality. The river Ganga and its tributaries meet 40% of the water requirement for drinking and irrigation in India. In this study, Escherichia coli isolates (n=75) of the river Ganga water were investigated for resistance to antimicrobial agents (n=15) and virulence genes specific to shiga toxin (STEC) and enterotoxin producing E. coli (ETEC). E. coli isolates from the river Ganga water exhibit resistance to multiple antimicrobial agents. The distribution of antimicrobial agent resistance in E. colivaries significantly (chi2: 81.28 at df = 24, p river Ganga water poses increased risk of infections in the human population. PMID:18044515

  20. Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Haba, Ester; Bouhdid, Samira; Torrego-Solana, Noelia; Marqués, A M; Espuny, M José; García-Celma, M José; Manresa, Angeles

    2014-12-10

    This work examines the influence of essential oil composition on emulsification with rhamnolipids and their use as therapeutic antimicrobial agents against two opportunistic pathogens, methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. Rhamnolipids, produced by Pseudomonas aeruginosa, with waste frying oil as the carbon source, were composed of eight rhamnolipid homologues. The rhamnolipid mixture was used to produce emulsions containing essential oils (EOs) of Melaleuca alternifolia, Cinnamomum verum, Origanum compactum and Lavandula angustifolia using the titration method. Ternary phase diagrams were designed to evaluate emulsion stability, which differed depending on the essential oil. The in vitro antimicrobial activity of the EOs alone and the emulsions was evaluated. The antimicrobial activity presented by the essential oils alone increased with emulsification. The surface properties of rhamnolipids contribute to the positive dispersion of EOs and thus increase their availability and antimicrobial activity against C. albicans and S. aureus. Therefore, rhamnolipid-based emulsions represent a promising approach to the development of EO delivery systems.

  1. In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent

    Science.gov (United States)

    2009-01-01

    Background The widespread problem of antibiotic resistance in pathogens such as Staphylococcus aureus has prompted the search for new antimicrobial approaches. In this study we report for the first time the use of a light-activated antimicrobial agent, methylene blue, to kill an epidemic methicillin-resistant Staphylococcus aureus (EMRSA-16) strain in two mouse wound models. Results Following irradiation of wounds with 360 J/cm2 of laser light (670 nm) in the presence of 100 μg/ml of methylene blue, a 25-fold reduction in the number of viable EMRSA was seen. This was independent of the increase in temperature of the wounds associated with the treatment. Histological examination of the wounds revealed no difference between the photodynamic therapy (PDT)-treated wounds and the untreated wounds, all of which showed the same degree of inflammatory infiltration at 24 hours. Conclusion The results of this study demonstrate that PDT is effective at reducing the total number of viable EMRSA in a wound. This approach has promise as a means of treating wound infections caused by antibiotic-resistant microbes as well as for the elimination of such organisms from carriage sites. PMID:19193212

  2. In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent

    Directory of Open Access Journals (Sweden)

    Bennett Jon

    2009-02-01

    Full Text Available Abstract Background The widespread problem of antibiotic resistance in pathogens such as Staphylococcus aureus has prompted the search for new antimicrobial approaches. In this study we report for the first time the use of a light-activated antimicrobial agent, methylene blue, to kill an epidemic methicillin-resistant Staphylococcus aureus (EMRSA-16 strain in two mouse wound models. Results Following irradiation of wounds with 360 J/cm2 of laser light (670 nm in the presence of 100 μg/ml of methylene blue, a 25-fold reduction in the number of viable EMRSA was seen. This was independent of the increase in temperature of the wounds associated with the treatment. Histological examination of the wounds revealed no difference between the photodynamic therapy (PDT-treated wounds and the untreated wounds, all of which showed the same degree of inflammatory infiltration at 24 hours. Conclusion The results of this study demonstrate that PDT is effective at reducing the total number of viable EMRSA in a wound. This approach has promise as a means of treating wound infections caused by antibiotic-resistant microbes as well as for the elimination of such organisms from carriage sites.

  3. Phyllanthus wightianus Müll. Arg.: A Potential Source for Natural Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    D. Natarajan

    2014-01-01

    Full Text Available Phyllanthus wightianus belongs to Euphorbiaceae family having ethnobotanical importance. The present study deals with validating the antimicrobial potential of solvent leaf extracts of P. wightianus. 11 human bacterial pathogens (Bacillus subtilis, Streptococcus pneumoniae, Staphylococcus epidermidis, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhimurium, Escherichia coli, Shigella flexneri, Proteus vulgaris, and Serratia marcescens and 4 fungal pathogens (Candida albicans, Cryptococcus neoformans, Mucor racemosus, and Aspergillus niger were also challenged with solvent leaf extracts usingagar well and disc diffusion methods. Further, identification of the active component present in the bioactive extract was done using GC-MS analysis. Results show that all extracts exhibited broad spectrum (6–29 mm of antibacterial activity on most of the tested organisms. The results highlight the fact that the well in agar method was more effective than disc diffusion method. Significant antimicrobial activity was detected in methanol extract against S. pneumoniae (29 mm with MIC and MBC values of 15.62 μg/mL. GC-MS analysis revealed that 29 bioactive constituents were present in methanolic extract of P. wightianus, of which 9,12-octadecaenioic acid (peak area 22.82%; RT-23.97 and N-hexadecanoic acid (peak area 21.55% RT-21.796 are the major compounds. The findings of this study show that P. wightianus extracts may be used as an anti-infective agent in folklore medicine.

  4. Experimental and calculated momentum densities for the complete valence orbitals of the antimicrobial agent diacetyl

    Institute of Scientific and Technical Information of China (English)

    Su Guo-Lin; Ren Xue-Guang; Zhang Shu-Feng; Ning Chuan-Gang; Zhou Hui; Li Bin; Li Gui-Qin; Deng Jing-Kang

    2005-01-01

    The first electronic structural study of the complete valence shell binding energy spectra of the antimicrobial agent diacetyl, encompassing both the outer and inner valence regions, is reported. The binding energy spectra as well as the individual orbital momentum profiles have been measured by using a high resolution (e, 2e) electron momentum spectrometer (EMS) at an impact energy of 1200eV plus the binding energy, and using symmetric noncoplanar kinematics.The experimental orbital electron momentum profiles are compared with self-consistent field (SCF) theoretical profiles calculated using the Hartree-Fock approximation and Density Functional theory predictions in the target Kohn-Sham approximation which includes some treatment of correlation via the exchange and correlation potentials with a range of basis sets. The pole strengths of the main ionization peaks from the inner valence orbitals are estimated.

  5. New heterocycles having double characters; as antimicrobial and surface active agents.

    Directory of Open Access Journals (Sweden)

    El-Sayed, R.

    2004-12-01

    Full Text Available Fatty acids isothiocyanate (1 was used as a starting material to synthesize some important heterocycles such as triazoles, oxazoles, thiazoles, benzoxazoles and quinazolines by treating with different types of nucleophiles such as nitrogen nucleophiles, oxygen nucleophiles, and sulfur nucleophiles. The produced compounds were subjected to propylene oxide in different moles (n = 3, 5 and 7 to produce novel groups of nonionic compounds having the double function as antimicrobial and surface active agents which can be used in the manufacturing of drugs, cosmetics, pesticides or can be used as antibacterial and/or antifungal. The physical properties as surface and interfacial tension, cloud point, foaming height, wetting time, emulsification power and the critical micelle concentration (CMC were determined, antimicrobial and biodegradability were also determined.Isocianatos de acidos grasos se utilizaron como material de partida para la síntesis de importantes heterociclos tales como triazoles, oxazoles, thoazoles, benzoxazoles y quinazolinas mediante el tratamiento de los mismos con diferentes tipos de nucleofilos tales como nucleofilos nitrogenados, oxigenados, o azufrados. Los compuestos producidos se trataron con oxido de propileno a diferentes concentraciones molares (n = 3, 5 y 7 para producir nuevos grupos de compuestos no iónicos que tuvieran la doble función de ser compuestos antimicrobianos y agentes de superficie, que se pudieran usar en la fabricación de medicinas, cosméticos, pesticidas o como antibacterianos o antifúngicos. Se determinaron sus propiedades tales como tensión superficial e interfacial, punto de turbidez, altura de espuma, tiempo de mojado, poder de emulsificación y concentración micelar crítica (CMC, asi como sus propiedades antimicrobianas y de degradabilidad.

  6. Edible Coating as Carrier of Antimicrobial Agents to Extend the Shelf Life of Fresh-Cut Apples

    Science.gov (United States)

    Edible coatings with antimicrobial agents provide a novel way to improve the safety and shelf-life of fresh-cut fruit. The effect of lemongrass, oregano oil and vanillin, incorporated in apple puree-alginate edible coatings, on the shelf-life of fresh-cut Fuji apples, was investigated. Coated appl...

  7. Consumer-mediated nutrient recycling is influenced by interactions between nutrient enrichment and the anti-microbial agent triclosan

    Science.gov (United States)

    Triclosan (5-chloro-2-(2, 4-dichlorophenoxy)phenol) is a widely used antimicrobial agent in personal care products whose fate and transport in aquatic ecosystems is a growing environmental concern. Evidence for chronic ecological effects of triclosan in aquatic organisms is increasing. At larger sca...

  8. Edible coating as carrier of antimicrobial agents to extend the shelf life of fresh-cut apples

    Science.gov (United States)

    Edible coatings with antimicrobial agents can extend shelf-life of fresh-cut fruits. The effect of lemongrass, oregano oil and vanillin incorporated in apple puree-alginate edible coatings, on shelf-life of fresh-cut 'Fuji' apples, was investigated. Coated apples were packed in air filled polypropyl...

  9. Structure, properties and application to water-soluble coatings of complex antimicrobial agent Ag-carboxymethyl chitosan-thiabendazole

    Institute of Scientific and Technical Information of China (English)

    XIA Jin-lan; WANG Chun; NIE Zhen-yuan; Peng An-an; Guan Xin

    2005-01-01

    The structure, properties and application to water-soluble coatings of a new complex antimicrobial agent Ag-carboxylmethyl citosan-thiabendazole (Ag-CMCTS-TBZ) prepared from different materiel ratios were reported. The silver ions were preferably coordinated with the free -NH2 groups and the -OH groups of secondary alcohol and carboxyl in CMCTS. TBZ preferably bonded to carboxyl group in CMCTS by electrostatic force and hydrogen bonding. Increase in silver ions content in the complex agent improved to some limited extent the antibacterial activity, but enhanced coloring and cost of the complex agent. Increase in TBZ content resulted in increase of antifungal activity, but decrease of water solubility of the complex agent. The antimicrobial MICs of the complex agent to Esherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus niger, Mucor sp. were 20-80, 15-60, 20-55, 40-250, and 400-1 700 mg/kg, respectively. Addition of 0.1% of this complex agent to acrylic emulsion paint made the paint without substantial change in color, luster, viscosity, odor or pH value, but with an excellent and chronically persisting broad-spectra antimicrobial activity.

  10. Assessment of antimicrobial (host defense) peptides as anti-cancer agents.

    Science.gov (United States)

    Douglas, Susan; Hoskin, David W; Hilchie, Ashley L

    2014-01-01

    Cationic antimicrobial (host defense) peptides (CAPs) are able to kill microorganisms and cancer cells, leading to their consideration as novel candidate therapeutic agents in human medicine. CAPs can physically associate with anionic membrane structures, such as those found on cancer cells, causing pore formation, intracellular disturbances, and leakage of cell contents. In contrast, normal cells are less negatively-charged and are typically not susceptible to CAP-mediated cell death. Because the interaction of CAPs with cells is based on charge properties rather than cell proliferation, both rapidly dividing and quiescent cancer cells, as well as multidrug-resistant cancer cells, are targeted by CAPs, making CAPS potentially valuable as anti-cancer agents. CAPs often exist as families of peptides with slightly different amino acid sequences. In addition, libraries of synthetic peptide variants based on naturally occurring CAP templates can be generated in order to improve upon their action. High-throughput screens are needed to quickly and efficiently assess the suitability of each CAP variant. Here we present the methods for assessing CAP-mediated cytotoxicity against cancer cells (suspension and adherent) and untransformed cells (measured using the tritiated thymidine-release or MTT assay), and for discriminating between cell death caused by necrosis (measured using lactate dehydrogenase- or (51)Cr-release assays), or apoptosis and necrosis (single-stranded DNA content measured by flow cytometry). In addition the clonogenic assay, which assesses the ability of single transformed cells to multiply and produce colonies, is described.

  11. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi

    Science.gov (United States)

    Piruthiviraj, Prakash; Margret, Anita; Krishnamurthy, Poornima Priyadharsani

    2016-04-01

    Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud's aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV-visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12-22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.

  12. Molecular Identification of Lactic Acid Bacteria Producing Antimicrobial Agents from Bakasang, An Indonesian Traditional Fermented Fish Product

    Directory of Open Access Journals (Sweden)

    Helen Joan Lawalata

    2015-11-01

    Full Text Available AbstractTwenty seven strains of lactic acid bacteria (LAB were isolated from bakasang, Indonesian traditional fermented fish product. In general, LAB have inhibitory activity againts pathogenic bacteria and spoilage bacteria. Screening for antimicrobia activity of isolates were performed with well-diffusion method. One isolate that was designed as Pediococcus BksC24 was the strongest against bacteria pathogenic and spoilage bacteria. This strain was further identified by 16S rRNA gen sequence comparison. Isolates LAB producing antimicrobial agents from bakasang were identified as Pediococcus acidilactici.Keywords : Bakasang, LAB, antimicrobial, phenotypic characteristics, 16S rRNA gene

  13. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    Science.gov (United States)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  14. The management of risk arising from the use of antimicrobial agents in veterinary medicine in EU/EEA countries - a review.

    Science.gov (United States)

    Törneke, K; Torren-Edo, J; Grave, K; Mackay, D K J

    2015-12-01

    Antimicrobials are essential medicines for the treatment of many microbial infections in humans and animals. Only a small number of antimicrobial agents with new mechanisms of action have been authorized in recent years for use in either humans or animals. Antimicrobial resistance (AMR) arising from the use of antimicrobial agents in veterinary medicine is a concern for public health due to the detection of increasing levels of resistance in foodborne zoonotic bacteria, particularly gram-negative bacteria, and due to the detection of determinants of resistance such as Extended-spectrum beta-lactamases (ESBL) in bacteria from animals and in foodstuffs of animal origin. The importance and the extent of the emergence and spread of AMR from animals to humans has yet to be quantified. Likewise, the relative contribution that the use of antimicrobial agents in animals makes to the overall risk to human from AMR is currently a subject of debate that can only be resolved through further research. Nevertheless, risk managers have agreed that the impact on public health of the use of antimicrobials in animals should be minimized as far as possible and a variety of measures have been introduced by different authorities in the EU to achieve this objective. This article reviews a range of measures that have been implemented within European countries to reduce the occurrence and the risk of transmission of AMR to humans following the use of antimicrobial agents in animals and briefly describes some of the alternatives to the use of antimicrobial agents that are being developed.

  15. Design, synthesis and biological evaluation of 5-fluorouracil-derived benzimidazoles as novel type of potential antimicrobial agents.

    Science.gov (United States)

    Fang, Xue-Jie; Jeyakkumar, Ponmani; Avula, Srinivasa Rao; Zhou, Qian; Zhou, Cheng-He

    2016-06-01

    A series of 5-fluorouracil benzimidazoles as novel type of potential antimicrobial agents were designed and synthesized for the first time. Bioactive assay manifested that some of the prepared compounds exhibited good or even stronger antibacterial and antifungal activities against the tested strains in comparison with reference drugs norfloxacin, chloromycin and fluconazole. Noticeably, 3-fluorobenzyl benzimidazole derivative 5c gave remarkable antimicrobial activities against Saccharomyces cerevisiae, MRSA and Bacillus proteus with MIC values of 1, 2 and 4μg/mL, respectively. Experimental research revealed that compound 5c could effectively intercalate into calf thymus DNA to form compound 5c-DNA complex which might block DNA replication and thus exert antimicrobial activities. Molecular docking indicated that compound 5c should bind with DNA topoisomerase IA through three hydrogen bonds by the use of fluorine atom and oxygen atoms in 5-fluorouracil with the residue Lys 423. PMID:27117429

  16. Synthesis and In Vitro Evaluation of New Thiosemicarbazone Derivatives as Potential Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Zafer Asım Kaplancıklı

    2016-01-01

    Full Text Available In an effort to develop potent antimicrobial agents, new thiosemicarbazone derivatives were synthesized via the reaction of 4-[4-(trifluoromethylphenyl]thiosemicarbazide with aromatic aldehydes. The compounds were evaluated for their inhibitory effects on pathogenic bacteria and yeasts using the CLSI broth microdilution method. Microplate Alamar Blue Assay was also carried out to determine the antimycobacterial activities of the compounds against Mycobacterium tuberculosis H37Rv. Among these derivatives, compounds 5 and 11 were more effective against Enterococcus faecalis (ATCC 29212 than chloramphenicol, whereas compounds 1, 2, and 12 and chloramphenicol showed the same level of antibacterial activity against E. faecalis. Moreover, compound 2 and chloramphenicol exhibited the same level of antibacterial activity against Staphylococcus aureus. On the other hand, the most potent anticandidal derivatives were found as compounds 2 and 5. These derivatives and ketoconazole exhibited the same level of antifungal activity against Candida glabrata. According to the Microplate Alamar Blue Assay, the tested compounds showed weak to moderate antitubercular activity.

  17. Potential of Submergedly Cultivated Mycelia of Ganoderma spp. as Antioxidant and Antimicrobial Agents.

    Science.gov (United States)

    Ćilerdžić, Jasmina; Stajic, Mirjana; Vukojevic, Jelena

    2016-01-01

    The study aimed to evaluate the antiradical and antimicrobial (antibacterial and antifungal) potentials of ethanol mycelial extracts of selected Ganoderma species and strains and to define interand intraspecies diversity among Ganoderma species and strains. Ganoderma lucidum strains were good DPPH• scavengers (neutralizing up to 57.12% radicals), contrary to G. applanatum (20.35%) and G. carnosum (17.04%). High correlations between the activities and contents of total phenols in the extracts showed that these compounds were carriers of the activity. Results obtained by both discdiffusion and microdilution methods indicated that the extract of G. lucidum BEOFB 433 was the most potent antibacterial agent that inhibited growth of almost all bacterial species at a concentration of 1.0 mg/mL. Salmonella typhimurium was the most sensitive species to the mycelium extracts. Extracts of G. lucidum BEOFB 431 and BEOFB 434 showed the best antifungal activity since in concentration of 0.5 mg/mL inhibited the growth of Aspergillus glaucus (BEOFB 431) and the growth of A. glaucus and Trichoderma viride (BEOFB 434). Extracts of G. applanatum and G. lucidum BEOFB 431 had the strongest fungicidal effects, with lethal outcomes for A. glaucus and T. viride, respectively, being noted at a concentration of 1.17 mg/mL. Aspergillus niger was proved as the most resistant species. PMID:26420047

  18. The use of resazurin as a novel antimicrobial agent against Francisella tularensis

    Directory of Open Access Journals (Sweden)

    Deanna Marie Schmitt

    2013-12-01

    Full Text Available The highly infectious and deadly pathogen, Francisella tularensis, is classified by the CDC as a Category A bioterrorism agent. Inhalation of a single bacterium results in an acute pneumonia with a 30-60% mortality rate without treatment. Due to the prevalence of antibiotic resistance, there is a strong need for new types of antibacterial drugs. Resazurin is commonly used to measure bacterial and eukaryotic cell viability through its reduction to the fluorescent product resorufin. When tested on various bacterial taxa at the recommended concentration of 44 µM, a potent bactericidal effect was observed against various Francisella and Neisseria species, including the human pathogens type A F. tularensis (Schu S4 and N. gonorrhoeae. As low as 4.4 µM resazurin was sufficient for a 10-fold reduction in F. tularensis growth. In broth culture, resazurin was reduced to resorufin by F. tularensis. However, resorufin also suppressed the growth of F. tularensis suggesting that the process of reducing resazurin was not responsible for the observed antimicrobial effect. Replication of F. tularensis in primary human macrophages and non-phagocytic cells was abolished following treatment with 44 μM resazurin indicating this compound could be an effective therapy for tularemia in vivo.

  19. Vinegar as an antimicrobial agent for control of Candida spp. in complete denture wearers

    Directory of Open Access Journals (Sweden)

    Telma Maria Silva Pinto

    2008-12-01

    Full Text Available The use of denture is known to increase the carriage of Candida in healthy patients, and the proliferation of Candida albicans strains can be associated with denture-induced stomatitis. The aim of this study was to evaluate the use of vinegar as an antimicrobial agent for control of Candida spp. in complete upper denture wearers. Fifty-five patients were submitted to a detailed clinical interview and oral clinical examination, and were instructed to keep their dentures immersed in a 10% vinegar solution (pH less than 3 overnight for 45 days. Before and after the experimental period, saliva samples were collected for detection of Candida, counting of cfu/mL and identification of species by phenotypical tests (germ tube formation, chlamidoconidia production, and carbohydrate fermentation and assimilation. The results were analyzed using Spearman's correlation and Student's t-test (p£0.05. Candida yeasts were present in 87.3% of saliva samples before the treatment. A significant reduction was verified in CFU/mL counts of Candida after treatment. A positive correlation between Candida and denture stomatitis was verified, since the decrease of cfu/mL counts was correlated with a reduction in cases of denture stomatitis. Although it was not able to eliminate C. albicans, the immersion of the complete denture in 10% vinegar solution, during the night, reduced the amounts (cfu/mL of Candida spp. in the saliva and the presence of denture stomatitis in the studied patients.

  20. Synergy Testing of Vancomycin-Resistant Enterococcus faecium against Quinupristin-Dalfopristin in Combination with Other Antimicrobial Agents

    OpenAIRE

    Matsumura, S O; Louie, L; Louie, M.; Simor, A E

    1999-01-01

    Using checkerboard and time-kill assays, we evaluated the in vitro activity of quinupristin-dalfopristin (RP 59500) alone and in combination with five other antimicrobial agents against 12 clinical strains of vancomycin-resistant Enterococcus faecium (VREF). In time-kill studies, six VREF strains exhibited synergism with the combination of quinupristin-dalfopristin and doxycycline and three exhibited synergism with quinupristin-dalfopristin plus ampicillin-sulbactam. Combinations of quinupris...

  1. Prevalence and Distribution of Mastitis Pathogens and their Resistance against Antimicrobial Agents in Dairy Cows in Jordan

    OpenAIRE

    Azmi D. Hawari; Fawzi Al-Dabbas

    2008-01-01

    The primary objective of this study was to determine the aetiology of bovine mastitis in ten herds of Holstein Friesian cow in Jordan, the prevalence of mastitis pathogens in dairy cows and their resistance to selected antimicrobial agents. Milk samples were collected from 220 lactating cows to determine the clinical and subclinical mastitis by white side test and confirmed by cultural tests. It was found that 138 quarters (15.7%) had been diagnosed as clinical mastitis with definite gross pa...

  2. Physical and Antimicrobial Properties of Starch-PVA Blend Films as Affected by the Incorporation of Natural Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Amalia Cano

    2015-12-01

    Full Text Available In this work, active films based on starch and PVA (S:PVA ratio of 2:1 were developed by incorporating neem (NO and oregano essential oils (OEO. First, a screening of the antifungal effectiveness of different natural extracts (echinacea, horsetail extract, liquid smoke and neem seed oil against two fungus (P. expansum and A. niger was carried out. The effect of NO and OEO incorporation on the films’ physical and antimicrobial properties was analyzed. Only composite films containing OEO exhibited antibacterial and antifungal activity. Antibacterial activity occurred at low OEO concentration (6.7%, while antifungal effect required higher doses of OEO in the films. Incorporation of oils did not notably affect the water sorption capacity and water vapor barrier properties of S-PVA films, but reduced their transparency and gloss, especially at the highest concentrations. The mechanical response of the S-PVA films was also negatively affected by oil incorporation but this was only relevant at the highest oil ratio (22%. S-PVA films with 6.7% of OEO exhibited the best physical properties, without significant differences with respect to the S-PVA matrix, while exhibiting antibacterial activity. Thus, the use of OEO as a natural antimicrobial incorporated into starch-PVA films represents a good and novel alternative in food packaging applications.

  3. Antimicrobial activity of Rhizobium sp. strains against Pseudomonas savastanoi, the agent responsible for the olive knot disease in Algeria

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available In the present investigation, six Rhizobium strains isolated from Algerian soil were checked for their antimicrobial activity against Pseudomonas savastanoi, the agent responsible for olive knot disease. Rhizobium sp. ORN 24 and ORN 83 were found to produce antimicrobial activities against Pseudomonas savastanoi. The antimicrobial activity produced by Rhizobium sp. ORN24 was precipitable with ammonium sulfate, between 1,000 and 10,000 KDa molecular weight, heat resistant but sensitive to proteases and detergents. These characteristics suggest the bacteriocin nature of the antimicrobial substance produced by Rhizobium sp. ORN24, named rhizobiocin 24. In contrast, the antimicrobial activity produced by Rhizobium sp. ORN83 was not precipitable with ammonium sulfate; it was smaller than 1,000 KDa molecular weight, heat labile, and protease and detergent resistant. These characteristics could indicate the relationship between the antimicrobial substance produced by Rhizobium sp. ORN 83 and the “small” bacteriocins described in other rhizobia.

    En la presente investigación, seis cepas de Rhizobium aisladas de suelos argelinos fueron estudiadas para conocer su actividad antimicrobiana contra Pseudomonas savastanoi, el agente causante de la tuberculosis del olivo. Rhizobium sp. ORN 24 y ORN 83 produjeron actividad antimicrobiana contra Pseudomonas savastanoi. La actividad antimicrobiana producida por Rhizobium sp. ORN 24 precipitó con sulfato amónico, tuvo un peso molecular entre 1000 y 10000 KDa, fue resistente al calor pero sensible a proteasas y detergentes. Estas características sugieren que la sustancia antimicrobial producida por Rhizobium sp. ORN 24 es la bacteriocina natural conocida como rizobiocina 24. Por el contrario, la actividad antimicrobiana producida por Rhizobium sp. ORN83 no fue precipitable con sulfato amónico, y tuvo un peso molecular menor de 1000 KDa, fue lábil al calor y resistente a detergentes y proteasas. Estas

  4. Comparison of antimicrobial agents as therapy for experimental endocarditis: caused by methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Sacar, Mustafa; Sacar, Suzan; Cevahir, Nural; Onem, Gokhan; Teke, Zafer; Asan, Ali; Turgut, Huseyin; Adali, Fahri; Kaleli, Ilknur; Susam, Ibrahim; Yaylali, Yalin Tolga; Baltalarli, Ahmet

    2010-01-01

    We used an experimental rat model to compare the therapeutic efficacy of teicoplanin, linezolid, and quinupristin/dalfopristin with that of vancomycin as standard therapy for infective endocarditis.Aortic endocarditis was induced in rats by insertion of a polyethylene catheter into the left ventricle, followed by intravenous inoculation of 106 colony-forming units of methicillin-resistant Staphylococcus aureus 24 hours later. Forty-eight hours after bacterial challenge, intravenous antibiotic therapies were initiated. There were 6 groups of 8 rats each: uninfected control; infected, untreated control; vancomycin-treated (40 mg/kg twice daily); teicoplanin-treated (20 mg/kg twice daily after a loading dose of 40 mg/kg); linezolid-treated (75 mg/kg 3 times daily for 1 day, then 75 mg/kg twice daily); and quinupristin/dalfopristin-treated (30 mg/kg twice daily and an additional 10 mg/kg dalfopristin infusion over 6 to 12 hr daily). At the end of therapy, the aortic valve vegetations in the drug-treated rats were evaluated microbiologically.Compared with the infected, untreated group, all drug-treated groups had significantly reduced bacterial titers in the vegetations. Vancomycin, teicoplanin, and quinupristin/dalfopristin all effectively reduced the quantitative bacterial cultures of aortic valve vegetations. In addition, there was no significant difference in the comparative efficacy of teicoplanin, linezolid, and quinupristin/dalfopristin. Vancomycin significantly reduced bacterial counts in comparison with linezolid, which was nonetheless also effective.Our experimental model showed that each of the investigated antimicrobial agents was effective in the treatment of infective endocarditis. PMID:20844611

  5. Review of assessments of the human health risk associated with the use of antimicrobial agents in agriculture.

    Science.gov (United States)

    Bailar, John C; Travers, Karin

    2002-06-01

    To our knowledge, no comprehensive risk assessment of agricultural uses of antimicrobial agents has been published. The published risk assessments of antimicrobial use in farm settings are all subject to multiple, serious limitations in scope, including (1) limitation to one species of microorganism; (2) limitation to one or a very few related antimicrobial agents; (3) limitation to a single outcome (death, hospital days, number of illnesses, etc.); (4) limitation to one species of farm animal (e.g., chicken or swine); and (5) limitation to therapeutic use, despite reason for concern about misstated, off-label, or illegal use. In addition, all of the risk assessments reviewed overlooked important issues by accepting 2 further limitations: (6) limiting the scope of the analysis to what has already happened and ignoring the effects of continuing the practices of recent years; and (7) examining only the effects on the species of microorganism that was initially affected and ignoring the cross-species spread of resistance by plasmid transfer. After our review of the risk assessments now available, we propose a comprehensive scheme for organizing existing knowledge and dealing with critical gaps.

  6. Synthesis, Characterization and Biological Evaluation of Some Quinoxaline Derivatives: A Promising and Potent New Class of Antitumor and Antimicrobial Agents.

    Science.gov (United States)

    Al-Marhabi, Aisha R; Abbas, Hebat-Allah S; Ammar, Yousry A

    2015-11-03

    In continuation of our endeavor towards the development of potent and effective anticancer and antimicrobial agents; the present work deals with the synthesis of some novel tetrazolo[1,5-a]quinoxalines, N-pyrazoloquinoxalines, the corresponding Schiff bases, 1,2,4-triazinoquinoxalines and 1,2,4-triazoloquinoxalines. These compounds were synthesized via the reaction of the key intermediate hydrazinoquinoxalines with various reagents and evaluated for anticancer and antimicrobial activity. The results indicated that tetrazolo[1,5-a]quinoxaline derivatives showed the best result, with the highest inhibitory effects towards the three tested tumor cell lines, which were higher than that of the reference doxorubicin and these compounds were non-cytotoxic to normal cells (IC50 values > 100 μg/mL). Also, most of synthesized compounds exhibited the highest degrees of inhibition against the tested strains of Gram positive and negative bacteria, so tetrazolo[1,5-a]quinoxaline derivatives show dual activity as anticancer and antimicrobial agents.

  7. Synthesis, Characterization and Biological Evaluation of Some Quinoxaline Derivatives: A Promising and Potent New Class of Antitumor and Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Aisha R. Al-Marhabi

    2015-11-01

    Full Text Available In continuation of our endeavor towards the development of potent and effective anticancer and antimicrobial agents; the present work deals with the synthesis of some novel tetrazolo[1,5-a]quinoxalines, N-pyrazoloquinoxalines, the corresponding Schiff bases, 1,2,4-triazinoquinoxalines and 1,2,4-triazoloquinoxalines. These compounds were synthesized via the reaction of the key intermediate hydrazinoquinoxalines with various reagents and evaluated for anticancer and antimicrobial activity. The results indicated that tetrazolo[1,5-a]quinoxaline derivatives showed the best result, with the highest inhibitory effects towards the three tested tumor cell lines, which were higher than that of the reference doxorubicin and these compounds were non-cytotoxic to normal cells (IC50 values > 100 μg/mL. Also, most of synthesized compounds exhibited the highest degrees of inhibition against the tested strains of Gram positive and negative bacteria, so tetrazolo[1,5-a]quinoxaline derivatives show dual activity as anticancer and antimicrobial agents.

  8. In vitro interaction of certain antimicrobial agents in combination with plant extracts against some pathogenic bacterial strains

    Institute of Scientific and Technical Information of China (English)

    Kalpna Rakholiya; Sumitra Chanda

    2012-01-01

    Objective: To evaluate the in vitro interaction between methanolic extracts of Terminalia catappa (T. catappa) (Combretaceae) and Carica papaya (C. papaya) (caricaceae) leaves and certain known antimicrobial drugs like penicillin G (P), ampicillin (AMP), amoxyclav (AMC), cephalothin (CEP), polymyxin B (PB), rifampicin (RIF), amikacin (AK), nilidixic acid (NA), gentamicin (GEN), chloramphenicol (C), ofloxacin (OF) against five Gram positive and five Gram negative bacteria. Methods: Evaluation of synergy interaction between plant extracts and antimicrobial agents was carried out using disc diffusion method. Results: The results of this study showed that there is an increased activity in case of combination of methanolic plant extracts and test antimicrobial agents. The more potent result was that the synergism between methanolic extract of C. papaya and antibiotics showed highest and strong synergistic effect against tested bacterial strains;though methanolic extract of C. papaya alone was not showing any antibacterial activity. Conclusions: These results indicate that combination between plant extract and the antibiotics could be useful in fighting emerging drug-resistance microorganisms.

  9. In vitro interaction of certain antimicrobial agents in combination with plant extracts against some pathogenic bacterial strains

    Institute of Scientific and Technical Information of China (English)

    Kalpna Rakholiya; Sumitra Chanda

    2012-01-01

    Objective: To evaluate the in vitro interaction between methanolic extracts of Terminalia catappa (Combretaceae) (T. catappa) and Carica papaya (caricaceae) (C. papaya) leaves and certain known antimicrobial drugs like penicillin G (P), ampicillin (AMP), amoxyclav (AMC), cephalothin (CEP), polymyxin B (PB), rifampicin (RIF), amikacin (AK), nilidixic acid (NA), gentamicin (GEN), chloramphenicol (C), ofloxacin (OF) against five Gram positive and five Gram negative bacteria.Methods:Evaluation of synergy interaction between plant extracts and antimicrobial agents was carried out using disc diffusion method. Results: The results of this study showed that there is an increased activity in case of combination of methanolic plant extracts and test antimicrobial agents. The more potent result was that the synergism between methanolic extract of C. papaya and antibiotics showed highest and strong synergistic effect against tested bacterial strains;though methanolic extract of C. papaya alone was not showing any antibacterial activity.Conclusions:These results indicate that combination between plant extract and the antibiotics could be useful in fighting emerging drug-resistance microorganisms.

  10. Antimicrobial agents of plant origin for the treatment of phlogistic-infectious diseases of the lower female genital tract

    Directory of Open Access Journals (Sweden)

    Francesco Gon

    2012-12-01

    Full Text Available The phlogistic-infectious diseases of the lower female genital tract are one of the most widespread obstetricgynecologic issues, due to treatment failures that cause frequent relapses and to the adverse effects of some commonly used drugs.The most common vaginal syndromes are due to uncontrolled growth of bacteria or fungi which replace the normal vaginal flora, causing phlogistic and infectious based diseases. These infections are treated with anti-inflammatory and antibiotic therapy; however, the emergence of resistant strains and the ability of many microorganisms to grow inside biofilms severely reduce the repertoire of useful agents.Thus, in the last years increasing interest has been focused toward compounds of plant origin with anti-microbial properties. In the present work, we studied the antimicrobial activity of fractions obtained from endemic plants of Sardinia towards microorganisms that frequently are involved in vaginal infectious diseases: Streptococcus agalactiae, Gardnerella vaginalis and Candida albicans.

  11. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    Science.gov (United States)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  12. Discovery of membrane active benzimidazole quinolones-based topoisomerase inhibitors as potential DNA-binding antimicrobial agents.

    Science.gov (United States)

    Zhang, Ling; Addla, Dinesh; Ponmani, Jeyakkumar; Wang, Ao; Xie, Dan; Wang, Ya-Nan; Zhang, Shao-Lin; Geng, Rong-Xia; Cai, Gui-Xin; Li, Shuo; Zhou, Cheng-He

    2016-03-23

    A series of novel benzimidazole quinolones as potential antimicrobial agents were designed and synthesized. Most of the prepared compounds exhibited good or even stronger antimicrobial activities in comparison with reference drugs. The most potent compound 15m was membrane active and did not trigger the development of resistance in bacteria. It not only inhibited the formation of biofilms but also disrupted the established Staphylococcus aureus and Escherichia coli biofilms. It was able to inhibit the relaxation activity of E. coli topoisomerase IV at 10 μM concentration. Moreover, this compound also showed low toxicity against mammalian cells. Molecular modeling and experimental investigation of compound 15m with DNA suggested that this compound could effectively bind with DNA to form a steady 15m-DNA complex which might further block DNA replication to exert the powerful bioactivities.

  13. Synthesis and biological evaluation of some new amide moiety bearing quinoxaline derivatives as antimicrobial agents.

    Science.gov (United States)

    Abu Mohsen, U; Yurttaş, L; Acar, U; Özkay, Y; Kaplacikli, Z A; Karaca Gencer, H; Cantürk, Z

    2015-05-01

    In this study, we aimed to synthesize some new quinoxaline derivatives bearing amide moiety and to evaluate their antimicrobial activity. A set of 16 novel compounds of N-[2,3-bis(4-methoxy/methylphenyl)quinoxalin-6-yl]-substituted benzamide derivatives were synthesized by reacting 2,3-bis(4-methoxyphenyl)-6-aminoquinoxaline or 2,3-bis(4-methylphenyl)-6-aminoquinoxaline with benzoyl chloride derivatives in tetrahydrofuran and investigated for their antimicrobial activity. The structures of the obtained final compounds were confirmed by spectral data (IR, (1)H-NMR, (13)C-NMR and MS). The antimicrobial activity of the compounds were determined by using the microbroth dilution method. Antimicrobial activity results revealed that synthesized compounds exhibited remarkable activity against Candida krusei (ATCC 6258) and Candida parapsilosis (ATCC 22019).

  14. Susceptibilities of Neisseria gonorrhoeae to fluoroquinolones and other antimicrobial agents in Hyogo and Osaka, Japan

    OpenAIRE

    Shigemura, K; Okada, H.; Shirakawa, T.; Tanaka, K; Arakawa, S.; Kinoshita, S; Gotoh, A; Kamidono, S

    2004-01-01

    Objectives: Decreasing susceptibility of Neisseria gonorrhoeae to fluoroquinolones has been reported in several countries. Knowledge of local N gonorrhoeae susceptibilities to various antimicrobials is important for establishing a rational treatment strategy in each region.

  15. Using antimicrobial host defense peptides as anti-infective and immunomodulatory agents.

    Science.gov (United States)

    Kruse, Thomas; Kristensen, Hans-Henrik

    2008-12-01

    Virtually all life forms express short antimicrobial cationic peptides as an important component of their innate immune defenses. They serve as endogenous antibiotics that are able to rapidly kill an unusually broad range of bacteria, fungi and viruses. Consequently, considerable efforts have been expended to exploit the therapeutic potential of these antimicrobial peptides. Within the last couple of years, it has become increasingly clear that many of these peptides, in addition to their direct antimicrobial activity, also have a wide range of functions in modulating both innate and adaptive immunity. For one class of antimicrobial peptides, such as the human defensins, their primary role may even be as immunomodulators. These properties potentially provide entirely new therapeutic approaches to anti-infective therapy.

  16. Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents: triclosan, triclocarban, resorcinol, phenoxyethanol and p-thymol.

    Science.gov (United States)

    Tamura, Ikumi; Kagota, Kei-Ichiro; Yasuda, Yusuke; Yoneda, Saori; Morita, Junpei; Nakada, Norihide; Kameda, Yutaka; Kimura, Kumiko; Tatarazako, Norihisa; Yamamoto, Hiroshi

    2013-11-01

    Acute and chronic (or sub-chronic) toxicity of five selected antimicrobial agents, including triclosan (TCS), triclocarban (TCC), resorcinol, phenoxyethanol and p-thymol, was investigated using the conventional three-aquatic-organism battery. These compounds are widely used in cosmetics and other personal care products and their ecological risk has recently become a significant concern. As results of toxicity tests, TCS was found to be most strongly toxic for green algae [e.g. 72 h no observed effect concentration (NOEC) of 0.50 µg l(-1) ] among the selected compounds, followed by TCC, while TCC was more toxic or similar to TCS for Daphnia and fish (e.g. Daphnia 8 day NOEC of 1.9 µg l(-1) ). Having compared the predicted no effect concentration (PNEC) determined from the toxicity data with measured environmental concentrations (MEC), the preliminary ecological risk assessment of these five antimicrobials was conducted. The MEC/PNEC ratios of TCS and TCC were over 1 for some monitoring data, especially in urban streams with watershed areas without sewage service coverage, and their potential risk for green algae and Daphnia might be at a level of concern, although the contribution of TCS/TCC on the total toxicity of the those sites needs to be further investigated. For the three other antimicrobials, the maximum MEC/PNEC ratio for resorcinol was 0.1-1, but those for phenoxyethanol and p-thymol were <0.1 and their risk to aquatic organisms is limited, although the additive effects with TCS, TCC and other antimicrobial agents, such as parabens, need to be further examined in future studies. PMID:22806922

  17. Peel bond strength of resilient liner modified by the addition of antimicrobial agents to denture base acrylic resin

    Directory of Open Access Journals (Sweden)

    Cristiane S. Alcântara

    2012-12-01

    Full Text Available In order to prolong the clinical longevity of resilient denture relining materials and reduce plaque accumulation, incorporation of antimicrobial agents into these materials has been proposed. However, this addition may affect their properties. OBJECTIVE: This study evaluated the effect of the addition of antimicrobial agents into one soft liner (Soft Confort, Dencril on its peel bond strength to one denture base (QC 20, Dentsply. MATERIAL AND METHODS: Acrylic specimens (n=9 were made (75x10x3 mm and stored in distilled water at 37ºC for 48 h. The drug powder concentrations (nystatin 500,000U - G2; nystatin 1,000,000U - G3; miconazole 125 mg - G4; miconazole 250 mg - G5; ketoconazole 100 mg - G6; ketoconazole 200 mg - G7; chlorhexidine diacetate 5% - G8; and 10% chlorhexidine diacetate - G9 were blended with the soft liner powder before the addition of the soft liner liquid. A group (G1 without any drug incorporation was used as control. Specimens (n=9 (75x10x6 mm were plasticized according to the manufacturers' instructions and stored in distilled water at 37ºC for 24 h. Relined specimens were then submitted to a 180-degree peel test at a crosshead speed of 10 mm/min. Data (MPa were analyzed by analysis of variance (α=0.05 and the failure modes were visually classified. RESULTS: No significant difference was found among experimental groups (p=0.148. Cohesive failure located within the resilient material was predominantly observed in all tested groups. CONCLUSIONS: Peel bond strength between the denture base and the modified soft liner was not affected by the addition of antimicrobial agents.

  18. Influence of triclosan and triclocarban antimicrobial agents on the microbial activity in three physicochemically differing soils of south Australia

    OpenAIRE

    Abid Ali, Muhammad Arshad, Zahir A. Zahir; Amer Jamil

    2011-01-01

    Antimicrobial agents are being used in numerous consumer and health care products on account of which their annual global consumption has reached in millions of kilograms. They are flushed down the drain and become the part of wastewater and sewage sludge and end up in the ultimate sink of agricultural soils. Once they are in the soil, they may disturb the soil’s ecology as a result of which microbial activity useful for soil fertility and biodegradation of xenobiotics may severely be impacte...

  19. ZnO and TiO{sub 2} nanoparticles as novel antimicrobial agents for oral hygiene: a review

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shams Tabrez, E-mail: shamsalig75@gmail.com; Al-Khedhairy, Abdulaziz A. [King Saud University, Department of Zoology, College of Science (Saudi Arabia); Musarrat, Javed [AMU, Department of Agricultural Microbiology, Faculty of Agricultural Sciences (India)

    2015-06-15

    Oral cavity is inhabited by more than 25,000 different bacterial phylotypes; some of them cause systemic infections in addition to dental and periodontal diseases. Emergence of multiple antibiotic resistance among these bacteria necessitates the development of alternative antimicrobial agents that are safe, stable, and relatively economic. This review focuses on the significance of metal oxide nanoparticles, especially zinc oxide and titanium dioxide nanoparticles as supplementary antimicrobials for controlling oral infections and biofilm formation. Indeed, the ZnO NPs and TiO{sub 2} NPs have exhibited significant antimicrobial activity against oral bacteria at concentrations which is not toxic in in vivo toxicity assays. These nanoparticles are being produced at an industrial scale for use in a variety of commercial products including food products. Thus, the application of ZnO and TiO{sub 2} NPs as nanoantibiotics for the development of mouthwashes, dental pastes, and other oral hygiene materials is envisaged. It is also suggested that these NPs could serve as healthier, innocuous, and effective alternative for controlling both the dental biofilms and oral planktonic bacteria with lesser side effects and antibiotic resistance.

  20. ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review

    International Nuclear Information System (INIS)

    Oral cavity is inhabited by more than 25,000 different bacterial phylotypes; some of them cause systemic infections in addition to dental and periodontal diseases. Emergence of multiple antibiotic resistance among these bacteria necessitates the development of alternative antimicrobial agents that are safe, stable, and relatively economic. This review focuses on the significance of metal oxide nanoparticles, especially zinc oxide and titanium dioxide nanoparticles as supplementary antimicrobials for controlling oral infections and biofilm formation. Indeed, the ZnO NPs and TiO2 NPs have exhibited significant antimicrobial activity against oral bacteria at concentrations which is not toxic in in vivo toxicity assays. These nanoparticles are being produced at an industrial scale for use in a variety of commercial products including food products. Thus, the application of ZnO and TiO2 NPs as nanoantibiotics for the development of mouthwashes, dental pastes, and other oral hygiene materials is envisaged. It is also suggested that these NPs could serve as healthier, innocuous, and effective alternative for controlling both the dental biofilms and oral planktonic bacteria with lesser side effects and antibiotic resistance

  1. Zinc Oxide Nanorods-Decorated Graphene Nanoplatelets: A Promising Antimicrobial Agent against the Cariogenic Bacterium Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Elena Zanni

    2016-09-01

    Full Text Available Nanomaterials are revolutionizing the field of medicine to improve the quality of life due to the myriad of applications stemming from their unique properties, including the antimicrobial activity against pathogens. In this study, the antimicrobial and antibiofilm properties of a novel nanomaterial composed by zinc oxide nanorods-decorated graphene nanoplatelets (ZNGs are investigated. ZNGs were produced by hydrothermal method and characterized through field-emission scanning electron microscopy (FE-SEM, energy-dispersive X-ray spectroscopy (EDX and X-ray diffraction (XRD techniques. The antimicrobial activity of ZNGs was evaluated against Streptococcus mutans, the main bacteriological agent in the etiology of dental caries. Cell viability assay demonstrated that ZNGs exerted a strikingly high killing effect on S. mutans cells in a dose-dependent manner. Moreover, FE-SEM analysis revealed relevant mechanical damages exerted by ZNGs at the cell surface of this dental pathogen rather than reactive oxygen species (ROS generation. In addition, inductively coupled plasma mass spectrometry (ICP-MS measurements showed negligible zinc dissolution, demonstrating that zinc ion release in the suspension is not associated with the high cell mortality rate. Finally, our data indicated that also S. mutans biofilm formation was affected by the presence of graphene-zinc oxide (ZnO based material, as witnessed by the safranin staining and growth curve analysis. Therefore, ZNGs can be a remarkable nanobactericide against one of the main dental pathogens. The potential applications in dental care and therapy are very promising.

  2. Synthesis and biological evaluation of 5,7-dihydroxyflavanone derivatives as antimicrobial agents.

    Science.gov (United States)

    Zhang, Xing; Khalidi, Omar; Kim, So Young; Wang, Ruitong; Schultz, Victor; Cress, Brady F; Gross, Richard A; Koffas, Mattheos A G; Linhardt, Robert J

    2016-07-01

    A series of 5,7-dihydroxyflavanone derivatives were efficiently synthesized. Their antimicrobial efficacy on Gram-negative, Gram-positive bacteria and yeast were evaluated. Among these compounds, most of the halogenated derivatives exhibited the best antimicrobial activity against Gram-positive bacteria, the yeast Saccharomyces cerevisiae, and the Gram-negative bacterium Vibrio cholerae. The cytotoxicities of these compounds were low as evaluated on HepG2 cells using a cell viability assay. This study suggests that halogenated flavanones might represent promising pharmacological candidates for further drug development. PMID:27210435

  3. Novel Antimicrobial Agents: Fluorinated 2-(3-(Benzofuran-2-yl pyrazol-1-ylthiazoles

    Directory of Open Access Journals (Sweden)

    Hanan A. Mohamed

    2013-01-01

    Full Text Available A new series of 2-pyrazolin-1-ylthiazoles 8a–d and 13–16 was synthesized by cyclization of N-thiocarboxamide-2-pyrazoline with different haloketones and 2,3-dichloroquinoxaline. The structures of the new compounds were confirmed by elemental analyses as well as NMR, IR, and mass spectral data. The newly synthesized compounds were evaluated for their antimicrobial activities, and also their minimum inhibitory concentration (MIC against most of test organisms was performed. Amongst the tested ones, compound 8c displayed excellent antimicrobial activity.

  4. Synthesis and evaluation of a series of pyrimidine substituted 1,3,4-oxadiazole derivatives as antimicrobial and anti-inflammatory agents

    OpenAIRE

    Sanath Kumar Goud Palusa; Rajgopal H.Udupi; Himabindu V; Ajjanna M Sridhara

    2011-01-01

    Novel pyrimidine substituted 1,3,4-oxadiazole derivatives (11a-k) were synthesized from the condensation of different substituted aromatic carboxylic acids with substituted pyrimidine carboxy hydrazide using POCl3 as condensing agent. Their structures were characterized by physical and spectral studies. The synthesized compounds were evaluated for their in vitro antimicrobial and anti-inflammatory activity. Some of the newly synthesized compounds showed good antimicrobial and anti-inflammator...

  5. Synthesis and evaluation of a series of pyrimidine substituted 1,3,4-oxadiazole derivatives as antimicrobial and anti-inflammatory agents

    Directory of Open Access Journals (Sweden)

    Sanath Kumar Goud Palusa

    2011-01-01

    Full Text Available Novel pyrimidine substituted 1,3,4-oxadiazole derivatives (11a-k were synthesized from the condensation of different substituted aromatic carboxylic acids with substituted pyrimidine carboxy hydrazide using POCl3 as condensing agent. Their structures were characterized by physical and spectral studies. The synthesized compounds were evaluated for their in vitro antimicrobial and anti-inflammatory activity. Some of the newly synthesized compounds showed good antimicrobial and anti-inflammatory activities.

  6. Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: Influence of partial deacetylation

    Science.gov (United States)

    The development of edible, environmentally friendly, mechanically strong and antimicrobial biopolymer films for active food packaging has gained considerable interest in recent years. The present work deals with the extraction and deacetylation of chitin nanofibers (ChNFs) from crab shells and their...

  7. Utility of Greater Wax Moth Larva (Galleria mellonella) for Evaluating the Toxicity and Efficacy of New Antimicrobial Agents.

    Science.gov (United States)

    Desbois, Andrew P; Coote, Peter J

    2012-01-01

    There is an urgent need for new antimicrobial agents to combat infections caused by drug-resistant pathogens. Once a compound is shown to be effective in vitro, it is necessary to evaluate its efficacy in an animal infection model. Typically, this is achieved using a mammalian model, but such experiments are costly, time consuming, and require full ethical consideration. Hence, cheaper and ethically more acceptable invertebrate models of infection have been introduced, including the larvae of the greater wax moth Galleria mellonella. Invertebrates have an immune system that is functionally similar to the innate immune system of mammals, and often identical virulence and pathogenicity factors are used by human pathogenic microbes to infect wax moth larvae and mammals. Moreover, the virulence of many human pathogens is comparable in wax moth larvae and mammals. Using key examples from the literature, this chapter highlights the benefits of using the wax moth larva model to provide a rapid, inexpensive, and reliable evaluation of the toxicity and efficacy of new antimicrobial agents in vivo and prior to the use of more expensive mammalian models. This simple insect model can bridge the gap between in vitro studies and mammalian experimentation by screening out compounds with a low likelihood of success, while providing greater justification for further studies in mammalian systems. Thus, broader implementation of the wax moth larva model into anti-infective drug discovery and development programs could reduce the use of mammals during preclinical assessments and the overall cost of drug development. PMID:22305092

  8. Biphasic toxicodynamic features of some antimicrobial agents on microbial growth: a dynamic mathematical model and its implications on hormesis

    Directory of Open Access Journals (Sweden)

    Murado Miguel A

    2010-08-01

    Full Text Available Abstract Background In the present work, we describe a group of anomalous dose-response (DR profiles and develop a dynamic model that is able to explain them. Responses were obtained from conventional assays of three antimicrobial agents (nisin, pediocin and phenol against two microorganisms (Carnobacterium piscicola and Leuconostoc mesenteroides. Results Some of these anomalous profiles show biphasic trends which are usually attributed to hormetic responses. But they can also be explained as the result of the time-course of the response from a microbial population with a bimodal distribution of sensitivity to an effector, and there is evidence suggesting this last origin. In light of interest in the hormetic phenomenology and the possibility of confusing it with other phenomena, especially in the bioassay of complex materials we try to define some criteria which allow us to distinguish between sensu stricto hormesis and biphasic responses due to other causes. Finally, we discuss some problems concerning the metric of the dose in connection with the exposure time, and we make a cautionary suggestion about the use of bacteriocins as antimicrobial agents. Conclusions The mathematical model proposed, which combines the basis of DR theory with microbial growth kinetics, can generate and explain all types of anomalous experimental profiles. These profiles could also be described in a simpler way by means of bisigmoidal equations. Such equations could be successfully used in a microbiology and toxicology context to discriminate between hormesis and other biphasic phenomena.

  9. Halistanol sulfate A and rodriguesines A and B are antimicrobial and antibiofilm agents against the cariogenic bacterium Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Bruna de A. Lima

    2014-12-01

    Full Text Available In the present investigation we report the antibacterial activity of halistanol sulfate A isolated from the sponge Petromica ciocalyptoides, as well as of rodriguesines A and B isolated from the ascidian Didemnum sp., against the caries etiologic agent Streptococcus mutans. The transcription levels of S. mutans virulence genes gtfB, gtfC and gbpB, as well as of housekeeping genes groEL and 16S, were evaluated by sqRT-PCR analysis of S. mutans planktonic cells. There were no alterations in the expression levels of groEL and 16S after antimicrobial treatment with halistanol sulfate A and with rodriguesines A and B, but the expression of the genes gtfB, gtfC and gbpB was down-regulated. Halistanol sulfate A displayed the most potent antimicrobial effect against S. mutans, with inhibition of biofilm formation and reduction of biofilm-associated gene expression in planktonic cells. Halistanol sulfate A also inhibited the initial oral bacteria colonizers, such as Streptococcus sanguinis, but at much higher concentrations. The results obtained indicate that halistanol sulfate A may be considered a potential scaffold for drug development in Streptococcus mutans antibiofilm therapy, the main etiologic agent of human dental caries.

  10. Application of Origanum majorana L. essential oil as an antimicrobial agent in sausage.

    Science.gov (United States)

    Busatta, C; Vidal, R S; Popiolski, A S; Mossi, A J; Dariva, C; Rodrigues, M R A; Corazza, F C; Corazza, M L; Vladimir Oliveira, J; Cansian, R L

    2008-02-01

    This work reports on the antimicrobial activity in fresh sausage of marjoram (Origanum majorana L.) essential oil against several species of bacteria. The in vitro minimum inhibitory concentration (MIC) was determined for 10 selected aerobic heterotrophic bacterial species. The antimicrobial activity of distinct concentrations of the essential oil based on the highest MIC value was tested in a food system comprising fresh sausage. Batch food samples were also inoculated with a fixed concentration of Escherichia coli and the time course of the product was evaluated with respect to the action of the different concentrations of essential oil. Results showed that addition of marjoram essential oil to fresh sausage exerted a bacteriostatic effect at oil concentrations lower than the MIC, while a bactericidal effect was observed at higher oil concentrations which also caused alterations in the taste of the product.

  11. Synthesis, molecular modeling and structural characterization of vanillin derivatives as antimicrobial agents

    Science.gov (United States)

    Sun, Juan; Yin, Yong; Sheng, Gui-Hua; Yang, Zhi-Bo; Zhu, Hai-Liang

    2013-05-01

    Two vanillin derivatives have been designed and synthesized and their biological activities were also evaluated for antimicrobial activity. Their chemical structures are characterized by single crystal X-ray diffraction studies, 1H NMR, MS, and elemental analysis. Structural stabilization of them followed by intramolecular as well as intermolecular H-bonds makes these molecules as perfect examples in molecular recognition with self-complementary donor and acceptor units within a single molecule. Docking simulations have been performed to position compounds into the FtsZ active site to determine their probable binding model. Compound 3a shows the most potent biological activity, which may be a promising antimicrobial leading compound for the further research.

  12. Microwave Assisted Synthesis of Novel Imidazolopyridinyl Indoles as Potent Antioxidant and Antimicrobial Agents

    OpenAIRE

    Biradar, Jaiprakash S.; Parveen Rajesab; Somappa, Sasidhar B.

    2014-01-01

    We describe herein the design, synthesis, and pharmacological evaluation of novel series of imidazolopyridinyl indole analogues as potent antioxidants and antimicrobials. These novel compounds (3a–i) were synthesized by reacting 3,5-disubstituted-indole-2-carboxylic acid (1a–i) with 2,3-diamino pyridine (2) in excellent yield. The novel products were confirmed by their IR, 1H NMR, 13C NMR, mass spectral, and analytical data. These compounds were screened for their antioxidant and antimicrobia...

  13. In vitro Investigations into the Antimicrobial and Microecological Effects of Selected Anti-plaque Agents

    OpenAIRE

    Mohamad, Mohamad

    2011-01-01

    The prevalence of oral diseases such as dental caries and periodontitis and the universal need for effective control of oral health has stimulated a great deal of interest in oral hygienic formulations both scientifically and commercially driven. Such formulations are normally deployed as complex formulations commonly containing antimicrobial actives together with excipients, where both classes of ingredients may contribute to the bacteriological effect of the oral hygienic product. However, ...

  14. The Role Of Milk Peptide As Antimicrobial Agent In Supporting Health Status

    Directory of Open Access Journals (Sweden)

    Eni Kusumaningtyas

    2013-06-01

    Full Text Available Antimicrobial peptide is commonly present in all species as a component of their innate immune defense against infection. Antimicrobial peptides derived from milk such as isracidin, casocidin, casecidin and other fragments with variety of amino acid sequence are released upon enzymatic hydrolysis from milk protein К-casein, α-casein, β-casein, α-lactalbumin and β- lactoglobulin. These peptides were produced by the activity of digestive or microbial protease such as trypsin, pepsin, chymosin or alcalase. The mode of action of these peptides is by interaction of their positive with negative charge of target cell membrane leading to disruption of membrane associated with physiological event such as cell division or translocation of peptide across the membrane to interact with cytoplasmic target. Modification of charged or nonpolar aliphatic residues within peptides can enhance or reduce the activities of the peptides against a number of microbial strains and it seems to be strain dependent. Several peptides act not only as an antimicrobial but also as an angiotensin-converting enzyme inhibitor, antioxidant, immunomodulator, antiinflamation, food and feed preservative. Although the commercial production of these peptides is still limited due to lack of suitable large-scale technologies, fast development of some methods for peptide production will hopefully increase the possibility for mass production.

  15. Antimicrobial Polymer

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, William F. (Utica, OH); Wright, Stacy C. (Flint, MI); Taylor, Andrew C. (Ann Arbor, MI)

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  16. Influence of triclosan and triclocarban antimicrobial agents on the microbial activity in three physicochemically differing soils of south Australia

    Directory of Open Access Journals (Sweden)

    Abid Ali, Muhammad Arshad, Zahir A. Zahir

    2011-11-01

    Full Text Available Antimicrobial agents are being used in numerous consumer and health care products on account of which their annual global consumption has reached in millions of kilograms. They are flushed down the drain and become the part of wastewater and sewage sludge and end up in the ultimate sink of agricultural soils. Once they are in the soil, they may disturb the soil’s ecology as a result of which microbial activity useful for soil fertility and biodegradation of xenobiotics may severely be impacted. The present study was designed to assess the influence of two antimicrobial agents triclosan (TCS and triclocarban (TCC, commonly used in consumer and health care products, on the microbial activity in the three agricultural soils from South Australia having different characteristics. The study was laid out following the two factors factorial design by applying 14C-glucose at 5 µg g-1 with either TCS at 0, 30, 90 and 270 µg g-1 or TCC at 0, 50, 150 and 450 µg g-1 in three agricultural soils, Freeling (Typic Rhodoxeralf–sodic, Booleroo (Typic Rhodoxeralf and Avon (Calcixerralic Xerochrepts. The 14CO2, which was released as a result of microbial respiration, was trapped in 3 mL 1M NaOH and was quantified on Wallac WinSpectral α/β 1414 Liquid Scintillation Counter. The results revealed a significant difference in amounts of 14C-glucose mineralized in the three soils. A significant concentration dependant suppressive effect of TCS on the biomineralization of 14C-glucose appeared in all the tested soils as opposed to TCC where no such concentration dependent effect could be recorded. The reduction in 14C-glucose biomineralization in the Freeling, Booleroo and Avon soils was recorded up to 53.6, 38.5 and 37.4 % by TCS at 270 µg g-1 and 13.0, 5.8 and 1.6 % by TCC at 450 µg g-1 respectively. However, a significant negative correlation of CEC and pH was recorded with TCS and TCC effects. These results may imply that presence of such antimicrobial agents

  17. Evaluation of bishexadecyltrimethyl ammonium palladium tetrachloride based dual functional colloidal carrier as an antimicrobial and anticancer agent.

    Science.gov (United States)

    Kaur, Gurpreet; Kumar, Sandeep; Dilbaghi, Neeraj; Kaur, Baljinder; Kant, Ravi; Guru, Santosh Kumar; Bhushan, Shashi; Jaglan, Sundeep

    2016-04-12

    We have developed a dual function carrier using bishexadecyltrimethyl ammonium palladium tetrachloride, which has anticancer as well as antibacterial activity, using a ligand insertion method with a simple and easy work procedure. The complex is prepared by a simple and cost effective method using hexadecyltrimethyl ammonium chloride and palladium chloride under controlled stoichiometry. Herein, we report the aggregation (self assembly) of the metallosurfactant having palladium as a counter ion, in aqueous medium along with its binding affinity with bovine serum albumin. The palladium surfactant has exhibited excellent antimicrobial efficacy against fungus and bacteria (both Gram-positive and Gram-negative bacteria). Cytotoxicity of palladium surfactant against cancerous (Human leukemia HL-60, pancreatic MIA-Pa-Ca-2 and prostate cancer PC-3) and healthy cells (fR2 human breast epithelial cells) was also evaluated using MTT assay. The present dual functional moiety shows a low IC50 value and has potential to be used as an anticancer agent. Our dual function carrier which itself possesses antimicrobial and anticancer activity represents a simple and effective system and can also be utilized as a drug carrier in the future. PMID:26961498

  18. Reduced Susceptibility to Rifampicin and Resistance to Multiple Antimicrobial Agents among Brucella abortus Isolates from Cattle in Brazil

    Science.gov (United States)

    Barbosa Pauletti, Rebeca; Reinato Stynen, Ana Paula; Pinto da Silva Mol, Juliana; Seles Dorneles, Elaine Maria; Alves, Telma Maria; de Sousa Moura Souto, Monalisa; Minharro, Silvia; Heinemann, Marcos Bryan; Lage, Andrey Pereira

    2015-01-01

    This study aimed to determine the susceptibility profile of Brazilian Brucella abortus isolates from cattle to eight antimicrobial agents that are recommended for the treatment of human brucellosis and to correlate the susceptibility patterns with origin, biotype and MLVA16-genotype of the strains. Screening of 147 B. abortus strains showed 100% sensitivity to doxycycline and ofloxacin, one (0.68%) strain resistant to ciprofloxacin, two strains (1.36%) resistant to streptomycin, two strains (1.36%) resistant to trimethoprim-sulfamethoxazole and five strains (3.40%) resistant to gentamicin. For rifampicin, three strains (2.04%) were resistant and 54 strains (36.73%) showed reduced sensitivity. Two strains were considered multidrug resistant. In conclusion, the majority of B. abortus strains isolated from cattle in Brazil were sensitive to the antimicrobials commonly used for the treatment of human brucellosis; however, a considerable proportion of strains showed reduced susceptibility to rifampicin and two strains were considered multidrug resistant. Moreover, there was no correlation among the drug susceptibility pattern, origin, biotype and MLVA16-genotypes of these strains. PMID:26181775

  19. In Vitro Synergism between Azithromycin or Terbinafine and Topical Antimicrobial Agents against Pythium insidiosum.

    Science.gov (United States)

    Itaqui, Sabrina R; Verdi, Camila M; Tondolo, Juliana S M; da Luz, Thaisa S; Alves, Sydney H; Santurio, Janio M; Loreto, Érico S

    2016-08-01

    We describe here in vitro activity for the combination of azithromycin or terbinafine and benzalkonium, cetrimide, cetylpyridinium, mupirocin, triclosan, or potassium permanganate. With the exception of potassium permanganate, the remaining antimicrobial drugs were active and had an MIC90 between 2 and 32 μg∕ml. The greatest synergism was observed for the combination of terbinafine and cetrimide (71.4%). In vivo experimental evaluations will clarify the potential of these drugs for the topical treatment of lesions caused by Pythium insidiosum. PMID:27216049

  20. Prevalence and Distribution of Mastitis Pathogens and their Resistance against Antimicrobial Agents in Dairy Cows in Jordan

    Directory of Open Access Journals (Sweden)

    Azmi D. Hawari

    2008-01-01

    Full Text Available The primary objective of this study was to determine the aetiology of bovine mastitis in ten herds of Holstein Friesian cow in Jordan, the prevalence of mastitis pathogens in dairy cows and their resistance to selected antimicrobial agents. Milk samples were collected from 220 lactating cows to determine the clinical and subclinical mastitis by white side test and confirmed by cultural tests. It was found that 138 quarters (15.7% had been diagnosed as clinical mastitis with definite gross pathological lesions and change in udder secretion, in addition to that 276 quarters (31.4% showed subclinical mastitis. The incidence of mastitis was found to be increased in older cows. Staphylococcus aurous was considered to be the most common cause of both clinical and subclinical mastitis and followed by coli forms, streptococcus spp., corynebacterium spp., proteus spp. and pseudomonas spp. Sensitivity tests were applied to different isolated strains using tertracycline, ampicillin, neomycin, erythromycin, penicillin G and sulphamethoxazol trimethoprim.

  1. Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Webb, J.S.; Rao, D.;

    2006-01-01

    Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated...... specific interactions. In summary, our data strongly indicate that synergistic effects promote biofilm biomass and resistance of the biofilm to antimicrobial agents and bacterial invasion in multispecies biofilms.......Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated......-species biofilms resisted invasion to a greater extent than did the biofilms formed by the single species. Replacement of each strain by its cell-free culture supernatant suggested that synergy was dependent both on species-specific physical interactions between cells and on extracellular secreted factors or less...

  2. High CO2 concentration as an inductor agent to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.

    Science.gov (United States)

    Ruiz, Cristina; Pla, Maria; Company, Nuri; Riudavets, Jordi; Nadal, Anna

    2016-03-01

    Cationic α-helical antimicrobial peptides such as BP100 are of increasing interest for developing novel phytosanitary or therapeutic agents and products with industrial applications. Biotechnological production of these peptides in plants can be severely impaired due to the toxicity exerted on the host by high-level expression. This can be overcome by using inducible promoters with extremely low activity throughout plant development, although the yields are limited. We examined the use of modified atmospheres using the increased levels of [CO2], commonly used in the food industry, as the inductor agent to biotechnologically produce phytotoxic compounds with higher yields. Here we show that 30% [CO2] triggered a profound transcriptional response in rice leaves, including a change in the energy provision from photosynthesis to glycolysis, and the activation of stress defense mechanisms. Five genes with central roles in up-regulated pathways were initially selected and their promoters successfully used to drive the expression of phytotoxic BP100 in genetically modified (GM) rice. GM plants had a normal phenotype on development and seed production in non-induction conditions. Treatment with 30 % [CO2] led to recombinant peptide accumulation of up to 1 % total soluble protein when the Os.hb2 promoter was used. This is within the range of biotechnological production of other peptides in plants. Using BP100 as a proof-of-concept we demonstrate that very high [CO2] can be considered an economically viable strategy to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories. PMID:26687131

  3. Essential oils and herbal extracts as antimicrobial agents in cosmetic emulsion.

    Science.gov (United States)

    Herman, Anna; Herman, Andrzej Przemysław; Domagalska, Beata Wanda; Młynarczyk, Andrzej

    2013-06-01

    The cosmetic industry adapts to the needs of consumers seeking to limit the use of preservatives and develop of preservative-free or self-preserving cosmetics, where preservatives are replaced by raw materials of plant origin. The aim of study was a comparison of the antimicrobial activity of extracts (Matricaria chamomilla, Aloe vera, Calendula officinalis) and essential oils (Lavandulla officinallis, Melaleuca alternifolia, Cinnamomum zeylanicum) with methylparaben. Extracts (2.5 %), essential oils (2.5 %) and methylparaben (0.4 %) were tested against Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Candida albicans ATCC 14053. Essentials oils showed higher inhibitory activity against tested microorganism strain than extracts and methylparaben. Depending on tested microorganism strain, all tested extracts and essential oils show antimicrobial activity 0.8-1.7 and 1-3.5 times stronger than methylparaben, respectively. This shows that tested extracts and essential oils could replace use of methylparaben, at the same time giving a guarantee of microbiological purity of the cosmetic under its use and storage. PMID:24426114

  4. Stenusine, an antimicrobial agent in the rove beetle genus Stenus (Coleoptera, Staphylinidae)

    Science.gov (United States)

    Lusebrink, Inka; Dettner, Konrad; Seifert, Karlheinz

    2008-08-01

    Stenusine is well known as the alkaloid, discharged by the rove beetle, genus Stenus Latreille (Coleoptera, Staphylinidae). The Stenus beetles employ the alkaloid as an escape mechanism when on water surfaces. In the case of danger, they lower their abdomen and emit stenusine from their pygidial glands. Stenusine shows a low surface tension and therefore a high spreading pressure; these properties propel the beetle quickly over the water. Many Steninae do not live in habitats with open waters, but in detritus, leaf litter, mosses, etc. This raises the possibility that stenusine might also have another function, e.g., as antibiotic or fungicide. Stenus beetles show an intense grooming behaviour. With gas chromatography mass spectrometry analyses we could prove that they cover themselves with their secretion. To tests its antimicrobial properties we conducted agar diffusion tests with stenusine and norstenusine, another substance that is abundant in most Stenus species. Both compounds have an antimicrobial effect on entomopathogenic bacteria and fungi. Stenusine not only allows for an extraordinary method of locomotion on water surfaces, it also protects the Steninae from being infested with microorganisms.

  5. Design of Novel 4-Hydroxy-chromene-2-one Derivatives as Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Milan Mladenović

    2010-06-01

    Full Text Available This paper presents the design of novel 4-hydroxy-chromene-2 one derivatives, based on previously obtained minimal inhibitory concentration values (MICs, against twenty four microorganism cultures, Gram positive and negative bacteria and fungi. Two of our compounds, 3b (MIC range 130–500 μg/mL and 9c (31.25–62.5 μg/mL, presented high potential antimicrobial activity. The compound 9c had equal activity to the standard ketoconazole (31.25 μg/mL against M. mucedo. Enlarged resistance of S. aureus, E. coli and C. albicans on the effect of potential drugs and known toxicity of coumarin antibiotics, motivated us to establish SAR and QSAR models of activity against these cultures and correlate biological activity, molecular descriptors and partial charges of functional groups to explain activity and use for the design of new compounds. The QSAR study presents essential relation of antimicrobial activity and dominant substituents, 4-hydroxy, 3-acetyl and thiazole functional groups, also confirmed through molecular docking. The result was ten new designed compounds with much improved predicted inhibition constants and average biological activity.

  6. Apple Puree-Alginate Edible Coating as Carrier of Antimicrobial Agents to Prolong Shelf-Life of Fresh-Cut Apples

    Science.gov (United States)

    Edible coatings with antimicrobial agents can extend the shelf-life of fresh-cut fruit. The effect of lemongrass, oregano oil and vanillin incorporated in apple puree-alginate edible coatings, on the shelf-life of fresh-cut Fuji apples, was investigated. Coated apples were packed in air-filled pol...

  7. In Vitro Activities of 15 Antimicrobial Agents against Clinical Isolates of South African Enterococci

    OpenAIRE

    Struwig, M. C.; Botha, P. L.; Chalkley, L. J.

    1998-01-01

    The activities of a panel of currently available antibiotics and the investigational agents LY 333328, linezolid, CL 331,002, CL 329,998, moxifloxacin (BAY 12-8039), trovafloxacin, and quinupristin-dalfopristin against 274 clinical isolates of enterococci were determined. No vancomycin resistance or β-lactamase production was observed. Except for 12 isolates (all non-Enterococcus faecalis) showing reduced susceptibility to quinupristin-dalfopristin (MIC, ≥4 μg/ml), the new agents exhibited pr...

  8. Analyses comparing the antimicrobial activity and safety of current antiseptic agents: a review.

    Science.gov (United States)

    Hibbard, John S

    2005-01-01

    This article reviews the results and conclusions from four pivotal and two comparative clinical trials. The six randomized, controlled, single-blinded, parallel-group clinical trials were conducted to determine which antiseptic is best for use as a patient preoperative skin preparation. The objective of these studies was to compare the immediate, persistent (residual), and cumulative antimicrobial efficacy and safety of 2% chlorhexidine gluconate (CHG) combined with 70% isopropyl alcohol (IPA) (ChloraPrep); another combination CHG and IPA antiseptic (CHG+IPA) and 2% aqueous CHG alone; 4% CHG (Hibiclens) alone; 70% isopropyl alcohol (IPA) alone; and an iodine-containing solution, 10% povidone-iodine (Betadine) alone as preoperative skin topical antiseptics for potential prevention of nosocomial infections.

  9. Development of bacterial resistance to biocides and antimicrobial agents as a consequence of biocide usage

    DEFF Research Database (Denmark)

    Seier-Petersen, Maria Amalie

    Biocides are chemical compounds with antimicrobial properties and they are widely used for disinfection, antiseptic and preservation purposes. Biocides have been applied for centuries due to early empirical approaches, such as cleansing of wounds with wine, vinegar and honey and salting of fish...... determined (Manuscript III). The biocides comprised benzalkonium chloride (BC), hydrogen peroxide (HP), sodium hypochlorite (SH), formaldehyde (FH), and caustic soda (NaOH). S. aureus isolates did in general not show reduced susceptibility to the biocides tested. However, a quaternary ammonium compound (QAC...... be of potential risk for human health, since these disinfectants are widely used at hospitals and in the food industry. Mobile genetic elements such as conjugative transposons are important vectors in the dissemination of antibiotic resistance determinants. Tn916 including the tetracycline resistance gene tet...

  10. Potential of the Essential Oil from Pimenta Pseudocaryophyllus as an Antimicrobial Agent

    Directory of Open Access Journals (Sweden)

    Suzuki Érika Yoko

    2014-09-01

    Full Text Available This study evaluated the effectiveness of the essential oil of Pimenta pseudocaryophyllus in inhibiting the growth of the main bacteria responsible for bad perspiration odor (Staphylococcus epidermidis, Proteus hauseri, Micrococcus yunnanensis and Corynebacterium xerosis. The chemical profile of the essential oil was evaluated by high-resolution gas chromatography (HR-GC and four constituents were identified, eugenol being the major component (88.6 %. The antimicrobial activity was evaluated by means of the turbidimetric method, using the microdilution assay. The minimum inhibitory concentration (MIC values of the essential oil ranged from 500 to 1,000 μg mL-1. Scanning electron microscope (SEM observations confirmed the physical damage and morphological alteration of the test bacteria treated with the essential oil, reference drugs and eugenol. The findings of the study demonstrated that this essential oil can be used in the formulation of personal care products.

  11. SCALE-UP STUDIES ON IMMOBILIZATION OF LACTOPEROXIDASE USING MILK WHEY FOR PRODUCING ANTIMICROBIAL AGENT

    Directory of Open Access Journals (Sweden)

    A.N. Al-Baarri

    2014-10-01

    Full Text Available Hypothiocyanite (OSCN–, produced by lactoperoxidase (LPO in the presence of SCN– and H2O2,inhibits the growth of bacteria. This inhibition is called by LPO system (LPOS. Our laboratory scalestudy in previous experiment showed that whey immobilized on SP-Sepharose Fast Flow (SP-FF couldproduce OSCN– continuously. Then, the purpose of this study is to scale up continuous production ofOSCN– using immobilized whey. Immobilized whey was generated by circulating various amounts ofwhey through SP-FF. To generate OSCN–, 10 ml of the substrate solution containing 0.5 mM SCN– and0.5 mM H2O2, was circulated through immobilized whey and followed by washing with pure water. Thenext cycle was done by circulating a fresh 10 ml of substrate solution at the same concentration. Theresult indicated that a stable immobilization efficiency of more than 90% was achieved in the SP-FFcirculated with 300 ml or less of whey per gram of SP-FF. When stored at 4˚C, immobilized wheyretained 80% LPO activity until 3 weeks storage. The reaction solution discharged from immobilizedwhey was observed to contain approximately 0.4 mM OSCN–. The experiment using 1.0 g ofimmobilized whey produced a stable 0.4 mM OSCN– production and antimicrobial activity for at least 6cycles. The increase in resin volume accompanied by the increase in whey volume resulted the extensionof a stable OSCN– production. The experiment using recycled SP-FF did not affect to the stability ofOSCN– production and antimicrobial activity. These results may open the way for the large-scaleproduction of OSCN−.

  12. Impact of medicated feed along with clay mineral supplementation on Escherichia coli resistance to antimicrobial agents in pigs after weaning in field conditions.

    Science.gov (United States)

    Jahanbakhsh, Seyedehameneh; Kabore, Kiswendsida Paul; Fravalo, Philippe; Letellier, Ann; Fairbrother, John Morris

    2015-10-01

    The aim of this study was to examine changes in antimicrobial resistance (AMR) phenotype and virulence and AMR gene profiles in Escherichia coli from pigs receiving in-feed antimicrobial medication following weaning and the effect of feed supplementation with a clay mineral, clinoptilolite, on this dynamic. Eighty E. coli strains isolated from fecal samples of pigs receiving a diet containing chlortetracycline and penicillin, with or without 2% clinoptilolite, were examined for antimicrobial resistance to 15 antimicrobial agents. Overall, an increased resistance to 10 antimicrobials was observed with time. Supplementation with clinoptilolite was associated with an early increase but later decrease in blaCMY-2, in isolates, as shown by DNA probe. Concurrently, a later increase in the frequency of blaCMY-2 and the virulence genes iucD and tsh was observed in the control pig isolates, being significantly greater than in the supplemented pigs at day 28. Our results suggest that, in the long term, supplementation with clinoptilolite could decrease the prevalence of E. coli carrying certain antimicrobial resistance and virulence genes.

  13. Optimization of four types of antimicrobial agents to increase the inhibitory ability of marine Arthrobacter oxydans KQ11 dextranase mouthwash

    Science.gov (United States)

    Ren, Wei; Wang, Shujun; Lü, Mingsheng; Wang, Xiaobei; Fang, Yaowei; Jiao, Yuliang; Hu, Jianen

    2016-03-01

    We adopted the response surface methodology using single factor and orthogonal experiments to optimize four types of antimicrobial agents that could inhibit biofilm formation by Streptococcus mutans, which is commonly found in the human oral cavity and causes tooth decay. The objective was to improve the function of marine Arthrobacter oxydans KQ11 dextranase mouthwash (designed and developed by our laboratory). The experiment was conducted in a three-level, four-variable central composite design to determine the best combination of ZnSO4, lysozyme, citric acid and chitosan. The optimized antibacterial agents were 2.16 g/L ZnSO4, 14 g/L lysozyme, 4.5 g/L citric acid and 5 g/L chitosan. The biofilm formation inhibition reached 84.49%. In addition, microscopic observation of the biofilm was performed using scanning electron microscopy and confocal laser scanning microscopy. The optimized formula was tested in marine dextranase Arthrobacter oxydans KQ11 mouthwash and enhanced the inhibition of S. mutans. This work may be promoted for the design and development of future marine dextranase oral care products.

  14. Chemo-sensitization of fungal pathogens to antimicrobial agents using benzaldehyde analogs

    Science.gov (United States)

    Activity of conventional antifungal agents, fludioxonil, strobilurin and antimycinA, which target the oxidative and osmotic stress response systems, was elevated by co-application of certain analogs of benzaldehyde. Fungal tolerance to 2,3-dihydroxybenzaldehyde or 2,3-dihydroxybenzoic acid was foun...

  15. Antimicrobial susceptibility pattern of bacterial isolates from wound infection and their sensitivity to antibiotic agents at super specialty hospital, Amravati city, India

    Directory of Open Access Journals (Sweden)

    Hrishikesh Sawdekar

    2015-02-01

    Full Text Available Background: Wound infection is one of the health problems that is caused and aggravated by the invasion of pathogenic organisms. Information on local pathogens and sensitivity to antimicrobial agent is crucial for successful treatment of wounds. So the present study was conducted to determine antimicrobial susceptibility pattern of bacterial isolates from wound infection and their sensitivity to antimicrobial agents. Methods: A retrospective study was conducted among patients with wound infection in Suyash super speciality hospital, from January 2012 to December 2013. Wound swab was collected using sterile cotton swabs and processed for bacterial isolation and susceptibility testing to Systemic antimicrobial agents. Results: In this study 78 bacterial isolates were recovered from 258 specimens showing an isolation rate of 31.2%. The predominant bacteria isolated from wounds were gram positive staphylococci 36 (46.2%, followed by gram negative streptococci 18 (23.1% gram negative pseudomonas 12 (15.4 % and gram negative proteus 8 (10.4%. The gram positive and gram negative bacteria constituted 68 (87.2% and 10 (12.8% of bacterial isolates; respectively. Conclusion: In the present study most of the pathogens isolated from wound isolates showed high rate of resistance to most commonly used newer antibiotics used to treat bacterial infections. Therefore, rational use of antibiotics should be practiced. [Int J Res Med Sci 2015; 3(2.000: 433-439

  16. Udder pathogens and their resistance to antimicrobial agents in dairy cows in Estonia

    Directory of Open Access Journals (Sweden)

    Orro Toomas

    2011-02-01

    Full Text Available Abstract Background The goal of this study was to estimate the distribution of udder pathogens and their antibiotic resistance in Estonia during the years 2007-2009. Methods The bacteriological findings reported in this study originate from quarter milk samples collected from cows on Estonian dairy farms that had clinical or subclinical mastitis. The samples were submitted by local veterinarians to the Estonian Veterinary and Food Laboratory during 2007-2009. Milk samples were examined by conventional bacteriology. In vitro antimicrobial susceptibility testing was performed with the disc diffusion test. Logistic regression with a random herd effect to control for clustering was used for statistical analysis. Results During the study period, 3058 clinical mastitis samples from 190 farms and 5146 subclinical mastitis samples from 274 farms were investigated. Positive results were found in 57% of the samples (4680 out of 8204, and the proportion did not differ according to year (p > 0.05. The proportion of bacteriologically negative samples was 22.3% and that of mixed growth was 20.6%. Streptococcus uberis (Str. uberis was the bacterium isolated most frequently (18.4% from cases of clinical mastitis, followed by Escherichia coli (E. coli (15.9% and Streptococcus agalactiae (Str. agalactiae (11.9%. The bacteria that caused subclinical mastitis were mainly Staphylococcus aureus (S. aureus (20% and coagulase-negative staphylococci (CNS (15.4%. The probability of isolating S. aureus from milk samples was significantly higher on farms that had fewer than 30 cows, when compared with farms that had more than 100 cows (p Str. agalactiae infection was found on farms with more than 600 cows (p = 0.034 compared with smaller farms. The proportion of S. aureus and CNS isolates that were resistant to penicillin was 61.4% and 38.5%, respectively. Among the E. coli isolates, ampicillin, streptomycin and tetracycline resistance were observed in 24.3%, 15.6% and 13

  17. Effect of ionizing energy on extracts of Quillaja saponaria to be used as an antimicrobial agent on irradiated edible coating for fresh strawberries

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga, G.E., E-mail: gustavo.zuniga@usach.cl [Universidad de Santiago de Chile (USACH), Facultad de Quimica y Biologia, Depto. de Biologia, Alameda 3363, Estacion Central, Santiago (Chile); Junqueira-Goncalves, M.P., E-mail: mpaula.junqueira@usach.cl [Universidad de Santiago de Chile (USACH), Facultad Tecnologica, Depto. de Ciencia y Tecnologia de Alimentos, Ecuador 3769, Estacion Central, Santiago (Chile); Pizarro, M.; Contreras, R. [Universidad de Santiago de Chile (USACH), Facultad de Quimica y Biologia, Depto. de Biologia, Alameda 3363, Estacion Central, Santiago (Chile); Tapia, A. [Universidad de Santiago de Chile (USACH), Facultad Tecnologica, Depto. de Ciencia y Tecnologia de Alimentos, Ecuador 3769, Estacion Central, Santiago (Chile); Silva, S. [Comision Chilena de Energia Nuclear, Depto. de Aplicaciones Nucleares, Seccion Salud y Alimentos, La Reina, Santiago (Chile)

    2012-01-15

    Incorporating antimicrobial compounds into edible films or coatings provides a novel way to improve the safety and shelf life of ready-to-eat foods. Diverse studies with Quillaja saponaria Mol. (popularly named quillay) extracts have demonstrated their potential as antifungal agents against phytopathogenic fungi. Crosslinking induced by ionizing radiation is an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on milk proteins. However there are few reports about the effects of {gamma}-radiation on plant extracts. The aim of this work was to evaluate the effect of ionizing radiation (0, 5, 10, 15, 20, 25 and 35 kGy) on extracts prepared from in vitro plants of Q. saponaria to be used as antimicrobial agent in irradiated edible coating based on calcium caseinate and whey protein isolated, and also to establish the concentration of Q. saponaria extract to be added as an antifungal agent in the coating. Gamma irradiation since 15 kGy affects negatively the antimicrobial activity and metabolites composition of extract of Q. saponaria by reducing compounds of phenolic nature. Otherwise no effect on saponins profile was observed even at higher doses. It was possible to conclude that the antifungal activity of Q. saponaria extract is mainly related to phenolic compounds content. In addition, our work also shows that to obtain an efficient antifungal protection is necessary to add a minimum concentration of 6% of the extract after the coating irradiation. - Highlights: > Antimicrobial compounds into edible coatings improve food' safety and shelf life. > Q. saponaria extract is an antifungal agent against phytopathogenic fungi. > Crosslinking induced by {gamma}-radiation over 30 kGy improves properties of the coatings. > {gamma}-radiation since 15 kGy affects the antimicrobial activity of Q. saponaria extract. > This extract should be added after the coating radiation, at a minimum of 6%.

  18. Effect of ionizing energy on extracts of Quillaja saponaria to be used as an antimicrobial agent on irradiated edible coating for fresh strawberries

    International Nuclear Information System (INIS)

    Incorporating antimicrobial compounds into edible films or coatings provides a novel way to improve the safety and shelf life of ready-to-eat foods. Diverse studies with Quillaja saponaria Mol. (popularly named quillay) extracts have demonstrated their potential as antifungal agents against phytopathogenic fungi. Crosslinking induced by ionizing radiation is an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on milk proteins. However there are few reports about the effects of γ-radiation on plant extracts. The aim of this work was to evaluate the effect of ionizing radiation (0, 5, 10, 15, 20, 25 and 35 kGy) on extracts prepared from in vitro plants of Q. saponaria to be used as antimicrobial agent in irradiated edible coating based on calcium caseinate and whey protein isolated, and also to establish the concentration of Q. saponaria extract to be added as an antifungal agent in the coating. Gamma irradiation since 15 kGy affects negatively the antimicrobial activity and metabolites composition of extract of Q. saponaria by reducing compounds of phenolic nature. Otherwise no effect on saponins profile was observed even at higher doses. It was possible to conclude that the antifungal activity of Q. saponaria extract is mainly related to phenolic compounds content. In addition, our work also shows that to obtain an efficient antifungal protection is necessary to add a minimum concentration of 6% of the extract after the coating irradiation. - Highlights: → Antimicrobial compounds into edible coatings improve food' safety and shelf life. → Q. saponaria extract is an antifungal agent against phytopathogenic fungi. → Crosslinking induced by γ-radiation over 30 kGy improves properties of the coatings. → γ-radiation since 15 kGy affects the antimicrobial activity of Q. saponaria extract. → This extract should be added after the coating radiation, at a minimum of 6%.

  19. Secondary metabolites inhibiting ABC transporters and reversing resistance of cancer cells and fungi to cytotoxic and antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Michael eWink

    2012-04-01

    Full Text Available Fungal, bacterial and cancer cells can develop resistance against antifungal, antibacterial or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: 1. Activation of ABC transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, 2. Activation of cytochrome p450 oxidases which can oxidise lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulphate or amino acids, and 3. Activation of glutathione transferase, which can conjugate xenobiotics. This review summarises the evidence that secondary metabolites of plants, such as alkaloids, phenolics and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria and fungi. Among the active natural products several lipophilic terpenoids ( monoterpenes, diterpenes, triterpenes (including saponins, steroids (including cardiac glycosides and tetraterpenes but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids function probably as competitive inhibitors of P-gp, MRP1 and BCRP in cancer cells, or efflux pumps in bacteria (NorA and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse MDR, at least partially, of adapted and resistant cells. If these secondary metabolites are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion.

  20. [Evaluation of pharmacopoeia methods for determination of antimicrobial agents, especially of natural substances].

    Science.gov (United States)

    Brantner, A

    1997-01-01

    Microbiological assays referring to antibiotics were first mentioned in 1955 in the US Pharmacopedia XV and in the Pharmacopedia of India I. In the pharmacopedias two general methods are employed: The first group of methods is grounded on diffusion (disc assay, cylinder-plate and hole-plate assay), the second one is based on the determination of optical density (turbidimetric method). Both methods involve certain problems, particularly with respect to the testing of low-active natural substances. In the course of our investigations those test methods were evaluated and the advantages and disadvantages discussed. The methods were compared to test systems not being described in the pharmacopedias (microdilution test, bioautographic TLC assay). In addition to that we examined spectrophotometrically (OD580nm) the influence of an antimicrobial substance and of a solutizer on the bacterial growth. Tetracycline hydrochloride was used as reference and naringenin as test substance. The results were analyzed with statistical methods cited in the pharmacopedias, e.g. straight-line method and compared to other common methods, e.g. analysis of variance.

  1. Synthesis of Some Novel Heterocyclic and Schiff Base Derivatives as Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Mohamed E. Azab

    2015-10-01

    Full Text Available Treatment of 2,3-diaryloxirane-2,3-dicarbonitriles 1a–c with different nitrogen nucleophiles, e.g., hydrazine, methyl hydrazine, phenyl hydrazine, hydroxylamine, thiosemicarbazide, and/or 2-amino-5-phenyl-1,3,4-thiadiazole, afforded pyrazole, isoxazole, pyrrolotriazine, imidazolothiadiazole derivatives 2–5, respectively. Reacting pyrazoles 2a–c with aromatic aldehydes and/or methyl glycinate produced Schiff’s bases 7a–d and pyrazolo[3,4-b]-pyrazinone derivative 8, respectively. Treating 7 with ammonium acetate and/or hydrazine hydrate, furnished the imidazolopyrazole and pyrazolotriazine derivatives 9 and 10, respectively. Reaction of 8 with chloroacetic acid and/or diethyl malonate gave tricyclic compound 11 and triketone 12, respectively. On the other hand, compound 1 was reacted with active methylene precursors, e.g., acetylacetone and/or cyclopentanone producing adducts 14a,b which upon fusion with ammonium acetate furnished the 3-pyridone derivatives 15a,b, respectively. Some of newly synthesized compounds were screened for activity against bacterial and fungal strains and most of the newly synthesized compounds showed high antimicrobial activities. The structures of the new compounds were elucidated using IR, 1H-NMR, 13C-NMR and mass spectroscopy.

  2. Ruthenium (II) complexes of thiosemicarbazone: synthesis, biosensor applications and evaluation as antimicrobial agents.

    Science.gov (United States)

    Yildirim, Hatice; Guler, Emine; Yavuz, Murat; Ozturk, Nurdan; Kose Yaman, Pelin; Subasi, Elif; Sahin, Elif; Timur, Suna

    2014-11-01

    A conformationally rigid half-sandwich organoruthenium (II) complex [(η(6)-p-cymene)RuClTSC(N-S)]Cl, (1) and carbonyl complex [Ru(CO)Cl(PPh3)2TSC(N-S)] (2) have been synthesized from the reaction of [{(η(6)-p-cymene)RuCl}2(μ-Cl)2] and [Ru(H)(Cl)(CO)(PPh3)3] with thiophene-2-carboxaldehyde thiosemicarbazon (TSC) respectively and both novel ruthenium (II) complexes have been characterized by elemental analysis, FT-IR and NMR spectroscopy. The peripheral TSC in the complexes acts as an electrochemical coupling unit providing the ability to carry out electrochemical deposition (ED) and to form an electro-deposited film on a graphite electrode surface. The biosensing applicability of complexes 1 and 2 was investigated by using glucose oxidase (GOx) as a model enzyme. Electrochemical measurements at -0.9V versus Ag/AgCl electrode by following the ED Ru(II) reduction/oxidation due to from the enzyme activity, in the presence of glucose substrate. The designed biosensor showed a very good linearity for 0.01-0.5mM glucose. The in vitro antimicrobial activities of complexes 1 and 2 were also investigated against nine bacterial strains and one fungus by the disc diffusion test method. No activity was observed against the Gram-negative strains and fungus, whereas complex 1 showed moderate antibacterial activities against Gram-positive bacterial strains. PMID:25280673

  3. N,N-dimethylbiguanide complexes displaying low cytotoxicity as potential large spectrum antimicrobial agents.

    Science.gov (United States)

    Olar, Rodica; Badea, Mihaela; Marinescu, Dana; Chifiriuc, Mariana-Carmen; Bleotu, Coralia; Grecu, Maria Nicoleta; Iorgulescu, Emilia-Elena; Lazar, Veronica

    2010-07-01

    The new complexes M(DMBG)(2)(ClO(4))(2) (M:Mn, Ni, Cu and Zn; DMBG: N,N-dimethylbiguanide) have been synthesized and characterized by IR, EPR, (1)H NMR, (13)C NMR as well as electronic spectroscopy data. Complex [Ni(DMBG)(2)](ClO(4))(2).2DMF (DMF: N,N-dimethylformamide) crystallizes in the monoclinic P2(1)/c space group while [Cu(DMBG)(2)](ClO(4))(2) adopt monoclinic P21/c space group as X-ray single crystal data indicate. The redox behavior of complexes was investigated by cyclic voltammetry. The metal-free N,N-dimethylbiguanide and complexes exhibit specific anti-infective properties as demonstrated the low MIC values, a large antimicrobial spectrum and also inhibit the ability of Pseudomonas aeruginosa and Staphylococcus aureus strains to colonize the inert surfaces. The complexes exhibit also a low cytotoxicity levels on HeLa cells.

  4. Genipin cross-linked nanocomposite films for the immobilization of antimicrobial agent.

    Science.gov (United States)

    Khan, Avik; Salmieri, Stéphane; Fraschini, Carole; Bouchard, Jean; Riedl, Bernard; Lacroix, Monique

    2014-09-10

    Cellulose nanocrystal (CNC) reinforced chitosan based antimicrobial films were prepared by immobilizing nisin on the surface of the films. Nanocomposite films containing 18.65 μg/cm(2) of nisin reduced the count of L. monocytogenes by 6.73 log CFU/g, compared to the control meat samples (8.54 log CFU/g) during storage at 4 °C in a Ready-To-Eat (RTE) meat system. Film formulations containing 9.33 μg/cm(2) of nisin increased the lag phase of L. monocytogenes on meat by more than 21 days, whereas formulations with 18.65 μg/cm(2) completely inhibited the growth of L. monocytogenes during storage. Genipin was used to cross-link and protect the activity of nisin during storage. Nanocomposite films cross-linked with 0.05% w/v genipin exhibited the highest bioactivity (10.89 μg/cm(2)) during the storage experiment, as compared to that of the un-cross-linked films (7.23 μg/cm(2)). Genipin cross-linked films were able to reduce the growth rate of L. monocytogenes on ham samples by 21% as compared to the un-cross-linked films. Spectroscopic analysis confirmed the formation of genipin-nisin-chitosan heterocyclic cross-linked network. Genipin cross-linked films also improved the swelling, water solubility, and mechanical properties of the nanocomposite films. PMID:25140839

  5. Lasallia pustulata lichen as possible natural antigenotoxic, antioxidant, antimicrobial and anticancer agent.

    Science.gov (United States)

    Kosanić, Marijana; Ranković, Branislav; Stanojković, Tatjana; Stošić, Ivana; Grujičić, Darko; Milošević-Djordjević, Olivera

    2016-08-01

    The methanol extract of the lichen Lasallia pustulata was tested for genotoxic, antioxidant, antimicrobial and anticancer activities. We did this using a cytokinesis block micronucleus (MN) assay on peripheral blood lymphocytes, by measuring free radical and superoxide anion scavenging activity, reducing power, determining of total phenolic compounds and determining the total flavonoid content, measuring the minimal inhibitory concentration by the broth microdilution method against five species of bacteria and five species of fungi and by using the microculture tetrazolium test on FemX (human melanoma) and LS174 (human colon carcinoma) cell lines. As a result of this study, we found that the methanol extract of L. pustulata did not modify the frequency of the MN and nuclear division index in comparison to untreated cells (p > 0.05). These results revealed that the methanol extract had moderate free radical scavenging activity with IC50 values of 395.56 μg/mL. Moreover, the extract tested had effective reducing power and superoxide anion radical scavenging. The values of the minimum inhibitory concentration against the tested microorganisms ranged from 0.625 to 20 mg/mL. In addition, the extract tested had strong anticancer activity against both cell lines with IC50 values of 46.67 and 71.71 μg/mL. PMID:25682053

  6. Effective Phages as Green Antimicrobial Agents Against Antibiotic-Resistant Hospital Escherichia coli

    OpenAIRE

    Rahmani, Rana; Zarrini, Gholamreza; Sheikhzadeh, Farzam; Aghamohammadzadeh, Naser

    2015-01-01

    Background: Bacteriophages are viruses that attack bacteria and lead to their lysis in an efficient and highly specific manner. These natural enemies of bacteria were used as therapeutic agents before the advent of antibiotics. Currently, with the rapid spread of multi-drug resistant bacteria, phage therapy can be an effective alternative treatment for antibiotic resistant bacteria. Objectives: This study evaluated the effectiveness of bacteriophages in removing antibiotic-resistant clinical ...

  7. Casbane diterpene as novel and natural antimicrobial agent against biofilm infections

    OpenAIRE

    Carneiro, Victor Alves; Teixeira, Edson Holanda; Santos, Hélcio Silva dos; M. O. Pereira; Henriques, Mariana; Lemos, Telma; Arruda, Francisco Vassiliepe Sousa

    2010-01-01

    Croton nepetaefolius is a plant native from northeastern Brazil and belongs to Euphorbiaceae family. The essential oil of this plant is widely used in folk medicine from the treatment of gastrointestinal disorders to the use as an antiseptic agent, with an antifungal action scientifically proven. The action of this plant has been extensively explored by the scientific community, being the secondary metabolites, which are responsible for their properties, alkaloids, diterpenes, and...

  8. New antimicrobial agents as therapy for resistant gram-positive cocci.

    Science.gov (United States)

    Lentino, J R; Narita, M; Yu, V L

    2008-01-01

    Vancomycin- and methicillin-resistant gram-positive cocci have emerged as an increasingly problematic cause of hospital-acquired infections. We conducted a literature review of newer antibiotics with activity against vancomycin-resistant and methicillin-resistant gram-positive cocci. Quinupristin/dalfopristin, linezolid, daptomycin, and tigecycline have in vitro activity for methicillin-resistant staphylococci and are superior to vancomycin for vancomycin-resistant isolates. Dalbavancin, telavancin, and oritavancin are new glycopeptides that have superior pharmacodynamic properties compared to vancomycin. We review the antibacterial spectrum, clinical indications and contraindications, pharmacologic properties, and adverse events associated with each of these agents. Daptomycin has rapid bactericidal activity for Staphylococcus aureus and is approved for use in bacteremia and right-sided endocarditis. Linezolid is comparable to vancomycin in patients with methicillin-resistant S. aureus (MRSA) pneumonia and has pharmacoeconomic advantages given its oral formulation. Quinupristin/dalfopristin is the drug of choice for vancomycin-resistant Enterococcus faecium infections but has no activity against Enterococcus faecalis. Tigecycline has activity against both enterococcus species and MRSA; it is also active against Enterobacteriaceae and anaerobes which allows for use in intra-abdominal and diabetic foot infections. A review of numerous in vitro and animal model studies shows that interaction between these newer agents and other antistaphylococcal agents for S. aureus are usually indifferent (additive). PMID:17899228

  9. [Susceptibility of clinically-isolated bacteria strains to respiratory quinolones and evaluation of antimicrobial agent efficacy by Monte Carlo simulation].

    Science.gov (United States)

    Kosaka, Tadashi; Yamada, Yukiji; Kimura, Takeshi; Kodama, Mai; Fujitomo, Yumiko; Masaki, Nakanishi; Toshiaki, Komori; Keisuke, Shikata; Fujita, Naohisa

    2016-02-01

    Respiratory quinolones (RQs) are broad-spectrum antimicrobial agents used for the treatment of a wide variety of community-acquired and nosocomial infections. However, bacterial resistance to quinolones has been on the increase. In this study, we investigated the predicted efficacy of RQs for various strains of 9 bacterial species clinically isolated at our university hospital using the Monte Carlo simulation (MCS) method based on pharmacokinetics/pharmacodynamics modeling. In addition, the influence of the patients' renal function on the efficacy of RQs was evaluated. We surveyed antimicrobial susceptibility testing of 9 bacterial species (n = number of strains) [Streptococcus pneumoniae (n = 15), Streptococcus pyogenes (n = 14), Streptococcus agalactiae (n = 19), methicillin-susceptible Staphylococcus aureus (MSSA) (n = 24), Escherichia coli (n = 35), Haemophilus influenzae (n = 17), Klebsiella pneumoniae (n = 14), Pseudomonas aeruginosa (n = 31), and Moraxella catarrhalis (n = 11)] to 4 RQs [garenoxacin (GRNX), levofloxacin (LVFX), sitafloxacin (STFX), and moxifloxacin (MFLX)]. We found that compared with the other RQs, Gram-positive cocci was most resistant to LVFX, and that the minimum inhibitory concentration (MIC₉₀) values for S. pneumoniae, S. pyogenes, S. agalactiae, and MSSA were high (2, 16, > 16, and 8 µg/mL, respectively). In regard to Gram-negative rods, the susceptibility of E. coli to RQs was found to be decreased, with the MIC₉₀ values of GRNX, LVFX, STFX, and MFLX being > 16, 16, 1, and 16 µg/mL, respectively. MCS revealed that the target attainment rate of the area under the unbound concentration-time curve divided by the MIC₉₀ (ƒ · AUC/MIC ratio), against S. pneumoniae was 86.9-100%, but against E. coli was low (52.1-66.2%). The ƒ · AUC/MIC target attainment rate of LVFX against S. pneumoniae, S. pyogenes, and S. agalactiae tended to decrease due to increased creatinine clearance, and that of LVFX and STFX against MSSA also

  10. Minimal biofilm eradication concentration of antimicrobial agents against nontypeable Haemophilus influenzae isolated from middle ear fluids of intractable acute otitis media.

    Science.gov (United States)

    Takei, Shin; Hotomi, Muneki; Yamanaka, Noboru

    2013-06-01

    Nontypeable Haemophilus influenzae (NTHi) makes the clinical course of acute otitis media (AOM) intractable by forming a biofilm that may hamper the clearance of the bacteria from middle ear cavity. In this study, we evaluated the minimum biofilm eradication concentration (MBEC) of antimicrobial agents against biofilm-forming NTHi strains. Twelve NTHi strains isolated from middle ear fluids of Japanese children with intractable AOM before antimicrobial treatment were evaluated for MBEC of fluoroquinolones in comparison with those of β-lactams and macrolides. AMPC and CDTR required much higher concentration, i.e., high MBECs, to suppress the biofilm formation of NTHi. In contrast, fluoroquinolones followed by macrolides showed lower MBECs. MBEC would be a good parameter to infer the efficacies of antimicrobials against NTHi in biofilm.

  11. Evaluation of Chitosan/Fructose Model as an Antioxidant and Antimicrobial Agent for Shelf Life Extension of Beef Meat During Freezing

    Directory of Open Access Journals (Sweden)

    Shaheen Mohmed S.

    2016-12-01

    Full Text Available In the present study the effect of chitosan/fructose Maillard reaction products (CF-MRPs as antioxidant and antimicrobial agents was evaluated and applied on minced beef meat during frozen storage. Antioxidant and antimicrobial properties of chitosan-fructose complexes were tested. Anti-oxidant properties were measured by the DPPH, β-carotene and ABTS methods. These three methods showed the same profile of antioxidant activity. Chitosan with 4% fructose autoclaved for 45 min (CF9 showed to have the most effective antioxidant activity. It was demonstrated that the browning product exhibited antioxidant activity. For antimicrobial activity, most chitosan-fructose complexes were less effective than chitosan. Thus, MRPs derived from chitosan-sugar model system can be promoted as a novel antioxidant to prevent lipid oxidation in minced beef. Chitosan-sugar complex could be a potential alternative natural product for synthetic food additive replacement that would additionally meet consumer safety requirement.

  12. Ruthenium (II) complexes of thiosemicarbazone: Synthesis, biosensor applications and evaluation as antimicrobial agents

    International Nuclear Information System (INIS)

    A conformationally rigid half-sandwich organoruthenium (II) complex [(η6-p-cymene)RuClTSCN–S]Cl, (1) and carbonyl complex [Ru(CO)Cl(PPh3)2TSCN–S] (2) have been synthesized from the reaction of [{(η6-p-cymene)RuCl}2(μ-Cl)2] and [Ru(H)(Cl)(CO)(PPh3)3] with thiophene-2-carboxaldehyde thiosemicarbazon (TSC) respectively and both novel ruthenium (II) complexes have been characterized by elemental analysis, FT-IR and NMR spectroscopy. The peripheral TSC in the complexes acts as an electrochemical coupling unit providing the ability to carry out electrochemical deposition (ED) and to form an electro-deposited film on a graphite electrode surface. The biosensing applicability of complexes 1 and 2 was investigated by using glucose oxidase (GOx) as a model enzyme. Electrochemical measurements at − 0.9 V versus Ag/AgCl electrode by following the ED Ru(II) reduction/oxidation due to from the enzyme activity, in the presence of glucose substrate. The designed biosensor showed a very good linearity for 0.01–0.5 mM glucose. The in vitro antimicrobial activities of complexes 1 and 2 were also investigated against nine bacterial strains and one fungus by the disc diffusion test method. No activity was observed against the Gram-negative strains and fungus, whereas complex 1 showed moderate antibacterial activities against Gram-positive bacterial strains. - Highlights: • Novel Ru (II) thiosemicarbazone complexes were synthesized and characterized. • Electrochemical depositions were performed. • Rigid half-sandwich Ru (II) complex showed enhanced antibacterial activity

  13. Ruthenium (II) complexes of thiosemicarbazone: Synthesis, biosensor applications and evaluation as antimicrobial agents

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Hatice [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey); Guler, Emine [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Yavuz, Murat, E-mail: myavuz@dicle.edu.tr [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Dicle University, Faculty of Science, Department of Chemistry, 21280 Diyarbakir (Turkey); Ozturk, Nurdan; Kose Yaman, Pelin [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey); Subasi, Elif; Sahin, Elif [Dokuz Eylul University, Faculty of Science, Department of Chemistry, 35160 Buca, Izmir (Turkey); Timur, Suna [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Ege University, Institute on Drug Abuse, Toxicology and Pharmaceutical Science (BATI), 35100 Bornova, Izmir (Turkey)

    2014-11-01

    A conformationally rigid half-sandwich organoruthenium (II) complex [(η{sup 6}-p-cymene)RuClTSC{sup N–S}]Cl, (1) and carbonyl complex [Ru(CO)Cl(PPh{sub 3}){sub 2}TSC{sup N–S}] (2) have been synthesized from the reaction of [{(η"6-p-cymene)RuCl}{sub 2}(μ-Cl){sub 2}] and [Ru(H)(Cl)(CO)(PPh{sub 3}){sub 3}] with thiophene-2-carboxaldehyde thiosemicarbazon (TSC) respectively and both novel ruthenium (II) complexes have been characterized by elemental analysis, FT-IR and NMR spectroscopy. The peripheral TSC in the complexes acts as an electrochemical coupling unit providing the ability to carry out electrochemical deposition (ED) and to form an electro-deposited film on a graphite electrode surface. The biosensing applicability of complexes 1 and 2 was investigated by using glucose oxidase (GOx) as a model enzyme. Electrochemical measurements at − 0.9 V versus Ag/AgCl electrode by following the ED Ru(II) reduction/oxidation due to from the enzyme activity, in the presence of glucose substrate. The designed biosensor showed a very good linearity for 0.01–0.5 mM glucose. The in vitro antimicrobial activities of complexes 1 and 2 were also investigated against nine bacterial strains and one fungus by the disc diffusion test method. No activity was observed against the Gram-negative strains and fungus, whereas complex 1 showed moderate antibacterial activities against Gram-positive bacterial strains. - Highlights: • Novel Ru (II) thiosemicarbazone complexes were synthesized and characterized. • Electrochemical depositions were performed. • Rigid half-sandwich Ru (II) complex showed enhanced antibacterial activity.

  14. Development of a reliable method for the determination of antimicrobial residues agents in poultry meat

    International Nuclear Information System (INIS)

    Monitoring proposes in Nicaragua and other developing countries. The next step of this project is to extend the method capability to detect other quinolones and also different classes of antimicrobial drugs

  15. Platismatia glaucia and Pseudevernia furfuracea lichens as sources of antioxidant, antimicrobial and antibiofilm agents.

    Science.gov (United States)

    Mitrovic, Tatjana; Stamenkovic, Slaviša; Cvetkovic, Vladimir; Radulovic, Niko; Mladenovic, Marko; Stankovic, Milan; Topuzovic, Marina; Radojevic, Ivana; Stefanovic, Olgica; Vasic, Sava; Comic, Ljiljana

    2014-01-01

    The antioxidative, antimicrobial and antibiofilm potentials of acetone, ethyl acetate and methanol extracts of lichen species Platismatia glauca and Pseudevernia furfuracea were evaluated. The phytochemical analysis by GC, GC/MS and NMR revealed caperatic acid, atraric acid, atranorin and chloroatranorin as the predominant compounds in Platismatia glauca. Atraric acid, olivetoric acid, atranorin and chloroatranorin were the major constituents in Pseudevernia furfuracea. The strong antioxidant capacities of the Platismatia glauca and Pseudevernia furfuracea extracts were assessed by their total phenolic and flavonoid contents and DPPH scavenging activities. The methanol extracts of both species exhibited the strongest antioxidant activities with the highest IC50 value for Pseudevernia furfuracea (95.33 µg/mL). The lichen extracts demonstrated important antibacterial activities against 11 bacterial strains with detectable MIC values from 0.08 mg/mL to 2.5 mg/mL for Platismatia glauca and from 0.005 mg/mL to 2.5 mg/mL for Pseudevernia furfuracea. While the antibacterial activities of Pseudevernia furfuracea were solvent-independent, the acetone and ethyl acetate extracts of Platismatia glauca showed higher antibacterial activities compared to its methanol extract. The methanol extracts of both species demonstrated significant antifungal activities against 9 fungal strains with detectable MIC values from 0.04 mg/mL to 2.5 mg/mL. The best antifungal activities were determined against Candida species in Pseudevernia furfuracea extracts with remarkable MIC values which were lower than the MIC values of the positive contol fluconazole. The acetone and ethyl acetate extracts of Platismatia glauca showed better antibiofilm activities on Staphylococcus aureus and Proteus mirabilis with BIC value at 0.63 mg/mL then its methanol extract. On the other hand, the methanol extract of Pseudevernia furfuracea was more potent with BIC value at 1.25 mg/mL on Staphylococcus aureus and

  16. Occurrence of Salmonella spp. in broiler chicken carcasses and their susceptibility to antimicrobial agents Ocorrência de Salmonella spp. em carcaças de frango e sua suscetibilidade a agentes antimicrobianos

    Directory of Open Access Journals (Sweden)

    Dalila Angélica Moliterno Duarte

    2009-09-01

    Full Text Available The present study was carried out to evaluate the occurrence of Salmonellae in broiler chicken carcasses and to determine the antimicrobial resistance profile of the isolated strains. Twenty-five out of the 260 broiler chicken carcasses samples (9.6% were positive for Salmonella. S. Enteritidis was the most frequent serovar. Nineteen Salmonella isolates were tested for antimicrobial resistance, and the results indicated that 94.7% were resistant to at least one antimicrobial agent. Resistance to streptomycin (73.7%, nitrofurantoin (52.3%, tetracycline (31.6%, and nalidixic acid (21% were the prevalent amongst Salmonella strains tested.O presente estudo teve como objetivo verificar a ocorrência de Salmonellae em amostras de carcaças de frango e a suscetibilidade dos isolados a agentes antimicrobianos. Das 260 carcaças analisadas, 25 (9,6% foram positivas para Salmonella. Salmonella Enteritidis foi o sorovar predominante. Com relação à suscetibilidade a agentes antimicrobianos, 94,7% das cepas de Salmonella testadas, apresentaram resistência a um ou mais agentes antimicrobianos. Os perfís de resistência mais comumente observados entre os isolados foram a resistência à estreptomicina (73,7%, nitrofurantoína (52,3%, tetraciclina (31,6% e ácido nalidíxico (21%.

  17. The effect of colouring agent on the physical properties of glass ceramic produced from waste glass for antimicrobial coating deposition

    Science.gov (United States)

    Juoi, J. M.; Ayoob, N. F.; Rosli, Z. M.; Rosli, N. R.; Husain, K.

    2016-07-01

    Domestic waste glass is utilized as raw material for the production of glass ceramic material (GCM) via sinter crystallisation route. The glass ceramic material in a form of tiles is to be utilized for the deposition of Ag-TiO2 antimicrobial coating. Two types of soda lime glass (SLG) that are non-coloured and green SLG are utilised as main raw materials during the batch formulation in order to study the effect of colouring agent (Fe2O3) on the physical and mechanical properties of glass ceramic produced. Glass powder were prepared by crushing bottles using hammer milled with milling machine and sieved until they passed through 75 µm sieve. The process continues by mixing glass powder with ball clay with ratio of 95:5 wt. %, 90:10 wt. % and 85:15 wt. %. Each batch mixture was then uniaxial pressed and sintered at 800°C, 825 °C and 850 °C. The physical and mechanical properties were then determined and compared between those produced from non-coloured and green coloured SLG in order to evaluate the effect of colouring agent (Fe2O3) on the GCM produced. The optimum properties of non-coloured SLG is produced with smaller ball clay content (10 wt. %) compared to green SLG (15 wt. %). The physical properties (determined thru ASTM C373) of the optimized GCM produced from non-coloured SLG and green SLG are 0.69 % of porosity, 1.92 g/cm3 of bulk density, 0.36 % of water absorption; and 1.96 % of porosity, 2.69 g/cm3 of bulk density, 0.73 % of water absorption; respectively. Results also indicate that the most suitable temperature in producing GCM from both glasses with optimized physical and mechanical properties is at 850 °C.

  18. PREVALENCE OF MASTITIS PATHOGENS AND THEIR RESISTANCE AGAINST ANTIMICROBIAL AGENTS IN AWASSI SHEEP IN AL-BALQA PROVINCE OF JORDAN

    Directory of Open Access Journals (Sweden)

    Azmi D. Hawari

    2014-01-01

    Full Text Available The primary objective of this study was to establish data on mastitis in Awassi Sheep in Al-Balqa Province of Jordan. Milk samples were collected from 260 lactating ewes that selected randomly from eight flocks. California Mastitis Test (CMT gave result with 220 milk samples; 122 samples (55.5% showed positive CMT. Infection with some bacterial species was associated with positive CMT. About 26% of the ewes revealed clinical signs of mastitis. The highest percentage of bacterial count, which range from 3×102 to <3.0 103 cfu mL-1 was founded in the milk samples. The most predominant bacteria isolated were Staphylococcus aureus, Streptococcus agalactiae, Streptococcus spp., Escherichia coli, Corynebacterium spp. and Coagulase negative Staphylococci. Sensitivity tests were applied to different isolated strains., Gentamycim, Ampicillin and Tetracycline were the most effective antimicrobial agents against the bacterial isolates.

  19. Aliphatic acid-conjugated antimicrobial peptides--potential agents with anti-tumor, multidrug resistance-reversing activity and enhanced stability.

    Science.gov (United States)

    Deng, Xin; Qiu, Qianqian; Ma, Ke; Wang, Xuekun; Huang, Wenlong; Qian, Hai

    2015-07-28

    Compared with traditional therapeutics, antimicrobial peptides as novel anti-tumor agents have prominent advantages of higher specificity and circumvention of multi-drug resistance. In a previous study, we found that B1, an antimicrobial peptide derived from Cathelicidin-BF15, presented specific anti-tumor activity against several tumor cells. Since aliphatic chain-conjugated peptides have shown ameliorative activity and stability, we conjugated aliphatic acids with different lengths to the amino terminal of B1. All the conjugated peptides exhibited improved anti-tumor activity over B1. Further investigations revealed that the peptides were capable of disrupting the cell membrane, stimulating cytochrome c release into the cytosol, which results in apoptosis. The peptides also acted against multidrug resistant cells and had multidrug resistance-reversing effects. Additionally, conjugation of aliphatic acid enhanced the peptide stability in plasma. In summary, aliphatic acid-modified peptides might be promising anti-tumor agents in the future. PMID:26083110

  20. Effect of ionizing energy on extracts of Quillaja saponaria to be used as an antimicrobial agent on irradiated edible coating for fresh strawberries

    Science.gov (United States)

    Zúñiga, G. E.; Junqueira-Gonçalves, M. P.; Pizarro, M.; Contreras, R.; Tapia, A.; Silva, S.

    2012-01-01

    Incorporating antimicrobial compounds into edible films or coatings provides a novel way to improve the safety and shelf life of ready-to-eat foods. Diverse studies with Quillaja saponaria Mol. (popularly named quillay) extracts have demonstrated their potential as antifungal agents against phytopathogenic fungi. Crosslinking induced by ionizing radiation is an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on milk proteins. However there are few reports about the effects of γ-radiation on plant extracts. The aim of this work was to evaluate the effect of ionizing radiation (0, 5, 10, 15, 20, 25 and 35 kGy) on extracts prepared from in vitro plants of Q. saponaria to be used as antimicrobial agent in irradiated edible coating based on calcium caseinate and whey protein isolated, and also to establish the concentration of Q. saponaria extract to be added as an antifungal agent in the coating. Gamma irradiation since 15 kGy affects negatively the antimicrobial activity and metabolites composition of extract of Q. saponaria by reducing compounds of phenolic nature. Otherwise no effect on saponins profile was observed even at higher doses. It was possible to conclude that the antifungal activity of Q. saponaria extract is mainly related to phenolic compounds content. In addition, our work also shows that to obtain an efficient antifungal protection is necessary to add a minimum concentration of 6% of the extract after the coating irradiation.

  1. The use of resazurin as a novel antimicrobial agent against Francisella tularensis.

    Science.gov (United States)

    Schmitt, Deanna M; O'Dee, Dawn M; Cowan, Brianna N; Birch, James W-M; Mazzella, Leanne K; Nau, Gerard J; Horzempa, Joseph

    2013-01-01

    The highly infectious and deadly pathogen, Francisella tularensis, is classified by the CDC as a Category A bioterrorism agent. Inhalation of a single bacterium results in an acute pneumonia with a 30-60% mortality rate without treatment. Due to the prevalence of antibiotic resistance, there is a strong need for new types of antibacterial drugs. Resazurin is commonly used to measure bacterial and eukaryotic cell viability through its reduction to the fluorescent product resorufin. When tested on various bacterial taxa at the recommended concentration of 44 μM, a potent bactericidal effect was observed against various Francisella and Neisseria species, including the human pathogens type A F. tularensis (Schu S4) and N. gonorrhoeae. As low as 4.4 μM resazurin was sufficient for a 10-fold reduction in F. tularensis growth. In broth culture, resazurin was reduced to resorufin by F. tularensis. Resorufin also suppressed the growth of F. tularensis suggesting that this compound is the biologically active form responsible for decreasing the viability of F. tularensis LVS bacteria. Replication of F. tularensis in primary human macrophages and non-phagocytic cells was abolished following treatment with 44 μM resazurin indicating this compound could be an effective therapy for tularemia in vivo. PMID:24367766

  2. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Ghosh S

    2012-02-01

    -positive bacteria. Beta-lactam (piperacillin and macrolide (erythromycin antibiotics showed a 3.6-fold and 3-fold increase, respectively, in combination with silver nanoparticles selectively against multidrug-resistant Acinetobacter baumannii. Notable synergy was seen between silver nanoparticles and chloramphenicol or vancomycin against Pseudomonas aeruginosa, and was supported by a 4.9-fold and 4.2-fold increase in zone diameter, respectively. Similarly, we found a maximum 11.8-fold increase in zone diameter of streptomycin when combined with silver nanoparticles against E. coli, providing strong evidence for the synergistic action of a combination of antibiotics and silver nanoparticles.Conclusion: This is the first report on the synthesis of silver nanoparticles using D. bulbifera tuber extract followed by an estimation of its synergistic potential for enhancement of the antibacterial activity of broad spectrum antimicrobial agents.Keywords: Dioscorea bulbifera tuber extract, silver nanoparticles, antimicrobial synergy

  3. The human milk protein-lipid complex HAMLET sensitizes bacterial pathogens to traditional antimicrobial agents.

    Science.gov (United States)

    Marks, Laura R; Clementi, Emily A; Hakansson, Anders P

    2012-01-01

    The fight against antibiotic resistance is one of the most significant challenges to public health of our time. The inevitable development of resistance following the introduction of novel antibiotics has led to an urgent need for the development of new antibacterial drugs with new mechanisms of action that are not susceptible to existing resistance mechanisms. One such compound is HAMLET, a natural complex from human milk that kills Streptococcus pneumoniae (the pneumococcus) using a mechanism different from common antibiotics and is immune to resistance-development. In this study we show that sublethal concentrations of HAMLET potentiate the effect of common antibiotics (penicillins, macrolides, and aminoglycosides) against pneumococci. Using MIC assays and short-time killing assays we dramatically reduced the concentrations of antibiotics needed to kill pneumococci, especially for antibiotic-resistant strains that in the presence of HAMLET fell into the clinically sensitive range. Using a biofilm model in vitro and nasopharyngeal colonization in vivo, a combination of HAMLET and antibiotics completely eradicated both biofilms and colonization in mice of both antibiotic-sensitive and resistant strains, something each agent alone was unable to do. HAMLET-potentiation of antibiotics was partially due to increased accessibility of antibiotics to the bacteria, but relied more on calcium import and kinase activation, the same activation pathway HAMLET uses when killing pneumococci by itself. Finally, the sensitizing effect was not confined to species sensitive to HAMLET. The HAMLET-resistant respiratory species Acinetobacter baumanii and Moraxella catarrhalis were all sensitized to various classes of antibiotics in the presence of HAMLET, activating the same mechanism as in pneumococci. Combined these results suggest the presence of a conserved HAMLET-activated pathway that circumvents antibiotic resistance in bacteria. The ability to activate this pathway may extend

  4. Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus.

    Science.gov (United States)

    Kong, Minsuk; Ryu, Sangryeol

    2015-04-01

    Bacillus cereus is an opportunistic human pathogen responsible for food poisoning and other, nongastrointestinal infections. Due to the emergence of multidrug-resistant B. cereus strains, the demand for alternative therapeutic options is increasing. To address these problems, we isolated and characterized a Siphoviridae virulent phage, PBC1, and its lytic enzymes. PBC1 showed a very narrow host range, infecting only 1 of 22 B. cereus strains. Phylogenetic analysis based on the major capsid protein revealed that PBC1 is more closely related to the Bacillus clarkii phage BCJA1c and phages of lactic acid bacteria than to the phages infecting B. cereus. Whole-genome comparison showed that the late-gene region, including the terminase gene, structural genes, and holin gene of PBC1, is similar to that from B. cereus temperate phage 250, whereas their endolysins are different. Compared to the extreme host specificity of PBC1, its endolysin, LysPBC1, showed a much broader lytic spectrum, albeit limited to the genus Bacillus. The catalytic domain of LysPBC1 when expressed alone also showed Bacillus-specific lytic activity, which was lower against the B. cereus group but higher against the Bacillus subtilis group than the full-length protein. Taken together, these results suggest that the virulent phage PBC1 is a useful component of a phage cocktail to control B. cereus, even with its exceptionally narrow host range, as it can kill a strain of B. cereus that is not killed by other phages, and that LysPBC1 is an alternative biocontrol agent against B. cereus.

  5. The Human Milk Protein-Lipid Complex HAMLET Sensitizes Bacterial Pathogens to Traditional Antimicrobial Agents

    Science.gov (United States)

    Marks, Laura R.; Clementi, Emily A.; Hakansson, Anders P.

    2012-01-01

    The fight against antibiotic resistance is one of the most significant challenges to public health of our time. The inevitable development of resistance following the introduction of novel antibiotics has led to an urgent need for the development of new antibacterial drugs with new mechanisms of action that are not susceptible to existing resistance mechanisms. One such compound is HAMLET, a natural complex from human milk that kills Streptococcus pneumoniae (the pneumococcus) using a mechanism different from common antibiotics and is immune to resistance-development. In this study we show that sublethal concentrations of HAMLET potentiate the effect of common antibiotics (penicillins, macrolides, and aminoglycosides) against pneumococci. Using MIC assays and short-time killing assays we dramatically reduced the concentrations of antibiotics needed to kill pneumococci, especially for antibiotic-resistant strains that in the presence of HAMLET fell into the clinically sensitive range. Using a biofilm model in vitro and nasopharyngeal colonization in vivo, a combination of HAMLET and antibiotics completely eradicated both biofilms and colonization in mice of both antibiotic-sensitive and resistant strains, something each agent alone was unable to do. HAMLET-potentiation of antibiotics was partially due to increased accessibility of antibiotics to the bacteria, but relied more on calcium import and kinase activation, the same activation pathway HAMLET uses when killing pneumococci by itself. Finally, the sensitizing effect was not confined to species sensitive to HAMLET. The HAMLET-resistant respiratory species Acinetobacter baumanii and Moraxella catarrhalis were all sensitized to various classes of antibiotics in the presence of HAMLET, activating the same mechanism as in pneumococci. Combined these results suggest the presence of a conserved HAMLET-activated pathway that circumvents antibiotic resistance in bacteria. The ability to activate this pathway may extend

  6. The human milk protein-lipid complex HAMLET sensitizes bacterial pathogens to traditional antimicrobial agents.

    Science.gov (United States)

    Marks, Laura R; Clementi, Emily A; Hakansson, Anders P

    2012-01-01

    The fight against antibiotic resistance is one of the most significant challenges to public health of our time. The inevitable development of resistance following the introduction of novel antibiotics has led to an urgent need for the development of new antibacterial drugs with new mechanisms of action that are not susceptible to existing resistance mechanisms. One such compound is HAMLET, a natural complex from human milk that kills Streptococcus pneumoniae (the pneumococcus) using a mechanism different from common antibiotics and is immune to resistance-development. In this study we show that sublethal concentrations of HAMLET potentiate the effect of common antibiotics (penicillins, macrolides, and aminoglycosides) against pneumococci. Using MIC assays and short-time killing assays we dramatically reduced the concentrations of antibiotics needed to kill pneumococci, especially for antibiotic-resistant strains that in the presence of HAMLET fell into the clinically sensitive range. Using a biofilm model in vitro and nasopharyngeal colonization in vivo, a combination of HAMLET and antibiotics completely eradicated both biofilms and colonization in mice of both antibiotic-sensitive and resistant strains, something each agent alone was unable to do. HAMLET-potentiation of antibiotics was partially due to increased accessibility of antibiotics to the bacteria, but relied more on calcium import and kinase activation, the same activation pathway HAMLET uses when killing pneumococci by itself. Finally, the sensitizing effect was not confined to species sensitive to HAMLET. The HAMLET-resistant respiratory species Acinetobacter baumanii and Moraxella catarrhalis were all sensitized to various classes of antibiotics in the presence of HAMLET, activating the same mechanism as in pneumococci. Combined these results suggest the presence of a conserved HAMLET-activated pathway that circumvents antibiotic resistance in bacteria. The ability to activate this pathway may extend

  7. The human milk protein-lipid complex HAMLET sensitizes bacterial pathogens to traditional antimicrobial agents.

    Directory of Open Access Journals (Sweden)

    Laura R Marks

    Full Text Available The fight against antibiotic resistance is one of the most significant challenges to public health of our time. The inevitable development of resistance following the introduction of novel antibiotics has led to an urgent need for the development of new antibacterial drugs with new mechanisms of action that are not susceptible to existing resistance mechanisms. One such compound is HAMLET, a natural complex from human milk that kills Streptococcus pneumoniae (the pneumococcus using a mechanism different from common antibiotics and is immune to resistance-development. In this study we show that sublethal concentrations of HAMLET potentiate the effect of common antibiotics (penicillins, macrolides, and aminoglycosides against pneumococci. Using MIC assays and short-time killing assays we dramatically reduced the concentrations of antibiotics needed to kill pneumococci, especially for antibiotic-resistant strains that in the presence of HAMLET fell into the clinically sensitive range. Using a biofilm model in vitro and nasopharyngeal colonization in vivo, a combination of HAMLET and antibiotics completely eradicated both biofilms and colonization in mice of both antibiotic-sensitive and resistant strains, something each agent alone was unable to do. HAMLET-potentiation of antibiotics was partially due to increased accessibility of antibiotics to the bacteria, but relied more on calcium import and kinase activation, the same activation pathway HAMLET uses when killing pneumococci by itself. Finally, the sensitizing effect was not confined to species sensitive to HAMLET. The HAMLET-resistant respiratory species Acinetobacter baumanii and Moraxella catarrhalis were all sensitized to various classes of antibiotics in the presence of HAMLET, activating the same mechanism as in pneumococci. Combined these results suggest the presence of a conserved HAMLET-activated pathway that circumvents antibiotic resistance in bacteria. The ability to activate this

  8. Bacterial biofilms formed in vitro and in vivo on orthodontic appliances. Effect of antimicrobial agents

    Directory of Open Access Journals (Sweden)

    María Cecilia Cortizo

    2006-01-01

    Full Text Available Los procesos cariogénicos y las infecciones gingivales y en la vecindad de los implantes pueden ocurrir como una consecuencia de la formación de biopelículas. A fin de prevenir estos procesos, se utilizan productos profilácticos tales como fluoruro de sodio (F, clorhexidina (C y xilitol (X. El objetivo de este trabajo fue estudiar el efecto de las mezclas F + X y C + X sobre las biopelículas orales formadas en dispositivos para Ortodoncia. En los experimentos in vitro se utilizó un consorcio de estreptococos y como medio de cultivo Agar Mitis Salivarius o su composición modificada para cultivos líquidos líquido. Se sumergieron bandas de acero inoxidable en los medios inoculados durante 7 d y se siguió el crecimiento de la biopelícula a través de microscopia óptica realizada in situ. Las bacterias sésiles adheridas a las bandas fueron observadas después de teñirlas con naranja de acridina. Después de los períodos establecidos las bandas con las biopelículas fueron retiradas de los medios de cultivo y se transfirieron a tres frascos diferentes con: i disolución reguladora de fosfatos, ii un colutorio que contenía F (0,05 % + X (10 % y iii un colutorio que contenía X (10 % + C (0,12 %. Los resultados demostraron que es difícil predecir la eficacia de los agentes antimicrobianos (AA contra las biopelículas orales basado en experiencias realizadas con células planctónicas. Los AA ensayados fueron capaces de difundir dentro de la biopelícula, modificar su microestructura, haciéndola más compacta, reducir el crecimiento de las bacterias sésiles y promover el desprendimiento de células. Sin embargo, el recrecimiento de la biopelícula podría ocurrir bajo mejores condiciones ambientales cuando finaliza el tratamiento.

  9. Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish.

    Science.gov (United States)

    Haggard, Derik E; Noyes, Pamela D; Waters, Katrina M; Tanguay, Robert L

    2016-10-01

    Triclosan (TCS) is an antimicrobial agent commonly found in a variety of personal care products and cosmetics. TCS readily enters the environment through wastewater and is detected in human plasma, urine, and breast milk due to its widespread use. Studies have implicated TCS as a disruptor of thyroid and estrogen signaling; therefore, research examining the developmental effects of TCS is warranted. In this study, we used embryonic zebrafish to investigate the developmental toxicity and potential mechanism of action of TCS. Embryos were exposed to graded concentrations of TCS from 6 to 120hours post-fertilization (hpf) and the concentration where 80% of the animals had mortality or morbidity at 120hpf (EC80) was calculated. Transcriptomic profiling was conducted on embryos exposed to the EC80 (7.37μM). We identified a total of 922 significant differentially expressed transcripts (FDR adjusted P-value≤0.05; fold change ≥2). Pathway and gene ontology enrichment analyses identified biological networks and transcriptional hubs involving normal liver functioning, suggesting TCS may be hepatotoxic in zebrafish. Tissue-specific gene enrichment analysis further supported the role of the liver as a target organ for TCS toxicity. We also examined the in vitro bioactivity profile of TCS reported by the ToxCast screening program. TCS had a diverse bioactivity profile and was a hit in 217 of the 385 assay endpoints we identified. We observed similarities in gene expression and hepatic steatosis assays; however, hit data for TCS were more concordant with the hypothesized CAR/PXR activity of TCS from rodent and human in vitro studies. PMID:27538710

  10. Antimicrobial agents' utilization and cost pattern in an Intensive Care Unit of a Teaching Hospital in South India

    Directory of Open Access Journals (Sweden)

    Nikhilesh Anand

    2016-01-01

    Full Text Available Background and Aims: High utilization and inappropriate usage of antimicrobial agents (AMAs in an Intensive Care Unit (ICU increases resistant organisms, morbidity, mortality, and treatment cost. Prescription audit and active feedback are a proven method to check the irrational prescription. Measuring drug utilization in DDD/100 bed-days is proposed by the WHO to analyze and compare the utilization of drugs. Data of AMAs utilization are required for planning an antibiotic policy and for follow-up of intervention strategies. Hence, in this study, we proposed to evaluate the utilization pattern and cost analysis of AMA used in the ICU. Methodology: A prospective observational study was conducted for 1 year from January 1, 2014, to December 31, 2014, and the data were obtained from the ICU of a tertiary care hospital. The demographic data, disease data, relevant investigation, the utilization of different classes of AMAs (WHO-ATC classification as well as individual drugs and their costs were recorded. Results: One thousand eight hundred and sixty-two prescriptions of AMAs were recorded during the study period with an average of 1.73 ± 0.04 prescriptions/patient. About 80.4% patients were prescribed AMAs during admission. Ceftriaxone (22.77% was the most commonly prescribed AMA followed by piperacillin/tazobactam (15.79%, metronidazole (12%, amoxicillin/clavulanic acid (6.44%, and azithromycin (4.34%. Ceftriaxone, piperacillin/tazobactam, metronidazole, and linezolid were the five maximally utilized AMAs with 38.52, 19.22, 14.34, 8.76, and 8.16 DDD/100 bed-days respectively. An average cost of AMAs used per patient was 2213 Indian rupees (INR. Conclusion: A high utilization of AMAs and a high cost of treatment were noticed which was comparable to other published data, though an increased use of newer AMAs such as linezolid, clindamycin, meropenem, colistin was noticed.

  11. 抗菌肽--一类新型抗肿瘤药物%Antimicrobial Peptides:A Novel Antitumor Agent

    Institute of Scientific and Technical Information of China (English)

    陈巍; 严益民; 邓欣

    2014-01-01

    化疗是肿瘤治疗的重要手段之一,其严重的副作用影响其在临床上的广泛应用。同时,肿瘤细胞的耐药现象也是化疗失败的主要原因之一。因此,开发新型抗肿瘤药物是当前研究热点之一。抗菌肽是先天免疫系统的重要组分,部分抗菌肽表现出高选择性的抗肿瘤活性,并且其特殊的作用机制避免肿瘤细胞耐药的发生。因此,抗菌肽可作为一类新型抗肿瘤药物。%Chemotherapy is a major strategy for cancer therapy;however ,the severe side effects restrain its clini-cal application.Meanwhile , drug resistance of tumor cells is another reason for the failure of cancer chemotherapy.Therefore,the development of novel antitumor agents become the focus of the recent antitumor re-search.Antimicrobial peptides are significant components in innate immune system , some of them present selective antitumor activity,and the unique mechanism of action circumvent the drug resistance of tumor cells.Thus,antimicro-bial peptides might be promising candidates for cancer therapy.

  12. Characterization of the bioactive metabolites from a plant growth-promoting rhizobacteria and their exploitation as antimicrobial and plant growth-promoting agents.

    Science.gov (United States)

    George, Emrin; Kumar, S Nishanth; Jacob, Jubi; Bommasani, Bhaskara; Lankalapalli, Ravi S; Morang, P; Kumar, B S Dileep

    2015-05-01

    A plant growth-promoting bacterial strain, PM 105, isolated from a tea plantation soil from the North Eastern region of India was identified as Pseudomonas aeruginosa through classical and 16S ribosomal DNA (rDNA) gene sequencing. Further studies with this strain confirmed broad spectrum antifungal activity against ten human and plant pathogenic fungal pathogens viz. Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus tubingensis, Candida albicans, Colletotrichum gloeosporioides, Fusarium oxysporum, Pencillium expansum, Rhizoctonia solani, Trichophyton rubrum besides growth-promoting property in cowpea (Vigna unguiculata) and pigeon pea (Cajanus cajan). However, no antibacterial property was exhibited by this strain against the four test bacterial pathogens tested in agar overlay method. The crude bioactive metabolites produced by this strain were isolated with three different solvents that exhibited significant antimicrobial and plant growth-promoting activity. Chloroform extract recorded significant antimicrobial and plant growth-promoting activity. Three major compounds viz. 1-hydroxyphenazine, pyocyanin, and phenazine-1-carboxamide were purified and characterized from crude extracts of this strain by various spectral data. The purified compounds recorded prominent antimicrobial activity but failed to establish the plant growth promotion activity in test crop plants under gnotobiotic conditions. Pyocyanin recorded significant antimicrobial activity, and best activity was recorded against T. rubrum (29 mm), followed by P. expansum (28 mm). These results suggest the use of PM 105 as plant growth-promoting agent in crop plants after successful field trials. PMID:25832181

  13. Atividade in vitro de cinco drogas antimicrobianas contra Neisseria gonorrhoeae Activity of five antimicrobial agents in vitro against Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Walter Belda Júnior

    2002-12-01

    Full Text Available FUNDAMENTOS: A utilização de antimicrobianos no tratamento da gonorréia iniciou-se em 1930 com a utilização das sulfonamidas. No decorrer dos anos outras drogas passaram a ser utilizadas em seu tratamento, como a penicilina, a espectinomicina, as tetraciclinas e outras. Embora altamente eficazes no início, essas drogas, ao longo do tempo, passaram a não mais apresentar o resultado terapêutico esperado em virtude do aparecimento de quadros de resistência cromossômica e plasmidial. Assim sendo, para se estabelecer um programa de combate e controle de determinada morbidade bacteriana, é necessária a realização de um programa de vigilância epidemiológica estadiando o comportamento de sensibilidade dos agentes etiológicos aos diferentes agentes terapêuticos. OBJETIVOS E MÉTODOS: Este trabalho teve por objetivo avaliar a sensibilidade das cepas de Neisseria gonorrhoeae às cinco drogas mais utilizadas no tratamento da gonorréia no Brasil (penicilina; cefoxitina; tetraciclina; tianfenicol e espectinomicina, através da concentração inibitória mínima. RESULTADOS E CONCLUSÃO: Concluímos que drogas como a cefoxitina, o tianfenicol e a espectinomicina ainda constituem excelentes fármacos para o tratamento da gonorréia. A penicilina, embora ainda eficaz, enseja maiores cuidados na sua utilização, frente ao surgimento de cepas resistentes, e a tetraciclina deve ser sobremaneira contra-indicada no tratamento da gonorréia.BACKGROUND: The use of antimicrobial drugs in the treatment of gonorrhea began in 1930 with the use of sulfonamides. Through the years, other drugs such as penicillin, spectinomycin, tetracycline among others, came into use. Although highly efficient at first, with the passing of time these drugs began to present untoward therapeutic results, because of the appearance of cases with chromosomic and plasmidial resistance. Because of this, in order to establish a program to combat and control a determined bacterial

  14. Initial identification and sensitivity to antimicrobial agents of Salmonella sp.isolated from poultry products in the state of Ceara, Brazil

    Directory of Open Access Journals (Sweden)

    WF Oliveira

    2006-09-01

    Full Text Available The objective of this research was to isolate and to verify the sensitivity to antimicrobial agents of strains of Salmonella sp. isolated from poultry products in the state of Ceara, Brazil. A total number of 114 samples was collected from 63 broiler carcasses derived from two processing plants and two supermarkets, and 51 excreta samples were collected in broiler farms located in the state of Ceara, which used three live production stages. Each excreta sample consisted of a fresh excreta pool from 100 birds. Samples were submitted to microbiological analyses, and the isolated Salmonella strains were tested for antimicrobial sensitivity. No Salmonella was isolated from excreta samples, while broiler carcass samples showed a high contamination rate of11.8%. Three serotypes were identified: Salmonella enterica serovar Enteritidis, 50%; Salmonella enterica serovar Panama 33%, and Salmonella enterica serovar Newport, 17%. As to the susceptibility tests to antimicrobial agents, 100% of the isolated Salmonella strains showed resistance to Ampicillin and Tetracycline, and sensitivity to Gentamycin, Netilmycin, Carbenicillin, Chloramphenicol.

  15. Qualitative screening of veterinary anti-microbial agents in tissues, milk, and eggs of food-producing animals using liquid chromatography coupled with tandem mass spectrometry.

    Science.gov (United States)

    Chen, Dongmei; Yu, Jie; Tao, Yanfei; Pan, Yuanhu; Xie, Shuyu; Huang, Lingli; Peng, Dapeng; Wang, Xu; Wang, Yulian; Liu, Zhenli; Yuan, Zonghui

    2016-04-01

    A method for the analysis of 120 drugs in animal derived food was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). These analytes belong to 12 families of veterinary anti-microbial agents (quinolones, macrolides, β-lactams, nitroimidazoles, sulfonamides, lincomycines, chloramphenicols, quinoxalines, tetracyclines, polypeptides, and antibacterial synergists) as well as other compounds not assigned to a particular drug family. The animal derived food samples include muscle and liver of swine, bovine, sheep, and chicken, as well as hen eggs and dairy milk. The sample preparation included ultrasound-assisted extraction (UAE) with acetonitrile-water and a final clean-up with auto solid-phase extraction (SPE) on HLB cartridges. The detection and quantification of 120 anti-microbial agents was performed using LC-MS/MS in positive and negative ion mode. The chromatographic separation was performed on a C18 column using acetonitrile and 0.1% formic acid as the mobile phase. The limit of detection (LOD) and limit of quantification (LOQ) of all drugs in food-producing animals were 0.5-3.0μg/kg and 1.5-10.0μg/kg, respectively. The developed method was successfully utilized to monitor real samples, which demonstrated that it is a simple, fast, and robust method, and could be used as a regulatory to screen for the presence of residues from veterinary anti-microbial drugs in animal-derived foods. PMID:26950031

  16. General principles of antimicrobial therapy.

    Science.gov (United States)

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community.

  17. General principles of antimicrobial therapy.

    Science.gov (United States)

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community. PMID:21282489

  18. The role of spices and lactic acid bacteria as antimicrobial agent to extend the shelf life of metata ayib (traditional Ethiopian spiced fermented cottage cheese).

    Science.gov (United States)

    Geremew, Tsehayneh; Kebede, Ameha; Andualem, Berhanu

    2015-09-01

    Spices and lactic acid bacteria have natural antimicrobial substances and organic compounds having antagonistic activity against microorganisms. The objective of this study was to investigate the role of spices and lactic acid bacteria as antimicrobial agent to extend the shelf life of metata ayib. Antimicrobial activities of spices and lactic acid bacteria (LAB) filtrates were determined by agar well diffusion method against E. coli, S. aureus, S. flexneri and S. peumoniae. Aantimicrobial activity of garlic was found to be the most effective against all the tested pathogens. Inhibition zones of garlic extract against all pathogens was significantly (P ≤ 0.05) greater than the remaining spice extracts. Inhibition zones (12.50 ± 1.00 to 15.50 ± 1.00 mm) of ginger and R. graveolens ethanol extracts against all tested pathogens were significantly (P ≤ 0.05) greater than the remaining solvent extracts. Inhibition zone of O. basilicum ethanol extract against all pathogenic bacteria was significantly (p ≤ 0.05) greater than hexane and acetone extracts. Lactobacillus isolates were shown the highest antimicrobial activity than the other LAB isolates against all pathogens. The synergistic effect of spices together with LAB might be contributed a lot to preserve and extend shelf life of metata ayib. Their antimicrobial activity can reduce the risk of spoilage and pathogenesis. The possible reason of LAB isolates was may be due to production of lactic acid, acetic acid and secondary metabolites like bacteriocins. Aseptic processing of traditional cottage cheese (ayib) is by far needed to minimize risks associated during consumption of metata ayib. PMID:26344979

  19. The role of spices and lactic acid bacteria as antimicrobial agent to extend the shelf life of metata ayib (traditional Ethiopian spiced fermented cottage cheese).

    Science.gov (United States)

    Geremew, Tsehayneh; Kebede, Ameha; Andualem, Berhanu

    2015-09-01

    Spices and lactic acid bacteria have natural antimicrobial substances and organic compounds having antagonistic activity against microorganisms. The objective of this study was to investigate the role of spices and lactic acid bacteria as antimicrobial agent to extend the shelf life of metata ayib. Antimicrobial activities of spices and lactic acid bacteria (LAB) filtrates were determined by agar well diffusion method against E. coli, S. aureus, S. flexneri and S. peumoniae. Aantimicrobial activity of garlic was found to be the most effective against all the tested pathogens. Inhibition zones of garlic extract against all pathogens was significantly (P ≤ 0.05) greater than the remaining spice extracts. Inhibition zones (12.50 ± 1.00 to 15.50 ± 1.00 mm) of ginger and R. graveolens ethanol extracts against all tested pathogens were significantly (P ≤ 0.05) greater than the remaining solvent extracts. Inhibition zone of O. basilicum ethanol extract against all pathogenic bacteria was significantly (p ≤ 0.05) greater than hexane and acetone extracts. Lactobacillus isolates were shown the highest antimicrobial activity than the other LAB isolates against all pathogens. The synergistic effect of spices together with LAB might be contributed a lot to preserve and extend shelf life of metata ayib. Their antimicrobial activity can reduce the risk of spoilage and pathogenesis. The possible reason of LAB isolates was may be due to production of lactic acid, acetic acid and secondary metabolites like bacteriocins. Aseptic processing of traditional cottage cheese (ayib) is by far needed to minimize risks associated during consumption of metata ayib.

  20. Effects of subinhibitory concentrations of antimicrobial agents on Escherichia coli O157:H7 Shiga toxin release and role of the SOS response.

    Science.gov (United States)

    Nassar, Farah J; Rahal, Elias A; Sabra, Ahmad; Matar, Ghassan M

    2013-09-01

    Treatment of Escherichia coli O157:H7 by certain antimicrobial agents often exacerbates the patient's condition by increasing either the release of preformed Shiga toxins (Stx) upon cell lysis or their production through the SOS response-triggered induction of Stx-producing prophages. Recommended subinhibitory concentrations (sub-MICs) of azithromycin (AZI), gentamicin (GEN), imipenem (IMI), and rifampicin (RIF) were evaluated in comparison to norfloxacin (NOR), an SOS-inducer, to assess the role of the SOS response in Stx release. Relative expression of recA (SOS-inducer), Q (late antitermination gene of Stx-producing prophage), stx1, and stx2 genes was assessed at two sub-MICs of the antimicrobials for two different strains of E. coli O157:H7 using reverse transcription-real-time polymerase chain reaction. Both strains at the two sub-MICs were also subjected to Western blotting for LexA protein expression and to reverse passive latex agglutination for Stx detection. For both strains at both sub-MICs, NOR and AZI caused SOS-induced Stx production (high recA, Q, and stx2 gene expression and high Stx2 production), so they should be avoided in E. coli O157:H7 treatment; however, sub-MICs of RIF and IMI induced Stx2 production in an SOS-independent manner except for one strain at the first twofold dilution below MIC of RIF where Stx2 production decreased. Moreover, GEN caused somewhat increased Stx2 production due to its mode of action rather than any effect on gene expression. The choice of antimicrobial therapy should rely on the antimicrobial mode of action, its concentration, and on the nature of the strain.

  1. Antimicrobial Activity of Lippia Species from the Brazilian Semiarid Region Traditionally Used as Antiseptic and Anti-Infective Agents

    Directory of Open Access Journals (Sweden)

    Cristiana da Purificação Pinto

    2013-01-01

    Full Text Available Lippia origanoides Kunth, Lippia alnifolia Schauer, and Lippia thymoides Martius and Schauer are shrubs used in the traditional Brazilian medicine as antiseptics, as well as in the treatment of infectious diseases. This study was designed to investigate the antibacterial and antifungal activities of the methanolic extracts of these species, as new potential sources of antimicrobial drugs. The antimicrobial activity of methanolic extracts was investigated against resistant yeasts and bacteria by agar disk diffusion. Then, the MIC determination of the most active species and its fractions in hexane, dichloromethane, ethyl acetate, and water was performed. By the agar diffusion assay, all species were active against at least two microorganisms, giving evidence to support their use in the popular medicine. L. origanoides leaves exhibited the widest antimicrobial action, inhibiting the growth of two Gram-positive bacteria and two yeasts; this activity was also confirmed by the MIC evaluation. The fractionation of L. origanoides crude extracts improved the activity in spectrum and intensity. The results obtained in this study indicate that L. origanoides may be a promising alternative in the treatment of bacterial and fungal infections and in the seeking of new antimicrobial drugs.

  2. Efficacy of Oral Vancomycin in Preventing Recurrent Clostridium difficile Infection in Patients Treated With Systemic Antimicrobial Agents.

    Science.gov (United States)

    Van Hise, Nicholas W; Bryant, Alex M; Hennessey, Erin K; Crannage, Andrew J; Khoury, Jad A; Manian, Farrin A

    2016-09-01

    We compared rates of recurrent Clostridium difficile infection in patients receiving or not receiving oral vancomycin prophylaxis with systemic antimicrobial therapy. The incidence of C. difficile infection was significantly lower in patients receiving prophylaxis (4.2% vs 26.6% in those without prophylaxis; odds ratio, 0.12; 95% confidence interval, .04-.4; P < .001). PMID:27318333

  3. Cathelicidin-BF, a snake cathelicidin-derived antimicrobial peptide, could be an excellent therapeutic agent for acne vulgaris.

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    Full Text Available Cathelicidins are a family of antimicrobial peptides acting as multifunctional effector molecules in innate immunity. Cathelicidin-BF has been purified from the snake venoms of Bungarus fasciatus and it is the first identified cathelicidin antimicrobial peptide in reptiles. In this study, cathelicidin-BF was found exerting strong antibacterial activities against Propionibacterium acnes. Its minimal inhibitory concentration against two strains of P. acnes was 4.7 µg/ml. Cathelicidin-BF also effectively killed other microorganisms including Staphylococcus epidermidis, which was possible pathogen for acne vulgaris. Cathelicidin-BF significantly inhibited pro-inflammatory factors secretion in human monocytic cells and P. acnes-induced O2.- production of human HaCaT keratinocyte cells. Observed by scanning electron microscopy, the surfaces of the treated pathogens underwent obvious morphological changes compared with the untreated controls, suggesting that this antimicrobial peptide exerts its action by disrupting membranes of microorganisms. The efficacy of cathelicidin-BF gel topical administering was evaluated in experimental mice skin colonization model. In vivo anti-inflammatory effects of cathelicidin-BF were confirmed by relieving P. acnes-induced mice ear swelling and granulomatous inflammation. The anti-inflammatory effects combined with potent antimicrobial activities and O2.- production inhibition activities of cathelicidin-BF indicate its potential as a novel therapeutic option for acne vulgaris.

  4. 社区卫生服务中心住院患者抗菌药物使用情况分析%Analysis of the use of antimicrobial agents in patients hospitalized in community health service center

    Institute of Scientific and Technical Information of China (English)

    袁炜; 王瑾; 陈杰; 徐晓林

    2014-01-01

    目的:分析本中心住院患者抗菌药物使用情况,为社区合理使用抗菌药物提供参考。方法:对本中心2012年1月至12月108例使用抗菌药物出院患者的相关数据进行评价。结果:本中心住院患者抗菌药物使用率较低,使用强度为2.05 DDDs/100人天。头孢菌素、喹诺酮类、青霉素类排在前3名。结论:本中心抗菌药物使用总体合理,个别药物用药频度过高。%Objective:To analyze the use of antimicrobial agents in the patients hospitalized in this center to provide the valuable information for community rational use of antimicrobial agents. Methods:The relevant data of 108 cases treated with the antimicrobial agents and discharged from the center from Jan. to Dec. 2012 were evaluated. Results:The use rate of the antimicrobial agents in the hospitalized patients was low in the center and the intensity of the use was 2.05DDDs/100 persons/day. The top three antimicrobial agents were cephalosporins, quinolones and penicillins. Conclusion:The usage of the antimicrobial agents is reasonable in general in this center, but the use frequency of the individual drug is high.

  5. Capping Agent-Dependent Toxicity and Antimicrobial Activity of Silver Nanoparticles: An In Vitro Study. Concerns about Potential Application in Dental Practice

    Science.gov (United States)

    Niska, Karolina; Knap, Narcyz; Kędzia, Anna; Jaskiewicz, Maciej; Kamysz, Wojciech; Inkielewicz-Stepniak, Iwona

    2016-01-01

    Objectives: In dentistry, silver nanoparticles (AgNPs) have drawn particular attention because of their wide antimicrobial activity spectrum. However, controversial information on AgNPs toxicity limited their use in oral infections. Therefore, the aim of the present study was to evaluate the antibacterial activities against a panel of oral pathogenic bacteria and bacterial biofilms together with potential cytotoxic effects on human gingival fibroblasts of 10 nm AgNPs: non-functionalized - uncapped (AgNPs-UC) as well as surface-functionalized with capping agent: lipoic acid (AgNPs-LA), polyethylene glycol (AgNPs-PEG) or tannic acid (AgNPs-TA) using silver nitrate (AgNO3) as control. Methods: The interaction of AgNPs with human gingival fibroblast cells (HGF-1) was evaluated using the mitochondrial metabolic potential assay (MTT). Antimicrobial activity of AgNPs was tested against anaerobic Gram-positive and Gram-negative bacteria isolated from patients with oral cavity and respiratory tract infections, and selected aerobic Staphylococci strains. Minimal inhibitory concentration (MIC) values were determined by the agar dilution method for anaerobic bacteria or broth microdilution method for reference Staphylococci strains and Streptococcus mutans. These strains were also used for antibiofilm activity of AgNPs. Results: The highest antimicrobial activities at nontoxic concentrations were observed for the uncapped AgNPs and the AgNPs capped with LA. It was found that AgNPs-LA and AgNPs-PEG demonstrated lower cytotoxicity as compared with the AgNPs-TA or AgNPs-UC in the gingival fibroblast model. All of the tested nanoparticles proved less toxic and demonstrated wider spectrum of antimicrobial activities than AgNO3 solution. Additionally, AgNPs-LA eradicated Staphylococcus epidermidis and Streptococcus mutans 1-day biofilm at concentration nontoxic to oral cells. Conclusions: Our results proved that a capping agent had significant influence on the antibacterial

  6. An efficient synthesis of 3'-indolyl substituted pyrido[1,2-]benzimidazoles as potential antimicrobial and antioxidant agents

    Indian Academy of Sciences (India)

    Harshad G Kathrotiya; Manish P Patel

    2013-09-01

    A new class of indole-based pyrido[1,2-]benzimidazole derivatives 4a-r have been synthesized by one-pot cyclocondensation reaction of 2-phenyl-1-indole-3-carboxaldehyde 1a-i, malononitrile 2 and 2-cyanomethylbenzimidazole 3a-b in the presence of catalytic amount of NaOH. In vitro antimicrobial activity of the synthesized compounds were investigated against a representative panel of pathogenic strains specifically three Gram-positive bacteria (Streptococcus pneumoniae, Clostridium tetani, Bacillus subtilis), three Gram-negative bacteria (Salmonella typhi, Vibrio cholerae, Escherichia coli) and two fungi (Aspergillus fumigatus, Candida albicans) using broth microdilution MIC (minimum inhibitory concentration) method. In vitro antioxidant activity was evaluated by ferric-reducing antioxidant power (FRAP) assay method. Compounds 4c, 4e, 4l and 4q have been found to be most efficient antimicrobial members while compounds 4h and 4p possess better ferric reducing antioxidant power.

  7. Pharmacokinetic-Pharmacodynamic Modeling of the In Vitro Activities of Oxazolidinone Antimicrobial Agents against Methicillin-Resistant Staphylococcus aureus▿

    OpenAIRE

    Schmidt, Stephan; Sabarinath, Sreedharan Nair; Barbour, April; Abbanat, Darren; Manitpisitkul, Prasarn; Sha, Sue; Derendorf, Hartmut

    2009-01-01

    Linezolid is the first FDA-approved oxazolidinone with activity against clinically important gram-positive pathogens, including methicillin (meticillin)-resistant Staphylococcus aureus (MRSA). RWJ-416457 is a new oxazolidinone with an antimicrobial spectrum similar to that of linezolid. The goal of the present study was to develop a general pharmacokinetic (PK)-pharmacodynamic (PD) model that allows the characterization and comparison of the in vitro activities of oxazolidinones, determined i...

  8. Synthesis, Characterization and Biological Evaluation of Some Quinoxaline Derivatives: A Promising and Potent New Class of Antitumor and Antimicrobial Agents

    OpenAIRE

    Al-Marhabi, Aisha; Abbas, Hebat-Allah; Ammar, Yousry

    2015-01-01

    the present work deals with the synthesis of some novel tetrazolo[1,5-a]quinoxalines, N-pyrazoloquinoxalines, the corresponding Schiff bases, 1,2,4-triazinoquinoxalines and 1,2,4-triazoloquinoxalines. These compounds were synthesized via the reaction of the key intermediate hydrazinoquinoxalines with various reagents and evaluated for anticancer and antimicrobial activity. The results indicated that tetrazolo[1,5-a]quinoxaline derivatives showed the best result, with the highest inhibitory ef...

  9. Interaction and effectiveness of antimicrobials along with healing-promoting agents in a novel biocellulose wound dressing.

    Science.gov (United States)

    Napavichayanun, Supamas; Amornsudthiwat, Phakdee; Pienpinijtham, Prompong; Aramwit, Pornanong

    2015-10-01

    An ideal wound dressing should keep the wound moist, allow oxygen permeation, adsorb wound exudate, accelerate re-epithelialization for wound closure, reduce pain and healing time, and prevent infection. Our novel biocellulose-based wound dressing was composed of three components: 1) biocellulose (BC), intended to create a moist and oxygen-permeated environment with exudate adsorption; 2) silk sericin (SS) known for its enhancement of collagen type I production, which is critical for re-epithelialization; and 3) the antiseptic polyhexamethylene biguanide (PHMB). To deliver an effective BC wound dressing, the interactions between the components (PHMB vs. SS) needed to be thoroughly analyzed. In this study, we investigated important parameters such as the loading sequence, loading concentration, and loading amount of the active compounds to ensure that the BC wound dressing could provide both antimicrobial activity and promote collagen production during healing. The loading sequence of SS and PHMB into BC was critical to maintain PHMB antimicrobial activity; silk sericin needed to be loaded before PHMB to avoid any negative impacts. The minimum PHMB concentration was 0.3% w/v for effective elimination of all tested bacteria (Bacillus subtilis, Staphylococcus aureus, methicillin-resistant S. aureus, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa). The amounts of SS and PHMB in BC were optimized to ensure that the dressings released the optimal amounts of both SS to enhance fibroblast collagen production and PHMB for effective antimicrobial activity. PMID:26117743

  10. Binary and Tertiary Mixtures of Satureja hortensis and Origanum vulgare Essential Oils as Potent Antimicrobial Agents Against Helicobacter pylori.

    Science.gov (United States)

    Lesjak, Marija; Simin, Natasa; Orcic, Dejan; Franciskovic, Marina; Knezevic, Petar; Beara, Ivana; Aleksic, Verica; Svircev, Emilija; Buzas, Krisztina; Mimica-Dukic, Neda

    2016-03-01

    Essential oils possess strong antimicrobial activity, even against multiresistant Helicobacter pylori. Available therapies against H. pylori infection have multiple disadvantages, indicating a great need for a development of new therapeutics. The purpose of this study was to develop a potent natural product based anti-H. pylori formulation. First, anti-H. pylori activity of nine essential oils was determined, after which the most active oils were mixed in various ratios for further testing. Satureja hortensis, Origanum vulgare subsp. vulgare and O. vulgare subsp. hirtum essential oils expressed the highest activity (MIC = 2 μL mL(-1)). Their binary and ternary mixtures exhibited notably higher antimicrobial activity (MIC ≤ 2 μL mL(-1)). The most active was the mixture of S. hortensis and O. vulgare subsp. hirtum oils in volume ratio 2:1, which expressed 4 times higher activity than individual oils (MIC = 0.5 μL mL(-1)). According to GC-MS, both oils in the mixture were characterized by high content of phenols (48-73%), with carvacrol as the main carrier of antimicrobial activity. Presented in vitro study pointed out binary mixture of S. hortensis and O. vulgare subsp. hirtum essential oils in volume ratio 2:1 as promising candidate for further in vivo studies targeting H. pylori infection.

  11. Synthesis, characterization and biological evaluation of some novel 2,4-thiazolidinediones as potential cytotoxic, antimicrobial and antihyperglycemic agents.

    Science.gov (United States)

    Avupati, Vasudeva Rao; Yejella, Rajendra Prasad; Akula, Annapurna; Guntuku, Girija Sankar; Doddi, Bhagya Raju; Vutla, Venkata Rao; Anagani, Suvarna Ratna; Adimulam, Lakshmana Santhi; Vyricharla, Aruna Kumar

    2012-10-15

    A series of some novel 2,4-thiazolidinediones (TZDs) (2a-x) have been synthesized and characterized by FTIR, (1)H NMR, (13)C NMR and LC mass spectral analysis. All the synthesized compounds were evaluated for their cytotoxicity, antimicrobial and in vivo antihyperglycemic activities. Among the tested compounds for cytotoxicity using Brine Shrimp Lethality assay, compound 2t ((Z)-5-(4-((E)-3-oxo-3-(thiophen-2-yl)prop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-dione) exhibited significant inhibitory activity at ED(50) value 4.00±0.25 μg/mL and this level of activity was comparable to that of the reference drug podophyllotoxin with ED(50) value 3.61±0.17 μg/mL. Antimicrobial activity was screened using agar well diffusion assay method against selected Gram-positive, Gram-negative and fungal strains and the activity expressed as the minimum inhibitory concentration (MIC) in μg/mL. From the results of antimicrobial activity compound 2s ((Z)-5-(4-((E)-3-(3,5-bis(benzyloxy)phenyl)-3-oxoprop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-dione) was found to be the most active against all the tested strains of microorganisms with MIC value 16 μg/mL. In vivo antihyperglycemic effect of twenty four TZDs (2a-x) at different doses 10, 30 and 50mg/kg b.w (oral) were assessed using percentage reduction of plasma glucose (PG) levels in streptozotocin-induced type II diabetic rat models. From the results, the novel compound 2x ((Z)-5-(4-((E)-3-(9H-fluoren-2-yl)-3-oxoprop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-dione) exhibited considerably potent blood glucose lowering activity than that of the standard drug rosiglitazone and it could be a remarkable starting point to evaluate structure-activity relationships and to develop new lead molecules with potential cytotoxicity, antimicrobial and antihyperglycemic activities. In addition molecular docking studies were carried out against PPARγ molecular target using Molegro Virtual Docker v 4.0 to accomplish preliminary confirmation of the

  12. Distribution of phylogroups and co-resistance to antimicrobial agents in ampicillin resistant Escherichia coli isolated from healthy humans and from patients with bacteraemia

    DEFF Research Database (Denmark)

    Haugaard, A.; Hammerum, A. M.; Porsbo, Lone Jannok;

    In 2002-03, 31 ampicillin resistant faecal isolates were collected from healthy humans. Moreover, 31 ampicillin resistant blood isolates from patients with bacte-raemia were collected in 2000-02. All isolates were tested positive for the pres-ence of blaTEM. Isolates were characterized by minimum...... inhibitory concentration to antimicrobial agents and examined by PCR to determine their phylogroups. The phylotyping grouped the faecal samples into A (13%), B1 (10%), B2 (42%), D (19%), NT (16%) while the blood isolates grouped into A (16%), B1 (0%), B2 (48%), D (32%) and NT (3%). The frequency...... of resistance in faecal and blood isolates (F/B) was: tetracycline (48%/48%), gentamicin (0%/10%), ciprofloxacin (3%,13%), sulfonamide (68%/77%) and trimethoprim (39%/39%). Conclusion: B2 was the most prevalent phylogroup found both in faecal isolates collected from healthy humans and in blood isolates from...

  13. First report on rapid screening of nanomaterial-based antimicrobial agents against β-lactamase resistance using pGLO plasmid transformed Escherichia coli HB 101 K-12

    Science.gov (United States)

    Raj, M. Alpha; Muralidhar, Y.; Sravanthi, M.; Prasad, T. N. V. K. V.; Nissipriya, M.; Reddy, P. Sirisha; Neelima, T. Shoba; Reddy, G. Dilip; Adilaxmamma, K.; Kumar, P. Anand; Krishna, T. Giridhara

    2016-08-01

    Combating antibiotic resistance requires discovery of novel antimicrobials effective against resistant bacteria. Herein, we present for the first time, pGLO plasmid transformed Escherichia coli HB 101 K 12 as novel model for screening of nanomaterial-based antimicrobial agents against β-lactamase resistance. E. coli HB 101 was transformed by pGLO plasmid in the presence of calcium chloride (50 mM; pH 6.1) aided by heat shock (0-42-0 °C). The transformed bacteria were grown on Luria-Bertani agar containing ampicillin (amp) and arabinose (ara). The transformed culture was able to grow in the presence of ampicillin and also exhibited fluorescence under UV light. Both untransformed and transformed bacteria were used for screening citrate-mediated nanosilver (CNS), aloin-mediated nanosilver (ANS), 11-α-keto-boswellic acid (AKBA)-mediated nanosilver (BNS); nanozinc oxide, nanomanganese oxide (NMO) and phytochemicals such as aloin and AKBA. Minimum inhibitory concentrations (MIC) were obtained by microplate method using ρ-iodo nitro tetrazolium indicator. All the compounds were effective against transformed bacteria except NMO and AKBA. Transformed bacteria exhibited reverse cross resistance against aloin. ANS showed the highest antibacterial activity with a MIC of 0.32 ppm followed by BNS (10.32 ppm), CNS (20.64 ppm) and NZO (34.83 ppm). Thus, pGLO plasmid can be used to induce resistance against β-lactam antibiotics and the model can be used for rapid screening of new antibacterial agents effective against resistant bacteria.

  14. First report on rapid screening of nanomaterial-based antimicrobial agents against β-lactamase resistance using pGLO plasmid transformed Escherichia coli HB 101 K-12

    Science.gov (United States)

    Raj, M. Alpha; Muralidhar, Y.; Sravanthi, M.; Prasad, T. N. V. K. V.; Nissipriya, M.; Reddy, P. Sirisha; Neelima, T. Shoba; Reddy, G. Dilip; Adilaxmamma, K.; Kumar, P. Anand; Krishna, T. Giridhara

    2015-10-01

    Combating antibiotic resistance requires discovery of novel antimicrobials effective against resistant bacteria. Herein, we present for the first time, pGLO plasmid transformed Escherichia coli HB 101 K 12 as novel model for screening of nanomaterial-based antimicrobial agents against β-lactamase resistance. E. coli HB 101 was transformed by pGLO plasmid in the presence of calcium chloride (50 mM; pH 6.1) aided by heat shock (0-42-0 °C). The transformed bacteria were grown on Luria-Bertani agar containing ampicillin (amp) and arabinose (ara). The transformed culture was able to grow in the presence of ampicillin and also exhibited fluorescence under UV light. Both untransformed and transformed bacteria were used for screening citrate-mediated nanosilver (CNS), aloin-mediated nanosilver (ANS), 11-α-keto-boswellic acid (AKBA)-mediated nanosilver (BNS); nanozinc oxide, nanomanganese oxide (NMO) and phytochemicals such as aloin and AKBA. Minimum inhibitory concentrations (MIC) were obtained by microplate method using ρ-iodo nitro tetrazolium indicator. All the compounds were effective against transformed bacteria except NMO and AKBA. Transformed bacteria exhibited reverse cross resistance against aloin. ANS showed the highest antibacterial activity with a MIC of 0.32 ppm followed by BNS (10.32 ppm), CNS (20.64 ppm) and NZO (34.83 ppm). Thus, pGLO plasmid can be used to induce resistance against β-lactam antibiotics and the model can be used for rapid screening of new antibacterial agents effective against resistant bacteria.

  15. Antimicrobial evaluation of new metallic complexes with xylitol active against P. aeruginosa and C. albicans: MIC determination, post-agent effect and Zn-uptake.

    Science.gov (United States)

    Santi, E; Facchin, G; Faccio, R; Barroso, R P; Costa-Filho, A J; Borthagaray, G; Torre, M H

    2016-02-01

    Xylitol (xylH5) is metabolized via the pentose pathway in humans, but it is unsuitable as an energy source for many microorganisms where it produces a xylitol-induced growth inhibition and disturbance in protein synthesis. For this reason, xylitol is used in the prophylaxis of several infections. In the search of better antimicrobial agents, new copper and zinc complexes with xylitol were synthesized and characterized by analytical and spectrosco pic methods: Na2[Cu3(xylH−4)2]·NaCl·4.5H2O (Cu-xyl) and [Zn4(xylH−4)2(H2O)2]·NaCl·3H2O (Zn-xyl). Both copper and zinc complexes presented higher MIC against Pseudomona aeruginosa than the free xylitol while two different behaviors were found against Candida albicans depending on the complex. The growth curves showed that Cu-xyl presented lower activity than the free ligand during all the studied period. In the case of Znxyl the growth curves showed that the inhibition of the microorganism growth in the first stage was equivalent to that of xylitol but in the second stage (after 18 h) Zn-xyl inhibited more. Besides, the PAE (post agent effect)obtained for Zn-xyl and xyl showed that the recovery from the damage of microbial cells had a delay of 14 and 13 h respectively. This behavior could be useful in prophylaxis treatments for infectious diseases where it is important that the antimicrobial effect lasts longer. With the aim to understand the microbiological activities the analysis of the particle size, lipophilicity and Zn uptake was performed. PMID:26619097

  16. Exploring the use of natural antimicrobial agents and pulsed electric fields to control spoilage bacteria during a beer production process.

    Science.gov (United States)

    Galvagno, M A; Gil, G R; Iannone, L J; Cerrutti, P

    2007-01-01

    Different natural antimicrobials affected viability of bacterial contaminants isolated at critical steps during a beer production process. In the presence of 1 mg/ml chitosan and 0.3 mg/ml hops, the viability of Escherichia coli in an all malt barley extract wort could be reduced to 0.7 and 0.1% respectively after 2 hour- incubation at 4 degrees C. The addition of 0.0002 mg/ml nisin, 0.1 mg/ml chitosan or 0.3 mg/ml hops, selectively inhibited growth of Pediococcus sp. in more than 10,000 times with respect to brewing yeast in a mixed culture. In the presence of 0.1 mg ml chitosan in beer, no viable cells of the thermoresistant strain Bacillus megaterium were detected. Nisin, chitosan and hops increased microbiological stability during storage of a local commercial beer inoculated with Lactobacillus plantarum or Pediococcus sp. isolated from wort. Pulsed Electric Field (PEF) (8 kV/cm, 3 pulses) application enhanced antibacterial activity of nisin and hops but not that of chitosan. The results herein obtained suggest that the use of these antimicrobial compounds in isolation or in combination with PEF would be effective to control bacterial contamination during beer production and storage. PMID:17987854

  17. Frequency of resistance to methicillin and other antimicrobial agents among Staphylococcus aureus strains isolated from pigs and their human handlers in Trinidad

    Directory of Open Access Journals (Sweden)

    Annika Gordon

    2014-04-01

    Full Text Available Background: Methicillin-resistant Staphylococcus aureus (MRSA has emerged recently worldwide in production animals, particularly pigs and veal calves, which act as reservoirs for MRSA strains for human infection. The study determined the prevalence of MRSA and other resistant strains of S. aureus isolated from the anterior nares of pigs and human handlers on pig farms in Trinidad. Methods: Isolation of S. aureus was done by concurrently inoculating Baird-Parker agar (BPA and Chromagar MRSA (CHROM with swab samples and isolates were identified using standard methods. Suspect MRSA isolates from Chromagar and BPA were subjected to confirmatory test using Oxoid PBP2 latex agglutination test. The disc diffusion method was used to determine resistance to antimicrobial agents. Results: The frequency of isolation of MRSA was 2.1% (15 of 723 for pigs but 0.0% (0 of 72 for humans. Generally, for isolates of S. aureus from humans there was a high frequency of resistance compared with those from pigs, which had moderate resistance to the following antimicrobials: penicillin G (54.5%, 51.5%, ampicillin (59.1%, 49.5%, and streptomycin (59.1%, 37.1%, respectively. There was moderate resistance to tetracycline (36.4%, 41.2% and gentamycin (27.2%, 23.7% for human and pig S. aureus isolates, respectively, and low resistance to sulfamethoxazole-trimethoprim (4.5%, 6.2% and norfloxacin (9.1%, 12.4%, respectively. The frequency of resistance to oxacillin by the disc method was 36.4 and 34.0% from S. aureus isolates from humans and pigs, respectively. Out of a total of 78 isolates of S. aureus from both human and pig sources that were resistant to oxacillin by the disc diffusion method, only 15 (19.2% were confirmed as MRSA by the PBP'2 latex test kit. Conclusions: The detection of MRSA strains in pigs, albeit at a low frequency, coupled with a high frequency of resistance to commonly used antimicrobial agents in pig and humans could have zoonotic and therapeutic

  18. [Antimicrobial susceptibility testing in clinically relevant non-fermenting gram-negative bacilli: recommendations from the Antimicrobial Agents Subcommittee of the Sociedad Argentina de Bacteriología, Micología y Parasitología Clínicas, Asociación Argentina de Microbiología].

    Science.gov (United States)

    Radice, Marcela; Marín, Marcelo; Giovanakis, Marta; Vay, Carlos; Almuzara, Marisa; Limansky, Adriana; Casellas, José M; Famiglietti, Angela; Quinteros, Mirta; Bantar, Carlos; Galas, Marcelo; Kovensky Pupko, Jaime; Nicola, Federico; Pasterán, Fernando; Soloaga, Rolando; Gutkind, Gabriel

    2011-01-01

    This document contains the recommendations for antimicrobial susceptibility testing of the clinically relevant non-fermenting gram-negative bacilli (NFGNB), adopted after conforming those from international committees to the experience of the Antimicrobial Agents Subcommittee members and invited experts. This document includes an update on NFGNB classification and description, as well as some specific descriptions regarding natural or frequent antimicrobial resistance and a brief account of associated resistance mechanisms. These recommendations not only suggest the antimicrobial drugs to be evaluated in each case, but also provide an optimization of the disk diffusion layout and a selection of results to be reported. Finally, this document also includes a summary of the different methodological approaches that may be used for detection and confirmation of emerging b-lactamases, such as class A and B carbapenemases.

  19. Silver Nanoparticles in SiO2 Microspheres - Preparation by Spray Drying and Use as Antimicrobial Agent.

    Science.gov (United States)

    Mahltig, Boris; Haufe, Helfried; Muschter, Kerstin; Fischer, Anja; Kim, Young Hwan; Gutmann, Emanuel; Reibold, Marianne; Meyer, Dirk Carl; Textor, Torsten; Kim, Chang Woo; Kang, Young Soo

    2010-06-01

    Silver nanoparticles embedded in SiO2 particles of micrometer size are prepared using spray drying. The spray drying is performed with a SiO2 sol (solvent water:ethanol 4: 1) containing SiO2 and silver particles of nanometer size. During spray drying the SiO2 nanoparticles aggregate to SiO2 microspheres whereas the silver particles exhibit only a small tendency of aggregation and keep their nanometer size. However under special conditions also the formation of crystalline silver rods is observed. The antibacterial activity of the resulting Ag/SiO2 powders is determined against the bacteria Escherichia coli and Bacillus subtilis. Because of this antibacterial acitivity and the fact that the powder of SiO2 microspheres exhibits a good dispersibility, such materials have an immense potential to be used as antimicrobial additive in processes like master batch or fiber production. PMID:24061743

  20. Synthesis and Biological Evaluation of N- Pyrazolyl Derivatives and Pyrazolopyrimidine Bearing a Biologically Active Sulfonamide Moiety as Potential Antimicrobial Agent.

    Science.gov (United States)

    Hafez, Hend N; El-Gazzar, Abdel-Rhman B A

    2016-01-01

    A series of novel pyrazole-5-carboxylate containing N-triazole derivatives 3,4; different heterocyclic amines 7a-b and 10a-b; pyrazolo[4,3-d]pyrimidine containing sulfa drugs 14a,b; and oxypyrazolo[4,3-d]pyrimidine derivatives 17, 19, 21 has been synthesized. The structure of the newly synthesized compounds was elucidated on the basis of analytical and spectral analyses. All compounds have been screened for their in vitro antimicrobial activity against three gram-positive and gram-negative bacteria as well as three fungi. The results revealed that compounds 14b and 17 had more potent antibacterial activity against all bacterial strains than reference drug Cefotaxime. Moreover compounds 4, 7b, and 12b showed excellent antifungal activities against Aspergillus niger and Candida albicans in low inhibitory concentrations but slightly less than the reference drug miconazole against Aspergillus flavus. PMID:27589717

  1. Contrasting effects of two antimicrobial agents (triclosan and triclocarban) on biomineralisation of an organophosphate pesticide in soils.

    Science.gov (United States)

    Kookana, R S; Ali, A; Smith, L; Arshad, M

    2014-07-01

    We examined the impact of triclosan (TCS) and triclocarban (TCC) antimicrobial compounds on the biomineralisation of glucose and cadusafos pesticide in three Australian soils. Mineralisations of radiolabelled ((14)C) compounds were measured over a period of up to 77 d in sterile and non-sterile soils treated with different concentrations of TCS and TCC (0-450 mg kg(-1)). The rates of mineralisation of cadusafos were found to decrease with increasing concentration of TCS in all soils, but varied with soil type. Soils treated with TCS at the highest concentration (270 mg kg(-1)) reduced cadusafos mineralisation by up to 58%. However, glucose mineralisation was not significantly affected by the presence of TCS. While TCS, significantly reduced the mineralisation of cadusafos (by 17%; p<0.05) even at the lowest studied concentration (30 mg kg(-1)), no significant effect of TCC was observed on cadusafos or glucose mineralisation even at the highest concentration used (450 mg kg(-1)). PMID:24461429

  2. Design and Synthesis of Some New Quinoline Based 1,2,3-Triazoles as Antimicrobial and Antimalarial Agents

    Directory of Open Access Journals (Sweden)

    Parthasaradhi Y.

    2015-09-01

    Full Text Available A series of novel 6-bromo-2-chloro-3-(4-phenyl-[1,2,3]triazol-1-ylmethyl-quinoline and its derivatives (5a-j were synthesized in good yields from the intermediates (6-bromo-2-chloro-quinolin-3-yl-methanol (2, methanesulfonic acid (6-bromo-2-chloroquinolin-3-ylmethyl methanesulfonate (3 and 3-azidomethyl-6-bromo-2-chloro-quinoline (4. The synthetic route leading to the title compounds is commenced from commercially available 6-bromo-2-chloro-quinolin-3-carbaldehyde (1. The chemical structures of the newly synthesized compounds were elucidated by their IR, 1H and 13C NMR, mass spectral data and elemental analysis. Further, all the target compounds were screened for their antimicrobial activity against various microorganisms and antimalarial activity towards P. falciparum. DOI: http://dx.doi.org/10.17807/orbital.v7i3.692 

  3. Synthesis of Chiral Macrocyclic or Linear Pyridine Carboxamides from Pyridine-2,6-dicarbonyl Dichloride as Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Abd El-Galil E Amr

    2010-09-01

    Full Text Available A series of chiral linear and macrocyclic bridged pyridines has been prepared starting from pyridine-2,6-dicarbonyl dichloride (2. The coupling of 1 with D-alanyl methyl ester gave 2,6-bis-D-alanyl pyridine methyl ester (3. Hydrazinolysis of 3 with hydrazine hydrate afforded bis-hydrazide 4. The latter was reacted with thiophene-2-carbaldehyde, phthalic anhydride or cyclohexanone to afford bis-carboxamide pyridine derivatives 5-7, respectively. Compound 4 was coupled with p-methoxy- or p-nitroaceto-phenone to yield compounds 8 and 9. In addition, 4 was reacted with 1,2,4,5-benzenetetra-carboxylic acid dianhydride or 1,4,5,8-naphthalenetetracarboxylic acid dianhydride to afford the macrocyclic octacarboxaamide pyridines 10 and 11. The detailed synthesis, spectroscopic data and antimicrobial screening for the synthesized compounds are reported.

  4. Lipooligosaccharide structure is an important determinant in the resistance of Neisseria gonorrhoeae to antimicrobial agents of innate host defense

    Directory of Open Access Journals (Sweden)

    Jacqueline T Balthazar

    2011-02-01

    Full Text Available The strict human pathogen Neisseria gonorrhoeae has caused the sexually transmitted infection termed gonorrhea for thousands of years. Over the millennia, the gonococcus has likely evolved mechanisms to evade host defense systems that operate on the genital mucosal surfaces in both males and females. Past research has shown that the presence or modification of certain cell envelope structures can significantly impact levels of gonococcal susceptibility to host-derived antimicrobial compounds that bathe genital mucosal surfaces and participate in innate host defense against invading pathogens. In order to facilitate the identification of gonococcal genes that are important in determining levels of bacterial susceptibility to mediators of innate host defense, we used the Himar I mariner in vitro mutagenesis system to construct a transposon insertion library in strain F62. As proof of principle that this strategy would be suitable for this purpose, we screened the library for mutants expressing decreased susceptibility to the bacteriolytic action of normal human serum (NHS. We found that a transposon insertion in the lgtD gene, which encodes an N-acetylgalactosamine transferase involved in the extension of the α-chain of lipooligosaccharide (LOS, could confer decreased susceptibility of strain F62 to complement-mediated killing by NHS. By complementation and chemical analyses, we demonstrated both linkage of the transposon insertion to the NHS-resistance phenotype and chemical changes in LOS structure that resulted from loss of LgtD production. Further truncation of the LOS α-chain or loss of phosphoethanolamine (PEA from the lipid A region of LOS also impacted levels of NHS-resistance. PEA decoration of lipid A also increased gonococcal resistance to the model cationic antimicrobial polymyxin B. Taken together, we conclude that the Himar I mariner in vitro mutagenesis procedure can facilitate studies on structures involved in gonococcal

  5. Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ali Adem Bahar

    2013-11-01

    Full Text Available The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs, a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics.

  6. Antibiotic Agents

    Science.gov (United States)

    ... either as public health or as non-public health antimicrobial agents. What is the difference between bacteriostats, sanitizers, disinfectants ... bacteria, however, there is considerable controversy surrounding their health benefits. The ... producing agents (Table of Antibacterials) have been used for many ...

  7. The precision and robustness of published protocols for disc diffusion assays of antimicrobial agent susceptibility: an inter-laboratory study

    DEFF Research Database (Denmark)

    Gabhainn, S.N.; Bergh, Ø.; Dixon, B.;

    2004-01-01

    each agent being 11.1%. Significant influences on zone size were detected for all three parameters of the protocol. Media source effects were particularly notable with respect to oxytetracycline and oxolinic acid discs, disc source effects with respect to ampicillin and sulphamethoxazole...

  8. Design, synthesis and biological evaluation of berberine-benzimidazole hybrids as new type of potentially DNA-targeting antimicrobial agents.

    Science.gov (United States)

    Jeyakkumar, Ponmani; Zhang, Ling; Avula, Srinivasa Rao; Zhou, Cheng-He

    2016-10-21

    A series of novel berberine-benzimidazole derivatives were conveniently and efficiently synthesized and characterized by NMR, IR, MS and HRMS spectra. Most of the prepared compounds showed effective antimicrobial activities in contrast with clinical norfloxacin, chloromycin and fluconazole. Especially, compound 5d exhibited good anti-MRSA, anti-Escherichia coli, and anti-Salmonella typhi activity with low MIC values of 2-8 μg/mL, which were comparable or even superior to reference drugs. The preliminarily interactive investigation revealed that the most active compound 5d could effectively intercalate into DNA to form 5d-DNA complex and cleavage DNA by agarose gel electrophoresis experiments. It was also found that compound 5d was able to efficiently permeabilize the membranes of both Gram-positive (MRSA) and Gram-negative (E. coli DH52) bacteria. Experiments and molecular docking both showed that human serum albumin (HSA) could effectively transport compound 5d and hydrophobic interactions and hydrogen bonds play important roles in the association of compound 5d with HSA. PMID:27371924

  9. Activity of telavancin and comparator antimicrobial agents tested against Staphylococcus spp. isolated from hospitalised patients in Europe (2007-2008).

    Science.gov (United States)

    Mendes, Rodrigo E; Sader, Helio S; Jones, Ronald N

    2010-10-01

    The activity of telavancin was evaluated against Staphylococcus spp. collected from European hospitals as part of an international surveillance study (2007-2008). A total of 7534 staphylococcal clinical isolates [5726 Staphylococcus aureus and 1808 coagulase-negative staphylococci (CoNS)] were included. Isolates were tested for susceptibility according to reference methods and minimum inhibitory concentration (MIC) values were interpreted based on Clinical and Laboratory Standards Institute (CLSI) 2010 and European Committee on Antimicrobial Susceptibility Testing (EUCAST) 2009 criteria. Telavancin breakpoints approved by the US Food and Drug Administration (FDA) were applied. Telavancin activity was evaluated against meticillin-resistant S. aureus (MRSA) displaying several antibiogram resistance patterns, including multidrug-resistant isolates. Telavancin was active against S. aureus [MIC(50/90) values (MICs for 50% and 90% of the isolates, respectively)=0.12/0.25mg/L; 100.0% susceptible] and CoNS (MIC(50/90)=0.12/0.25mg/L), inhibiting all isolates at quinupristin/dalfopristin, vancomycin and linezolid). Based upon MIC(90) values, telavancin demonstrated potent in vitro activity against a contemporary (2007-2008) collection of Staphylococcus spp. recovered from nearly 30 European medical centres. PMID:20598860

  10. Activity of telavancin and comparator antimicrobial agents tested against Staphylococcus spp. isolated from hospitalised patients in Europe (2007-2008).

    Science.gov (United States)

    Mendes, Rodrigo E; Sader, Helio S; Jones, Ronald N

    2010-10-01

    The activity of telavancin was evaluated against Staphylococcus spp. collected from European hospitals as part of an international surveillance study (2007-2008). A total of 7534 staphylococcal clinical isolates [5726 Staphylococcus aureus and 1808 coagulase-negative staphylococci (CoNS)] were included. Isolates were tested for susceptibility according to reference methods and minimum inhibitory concentration (MIC) values were interpreted based on Clinical and Laboratory Standards Institute (CLSI) 2010 and European Committee on Antimicrobial Susceptibility Testing (EUCAST) 2009 criteria. Telavancin breakpoints approved by the US Food and Drug Administration (FDA) were applied. Telavancin activity was evaluated against meticillin-resistant S. aureus (MRSA) displaying several antibiogram resistance patterns, including multidrug-resistant isolates. Telavancin was active against S. aureus [MIC(50/90) values (MICs for 50% and 90% of the isolates, respectively)=0.12/0.25mg/L; 100.0% susceptible] and CoNS (MIC(50/90)=0.12/0.25mg/L), inhibiting all isolates at Staphylococcus capitis, Staphylococcus epidermidis, Staphylococcus hominis, Staphylococcus lugdunensis and Staphylococcus xylosus (MIC(50)=0.12 mg/L) compared with Staphylococcus haemolyticus, Staphylococcus saprophyticus and Staphylococcus warneri (MIC(50)=0.25mg/L). Overall, telavancin exhibited MIC(90) results two- to eight-fold lower than comparators (daptomycin, quinupristin/dalfopristin, vancomycin and linezolid). Based upon MIC(90) values, telavancin demonstrated potent in vitro activity against a contemporary (2007-2008) collection of Staphylococcus spp. recovered from nearly 30 European medical centres.

  11. Synthesis and bioactive evaluations of novel benzotriazole compounds as potential antimicrobial agents and the interaction with calf thymus DNA

    Indian Academy of Sciences (India)

    Yu Ren; Hui Zhen Zhang; Shao Lin Zhang; Yun Lei Luo; Ling Zhang; Cheng He Zhou; Rong Xia Geng

    2015-12-01

    A novel series of benzotriazole derivatives were synthesized and characterized by NMR, IR and MS spectra. The bioactive assay manifested that most of the new compounds exhibited moderate to good antibacterial and antifungal activities against the tested strains in comparison to reference drugs chloromycin, norfloxacin and fluconazole. Especially, 2,4-dichlorophenyl substituted benzotriazole derivative 6f displayed good antibacterial activity against MRSA with MIC value of 4 g/mL, which was 2-fold more potent than Chloromycin, and it also displayed 3-fold stronger antifungal activity (MIC = 4 g/mL) than fluconazole (MIC = 16 g/mL) against Beer yeast. The preliminary interactive investigations of compound 6f with calf thymus DNA revealed that compound 6f could effectively intercalate into DNA to form compound 6f–DNA complex which might block DNA replication to exert antimicrobial activities. Molecular docking experiments suggested that compound 6f projected into base-pairs of DNA hexamer duplex forming two hydrogen bonds with guanine of DNA. The theoretical calculations were in accordance with the experimental results.

  12. Danish Integrated Antimicrobial Resistance Monitoring and Research Program

    Science.gov (United States)

    Heuer, Ole E.; Emborg, Hanne-Dorthe; Bagger-Skjøt, Line; Jensen, Vibeke F.; Rogues, Anne-Marie; Skov, Robert L.; Agersø, Yvonne; Brandt, Christian T.; Seyfarth, Anne Mette; Muller, Arno; Hovgaard, Karin; Ajufo, Justin; Bager, Flemming; Aarestrup, Frank M.; Frimodt-Møller, Niels; Wegener, Henrik C.; Monnet, Dominique L.

    2007-01-01

    Resistance to antimicrobial agents is an emerging problem worldwide. Awareness of the undesirable consequences of its widespread occurrence has led to the initiation of antimicrobial agent resistance monitoring programs in several countries. In 1995, Denmark was the first country to establish a systematic and continuous monitoring program of antimicrobial drug consumption and antimicrobial agent resistance in animals, food, and humans, the Danish Integrated Antimicrobial Resistance Monitoring and Research Program (DANMAP). Monitoring of antimicrobial drug resistance and a range of research activities related to DANMAP have contributed to restrictions or bans of use of several antimicrobial agents in food animals in Denmark and other European Union countries. PMID:18217544

  13. ECDC/EFSA/EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2015-01-01

    Full Text Available The ECDC, the EFSA and the EMA have for the first time jointly explored associations between consumption of antimicrobials in humans and food-producing animals, and antimicrobial resistance in bacteria from humans and food-producing animals, using 2011 and 2012 data currently available from their relevant five EU monitoring networks. Combined data on antimicrobial consumption and corresponding resistance in animals and humans for EU MSs and reporting countries were analysed using logistic regression models for selected combinations of bacteria and antimicrobials. A summary indicator of the proportion of resistant bacteria in the main food-producing animal species was calculated for the analysis, as consumption data in food-producing animals were not available at the species level. Comparison of antimicrobial consumption data in animals and humans in 2012, both expressed in milligrams per kilogram of estimated biomass, revealed that overall antimicrobial consumption was higher in animals than in humans, although contrasting situations were observed between countries. The consumption of several antimicrobials extensively used in animal husbandry was higher in animals than in humans, while consumption of antimicrobials critically important for human medicine (such as fluoroquinolones and 3rd- and 4th-generation cephalosporins was higher in humans. In both humans and animals, positive associations between consumption of antimicrobials and the corresponding resistance in bacteria were observed for most of the combinations investigated. In some cases, a positive association was also found between antimicrobial consumption in animals and resistance in bacteria from humans. While highlighting findings of concern, these results should be interpreted with caution owing to current data limitations and the complexity of the AMR phenomenon, which is influenced by several factors besides antimicrobial consumption. Recommendations to address current data

  14. Efficacy of Lysophosphatidylcholine in Combination with Antimicrobial Agents against Acinetobacter baumannii in Experimental Murine Peritoneal Sepsis and Pneumonia Models.

    Science.gov (United States)

    Parra Millán, R; Jiménez Mejías, M E; Sánchez Encinales, V; Ayerbe Algaba, R; Gutiérrez Valencia, A; Pachón Ibáñez, M E; Díaz, C; Pérez Del Palacio, J; López Cortés, L F; Pachón, J; Smani, Y

    2016-08-01

    Immune response stimulation to prevent infection progression may be an adjuvant to antimicrobial treatment. Lysophosphatidylcholine (LPC) is an immunomodulator involved in immune cell recruitment and activation. In this study, we aimed to evaluate the efficacy of LPC in combination with colistin, tigecycline, or imipenem in experimental murine models of peritoneal sepsis and pneumonia. We used Acinetobacter baumannii strain Ab9, which is susceptible to colistin, tigecycline, and imipenem, and multidrug-resistant strain Ab186, which is susceptible to colistin and resistant to tigecycline and imipenem. Pharmacokinetic and pharmacodynamic parameters for colistin, tigecycline, and imipenem and the 100% minimal lethal dose (MLD100) were determined for both strains. The therapeutic efficacies of LPC, colistin (60 mg/kg of body weight/day), tigecycline (10 mg/kg/day), and imipenem (180 mg/kg/day), alone or in combination, were assessed against Ab9 and Ab186 at the MLD100 in murine peritoneal sepsis and pneumonia models. The levels of pro- and anti-inflammatory cytokines, i.e., tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10), were determined by enzyme-linked immunosorbent assay (ELISA) for the same experimental models after inoculating mice with the MLD of both strains. LPC in combination with colistin, tigecycline, or imipenem markedly enhanced the bacterial clearance of Ab9 and Ab186 from the spleen and lungs and reduced bacteremia and mouse mortality rates (P colistin, tigecycline, and imipenem monotherapies. Moreover, at 4 h post-bacterial infection, Ab9 induced higher TNF-α and lower IL-10 levels than those with Ab186 (4 μg/ml versus 3 μg/ml [P colistin, tigecycline, or imipenem modestly reduced the severity of infection by A. baumannii strains with different resistance phenotypes compared to LPC monotherapy in both experimental models. PMID:27161639

  15. Combating Antimicrobial Resistance in Foodborne Microorganisms.

    Science.gov (United States)

    Lai, Edward P C; Iqbal, Zafar; Avis, Tyler J

    2016-02-01

    This review addresses an important public health hazard affecting food safety. Antimicrobial agents are used in foods to reduce or eliminate microorganisms that cause disease. Many traditional organic compounds, novel synthetic organic agents, natural products, peptides, and proteins have been extensively studied for their effectiveness as antimicrobial agents against foodborne Campylobacter spp., Escherichia coli, Listeria spp. and Salmonella. However, antimicrobial resistance can develop in microorganisms, enhancing their ability to withstand the inhibiting or killing action of antimicrobial agents. Knowledge gaps still exist with regard to the actual chemical and microbiological mechanisms that must be identified to facilitate the search for new antimicrobial agents. Technical implementation of antimicrobial active packing films and coatings against target microorganisms must also be improved for extended product shelf life. Recent advances in antimicrobial susceptibility testing can provide researchers with new momentum to pursue their quest for a resistance panacea.

  16. Distribution characteristics of clarithromycin and azithromycin, macrolide antimicrobial agents used for treatment of respiratory infections, in lung epithelial lining fluid and alveolar macrophages.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Morimoto, Kazuhiro

    2011-10-01

    The distribution characteristics of clarithromycin (CAM) and azithromycin (AZM), macrolide antimicrobial agents, in lung epithelial lining fluid (ELF) and alveolar macrophages (AMs) were evaluated. In the in vivo animal experiments, the time-courses of the concentrations of CAM and AZM in ELF and AMs following oral administration (50 mg/kg) to rats were markedly higher than those in plasma, and the area under the drug concentration-time curve (AUC) ratios of ELF/plasma of CAM and AZM were 12 and 2.2, and the AUC ratios of AMs/ELF were 37 and 291, respectively. In the in vitro transport experiments, the basolateral-to-apical transport of CAM and AZM through model lung epithelial cell (Calu-3) monolayers were greater than the apical-to-basolateral transport. MDR1 substrates reduced the basolateral-to-apical transport of CAM and AZM. In the in vitro uptake experiments, the intracellular concentrations of CAM and AZM in cultured AMs (NR8383) were greater than the extracellular concentrations. The uptake of CAM and AZM by NR8383 was inhibited by ATP depletors. These data suggest that the high distribution of CAM and AZM to AMs is due to the sustained distribution to ELF via MDR1 as well as the high uptake by the AMs themselves via active transport mechanisms.

  17. Distribution characteristics of telithromycin, a novel ketolide antimicrobial agent applied for treatment of respiratory infection, in lung epithelial lining fluid and alveolar macrophages.

    Science.gov (United States)

    Togami, Kohei; Chono, Sumio; Seki, Toshinobu; Morimoto, Kazuhiro

    2009-01-01

    The distribution characteristics of telithromycin (TEL), a novel ketolide antimicrobial agent, in lung epithelial fluid (ELF) and alveolar macrophages (AMs) were evaluated. In vivo animal experiments, the time-courses of the concentrations of TEL in ELF and AMs following oral administration of TEL solution (50 mg/4 mL/kg) to rats were markedly higher than in plasma, and areas under drug concentration-time curve (AUC) ratios of ELF/plasma and AMs/plasma were 2.4 and 65.3, respectively. In vitro transport experiments, the basolateral-to-apical transport of TEL through model lung epithelial cell (Calu-3) monolayers was greater than apical-to-basolateral transport. Rhodamine123 and verapamil, MDR1 substrates, reduced the basolateral-to-apical transport of TEL. In vitro uptake experiments, the intracellular equilibrated concentration of TEL in cultured AMs (NR8383) was approximately 40 times the extracellular concentration. The uptake of TEL by NR8383 was inhibited by rotenone and FCCP, ATP depletors and was temperature-dependent. These data suggest that the high distribution of TEL to AMs is due to the sustained distribution to ELF via MDR1 as well as the high uptake by AMs themselves via active transport mechanisms.

  18. Application of Antimicrobial Agents Produced by Lactobacillus plantarum IIA-1A5 as Natural Preservative on Beef during Room Temperature Storage

    Directory of Open Access Journals (Sweden)

    Dewi Elfrida Sihombing

    2015-05-01

    Full Text Available Lactobacillus plantarum IIA-1A5 is indigenous lactic acid bacteria isolated from Indonesian beef. Lactobacillus plantarum IIA-1A5 was reported could produce bacteriocin, called plantaricin IIA-1A5. The aims of this research was to analyze application of plantaricin IIA-1A5 as a natural preservative on beef. Based on antagonistic test, plantaricin IIA-1A5 had good moderate antimicrobial activity against pathogenic bacteria isolated from human’s feces that cause diarrhea such as Salmonella 38, Enteropathogenic Escherichia coli K11 and Shigella A33. Application of plantaricin IIA-1A5 was effective as a natural preservative on beef stored at room temperature by inhibiting the growth of Escherichia coli and Staphylococcus aureus. Plantaricin IIA-1A5 could kill all of the Escherichia coli after 5 h storage. Plantaricin IIA-1A5 could reduce the population of Staphylococcus aureus in beef during room temperature storage. Interestingly, plantaricin produced by Lactobacillus plantarum IIA-1A5 was effective against gram negative and positive bacteria. According to physichochemichal and microbiology quality, plantaricin IIA-1A5 was recommended as biopreservative agents for beef.

  19. Ziziphora clinopodioides Essential Oil and Nisin as Potential Antimicrobial Agents against Escherichia coli O157:H7 in Doogh (Iranian Yoghurt Drink

    Directory of Open Access Journals (Sweden)

    Yasser Shahbazi

    2015-01-01

    Full Text Available The aim of the present study was to evaluate the effects of Ziziphora clinopodioides essential oil (0.1 and 0.2% and nisin (250 and 500 IU/mL separately and in combination on survival of Escherichia coli O157:H7 inoculated in Doogh (Iranian yoghurt drink during storage under refrigerated temperature (4 ± 1°C for 9 days. Viability of Lactobacillus casei at different concentrations of Z. clinopodioides essential oil (0.1 and 0.2% in Doogh was also examined. The major components were carvacrol (64.22%, thymol (19.22%, γ-terpinene (4.63%, and p-cymene (4.86%. There was no significant difference (p>0.05 between samples treated with nisin and those of untreated samples. Samples treated with both concentrations of the essential oil (0.1 and 0.2% showed populations of E. coli O157:H7 significantly (p<0.05 lower than those of untreated samples. The essential oil of Z. clinopodioides in combination with nisin had a potential synergistic effect against E. coli O157:H7 in Doogh samples after 5 days. The count of L. casei was not inhibited by different concentrations of the Z. clinopodioides essential oil. It is concluded that the leaf essential oil of Z. clinopodioides in combination with nisin can be applied as alternative antimicrobial agents in Doogh to inhibit the growth of E. coli O157:H7.

  20. In Vitro Activity of Antimicrobial Agents Against Streptococcus Pyogenes Isolates from patients with Acute Tonsillopharyngitis in Dakar, Senegal

    Directory of Open Access Journals (Sweden)

    A. Gueye Ndiaye

    2009-01-01

    Full Text Available Streptococcus pyogenes (S. pyogenes is the most important causative agent of tonsillopharyngitis. Beta-lactam antibiotics, particularly penicillin, are the drug of first choice and macrolides are recommended for patients who are allergic to penicillin. However, other antibiotics are also used for the treatment of streptococcal tonsillopharyngitis. In recent years, the increase in the incidence of respiratory tract pathogens that are resistant to current antibacterial agents highlights the need to monitor the evolution of the resistance of these pathogens to antibiotics. In this study, we assess the susceptibility of 98 isolates of S. pyogenes to 16 antibiotics. The pathogens were recovered from patients with acute tonsillopharyngitis in Dakar, the Senegalese capital city, who were recruited from May 2005 to August 2006. All strains were susceptible to penicillin with low Minimum Inhibitory Concentration (MIC = 0,016 mg/L. Amoxicillin had high activity (100% showing its importance in treatment of streptococcal infections. Cephalosporins had MIC90 values ranging from 0.016 to 0.094 mg/L. Macrolides have shown high activity. All strains were resistant to tetracyclin. Other molecules such as teicoplanin, levofloxacin and chloramphenicol were also active and would represent alternatives to treatment of tonsillopharyngitis due to this pathogen. These results indicate that no significant resistance to antibiotics was found among patients with tonsillopharyngitis studied in Dakar. Limitations of this study were that the number of isolates tested was small and all isolates were collected from one hospital in Dakar. Hence, results may not be representative of the isolates found, in the wider community or other regions of Senegal. Further studies are needed in other parts of Dakar and other geographic regions of Senegal, in order to better clarify the antibiotic susceptibility profile of S. pyogenes isolates recovered from patients with tonsillopharyngitis.

  1. In Vitro Activity of Antimicrobial Agents Against Streptococcus Pyogenes Isolates from patients with Acute Tonsillopharyngitis in Dakar, Senegal

    Directory of Open Access Journals (Sweden)

    A. Gueye Ndiaye

    2009-06-01

    Full Text Available Streptococcus pyogenes (S. pyogenes is the most important causative agent of tonsillopharyngitis. Beta-lactam antibiotics, particularly penicillin, are the drug of first choice and macrolides are recommended for patients who are allergic to penicillin. However, other antibiotics are also used for the treatment of streptococcal tonsillopharyngitis. In recent years, the increase in the incidence of respiratory tract pathogens that are resistant to current antibacterial agents highlights the need to monitor the evolution of the resistance of these pathogens to antibiotics. In this study, we assess the susceptibility of 98 isolates of S. pyogenes to 16 antibiotics. The pathogens were recovered from patients with acute tonsillopharyngitis in Dakar, the Senegalese capital city, who were recruited from May 2005 to August 2006. All strains were susceptible to penicillin with low Minimum Inhibitory Concentration (MIC = 0,016 mg/L. Amoxicillin had high activity (100% showing its importance in treatment of streptococcal infections. Cephalosporins had MIC90 values ranging from 0.016 to 0.094 mg/L. Macrolides have shown high activity. All strains were resistant to tetracyclin. Other molecules such as teicoplanin, levofloxacin and chloramphenicol were also active and would represent alternatives to treatment of tonsillopharyngitis due to this pathogen. These results indicate that no significant resistance to antibiotics was found among patients with tonsillopharyngitis studied in Dakar. Limitations of this study were that the number of isolates tested was small and all isolates were collected from one hospital in Dakar. Hence, results may not be representative of the isolates found, in the wider community or other regions of Senegal. Further studies are needed in other parts of Dakar and other geographic regions of Senegal, in order to better clarify the antibiotic susceptibility profile of S. pyogenes isolates recovered from patients with tonsillopharyngitis.

  2. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials

    Directory of Open Access Journals (Sweden)

    Nurit Beyth

    2015-01-01

    Full Text Available Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The present review discusses the activities of nanoparticles as an antimicrobial means, their mode of action, nanoparticle effect on drug-resistant bacteria, and the risks attendant on their use as antibacterial agents. Factors contributing to nanoparticle performance in the clinical setting, their unique properties, and mechanism of action as antibacterial agents are discussed in detail.

  3. Looking for the new preparations for antibacterial therapy III. New antimicrobial agents from the quinolones group in clinical trials.

    Science.gov (United States)

    Karpiuk, Izabela; Tyski, Stefan

    2013-01-01

    There is an essential need for searching for the new compounds effective in the treatment of infections caused by multidrug-resistant bacteria. This paper is the third part of a series associated with the exploration of new antibacterial agents and it discusses the compounds belonging to the group of quinolones and substances possessing a hybrid structure composed of the quinolone molecule and other compounds. Eleven new substances at the stage of clinical trials are presented. Three of them belong to the group of non-fluorinated quinolone (nemonoxacin, ozenoxacin and KRP-AM 1977X), while six are the quinolones containing fluorine atom at 6 position of the carbon atom in the quinoline ring (zabofloxacin, finafloxacin, delafloxacin, JNJ-Q2, WCK771 and KPI-10). The remaining two compounds possess a hybrid construction composed of the quinolone structure and other molecules (cadazolid and CBR-2092). There is a chance in the near future, that the presented compounds can extend the range of existing antibacterial drugs and provide an alternative to currently available medicinal products.

  4. In vitro activities of 28 antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA) from a clinical setting in Malaysia.

    Science.gov (United States)

    Neela, V; Sasikumar, M; Ghaznavi, G R; Zamberi, S; Mariana, S

    2008-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA), an established nosocomial and emerging community pathogen associated with many fatalities due to its hyper-virulence and multiple drug resistant properties, is on the continuous rise. To update the current status on the susceptibility of local MRSA isolates to various classes of antibiotics and to identify the most potent antibiotics, thirty-two clinical isolates comprised of hospital acquired (HA) and community acquired (CA) infections were investigated by disk diffusion test. Of the 32 MRSA isolates, 14 (43.75%) and 18 (56.25%) were community and hospital acquired MRSA, respectively. All isolates were multiple drug resistant to more than 3 classes of antibiotics despite the source or specimen from which it was isolated. The oxacillin MICs for all isolates ranged from 2 to > or = 256 microg/ml. Twenty-five of 26 erythromycin-resistant MRSA isolates exhibited an inducible MLS(B) resistance phenotype while one showed an MS phenotype. More than half the isolates (68.75%) were resistant to at least one of the six aminoglycosides tested, with netilmicin as the most susceptible. The most effective antistaphylococcal agents were linezolid, vancomycin, teicoplanin and quinupristin/dalfopristin exhibited 100% susceptibility. Since MRSA is under continuous pressure of acquiring multiple drug resistance, it is imperative to focus routine surveillance on HA and CA-MRSA strains to monitor and limit the spread of this organism. PMID:19058585

  5. Problems and Countermeasures on the management of antimicrobial agents%当前抗菌药物管理存在问题及对策

    Institute of Scientific and Technical Information of China (English)

    张宏

    2013-01-01

    Objective to investigate the use strategy of antibacterial agents and the preventive control management of drug resistance.Methods the weak link of managements were recently analyzed in the application of antibacterial agents and the prevention and control of drug resistance.Results the grading application management didn’t make the misuse of antimicrobial agents into a benign cycle , limiting the numbers of drugs in non-synchronization was also not conducive to the prevention and control of bacterial resistance , and the managements went against the therapy principle according to disease nature.Conclusion the synchronization loop pattern built up according to the growth and decay regulation for drug resistance break off the development process of bacterial resistance during the use of the antibacterial drugs. It should be a kind of scientiifc use method of antibacterial drugs and a effective way to the prevention and control of bacterial drug resistance.%目的:探讨抗菌药物使用策略与细菌耐药性防控措施。方法分析近年来在抗菌药物应用和细菌耐药性防控管理方面存在的薄弱环节或缺陷。结果分级应用管理并不能使抗菌药物使用纳入良性循环,非同步化限制临床使用品种数量也无益于细菌耐药性防控,并有悖于按病施治原则。结论依据细菌耐药性消长规律,构建同步循环用药模式,改变细菌耐药性发展进程可能是科学应用抗菌药物,有效防治细菌耐药性的有效途径。

  6. The effects of antimicrobial agents rectification in clinical rational drug use%抗菌药物专项整治对临床合理用药的影响

    Institute of Scientific and Technical Information of China (English)

    叶红; 李绍军

    2014-01-01

    目的:分析抗菌药物专项整治对医院抗菌药物使用的影响。方法结合消耗金额统计法和用药频度(DDDs)分析法,回顾性分析医院使用抗菌药物的数据。结果抗菌药的DDDs及消耗金额都呈现下降趋势,其中注射类药物的DDDs下降比较明显。非限制类抗菌药物的使用比例上升,特殊类抗菌药物的使用比例有比较明显的下降。结论专项整治效果明显,但仍存在部分抗菌药物用药过度、用药结构不合理、用药集中等问题,应该加强抗菌药物的管理,合理的临床用药。%Objective To analyze the effects of antimicrobial agents rectification in clinical rational drug use.Methods The data of antimicrobial drugs used in hospital was retrospectively analyzed, combined with the amount of statistics and drug consumption frequency(DDDs) analysis.Results The amount of consumption of antimicrobial drugs DDDs had shown a downward trend, in which injectable drugs DDDs decreased obviously ; Non-restricted use of antibiotics proportion rose, the proportion of the use of a special class of antimicrobial drugs declined obviously .Conclusion The rectification effect is obvious, but it may also have antimicrobial drug overdose, medication irrational structure, centralized administration and other issues, and the management of antimicrobial drugs, rational clinical use should be strengthened.

  7. Determining the ecological impacts of organic contaminants in biosolids using a high-throughput colorimetric denitrification assay: a case study with antimicrobial agents.

    Science.gov (United States)

    Holzem, R M; Stapleton, H M; Gunsch, C K

    2014-01-01

    Land application accounts for ∼ 50% of wastewater solid disposal in the United States. Still, little is known regarding the ecological impacts of nonregulated contaminants found in biosolids. Because of the myriad of contaminants, there is a need for a rapid, high-throughput method to evaluate their ecotoxicity. Herein, we developed a novel assay that measures denitrification inhibition in a model denitrifier, Paracoccus denitrificans Pd1222. Two common (triclosan and triclocarban) and four emerging (2,4,5 trichlorophenol, 2-benzyl-4-chlorophenol, 2-chloro-4-phenylphenol, and bis(5-chloro-2-hydroxyphenyl)methane) antimicrobial agents found in biosolids were analyzed. Overall, the assay was reproducible and measured impacts on denitrification over 3 orders of magnitude exposure. The lowest observable adverse effect concentrations (LOAECs) were 1.04 μM for triclosan, 3.17 μM for triclocarban, 0.372 μM for bis-(5-chloro-2-hydroxyphenyl)methane, 4.89 μM for 2-chloro-4-phenyl phenol, 45.7 μM for 2-benzyl-4-chorophenol, and 50.6 μM for 2,4,5-trichlorophenol. Compared with gene expression and cell viability based methods, the denitrification assay was more sensitive and resulted in lower LOAECs. The increased sensitivity, low cost, and high-throughput adaptability make this method an attractive alternative for meeting the initial testing regulatory framework for the Federal Insecticide, Fungicide, and Rodenticide Act, and recommended for the Toxic Substances Control Act, in determining the ecotoxicity of biosolids-derived emerging contaminants. PMID:24410196

  8. Uses of antimicrobial genes from microbial genome

    Science.gov (United States)

    Sorek, Rotem; Rubin, Edward M.

    2013-08-20

    We describe a method for mining microbial genomes to discover antimicrobial genes and proteins having broad spectrum of activity. Also described are antimicrobial genes and their expression products from various microbial genomes that were found using this method. The products of such genes can be used as antimicrobial agents or as tools for molecular biology.

  9. Avaliação da vanilina como agente antimicrobiano em abacaxi 'Pérola' minimamente processado Evaluation of vanillin as an antimicrobial agent on fresh-cut 'Pérola' pineapple

    Directory of Open Access Journals (Sweden)

    Lucimara Rogéria Antoniolli

    2004-09-01

    Full Text Available Procurou-se avaliar os efeitos da vanilina como agente antimicrobiano, bem como o nível de injúria física como fator de contaminação inicial em abacaxi (Ananas comosus (L. Meer cv. Pérola minimamente processado. Fatias e cubos foram obtidos a partir de frutos sanitizados, descascados e fatiados mecanicamente. Os dois tipos de corte foram imersos, separadamente, em água (controle ou soluções de vanilina 3000 ou 5000mg.L-1, durante 30 segundos. Após período de repouso, para drenagem do excesso de líquido, foram acondicionados em embalagens de polietileno tereftalato e mantidos à temperatura de 4 ± 1°C durante 12 dias. As análises microbiológicas, realizadas em intervalos de 3 dias, envolveram a contagem de microrganismos aeróbios mesófilos e de bolores e leveduras e a determinação de coliformes totais e fecais. A utilização de vanilina mostrou-se ineficiente no controle do crescimento da população de microrganismos aeróbios mesófilos e de bolores e leveduras em abacaxi 'Pérola' minimamente processado. O maior nível de injúrias físicas efetuado nos cubos parece favorecer a contaminação inicial do produto.The purpose of this research was to evaluate the effects of vanillin as an antimicrobial agent, as well as the relationship between the injury degree and initial contamination in fresh-cut pineapple (Ananas comosus (L. Meer cv. Pérola. Slices and cubes were obtained from whole fruits that were mechanically peeled and sliced after sanitization. Both kinds of cutting were dipped in pure water (control or vanillin solutions 3000 or 5000mg.L-1, for 30 seconds. After that, the liquid was drained, slices and cubes were placed in polyethylene terephtalate packages and stored at 4 ± 1°C during 12 days. Microbiological analyses were carried out every 3 days and involved mesophile aerobic counts, molds and yeasts and total and fecal coliforms determination. The use of vanillin was inefficient for the control of mesophile

  10. Resistance to antimicrobial agents in campylobacter isolated from chickens raised in intensive and organic farms and its implications for the management of risk to human health

    OpenAIRE

    Soonthornchaikul, Nantika

    2006-01-01

    The use of antimicrobials in poultry may lead to the emergence of resistant micro-organisms that could cause additional health risk to humans through food consumption. This study aims to investigate the relative health risks from Campylobacter and its antimicrobial resistance associated with chicken raised in organic and intensive rearing systems. Three groups of chicken were tested, pre-packaged intensively reared (PIC) and pre-packaged organically reared chickens (POC) both purchased fro...

  11. Editorial of the Special Issue Antimicrobial Polymers

    Directory of Open Access Journals (Sweden)

    Iolanda Francolini

    2013-09-01

    Full Text Available The special issue “Antimicrobial Polymers” includes research and review papers concerning the recent advances on preparation of antimicrobial polymers and their relevance to industrial settings and biomedical field. Antimicrobial polymers have recently emerged as promising candidates to fight microbial contamination onto surfaces thanks to their interesting properties. In this special issue, the main strategies pursued for developing antimicrobial polymers, including polymer impregnation with antimicrobial agents or synthesis of polymers bearing antimicrobial moieties, were discussed. The future application of these polymers either in industrial or healthcare settings could result in an extremely positive impact not only at the economic level but also for the improvement of quality of life.

  12. Analysis of the use of antimicrobial agents and the monitoring of bacterial resistance%2011-2013年我院抗菌药物使用与细菌耐药性监测的分析

    Institute of Scientific and Technical Information of China (English)

    宋桂芳; 王韵

    2015-01-01

    Objective:To analyze relevance between the DDDs of antimicrobial agents and the drug resistance of common clinical pathogens in our hospital during 2011-2013 so as to provide a basis for guiding rational drug use. Methods:The number of consumption of antimicrobial agents and the incidence of major drug resistant pathogens were statistically analyzed and the related data were compared. Results:The DDDs of the third generation of cephalosporins, cephamycins, carbapenems and macrolides showed an upward trend, and the rates of drug resistance of main bacteria such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa Bowman/hemolytic Acinetobacter, Staphylococcus aureus and so on also showed an increasing trend. Conclusion:The DDDs of antimicrobial agents and bacterial resistance are closely related and therefore the management of antimicrobial agents should be further strengthened and improved and great attention should be paid to the monitoring of bacterial resistance.%目的:分析我院抗菌药物用药频度及与临床常见致病菌耐药情况的关联性,为指导合理用药提供依据。方法:对本院2011-2013年抗菌药物消耗数量进行统计分析,并对主要致病菌的耐药率进行统计,分析比较相关数据。结果:三代头孢菌素、头霉素类、碳青霉烯类和大环内酯类的DDDs呈上升趋势,主要致病菌大肠埃希氏菌、肺炎克雷伯氏菌、铜绿假单胞菌、鲍曼/溶血不动杆菌、金黄色葡萄球菌等的耐药率也呈逐年上升的趋势。结论:抗菌药物的DDDs对细菌耐药率关联性高,医院需要进一步加强和完善抗菌药物的管理,对细菌耐药率监测应高度重视。

  13. Antimicrobial Pesticides

    Science.gov (United States)

    ... US EPA US Environmental Protection Agency Search Search Pesticides Share Facebook Twitter Google+ Pinterest Contact Us You are here: EPA Home » Pesticides » Antimicrobial Pesticides Antimicrobial Pesticides News and Highlights Disinfection Hierarchy Workshop - October 7 ...

  14. Microwave assisted synthesis of some novel acetazolamide cyclocondensed 1,2,3,4-tetrahydropyrimidines as a potent antimicrobial and cytotoxic agents

    Directory of Open Access Journals (Sweden)

    Karthikeyan Elumalai

    2014-03-01

    Full Text Available A new series of some novel acetazolamide cyclocondensed 1,2,3,4-tetrahydropyrimidines was prepared by reacting of N-{[5-(acetylamino-1,3,4-thiadiazol-2-yl]sulfonyl}-3-oxobutanamide with urea/thiourea and appropriate aldehyde in the presence of catalytic amount of laboratory made p-toluenesulfonic acid as an efficient catalyst. Confirmation of the chemical structure of the synthesized compounds (12a–n was substantiated by TLC, different spectral data IR, 1H NMR, Mass spectra and elemental analysis were done. The synthesized compounds were evaluated for in-vitro antimicrobial and cytotoxicity against Bacillus subtilis, Escherichia coli and Vero cells. The titled compounds exhibited weak, moderate, or high in-vitro antimicrobial and cytotoxicity. Compounds 12c, 12d, 12g and 12h, exhibited potential antimicrobial and in-vitro cytotoxicity.

  15. Antimicrobial commodities. Part 2. Antimicrobial and antifungal paint (adhesive); Kokin seikatsu yohin (dai 2 kai). Kokin / bokabi toryo (secchakuzai)

    Energy Technology Data Exchange (ETDEWEB)

    Toyonaga, Y. [Shinto Paint Co. Ltd., Amagasaki, Osaka (Japan)

    1998-07-01

    Since paints or adhesives suffer damage during their practical use from microorganisms existing in the nature, antimicrobial agents are added to products. The antimicrobial agents are classified into three according to the use: preservatives for killing and inhibiting germs (bacteria), antifungal agents for killing and inhibiting eumycetes (mold); and antimicrobial agents in a narrow sense for inhibiting the propagation of bacterial which causes damage to the health, such as MRSA. This paper describes the functions and examples of compositions of paints and adhesives, and then concrete examples of compositions, methods of use, and effects of preservatives, antifungal agents and antimicrobial agents for paints and adhesives. Concerning, especially, preservatives and antifungal agents, the main uses, trade names oral toxities and solvents of 30 compounds are listed. Concerning the antimicrobial agent in a narrow sense, examples of compositions of antimicrobial pastes are enumerated. 5 refs., 1 fig., 8 tabs.

  16. Resistance to antimicrobial agents used for animal therapy in pathogenic , zoonotic and indicator bacteria isolated from different food animals in Denmark: A baseline study for the Danish Integrated Antimicrobial Resistance Monitoring Programme (DANMAP)

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Bager, Flemming; Jensen, N. E.;

    1998-01-01

    , Enterococcus faecium), 2) zoonotic bacteria (Campylobacter coli/jejuni, Salmonella enterica, Yelsinia enterocolitica), and 3) animal pathogens (E. coli, Staphylococcus aureus, coagulase-negative staphylococci (CNS), Staphylococcus hyicus, Actinobacillus pleuropneumoniae). A total of 3304 bacterial isolates......This study describes the establishment and first results of a continuous surveillance system of antimicrobial resistance among bacteria isolated from pigs, cattle and broilers in Denmark. The three categories of bacteria tested were: 1) indicator bacteria (Escherichia coli, Enterococcus faecalis...

  17. Evaluation of the antimicrobial and physical properties of an orthodontic photo-activated adhesive modified with an antiplaque agent: An in vitro study

    Directory of Open Access Journals (Sweden)

    Chanjyot Singh

    2013-01-01

    Results: The findings indicated that (1 addition of chlorhexidine to the orthodontic composite resin enhanced its antimicrobial properties, (2 there was no significant difference between the bond strengths of the control and the experimental resins tested after 24 h and 25 days and (3 maximum release of chlorhexidine from the modified resin was much higher than the minimum inhibitory concentration level.

  18. Drug utilization pattern of antimicrobial agents in an outpatient department of otorhinolaryngology in a tertiary care hospital: a prospective, cross-sectional study

    Directory of Open Access Journals (Sweden)

    Sanket B. Sathiya

    2016-02-01

    Conclusions: Our study shows some rational prescription patterns like less utilization of antimicrobials in ENT infections and were according to standard treatment guideline. The results of this study will be useful in future for making standard treatment guidelines. It also promotes the rational prescription and rational use of drugs. [Int J Basic Clin Pharmacol 2016; 5(1.000: 65-69

  19. Study on the Development and Application of Comment System for Antimicrobial Agents at Special Use Level%特殊使用级抗菌药物点评系统的开发与应用

    Institute of Scientific and Technical Information of China (English)

    何敬成; 张碧青; 黄凯文

    2015-01-01

    Objective: To develop a system for the comment on antimicrobial agents at special use level , so as to improve the clinical use of such antimicrobial agents and reduce the resistant rate of bacteria . Methods: Using easy-language and database technology to establish a comment system by means of score sheet for rationale use of such antimicrobials . A retrospective analysis was conducted on the unreasonable use of medical record by exceeding power of antimicrobial agents at special use level , the submission rate for testing of pathogenic microorganisms , ra-tional drug use ( including drug choice , usage and dosage , combined drug use ) , numbers of single case of consulta-tion , the average amount of consumption and use intensity of antimicrobial agents during Jan . to June of 2010 and Jan . to June of 2013 . Results: The system realized the prescription comment function of antimicrobials at special use level . After adoption of the system the unreasonable application rate of antimicrobials by exceeding power de-creased from 14 . 9% to 2 . 3% ( P = 0 . 000 ) , the submission rate for testing of pathogenic microorganisms increased from 47 . 3% to 93 . 9% ( P = 0 . 000 ) , the reasonable selecting rate increased from 88 . 1% to 96 . 9% ( P = 0 . 000 ) , the consultation application rate increased from 40 . 2% to 97 . 3% ( P = 0 . 000 ) , use intensity of antimicrobial agents at special use level decreased from 164 . 3 to 84 . 2 ( P = 0 . 043 ) , the average consumption amount decreased from 1 210 . 4 to 964 . 1 yuan ( P = 0 . 032 ) . Conclusion: The establishment of the comment system for antimicrobial agents at special use level improved the management and reduced effectively the expense of antibacterial drugs with special use level .%目的:开发特殊使用级抗菌药物点评系统,提高特殊使用级抗菌药物的临床使用水平,降低细菌耐药率。方法:利用易语言和数据库技术,建立特殊使用级抗菌药物合理性

  20. Longitudinal surveillance of outpatient β-lactam antimicrobial use in Canada, 1995 to 2010

    Directory of Open Access Journals (Sweden)

    Shiona K Glass-Kaastra

    2014-01-01

    Full Text Available INTRODUCTION: β-lactam antimicrobials are the most commonly prescribed group of antimicrobials in Canada, and are categorized by the WHO as critically and highly important antimicrobials for human medicine. Because antimicrobial use is commonly associated with the development of antimicrobial resistance, monitoring the volume and patterns of use of these agents is highly important.

  1. Study on lean 6σ management method regularizing prophylactic use of antimicrobial agents%精益6σ管理方法规范我院抗菌药物的预防使用

    Institute of Scientific and Technical Information of China (English)

    付辛芳; 郭建芳; 吴爽爽; 冯琴琴; 薛梅苓

    2016-01-01

    目的 采用精益6σ管理方法,规范我院围术期抗菌药物预防应用.方法 按照精益思维,6σ标准改进流程,即定义-测量-分析-改进-控制(DMAIC)的改进模式,干预我院围术期预防用药的不合理情况.通过比较改进前后药物、溶媒、给药时机、给药途径和给药疗程5个环节的缺陷情况,评价应用精益6σ方法后围术期预防用抗菌药物的改进效果.结果 在精益6σ方法的管理下,围术期预防用药的问题环节(主要是用药指征、药物选择、给药时机和疗程)的缺陷率和总体缺陷率显著下降,Ⅰ类切口Z值由2.26提高到2.70;Ⅱ类切口Z值由2.34提高到2.83.结论 精益6σ管理方法可有效规范围术期抗菌药物的预防应用.%AIM To standardize the prophylactic use of antimicrobial agents in perioperative period in our hospital by lean 6σ management method.METHODS According to lean thought,6σ improvement process,which was DefinitionMeasurement-Analysis-Improvement-Control (DMAIC) improvement pattern,the unreasonable use of antimicrobial agents during perioperative period in our hospital was intervened.By comparing the defects of drug,solvent,time of administration,administration route and course of treatment before and after improvement,the variation of defect rate after the application of lean 6σ Method was evaluated.The improvement effect of prophylactic use of antimicrobial agents in perioperative period by lean 6σ management method was evaluated.RESULTS Lean 6σ methodology could decrease the trouble link defect rate (including indications,drug selection,time of administration and course of treatment) and total defect rate of prophylactic use of antimicrobial agents in the perioperative period obviously,the Z value of type Ⅰ incision was increased from 2.26 to 2.70,and type Ⅱ was raised from 2.34 to 2.83.CONCLUSION The application of lean 6σ management method can effectively regulate the prophylactic use of antimicrobial agents.

  2. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  3. Isolation and Identification of the Antimicrobial Agent Beauvericin from the Endophytic Fusarium oxysporum 5-19 with NMR and ESI-MS/MS

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2016-01-01

    Full Text Available Endophytic microbe has been proved to be one of rich sources of bioactive natural products with potential application for new drug and pesticide discovery. One cyclodepsipeptide, beauvericin, was firstly isolated from the fermentation broth of Fusarium oxysporum 5-19 endophytic on Edgeworthia chrysantha Linn. Its chemical structure was unambiguously identified by a combination of spectroscopic methods, such as HRESI-MS and 1H and 13C NMR. ESI-MS/MS was successfully used to elucidate the splitting decomposition route of the positive molecule ion of beauvericin. Antimicrobial results showed that this cyclodepsipeptide had inhibitory effect on three human pathogenic microbes, Candida albicans, Escherichia coli, and Staphylococcus aureus. In particular, beauvericin exhibited the strongest antimicrobial activity against S. aureus with MIC values of 3.91 μM, which had similar effect with that of the positive control amoxicillin.

  4. Isolation and Identification of the Antimicrobial Agent Beauvericin from the Endophytic Fusarium oxysporum 5-19 with NMR and ESI-MS/MS.

    Science.gov (United States)

    Zhang, Huawei; Ruan, Chuanfen; Bai, Xuelian; Zhang, Miao; Zhu, Shuangshuang; Jiang, Yingying

    2016-01-01

    Endophytic microbe has been proved to be one of rich sources of bioactive natural products with potential application for new drug and pesticide discovery. One cyclodepsipeptide, beauvericin, was firstly isolated from the fermentation broth of Fusarium oxysporum 5-19 endophytic on Edgeworthia chrysantha Linn. Its chemical structure was unambiguously identified by a combination of spectroscopic methods, such as HRESI-MS and (1)H and (13)C NMR. ESI-MS/MS was successfully used to elucidate the splitting decomposition route of the positive molecule ion of beauvericin. Antimicrobial results showed that this cyclodepsipeptide had inhibitory effect on three human pathogenic microbes, Candida albicans, Escherichia coli, and Staphylococcus aureus. In particular, beauvericin exhibited the strongest antimicrobial activity against S. aureus with MIC values of 3.91 μM, which had similar effect with that of the positive control amoxicillin. PMID:27413733

  5. Development of In Vitro Denture Biofilm Models for Halitosis Related Bacteria and their Application in Testing the Efficacy of Antimicrobial Agents

    OpenAIRE

    Wu, Tingxi; He, Xuesong; Hongyang LU; Bradshaw, David J.; Axe, Alyson; Loewy, Zvi; Liu, Honghu; Shi, Wenyuan; Lux, Renate

    2015-01-01

    Objective : Since dentures can serve as a reservoir for halitosis-causing oral bacteria, halitosis development is a concern for denture wearers. In this study, we surveyed the prevalence of four selected halitosis-related species (Fusobacterium nucleatum, Tannerella forsythia, Veillonella atypica and Klebsiella pneumoniae) in clinical denture plaque samples, and developed denture biofilm models for these species in vitro to facilitate assessment of antimicrobial treatment efficacy. Design : D...

  6. Molecular iodine catalyzed synthesis of tetrazolo[1,5-a]-quinoline based imidazoles as a new class of antimicrobial and antituberculosis agents

    Institute of Scientific and Technical Information of China (English)

    Divyesh C. Mungra; Harshad G. Kathrotiya; Niraj K. Ladani; Manish P. Patel; Ranjan G. Patel

    2012-01-01

    A series of some new tetrazolo[1,5-a]quinoline based tetrasubstituted imidazole derivatives 6a-I have been synthesized by a reaction of tetrazolo[1,5-a]quinoline-4-carbaldehyde 3a-d,benzil 4,aromatic amine 5a-c and ammonium acetate in the presence of iodine through one-pot multi-component reaction (MCR) approach.All the derivatives were screened for antimicrobial and antituberculosis activities and results worth further investigations.

  7. Synthesis of silver nanoparticles using the Streptomyces coelicolor klmp33 pigment: An antimicrobial agent against extended-spectrum beta-lactamase (ESBL) producing Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Manikprabhu, Deene; Lingappa, K., E-mail: lingappak123@gmail.com

    2014-12-01

    The increasing emergence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (E. coli) occurred mainly due to continuous persistent exposure to antibiotics causing high morbidity and mortality so studies in controlling this infection are required. In the present investigation, we developed a synthesis for silver nanoparticles employing a pigment produced by Streptomyces coelicolor klmp33, and assessed the antimicrobial activity of these nanoparticles against ESBL producing E. coli. The ESBL producing E. coli were isolated from urine samples collected from the Gulbarga region in India. As can been seen from our studies, the silver nanoparticles having irregular shapes and size of 28–50 nm showed remarkable antimicrobial activity and moreover the synthesis time is just 20 min and thus the same can be used for formulating pharmaceutical remedies. - Highlights: • Silver nanoparticle synthesis by photo-irradiation method in just 20 min • Isolation of ESBL producing E. coli from urine samples from the Gulbarga region. • Antimicrobial activity of silver nanoparticles against ESBL producing E. coli • The minimum inhibitory concentration of silver nanoparticles against ESBL producing E. coli was 40 μL.

  8. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Amit Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Tripathy, Debabrata [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Choudhary, Alka [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Aili, Pavan Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Chatterjee, Anupam [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Singh, Inder Pal [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Banerjee, Uttam Chand, E-mail: ucbanerjee@niper.ac.in [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India)

    2015-08-01

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag{sup +} to Ag{sup 0} and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC{sub 50} value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic

  9. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    International Nuclear Information System (INIS)

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag+ to Ag0 and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC50 value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic apoptosis effect of AgNPs

  10. Complexes of Silver(I Ions and Silver Phosphate Nanoparticles with Hyaluronic Acid and/or Chitosan as Promising Antimicrobial Agents for Vascular Grafts

    Directory of Open Access Journals (Sweden)

    Vojtech Adam

    2013-06-01

    Full Text Available Polymers are currently widely used to replace a variety of natural materials with respect to their favourable physical and chemical properties, and due to their economic advantage. One of the most important branches of application of polymers is the production of different products for medical use. In this case, it is necessary to face a significant disadvantage of polymer products due to possible and very common colonization of the surface by various microorganisms that can pose a potential danger to the patient. One of the possible solutions is to prepare polymer with antibacterial/antimicrobial properties that is resistant to bacterial colonization. The aim of this study was to contribute to the development of antimicrobial polymeric material ideal for covering vascular implants with subsequent use in transplant surgery. Therefore, the complexes of polymeric substances (hyaluronic acid and chitosan with silver nitrate or silver phosphate nanoparticles were created, and their effects on gram-positive bacterial culture of Staphylococcus aureus were monitored. Stages of formation of complexes of silver nitrate and silver phosphate nanoparticles with polymeric compounds were characterized using electrochemical and spectrophotometric methods. Furthermore, the antimicrobial activity of complexes was determined using the methods of determination of growth curves and zones of inhibition. The results of this study revealed that the complex of chitosan, with silver phosphate nanoparticles, was the most suitable in order to have an antibacterial effect on bacterial culture of Staphylococcus aureus. Formation of this complex was under way at low concentrations of chitosan. The results of electrochemical determination corresponded with the results of spectrophotometric methods and verified good interaction and formation of the complex. The complex has an outstanding antibacterial effect and this effect was of several orders higher compared to other

  11. Methods of Antimicrobial Coating of Diverse Materials

    Science.gov (United States)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of coating diverse substrate materials with antimicrobial agents have been developed. Originally intended to reduce health risks to astronauts posed by pathogenic microorganisms that can grow on surfaces in spacecraft, these methods could also be used on Earth for example, to ensure sterility of surgical inserts and other medical equipment. The methods involve, generally, chemical preparation of substrate surfaces to enable attachment of antimicrobial molecules to the substrate surfaces via covalent bonds. Substrate materials that have been treated successfully include aluminum, glass, a corrosion-resistant nickel alloy, stainless steel, titanium, and poly(tetrafluoroethylene). Antimicrobial agents that have been successfully immobilized include antibiotics, enzymes, bacteriocins, bactericides, and fungicides. A variety of linkage chem istries were employed. Activity of antimicrobial coatings against gram-positive bacteria, gram-negative bacteria, and fungi was demonstrated. Results of investigations indicate that the most suitable combination of antimicrobial agent, substrate, and coating method depends upon the intended application.

  12. Prospects for new antimicrobials based on N,N-dimethylbiguanide complexes as effective agents on both planktonic and adhered microbial strains.

    Science.gov (United States)

    Olar, Rodica; Badea, Mihaela; Marinescu, Dana; Chifiriuc, Carmen-Mariana; Bleotu, Coralia; Grecu, Maria Nicoleta; Iorgulescu, Emilia Elena; Bucur, Marcela; Lazar, Veronica; Finaru, Adriana

    2010-07-01

    Metal-free N,N-dimethylbiguanidium acetate and novel complexes M(DMBG)(2)(CH(3)COO)(2).nH(2)O (M: Mn(II), Ni(II), Cu(II) and Zn(II)) were screened for their antimicrobial properties against Gram-positive (Bacillus subtilis, Listeria monocytogenes, Staphylococcus aureus), Gram-negative (Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa) bacteria and fungal (Candida albicans) strains. The ability of compounds to inhibit the microbial adherence ability to the inert substratum as well as their cytotoxicity was also assessed. Our results are demonstrating that some of the tested compounds are exhibiting potent antimicrobial activity accompanied by low cytotoxicity on HeLa cells. The complexes were characterized using microanalytical, IR, EPR, (1)H NMR as well as UV-vis methods. The redox behaviour of complexes was investigated by cyclic voltammetry. The new derivative (HDMBG)(CH(3)COO) crystallizes in the monoclinic P2(1)/n space group as X-ray single-crystal data indicate.

  13. Triclosan antimicrobial polymers

    Science.gov (United States)

    Petersen, Richard C.

    2016-01-01

    Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and the polymer chains increase both the mechanical properties of polymer toughness and strength that are enhanced even better through secondary bonding relationships. Further, polymer blend compatibilization is considered due to similar molecular relationships and polarities. With compatibilization of triclosan in polymers a more uniform stability for nonpolar triclosan in the polymer solid state is retained by the antimicrobial for extremely low release with minimum solubility into aqueous solution. As a result, triclosan is projected for long extended lifetimes as an antimicrobial polymer additive. Further, triclosan rapid alternating ether bond rotations disrupt secondary bonding between chain monomers in the resin state to reduce viscosity and enhance polymer blending. Thus, triclosan is considered for a polymer additive with multiple properties to be an antimicrobial with additional benefits as a nonpolar toughening agent and a hydrophobic wetting agent. The triclosan material relationships with alternating ether bond rotations are described through a complete different form of medium by comparisons with known antimicrobial properties that upset bacterial cell membranes through rapid fluctuating mechanomolecular energies. Also, triclosan bond entanglements with secondary bonding can produce structural defects in weak bacterial lipid membranes requiring pliability that can then interfere with cell division. Regarding applications with polymers, triclosan can be incorporated by mixing into a resin system before cure, melt mixed with thermoplastic polymers that set on cooling

  14. Agentes bacterianos enteropatogênicos em suínos de diferentes faixas etárias e perfil de resistência a antimicrobianos de cepas de Escherichia coli e Salmonella spp Enteropathogenic bacterial agents in pigs of different age groups and profile of resistance in strains of Escherichia coli and Salmonella spp. to antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Álvaro Menin

    2008-09-01

    Full Text Available As enterites infecciosas bacterianas provocam severas perdas para a indústria suína em todo o mundo. Os objetivos deste trabalho foram determinar os agentes bacterianos, associados com a ocorrência de diarréia em suínos, em diferentes faixas etárias, no Estado de Santa Catarina, Brasil, e verificar o perfil de resistência das cepas de Escherichia coli e Salmonella spp, frente aos principais antimicrobianos utilizados em granjas de suínos. Os principais gêneros/espécies bacterianos diagnosticados foram Escherichia coli, Clostridium spp, Salmonella spp Brachyspira hyodysenteriae, Brachyspira pilosicoli e Lawsonia intracellularis. Os fatores de virulência de E. coli mais prevalentes na fase de maternidade foram F5 / (K99 20%, F6 / (987P 16,3%, F42 6,8% e F41 5,7%, já nas fases de creche e terminação, predominaram cepas com fimbrias F4 (K88 11,2% e 5,4%, respectivamente. Para E. coli os maiores índices de resistência foram encontrados para oxitetraciclina (94% e tetraciclina (89,5% e os menores índices de resistência para neomicina (55%, ceftiofur (57,4%. Quanto às amostras de Salmonella spp, estas apresentaram maior resistência à oxitetraciclina (77%, e à tetraciclina (42,1% e menor à gentamicina (3,5% e amoxicilina (4,8%.Infectious bacterial enteritis causes severe losses to the swine industry worldwide. The objective of this study was to determine the epidemiology of bacterial agents that are associated with the occurrence of diarrhea in pigs at different age groups, and to verify the profile of resistance of strains of Escherichia coli and Salmonella spp to the main antimicrobial agents. The main bacterial species diagnosed were Escherichia coli, Clostridium spp, Salmonella spp, Brachyspira hyodysenteriae, Brachyspira pilosicoli and Lawsonia intracellularis. The E. coli virulence factors of higher prevalence in preweaning piglets were F5 / (K99 20%, F6 / (987P 16.3%, F42 6.8% and F41 5.7%, whereas at the nursery and with

  15. Synthesis and antimicrobial activity of squalamine analogue.

    Science.gov (United States)

    Kim, H S; Choi, B S; Kwon, K C; Lee, S O; Kwak, H J; Lee, C H

    2000-08-01

    Synthesis and antimicrobial activity of squalamine analogue 2 are reported. The synthesis of 2 was accomplished from bisnoralcohol 3. The spermidine moiety was introduced via reductive amination of an appropriately functionalized 3beta-aminosterol with spermidinyl aldehyde 17 utilizing sodium triacetoxyborohydride as the reducing agent. Compound 2 shows weaker antimicrobial activity than squalamine. PMID:11003150

  16. Study on the relationship between the use of antimicrobial agents and the bacterial drug resistance in 2012-2014%对2012-2014年抗菌药物使用情况与细菌耐药相关性的研究

    Institute of Scientific and Technical Information of China (English)

    孙璇; 陈强; 蒋学林; 张裕祥

    2016-01-01

    Objective:To explore the relationship between the medication frequency of antimicrobial agents and the drug resistance rate in hospital.Methods:The related data of number of pharmacy store,bacteria detection and drug resistance were analyzed.Results:Beginning in 2013,with the medication frequency of antimicrobial agents decreased significantly,especially the reduction of cephalosporins drug dosage,the sensitivity of the bacteria to antimicrobial agents was recovered.The medication frequency ranked the top 4 were cephalosporins,quinolones,penicillins and aminoglycosides.Conclusion:The clinical use of antimicrobial agents should be strictly reasonable,strengthening the supervision of the use of antimicrobial agents can delay the occurrence of bacterial drug resistance.%目的:探讨抗菌药物用药频度和医院耐药率的关系。方法:分析药库出库数量和细菌检出和耐药情况相关数据。结果:从2013年开始,随着抗菌药物的用药频度明显下降,尤其是头孢菌素类药物用量的减少,细菌对于抗菌药物的敏感性在恢复。用药频度排名前4位分别为头孢菌素类、喹诺酮类、青霉素类、氨基糖苷类。结论:临床使用抗菌药物应严格、合理,加强抗菌药物使用的监管,能够延缓细菌耐药性的发生。

  17. Bacteroides forsythus: sensibilidade a antimicrobianos em amostras de pacientes portadores de periodontite Bacteroides forsythus: sensitivity to antimicrobial agents in samples from patients with periodontitis

    Directory of Open Access Journals (Sweden)

    Roberto Fraga Moreira LOTUFO

    2001-03-01

    Full Text Available Os autores realizaram teste de sensibilidade antimicrobiana in vitro (técnica de diluição em ágar para 105 cepas de B. forsythus obtidas de pacientes portadores de periodontite. De acordo com o teste realizado, o microrganismo demonstrou ser sensível ao metronidazol (100% das cepas testadas e à amoxicilina (94% das cepas testadas, enquanto 72% e 65% das cepas foram susceptíveis à tetraciclina e ciprofloxacina, respectivamente. O metronidazol e a amoxicilina parecem ser os antimicrobianos indicados para o tratamento de infecções periodontais nas quais B. forsythus seja o patógeno predominante.An in vitro antimicrobial sensitivity test (technique of agar dilution was carried out for 105 clinical isolates of B. forsythus from patients with periodontitis. Metronidazole and amoxicillin were the most efficient drugs and, thus, are indicated for the treatment of periodontal infections in which this microorganism is the most prevalent pathogen.

  18. Synthesis and biological evaluation of newer analogues of 2,5-disubstituted 1,3,4-oxadiazole containing pyrazole moiety as antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Shridhar Malladi

    2014-12-01

    Full Text Available A series of 2,5-disubstituted-1,3,4-oxadiazole derivatives bearing pyrazole moiety were synthesized by reacting various substituted pyrazole-4-carboxylic acids with different hydrazides in POCl3. All the synthesized compounds (4a–n were characterized by IR, NMR, mass spectra and elemental analyses. Synthesized 1,3,4-oxadiazole derivatives were screened for their antibacterial activity against three different strains, namely Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, while antifungal activity was determined against three different strains Aspergillus flavus, Chrysosporium keratinophilum and Candida albicans. The investigation of antimicrobial screening revealed that compounds 4i and 4j exhibited excellent activity when compared with the standard drugs.

  19. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent.

    Science.gov (United States)

    Mittal, Amit Kumar; Tripathy, Debabrata; Choudhary, Alka; Aili, Pavan Kumar; Chatterjee, Anupam; Singh, Inder Pal; Banerjee, Uttam Chand

    2015-08-01

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag(+) to Ag(0) and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV-Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC50 value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. PMID:26042698

  20. Antimicrobial susceptibility to parenteral and oral agents in a largely polyclonal collection of CTX-M-14 and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae.

    Science.gov (United States)

    Titelman, Emilia; Iversen, Aina; Kahlmeter, Gunnar; Giske, Christian G

    2011-12-01

    Activity of oral and parenteral antimicrobials against consecutively isolated extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (n = 149) and Klebsiella pneumoniae (n = 20) was determined, and susceptibility test methods were compared for parenteral β-lactams. Polymerase chain reaction (PCR) targeting bla(CTX-M), bla(SHV) and bla(TEM), and DNA sequencing and epidemiological typing with pulsed-field gel electrophoresis were performed. PCR targeting pabB was screened for E. coli O25b-ST131. Minimum inhibitory concentrations (MICs) were determined using Etest and broth microdilution. Disc diffusion was performed according to European Committee on Antimicrobial Susceptibility Testing (EUCAST). Dominating genotypes were bla(CTX-M-15) (75%) and bla(CTX-M-14) (23%). Four E. coli clusters (7-18 isolates) were found. Forty-two per cent of E. coli belonged to O25b-ST131. Ciprofloxacin resistance was 72%, trimethoprim resistance was 70%. Among E. coli, resistance to mecillinam (13%), nitrofurantoin (7%) and fosfomycin (3%) was low, although resistance was high in K. pneumoniae (25%, 60%, 85%). Susceptibility to ertapenem was 99%, piperacillin-tazobactam 91%, tigecycline 96% and temocillin 76%. Susceptibility rates obtained with broth microdilution and Etest were in agreement for cefotaxime (2 vs 1%) and ceftazidime (9 vs 11%), but not for piperacillin-tazobactam (59 vs 91%). With disc diffusion major errors occurred with piperacillin-tazobactam (18/169). Several therapeutic alternatives exist for ESBL-producing E. coli, but few exist for K. pneumoniae. Disc diffusion and Etest can accurately predict susceptibility to cefotaxime and ceftazidime, but not to piperacillin-tazobactam with the present breakpoints. PMID:22085361

  1. Antimicrobial activities of squalamine mimics.

    Science.gov (United States)

    Kikuchi, K; Bernard, E M; Sadownik, A; Regen, S L; Armstrong, D

    1997-07-01

    We investigated the antimicrobial properties of compounds with structural features that were designed to mimic those of squalamine, an antibiotic isolated from the stomach of the dogfish shark. The mimics, like squalamine, are sterol-polyamine conjugates. Unlike squalamine, the mimics were simple to prepare, at high yield, from readily available starting materials. Several squalamine mimics showed activity against gram-negative rods, gram-positive cocci including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and fungi. Some had little or no hemolytic activity. The hydrophobicity of the sterol backbone and the length and the cationic charge of the side chains appeared to be critical determinants of activity. One of the squalamine mimics, SM-7, was bactericidal against Escherichia coli, Pseudomonas aeruginosa, and S. aureus; its activity was decreased by divalent or monovalent cations and by bovine serum albumin. Subinhibitory concentrations of SM-7 markedly enhanced the antimicrobial activity of rifampin against gram-negative rods. These results suggest that the compounds may disrupt an outer membrane of gram-negative rods. Squalamine mimics are a new class of broad-spectrum antimicrobial agents. The antagonism of their activity by serum and albumin and their hemolytic properties may limit their use as systemic agents. The squalamine mimics, because of their potencies, broad spectra of antimicrobial activity, and potential for systemic toxicity, appear to be good candidates for development as topical antimicrobial agents. PMID:9210661

  2. 3种微生态制剂对抗菌药物的敏感性检测%Susceptibility Testing of Three Kinds of Microecological Preparation to Antimicrobial Agents

    Institute of Scientific and Technical Information of China (English)

    叶玲梅; 蔡咏梅; 陆红云

    2012-01-01

    Objective To detect the susceptibility of frequently - used microecological preparations Tetralogy of Viable Bifidobacterium Tablet, Bacillus Licheniformis Living Bacterial Capsule and Clostridium Butyricum Living Bacterial Tablet to 16 kinds of antimicrobial a-gents. Methods To culture and isolate the tested bacteria from these three kinds of probiotics, and the drug sensitivity testing was performed by using the microorganism analyzer and the drug sensitive slips. Results Tetralogy of Viable Bifidobacterium Tablet was sensitive to all the antimicrobial agents, Bacillus Licheniformis Living Bacterial Capsule was resistant to penicillins, cephalosporins, ery-thromycin and clindamycin with different degrees, but sensitive to aminoglycosides, and quinolones. Clostridium Butyricum Living Bacterial Tablet was resistant to cephalosporins, aminoglycosides and cotrimoxazole, but sensitive to penicillin, erythromycin, clindamycin and quinolones. Conclusion According to drug sensitivity test, Bacillus Licheniformis Living Bacterial Capsule and Clostridium Butyricum Living Bacterial Tablet can be used in combination with the resistant antimicrobial agents. But Tetralogy of Viable Bifidobacterium Tablet has the incompatibility with antibacterial agents and should be avoid the combination use with them, if must together using, the taking time should be stagger.%目的 检测常用微生态制荆双歧杆菌四联活菌片、地衣芽孢杆菌活菌胶囊、酪酸梭菌活菌片对16种抗菌药物的敏感性.方法 从3种微生态制剂中培养并分离供试菌,用微生物鉴定分析仪和药敏纸片进行药物敏感性检测.结果 双歧杆菌四联活菌片对抗菌药物均敏感;地衣芽孢杆菌活菌胶囊对青霉素类、头孢菌素类、红霉素、克林霉素有不同程度的耐药,对氨基苷类、喹诺酮类等抗菌药物敏感;酪酸梭菌活菌片对头孢菌素类、氨基苷类、复方新诺明耐药,对青霉素类、红霉素、克林霉素

  3. PHENOTYPING, VIRULENCE CHARACTERISTICS OF AEROMONAS SPECIES AND THE EFFECTS OF ESSENTIAL PLANT OILS AS ANTIMICROBIAL AGENTS AGAINST PATHOGENIC ISOLATES FROM DIFFERENT SOURCES

    Directory of Open Access Journals (Sweden)

    Ahmed M.A. Mansour

    2014-01-01

    Full Text Available Aeromonas species are increasingly recognized as enteric pathogens. Faecal samples from 20 cow, 45 sheep; 60 goat and 60 camels were examined for the presence of Aeromonas species, which was also sought in the available drinking water (55 well water and 52 drinking chlorinated tap water were also examined. Aeromonas species was isolated more frequently from goats (21.7% than from other animal groups sampled and isolated more frequently from well water (38.2% than chlorinated supplies (23.0%. A. hydrophilia was the most dominant species isolated from different kinds of samples (13.4%. Whereas A. sobria and A. caviae were isolated in much lower rates 4.7 and 2.1% respectively. There was significant association between the isolation of Aeromonas species from all animal faeces and its presence in drinking water. All isolated strains were examined for the characteristics that are reputed to have roles in pathogenicity. The data reported in this study indicates that the distributions of virulence factors, that regulate the pathogenicity of Aeromonads, are different in clinical and enviromental samples. Aeromonas isolates exhibited multi-drug resistanc amoxicillin, carbenicillin and ampicillin. The most potent antibiotics against Aeromonas species isolated in this study were ceftriaxone, ceftazidime, cefotaxime, cefepime. Essential oils have been tested for in vitro and in vivo antimicrobial activity. Clove, Olive and Peppermint oil exhibited a wide spectrum of antimicrobial activity against all strains used in this study, showed a zone of inhibition ranging from 10.00±0.8 to 14.82±0.41 mm in diameter. Minimum Inhibitory Concentration (MIC for selected oils ranged from 12.8 to 25.6 mg mL-1. Treatment of mice with essential oil for 15 days led to enhance antibody levels in all treated groups and significant clearance of A. hydrophilia from animals. The treated animals had

  4. Antimicrobial resistance of thermophilic Campylobacter

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Engberg, J.

    2001-01-01

    Campylobacter has become the leading cause of zoonotic enteric infections in developed and developing countries world-wide. Antimicrobial resistance has emerged among Campylobacter mainly as a consequence of the use of antimicrobial agents in food animal production. Resistance to drugs of choice...... for the treatment of infections, macrolides and fluoroquinolones has emerged as a clinical problem and interventions to reduce this are recommended. Resistance to fluoroquinolones and macrolides is mediated by chromosomal mutations. Resistance to other relevant antimicrobial agents, mediated by...... acquired resistance genes, has not become widespread so far. However, resistance genes originating from both Gram-positive and Gram-negative bacterial species have been found, showing the potential for acquired resistance to emerge in Campylobacter....

  5. One-pot three-component domino protocol for the synthesis of novel pyrano[2,3-d]pyrimidines as antimicrobial and anti-biofilm agents.

    Science.gov (United States)

    Suresh, Lingala; Poornachandra, Y; Kanakaraju, S; Ganesh Kumar, C; Chandramouli, G V P

    2015-07-14

    A simple and facile synthesis of a series of novel pyrano[2,3-d]pyrimidines has been achieved successfully via the one-pot three-component reaction of 2-amino-7-methyl-5-oxo-4-phenyl-4,5-dihydropyrano[4,3-b]pyran-3-carbonitriles, DMF-DMA and arylamines in the presence of 1-butyl-3-methylhydrogensulphate [Bmim]HSO4 ionic liquid. This method has several advantages such as high yields, clean reaction, simple methodology and short reaction times. The synthesized compounds were evaluated for their antimicrobial activity against Gram-positive, Gram-negative and different Candida strains. Among the derivatives screened, compounds 4c, 4d, 4h and 4l were found to be active against both bacterial and Candida strains with MIC values ranging from 3.9 to 31.2 μg mL(-1). In addition, compound 4l showed a good minimum bactericidal concentration, minimum fungicidal concentration and anti-biofilm activities. Furthermore, the mode of the antifungal action for the promising compound 4l was evaluated in C. albicans MTCC 1637 through an ergosterol biosynthesis inhibition process. PMID:26054925

  6. Synthesis and characterization of mononuclear copper(II) complexes of pyridine 2-carboxamide: Their application as catalyst in peroxidative oxidation and antimicrobial agents

    Indian Academy of Sciences (India)

    Suvendu Samanta; Shounak Ray; Sutapa Joardar; Supriya Dutta

    2015-08-01

    Four water soluble copper(II) complexes, [Cu(HL)2 (H2O)2]Cl2 (1), [Cu(HL) 2 (ClO4)2 ] (2), [Cu(HL)2 (SCN)2] (3) and [CuL 2 ]·8H 2 O (4), where HL is pyridine 2–carboxamide, have been synthesized and characterized by various spectroscopic techniques. Structures have been determined by single crystal X-ray crystallography. The pH induced inter-conversion of Cu(HL)2 (H2O)2 ]Cl2 (1) and [CuL2]·8H2O (4) through co-ordination mode switching was investigated thoroughly with the help of absorption spectroscopy. Complexes 1–3 were found to be active catalysts for the oxidation of toluene, ethyl benzene and cyclohexane in the presence of hydrogen peroxide as the oxidant under mild conditions. Toluene was oxidized to benzyl alcohol and benzaldehyde, ethyl benzene was oxidized to 1-phenylethanol and acetophenone and cyclohexane was oxidized to yield cyclohexanol and cyclohexanone Antimicrobial activities have been investigated with these copper(II) complexes against gram + ve bacteria, gram − ve bacterial and fungal species.

  7. Synthesis and characterization of some novel 1,2,4-triazoles, 1,3,4-thiadiazoles and Schiff bases incorporating imidazole moiety as potential antimicrobial agents

    KAUST Repository

    Aouad, Mohamed Reda

    2015-05-23

    (1,4,5-Triphenylimidazol-2-yl-thio)butyric acid hydrazide (3) was obtained via alkylation of 1,4,5-triphenylimidazol-2- thiol (1) with ethylbromobutyrate, followed by addition of hydrazine hydrate. Treatment of acid hydrazide 3 with carbon disulfide in an ethanolic potassium hydroxide solution gave the intermediate potassium dithiocarbazinate salt, which was cyclized to 4-amino-5-[(1,4,5-triphenylimidazol- -2-yl)thiopropyl]-2H-1,2,4-triazole-3-thione (4) in the presence of hydrazine hydrate. Condensation of compound 3 with alkyl/arylisothiocyanate afforded the corresponding 1-[4-(1,4,5-triphenylimidazol-2-ylthio)butanoyl]-4-alkyl/arylthiosemicarbazides (5-7), which upon refluxing with sodium hydroxide, yielded the corresponding 1,2,4-triazole - -3-thiols 8-10. Under acidic conditions, compounds 4-6 were converted to aminothiadiazoles 11-13. Moreover, the series of Schiff bases 14-18 were synthesized from the condensation of compound 3 with different aromatic aldehydes. The newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR and mass spectral analyses. They were also preliminarily screened for their antimicrobial activity.

  8. Synthesis of formazans from Mannich base of 5-(4-chlorophenyl amino-2-mercapto-1,3,4-thiadiazole as antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Pramilla Sah

    2014-04-01

    Full Text Available 5-(4-Chlorophenyl amino-2-mercapto-1,3,4-thiadiazole (I was refluxed with formaldehyde and ammonium chloride in ethanol yielding the Mannich base 5-(4-chloro phenyl amino-3-aminomethyl-2-mercapto-1,3,4-thiadiazole (II. Esterification with 4-chloro-(2,6-dinitro phenoxy-ethyl acetate (III under anhydrous conditions gave the intermediate (IV. Subsequent hydrazinolysis with hydrazine hydrate gave the corresponding hydrazide 3-amino methyl-5-(4-chloro phenyl amino-2-mercapto-4′-(2′,6′-dinitro phenoxy-acetyl hydrazide (V. The hydrazide was converted into the Schiff bases (VIa–b by reacting with 2-chlorobenzaldehyde and 3-methoxy-4-hydroxy benzaldehyde in presence of methanol containing 2–3 drops of acetic acid. Diazotisation with aromatic amines, sulphanilic acid and sulphur drugs gave the formazans (VIIa–g respectively. Chemical structures have been established by elemental analysis and the spectral techniques of FTIR, 1H NMR and mass. Antimicrobial activity (in vitro was evaluated against the two pathogenic bacterial strains. Escherichia coli and Salmonella typhi, three fungal strains Aspergillus niger, Penicillium species and Candida albicans. The compounds have shown moderate activity.

  9. Enabling virtual screening of potent and safer antimicrobial agents against noma: mtk-QSBER model for simultaneous prediction of antibacterial activities and ADMET properties.

    Science.gov (United States)

    Speck-Planche, Alejandro; Cordeiro, M N D S

    2015-01-01

    Neglected diseases are infections that thrive mainly among underdeveloped countries, particularly those belonging to regions found in Asia, Africa, and America. One of the most complex diseases is noma, a dangerous health condition characterized by a polymicrobial and opportunistic nature. The search for potent and safer antibacterial agents against this disease is therefore a goal of particular interest. Chemoinformatics can be used to rationalize the discovery of drug candidates, diminishing time and financial resources. However, in the case of noma, there is no in silico model available for its use in the discovery of efficacious antibacterial agents. This work is devoted to report the first mtk-QSBER model, which integrates dissimilar kinds of chemical and biological data. The model was generated with the aim of simultaneously predicting activity against bacteria present in noma, and ADMET (absorption, distribution, metabolism, elimination, toxicity) parameters. The mtk-QSBER model was constructed by employing a large and heterogeneous dataset of chemicals and displayed accuracies higher than 90% in both training and prediction sets. We confirmed the practical applicability of the model by predicting multiple profiles of the investigational antibacterial drug delafloxacin, and the predictions converged with the experimental reports. To date, this is the first model focused on the virtual search for desirable anti-noma agents. PMID:25769968

  10. The inhibition of Pseudomonas aeruginosa biofilm formation by micafungin and the enhancement of antimicrobial agent effectiveness in BALB/c mice.

    Science.gov (United States)

    Kissoyan, Kohar Annie B; Bazzi, Wael; Hadi, Usamah; Matar, Ghassan M

    2016-08-01

    Micafungin inhibits biofilm formation by impeding 1,3-β-D-glucan synthesis in Candida albicans. Since Pseudomonas aeruginosa also has 1,3-β-D-glucan in its cell wall, this study assessed the effects of antibacterial agents in vitro and in vivo on micafungin-treated biofilm-forming P. aeruginosa isolates. After treatment with micafungin as well as with a panel of four antibacterial agents, biofilm production was significantly reduced as measured by spectrophotometry. The relative mRNA transcription levels for the genes encoding pellicles (pelC) and cell wall 1,3-β-D-glucan (ndvB), which were measured by quantitative reverse transcription PCR (qRT-PCR), significantly decreased with micafungin treatment. In vivo, the survival rates of P. aeruginosa-infected BALB/c mice significantly increased after combined treatment with micafungin and each of the antibacterial agents. Of these treatments, the combination of micafungin with levofloxacin had the highest survival rate; this combination was the most effective treatment against P. aeruginosa-induced infection. PMID:27347641

  11. Enabling virtual screening of potent and safer antimicrobial agents against noma: mtk-QSBER model for simultaneous prediction of antibacterial activities and ADMET properties.

    Science.gov (United States)

    Speck-Planche, Alejandro; Cordeiro, M N D S

    2015-01-01

    Neglected diseases are infections that thrive mainly among underdeveloped countries, particularly those belonging to regions found in Asia, Africa, and America. One of the most complex diseases is noma, a dangerous health condition characterized by a polymicrobial and opportunistic nature. The search for potent and safer antibacterial agents against this disease is therefore a goal of particular interest. Chemoinformatics can be used to rationalize the discovery of drug candidates, diminishing time and financial resources. However, in the case of noma, there is no in silico model available for its use in the discovery of efficacious antibacterial agents. This work is devoted to report the first mtk-QSBER model, which integrates dissimilar kinds of chemical and biological data. The model was generated with the aim of simultaneously predicting activity against bacteria present in noma, and ADMET (absorption, distribution, metabolism, elimination, toxicity) parameters. The mtk-QSBER model was constructed by employing a large and heterogeneous dataset of chemicals and displayed accuracies higher than 90% in both training and prediction sets. We confirmed the practical applicability of the model by predicting multiple profiles of the investigational antibacterial drug delafloxacin, and the predictions converged with the experimental reports. To date, this is the first model focused on the virtual search for desirable anti-noma agents.

  12. Agents containing chlorhexidine in dentistry

    OpenAIRE

    Lebedeva S.N.; Zemlyanichenko М.К.

    2011-01-01

    Aclinical definition of the efficacy of chlorhexidine-containing means for reducing the risk of dental caries and gingivitis with plastic caps. Chlorhexidine is an effective antimicrobial agent for the formation of individual programs for the prevention of dental caries

  13. Microtensile Bond Strength of Periodontal Dressing Modified with Oligo-Guanidine Antimicrobial Agents%聚胍类抗菌材料对牙周塞治剂微拉伸粘结强度的影响

    Institute of Scientific and Technical Information of China (English)

    陈晓霞; 刘白玲; 何帅; 王彦亮; 朱莉; 麻健丰

    2012-01-01

    目的:通过测定6种聚胍类抗菌材料不同含量的牙周塞治剂与牙釉质的微拉伸粘结强度,探讨不同抗菌材料添加量对牙周塞治剂粘结性能的影响.方法:150颗新鲜拔除的无龋第三磨牙颊侧制备出约5 mm×5 mm的牙釉质平面,分别将添加不同浓度聚单胍(PHGC)、有机硅改性聚单胍(PHGC-Si-1、PHGC-Si-1.5)、聚双胍(PBG)、有机硅改性聚双胍(PBG-Si-3、PBG-Si-4)的牙周塞治剂调拌好后堆在第三磨牙颊侧釉质平面上,将制备好的样本切成截面为2 mm×2 mm的条状试件用于微拉伸强度测试.结果:在牙周塞治剂中添加PHGC、PH-GC-Si-1,含量小于0.50%,PBG含量小于0.25%,PBG-Si-3含量小于0.45%时,对塞治剂粘结力的影响很小.添加各种浓度的PHGC-Si-1.5、PBG— Si-4均对塞治剂的粘结力影响较大.结论:在牙周塞治剂中添加上述各种抗菌材料对塞治剂的粘结力均有不同程度的影响,而且随着抗菌材料中硅的含量的增加影响逐渐增大.%Objective: To study the effects of varied contents of different oligo - guanidine antimicrobial agents on the microtensile bond strength of periodontal dressing. Methods: One hundred and fifty non - carious human third molars were used in this study. The buccal enamel surfaces of the teeth were flat to obtain a 5mm × 5mm enamel flat surface. Periodontal dressings with six kinds of antimicrobial agents(PHGC, PHGC- Si- 1, PHGC-Si -1. 5, PBG, PBG-Si-3, PBG-Si - 4) were placed on the enamel surfaces. The specimens were then sectioned to sticks with a cross-section area of 2mm × 2mm for microtensile bond strength tests. Result: Micrntensile bond strength of periodontal dressing receives little effect, when the concentration of PHGC and PHGC-Si-1 is less than 0. 50%, the concentration of PBG is less than 0. 25%, and the concentration of PBG-Si - 3 is less than 0. 45%, respectively. Microtensile bond strength of periodontal dressing will decrease, no matter what the

  14. Application of antimicrobial agents during perioperative period of abdominal external hernia%腹外疝手术围手术期抗菌药物应用分析

    Institute of Scientific and Technical Information of China (English)

    付琴

    2012-01-01

    目的 了解腹外疝手术围手术期抗菌药物使用特点,探讨其存在的主要问题,为规范基层综合医院抗菌药物的应用提供依据,并制定抗菌药物使用的干预措施.方法 对2010年1-6月符合Ⅰ类切口的腹外疝手术的归档病历,进行回顾性调查分析.结果 腹外疝手术围手术期抗菌药物使用率为100.00%,抗菌药物联合应用率为25.35%,用药疗程平均(6.52±1.43)d;医院腹外疝围手术期抗菌药物应用方面尚存在一些用药指征把握不严、给药时机不佳、用药品种不当、给药疗程过长及盲目联合用药等问题.结论 必须加强抗菌药物使用管理,规范基层综合医院腹外疝手术围手术期抗菌药物的应用,才能遏制细菌耐药性快速增长的不良趋势.%OBJECTIVE To evaluate the application of antimicrobial agents during perioperative period of abdominal external hernia and investigate the existing problems so as to provide evidence for standardizing the antibiotic use in grass-root hospital and institute intervention measures.METHODS A retrospective analysis was conducted for the filed medical cases complying with the abdominal external hernia for class I incision from Jan.to Jun.2010.RESULTS Application rate of antibiotics was 100.00% during perioperative period of abdominal external hernia.The rate of combined use of antimicrobial agents was 25.35%; the mean medication course was (6.52 d ±1.43) d; results from present study indicated several existing problems.including not following drug indications strictly, timing errors in medication administration, improper medicationt excessive medication duration, blind combination therapy and so on.CONCLUSION The use of antimicrobial agents should be strengthened, the application of antibiotics during perioperative period of abdominal external hernia should be standardized in the grass-root general hospital so as to curb the rapid growth of bacterial resistance

  15. Antimicrobial hydrogels for the treatment of infection.

    Science.gov (United States)

    Veiga, Ana Salomé; Schneider, Joel P

    2013-11-01

    The increasing prevalence of microbial infections, especially those associated with impaired wound healing and biomedical implant failure has spurred the development of new materials having antimicrobial activity. Hydrogels are a class of highly hydrated material finding use in diverse medical applications such as drug delivery, tissue engineering, as wound fillers, and as implant coatings, to name a few. The biocompatible nature of many gels make them a convenient starting platform to develop selectively active antimicrobial materials. Hydrogels with antimicrobial properties can be obtained through the encapsulation or covalent immobilization of known antimicrobial agents, or the material itself can be designed to possess inherent antimicrobial activity. In this review we present an overview of antimicrobial hydrogels that have recently been developed and when possible provide a discussion relevant to their mechanism of action.

  16. Use of antimicrobial agents and granulocyte colony stimulating factors for febrile neutropenia in cancer patients in a tertiary care hospital in India

    Directory of Open Access Journals (Sweden)

    V Roy

    2010-01-01

    Full Text Available Background: Use of antimicrobials (AM and granulocyte colony stimulating factors (G-CSF affect the outcome and cost of treatment of febrile neutropenia (FN. There are no studies describing the AM utilization pattern or the use of G-CSF and cost incurred on them in cancer patients with FN from India. Materials and Methods: A study was conducted in a tertiary care, teaching hospital in New Delhi, India, with the objectives of describing the utilization pattern of AM and G-CSF in cancer patients with FN. The efficacy and costs of AM and G-CSF prescribed were also assessed. Results: A total of 211 patients with FN were enrolled in the study. A majority of 207 (98.1% were in the low-risk category. The average number of AM used per patient was 2.45 ± 0.02 and the AM exposure density was 1.19. All patients were administered five different combinations of AM regimens and G-CSF, irrespective of the risk category. No difference in the time to defervesence or in the recovery of ANC counts were observed with the different AM regimens. The average drug cost per febrile neutropenia episode (FNE was Rs 4694.45 ± 296.35 (113.95 ± 7.19$. G-CSF accounted for 76.14 - 97.58% of the total costs. Conclusion: Large variations in the pattern of AM prescribed with routine use of G-CSF, irrespective of the risk status, was observed. Guidelines for the rational and cost-effective use of AM and G-CSF in patients with FN needed to be prepared. This was especially important as treatment was given free of cost to all patients admitted in the government health facility.

  17. Role of Antimicrobial Selective Pressure and Secondary Factors on Antimicrobial Resistance Prevalence in Escherichia coli from Food-Producing Animals in Japan

    OpenAIRE

    Harada, Kazuki; Asai, Tetsuo

    2010-01-01

    The use of antimicrobial agents in the veterinary field affects the emergence, prevalence, and dissemination of antimicrobial resistance in bacteria isolated from food-producing animals. To control the emergence, prevalence, and dissemination of antimicrobial resistance, it is necessary to implement appropriate actions based on scientific evidence. In Japan, the Japanese Veterinary Antimicrobial Resistance Monitoring System (JVARM) was established in 1999 to monitor the antimicrobial suscepti...

  18. Antimicrobial resistance of fecal aerobic gram-negative bacilli in different age groups in a community.

    OpenAIRE

    Leistevuo, T; Leistevuo, J; Osterblad, M; Arvola, T. (Timo); Toivonen, P; Klaukka, T; Lehtonen, A; Huovinen, P.

    1996-01-01

    We measured the occurrence of antimicrobial resistance in fecal aerobic gram-negative bacilli by age in community subjects. For none of the eight antimicrobial agents studied were there any statistically significant differences in the carriage rates of resistance in different age groups. Bacterial resistance was common in all age groups, including the children, and occurred for all antimicrobial agents tested.

  19. Antimicrobial susceptibility pattern of Helicobacter suis strains.

    Science.gov (United States)

    Vermoote, Miet; Pasmans, Frank; Flahou, Bram; Van Deun, Kim; Ducatelle, Richard; Haesebrouck, Freddy

    2011-12-15

    Helicobacter suis is a very fastidious porcine gastric pathogen, which is also considered to be of zoonotic importance. In vitro antimicrobial susceptibility cannot be determined using standard assays, as this agent only grows in a biphasic medium with an acidic pH. Therefore, a combined agar and broth dilution method was used to analyse the activity of nine antimicrobial agents against nine H. suis isolates. After 48 h microaerobic incubation, minimal inhibitory concentrations (MICs) were determined by software-assisted calculation of bacterial growth. Only for enrofloxacin a bimodal distribution of MICs was demonstrated, indicating acquired resistance in one strain, which showed an AGT→AGG (Ser→Arg) substitution at codon 99 of gyrA. In conclusion, the assay developed here is suitable for determination of the antimicrobial susceptibility of H. suis isolates, although activity of acid sensitive antimicrobial agents may be higher than predicted from MIC endpoints. PMID:21733643

  20. SecA inhibitors: next generation antimicrobials

    Institute of Scientific and Technical Information of China (English)

    Weixuan Chen; Arpana Chaudhary; Jianmei Cui; Jinshan Jin; Yinghsin Hsieh; Hsiuchin Yang; Yingju Huang; Phang C. Tai; Binghe Wang

    2012-01-01

    Health problems caused by bacterial infection have become a major public health concern in recent years due to the widespread emergence of drug-resistant bacterial strains.Therefore,the need for the development of new types of antimicrobial agents,especially those with a novel mechanism of action,is urgent.SecA,one of the key components of the secretion (Sec) pathway,is a new promising target for antimicrobial agent design.In recent years,promising leads targeting SecA have been identified and the feasibility of developing antimicrobial agents through the inhibition of SecA has been demonstrated.We hope this review will help stimulate more research in this area so that new antimicrobials can be obtained by targeting SecA.

  1. Antimicrobial agent triclosan is a proton ionophore uncoupler of mitochondria in living rat and human mast cells and in primary human keratinocytes.

    Science.gov (United States)

    Weatherly, Lisa M; Shim, Juyoung; Hashmi, Hina N; Kennedy, Rachel H; Hess, Samuel T; Gosse, Julie A

    2016-06-01

    Triclosan (TCS) is an antimicrobial used widely in hospitals and personal care products, at ~10 mm. Human skin efficiently absorbs TCS. Mast cells are ubiquitous key players both in physiological processes and in disease, including asthma, cancer and autism. We previously showed that non-cytotoxic levels of TCS inhibit degranulation, the release of histamine and other mediators, from rat basophilic leukemia mast cells (RBL-2H3), and in this study, we replicate this finding in human mast cells (HMC-1.2). Our investigation into the molecular mechanisms underlying this effect led to the discovery that TCS disrupts adenosine triphosphate (ATP) production in RBL-2H3 cells in glucose-free, galactose-containing media (95% confidence interval EC50 = 7.5-9.7 µm), without causing cytotoxicity. Using these same glucose-free conditions, 15 µm TCS dampens RBL-2H3 degranulation by 40%. The same ATP disruption was found with human HMC-1.2 cells (EC50 4.2-13.7 µm), NIH-3 T3 mouse fibroblasts (EC50 4.8-7.4 µm) and primary human keratinocytes (EC50 3.0-4.1 µm) all with no cytotoxicity. TCS increases oxygen consumption rate in RBL-2H3 cells. Known mitochondrial uncouplers (e.g., carbonyl cyanide 3-chlorophenylhydrazone) previously were found to inhibit mast cell function. TCS-methyl, which has a methyl group in place of the TCS ionizable proton, affects neither degranulation nor ATP production at non-cytotoxic doses. Thus, the effects of TCS on mast cell function are due to its proton ionophore structure. In addition, 5 µm TCS inhibits thapsigargin-stimulated degranulation of RBL-2H3 cells: further evidence that TCS disrupts mast cell signaling. Our data indicate that TCS is a mitochondrial uncoupler, and TCS may affect numerous cell types and functions via this mechanism. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26204821

  2. Choice of antimicrobial agents for multidrug-resistant Acinetobacter baumannii infection in burns%烧伤患者耐药鲍曼不动杆菌感染的抗菌药物选择

    Institute of Scientific and Technical Information of China (English)

    黄晓琴; 郇京宁

    2012-01-01

    Multidrug-resistant Acinetobacter baumannii infection represents a growing problem in severe burns. The antimicrobial resistance mechanisms of Acinetobacter baumannii include an increasing arsenal of β-lactamases, altered expression of outer membrane protein, efflux pumps and biofilm formation. For Acinetobacter baumannii wound infection, silver sulfadiazine. sulfamylon and silver dressing are effective topical agents. The effective treatment with antibiotics in Acinetobacter baumannii sepsis involves polymyxins, sulbactam, minocycline and tigecycline, and the combination use of antibiotics is strongly recommended. Besides, some novel therapeutic agents for multidrug-resistant Acinetobacter baumannii are introduced in this paper.%耐药性鲍曼不动杆菌是严重烧伤感染的重要致病菌之一,其耐药机制与细菌产生多种β-内酰胺酶、膜药物通透性缺陷、药物外排系统和细菌生物膜形成等有关.针对烧伤创面鲍曼不动杆菌感染,磺胺嘧啶银霜、磺胺米隆溶液和银离子敷料是良好的局部外用药物.在耐药鲍曼不动杆菌脓毒症的治疗方面,可选择多黏菌素、舒巴坦、米诺环素和替加环素.但是,尤为重要的手段是联合应用抗生素.此外,该文还讨论了某些新型药物的抗耐药鲍曼不动杆菌的作用.

  3. 季铵盐、季膦盐类高分子抗菌剂的研究进展%Research Progress on Macromolecule Antimicrobial Agents of Quaternary Ammonium Salt and Season Phosphonic Salt

    Institute of Scientific and Technical Information of China (English)

    延秀银; 王小晋; 刘桂花; 常宏宏; 魏文珑

    2012-01-01

    综述了季铵盐、季膦盐类高分子抗菌剂的研究进展,包括该类抗菌剂的合成、性能及抗菌机理。现有的研究结果表明,含有多种杀菌基团高分子抗菌剂的抗菌作用可能与杀菌基团的种类、杀菌基团的固载量、载体与杀菌基的结合位置、杀菌基团的分布、载体的表面亲水性能、聚合物的交联度、链结构等有关。若能在分子结构中同时有序引入季铵盐或季膦盐、海因类杀菌基团,有可能存在杀菌基团的协同效应,并且可能形成一个新的高分子抗菌材料的研究分支。%The macromolecule antibacterial agents of quaternary ammonium salt and season phosphonic salt were discussed, with emphasis on the synthesis, the performance and the antibacterium mechanics of macromolecule antibacterial agents. As the existing results showed, the effect of anti-bacterial containing a variety of sterilization groups might be related to the type of sterilization groups, the solid capacity of sterilization groups, the combination position of the carrier and sterilization groups, the distribution of sterilization groups, the hydrophilicity of carrier, the crosslinking degree of polymer and chain structure. The paper presented if quaternary ammonium salt, season phosphonic salt and hydantoin sterilization groups were inserted orderly in molecular structure mutually, the cooperativity of sterilization groups could be happened and a new branch of macromolecule antimicrobial material might emerge.

  4. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  5. In vitro susceptibility of community-acquired urinary tract pathogens to commonly used antimicrobial agents in Spain: a comparative multicenter study (2002-2004).

    Science.gov (United States)

    Garcia Garcia, M I; Munoz Bellido, J L; Garcia Rodriguez, J A

    2007-06-01

    The susceptibility patterns of 2724 uropathogens isolated in 9 Spanish regions during 2002, and 3013 obtained in 2004 were determined. The antibiotics tested were fosfomycin trometamol, amoxicillin, co-amoxiclav, cefixime, cefuroxime-axetil, pipemidic, ceprofloxacin, trimethoprim plus sulphamethoxazole and nitrofurantoin. Escherichia coli was the main pathogen in both studies (73% vs. 68.3%) followed by Proteus mirabilis 7.2% vs. 6.4%) and Klebsiella pneumoniae (5.4% vs. 5.2%). Enteroccocus spp. (4.7% vs. 6.8%), Streptoccocus agalactiae (1.7% vs. 3.1%) and Staphyloccocus saprophyticus (0.7% vs. 1.3%)were the most frequent Gram-positive pathogens. 31.3% of E. coli in 2002 and 32% in 2004 were susceptible to all antibiotics tested. Around 40% of E. coli were resistant to a single agent. 21.6-24.1% were resistant to two antibiotics. 35.4% of first period isolates, and 37.6% of second period ones were resistant to two or more classes of antibiotics. Fosfomycin (2.1- 2.8%) and nitrofurantoin (3.5-5.7%) had the lowest resistance rates for E. coli. Amoxicillin (58.2-58.7%), co-trimoxazole (30.8-33.8%) and ciprofloxacin (22.6-22.7%) showed the highest resistance rates, and their suitability as empiric treatments for UTI should probably be re-evaluated. PMID:17594920

  6. Synthesis of Schiff bases of naphtha[1,2-d]thiazol-2-amine and metal complexes of 2-(2'-hydroxy)benzylideneaminonaphthothiazole as potential antimicrobial agents

    Institute of Scientific and Technical Information of China (English)

    AZAM Faizul; SINGH Satendra; KHOKHRA Sukhbir Lal; PRAKASH Om

    2007-01-01

    Objective:A series of 2-benzylideneaminonaphthothiazoles were designed and synthesized incorporating the lipophilic naphthalene ring to render them more capable of penetrating various biomembranes.Methods:Schiff bases were synthesized by the reaction of naphtha[1,2-d]thiazol-2-amine with various substituted aromatic aldehydes.2-(2'-Hydroxy)benzylideneaminonaphthothiazole was converted to its Co(Ⅱ),Ni(Ⅱ) and Cu(Ⅱ) metal complexes upon treatment with metal salts in ethanol.All the compounds were evaluated for their antibacterial activities by paper disc diffusion method with Gram positive Staphylococcus aureus and Staphylococcus epidermidis and Gram negative Escherichia coli and Pseudomonas aeruginosa bacteria.The minimum inhibitory concentrations of all the Schiff bases and metal complexes were determined by agar streak dilution method.Results:All the compounds moderately inhibited the growth of Gram positive and Gram negative bacteria.In the present study among all Schiff bases 2-(2'-hydroxy)benzylideneaminonaphthothiazole showed maximum inhibitory activity and among metal complexes Cu(Ⅱ) metal complex was found to be most potent.Conclusion:The results obtained validate the hypothesis that Schiff bases having substitution with halogens,hydroxyl group and nitro group at phenyl ring are required for the antibacterial activity while methoxy group at different positions in the aromatic ring has minimal role in the inhibitory activity.The results also indicated that the metal complexes are better antibacterial agents as compared to the Schiff bases.

  7. [The theory and practice of the creation of antisignature oligodeoxyribonucleotides as universal antimicrobial agents (the principles of a drug technology of the 21st century)].

    Science.gov (United States)

    Skrypal', I H

    1997-01-01

    Gene-directed and anti-sense (mRNA-directed) synthetic oligonucleotides (SO) have a common main shortcoming. That is the necessity to introduce intercalators to their composition for the stronger interaction with targets to prevent their separation from the latter by DNA-polymerase and RNA-polymerase complexes which work on genome or with mRNA by ribosomes moving along them. Intercalation leads to considerable loss of SO selectivity in respect to the target. The author substantiates advantages of another type of SO which action is directed to blocking of the function of signature sequences of ribosomal RNA (rRNA) that completely ceases the self-assembly of ribosomal subunits and totally excludes the process of translation and synthesis of proteins. Such type SO advantages are as follows: a) a short chain which includes 8-13 nucleotides altogether; b) absence of the necessity of intercalation; c) high specificity in respect to targets; d) high stability in respect to nucleases action under modification by one of the methods of internucleotide bonds and, e) a possibility to deliver any microorganism to the cells when allowing for auxotrophy of the latter in respect to one or another substance. It is foreseen that antisignature SO can become most promising among the drugs called to block the functions of nucleic acids of the agents of the disease.

  8. Learning from agriculture: understanding low-dose antimicrobials as drivers of resistome expansion

    OpenAIRE

    EllenK.Silbergeld; YaqiYou

    2014-01-01

    Antimicrobial resistance is a growing public health challenge worldwide, with agricultural use of antimicrobials being one major contributor to the emergence and dissemination of antimicrobial resistance. Globally, most antimicrobials are used in industrial food animal production, a major context for microbiomes encountering low-doses or subtherapeutic-levels of antimicrobial agents from all mechanistic classes. This modern practice exerts broad eco-evolutionary effects on the gut microbiome ...

  9. In vitro antibacterial activity of fosfomycin combined with nine antimicrobial agents against acinetobacter%磷霉素与9种抗菌药物分别联用对不动杆菌的体外抗菌活性研究

    Institute of Scientific and Technical Information of China (English)

    杨莹莹; 王镇山; 薛欣; 聂大平; 李玉中

    2011-01-01

    [ Objective] To study the antibacterial activity of fosfomycin combined with other 9 antimicrobial agents against 47 strains of Acinetobacter in vitro, in order to provide laboratory data for clinical combination application. [ Methods] The 47 strains of acinetobacter isolated from sputum samples were treated by 10 antimicrobial agents alone and by fosfomycin combined with other 9 antimicrobial agents. Through the minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) index, using a two -fold agar dilution method, we could evaluate the antibacterial activity of fosfomycin combined with other 9 antimicrobial agents in vitro. [ Results] All the 47 strains of acinetobacter were resistant to fosfomycin, levofloxacin, ciprofloxacin, cefuroxime, ceftazidime, cefepime, cefoperazone/sulbactam, amikacin, and were intermedium to meropenem and imipenem/cilastatin. The ratio of antimicrobial agents was 1: 1. The MICs of fosfomycin combined with other 9 antimicrobial agents were lower than those of 10 antimicrobial agents alone and FIC index≤2. The primary action was synergistic/additional effect. There was no antagonistic effect observed. [ Conclusion] Synergistic/additional effect was observed in fosfomycin combined with levofloxacin, ciprofioxacin, cefuroxime, ceftazidime, cefepime, cefoperazone/sulbactam, amikacin, meropenem and imipenem/cilastatin against acinetobacter in vitro. The antimicrobial activities of combination were increased.%[目的]研究磷霉素与其它9种临床常用抗菌药物分别联合应用对47株不动杆菌的体外抗菌活性.[方法]收集痰标本中分离出的不动杆菌47株,将磷霉素与其它9种抗菌药物在体外单独以及联合应用,采用琼脂二倍稀释法,测定最低抑菌浓度(MIC)、计算部分抑菌浓度(FIC)指数,评价磷霉素与其它9种抗菌药物分别联合应用的体外抗菌活性.[结果]磷霉素、左氧氟沙星、环丙沙星、头孢呋辛、头孢他啶、头孢

  10. Synergistic Antimicrobial Activity of Camellia sinensis and Juglans regia against Multidrug-Resistant Bacteria

    OpenAIRE

    Amber Farooqui; Adnan Khan; Ilaria Borghetto; Kazmi, Shahana U.; Salvatore Rubino; Bianca Paglietti

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, ...

  11. In Vitro susceptibility of Gram-positive cocci isolated from skin and respiratory tract to azithromycin and twelve other antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Caio M. F. Mendes

    2001-10-01

    Full Text Available This study was conducted to evaluate the activity of azithromycin in comparison to 12 other antibacterial agents against recent isolates obtained consecutively from patients with respiratory tract or skin infections, from January to July, 2000. A total of 717 Gram-positive cocci were analyzed in this study and the following species were studied: Staphylococcus aureus (n=576, beta-hemolytic streptococci ( n=115, and Streptococcus pneumoniae (n=26. Susceptibility testing was carried out by the disk diffusion method and interpreted according to NCCLS breakpoints. The activity of azithromycin was compared to erythromycin, clindamycin, chloramphenicol, ciprofloxacin, ofloxacin, oxacillin, penicillin, ceftriaxone, tetracycline, trimethoprim/sulfamethoxazole, teicoplanin, and vancomycin. Of the 26 S. pneumoniae isolates recovered from the respiratory tract, 5 (19.2% were intermediate resistant to penicillin. All of these strains were susceptible to chloramphenicol, ofloxacin, and vancomycin, and 24 (92% were also susceptible to azithromycin, clindamycin, and erythromycin. Among the 67 beta-hemolytic streptococci strains isolated from the respiratory tract, 66 (99% were susceptible to azithromycin, erythromycin, clindamycin, and ofloxacin. All 48 beta-hemolytic streptococci strains isolated from skin were susceptible to azithromycin and clindamycin, 47 (98% were susceptible to erythromycin, and 46 (96% were susceptible to ofloxacin. Of the 576 strains of S. aureus, 253 (43.9% were isolated from the respiratory tract and 323 (56.1% from skin. Among S. aureus isolates from the respiratory tract and skin, 46 (18% and 78 (24%, respectively were resistant to oxacillin. Isolates from the respiratory tract and skin showed the same percentage of resistance (36% to azithromycin. These in vitro results suggest that azithromycin can be a therapeutic option for treatment of infections caused by these bacteria since the newer macrolides have several distinct

  12. Antimicrobial resistance

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2014-01-01

    Antimicrobial resistance is a global public health challenge, which has accelerated by the overuse of antibiotics worldwide. Increased antimicrobial resistance is the cause of severe infections, complications, longer hospital stays and increased mortality. Overprescribing of antibiotics...... is associated with an increased risk of adverse effects, more frequent re-attendance and increased medicalization of self-limiting conditions. Antibiotic overprescribing is a particular problem in primary care, where viruses cause most infections. About 90% of all antibiotic prescriptions are issued by general...... practitioners, and respiratory tract infections are the leading reason for prescribing. Multifaceted interventions to reduce overuse of antibiotics have been found to be effective and better than single initiatives. Interventions should encompass the enforcement of the policy of prohibiting the over...

  13. 聚氨酯微胶囊型丁香油抗菌剂的制备及表征%Preparation and Characterization of Antimicrobial Agent of Clove Oil Microencapsulated by Polyurethane

    Institute of Scientific and Technical Information of China (English)

    王治远; 辜海彬; 陈武勇

    2012-01-01

    To obtain a new leather antimicrobial agent with the properties of non - toxicity, high - efficiency, broad -spectrum and controlled - release, the microcapsule of clove oil was prepared and optimized by the interfacial polymerization method with polyurethane as the wall material, and the laser particle and zeta potential analyzer, microbioscope, SEM, GC-MS, DSC and TG were used to characterize its shape, size, dispersity, components and stability. Results show that the proper dosages of dispersant ( sodium alginate) and catalyst ( dibutyltin dilaurate) are 0. 15% and 0. 075% respectively, and the obtained emulsion is stable; its microcapsule particles assume the spherical shape with average size of 1 μm or so; the main contents of clove oil have no obvious change after microencapsulation; but its heat stability has greatly improved. Furthermore, results of antimicrobial tests reveal that the minimum inhibitory concentrations of the product against the tested Penicillium, Aspergillus niger, Rhodotorula mucilaginosa, Escherichia coli and Staphylococcus aureus are less than 0. 1 % , which indicates its favorable application potential in the field of antimicrobial leather.%针对传统皮革抗菌剂毒性大、抗菌持久性差等缺点,本文选择具有良好抗菌性能的丁香油作为芯材,以聚氨酯为壁材,采用界面聚合法制备出具有无毒、高效、广谱和缓释性能的微胶囊型皮革抗菌剂.首先,考察了分散剂海藻酸钠(SA)和催化剂二月桂酸二丁基锡(DBTDL)的用量对微胶囊乳液粒径和分散性的影响,然后,采用激光粒度Zeta电位仪、微生物显微镜、扫描电子显微镜、气相色谱-质谱联用仪、热重和差示扫描量热仪等对产品的粒径、分散性、形貌、组分和热稳定性等性能进行了表征.结果表明,SA和DBTDL的最佳用量分别为0.15%和0.075%,此时,所得微胶囊乳液的稳定性最好,微胶囊呈球形,粒径在1μm左右,包裹后的丁香油

  14. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance.

    Science.gov (United States)

    Maddox, T W; Clegg, P D; Williams, N J; Pinchbeck, G L

    2015-11-01

    Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections. While the epidemiology of antimicrobial resistance in bacteria from man has been studied extensively, less work has been undertaken in companion animals, particularly horses. Methicillin-resistant Staphylococcus aureus has been identified as a cause of infections, with a low prevalence of nasal carriage by horses in the community but higher for hospitalised horses. Molecular characterisation has shown methicillin-resistant Staphylococcus aureus strains either to be predominantly of types associated with horses or of sequence type ST398. Antimicrobial-resistant Escherichia coli (including multidrug-resistant and extended spectrum β-lactamase-producing isolates) have caused infections and been documented in faecal carriage by horses, with many significant resistance mechanisms identified. More sporadic reports and molecular characterisation exist for resistance in other bacteria such as enterococci, Salmonella, Acinetobacter and Pseudomonas species. Limited work has been undertaken evaluating risk factors and much of the epidemiology of antimicrobial resistance in bacteria from horses remains to be determined.

  15. Antimicrobial resistance in bacteria from horses: Epidemiology of antimicrobial resistance.

    Science.gov (United States)

    Maddox, T W; Clegg, P D; Williams, N J; Pinchbeck, G L

    2015-11-01

    Antimicrobial resistance poses a significant threat to the continued successful use of antimicrobial agents for the treatment of bacterial infections. While the epidemiology of antimicrobial resistance in bacteria from man has been studied extensively, less work has been undertaken in companion animals, particularly horses. Methicillin-resistant Staphylococcus aureus has been identified as a cause of infections, with a low prevalence of nasal carriage by horses in the community but higher for hospitalised horses. Molecular characterisation has shown methicillin-resistant Staphylococcus aureus strains either to be predominantly of types associated with horses or of sequence type ST398. Antimicrobial-resistant Escherichia coli (including multidrug-resistant and extended spectrum β-lactamase-producing isolates) have caused infections and been documented in faecal carriage by horses, with many significant resistance mechanisms identified. More sporadic reports and molecular characterisation exist for resistance in other bacteria such as enterococci, Salmonella, Acinetobacter and Pseudomonas species. Limited work has been undertaken evaluating risk factors and much of the epidemiology of antimicrobial resistance in bacteria from horses remains to be determined. PMID:26084443

  16. Antimicrobial Peptides: Multifunctional Drugs for Different Applications

    Directory of Open Access Journals (Sweden)

    Lea-Jessica Albrecht

    2012-02-01

    Full Text Available Antimicrobial peptides (APs are an important part of the innate immune system in epithelial and non-epithelial surfaces. So far, many different antimicrobial peptides from various families have been discovered in non-vertebrates and vertebrates. They are characterized by antibiotic, antifungal and antiviral activities against a variety of microorganisms. In addition to their role as endogenous antimicrobials, APs participate in multiple aspects of immunity. They are involved in septic and non-septic inflammation, wound repair, angiogenesis, regulation of the adaptive immune system and in maintaining homeostasis. Due to those characteristics AP could play an important role in many practical applications. Limited therapeutic efficiency of current antimicrobial agents and the emerging resistance of pathogens require alternate antimicrobial drugs. The purpose of this review is to highlight recent literature on functions and mechanisms of APs. It also shows their current practical applications as peptide therapeutics and bioactive polymers and discusses the possibilities of future clinical developments.

  17. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts to select the appropriate antimicrobial ...

  18. Animation of Antimicrobial Resistance

    Science.gov (United States)

    ... Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it ... Veterinary Medicine is cited as the corporate author. Animation Animation of Antimicrobial Resistance (WMV - 19.2MB) 9: ...

  19. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... 08 Animation of Antimicrobial Resistance (text version) Arabic Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) Chinese Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) French ...

  20. Mechanism of action of cyclic antimicrobial peptides

    OpenAIRE

    Díaz i Cirac, Anna

    2011-01-01

    This PhD thesis is the result of the combination of experimental and computational techniques with the aim of understanding the mechanism of action of de novo cyclic decapeptides with high antimicrobial activity. By experimental techniques the influence of the replacement of the phenylalanine for tryptophan residue in their antimicrobial activity was tested and the stability in human serum was also analyzed, in order to evaluate their potential therapeutic application as antitumor agents. ...

  1. Antibacterial agents in the cinema.

    Science.gov (United States)

    García Sánchez, J E; García Sánchez, E; Merino Marcos, M L

    2006-12-01

    Numerous procedures used as antibacterial therapy are present in many films and include strategies ranging from different antimicrobial drugs to surgery and supporting measures. Films also explore the correct use and misuse of antimicrobial agents. Side effects and other aspects related to antibacterial therapy have also been reflected in some films. This article refers to the presence of antibacterial agents in different popular movies. There are movies in which antibacterial agents form part of the central plot, while in others it is merely an important part of the plot. In still others, its presence is isolated, and in these it plays an ambient or anecdotal role.

  2. Antimicrobial Polymers with Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Humberto Palza

    2015-01-01

    Full Text Available Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms.

  3. Helical Antimicrobial Sulfono- {gamma} -AApeptides

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaqiong; Wu, Haifan; Teng, Peng; Bai, Ge; Lin, Xiaoyang; Zuo, Xiaobing; Cao, Chuanhai; Cai, Jianfeng

    2015-06-11

    Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, are more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.

  4. Detection of in Vitro Susceptibility to Commonly Used Antimicrobial Agents in Clostridium Butyricum Tablets%酪酸梭菌活菌片对常用抗菌药物的体外敏感性检测

    Institute of Scientific and Technical Information of China (English)

    叶玲梅; 陆红云

    2012-01-01

    Objective To detect the in vitro susceptibility of active clostridium butyricum to antimicrobial agents in Clostridium Butyricum Tablets. Methods The bacterial inhibition zone method was adopted to perform the in vitro susceptibility test to 15 kinds of common antibacterial drugs. Results Clostridium Butyricum showed resistant to cefotaxine.cefazolin.aminoglycosides and sulfonamides and sensitive to penicillin,macrolides and quinolones. Conclusion Clostridium Butyricumcan can be used in combination use with cefotaxine.cefazolin, aminoglycosides and sulfonamides,but should be avoided the combination use with penicillin,macrolides and quinolones.%目的 检测酪酸梭菌活菌片中活性酪酸梭菌对常见抗菌药物的体外敏感性.方法 选取15种常见抗菌药物,通过纸片法进行体外抗菌药物敏感性试验.结果 酪酸梭菌种对头孢噻肟、头孢唑林、氨基苷类、磺胺类抗菌药物表现为耐药;对青霉素、大环内酯类、喹诺酮类药物敏感.结论 酪酸梭菌可与头孢菌素、氨基苷类、磺胺类等抗菌药物联用,应避免与青霉素类、大环内酯类、喹诺酮类药物联用.

  5. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System ... Note: If you need help accessing information in different file formats, see Instructions for Downloading ...

  6. Antimicrobial commodities. part 2. Antimicrobial and odor-preventing fibers; Kokin seikatsu yohin ( 2 ). Kokin boshu sen`i

    Energy Technology Data Exchange (ETDEWEB)

    Yabe, N. [Toray Research Center Inc., Shiga (Japan)

    1998-05-01

    Demand for antimicrobial and order-preventing fibers is still expanding smoothly after a boom during a period from 1982 to 1985 owing to the great progress in its safety, manufacturing technology and evaluation of antimicrobial property. In this paper, the antimicrobial and odor-preventing fibers are described summarily. Main antimicrobial agents used in the antimicrobial and odor-preventing fibers hitherto are aromatic halogen compounds and organic silicon quaternary ammonium salts. In recent years, the kinds of antimicrobial agents are increased corresponding to the expansion of the demand for antimicrobial and odor-preventing fibers. Specifically, metals or inorganic particles containing metals; and quaternary ammonium salts or organic silicon quaternary ammonium salts are used frequently. Recently, the studies in respect to the utilization of chitin and chitosan are executed actively. Mainly employed processing method of the antimicrobial and odor-prevention fibers is a post processing by a working liquid containing kneaded fiber forming (mixed fiber forming) of antimicrobial inorganic particles such as metal powders or metal supporting zeolites; and an antimicrobial agent. 8 refs., 3 figs., 5 tabs.

  7. Human Health Hazards from Antimicrobial-Resistant Escherichia coli of Animal Origin

    DEFF Research Database (Denmark)

    Hammerum, A. M.; Heuer, Ole Eske

    2009-01-01

    Because of the intensive use of antimicrobial agents in food animal production, meat is frequently contaminated with antimicrobial-resistant Escherichia coli. Humans can be colonized with E. coli of animal origin, and because of resistance to commonly used antimicrobial agents, these bacteria may...... cause infections for which limited therapeutic options are available. This may lead to treatment failure and can have serious consequences for the patient. Furthermore, E. coli of animal origin may act as a donor of antimicrobial resistance genes for other pathogenic E. coli. Thus, the intensive use...... of antimicrobial agents in food animals may add to the burden of antimicrobial resistance in humans. Bacteria from the animal reservoir that carry resistance to antimicrobial agents that are regarded as highly or critically important in human therapy (e.g., aminoglycosides, fluoroquinolones, and third- and fourth...

  8. Antimicrobial Efficiency of Edible Films in Food Industry

    OpenAIRE

    Dan Cristian VODNAR; Pop, Oana Lelia; Francisc Vasile DULF; Socaciu, Carmen

    2015-01-01

    In this article, several applications of materials in food packaging and food safety are reviewed, including: polymers as high barrier packaging materials, natural substances as potent antimicrobial agents, and the efficiency of antimicrobial films in food industry. Active antimicrobial food packaging systems are supposed not only to passively protect food products against environmental factors, but also to inhibit or retard microbial growth on the food surface, extending the shelf life of pr...

  9. Antimicrobial Efficiency of Edible Films in Food Industry

    Directory of Open Access Journals (Sweden)

    Dan Cristian VODNAR

    2015-12-01

    Full Text Available In this article, several applications of materials in food packaging and food safety are reviewed, including: polymers as high barrier packaging materials, natural substances as potent antimicrobial agents, and the efficiency of antimicrobial films in food industry. Active antimicrobial food packaging systems are supposed not only to passively protect food products against environmental factors, but also to inhibit or retard microbial growth on the food surface, extending the shelf life of products. Edible films can be incorporated into conventional food packaging systems with a dual purpose as an edible and antimicrobial component. Applications of antimicrobial films to fruits, vegetables and meat products have received increasing interest because films can serve as carriers for various natural antimicrobials that can maintain fresh quality, extend product shelf life and reduce the risk of pathogen growth. In the future, eco-friendly antimicrobial packaging films are promising food packaging materials because its biodegradability provides sustainable development for a modern community.In this article, several applications of materials in food packaging and food safety are reviewed, including: polymers as high barrier packaging materials, natural substances as potent antimicrobial agents, and the efficiency of antimicrobial films in food industry. Active antimicrobial food packaging systems are supposed not only to passively protect food products against environmental factors, but also to inhibit or retard microbial growth on the food surface, extending the shelf life of products. Edible films can be incorporated into conventional food packaging systems with a dual purpose as an edible and antimicrobial component. Applications of antimicrobial films to fruits, vegetables and meat products have received increasing interest because films can serve as carriers for various natural antimicrobials that can maintain fresh quality, extend product shelf

  10. Bacteria‐Triggered Release of Antimicrobial Agents

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Chiang, Wen‐Chi; Tolker‐Nielsen, Tim;

    2014-01-01

    Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular...... material is demonstrated by the bacteria‐triggered release of antibiotics to control bacterial populations and signaling molecules to modulate quorum sensing. The self‐regulating system provides the basis for the development of device‐relevant polymeric materials, which only release antibiotics in...... dependency of the titer of bacteria surrounding the medical device....

  11. Bacteria-Triggered Release of Antimicrobial Agents

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Chiang, Wen-Chi; Tolker-Nielsen, Tim;

    2014-01-01

    Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular...... material is demonstrated by the bacteria‐triggered release of antibiotics to control bacterial populations and signaling molecules to modulate quorum sensing. The self‐regulating system provides the basis for the development of device‐relevant polymeric materials, which only release antibiotics...... in dependency of the titer of bacteria surrounding the medical device....

  12. Antimicrobial activity of human salivary mucin-derived peptides

    NARCIS (Netherlands)

    Wei, G.

    2008-01-01

    We investigated: a) relationships between molecular properties and antimicrobial functions of MUC7 peptides, b) effects of host physiological factors on the antimicrobial activity of MUC7 peptides, c) enhancement of antifungal activity by combination of MUC7 peptides with EDTA or other agents, d) an

  13. Antimicrobial activity of latex silver nanoparticles using Calotropis procera

    Directory of Open Access Journals (Sweden)

    Nadia Hussein Mohamed

    2014-11-01

    Conclusions: It can be concluded that serum latex of Calotropis procera was found to display strong potential for the synthesis of AgNPs as antimicrobial agents through rapid reduction of silver ions (Ag+ to Ag0. The green synthesized AgNPs were found to show higher antimicrobial efficacy than crude latex.

  14. Polymeric Systems of Antimicrobial Peptides—Strategies and Potential Applications

    Directory of Open Access Journals (Sweden)

    Ewa Olędzka

    2013-11-01

    Full Text Available The past decade has seen growing interest in the investigation of peptides with antimicrobial activity (AMPs. One approach utilized in infection control is incorporation of antimicrobial agents conjugated with the polymers. This review presents the recent developments on polymeric AMP carriers and their potential applications in the biomedical and pharmaceutical fields.

  15. Provincial and Temporal Variation in Macrolide and Lincosamide Antimicrobial Use by Outpatients in Canada, 1995 to 2010

    Directory of Open Access Journals (Sweden)

    Shiona K Glass-Kaastra

    2014-01-01

    Full Text Available INTRODUCTION: Because antimicrobial use is commonly associated with the development of antimicrobial resistance, monitoring the volume and patterns of use of these agents is very important.

  16. Antimicrobial peptides.

    Science.gov (United States)

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  17. Evaluation of the in vitro activity of six antimicrobial agents against Neisseria gonorrhoeae Avaliação in vitro da atividade de seis drogas antimicrobianas contra Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Walter Belda Junior

    2007-02-01

    Full Text Available Use of antimicrobials for the treatment of gonorrhea started in 1930 with the utilization of sulfonamides. With the years other drugs were used for its treatment such as penicillin, tetracycline, spectinomycin, and others. Although highly specific in the beginning, these drugs, with time did not show anymore the expected therapeutic results because of aspects of chromosomal and plasmid-mediated resistance. The purpose of this study was to evaluate the susceptibility of Neisseria gonorrhoeae strains to six drugs used for its treatment (penicillin, tetracycline, cefoxitin, thiamphenicol, spectinomycin and ofloxacin by the determination of minimal inhibitory concentrations of these drugs. We concluded that drugs, such as cefoxitin, thiamphenicol and spectinomycin still are excellent pharmacological agents for the treatment of gonorrhea. Penicillin, although still efficient, needs more attention regarding its use, as well as ofloxacin, because of the emergence of resistant strains. Tetracycline and its derivatives should be strongly contraindicated for the treatment of gonorrhea.A utilização de antimicrobianos no tratamento da gonorréia iniciou-se em 1930 com a utilização das sulfonamidas. No decorrer dos anos outras drogas passaram a ser utilizadas em seu tratamento como a penicilina, tetraciclina, espectinomicina e outras. Embora altamente eficazes no início, essas drogas, ao longo do tempo, passaram a não mais apresentar o resultado terapêutico esperado em virtude do aparecimento de quadros de resistência cromossômica e plasmidial. Este trabalho teve por objetivo avaliar a sensibilidade de cepas de Neisseria gonorrhoeae a seis drogas utilizadas no seu tratamento (penicilina, tetraciclina, cefoxitina, tianfenicol, espectinomicina e ofloxacina através da concentração inibitória mínima. Concluimos que drogas como a cefoxitina, o tianfenicol e a espectinomicina ainda constituem excelentes fármacos para o tratamento da gonorréia. A

  18. Clinical Application and Management of Antimicrobial Agents in the Treat-ment of Renal Department of Internal Medicine%肾内科抗菌药物的使用情况及建议

    Institute of Scientific and Technical Information of China (English)

    王凯

    2015-01-01

    目的:讨论肾内科临床应用抗菌药物的常见类型、常规用药方案、治疗的给药方式和使用疗程等。方法选取390例临床资料完整的患者为研究对象,分析在治疗过程中所使用的抗菌药物的使用情况,如使用药物的名称、类型、用量、给药方式、是否联合用药以及使用疗程等进行记录、评价和研究。结果372例使用抗菌药物进行治疗,比例达到95.38%。使用率最高的抗菌药物类型依次为头孢菌素类、喹诺酮类、青霉素类等;372例使用抗菌药物进行治疗的患者中,有105例患者是预防性用药,占28.23%;267例患者为治疗性用药,占71.77%;372例患者使用抗菌药物治疗的平均疗程为(7.3±1.7) d,其中口服药物的患者145例,占38.98%;外敷药物的患者23例,占6.18%;肌肉注射的患者138例,占37.10%;静脉滴注的患者66例,占17.74%。结论抗菌药物对肾内科患者具有较好的临床疗效,对抗菌药物的应用加强控制和管理,可以减少抗菌药物的滥用,延缓患者耐药性的产生,有利于提升治疗效果。%Objective To discuss the clinical application of the clinical application of antibiotics in the clinical application of the common types of antimicrobial drugs, routine medication, treatment of the way and the use of drugs, and so on. Methods A total of 39 cases with complete clinical data as the research object and analysis used in the treatment of an-tibacterial drug usage, such as the use of drugs name, type, quantity, to drugs, drug combination and the use of treatment and were recording, evaluation and research. Results 372 cases were treated with antibacterial drugs, the proportion reached 95.38.Utilization rate of the highest antibacterial drug types in order to cephalosporins, quinolones, penicillins, such as;372 cases of use of antimicrobial agents for the treatment of patients with, 105 patients is preventive medicine

  19. Antimicrobial-Coated Granules for Disinfecting Water

    Science.gov (United States)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of preparing antimicrobialcoated granules for disinfecting flowing potable water have been developed. Like the methods reported in the immediately preceding article, these methods involve chemical preparation of substrate surfaces (in this case, the surfaces of granules) to enable attachment of antimicrobial molecules to the surfaces via covalent bonds. A variety of granular materials have been coated with a variety of antimicrobial agents that include antibiotics, bacteriocins, enzymes, bactericides, and fungicides. When employed in packed beds in flowing water, these antimicrobial-coated granules have been proven effective against gram-positive bacteria, gram-negative bacteria, fungi, and viruses. Composite beds, consisting of multiple layers containing different granular antimicrobial media, have proven particularly effective against a broad spectrum of microorganisms. These media have also proven effective in enhancing or potentiating the biocidal effects of in-line iodinated resins and of very low levels of dissolved elemental iodine.

  20. Antimicrobial activity of some Iranian medicinal plants

    Directory of Open Access Journals (Sweden)

    Ghasemi Pirbalouti Abdollah

    2010-01-01

    Full Text Available The major aim of this study was to determine the antimicrobial activity of the extracts of eight plant species which are endemic in Iran. The antimicrobial activities of the extracts of eight Iranian traditional plants, including Hypericum scabrum, Myrtus communis, Pistachia atlantica, Arnebia euchroma, Salvia hydrangea, Satureja bachtiarica, Thymus daenensis and Kelussia odoratissima, were investigated against Escherichia coli O157:H7, Bacillus cereus, Listeria monocytogenes and Candida albicans by agar disc diffusion and serial dilution assays. Most of the extracts showed a relatively high antimicrobial activity against all the tested bacteria and fungi. Of the plants studied, the most active extracts were those obtained from the essential oils of M. communis and T. daenensis. The MIC values for active extract and essential oil ranged between 0.039 and 10 mg/ml. It can be said that the extract and essential oil of some medicinal plants could be used as natural antimicrobial agents in food preservation. .

  1. Antimicrobial Drugs in Fighting against Antimicrobial Resistance.

    Science.gov (United States)

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants), the community level resistance (i.e., bilofilms and persisters) is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals. PMID:27092125

  2. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Guyue eCheng

    2016-04-01

    Full Text Available The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants, the community level resistance (i.e., bilofilms and persisters is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals.

  3. Analysis of antimicrobial agents utilization and the main pathogenic bacteria resistance rate in our hospital during 2013%我院2013年抗菌药物使用量与主要病原菌耐药率分析

    Institute of Scientific and Technical Information of China (English)

    刘俊; 安益国; 刘建军

    2014-01-01

    分析我院抗菌药物使用情况和主要病原菌的耐药率,为临床合理使用和管理抗菌药物提供参考。方法采用回顾性调查方法,分别统计2013年住院患者抗菌药物用药频度(DDDs)和临床主要病原菌对常用抗菌药物的耐药率,采用SPSS 13.0软件对抗菌药物使用频度和主要病原菌耐药率进行相关性分析。结果2013年头孢菌素类药物使用最频繁,其中头孢硫脒DDDs排第一,其次为左氧氟沙星注射液;临床主要分离菌以革兰阴性菌为主,分离率最高的细菌是大肠埃希菌;大肠埃希菌、肺炎克雷伯菌、铜绿假单胞菌和鲍曼不动杆菌对头孢类药物的耐药率相对较高;金黄色葡萄球菌对青霉素的耐药率最高。结论抗菌药物DDDs与细菌耐药率有一定相关性。医院应加强细菌监测,提高病原送检率,规范抗菌药物的应用,减少细菌耐药性的产生。%Objective To analyze antimicrobial agents utilization and the main pathogenic bacteria resistance rate (MP-BRR) in our hospital,and to provide reference for the clinical rational use and the management of the antimicrobial agents. Methods The DDDs of inpatient and the drug-resistance rate of clinical main pathogenic to commonly used antimicrobial a-gents were analyzed statistically and respectively during 2013 by retrospective survey , and the correlation analysis between DDDs and MPBRR was performed simultaneously by SPSS 13.0 software. Results The most frequent consumption of antimi-crobial agents was cephalosporins in 2013, the DDDs ranked first, being followed by levofloxacin injection; the major clinical isolation was identified to the Gram-negative bacteria, E. Coli had the highest detection rate;the relatively high drug-resistance rate of cephalosporin were shared with E. Coli, P. aeruginosa, Klebsiella pneumoniae and Acinetobacter baumanni. The staphy-lococcus aureus was in a peak drug resistance rate for penicillin

  4. Cholic acid derivatives: novel antimicrobials.

    Science.gov (United States)

    Savage, P B; Li, C

    2000-02-01

    Mimics of squalamine and polymyxin B (PMB) have been prepared from cholic acid in hope of finding new antimicrobial agents. The squalamine mimics include the polyamine and sulphate functionalities found in the parent antibiotic, however, the positions relative to the steroid nucleus have been exchanged. The PMB mimics include the conservation of functionality among the polymyxin family of antibiotics, the primary amine groups and a hydrophobic chain. Although the squalamine and PMB mimics are morphologically dissimilar, they display similar activities. Both are simple to prepare and demonstrate broad spectrum antimicrobial activity against Gram-negative and Gram-positive organisms. Specific examples may be inactive alone, yet effectively permeabilise the outer membranes of Gram-negative bacteria rendering them sensitive to hydrophobic antibiotics. Problems associated with some of the squalamine and PMB mimics stem from their haemolytic activity and interactions with serum proteins, however, examples exist without these side effects which can sensitise Gram-negative bacteria to hydrophobic antibiotics. PMID:11060676

  5. ANTIMICROBIAL ACTIVITIES OF 1,3,4-OXADIAZOLE : A REVIEW

    Directory of Open Access Journals (Sweden)

    Bachwani Mukesh

    2011-06-01

    Full Text Available 1, 3, 4-Oxadiazole is a highly privileged structure the derivatives of which exhibit a wide range of biological activities including antibacterial, antitubercular, vasodialatory, antifungal, cytotoxic, anti-inflammatory and analgesic, hypolipidemic, anticancer and ulcerogenic activities. Resistance to number of antimicrobial agents among a variety of clinically significant species of bacteria is becoming increasingly important global problem. The search for new antimicrobial agents will consequently always remain as an important and challenging task for medicinal chemists. This Review has basic information about 1,3,4-oxadiazole and its antimicrobial activity work for further development in this field.

  6. The quest for optimal antimicrobial therapy

    NARCIS (Netherlands)

    Mol, Petrus Gerardus Maria

    2005-01-01

    Since the discovery of sulphonam ides and penicillin in the 1930's, and their widespread use in clinical practice during World War II a plethora of new antimicrobial agents have entered the market. Initial optim ism has faded that these new drugs would eliminate infectious diseases as killer disease

  7. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry

    OpenAIRE

    Shuai Wang; Xiangfang Zeng; Qing Yang; Shiyan Qiao

    2016-01-01

    Over the last decade, the rapid emergence of multidrug-resistant pathogens has become a global concern, which has prompted the search for alternative antibacterial agents for use in food animals. Antimicrobial peptides (AMPs), produced by bacteria, insects, amphibians and mammals, as well as by chemical synthesis, are possible candidates for the design of new antimicrobial agents because of their natural antimicrobial properties and a low propensity for development of resistance by microorgan...

  8. Veterinary drug usage and antimicrobial resistance in bacteria of animal origin

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    2005-01-01

    countries, which leaves room for considerable reductions in some countries. The emergence of resistant bacteria and resistance genes due to the use of antimicrobial agents are well documented. In Denmark it has been possible to reduce the usage of antimicrobial agents for food animals significantly...

  9. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System About NARMS Bacteria (NARMS) NARMS at Work Reports ... Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance Federal, State & Local Officials Consumers Health ...

  10. Monitoring of antimicrobial resistance among food animals: Principles and limitations

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller

    2004-01-01

    Large amounts of antimicrobial agents are in the production of food animals used for therapy and prophylactics of bacterial infections and in feed to promote growth. The use of antimicrobial agents causes problems in the therapy of infections through the selection for resistance among bacteria...... pathogenic for animals or humans. Current knowledge regarding the occurrence of antimicrobial resistance in food animals, the quantitative impact of the use of different antimicrobial agents on selection for resistance and the most appropriate treatment regimes to limit the development of resistance...... is incomplete. Programmes monitoring the occurrence and development of resistance are essential to determine the most important areas for intervention and to monitor the effects of interventions. When designing a monitoring programme it is important to decide on the purpose of the programme. Thus...

  11. Oral administration of antimicrobials increase antimicrobial resistance in E. coli from chicken--a systematic review.

    Science.gov (United States)

    Simoneit, C; Burow, E; Tenhagen, B-A; Käsbohrer, A

    2015-01-01

    Antimicrobials play an important role in animal and human health care. It was the aim of this systematic review to assess the effects of oral administration of antimicrobials on the development of antimicrobial resistance (AMR) in Escherichia coli (E. coli) from chickens. Moreover, the effects of the administration of more than one antimicrobial and of different dosages were studied. Literature was searched in November 2012 from the electronic databases ISI Web of Science, PubMed, Scopus and a national literature database (DIMDI) as well as the database ProQuest LLC. The search was updated in March 2014. Original studies describing a treatment (A) and a control group of either non-treatment (C) or initial value (0) and determining AMR in E. coli at different sample points (SP) were included. The literature search resulted in 35 full text articles on the topic, seven (20%) of which contained sufficient information on the administered antimicrobial and the impact of treatment on AMR. Most papers described the use of more than one antimicrobial, several dosages, controls (non-treatment or pre-treatment) and measured AMR at different SPs leading to a total of 227 SPs on the impact of the use of antimicrobials on AMR in chickens. 74% of the SPs (168/227) described a higher AMR-rate in E. coli from treated animals than from controls. After the administration of a single antimicrobial, AMR increased at 72% of the SPs. Administration of more than one antimicrobial increased AMR at 82% of the SPs. Higher dosages were associated with similar or higher AMR rates. The limited number of studies for each antimicrobial agent and the high variability in the resistance effect call for more well designed studies on the impact of oral administration on AMR development and spread. PMID:25433717

  12. Antimicrobial Ionic Liquids with Fumarate Anion

    Directory of Open Access Journals (Sweden)

    Biyan He

    2013-01-01

    Full Text Available The shortage of new antimicrobial drugs and increasing resistance of microbe to antimicrobial agents have been of some concern. The formulation studies of new antibacterial and antifungal agents have been an active research field. Ionic liquids are known as designed liquids with controllable physical/chemical/biological properties and specific functions, which have been attracting considerable interest over recent years. However, no attention has been made towards the preparation of ionic liquids with antimicrobial activities. In this paper, a new class of ionic liquids (ILs with fumarate anion was synthesized by neutralization of aqueous 1-butyl-3-methylimidazolium hydroxide with equimolar monoester fumarate and characterized using NMR and thermal gravimetric analysis. The ILs are soluble in water and polar organic solvents and also soluble in the common ILs. The antimicrobial activities of the ILs are more active than commercially available potassium sorbate and are greatly affected by the alkyl chain length. The significant antimicrobial properties observed in this research suggest that the ILs may have potential applications in the modern biotechnology.

  13. Antimicrobial Activity of Carbon-Based Nanoparticles

    Directory of Open Access Journals (Sweden)

    Solmaz Maleki Dizaj

    2015-03-01

    Full Text Available Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs (especially single-walled carbon nanotubes (SWCNTs and graphene oxide (GO nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery.

  14. Antimicrobial edible films and coatings.

    Science.gov (United States)

    Cagri, Arzu; Ustunol, Zeynep; Ryser, Elliot T

    2004-04-01

    Increasing consumer demand for microbiologically safer foods, greater convenience, smaller packages, and longer product shelf life is forcing the industry to develop new food-processing, cooking, handling, and packaging strategies. Nonfluid ready-to-eat foods are frequently exposed to postprocess surface contamination, leading to a reduction in shelf life. The food industry has at its disposal a wide range of nonedible polypropylene- and polyethylene-based packaging materials and various biodegradable protein- and polysaccharide-based edible films that can potentially serve as packaging materials. Research on the use of edible films as packaging materials continues because of the potential for these films to enhance food quality, food safety, and product shelf life. Besides acting as a barrier against mass diffusion (moisture, gases, and volatiles), edible films can serve as carriers for a wide range of food additives, including flavoring agents, antioxidants, vitamins, and colorants. When antimicrobial agents such as benzoic acid, sorbic acid, propionic acid, lactic acid, nisin, and lysozyme have been incorporated into edible films, such films retarded surface growth of bacteria, yeasts, and molds on a wide range of products, including meats and cheeses. Various antimicrobial edible films have been developed to minimize growth of spoilage and pathogenic microorganisms, including Listeria monocytogenes, which may contaminate the surface of cooked ready-to-eat foods after processing. Here, we review the various types of protein-based (wheat gluten, collagen, corn zein, soy, casein, and whey protein), polysaccharide-based (cellulose, chitosan, alginate, starch, pectin, and dextrin), and lipid-based (waxes, acylglycerols, and fatty acids) edible films and a wide range of antimicrobial agents that have been or could potentially be incorporated into such films during manufacture to enhance the safety and shelf life of ready-to-eat foods. PMID:15083740

  15. Antimicrobial edible films and coatings.

    Science.gov (United States)

    Cagri, Arzu; Ustunol, Zeynep; Ryser, Elliot T

    2004-04-01

    Increasing consumer demand for microbiologically safer foods, greater convenience, smaller packages, and longer product shelf life is forcing the industry to develop new food-processing, cooking, handling, and packaging strategies. Nonfluid ready-to-eat foods are frequently exposed to postprocess surface contamination, leading to a reduction in shelf life. The food industry has at its disposal a wide range of nonedible polypropylene- and polyethylene-based packaging materials and various biodegradable protein- and polysaccharide-based edible films that can potentially serve as packaging materials. Research on the use of edible films as packaging materials continues because of the potential for these films to enhance food quality, food safety, and product shelf life. Besides acting as a barrier against mass diffusion (moisture, gases, and volatiles), edible films can serve as carriers for a wide range of food additives, including flavoring agents, antioxidants, vitamins, and colorants. When antimicrobial agents such as benzoic acid, sorbic acid, propionic acid, lactic acid, nisin, and lysozyme have been incorporated into edible films, such films retarded surface growth of bacteria, yeasts, and molds on a wide range of products, including meats and cheeses. Various antimicrobial edible films have been developed to minimize growth of spoilage and pathogenic microorganisms, including Listeria monocytogenes, which may contaminate the surface of cooked ready-to-eat foods after processing. Here, we review the various types of protein-based (wheat gluten, collagen, corn zein, soy, casein, and whey protein), polysaccharide-based (cellulose, chitosan, alginate, starch, pectin, and dextrin), and lipid-based (waxes, acylglycerols, and fatty acids) edible films and a wide range of antimicrobial agents that have been or could potentially be incorporated into such films during manufacture to enhance the safety and shelf life of ready-to-eat foods.

  16. Clinical impact of antimicrobial resistance in animals.

    Science.gov (United States)

    Vaarten, J

    2012-04-01

    It is almost impossible to imagine veterinary medicine today without the use of antimicrobials. Shortly after their discovery, antimicrobials found their way into the veterinary world. They have brought many benefits for the health and welfare of both animals and people, such as the lessening of pain and suffering, reduction in shedding of (zoonotic) bacteria and the containment of potentially large-scale epidemics. Indirectly, they also contribute to food security, protection of livelihoods and animal resources, and poverty alleviation. Given the broad range of animal species under veterinary care and the enormous variety of infectious agents, a complete range of antimicrobials is needed in veterinary medicine. Losing products, either through the occurrence of resistance or through a prohibition on their use, will have serious consequences for the health and welfare of all animals. It will also seriously affect people who depend on these animals. It is a great challenge to everyone involved to stop the growing trend of antimicrobial resistance and to safeguard the effectiveness of antimicrobials for the future. Transparent and responsible use of antimicrobials, together with continuous monitoring and surveillance of the occurrence of resistance, are key elements of any strategy. The current situation also urges us to re-think unsustainable practices and to work on the development of alternatives, in the interests of the health and welfare of both animals and people. PMID:22849278

  17. Controlling the oral biofilm with antimicrobials.

    Science.gov (United States)

    Marsh, P D

    2010-06-01

    The aim of this article is to review the properties of compounds available for the control of dental plaque biofilms, and describe their mode of action. The mouth is colonised by a diverse but characteristic collection of micro-organisms, which confer benefit to host. Numerous antiplaque (e.g. surfactants, essential oils) and antimicrobial agents (e.g. bisbiguanides, metal ions, phenols, quaternary ammonium compounds, etc.) have been successfully formulated into toothpastes and mouthrinses to control plaque biofilms. At high concentrations, these agents can remove biofilm and/or kill disease-associated bacteria, while even at sub-lethal levels they can inhibit the expression of pathogenic traits. Successful antimicrobial agents are able to meet the apparently contradictory requirements of maintaining the oral biofilm at levels compatible with oral health but without disrupting the natural and beneficial properties of the resident oral microflora.

  18. [Consensus for antimicrobial susceptibility testing for Enterobacteriaceae. Subcommittee on Antimicrobials, SADEBAC (Argentinian Society of Clinical Bacteriology), Argentinian Association of Microbiology].

    Science.gov (United States)

    Famiglietti, A; Quinteros, M; Vázquez, M; Marín, M; Nicola, F; Radice, M; Galas, M; Pasterán, F; Bantar, C; Casellas, J M; Kovensky Pupko, J; Couto, E; Goldberg, M; Lopardo, H; Gutkind, G; Soloaga, R

    2005-01-01

    Taking into account previous recommendations from the National Committee for Clinical Laboratory Standards (NCCLS), the Antimicrobial Committee, Sociedad Argentina de Bacteriología Clínica (SADEBAC), Asociación Argentina de Microbiología (AAM), and the experience from its members and some invited microbiologists, a consensus was obtained for antimicrobial susceptibility testing and interpretation in most frequent enterobacterial species isolated from clinical samples in our region. This document describes the natural antimicrobial resistance of some Enterobacteriaceae family members, including the resistance profiles due to their own chromosomal encoded beta-lactamases. A list of the antimicrobial agents that should be tested, their position on the agar plates, in order to detect the most frequent antimicrobial resistance mechanisms, and considerations on which antimicrobial agents should be reported regarding to the infection site and patient characteristics are included. Also, a description on appropriate phenotypic screening and confirmatory test for detection of prevalent extended spectrum beta-lactamases in our region are presented. Finally, a summary on frequent antimicrobial susceptibility profiles and their probably associated resistance mechanisms, and some infrequent antimicrobial resistance profiles that deserve confirmation are outlined.

  19. Biological warfare agents

    Directory of Open Access Journals (Sweden)

    Duraipandian Thavaselvam

    2010-01-01

    Full Text Available The recent bioterrorist attacks using anthrax spores have emphasized the need to detect and decontaminate critical facilities in the shortest possible time. There has been a remarkable progress in the detection, protection and decontamination of biological warfare agents as many instrumentation platforms and detection methodologies are developed and commissioned. Even then the threat of biological warfare agents and their use in bioterrorist attacks still remain a leading cause of global concern. Furthermore in the past decade there have been threats due to the emerging new diseases and also the re-emergence of old diseases and development of antimicrobial resistance and spread to new geographical regions. The preparedness against these agents need complete knowledge about the disease, better research and training facilities, diagnostic facilities and improved public health system. This review on the biological warfare agents will provide information on the biological warfare agents, their mode of transmission and spread and also the detection systems available to detect them. In addition the current information on the availability of commercially available and developing technologies against biological warfare agents has also been discussed. The risk that arise due to the use of these agents in warfare or bioterrorism related scenario can be mitigated with the availability of improved detection technologies.

  20. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria

    OpenAIRE

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U.; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, ...

  1. Topical agents in burn care

    Directory of Open Access Journals (Sweden)

    Momčilović Dragan

    2002-01-01

    Full Text Available Introduction Understanding of fluid shifts and recognition of the importance of early and appropriate fluid replacement therapy have significantly reduced mortality in the early post burn period. After the bum patient successfully passes the resuscitation period, the burn wound represents the greatest threat to survival. History Since the dawn of civilization, man has been trying to find an agent which would help burn wounds heal, and at the same time, not harm general condition of the injured. It was not until the XX century, after the discovery of antibiotics, when this condition was fulfilled. In 1968, combining silver and sulfadiazine, fox made silver-sulfadiazine, which is a 1% hydro-soluble cream and a superior agent in topical treatment of burns today. Current topical agents None of the topical antimicrobial agents available today, alone or combined, have the characteristics of ideal prophylactic agents, but they eliminate colonization of burn wound, and invasive infections are infrequent. With an excellent spectrum of activity, low toxicity, and ease of application with minimal pain, silver-sulfadiazine is still the most frequently used topical agent. Conclusion The incidence of invasive infections and overall mortality have been significantly reduced after introduction of topical burn wound antimicrobial agents into practice. In most burn patients the drug of choice for prophylaxis is silver sulfadiazine. Other agents may be useful in certain clinical situations.

  2. NEW ANTIMICROBIAL SENSITIVITY TESTS OF BIOFILM OF STREPTOCOCCUS MUTANS IN ARTIFICIAL MOUTH MODEL

    Institute of Scientific and Technical Information of China (English)

    李鸣宇; 汪俊; 刘正; 朱彩莲

    2004-01-01

    Objective To develop a new antimicrobial sensitivity test model for oral products in vitro.Methods A biofilm artificial mouth model for antimicrobial sensitivity tests was established by modifying the LKI chromatography chamber. Using sodium fluoride and Tea polyphenol as antimicrobial agent and Streptococcus mutans as target, sensitivity tests were studied. Results The modeling biofilm assay resulted in a MIC of 1.28mg/ml for fluoride against S. mutans, which was 32 times the MIC for broth maco-dilution method. The differential resistance of bacteria bioflim to antimicrobial agent relative to planktonic cells was also demonstrated. Conclusion The biofilm artificial mouth model may be useful in oral products test.

  3. Pro-Moieties of Antimicrobial Peptide Prodrugs

    Directory of Open Access Journals (Sweden)

    Eanna Forde

    2015-01-01

    Full Text Available Antimicrobial peptides (AMPs are a promising class of antimicrobial agents that have been garnering increasing attention as resistance renders many conventional antibiotics ineffective. Extensive research has resulted in a large library of highly-active AMPs. However, several issues serve as an impediment to their clinical development, not least the issue of host toxicity. An approach that may allow otherwise cytotoxic AMPs to be used is to deliver them as a prodrug, targeting antimicrobial activity and limiting toxic effects on the host. The varied library of AMPs is complemented by a selection of different possible pro-moieties, each with their own characteristics. This review deals with the different pro-moieties that have been used with AMPs and discusses the merits of each.

  4. Development of antimicrobial optimum glass ionomer

    International Nuclear Information System (INIS)

    The use of glass ionomer for restorations in dentistry for lower income population is a well established practice in public clinics of Brazil. However the average price of this kind of material and its low durability still have a negative impact on public health for being imported and frequently replaced it becomes expensive for the manufacturers and for public agencies. In glass ionomer the main antimicrobial agent is fluoride, which is released gradually. The material used for filling provides an average life of five years and its durability can be increased if the ionomer contains other oligodynamic elements. It was formulated, merged a new optimized glass ionomer which was characterized by X-ray diffraction, ion measurement and antimicrobial activity. This new product showed promising results, that pointed structural stability an increase of antimicrobial efficiency. (author)

  5. Prospective assessment of antimicrobial prescribing pattern at a tertiary care hospital

    Directory of Open Access Journals (Sweden)

    R Selvaraj

    2015-10-01

    Full Text Available Background: Antimicrobial agents (AMA are the greatest contribution to 20th century, which are used for cure and prevention of infections. Widespread use of antimicrobials has facilitated the development of resistance. Aim: The present study was done to screen rational use of antimicrobials in the medicine outpatient department of a teaching hospital. Methods: A total of 650 prescriptions were collected from the medicine OPD. Prescriptions containing antimicrobial drugs were analyzed for appropriateness in dosage, duration of therapy and fixed dose drug combinations (FDCs. The antimicrobials were grouped using the anatomical therapeutic chemical (ATC codes. Statistical analysis: Data was analyzed by percentage. Results: Out of 650 patients, 180 patients (27.65% received antimicrobials. Among them 25.33% patients were prescribed one antimicrobial and 18.88% were prescribed antimicrobial FDCs. Out of the 180 prescriptions, 47% were irrational. The most commonly prescribed antimicrobial categories were β-lactam antimicrobials (35.09%, followed by fluoroquinolones (18.88% and combinations of antimicrobials from different groups (13.85%. Conclusion: Higher frequency of irrational antimicrobial prescriptions suggests that antimicrobial restriction policies and a multidisciplinary effort to reduce usage are urgently required.

  6. Synthesis and in vitro study of [1,3,4]thiadiazol-2yl-3,3a,5,6-tetrahydro-2H-pyrazolo[3,4-d]thiazoles as antimicrobial agents

    OpenAIRE

    Nareshvarma Seelam; Shrivastava, S. P.

    2016-01-01

    A variety of 3,5-diphenyl-6-(5-p-toly1-[1,3,4] thiadiazol-2yl)-3,3a,5,6 tetrahydro-2H pyrazolo[3,4-d]thiazole 6ag were synthesized by the reaction of chalcone derivatives of [1,3,4] thiadiazol-2-yl)-thiazolidin-4-one 5a–g with hydrazine hydrate. The chemical structures of these compounds were confirmed by IR, NMR (1H & 13C) and mass spectral studies. Synthesized compounds 6a–g were evaluated for their antimicrobial and anti-tubercular activities. Some of the compounds exhibited well antimicro...

  7. Associations between host characteristics and antimicrobial resistance of Salmonella typhimurium.

    Science.gov (United States)

    Ruddat, I; Tietze, E; Ziehm, D; Kreienbrock, L

    2014-10-01

    A collection of Salmonella Typhimurium isolates obtained from sporadic salmonellosis cases in humans from Lower Saxony, Germany between June 2008 and May 2010 was used to perform an exploratory risk-factor analysis on antimicrobial resistance (AMR) using comprehensive host information on sociodemographic attributes, medical history, food habits and animal contact. Multivariate resistance profiles of minimum inhibitory concentrations for 13 antimicrobial agents were analysed using a non-parametric approach with multifactorial models adjusted for phage types. Statistically significant associations were observed for consumption of antimicrobial agents, region type and three factors on egg-purchasing behaviour, indicating that besides antimicrobial use the proximity to other community members, health consciousness and other lifestyle-related attributes may play a role in the dissemination of resistances. Furthermore, a statistically significant increase in AMR from the first study year to the second year was observed.

  8. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota.

    OpenAIRE

    LeonCantas; LinaM.Cavaco; CéliaManaia; FionaWalsh; MagdalenaPopowska; HemdaGarelick; HelmutBürgmann

    2013-01-01

    The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting from use, misuse and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance genes have been suggested to originate from environmental bacteria, as clinicall...

  9. Risk assessment of antimicrobial usage in Danish pig production on the human exposure to antimicrobial resistant bacteria from pork

    DEFF Research Database (Denmark)

    Struve, Tina

    During the last decades, bacteria with resistance to all commonly used antimicrobial agents have been detected, thereby posing a major threat to public health. In worst case, infections with resistant bacteria can lead to treatment failure and death of humans. The evolution of bacteria resistant...... to antimicrobials are influenced by the use of antimicrobial agents, and the prudence of antimicrobial use have been emphasized since the Swann report in 1969 recommended that antibiotics used in human medicine should not be used as growth promoters in food-producing animals. In 2007, the World Health Organisation...... was investigated using selective agar plates supplemented with ceftriaxone. The occurrence of ESC producing E. coli was used as the outcome in the data analysis, where the effect of using cephalosporins, extended spectrum penicillins and tetracyclines was estimated using regression analysis. In Objective 2...

  10. Antimicrobial natural products from Arctic and sub-Arcticmarine invertebrates

    OpenAIRE

    Tadesse, Margey

    2010-01-01

    Infectious diseases are a leading cause of death world-wide and there is a growing need for new anti-infective agents to combat multi-resistant strains of bacteria and fungi. Marine natural products are promising sources of novel antimicrobial compounds. In the present thesis, an investigation into the antimicrobial metabolites of Arctic and sub-Arctic marine invertebrate species is presented. Extracts of seven ascidian species, six sponge species, a soft-alcyonid coral and a bryozoan species...

  11. A Study on Antimicrobial Effects of Plantago Psyllium

    OpenAIRE

    Sharifi, A; M Naghmachi; S Jahedi; SAM Khosravani

    2011-01-01

    Introduction & Objective: Due to emergence of resistance of antibiotics to microorganisms, investigations for novel antimicrobial agents have always been one of the major preoccupations of the medical societies. The present investigation aimed to study the antimicrobial properties of Plantago psyllium on some of pathogen microorganisms. Materials & Methods: This experimental study was carried out at Yasouj University of Medical Sciences in 2010. After collection and preparation of hy...

  12. Collectins and Cationic Antimicrobial Peptides of the Respiratory Epithelia

    OpenAIRE

    Grubor, B.; Meyerholz, D. K.; Ackermann, M R

    2006-01-01

    The respiratory epithelium is a primary site for the deposition of microorganisms that are acquired during inspiration. The innate immune system of the respiratory tract eliminates many of these potentially harmful agents preventing their colonization. Collectins and cationic antimicrobial peptides are antimicrobial components of the pulmonary innate immune system produced by respiratory epithelia, which have integral roles in host defense and inflammation in the lung. Synthesis and secretion...

  13. Synthesis and in vitro Study of Novel Methylenebis(phenyl- 1,5-benzothiazepine)s and Methylenebis(benzofuryl-1,5- benzothiazepine)s as Antimicrobial Agents

    Institute of Scientific and Technical Information of China (English)

    SANJEEVA, REDDY, Cherkupally; PURNACHANDRA, REDDY, Gurrala; NAGARAJ, Adki

    2009-01-01

    A series of methylenebis(phenyl-1,5-benzothiazepine)s 4 and methylenebis(benzofuryl-1,5-benzothiazepine)s 5 were prepared by the reaction of methylene-bis-chalcones 3 with 2-aminothiophenol for 4 and followed by the con- densation with chloroacetone for 5. The structures of the synthesized compounds have been confirmed by their IR, 1H NMR, 13C NMR, MS and elemental analyses. All the synthesized compounds were tested for their antimicrobial activity against Gram-positive, Gram-negative bacteria and fungi. To elucidate the essential structural requirements for the antimicrobial activity, the preliminary structure-activity relationship has been described. Among the com- pounds tested, the dimeric compounds 4f, 4g, 5f and 5g were found to be most active against Bacillus subtilis, Ba- cillus sphaericus, Staphylococcus aureus, Klebsiella aerogenes and Chromobacterium violaceum. Similarly these dimeric compounds showed potent antifungal activity against Candida albicans, Aspergillusfumigatus, Trichophy- ton rubrum, and Trichophyton mentagrophytes. It is interesting to note that the dimeric compounds with substitu- ents of heterocyclic ring at the 4th position of benzothiazepine system displayed notable antibacterial activity equal to that of streptomycin and penicillin. Further, the activity of all the dimeric compounds was compared with that of their monomeric compounds, and it is interesting to note that almost all the dimeric compounds showed enhanced activity than their monomeric compounds.

  14. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  15. Antimicrobial usage in an intensive care unit: a prospective analysis.

    LENUS (Irish Health Repository)

    Conrick-Martin, I

    2012-01-31

    Antimicrobial therapies in the Intensive Care Unit (ICU) need to be appropriate in both their antimicrobial cover and duration. We performed a prospective observational study of admissions to our semi-closed ICU over a three-month period and recorded the indications for antimicrobial therapy, agents used, duration of use, changes in therapy and reasons for changes in therapy. A change in therapy was defined as the initiation or discontinuation of an antimicrobial agent. There were 51 patients admitted during the three-month study period and all received antimicrobial therapy. There were 135 changes in antimicrobial therapy. 89 (66%) were made by the ICU team and 32 (24%) were made by the primary team. Changes were made due to a deterioration or lack of clinical response in 41 (30%) cases, due to the completion of prescribed course in 36 (27%) cases, and in response to a sensitivity result in 25 (19%) cases. Prophylactic antibiotic courses (n=24) were of a duration greater than 24 hours in 15 (63%) instances. In conclusion, the majority of changes in antimicrobial therapy were not culture-based and the duration of surgical prophylaxis was in excess of current recommended guidelines.

  16. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  17. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    Introduction: A frightening increase in the number of isolated multidrug resistant bacterial strains linked to the decline in novel antimicrobial drugs entering the market is a great cause for concern. Cationic antimicrobial peptides (AMPs) have lately been introduced as a potential new class of ...

  18. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) Chinese Translation - Animation of Antimicrobial Resistance (WMV - 19.2MB) ... FEAR Act Site Map Transparency Website Policies U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver ...

  19. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts to select the appropriate antimicrobial for treatment. Accordingly, efforts are underway in both veterinary and human medicine to preserve the effectiveness of these drugs. ...

  20. The antimicrobial efficiency of silver activated sorbents

    Science.gov (United States)

    Đolić, Maja B.; Rajaković-Ognjanović, Vladana N.; Štrbac, Svetlana B.; Rakočević, Zlatko Lj.; Veljović, Đorđe N.; Dimitrijević, Suzana I.; Rajaković, Ljubinka V.

    2015-12-01

    This study is focused on the surface modifications of the materials that are used for antimicrobial water treatment. Sorbents of different origin were activated by Ag+-ions. The selection of the most appropriate materials and the most effective activation agents was done according to the results of the sorption and desorption kinetic studies. Sorption capacities of selected sorbents: granulated activated carbon (GAC), zeolite (Z), and titanium dioxide (T), activated by Ag+-ions were following: 42.06, 13.51 and 17.53 mg/g, respectively. The antimicrobial activity of Ag/Z, Ag/GAC and Ag/T sorbents were tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. After 15 min of exposure period, the highest cell removal was obtained using Ag/Z against S. aureus and E. coli, 98.8 and 93.5%, respectively. Yeast cell inactivation was unsatisfactory for all three activated sorbents. The antimicrobial pathway of the activated sorbents has been examined by two separate tests - Ag+-ions desorbed from the activated surface to the aqueous phase and microbial cell removal caused by the Ag+-ions from the solid phase (activated surface sites). The results indicated that disinfection process significantly depended on the microbial-activated sites interactions on the modified surface. The chemical state of the activating agent had crucial impact to the inhibition rate. The characterization of the native and modified sorbents was performed by X-ray diffraction technique, X-ray photoelectron spectroscopy and scanning electron microscope. The concentration of adsorbed and released ions was determined by inductively coupled plasma optical emission spectroscopy and mass spectrometry. The antimicrobial efficiency of activated sorbents was related not only to the concentration of the activating agent, but moreover on the surface characteristics of the material, which affects the distribution and the accessibility of the activating agent.

  1. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    Science.gov (United States)

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  2. Antimicrobial growth promoter ban and resistance to macrolides and vancomycin in enterococci from pigs

    DEFF Research Database (Denmark)

    Boerlin, P.; Wissing, A.; Aarestrup, Frank Møller;

    2001-01-01

    Ninety-six enterococcus isolates from fecal samples of pigs receiving tylosin as an antimicrobial growth promoter and 59 isolates obtained in the same farms 5 to 6 months after the ban of antimicrobial growth promoters in Switzerland were tested for susceptibility to nine antimicrobial agents. A ....... A clear decrease in resistance to macrolides, lincosamides, and tetracycline was visible after the ban. Vancomycin-resistant Enterococcus faecium belonged to the same clonal lineage as vancomycin-resistant isolates previously isolated from Danish pigs....

  3. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance.

    Science.gov (United States)

    Cabello, Felipe C; Godfrey, Henry P; Buschmann, Alejandro H; Dölz, Humberto J

    2016-07-01

    Aquaculture uses hundreds of tonnes of antimicrobials annually to prevent and treat bacterial infection. The passage of these antimicrobials into the aquatic environment selects for resistant bacteria and resistance genes and stimulates bacterial mutation, recombination, and horizontal gene transfer. The potential bridging of aquatic and human pathogen resistomes leads to emergence of new antimicrobial-resistant bacteria and global dissemination of them and their antimicrobial resistance genes into animal and human populations. Efforts to prevent antimicrobial overuse in aquaculture must include education of all stakeholders about its detrimental effects on the health of fish, human beings, and the aquatic ecosystem (the notion of One Health), and encouragement of environmentally friendly measures of disease prevention, including vaccines, probiotics, and bacteriophages. Adoption of these measures is a crucial supplement to efforts dealing with antimicrobial resistance by developing new therapeutic agents, if headway is to be made against the increasing problem of antimicrobial resistance in human and veterinary medicine. PMID:27083976

  4. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance.

    Science.gov (United States)

    Cabello, Felipe C; Godfrey, Henry P; Buschmann, Alejandro H; Dölz, Humberto J

    2016-07-01

    Aquaculture uses hundreds of tonnes of antimicrobials annually to prevent and treat bacterial infection. The passage of these antimicrobials into the aquatic environment selects for resistant bacteria and resistance genes and stimulates bacterial mutation, recombination, and horizontal gene transfer. The potential bridging of aquatic and human pathogen resistomes leads to emergence of new antimicrobial-resistant bacteria and global dissemination of them and their antimicrobial resistance genes into animal and human populations. Efforts to prevent antimicrobial overuse in aquaculture must include education of all stakeholders about its detrimental effects on the health of fish, human beings, and the aquatic ecosystem (the notion of One Health), and encouragement of environmentally friendly measures of disease prevention, including vaccines, probiotics, and bacteriophages. Adoption of these measures is a crucial supplement to efforts dealing with antimicrobial resistance by developing new therapeutic agents, if headway is to be made against the increasing problem of antimicrobial resistance in human and veterinary medicine.

  5. Antimicrobial and biofilm inhibiting diketopiperazines.

    Science.gov (United States)

    de Carvalho, M P; Abraham, W-R

    2012-01-01

    Diketopiperazines are the smallest cyclic peptides known. 90% of Gram-negative bacteria produce diketopiperazines and they have also been isolated from Gram-positive bacteria, fungi and higher organisms. Biosynthesis of cyclodipeptides can be achieved by dedicated nonribosomal peptide synthetases or by a novel type of synthetases named cyclopeptide synthases. Since the first report in 1924 a large number of bioactive diketopiperazines was discovered spanning activities as antitumor, antiviral, antifungal, antibacterial, antiprion, antihyperglycemic or glycosidase inhibitor agents. As infections are of increasing concern for human health and resistances against existing antibiotics are growing this review focuses on the antimicrobial activities of diketopiperazines. The antibiotic bicyclomycin is a diketopiperazine and structure activity studies revealed the unique nature of this compound which was finally developed for clinical applications. The antimicrobial activities of a number of other diketopiperazines along with structure activity relationships are discussed. Here a special focus is on the activity-toxicity problem of many compounds setting tight limitations to their application as drugs. Not only these classical antimicrobial activities but also proposed action in modulating bacterial communication as a new target to control biofilms will be evaluated. Pathogens organized in biofilms are difficult to eradicate because of the increase of their tolerance for antibiotics for several orders. Diketopiperazines were reported to modulate LuxR-mediated quorum-sensing systems of bacteria, and they are considered to influence cell-cell signaling offering alternative ways of biofilm control by interfering with microbial communication. Concluding the review we will finally discuss the potential of diketopiperazines in the clinic to erase biofilm infections.

  6. Study on synergy of fosfomycin combined with 4 kinds of antimicrobial agents against Pseudomonas aeruginosa strains i-solated from urinary system%磷霉素与4种抗菌药物对泌尿系统分离铜绿假单胞菌的协同作用研究

    Institute of Scientific and Technical Information of China (English)

    黄正谷; 苏世芳

    2015-01-01

    Objective To study the in vitro antibacterial activity of fosfomycin combined with other 4 kinds of antimicrobial agents against 40 clinically isolated strains of Pseudomonas aeruginosa .Methods The bacteria were i‐solated and identified by the conventional culture and the microbiological analyzer .The drug sensitive test was per‐formed by using Kirby‐Bauer disk diffusion test and the minimal inhibitory concentration (MIC) was examined by u‐sing the agar double dilution test and the micrdilution checkerboard technique .The fractional inhibitory concentration index(FICI) was calculated .Results A total of 40 strains of Pseudomonas aeruginosa were resistant to most of anti‐bacterial agents .The fosfomycin exclusive use had a good antibacterial activity to Pseudomonas aeruginosa and the re ‐sistance rate was 37 .5% ;the combination use of fosfomycin with 4 kinds of antimicrobial agent showed the addictive action and independent action ,little synergic effect and no antagonism .Conclusion Fosfomycin is still a choice of an‐tibacterial drugs to treat the urinary tract infection induced by Pseudomonas aeruginosa .%目的:研究磷霉素与4种抗菌药物分别联合应用对40株临床分离铜绿假单胞菌的体外抗菌活性。方法采用常规培养方法和微生物分析仪对细菌进行分离、鉴定。采用 K‐B 纸片扩散法进行药敏试验。采用琼脂倍比稀释法和微量棋盘法测定最低抑菌浓度(MIC),计算部分抑菌浓度指数(FICI)。结果40株铜绿假单胞菌对大多数抗菌药物具有耐药性。磷霉素单独使用对铜绿假单胞菌具有较好的抗菌活性,耐药率为37.5%;磷霉素与4种抗菌药物联用后,对铜绿假单胞菌表现为相加和无关作用,协同作用较少,未见拮抗作用。结论治疗铜绿假单胞菌引起的泌尿系统感染,磷霉素仍是一个可供选择的抗菌药物。

  7. Sensibilidade a antimicrobianos de bactérias isoladas do trato respiratório de pacientes com infecções respiratórias adquiridas na comunidade: resultados brasileiros do Programa SENTRY de Vigilância de Resistência a Antimicrobianos dos anos de 1997 e 1998 Susceptibility to respiratory tract isolated bacteria to antimicrobial agents in patients with community-acquired respiratory tract infections: 1997 and 1998 Brazilian data of the SENTRY surveillance program of resistance to antimicrobial agents

    Directory of Open Access Journals (Sweden)

    HÉLIO S. SADER

    2001-01-01

    Full Text Available O tratamento da pneumonia adquirida na comunidade (PAC é habitualmente empírico e o uso de antimicrobianos é baseado em estudos de vigilância. O programa SENTRY foi desenhado para monitorar a resistência a antimicrobianos através de uma rede internacional de laboratórios. Três centros no Brasil participaram do Programa SENTRY em 1997 e em 1998. Métodos: Um total de 344 isolados bacterianos coletados de pacientes com PAC em 1997 e 1998 foram testados contra mais de 20 agentes antimicrobianos pelo método de microdiluição em caldo. Resultados: Entre os S. pneumoniae (176 isolados, 71,6% foram sensíveis à penicilina. Alto nível de resistência à penicilina e resistência à cefotaxima foram encontrados em 2,3 e 4,0%, respectivamente. As novas quinolonas levofloxacina (MIC90, 2mig/mL e gatifloxacina (MIC90, 0,5mig/mL foram ativas contra 100% dos isolados testados. Entre os outros antimicrobianos não beta-lactâmicos testados, os mais ativos foram (% de sensibilidade: cloranfenicol (97,5% > clindamicina (94% > azitromicina (90,3% > claritromicina (89,4% > tetraciclina (76,4% > sulfametoxazol/trimetoprim (60,2%. A percentagem de Haemophilus influenzae (101 isolados resistentes à amoxicilina foi de 90,1%, enquanto entre Moraxella catarrhalis (67 isolados somente 9,0% foram sensíveis. O ácido clavulânico restaurou a atividade de amoxicilina contra H. influenzae e M. catarrhalis. Porém, H. influenzae demonstrou níveis aumentados de resistência para sulfametoxazol/trimetoprim (55,1% de sensibilidade, claritromicina (80,4% de sensibilidade e cefaclor (88,2% de sensibilidade. Todos os isolados de H. influenzae e M. catarrhalis foram sensíveis à levofloxacina (MIC90, Background: Antimicrobial treatment of community-acquired respiratory tract infections (CARTI is usually empiric and antibiotics are chosen on the basis of surveillance studies. The SENTRY Program was designed to monitor antimicrobial resistance via a worldwide

  8. Antimicrobial susceptibility of listeria monocytogenes from food products

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Knöchel, Susanne; Hasman, Henrik

    2007-01-01

    This study was conducted to determine the susceptibility of Listeria monocytogenes isolated from food products to antimicrobial agents commonly used for treatment of infections with gram-positive bacteria, and to disinfectants. A total of 114 L. monocytogenes retail isolates were tested for susce......This study was conducted to determine the susceptibility of Listeria monocytogenes isolated from food products to antimicrobial agents commonly used for treatment of infections with gram-positive bacteria, and to disinfectants. A total of 114 L. monocytogenes retail isolates were tested...

  9. Antimicrobial Peptides: Versatile Biological Properties

    Directory of Open Access Journals (Sweden)

    Muthuirulan Pushpanathan

    2013-01-01

    Full Text Available Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries.

  10. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages.

    Science.gov (United States)

    Joerger, R D

    2003-04-01

    Bacteriocins, antimicrobial peptides, and bacteriophage have attracted attention as potential substitutes for, or as additions to, currently used antimicrobial compounds. This publication will review research on the potential application of these alternative antimicrobial agents to poultry production and processing. Bacteriocins are proteinaceous compounds of bacterial origin that are lethal to bacteria other than the producing strain. It is assumed that some of the bacteria in the intestinal tract produce bacteriocins as a means to achieve a competitive advantage, and bacteriocin-producing bacteria might be a desirable part of competitive exclusion preparations. Purified or partially purified bacteriocins could be used as preservatives or for the reduction or elimination of certain pathogens. Currently only nisin, produced by certain strains of Lactococcus lactis subsp. lactis, has regulatory approval for use in certain foods, and its use for poultry products has been studied extensively. Exploration of the application of antimicrobial peptides from sources other than bacteria to poultry has not yet commenced to a significant extent. Evidence for the ability of chickens to produce such antimicrobial peptides has been provided, and it is likely that these peptides play an important role in the defense against various pathogens. Bacteriophages have received renewed attention as possible agents against infecting bacteria. Evidence from several trials indicates that phage therapy can be effective under certain circumstances. Numerous obstacles for the use of phage as antimicrobials for poultry or poultry products remain. Chiefly among them are the narrow host range of many phages, the issue of phage resistance, and the possibility of phage-mediated transfer of genetic material to bacterial hosts. Regulatory issues and the high cost of producing such alternative antimicrobial agents are also factors that might prevent application of these agents in the near future

  11. Association between antimicrobial resistance and virulence genes in Escherichia coli obtained from blood and faeces

    DEFF Research Database (Denmark)

    Bagger-Skjøt, Line; Sandvang, Dorthe; Frimodt-Møller, Niels;

    2007-01-01

    Escherichia coli isolates obtained from faeces (n = 85) and blood (n = 123) were susceptibility tested against 17 antimicrobial agents and the presence of 9 virulence genes was determined by PCR. Positive associations between several antimicrobial resistances and 2 VF genes (iutA and traT) were...

  12. Antimicrobial properties of nest volatiles in red imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae)

    Science.gov (United States)

    In social insects, antimicrobial secretions are often used collectively for the benefit of the whole colony, which is an important component in social immunity. Many ant species build nests in which air circulation can be controlled. Volatile antimicrobial agents would be ideal in implementing socia...

  13. Avaliação da qualidade dos discos com antimicrobianos para testes de disco-difusão disponíveis comercialmente no Brasil Evaluation of the quality of the antimicrobial agents disks used in disk-diffusion tests comercially available in Brazil

    Directory of Open Access Journals (Sweden)

    Lilian M. Sejas

    2003-01-01

    the microbiology laboratory. Due to the great number of antimicrobial agents and the complexity of resistance mechanisms evolved, it has become very difficult to detect problems in these tests by simply evaluating the results obtained. Consequently, a quality control program must be performed continuously. Objective: The objective of the present study was to evaluate the quality of the antimicrobial susceptibility disks used in Brazil. Methods: Eighteen antimicrobial susceptibility disks manufactured from five commercial trade marks were evaluated. These antimicrobial disks were tested against four ATCCs and following the National Committee for Clinical Laboratory Standards (NCCLS procedures for disk-diffusion. Each test was repeated 20 times. Results: None of the trade marks presented a satisfactory performance for routine use in a microbiology laboratory. The best performance was presented by Cecon®, with 89,6% of overall agreement. Sensifar® disks showed a similar overall concordance of 90,8%. The trade mark with the least adequate performance was Pimenta Abreu®, with only 58,6% overall agreement. Conclusion: The results from this study indicate that the disks commercialized in Brazil are inappropriate to be used in clinical microbiology laboratories showing lack of quality control during the process of production and/or storage. They also show the importance of the implementation of both external and internal quality control programs.

  14. 纳米载银树脂中抗菌剂的分散及银离子析出的观察%Silver-ion release and particle distribution of denture base resin containing nanometer-sized silver supposed antimicrobial agent

    Institute of Scientific and Technical Information of China (English)

    余日月; 周永胜; 冯海兰; 刘希云

    2008-01-01

    目的 研究纳米载银树脂中抗菌剂的分散及银离子的析出情况,为进一步研究其加工工艺、抗菌长效性及使用安全性提供依据.方法 用球磨法将以磷酸复盐为载体的纳米载银抗菌剂STR-1按一定比例添加到义齿基托聚合物粉体中,制作抗菌剂浓度分别为0、5和10 g/L的3组纳米载银树脂片各6片,其中3片规格为10 mm×10 mm×1 mm,用于扫描电镜观察树脂片表面抗菌剂的分散情况;另外3片规格为70 mm×70 mm×2.5 mm,分别浸泡在人工唾液中,每24 h取样1次,用电感耦合等离子质谱法测定银离子的平均析出量,观察54 d.结果 扫描电镜下可见纳米载银抗菌剂在树脂片中分散较均匀,有少量较小的团聚体,无大的团聚体形成;抗菌剂含量为5 g/L和10 g/L的纳米载银树脂片在人工唾液中浸泡54 d后累积析出银离子分别为0.953 μg和2.520 μg,分别占各自银离子总含量的0.026%和0.034%.银离子析出速度非常缓慢,银离子累积析出曲线呈"S"型,早期析出缓慢,中期析出相对加速,后期又趋于缓慢、稳定.结论 纳米载银抗菌剂STR-1可较均匀地分散于树脂中,54 d内纳米载银树脂中银离子析出微量且速度缓慢.%Objective To investigate the distribution of antimicrobial agent STR-1 of nanometer level which was incorporated with ball-grinding method in the polymethylmethacrylate(PMMA)denture base,and to study the release mode of silver ions from the base. Methods The distribution of the antimierobial agent in the PMMA denture base containing STR-1 at concentrations of 0 g/L,5 g/L,and 10 g/L Was examined with scanning electronic microscopy. Then,PMMA resin bases containing STR-1 at the three concentrations were respectively immersed in artificial saliva at 37 ℃ f0r 54 days. The release of silver ions from the resin bases was surveyed with inductively coupled plasma-mass spectroscopy(ICP-MS)every 24 hours.Results The antimicrobial agent incorporated by

  15. 复配抗菌剂对紫外光固化抗菌涂料性能的影响%Effect of Compound Antibacterial Agents on Properties of UV Curing Antimicrobial Coating

    Institute of Scientific and Technical Information of China (English)

    王晓慧; 宋伟强; 遆永周; 吕晓华; 邓刚; 孟闯

    2016-01-01

    采用紫外光固化技术,以自制抗菌剂三丁基对乙烯基苄基氯化鏻(DA)与甲基丙烯酰氧乙基十二烷基二甲基溴化铵(VP)复配作为抗菌单体,制备了紫外光固化抗菌涂料.研究了抗菌单体对固化膜性能的影响,并测试了紫外光固化抗菌涂料的理化性能和抗菌性能.结果表明:抗菌单体对固化膜性能有显著影响;当DA/VP用量比为0.4时,固化膜硬度、附着力和抗冲击性均能达到最佳;制备的紫外光固化抗菌涂料具有良好的抗菌性能,其各项理化性能均达到国家或行业标准.%The UV curable antimicrobial coating was prepared by UV curing technology with tributyl vinyl benzyl phosphonium chloride(DA)and methyl acryloyloxyethyl dodecyl dimethyl ammonium bromide(VP)as antibacterial monomer. The effect of antibacterial monomer ratio on the properties of the cured film was studied. The antibacterial properties and the physical and chemical properties of the UV cured coatings were tested. The results showed that the antibacterial monomer has a significant influence on the properties of cured film. When the amount of DA/VP ratio is 0.4,curing film hardness,adhesion,impact resistance and gloss can reach the optimum. The prepared UV curable antimicrobial coatings have excellent antibacterial properties ,and the physical and chemical properties have reached the national standard or industry standard.

  16. Evaluation of Origanum vulgare essential oil as antimicrobial agent in sausage Avaliação da atividade antimicrobiana de óleo essencial de Origanum vulgare em linguiça

    Directory of Open Access Journals (Sweden)

    Cassiano Busatta

    2007-12-01

    Full Text Available This work reports antimicrobial activity of oregano (Origanum vulgare essential oil against several bacteria in sausage. The in vitro minimum inhibitory concentration (MIC was determined for 9 selected aerobic heterotrofic bacteria. The antimicrobial activity of distinct concentrations of the essential oil on the basis of the highest MIC found was tested in a food system comprised of fresh sausage. Batch food samples were also inoculated with Escherichia coli with a fixed concentration and the time course of the product was evaluated with respect to the action of the different concentrations of essential oil. Sensory analysis were conducted, and results showed that the addition of oregano essential oil to sausage may be a promising route as bacteriostatic effect was verified for oil concentrations lower than the MIC.O presente trabalho reporta resultados referentes à testes de atividade antimicrobiana do óleo essencial de orégano (Origanum vulgare contra várias bactérias em lingüiça. A concentração inibitória mínima (CIM foi determinada para 9 bactérias aeróbicas heterotróficas. Com base no maior valor encontrado da CIM, testou-se a atividade antimicrobiana para distintas concentrações do óleo essencial in lingüiça fresca. Amostras do sistema alimentar escolhido foram inoculadas com Escherichia coli numa determinada concentração e a evolução temporal do produto concernente ao crescimento microbiano foi monitorada avaliando-se o efeito das diferentes concentrações de óleos essencial aplicadas ao produto inoculado. Os resultados das análises microbiológica e sensorial mostraram que a adição do óleo essencial de orégano a linguiça fresca coloca-se como promissora tendo em vista os efeitos bacteriostáticos observados em baixas concentrações do óleo essencial, inferiores a CIM.

  17. Experimental and computational approaches of a novel methyl (2E)-2-{[N-(2-formylphenyl)(4-methylbenzene)sulfonamido]methyl}-3-(4-chlorophenyl)prop-2-enoate: A potential antimicrobial agent and an inhibition of penicillin-binding protein

    Science.gov (United States)

    Murugavel, S.; Vetri velan, V.; Kannan, Damodharan; Bakthadoss, Manickam

    2016-07-01

    The title compound methyl(2E)-2-{[N-(2-formylphenyl) (4-methylbenzene)sulfonamido]methyl}-3-(4-chlorophenyl) prop-2-enoate (MFMSC) has been synthesized and single crystals were grown by slow evaporation solution growth technique at room temperature. Structural and vibrational spectroscopic studies were carried out by using single crystal X-ray diffraction, FT-IR and NMR spectral analysis together with DFT method using GAUSSIAN'03 software. The detailed interpretation of the vibrational spectra has been carried out by VEDA program. NBO analysis, Mulliken charge analysis, HOMO-LUMO, MEP, Global chemical reactivity descriptors and thermodynamic properties have been analyzed. The hyperpolarisability calculation reveals the present material has a reasonably good propensity for nonlinear optical activity. The obtained antimicrobial activity results indicate that the compound shows good to moderate activity against all tested bacterial and fungal pathogens. A computational study was also carried out to predict the drug-likeness and ADMET properties of the title compound. Due to the different potential biological activity of the title compound, molecular docking study is also reported and the compound might exhibit inhibitory activity against penicillin-binding protein PBP-2X.

  18. Synthesis and characteristics of antimicrobial sand; Kokinsei suna no gosei to tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Tomoki

    1999-11-01

    It has emphasized insanitary sand pool by the cause in the excretory substance of dog and cat as social problem. Taking this as an opportunity, each school and kindergartens, etc. tackled the pollution abatement of sand pool. Antimicrobe boom by the development of inorganic system antimicrobial agent has already happened before this. Especially, it used the silver inorganic antimicrobial agent in the material field of versatile. Then, the manufacturer of each antimicrobial agent examined the use of antimicrobial agent as a pollution abatement of sand pool. Here, this paper explains pollution present state of sand pool it deprives deprive and manufacturing of the antimicrobe sand and features in respect of the antimicrobe sand. (NEDO)

  19. Antimicrobial treatment of nosocomial meticillin-resistant Staphylococcus aureus (MRSA) pneumonia: current and future options.

    Science.gov (United States)

    Welte, Tobias; Pletz, Mathias W

    2010-11-01

    Meticillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of nosocomial pneumonia. Inadequate or inappropriate antimicrobial therapy, often caused by antimicrobial resistance, is associated with increased mortality for these infections. Agents currently recommended for the treatment of MRSA pneumonia include vancomycin and linezolid in the USA, and vancomycin, linezolid, teicoplanin and quinupristin/dalfopristin in Europe. Antimicrobials such as tigecycline and daptomycin, although approved for the treatment of some MRSA infections, have not demonstrated efficacy equivalent to the approved agents for MRSA pneumonia. Further agents lack data from randomised controlled trials (e.g. fosfomycin, fusidic acid or rifampicin in combination with vancomycin). Antimicrobial agents that have recently been approved or are being investigated as treatments for MRSA infections include the lipoglycopeptides telavancin (approved for the treatment of complicated skin and skin-structure infections in the USA and Canada), dalbavancin and oritavancin, the cephalosporins ceftobiprole and ceftaroline, and the dihydrofolate reductase inhibitor iclaprim. To be an effective treatment for MRSA pneumonia, antimicrobial agents must have activity against antimicrobial-resistant S. aureus, penetrate well into the lung, have a low potential for resistance development and have a good safety profile. Here, the available data for current and potential future MRSA pneumonia antimicrobials are reviewed and discussed. PMID:20724119

  20. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts ... Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance Federal, State & Local Officials Consumers Health ...

  1. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... issue of antimicrobial resistance is that the subject material appears abstract and is complex. This video was ... can develop and spread. All FDA CVM produced material may be copied, reproduced, and distributed as long ...

  2. Antimicrobial activity of mangrove plant (Lumnitzera littorea)

    Institute of Scientific and Technical Information of China (English)

    Shahbudin Saad; Muhammad Taher; Deny Susanti; Haitham Qaralleh; Nurul Afifah Binti Abdul Rahim

    2011-01-01

    Objective:To investigate the antimicrobial activities ofn-hexane, ethyl acetate and methanol extracts of the leaves ofLumnitzera littorea (L. littorea) against six human pathogenic microbes. Methods: The antimicrobial activity was evaluated using disc diffusion and microdilution methods.Results:The antimicrobial activities of the crude extracts were increased with increasing the concentration. It is clear thatn-hexane extract was the most effective extract. Additionally, Gram positiveBacillus cereus (B. cereus) appear to be the most sensitive strain whilePseudomonas aeruginosa (P. aeruginosa) and the yeast strains (Candida albicans (C. albicans) andCryptococcus neoformans (C. neoformans)) appear to be resistance to the tested concentrations since no inhibition zone was observed. The inhibition of microbial growth at concentration as low as0.04 mg/mL indicated the potent antimicrobial activity ofL. littorea extracts.Conclusions:The obtained results are considered sufficient for further study to isolate the compounds responsible for the activity and suggesting the possibility of finding potent antibacterial agents fromL. littorea extracts.

  3. Using C. elegans for antimicrobial drug discovery

    Science.gov (United States)

    Desalermos, Athanasios; Muhammed, Maged; Glavis-Bloom, Justin; Mylonakis, Eleftherios

    2011-01-01

    Introduction The number of microorganism strains with resistance to known antimicrobials is increasing. Therefore, there is a high demand for new, non-toxic and efficient antimicrobial agents. Research with the microscopic nematode Caenorhabditis elegans can address this high demand for the discovery of new antimicrobial compounds. In particular, C. elegans can be used as a model host for in vivo drug discovery through high-throughput screens of chemical libraries. Areas covered This review introduces the use of substitute model hosts and especially C. elegans in the study of microbial pathogenesis. The authors also highlight recently published literature on the role of C. elegans in drug discovery and outline its use as a promising host with unique advantages in the discovery of new antimicrobial drugs. Expert opinion C. elegans can be used, as a model host, to research many diseases, including fungal infections and Alzheimer’s disease. In addition, high-throughput techniques, for screening chemical libraries, can also be facilitated. Nevertheless, C. elegans and mammals have significant differences that both limit the use of the nematode in research and the degree by which results can be interpreted. That being said, the use of C. elegans in drug discovery still holds promise and the field continues to grow, with attempts to improve the methodology already underway. PMID:21686092

  4. Minimal inhibitory concentrations of modern topical antimicrobials

    Directory of Open Access Journals (Sweden)

    T. N. Vorontsova

    2014-01-01

    Full Text Available Aim. To measure minimal inhibitory concentration (MIC values for modern topical antimicrobials against common ocular pathogens.Methods.Antimicrobials most commonly used in ophthalmology (fluoroquinolones and aminoglycosides are dose-dependent drugs, i.e., the rate of microbial death increases in direct proportion to their concentrations. To determine MICs, we applied Hi Comb MIC Test (E-test. 105 patients aged 2 months through 7 years which were diagnosed with various inflammatory disorders of anterior segment were  xamined. MIC values for most commonly used antimicrobials, i.e., ciprofloxacin / Cipromed (Sentiss Pharma, Gurgaon, India, ofloxacin / Floxal (Baush & Lomb, Rochester, New-York, levofloxacin / Signicef (Sentiss Pharma, Gurgaon, India, moxifloxacin / Vigamox (Alcon, Fort Worth, Texas, gatifloxacin / Zymar (Allergan, Irvine, California, and tobramycin / Tobrex (Alcon, Fort Worth, Texas, were measured.Results. The analysis revealed that the most effective antibacterial drug against microbial isolates in children (i.e., Staphylococci spp. was levofloxacin. MIC for this agent against Streptococci spp. and Gram-negative microbes was low as well. Moxifloxacin is preferred for the treatment of ocular inflammation provoked by Streptococci spp. as MIC of this antimicrobial against Streptococci spp. was the lowest. MIC of ciprofloxacin against Gram-negative flora was the lowest. These data demonstrate generally recognized high efficacy of this drug. MIC value for tobramycin against all bacterial isolates was the highest.

  5. Antimicrobial resistance in wildlife

    OpenAIRE

    Vittecoq, M.; Godreuil, S.; Prugnolle, Franck; Durand, P.; Brazier, L; Renaud, N; Arnal, A.; Aberkane, S.; Jean-Pierre, H.; Gauthier-Clerc, M; Thomas, F.; Renaud, F.

    2016-01-01

    The spread of antimicrobial resistance is of major concern for human health and leads to growing economic costs. While it is increasingly hypothesized that wildlife could play an important role in antimicrobial-resistant bacteria dynamics, empirical data remain scarce. The present work builds on a systematic review of the available data in order to highlight the main information we have and to suggest research pathways that should be followed if we aim to fill the gaps in our current knowledg...

  6. Antimicrobial compounds in tears.

    Science.gov (United States)

    McDermott, Alison M

    2013-12-01

    The tear film coats the cornea and conjunctiva and serves several important functions. It provides lubrication, prevents drying of the ocular surface epithelia, helps provide a smooth surface for refracting light, supplies oxygen and is an important component of the innate defense system of the eye providing protection against a range of potential pathogens. This review describes both classic antimicrobial compounds found in tears such as lysozyme and some more recently identified such as members of the cationic antimicrobial peptide family and surfactant protein-D as well as potential new candidate molecules that may contribute to antimicrobial protection. As is readily evident from the literature review herein, tears, like all mucosal fluids, contain a plethora of molecules with known antimicrobial effects. That all of these are active in vivo is debatable as many are present in low concentrations, may be influenced by other tear components such as the ionic environment, and antimicrobial action may be only one of several activities ascribed to the molecule. However, there are many studies showing synergistic/additive interactions between several of the tear antimicrobials and it is highly likely that cooperativity between molecules is the primary way tears are able to afford significant antimicrobial protection to the ocular surface in vivo. In addition to effects on pathogen growth and survival some tear components prevent epithelial cell invasion and promote the epithelial expression of innate defense molecules. Given the protective role of tears a number of scenarios can be envisaged that may affect the amount and/or activity of tear antimicrobials and hence compromise tear immunity. Two such situations, dry eye disease and contact lens wear, are discussed here.

  7. Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections.

    Science.gov (United States)

    Ng, Victor W L; Chan, Julian M W; Sardon, Haritz; Ono, Robert J; García, Jeannette M; Yang, Yi Yan; Hedrick, James L

    2014-11-30

    The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Treatment with conventional antibiotics often leads to resistance development as the majority of these antibiotics act on intracellular targets, leaving the bacterial morphology intact. Thus, they are highly prone to develop resistance through mutation. Much effort has been made to develop macromolecular antimicrobial agents that are less susceptible to resistance as they function by microbial membrane disruption. Antimicrobial hydrogels constitute an important class of macromolecular antimicrobial agents, which have been shown to be effective in preventing and treating multidrug-resistant infections. Advances in synthetic chemistry have made it possible to tailor molecular structure and functionality to impart broad-spectrum antimicrobial activity as well as predictable mechanical and rheological properties. This has significantly broadened the scope of potential applications that range from medical device and implant coating, sterilization, wound dressing, to antimicrobial creams for the prevention and treatment of multidrug-resistant infections. In this review, advances in both chemically and physically cross-linked natural and synthetic hydrogels possessing intrinsic antimicrobial properties or loaded with antibiotics, antimicrobial polymers/peptides and metal nanoparticles are highlighted. Relationships between physicochemical properties and antimicrobial activity/selectivity, and possible antimicrobial mechanisms of the hydrogels are discussed. Approaches to mitigating toxicity of metal nanoparticles that are encapsulated in hydrogels are reviewed. In addition, challenges and future perspectives in the development of safe and effective antimicrobial hydrogel systems especially involving co-delivery of antimicrobial polymers/peptides and conventional antimicrobial agents for eventual clinical applications are presented.

  8. Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections.

    Science.gov (United States)

    Ng, Victor W L; Chan, Julian M W; Sardon, Haritz; Ono, Robert J; García, Jeannette M; Yang, Yi Yan; Hedrick, James L

    2014-11-30

    The rapid emergence of antibiotic resistance in pathogenic microbes is becoming an imminent global public health problem. Treatment with conventional antibiotics often leads to resistance development as the majority of these antibiotics act on intracellular targets, leaving the bacterial morphology intact. Thus, they are highly prone to develop resistance through mutation. Much effort has been made to develop macromolecular antimicrobial agents that are less susceptible to resistance as they function by microbial membrane disruption. Antimicrobial hydrogels constitute an important class of macromolecular antimicrobial agents, which have been shown to be effective in preventing and treating multidrug-resistant infections. Advances in synthetic chemistry have made it possible to tailor molecular structure and functionality to impart broad-spectrum antimicrobial activity as well as predictable mechanical and rheological properties. This has significantly broadened the scope of potential applications that range from medical device and implant coating, sterilization, wound dressing, to antimicrobial creams for the prevention and treatment of multidrug-resistant infections. In this review, advances in both chemically and physically cross-linked natural and synthetic hydrogels possessing intrinsic antimicrobial properties or loaded with antibiotics, antimicrobial polymers/peptides and metal nanoparticles are highlighted. Relationships between physicochemical properties and antimicrobial activity/selectivity, and possible antimicrobial mechanisms of the hydrogels are discussed. Approaches to mitigating toxicity of metal nanoparticles that are encapsulated in hydrogels are reviewed. In addition, challenges and future perspectives in the development of safe and effective antimicrobial hydrogel systems especially involving co-delivery of antimicrobial polymers/peptides and conventional antimicrobial agents for eventual clinical applications are presented. PMID:25450263

  9. Analysis of Drug Resistance and Resistant Genes of Salmonella toβ-lactams Antimicrobial Agents Isolated from Pigs in Guizhou Province%贵州省猪源沙门氏菌对β-内酰胺类药耐药性及耐药基因分析

    Institute of Scientific and Technical Information of China (English)

    曹正花; 谭艾娟; 吕世明; 王雄; 杜国琴

    2016-01-01

    In order to analyse the resistance toβ-lactams antimicrobial agents and the prevalence of resistant genes of Salmonella in Guizhou province,130 Salmonella strains were isolated and iden-tified from 9 different regions of scale pig farms.The drug sensitivity to 8 kinds ofβ-lactams anti-microbial agents were determined by using the broth microdilution method.Allβ-lactams resistant isolates were detected for the presences of TEM,OXA,CTX-M and SHV genes by PCR.The re-sults showed that drug resistance of Salmonella to the commonly usedβ-lactams antimicrobial agents was very serious,and the resistance rate to ceftazidime was the highest (100%),followed by ampicillin and amoxicillin,were 76.15% and 80.77%,respectively.The resistance rates of ceft-iofur and cephalexin were the lowest (46.15%).Salmonella strains were all of multiple drug re-sistance,of which double resistance was at lowest (2.31%),and eightfold resistance was highest (4.62%),multidrug resistance mainly concentrated in fourfold to sevenfold,accounted for 88.46%.PCR results showed that TEM,OXA,CTX-M genes detection rate were 85%,75% and 46%,respectively,while the SHV gene was not inspected.Resistant phenotype was basically con-sistent with resistant genes.The results indicated that the resistance of Salmonella stains from pig toβ-lactams antimicrobial agents were widespread,and ceftazidime was particularly serious. The TEM,OXA and CTX-M genes were mainly carriedβ-lactams resistant genes in Salmonella isolates from Guizhou province.It had a great relationship between the prevalence of resistance genes and growth of antimicrobial resistance.%为了解贵州省猪源沙门氏菌对β-内酰胺类抗菌药物耐药性及其耐药基因的流行情况,本试验从贵州省9个地区规模养猪场中分离鉴定130株沙门氏菌,采用微量肉汤稀释法测定其对常用的8种β-内酰胺类抗菌药物的敏感性,并用PCR法对β-内酰胺酶耐药基因进行检测。结果显示,沙门氏菌对常

  10. Mycoplasma bovis: Mechanisms of Resistance and Trends in Antimicrobial Susceptibility

    Science.gov (United States)

    Lysnyansky, Inna; Ayling, Roger D.

    2016-01-01

    Mycoplasma bovis is a cell-wall-less bacterium and belongs to the class Mollicutes. It is the most important etiological agent of bovine mycoplasmoses in North America and Europe, causing respiratory disease, mastitis, otitis media, arthritis, and reproductive disease. Clinical disease associated with M. bovis is often chronic, debilitating, and poorly responsive to antimicrobial therapy, resulting in significant economic loss, the full extent of which is difficult to estimate. Until M. bovis vaccines are universally available, sanitary control measures and antimicrobial treatment are the only approaches that can be used in attempts to control M. bovis infections. However, in vitro studies show that many of the current M. bovis isolates circulating in Europe have high minimum inhibitory concentrations (MIC) for many of the commercially available antimicrobials. In this review we summarize the current MIC trends indicating the development of antimicrobial resistance in M. bovis as well as the known molecular mechanisms by which resistance is acquired. PMID:27199926

  11. Antimicrobial compounds targeting Gram-negative bacteria in food: Their mode of action and combinational effects

    DEFF Research Database (Denmark)

    Hyldgaard, Morten

    2015-01-01

    compromising food shelf-life or safety. Natural antimicrobial compounds have therefore gained increased interest as a label-friendly alternative that can be added directly to food products. Although natural antimicrobials constitute an interesting source of compounds, it is often not understood how...... projects concerning the efficiency of combining natural antimicrobial agents in vitro or in a food matrix. In the first project, the action mechanism behind the natural antimicrobial cationic biopolymer ε-poly-L-lysine was studied against the Gram-positive Listeria innocua and the Gram-negative Escherichia...

  12. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine.

    Science.gov (United States)

    Garcia-Migura, Lourdes; Hendriksen, Rene S; Fraile, Lorenzo; Aarestrup, Frank M

    2014-05-14

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1 kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite the withdrawn of a specific antimicrobial from "on farm" use, persistence over the years of bacteria resistant to this particular antimicrobial agent, was still observed. There were also differences in trends of resistance associated to specific animal species. In order to correlate the use of antimicrobial agents to the presence of resistance, surveillance of antimicrobial consumption by animal species should be established. Subsequently, intervention strategies could be designed to minimize the occurrence of resistance.

  13. Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus

    Institute of Scientific and Technical Information of China (English)

    Hui ZHANG; Lu ZHANG; Li-juan PENG; Xiao-wu DONG; Di WU; Vivian Chi-Hua WU; Feng-qin FENG

    2012-01-01

    Fatty acids and derivatives (FADs) are resources for natural antimicrobials.In order to screen for additional potent antimicrobial agents,the antimicrobial activities of FADs against Staphylococcus aureus were examined using a microplate assay.Monoglycerides of fatty acids were the most potent class of fatty acids,among which monotridecanoin possessed the most potent antimicrobial activity.The conventional quantitative structure-activity relationship (QSAR) and comparative molecular field analysis (CoMFA) were performed to establish two statistically reliable models (conventional QSAR:R2=0.942,Q2LOO=0.910; CoMFA:R2=0.979,Q2=0.588,respectively).Improved forecasting can be achieved by the combination of these two models that provide a good insight into the structureactivity relationships of the FADs and that may be useful to design new FADs as antimicrobial agents.

  14. Gallium(iii) and iron(iii) complexes of quinolone antimicrobials.

    Science.gov (United States)

    Mjos, Katja Dralle; Cawthray, Jacqueline F; Polishchuk, Elena; Abrams, Michael J; Orvig, Chris

    2016-08-16

    Iron is an essential nutrient for many microbes. According to the "Trojan Horse Hypothesis", biological systems have difficulties distinguishing between Fe(3+) and Ga(3+), which constitutes the antimicrobial efficacy of the gallium(iii) ion. Nine novel tris(quinolono)gallium(iii) complexes and their corresponding iron(iii) analogs have been synthesized and fully characterized. Quinolone antimicrobial agents from three drug generations were used in this study: ciprofloxacin, enoxacin, fleroxacin, levofloxacin, lomefloxacin, nalidixic acid, norfloxacin, oxolinic acid, and pipemidic acid. The antimicrobial efficacy of the tris(quinolono)gallium(iii) complexes was studied against E. faecalis and S. aureus (both Gram-positive), as well as E. coli, K. pneumonia, and P. aeruginosa (all Gram-negative) in direct comparison to the tris(quinolono)iron(iii) complexes and the corresponding free quinolone ligands at various concentrations. For the tris(quinolono)gallium(iii) complexes, no combinational antimicrobial effects between Ga(3+) and the quinolone antimicrobial agents were observed. PMID:27315225

  15. Bioengineering of the lantibitoic nisin to create new antimicrobial functionalities

    NARCIS (Netherlands)

    Zhou, Liang

    2016-01-01

    The resistance of pathogens to traditional antibiotics enforces people to search for new antimicrobial agents. Lantibiotics are ribosomally synthesized and posttranslationally modified peptides. They can efficiently inhibit the growth of Gram-positive bacteria, by binding to lipid II and forming por

  16. Antimicrobial Resistance Spread and the Role of Mobile Genetic Elements

    NARCIS (Netherlands)

    M.A. Khan (Mushtaq Ahmad)

    2010-01-01

    textabstractAlexander Fleming discovered the first antimicrobial agent, penicillin (a β-lactam), in 1928 in the mold Penicillium notatum. Penicillin was initially found to be active against staphylococcal strains, which at that time were a major source of infectious diseases. Indeed, the mortality r

  17. Antimicrobial resistance among enterococci from pigs in three European countries

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hasman, Henrik; Jensen, Lars Bogø;

    2002-01-01

    Enterococci from pigs in Denmark, Spain, and Sweden were examined for susceptibility to antimicrobial agents and copper and the presence of selected resistance genes. The greatest levels of resistance were found among isolates from Spain and Denmark compared to those from Sweden, which correspond...

  18. The antimicrobial resistance crisis: causes, consequences and management.

    Directory of Open Access Journals (Sweden)

    Carolyn Anne Michael

    2014-09-01

    Full Text Available The Antimicrobial Resistance (AMR crisis is the increasing global incidence of infectious diseases affecting the human population, which are untreatable with any known antimicrobial agent. This crisis will have a devastating cost on human society as both debilitating and lethal diseases increase in frequency and scope. Three major factors determine this crisis: 1/ The increasing frequency of AMR phenotypes amongst microbes is an evolutionary response to the widespread use of antimicrobials. 2/ The large and globally connected human population allows pathogens in any environment access to all of humanity. 3/ The extensive and often unnecessary use of antimicrobials by humanity provides the strong selective pressure that is driving the evolutionary response in the microbial world. Of these factors, the size of the human population is least amenable to rapid change. In contrast the remaining two factors may be affected, so offering a means of managing the crisis: The rate at which AMR, as well as virulence factors evolve in microbial world may be slowed by reducing the applied selective pressure. This may be accomplished by radically reducing the global use of current and prospective antimicrobials. Current management measures to legislate the use of antimicrobials and to educate the healthcare world in the issues, while useful, have not comprehensively addressed the problem of achieving an overall reduction in the human use of antimicrobials. We propose that in addition to current measures and increased research into new antimicrobials and diagnostics, a comprehensive education programme will be required to change the public paradigm of antimicrobial usage from that of a first line treatment to that of a last resort when all other therapeutic options have failed.

  19. Resveratrol Antagonizes Antimicrobial Lethality and Stimulates Recovery of Bacterial Mutants.

    Science.gov (United States)

    Liu, Yuanli; Zhou, Jinan; Qu, Yilin; Yang, Xinguang; Shi, Guojing; Wang, Xiuhong; Hong, Yuzhi; Drlica, Karl; Zhao, Xilin

    2016-01-01

    Reactive oxygen species (ROS; superoxide, peroxide, and hydroxyl radical) are thought to contribute to the rapid bactericidal activity of diverse antimicrobial agents. The possibility has been raised that consumption of antioxidants in food may interfere with the lethal action of antimicrobials. Whether nutritional supplements containing antioxidant activity are also likely to interfere with antimicrobial lethality is unknown. To examine this possibility, resveratrol, a popular antioxidant dietary supplement, was added to cultures of Escherichia coli and Staphylococcus aureus that were then treated with antimicrobial and assayed for bacterial survival and the recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Resveratrol, at concentrations likely to be present during human consumption, caused a 2- to 3-fold reduction in killing during a 2-hr treatment with moxifloxacin or kanamycin. At higher, but still subinhibitory concentrations, resveratrol reduced antimicrobial lethality by more than 3 orders of magnitude. Resveratrol also reduced the increase in reactive oxygen species (ROS) characteristic of treatment with quinolone (oxolinic acid). These data support the general idea that the lethal activity of some antimicrobials involves ROS. Surprisingly, subinhibitory concentrations of resveratrol promoted (2- to 6-fold) the recovery of rifampicin-resistant mutants arising from the action of ciprofloxacin, kanamycin, or daptomycin. This result is consistent with resveratrol reducing ROS to sublethal levels that are still mutagenic, while the absence of resveratrol allows ROS levels to high enough to kill mutagenized cells. Suppression of antimicrobial lethality and promotion of mutant recovery by resveratrol suggests that the antioxidant may contribute to the emergence of resistance to several antimicrobials, especially if new derivatives and/or formulations of resveratrol markedly increase bioavailability. PMID:27045517

  20. Strategies for antimicrobial drug delivery to biofilm.

    Science.gov (United States)

    Martin, Claire; Low, Wan Li; Gupta, Abhishek; Amin, Mohd Cairul Iqbal Mohd; Radecka, Iza; Britland, Stephen T; Raj, Prem; Kenward, Ken M A

    2015-01-01

    Biofilms are formed by the attachment of single or mixed microbial communities to a variety of biological and/or synthetic surfaces. Biofilm micro-organisms benefit from many advantages of the polymicrobial environment including increased resistance against antimicrobials and protection against the host organism's defence mechanisms. These benefits stem from a number of structural and physiological differences between planktonic and biofilm-resident microbes, but two main factors are the presence of extracellular polymeric substances (EPS) and quorum sensing communication. Once formed, biofilms begin to synthesise EPS, a complex viscous matrix composed of a variety of macromolecules including proteins, lipids and polysaccharides. In terms of drug delivery strategies, it is the EPS that presents the greatest barrier to diffusion for drug delivery systems and free antimicrobial agents alike. In addition to EPS synthesis, biofilm-based micro-organisms can also produce small, diffusible signalling molecules involved in cell density-dependent intercellular communication, or quorum sensing. Not only does quorum sensing allow microbes to detect critical cell density numbers, but it also permits co-ordinated behaviour within the biofilm, such as iron chelation and defensive antibiotic activities. Against this backdrop of microbial defence and cell density-specific communication, a variety of drug delivery systems have been developed to deliver antimicrobial agents and antibiotics to extracellular and/or intracellular targets, or more recently, to interfere with the specific mechanisms of quorum sensing. Successful delivery strategies have employed lipidic and polymeric-based formulations such as liposomes and cyclodextrins respectively, in addition to inorganic carriers e.g. metal nanoparticles. This review will examine a range of drug delivery systems and their application to biofilm delivery, as well as pharmaceutical formulations with innate antimicrobial properties

  1. Antimicrobial prophylaxis in minor and major surgery.

    Science.gov (United States)

    Bassetti, M; Righi, E; Astilean, A; Corcione, S; Petrolo, A; Farina, E C; De Rosa, F G

    2015-01-01

    Surgical site infections (SSIs) are a frequent cause of morbidity following surgical procedures. Gram-positive cocci, particularly staphylococci, cause many of these infections, although Gram-negative organisms are also frequently involved. The risk of developing a SSI is associated with a number of factors, including aspects of the operative procedure itself, such as wound classification, and patient-related variables, such as preexisting medical conditions. Antimicrobial prophylaxis (AP) plays an important role in reducing SSIs, especially if patient-related risk factors for SSIs are present. The main components of antimicrobial prophylaxis are: timing, selection of drugs and patients, duration and costs. Compliance with these generally accepted preventive principles may lead to overall decreases in the incidence of these infections. Ideally the administration of the prophylactic agent should start within 30 minutes from the surgical incision. The duration of the AP should not exceed 24 hours for the majority of surgical procedures. The shortest effective period of prophylactic antimicrobial administration is not known and studies have demonstrated that post-surgical antibiotic administration is unnecessary. Furthermore, there were no proven benefits in multiple dose regimens when compared to single-dose regimens. The choice of an appropriate prophylactic antimicrobial agent should be based primarily on efficacy and safety. Broad spectrum antibiotics should be avoided due to the risk of promoting bacterial resistance. Cephalosporins are the most commonly used antibiotics in surgical prophylaxis; specifically, cefazolin or cefuroxime are mainly used in the prophylaxis regimens for cardio-thoracic surgery, vascular surgery, hip or knee arthroplasty surgery, neurosurgical procedures and gynecologic and obstetric procedures. A review of the prophylactic regimens regarding the main surgical procedures is presented. PMID:24561611

  2. Antimicrobials, stress and mutagenesis.

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    2014-10-01

    Full Text Available Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes whereas antibiotics are mostly employed by microorganisms. As antimicrobial peptides (AMPs mostly target the cell wall, a microbial 'Achilles heel', it has been proposed that bacterial resistance evolution is very unlikely and hence AMPs are ancient 'weapons' of multicellular organisms. Here we provide a new hypothesis to explain the widespread distribution of AMPs amongst multicellular organism. Studying five antimicrobial peptides from vertebrates and insects, we show, using a classic Luria-Delbrück fluctuation assay, that cationic antimicrobial peptides (AMPs do not increase bacterial mutation rates. Moreover, using rtPCR and disc diffusion assays we find that AMPs do not elicit SOS or rpoS bacterial stress pathways. This is in contrast to the main classes of antibiotics that elevate mutagenesis via eliciting the SOS and rpoS pathways. The notion of the 'Achilles heel' has been challenged by experimental selection for AMP-resistance, but our findings offer a new perspective on the evolutionary success of AMPs. Employing AMPs seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs.

  3. Surveillance of antimicrobial resistance in Escherichia coli strains isolated from pigs at Spanish slaughterhouses.

    Science.gov (United States)

    Teshager, T; Herrero, I A; Porrero, M C; Garde, J; Moreno, M A; Domínguez, L

    2000-07-01

    Antimicrobial resistance can make the efficient treatment of bacterial infections in humans and animals more difficult. Antimicrobial use in food animals may be one of the factors contributing to resistance. The Spanish surveillance network VAV has established a baseline of antimicrobial resistance in Escherichia coli strains from healthy pigs. Minimum inhibitory concentration and patterns of resistance to antimicrobials used in animals and humans were determined for 205 faecal strains isolated in a sampling frame of four slaughterhouses in Spain from 220 pigs in 1998. Higher levels of resistance were seen against antimicrobial agents authorised for use in food animals especially tetracycline, sulphonamides, trimethoprim and amoxycillin. All isolates were susceptible to antimicrobials employed mainly in humans such as ceftazidime, cefotaxime, imipenem, aztreonam and amikacin.

  4. Antimicrobial stewardship: Limits for implementation

    NARCIS (Netherlands)

    Sinha, Bhanu

    2014-01-01

    Antibiotic stewardship programme (ASP) is a multifaceted approach to improve patients' clinical outcomes, prevent the emergence of antimicrobial resistance, and reduce hospital costs by prudent and focused antimicrobial use. Development of local treatment guidelines according to local ecology, rapid

  5. Resistance Index of Penicillin-Resistant Bacteria to Various Physicochemical Agents

    OpenAIRE

    M Kazemi; Kasra Kermanshahi, R.; Heshmat Dehkordi, E.; F. Payami; Behjati, M

    2012-01-01

    Widespread use of various antimicrobial agents resulted in the emergence of bacterial resistance. Mechanisms like direct efflux, formation, and sequestration of metals and drugs in complexes and antiporter pumps are some examples. This investigation aims to investigate the resistance pattern of penicillin-resistant bacterial strains to some physicochemical agents. Sensitivity/resistance pattern of common bacterial strains to antimicrobial agents were evaluated by disk diffusion assay. Broth a...

  6. Learning from agriculture: understanding low-dose antimicrobials as drivers of resistome expansion

    Directory of Open Access Journals (Sweden)

    Yaqi eYou

    2014-06-01

    Full Text Available Antimicrobial resistance is a growing public health challenge worldwide, with agricultural use of antimicrobials being one major contributor to the emergence and dissemination of antimicrobial resistance. Globally, most antimicrobials are used in industrial food animal production, a major context for microbiomes encountering low-doses or subtherapeutic-levels of antimicrobial agents from all mechanistic classes. This modern practice exerts broad eco-evolutionary effects on the gut microbiome of food animals, which is subsequently transferred to animal waste. This waste contains complex constituents that are challenging to treat, including antimicrobial resistance determinants and low-dose antimicrobials. Unconfined storage or land deposition of a large volume of animal waste causes its wide contact with the environment and drives the expansion of the environmental resistome through mobilome facilitated horizontal genet transfer. The expanded environmental resistome, which encompasses both natural constituents and anthropogenic inputs, can persist under multiple stressors from agriculture and may re-enter humans, thus posing a public health risk to humans. For these reasons, this review focuses on agricultural antimicrobial use as a laboratory for understanding low-dose antimicrobials as drivers of resistome expansion, briefly summarizes current knowledge on this topic, highlights the importance of research specifically on environmental microbial ecosystems considering antimicrobial resistance as environmental pollution, and calls attention to the needs for longitudinal studies at the systems level.

  7. Antimicrobial Graft Copolymer Gels.

    Science.gov (United States)

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  8. Optimizing antimicrobial therapy in children.

    Science.gov (United States)

    Long, Sarah S

    2016-07-01

    Management of common infections and optimal use of antimicrobial agents are presented, highlighting new evidence from the medical literature that enlightens practice. Primary therapy of staphylococcal skin abscesses is drainage. Patients who have a large abscess (>5 cm), cellulitis or mixed abscess-cellulitis likely would benefit from additional antibiotic therapy. When choosing an antibiotic for outpatient management, the patient, pathogen and in vitro drug susceptibility as well as tolerability, bioavailability and safety characteristics of antibiotics should be considered. Management of recurrent staphylococcal skin and soft tissue infections is vexing. Focus is best placed on reducing density of the organism on the patient's skin and in the environment, and optimizing a healthy skin barrier. With attention to adherence and optimal dosing, acute uncomplicated osteomyelitis can be managed with early transition from parenteral to oral therapy and with a 3-4 week total course of therapy. Doxycycline should be prescribed when indicated for a child of any age. Its use is not associated with dental staining. Azithromycin should be prescribed for infants when indicated, whilst being alert to an associated ≥2-fold excess risk of pyloric stenosis with use under 6 weeks of age. Beyond the neonatal period, acyclovir is more safely dosed by body surface area (not to exceed 500 mg/m(2)/dose) than by weight. In addition to the concern of antimicrobial resistance, unnecessary use of antibiotics should be avoided because of potential later metabolic effects, thought to be due to perturbation of the host's microbiome. PMID:27263076

  9. ANTIMICROBIAL, PHYSICAL AND CHEMICAL QUALITIES OF MEDICINAL ANTISEPTIC DRUGS

    Directory of Open Access Journals (Sweden)

    Paliy D. V.

    2014-12-01

    Full Text Available In our research results of the study of antimicrobial, physical and chemical qualities of antiseptic medicines of decamethoxin (DCM. Antimicrobial activity of DCM, palisan, decasan, deseptol against srains of S.aureus (n 56, S.epidermidis (n 26, E.coli (n 24, P.mirabilis (n 11, P.vulgaris (n 8 was studied by means of method of serial dilutions. Obtained data of mass spectrometry study of antimicrobial compositions with constant concentrations of DCM have shown that medicinal forms of DCM are complex physical and chemical systems, because of different origin and number of adjuvant ingredients used during their fabrication. Among synthetic quaternary ammonium agents there have been found the substance (commercial name of medicine is decamethoxin to have high antimicrobial activity against strains of grampositive and gram-negative microorganisms, an also C.albicans. There was found that antimicrobial activity of antiseptic palisan had been higher comparably to DCM in equivalent concentration. The composition and concentrations of acting agents and the methodology of preparation of palisan have been substantiated on the basis of microbiological, mass spectrometry characteristics of antiseptics DCM, palisan.

  10. Antimicrobial Lemongrass Essential Oil—Copper Ferrite Cellulose Acetate Nanocapsules

    Directory of Open Access Journals (Sweden)

    Ioannis L. Liakos

    2016-04-01

    Full Text Available Cellulose acetate (CA nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs, with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  11. Antimicrobial resistance trends among canine Escherichia coli isolates obtained from clinical samples in the northeastern USA, 2004–2011

    OpenAIRE

    Cummings, Kevin J.; Aprea, Victor A.; Altier, Craig

    2015-01-01

    Our objectives were to describe the antimicrobial susceptibility of Escherichia coli isolates from dogs in the northeastern USA and to identify temporal trends in resistance to selected antimicrobial agents. Data were collected retrospectively for all canine E. coli isolates from clinical samples submitted to Cornell University’s Animal Health Diagnostic Center between January 1, 2004 and December 31, 2011. Antimicrobial susceptibility testing was performed on 3519 canine E. coli isolates; fr...

  12. Differential roles of antimicrobials in the acquisition of drug resistance through activation of the SOS response in Acinetobacter baumannii.

    Science.gov (United States)

    Jara, Luis M; Cortés, Pilar; Bou, Germán; Barbé, Jordi; Aranda, Jesús

    2015-07-01

    The effect of antimicrobials on SOS-mediated mutagenesis induction depends on the bacterial species and the antimicrobial group. In this work, we studied the effect of different families of antimicrobial agents used in clinical therapy against Acinetobacter baumannii in the induction of mutagenesis in this multiresistant Gram-negative pathogen. The data showed that ciprofloxacin and tetracycline induce SOS-mediated mutagenesis, whereas colistin and meropenem, which are extensively used in clinical therapy, do not.

  13. Comparison of antimicrobial substantivity of root canal irrigants in instrumented root canals up to 72 h: An in vitro study

    OpenAIRE

    M N Shahani; Subba Reddy, V. V.

    2011-01-01

    Disinfection of the root canal system is one of the primary aims of root canal treatment. This can be achieved through the use of various antimicrobial agents in the form of irrigants and medicaments. The antimicrobial substantivity of 2% chlorhexidine gluconate, 1% povidone iodine, 2.5% hydrogen peroxide followed by 2% sodium hypochlorite, and 2% sodium hypochlorite alone as irrigants was assessed in instrumented root canals. 2% chlorhexidine showed antimicrobial substantivity lasting up to ...

  14. Antimicrobial property of zinc based nanoparticles

    Science.gov (United States)

    Chiriac, V.; Stratulat, D. N.; Calin, G.; Nichitus, S.; Burlui, V.; Stadoleanu, C.; Popa, M.; Popa, I. M.

    2016-06-01

    Pathogen bacteria strains with wide spectrum can cause serious infections with drastic damages on humans. There are studies reflecting antibacterial effect of nanoparticles type metal or metal oxides as an alternative or concurrent treatment to the diseases caused by infectious agents. Synthesised nanoparticles using different methods like sol-gel, hydrothermal or plant extraction were tested following well-established protocols with the regard to their antimicrobial activity. It was found that zinc based nanoparticles possess strong synergistic effect with commonly used antibiotics on infection tratment.

  15. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... En Español Search FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, ... Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of ...

  16. Antimicrobial properties of berries

    OpenAIRE

    Puupponen-Pimiä, Riitta

    2007-01-01

    Berries, especially their antimicrobial properties, have been studied intensively at VTT over the past ten years in several research projects. In these in vitro studies phenolic berry extracts of common Nordic berries selectively inhibited the growth of harmful bacteria and human intestinal pathogens, without affecting the growth of beneficial lactic acid bacteria.

  17. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection

    Science.gov (United States)

    Melvin, Jeffrey A.; Lashua, Lauren P.; Kiedrowski, Megan R.; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C.

    2016-01-01

    ABSTRACT Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms

  18. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection.

    Science.gov (United States)

    Melvin, Jeffrey A; Lashua, Lauren P; Kiedrowski, Megan R; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C; Bomberger, Jennifer M

    2016-01-01

    Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms formed by the

  19. High Antimicrobial Activity and Low Human Cell Cytotoxicity of Core-Shell Magnetic Nanoparticles Functionalized with an Antimicrobial Peptide.

    Science.gov (United States)

    Maleki, Hajar; Rai, Akhilesh; Pinto, Sandra; Evangelista, Marta; Cardoso, Renato M S; Paulo, Cristiana; Carvalheiro, Tiago; Paiva, Artur; Imani, Mohammad; Simchi, Abdolreza; Durães, Luísa; Portugal, António; Ferreira, Lino

    2016-05-11

    Superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with antimicrobial agents are promising infection-targeted therapeutic platforms when coupled with external magnetic stimuli. These antimicrobial nanoparticles (NPs) may offer advantages in fighting intracellular pathogens as well as biomaterial-associated infections. This requires the development of NPs with high antimicrobial activity without interfering with the biology of mammalian cells. Here, we report the preparation of biocompatible antimicrobial SPION@gold core-shell NPs based on covalent immobilization of the antimicrobial peptide (AMP) cecropin melittin (CM) (the conjugate is named AMP-NP). The minimal inhibitory concentration (MIC) of the AMP-NP for Escherichia coli was 0.4 μg/mL, 10-times lower than the MIC of soluble CM. The antimicrobial activity of CM depends on the length of the spacer between the CM and the NP. AMP-NPs are taken up by endothelial (between 60 and 170 pg of NPs per cell) and macrophage (between 18 and 36 pg of NPs per cell) cells and accumulate preferentially in endolysosomes. These NPs have no significant cytotoxic and pro-inflammatory activities for concentrations up to 200 μg/mL (at least 100 times higher than the MIC of soluble CM). Our results in membrane models suggest that the selectivity of AMP-NPs for bacteria and not eukaryotic membranes is due to their membrane compositions. The AMP-NPs developed here open new opportunities for infection-site targeting. PMID:27074633

  20. Electrospun biodegradable polymers loaded with bactericide agents

    Directory of Open Access Journals (Sweden)

    Ramaz Katsarava

    2016-03-01

    Full Text Available Development of materials with an antimicrobial activity is fundamental for different sectors, including medicine and health care, water and air treatment, and food packaging. Electrospinning is a versatile and economic technique that allows the incorporation of different natural, industrial, and clinical agents into a wide variety of polymers and blends in the form of micro/nanofibers. Furthermore, the technique is versatile since different constructs (e.g. those derived from single electrospinning, co-electrospinning, coaxial electrospinning, and miniemulsion electrospinning can be obtained to influence the ability to load agents with different characteristics and stability and to modify the release behaviour. Furthermore, antimicrobial agents can be loaded during the electrospinning process or by a subsequent coating process. In order to the mitigate burst release effect, it is possible to encapsulate the selected drug into inorganic nanotubes and nanoparticles, as well as in organic cyclodextrine polysaccharides. In the same way, processes that involve covalent linkage of bactericide agents during surface treatment of electrospun samples may also be considered. The present review is focused on more recent works concerning the electrospinning of antimicrobial polymers. These include chitosan and common biodegradable polymers with activity caused by the specific load of agents such as metal and metal oxide particles, quaternary ammonium compounds, hydantoin compounds, antibiotics, common organic bactericides, and bacteriophages.

  1. Antimicrobial decision making for enteric diseases of cattle.

    Science.gov (United States)

    Smith, Geof

    2015-03-01

    Diarrhea in neonatal and adult cattle is common and can be caused by several etiologic agents. As diagnostic testing is not always readily available, practitioners must often decide on a course of treatment based on knowledge of the likely pathogen and their own clinical experience. Antimicrobials have long been used to treat diarrhea in adults and neonates; however, there is increased pressure to prevent unnecessary use of antibiotics in food animal species. This article reviews existing data on the use of antibiotics given to cattle with enteric diseases to decide when they are necessary and which antimicrobials should be used. PMID:25705025

  2. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    Science.gov (United States)

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  3. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Amber Farooqui

    Full Text Available Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  4. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    Science.gov (United States)

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens. PMID:25719410

  5. Biocidal polymers: synthesis and antimicrobial properties of benzaldehyde derivatives immobilized onto amine-terminated polyacrylonitrile

    Directory of Open Access Journals (Sweden)

    Alamri Abdullah

    2012-10-01

    Full Text Available Abstract Background The design and applications of antimicrobial polymers is a growing field. Antimicrobial polymers can help to solve the problems associated with the use of conventional antimicrobial agents. Polymers with active functional groups can act as a carrier system for antimicrobial agents. In our study, we aim to prepare and develop some antimicrobial polymers for biomedical applications and water treatment. Results The antimicrobial polymers based on polyacrylonitrile (PAN were prepared. Functional groups were created onto polyacrylonitrile via amination using different types of diamines such as ethylenediamine (EDA and hexamethylenediamine (HMDA to yield amine-terminated polymers. Antimicrobial polymers were obtained by immobilization of benzaldehyde and its derivatives which include, 4-hydroxybenzaldehyde and 2,4-dihydroxybenzaldehyde onto amine-terminated polymers. The antimicrobial activity of the prepared polymers against different types of microorganisms including Gram-positive bacteria (Staphylococcus aureus, Gram-negative bacteria (Pseudomonas aeruginosa; Escherichia coli; and Salmonella typhi as well as fungi (Aspergillus flavus, Aspergillus niger, Candida albicans, Cryptpcoccus neoformans were explored by the cut plug method and viable cell counting methods. Conclusions Amine-terminated polyacrylonitrile were used as a novel polymeric carrier for benzaldehyde derivatives as antimicrobial agents. The prepared polymers can inhibit the growth of the microorganisms. The activity was varied according to the tested microorganism as well as the polymer microstructure. It was found that the activity increased with increasing the number phenolic hydroxyl group of the bioactive group. Finally, it is anticipated that the prepared antimicrobial polymers would be of great help in the field of biomedical applications and biological water treatment.

  6. Antimicrobial phenolic compounds from Anabasis aphylla L.

    Science.gov (United States)

    Du, Hua; Wang, Ye; Hao, Xiaojiang; Li, Chun; Peng, Youliang; Wang, Jihua; Liu, Hao; Zhou, Ligang

    2009-03-01

    Bioassay-guided fractionation of an ethyl acetate extract from the aerial parts of Anabasis aphylla, a Chenopodiaceous species widely distributed in the northwest of China, led to the isolation of six phenolic compounds, which were identified by means of spectrometric analysis as 1-(2-hydroxy-4,6-dimethoxyphenyl)-ethanone (1), 3,4-dihydroxy cinnamic acid tetracosyl ester (2), 4-hydroxy-3-methoxy benzoic acid (3), 2-hydroxy benzoic acid (4), 3,4-dihydroxy cinnamic acid methyl ester (5) and 4-hydroxy benzoic acid pentadecane ester (6). These compounds were further screened for their minimum inhibitory concentration (MIC) and median inhibitory concentration (IC50) by use of the micro-dilution-MTT assay for antimicrobial activity against one Gram-positive bacterium (Bacillus subtilis), three Gram-negative bacteria (Agrobacterium tumefaciens, Pseudomonas lachrymans, and Xanthomonas vesicatoria), and one yeast (Candida albicans). Apart from compound 6, which had no activity against any of the tested microorganisms, the other compounds showed selective inhibitory activity. This is the first report on the antimicrobial activity of the phenolic compounds isolated from A. aphylla. The obtained results provide promising baseline information for the potential use of the extract and some isolated compounds from this plant as antimicrobial agents to control plant and animal diseases. PMID:19413118

  7. Resistance to Antimicrobial Peptides in Vibrios

    Directory of Open Access Journals (Sweden)

    Delphine Destoumieux-Garzón

    2014-10-01

    Full Text Available Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.

  8. Study on antimicrobial effects of single herbs in wet Ruchuang Bingmi hydropathic compress agent%褥疮冰蜜湿敷剂中单味药的抗菌实验研究

    Institute of Scientific and Technical Information of China (English)

    饶军英; 金必成; 周燕; 马凯; 韩志

    2015-01-01

    Objective To study the antibacterial effect of borneol, honey, gentamicin in Ruchuang Bingmi hydropathic compress agent.Method Staphylococcus aureus(S.aureus), Escherichia coli(E.coli), Pseudomonas aeruginosa(P.aeruginosa) were used to produce the third phase of infection decubitus animal models, respectively.Vaseline as the control group, divided into 12 groups:Vaseline-S.aureus, Vaseline-E.coli, Vaseline-P.aeruginosa;Honey-S.aureus,Honey-E.coli,Honey-P.aeruginosa;Borneol -S.aureus;Borneol -E.coli;Borneol-P.aeruginosa;Gentamicin-S.aureus;Gentamicin-E.coli;Gentamicin-P.aeruginosa;6 rabbits in each group.Honey, borneol, gentamicin was made into a gauze in treatment for decubitus .Organizations do strain identification and colony counts was observed before and after taking the treatment.ResuIts Borneol group ( F =11.059,P<0.01).,there was differences of each groups count cultured by borneol;Time ×Strains(F=11.281,P=0.009),there was no significant interaction between the two groups;gentamicin(F=7.99,P=0.000),gentamicin culture showed a difference in each group count;Time ×Strains(F=12.531, P<0.07),interaction between the two groups showed significant.Borneol has no antibacterial effects on P.aeruginosa , had a certain antibacterial activityon S.aureus and E coli;gentamicin had good antibacterial effect on the three kinds of bacteria, and against P.aeruginosa was particularly significant.ConcIusion The antibacterial activity of gentamicin is better than single herbs borneol in Ruchuang Bingmi hydropathic compress agent, honey has no antibacterial effect.%目的:研究褥疮冰蜜湿敷剂中冰片、蜂蜜、庆大霉素单味药间的抗菌作用。方法用金黄色葡萄球菌( Staphylococcus aureus,S.aureus)、大肠杆菌(Escherichia coli ,E.coli)、铜绿假单孢杆菌(Pseudomonas aeruginosa,P.aeruginosa)分别制作三期感染褥疮动物模型,以凡士林为对照组,分为12组,即凡士林-S.aureus组,凡士林-E

  9. Staphylococcus aureus: incidência e resistência antimicrobiana em abscessos cutâneos de origem comunitária Staphylococcus aureus: etiology and susceptibility profile to antimicrobial agents of skin and subcutaneous cell tissue abscesses from community infections

    Directory of Open Access Journals (Sweden)

    Martin Zavadinack Netto

    2002-03-01

    profilaxia ou tratamento de infecções por S.aureus, mesmo aqueles de origem comunitária.An analysis of Staphylococcus aureus (Monera, an etiological agent of community infections, is provided. Staphylococcus aureus causes the formation of skin and subcutaneous cell tissue abscesses. Susceptibility profile to antimicrobials used in prophylaxis or therapy of these cutaneous infections will be given. One hundred and seven samples of secretions were collected from January 1996 through July 1997 at the emergency sector of University Hospital of the State University of Maringá, Maringá, state of Paraná, Brazil, from infected patients with skin and subcutaneous cell tissue abscesses. Microbiological evaluation was carried out according to Bayle and susceptibility to antimicrobial was evaluated in vitro through the technique of diffusion in agar according to Kirby. Sixteen antimicrobials used in prophylaxis or therapy of skin and subcutaneous cell tissue infections were evaluated. From the one hundred and seven clinical samples collected from patients complaining of infections with skin and subcutaneous cell tissue abscesses, 71 (66.35% were positive to S.aureus and 36 (33,65% were either positive for other microorganisms, or tested negative. In the evaluation of susceptibility to S.aureus a higher sensitivity to vancomycin (100%, teicoplanin (100%, amikacin (100%, cefoxitin (100%, cephalothin (98.53%, lincomycin (98.53%, gentamicin (98.53%, oxacillin (96,4%, norfloxacin (95.77% and sulfazotrin (95.77% was found when compared to penicillin G (08.45%, ampicillin (08.45%, kanamycin (81,69%, erythromycin (88.41%, tetracycline (90.14 and chloramphenicol (94,36%. Results show that S.aureus is the most frequently isolated microorganism from community infections with skin and subcutaneous tissue abscesses. The susceptibility profile evidences high resistance to penicillins, which restricts the use of these antimicrobials as an alternative in the prophylaxis or treatment of S

  10. ANTIMICROBIAL REAGENTS AS FUNCTIONAL FINISHING FOR TEXTILES INTENDED FOR BIOMEDICAL APPLICATIONS. I. SYNTHETIC ORGANIC COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Madalina Zanoaga

    2014-06-01

    Full Text Available This article offers an overview of some contemporary antimicrobial (biocides and biostatics agents used as functional finishing for textiles intended for biomedical applications. It reviews only synthetic agents, namely quaternary ammonium compounds, halogenated phenols, polybiguanides, N-halamines, and renewable peroxides, as a part of an extensive study currently in progress.

  11. Antimicrobial resistance in Libya: 1970-2011.

    Science.gov (United States)

    Ghenghesh, Khalifa Sifaw; Rahouma, Amal; Tawil, Khaled; Zorgani, Abdulaziz; Franka, Ezzedin

    2013-01-01

    Resistance to antimicrobial agents is a major health problem that affects the whole world. Providing information on the past state of antimicrobial resistance in Libya may assist the health authorities in addressing the problem more effectively in the future. Information was obtained mainly from Highwire Press (including PubMed) search for the period 1970-2011 using the terms 'antibiotic resistance in Libya', 'antimicrobial resistance in Libya', 'tuberculosis in Libya', and 'primary and acquired resistance in Libya' in title and abstract. From 1970 to 2011 little data was available on antimicrobial resistance in Libya due to lack of surveillance and few published studies. Available data shows high resistance rates for Salmonella species in the late 1970s and has remained high to the present day. High prevalence rates (54-68%) of methicillin-resistant Staphylococcus aureus (MRSA) were reported in the last decade among S. aureus from patients with burns and surgical wound infections. No reports were found of vancomycin-resistant S. aureus (VRSA) or vancomycin-intermediate-resistant S. aureus (VISA) using standard methods from Libya up to the end of 2011. Reported rates of primary (i.e. new cases) and acquired (i.e. retreatment cases) multidrug-resistant tuberculosis (MDR-TB) from the eastern region of Libya in 1971 were 16.6 and 33.3% and in 1976 were 8.6 and 14.7%, in western regions in 1984-1986 were 11 and 21.5% and in the whole country in 2011 were estimated at 3.4 and 29%, respectively. The problem of antibiotic resistance is very serious in Libya. The health authorities in particular and society in general should address this problem urgently. Establishing monitoring systems based on the routine testing of antimicrobial sensitivity and education of healthcare workers, pharmacists, and the community on the health risks associated with the problem and benefits of prudent use of antimicrobials are some steps that can be taken to tackle the problem in the future.

  12. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002–2004

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Mevius, Dik J; Schroeter, Andreas;

    2008-01-01

    from 13 European countries. For Staphylococcus aureus from bovine mastitis major differences were apparent in the occurrence of resistance between countries and between the different antimicrobial agents tested. The highest frequency of resistance was observed for penicillin. For Mannheimia haemolytica...

  13. Campylobacter MLST Subtypes and Antimicrobial Susceptibility of Broiler Cecal Isolates: A Two Year Study from 142 Commercial Flocks

    Science.gov (United States)

    Introduction: Campylobacter spp. are recognized as important agents of human foodborne gastroenteritis. To monitor trends in food safety and public health, antimicrobial susceptibility testing of Campylobacter derived from poultry products and infected patients has become common practice in both r...

  14. Synthesis and antimicrobial effects of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    S kheybari

    2010-09-01

    Full Text Available "n  "n "nBackground and the purpose of the study:The most prominent nanoparticles for medical uses are nanosilver particles which are famous for their high anti-microbial activity. Silver ion has been known as a metal ion that exhibit anti-mold, anti-microbial and anti-algal properties for a long time. In particular, it is widely used as silver nitrate aqueous solution which has disinfecting and sterilizing actions. The purpose of this study was to evaluate the antimicrobial activity as well as physical properties of the silver nanoparticles prepared by chemical reduction method. "nMethods:Silver nanoparticles (NPs were prepared by reduction of silver nitrate in the presence of a reducing agent and also poly [N-vinylpyrolidone] (PVP as a stabilizer. Two kinds of NPs were synthesized by ethylene glycol (EG and glucose as reducing agent. The nanostructure and particle size of silver NPs were confirmed by scanning electron microscopy (SEM and laser particle analyzer (LPA. The formations of the silver NPs were monitored using ultraviolet-visible spectroscopy. The anti-bacterial activity of silver NPs were assessed by determination of their minimum inhibitory concentrations (MIC against the Gram positive (Staphylococcus aureus and Staphylococcus epidermidis as well as Gram-negative (Escherichia coli and Pseudomonas aeruginosa bacteria. "nResults and Conclusion:The silver nanoparticles were spherical with particle size between 10 to 250 nm. Analysis of the theoretical (Mie light scattering theory and experimental results showed that the silver NPs in colloidal solution had a diameter of approximately 50 nm. "nBoth colloidal silver NPs showed high anti-bacterial activity against Gram positive and Gram negative bacteria. Glucose nanosilver colloids showed a shorter killing time against most of the tested bacteria which could be due to their nanostructures and uniform size distribution patterns.

  15. Antimicrobial peptides in Echinoderms

    Directory of Open Access Journals (Sweden)

    C Li

    2010-05-01

    Full Text Available Antimicrobial peptides (AMPs are important immune effector molecules for invertebrates, including echinoderms, which lack a vertebrate-type adaptive immune system. Here we summarize the knowledge of such peptides in echinoderms. Strongylocins are a novel family of cysteine-rich AMPs, recently identified in the sea urchins, Strongylocentrotus droebachiensis and S. purpuratus. Although these molecules present diverse amino acid sequences, they share an identical cysteine arrangement pattern, dissimilar to other known AMPs. A family of heterodimeric AMPs, named centrocins, are also present in S. droebachiensis. Lysozymes and fragments of larger proteins, such as beta-thymocins, actin, histone 2A and filamin A have also been shown to display antimicrobial activities in echinoderms. Future studies on AMPs should be aimed in revealing how echinoderms use these AMPs in the immune response against microbial pathogens.

  16. The global threat of antimicrobial resistance: science for intervention

    Directory of Open Access Journals (Sweden)

    I. Roca

    2015-07-01

    Full Text Available In the last decade we have witnessed a dramatic increase in the proportion and absolute number of bacterial pathogens resistant to multiple antibacterial agents. Multidrug-resistant bacteria are currently considered as an emergent global disease and a major public health problem. The B-Debate meeting brought together renowned experts representing the main stakeholders (i.e. policy makers, public health authorities, regulatory agencies, pharmaceutical companies and the scientific community at large to review the global threat of antibiotic resistance and come up with a coordinated set of strategies to fight antimicrobial resistance in a multifaceted approach. We summarize the views of the B-Debate participants regarding the current situation of antimicrobial resistance in animals and the food chain, within the community and the healthcare setting as well as the role of the environment and the development of novel diagnostic and therapeutic strategies, providing expert recommendations to tackle the global threat of antimicrobial resistance.

  17. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Carmen Steluta Ciobanu

    2013-01-01

    Full Text Available The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO46(OH2 nanoparticles (Ag:HAp-NPs for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.

  18. Development of antimicrobial cotton fabrics using herb loaded nanoparticles.

    Science.gov (United States)

    Rajendran, R; Radhai, R; Kotresh, T M; Csiszar, Emilia

    2013-01-16

    In the present work ethanol, methanol, petroleum ether and water extracts of the leaves of Ocimum sanctum were screened for their anti-microbial activity by using the agar diffusion method. The minimum inhibitory concentration of the extracts was also measured. The methanol extracts O. sanctum proved to have the maximum antimicrobial effect were loaded inside the sodium alginate chitosan nanoparticles by cation induced controlled gelification method and finished on cotton fabric by pad dry cure method. The average particle size of the nanoparticles was calculated using dynamic light scattering technique. The antimicrobial activity of the fabrics was assessed by using the standard AATCC technique (AATCC 100). The quantitative tests proved that cotton fabrics finished with the methanol extract of O. sanctum loaded nanoparticles possessed remarkable antibacterial activities with excellent wash durability. The study revealed that the herb encapsulated nanoparticle could act as a biocontrol agent against bacteria in fabrics. PMID:23121954

  19. [Neruda and antimicrobial resistance].

    Science.gov (United States)

    Cotera, Alejandro

    2011-07-01

    Antimicrobial resistance has been a problem in medicine, since their incorporation to clinical practice. Numerous papers have been written on the subject. The analysis of two poems by Pablo Neruda "How much does a man live" and "Larynx", included in the volume "Estravagario" and published for the first time in 1957 and 1958, give us an incredible revelation about the concept of resistance. In these poems aureomycin, the first antimicrobial of the family of tetracyclines, was included as a poetic figure and the therapeutic action of antimicrobials was described. "Never so much bugs died I tons of them fell I but the few that remained olive I manifested their perversity". These writings incorporated novel concepts, even for physicians of that time and described the closeness of death that a patient may perceive during the course of a given disease. The capacity of Pablo Neruda to extract the essence of situations and to anticipate to conditions that only years later became clinically relevant problems, is noteworthy.

  20. Antimicrobial Drugs in the Home

    Centers for Disease Control (CDC) Podcasts

    2006-10-19

    Survey participants in the United Kingdom admitted keeping leftover antimicrobial drugs for future use and taking them without medical advice. Dr. J. Todd Weber, director of CDC's Office of Antimicrobial Resistance, advises against the practice, which can be dangerous and can promote antimicrobial drug resistance.  Created: 10/19/2006 by Emerging Infectious Diseases.   Date Released: 10/26/2006.

  1. Antimicrobial susceptibility of Eschericia coli isolates from Arieş river (Romania

    Directory of Open Access Journals (Sweden)

    Andreea BODOCZI FLOREA

    2011-05-01

    Full Text Available We studied the prevalence of antimicrobial resistance (AR and multiple antimicrobial resistances (MAR among the faecal bacteria found in the Arieş river (Romania affected by strong anthropogenic pressures. Isolation and identification of E. coli were done by using enrichment media, selective media, and biochemical tests. Antimicrobial susceptibility testing by the disk diffusion method was conducted for 12 antimicrobial agents: ciprofloxacin, gentamicin, streptomycin, ceftazidin, ofloxacin, sulfamethoxazole, ticarcycline, ampicillin, nalidixic acid, nitrofurantoin, erythromycin, and norfloxacin. The data of the antimicrobial susceptibility reviled that all the studied E. coli strains were resistant to most of the tested antibiotics. The analysis of antibiotic resistance frequencies has showed an incidence of 46.66% strains resistant to more than 4 different antibiotics. Moreover, a high incidence of multiple antibiotic resistances was detected in each of the studied samples.

  2. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries.

    Science.gov (United States)

    Desbois, Andrew P

    2012-08-01

    The antimicrobial effects of free fatty acids are well recognised and these compounds can prevent the growth of or directly kill bacteria, fungi and other microbes by affecting multiple cellular targets, including the cell membrane and components found therein. Moreover, fatty acids exert detrimental effects on microbial pathogens by interfering with mechanisms of virulence, such as preventing biofilm formation and inhibiting the production of toxins and enzymes. The antimicrobial properties of free fatty acids can be exploited for the preservation of perishable products, such as food and cosmetics, and for the prevention and treatment of infections. These safe natural products are particularly useful in circumstances where antimicrobial activity is required but where the use of conventional antibiotics is undesirable or forbidden. This review focuses on the most promising prospects for exploiting the antimicrobial properties of free fatty acids for applications in various industries. The benefits of using fatty acids as antimicrobial agents are discussed and relevant recent patents are highlighted. PMID:22630821

  3. Smart silver nanoparticles: borrowing selectivity from conjugated polymers or antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Lihong Liu

    2014-06-01

    Full Text Available Silver nanoparticles (AgNPs as novel antimicrobial agents are gaining tremendous exploration in various medical fields due to their broad spectrum activity, efficacy and low cost. The major problem associated with the AgNPs treatment is their narrow therapeutic window. To address this inherent shortcoming, significant efforts have been dedicated to reduce AgNPs cell toxicity and improve their therapeutic index. In this brief review, the emphasis would be placed on development of the combined mechanisms which can enhance the antimicrobial action of AgNPs, arising from investigating the biological differences between microbial and mammalian cells. Using one of our selected antimicrobial cell penetration peptide conjugated AgNPs as an example, we demonstrated that antimicrobial peptides (AMPs anchored AgNPs produced enhanced antimicrobial activities, possibly through multimodal mechanisms including selective binding to microorganisms and producing the intracellularly controlled Ag+ release, thus, improving the therapeutic index of AgNPs.

  4. Analysis of related factors and application of antimicrobial agents of lung infections in patients with esophageal cancer after radiotherapy%食管癌患者放疗后肺部感染相关因素及抗菌药物应用分析

    Institute of Scientific and Technical Information of China (English)

    杨峥; 王旸; 余杰; 饶石磊; 齐书然

    2014-01-01

    OBJECTIVE To analyze the related factors and application of antimicrobial agents of lung infection in patients with esophageal cancer after radiotherapy ,and to provide reference for clinical treatment .METHODS The clinical data of a total of 216 cases of patients with esophageal carcinoma after radiotherapy in our hospital from Mar .2011 to Mar .2013 were selected ,and were divided into infection group and control group according to the existence of pulmonary infections .The clinical data of patients in the two groups were analyzed to explore the related factors of lung infections in patients with esophageal carcinoma ,and application of antibacterial drug were analyzed according to the results of treatment .RESULTS Among 216 patients , a total of 41 patients were complicated by pulmonary infections ,and the infection rate was 18 .98% .Pathologic stage ,advanced age ,long-term smoking ,combined diabetes ,long-term use of corticosteroids ,bronchial diseases and emphysema ,ventilator dysfunction ,poor nutritional status , long tumor length , tumor location were the main factors of the lung infections ,and the difference between the two groups was significant (P< 0 .05) .A total of 49 pathogens were isolated ,of which 21 strains were gram-negative bacteria (51 .22% ) , which were resistant to the ampicillin (antimicrobial agents commonly used in clinical) .After combined treatment ,infections in 38 patients were under control in 2 -3 weeks ,and three patients died ,the mortality rate was 7 .32% .CONCLUSION There are many related factors of lung infections in the patients with esophageal cancer after radiotherapy , so controlling the related factors of infections and assessing them before chemotherapy ,as well as taking targeted measures ,such as the aggressive treatment of the underlying disease ,nutrition ,smoking cessation ,can reduce the infections ,while infection occurred ,timely diagnosis and rational use of antimicrobial drugs should be performed for the

  5. Development of antimicrobial films for microbiological control of packaged salad.

    Science.gov (United States)

    Muriel-Galet, Virginia; Cerisuelo, Josep P; López-Carballo, Gracia; Lara, Marta; Gavara, Rafael; Hernández-Muñoz, Pilar

    2012-07-01

    The aim of the present work was to characterize the antimicrobial efficiency of films consisting of PP/EVOH structures with oregano essential oil and citral. Both substances are known for their antimicrobial activity based on their interaction with the cell membrane. The films developed were used to pack minimally processed salads, combining modified atmosphere technology to extend shelf-life and active packaging technology to reduce possible microbiological risks. The antimicrobial activity of the films against the pathogenic microorganisms Escherichia coli, Salmonella enterica and Listeria monocytogenes and natural microflora was investigated "in vitro" and also on the food itself. The effect of release of the antimicrobial agent on the sensory characteristics of the salad was also studied. The results showed that antimicrobial activity reduced spoilage flora on the salad as well as inhibited the growth of pathogens in contaminated salads. This effect was greater against Gram-negative bacteria. Sensory studies showed that the package that was most effective and most accepted by customers was the one containing 5% oregano essential oil. PMID:22633535

  6. Antimicrobial effects of spices and herbs essential oils

    Directory of Open Access Journals (Sweden)

    Nemet Nevena T.

    2009-01-01

    Full Text Available Spices and herbs have been used as food additives since ancient times, as flavouring agents but also as natural food preservatives. A number of spices shows antimicrobial activity against different types of microorganisms. This article gives a literature review of recent investigations considering antimicrobial activity of essential oils widely used spices and herbs, such as garlic, mustard, cinnamon, cumin, clove, bay, thyme, basil, oregano, pepper, ginger, sage, rosemary etc., against most common bacteria and fungi that contaminate food (Listeria spp., Staphylococcus spp., Salmonella spp., Escherichia spp., Pseudomonas spp., Aspergillus spp., Cladosporium spp. and many others. Antimicrobial activity depends on the type of spice or herb, type of food and microorganism, as well as on the chemical composition and content of extracts and essential oils. Summarizing results of different investigations, relative antimicrobial effectiveness can be made, and it shows that cinnamon, cloves and mustrad have very strong antimicrobial potential, cumin, oregano, sage, thyme and rosemary show medium inhibitory effect, and spices such as pepper and ginger have weak inhibitory effect.

  7. Impact of media: self-medication and the rising problem of antimicrobial resistance

    OpenAIRE

    Manali M Mahajan; Sujata Dudhgaonkar

    2014-01-01

    Antimicrobial agents (AMAs) are one of the most commonly used as well as misused drugs. Antimicrobial resistance is an important growing global health issue which needs urgent addressal. Self-medication involves the use of medicinal products by the patient to treat self-recognized disorders, symptoms, recurrent diseases, or minor health problems. Medicines for self-medication are often called over the counter (OTC) drugs, which are available without a doctor's prescription through pharmaci...

  8. Antimicrobial activity of nerolidol and its derivatives against airborne microbes and further biological activities.

    Science.gov (United States)

    Krist, Sabine; Banovac, Daniel; Tabanca, Nurhayat; Wedge, David E; Gochev, Velizar K; Wanner, Jürgen; Schmidt, Erich; Jirovetz, Leopold

    2015-01-01

    Nerolidol and its derivatives, namely cis-nerolidol, O-methyl-nerolidol, O-ethyl-nerolidol, (-)-α-bisabolol, trans,trans-farnesol and its main natural source cabreuva essential oil, were tested for their antimicrobial activity against airborne microbes and antifungal properties against plant pathogens. Among the tested compounds, α-bisabolol was the most effective antimicrobial agent and trans,trans-farnesol showed the best antifungal activity. PMID:25920237

  9. PHYTOCHEMICAL, ANTIMICROBIAL AND ANTI-ADHERENCE ANALYSIS OF PLANT AND AYURVEDIC EXTRACTS

    OpenAIRE

    Kinjal Shah; Priyanka Burange; Sunita Singh

    2015-01-01

    The incessant and vital need to discover new antimicrobial compounds with diverse chemical structures and novel mode of action is stimulated by the increasing failure of chemotherapeutics and expanded antibiotic resistance exhibited by pathogenic agents. In the present research work, antimicrobial activity of few plant extracts and ayurvedic samples were screened against bacteria. Phytochemical analysis of active plant extracts showed the presence of triterpenes, glycosides and flavonoids. Bo...

  10. In vitro antimicrobial activity of linezolid tested against vancomycin-resistant enterococci isolated in Brazilian hospitals

    OpenAIRE

    Reis Adriana O.; Cordeiro Julio C. R.; Machado Antonia M.O.; Sader Helio S.

    2001-01-01

    The emergence of vancomycin-resistant enterococci (VRE) has been described recently in Brazil. This is in contrast to the USA and Europe, where the VRE appeared in the late 1980s. The progressive increase in VRE isolation poses important problems in the antimicrobial therapy of nosocomial infections. Treatment options and effective antimicrobial agents for VRE are often limited and the possibility of transfer of vancomycin genes to other Gram-positive microorganisms continues. In the search f...

  11. Antimicrobial Efficacy of Endodontic Irrigants against Enterococcus Faecalis and Escherichia Coli: An in vitro study

    OpenAIRE

    Kaushik, Noopur; Rehani, Usha; Agarwal, Abhay; Kaushik, Mayur; Adlakha, Vivek

    2013-01-01

    ABSTRACT Aim: To evaluate the relative antimicrobial efficacy of five different commonly used antimicrobial agents with regard to reduction in the number of Enterococcus faecalis and Escherichia coli as compared to normal saline. An agar disk diffusion in vitro method was used to test the efficacy of the root canal irrigants against these two microorganisms. The root canal irrigants used were: 5.25% sodium hypochlorite (NaOCl), 10% citric acid, 17% ethylene diamine tetraacetic acid (EDTA), 3%...

  12. Antimicrobial Drug–Selection Markers for Burkholderia pseudomallei and B. mallei

    OpenAIRE

    Schweizer, Herbert P.; Peacock, Sharon J.

    2008-01-01

    Genetic research into the select agents Burkholderia pseudomallei and B. mallei is currently hampered by a paucity of approved antimicrobial drug–selection markers. The strict regulations imposed on researchers in the United States but not in other parts of the world lead to discrepancies in practice, hinder distribution of genetically modified strains, and impede progress in the field. Deliberation and decisions regarding alternative selection markers (antimicrobial and nonantimicrobial drug...

  13. Antimicrobial activity of different endodontic sealers: An in vitro evaluation

    Directory of Open Access Journals (Sweden)

    Saha S

    2010-01-01

    Full Text Available Background: Microbes are considered as the primary etiological agents in endodontic diseases. The ways of reducing these agents are root canal debridement, antimicrobial irrigants, and antibacterial filling materials. But the complexity of the pulp canal system presents a problem for chemomechanical preparation. One of the factors determining the success of endodontic treatment is the sealing material with a potent bactericidal effect. Aim: The aim of the present study was to assess the antimicrobial activity of endodontic sealers of different bases - in vitro. Materials and Method: The antimicrobial activity of three root canal sealers (endomethasone, AH 26, and apexit was evaluated against seven strains of bacteria at various time intervals using the agar diffusion test. The freshly mixed sealers were placed in prepared wells of agar plates inoculated with the test microorganisms. The plates were incubated for 24, 48, 72 hours, and 7 and 15 days. The mean zones of inhibition were measured. Statistical Analysis: All statistical analysis was performed using the SPSS 13 statistical software version. The analysis of variance (ANOVA, post-hoc Bonferroni test, and paired t test were performed to reveal the statistical significance. Results: Statistically significant zones of bacterial growth inhibition were observed in descending order of antimicrobial activity: endomethasone, AH 26, and apexit. Conclusion: Zinc oxide eugenol based root canal sealer produced largest inhibitory zones followed in decreasing order by epoxy resin based sealer and least by calcium hydroxide based root canal sealer.

  14. ISOLATION AND ANTIMICROBIAL AND DEGRADATIVE POTENTIAL OF ACTINOMYCETES

    Directory of Open Access Journals (Sweden)

    Padma Singh* and Vani Sharma

    2013-02-01

    Full Text Available Problem Statement: Does the soil Actinomycetes have Antimicrobial and Petrol degradation potential? It is an intriguing question. Actinomycetes are continues to be a subject of study with reference to their Antimicrobial and degradative potential. However studies have been done is limited. Our object was to study its Antimicrobial activity in wide spectrum and to study its degradation potential on Petrol. Approach: In this study we have isolated total 5 Actinomycetes from the Ganga river bed. All the isolates later purified and identified by various Morphological and Biochemical test. Here Nocardia was subjected to antimicrobial test against Streptococcus, Mucor and Aspergillus and it was also subjected to degradation test against Petrol. Result: The 5 isolates are Streptomyces, Micromonospora, Micromono sporangium and 2 different strain of Nocardia (Na1 and Na2. The 2 strains of Nocardia are active against Streptococcus (Na1 29.6mm, Na2 26.6mm, Mucor (Na1 12.5mm, Na2 22.5mm and Aspergillus (Na1 50%, Na2 60%. They also degrade Petrol very effectively, decrease in total organic carbon of the medium was observed during the degradation of petrol. Conclusion: Our observation provides us with evidence that these agents can be used for the production of new antibiotics and as the agent to control the environment pollution.

  15. Antimicrobial Impacts of Essential Oils on Food Borne-Pathogens.

    Science.gov (United States)

    Ozogul, Yesim; Kuley, Esmeray; Ucar, Yilmaz; Ozogul, Fatih

    2015-01-01

    The antimicrobial activity of twelve essential oil (pine oil, eucalyptus, thyme, sage tea, lavender, orange, laurel, lemon, myrtle, lemon, rosemary and juniper) was tested by a disc diffusion method against food borne pathogens (Escherichia coli, Salmonella paratyphi A, Klebsiella pneumoniae, Yersinia enterocolitica, Pseudomonas aeruginosa, Aeromonas hydrophila, Campylobacter jejuni, Enterococcus faecalis, Staphylococcus aureus). The major components in essential oils were monoterpenes hydrocarbons, α-pinene, limonene; monoterpene phenol, carvacrol and oxygenated monoterpenes, camphor, 1,8-cineole, eucalyptol, linalool and linalyl acetate. Although the antimicrobial effect of essential oils varied depending on the chemical composition of the essential oils and specific microorganism tested, majority of the oils exhibited antibacterial activity against one or more strains. The essential oil with the lowest inhibition zones was juniper with the values varied from 1.5 to 6 mm. However, the components of essential oil of thyme and pine oil are highly active against food borne pathogen, generating the largest inhibition zones for both gram negative and positive bacteria (5.25-28.25 mm vs. 12.5-30 mm inhibition zones). These results indicate the possible use of the essential oils on food system as antimicrobial agents against food-borne pathogen. The article also offers some promising patents on applications of essential oils on food industry as antimicrobial agent. PMID:26072990

  16. IDENTIFICATION AND ANTIMICROBIAL ACTIVITY OF SAPONIN FRACTION FROM THE LEAVES OF BARLERIA CRISTATA L.

    Directory of Open Access Journals (Sweden)

    D. Victor Arokia Doss et al

    2012-10-01

    Full Text Available A simple HPTLC method was used to determine the saponin profile of Barleria cristata L. crude leaf extract. The antimicrobial activity of saponin fraction from the leaves of Barleria cristata L. was studied in-vitro against four bacterial species and four fungal species by agar disc diffusion method. Klebsiella Pneumonia, Staphylococcus aureus, E. coli, Aspergillus parasites were the most inhibited microorganism. The present study suggests that the saponin fraction possess significant antimicrobial activity and can be used to develop a potential antimicrobial agent.

  17. Potentiating effect of ecofriendly synthesis of copper oxide nanoparticles using brown alga: antimicrobial and anticancer activities

    Indian Academy of Sciences (India)

    SRI VISHNU PRIYA RAMASWAMY; S NARENDHRAN; RAJESHWARI SIVARAJ

    2016-04-01

    This study reports the in vitro antimicrobial and anticancer activities of biologically synthesized copper nanoparticles. The antimicrobial activity of green synthesized copper oxide nanoparticles was assessed by well diffusion method. The anticancer activity of brown algae-mediated copper oxide nanoparticles was determined by MTT assay against the cell line (MCF-7). Maximum activity was observed with Pseudomonas aeruginosa and Aspergillus niger. Effective growth inhibition of cells was observed to be more than 93% in antibacterial activity. Thus, the results of the present study indicates that biologically synthesized copper nanoparticles can be used for several diseases, however, it necessitates clinical studies to ascertain their potential as antimicrobial and anticancer agents.

  18. Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36.

    Directory of Open Access Journals (Sweden)

    Yinfeng Lv

    Full Text Available Antimicrobial peptides (AMPs, which present in the non-specific immune system of organism, are amongst the most promising candidates for the development of novel antimicrobials. The modification of naturally occurring AMPs based on their residue composition and distribution is a simple and effective strategy for optimization of known AMPs. In this study, a series of truncated and residue-substituted derivatives of antimicrobial peptide PMAP-36 were designed and synthesized. The 24-residue truncated peptide, GI24, displayed antimicrobial activity comparable to the mother peptide PMAP-36 with MICs ranging from 1 to 4 µM, which is lower than the MICs of bee venom melittin. Although GI24 displayed high antimicrobial activity, its hemolytic activity was much lower than melittin, suggesting that GI24 have optimal cell selectivity. In addition, the crucial site of GI24 was identified through single site-mutation. An amino acid with high hydrophobicity at position 23 played an important role in guaranteeing the high antimicrobial activity of GI24. Then, lipid vesicles and whole bacteria were employed to investigate the membrane-active mechanisms. Membrane-simulating experiments showed that GI24 interacted strongly with negatively charged phospholipids and weakly with zwitterionic phospholipids, which corresponded well with the data of its biological activities. Membrane permeabilization and flow cytometry provide the evidence that GI24 killed microbial cells by permeabilizing the cell membrane and damaging membrane integrity. GI24 resulted in greater cell morphological changes and visible pores on cell membrane as determined using scanning electron microscopy (SEM and transmission electron microscope (TEM. Taken together, the peptide GI24 may provide a promising antimicrobial agent for therapeutic applications against the frequently-encountered bacteria.

  19. The Antibacterial Test in vitro of Andrographis paniculata Aqueous Extract Used Combination with 10 Kinds of Clinical Common Antimicrobial Agents%穿心莲水提物与10种临床常用抗菌药联用的体外抑菌试验

    Institute of Scientific and Technical Information of China (English)

    张国祖; 贾艳华; 刘梅; 张帅帅; 郭振环; 李荣誉; 陈献忠

    2012-01-01

    为研究穿心莲水提物与临床常用10种抗菌药联用对鸡致病性大肠杆菌的体外抑菌效果,本试验采用传统的水提法制备穿心莲中药液并浓缩至浓度为1 g/mL,用琼脂平板稀释法测定穿心莲水提物分别与阿莫西林、头孢曲松等10种常用抗菌药物联用对临床分离的10株鸡致病性大肠杆菌的体外抑菌作用.结果表明,穿心莲和头孢曲松、穿心莲和氟苯尼考联用100%呈现协同作用;穿心莲和头孢噻呋联用90%呈现协同作用,10%呈现无关作用;穿心莲和大观霉素联用80%呈现协同作用,20%呈现无关作用;穿心莲和林可霉素联用50%呈现协同作用,40%为无关或颉颃作用,10%为无关作用;穿心莲与阿莫西林、安普霉素、阿米卡星、多西环素、恩诺沙星联用以无关或颉颃作用为主.以上结果表明,在体外,穿心莲与头孢曲松、头孢噻呋、大观霉素、氟苯尼考联用对鸡致病性大肠杆菌呈现协同作用,与阿莫西林、安普霉素、阿米卡星、林可霉素、多西环素、恩诺沙星联用呈现无关或颉颃作用.%To study the antibacterial effect in vitro of Andrographis aqueous extract associated with clinical qommonly used 10 kinds of antimicrobial agents to the chicken pathogenic Escherichia colt. Andrographis prepared by the traditional water extraction liquid and concentrated to a concentration of 1 g/mL,determined the invitro inhibitory effect of Andrographis aqueous extract respectively, associated with amoxicilhn, ceftriaxone, and other 10 kinds of commonly used clinical antimicrobial drugs, using the agar dilution method, to the clinical 10 chicken pathogenic Escherichia coli. The results show that Andrographis paniculata and ceftriaxone, Andrographis paniculata and florfenicol associated with 100% showing a synergistic effect; Andrographis paniculata and ceftiofur associated with 90% showing a synergistic effect, 10% showing unrelated; Andrographis

  20. De-novo design of antimicrobial peptides for plant protection.

    Directory of Open Access Journals (Sweden)

    Benjamin Zeitler

    Full Text Available This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of "healthy" food, these peptides might serve as templates for novel antibacterial and antifungal agents.