WorldWideScience

Sample records for antimicrobial activity studies

  1. Study Antimicrobial Activity of Lemon (Citrus lemon L. Peel Extract

    Directory of Open Access Journals (Sweden)

    Maruti J. Dhanavade

    2011-08-01

    Full Text Available The main objective of the study is extraction, identification of antimicrobial compounds and demonstration of antimicrobial activity of lemon (Citrus lemon L. peel against bacteria. As microorganism are becoming resistant to present day antibiotics, our study focuses on antimicrobial activity and future prophylactic potential of the lemon peel. Biologically active compounds present in the medicinal plants have always been of great interest to scientists. The peel of citrus fruits is a rich source of flavanones and many polymethoxylated flavones, which are very rare in other plants. These compounds, not only play an important physiological and ecological role, but are also of commercial interest because of their multitude of applications in the food and pharmaceutical industries. The citrus peel oils show strong antimicrobial activity. The antimicrobial activity has been checked in terms of MIC by using different solvents against microorganisms like Pseudomonas aeruginosa NCIM 2036 for which MIC was 1:20 in presence of methanol, for Salmonella typhimurium NCIM 5021 the observed MIC was 1:20 in presence of acetone. In case of Micrococcus aureus NCIM 5021 the observed MIC was 1:20 when ethanol was used as solvent. The compounds like coumarin and tetrazene were identified by GC/MS of lemon peel extract.

  2. Study of the nanomaterials and their antimicrobial activities

    Science.gov (United States)

    Ramadi, Muntaha

    In the last decade, the world faced huge problems associated with the spread of antimicrobial resistant infections that are essentially untreatable such as methicillin resistant Staphylococcus aureus (MRSA) infection. These infections have begun to occur in both hospital and community environments. Developing new antimicrobial surface coatings can hold a great promise to minimize and control various problems that associated with the spreading of infections and biofilms formation, these coatings can be used in medicine where medical devices associated with severe infections, in construction industry and the in food packaging industry. It has been established that single-walled CNTs exhibit a strong antimicrobial activity and can pierce bacterial cell walls. Recently, nanomaterial structures that made from pure carbon such as CNTs have been seen as promising candidates for many potential applications in Biotechnology and bioscience due to the combination of their extraordinary properties that arise from surface area, light weight, strength, flexibility, unique electrical conductivity and many more novel physical and chemical properties at nanoscale level. CNTs have been used widely in biomedical field including drug delivery, gene therapy and creating new biomedical devices with novel properties. Researchers have now made a first step to add carbon nanotubes to antimicrobial agents list. There are two types of CNTs have been used in biomedical research. The first one is a single-walled carbon nanotube (SWNT) and the second is a multi-walled carbon nanotube (MWNT). Recent in vitro studies suggest that carbon nanotubes have antimicrobial activity and coating CNTs with nickel nanoparticle could enhance the antimicrobial activity of cabon nanotubes. In order to test this hypothesis, nickel nanoparticles were deposited on carbon nanotubes (CNTs) by electrochemical deposition. The carbon nanotubes used in this study were XD-CNTs, SWNTs and Ni-coated CNTs. The structure and

  3. STUDIES ON THE EFFICACY OF ALOE VERA ON ANTIMICROBIAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    T. Karpagam

    2011-04-01

    Full Text Available The aqueous, ethanolic, methanolic, petroleum ether and acetone extracts of Aloe vera were screened for anti-microbial activity using the Minimal Inhibitory Concentration (MIC method. They were tested against five bacteria (Escherischia coli, Pseudomonas aeruginosa, Bacillus subtilis, Klebsiella pneumonia and Staphylococcus aureus. The susceptibility of the microorganisms to the extracts in different concentrations plants were compared. The active component in the extract was determined using HPLC technique. The main aim of this study was to find anti- microbial activity of Aloe vera and to find the presence of active compounds present for the treatment of disease caused by pathogenic microorganism .

  4. Antimicrobial Activity of Catharanthus roseus – A Detailed Study

    Directory of Open Access Journals (Sweden)

    Prajakta J. Patil

    2010-06-01

    Full Text Available Catharanthus roseus (periwinkle is an important medicinal plant for novel pharmaceuticals since most of the bacterial pathogens are developing resistance against many of the currently available anti microbial drugs. Plants have proved to be significant natural resources for effective chemotherapeutic agents and offering a broad spectrum of activity with greater emphasis on preventive action. This study aims to investigate some of the anti microbial properties of this plant. The anticancer properties of Catharanthus roseus has been the major interest in all investigations. The antimicrobial activity has been checked against microorganisms like Pseudomonas aeruginosa NCIM 2036, Salmonella typhimurium NCIM 2501, Staphylococcus aureus NCIM 5021. The findings show that the extracts from the leaves of this plant can be used as prophylactic agent in many of the diseases, which sometime are of the magnitude of an epidemic.

  5. STUDIES ON THE EFFICACY OF ALOE VERA ON ANTIMICROBIAL ACTIVITY

    OpenAIRE

    T.Karpagam; R. Aruna Devaraj

    2011-01-01

    The aqueous, ethanolic, methanolic, petroleum ether and acetone extracts of Aloe vera were screened for anti-microbial activity using the Minimal Inhibitory Concentration (MIC) method. They were tested against five bacteria (Escherischia coli, Pseudomonas aeruginosa, Bacillus subtilis, Klebsiella pneumonia and Staphylococcus aureus). The susceptibility of the microorganisms to the extracts in different concentrations plants were compared. The active component in the extract was determined us...

  6. Studies on antimicrobial activities of solvent extracts of different spices.

    Science.gov (United States)

    Keskin, Dilek; Toroglu, Sevil

    2011-03-01

    The antimicrobial activities of the ethyl acetate, acetone and methanol extract of 12 plant species were studied. The extract of Capsicum annuum (red pepper) (fruit) Zingiber officinale (ginger) (root), Cuminum cyminum (cumin), Alpinia ficinarum (galingale), Coriandrum sativum (coriander), Cinnamomun zeylanicum Nees (cinnamomun), Origanum onites L. (thyme), Folium sennae (senna), Eugenia caryophyllata (cloves), Flos tiliae (lime), Folium menthae crispae (peppermint) and Piper nigrum (blackpepper) were tested in vitro against 2 fungi and 8 bacterial species by the disc diffusion method. Klebsiella pneumonia 13883, Bacillus megaterium NRS, Pseudomonas aeroginosa ATCC 27859, Staphylococcus aureus 6538 P, Escherichia coil ATCC 8739, Enterobacter cloaca ATCC 13047, Corynebacterium xerosis UC 9165, Streptococcus faecalis DC 74, Kluyveromyces marxianus, Rhodotorula rubra were used in this investigation. The results indicated that extracts of different spices has shown antibacterial activity in the range of 7-24 mm 30 microl(-1) inhibition zone Eugenia caryophyllata (clove), 7-20 mm 30microl(-1) inhibition zone Capsicum annum (red pepper) and Cinnamomun zeylanicum (cinnamon) bark, 7-18 mm 30microl(-1) inhibition zone Folium sennae (senna) leaves, 7-16 mm 30 microl(-1) inhibition zone Zingiber officinale (ginger) root, 7-15 mm 30microl(-1) inhibition zone Cuminum cyminum (cumin) seed, 7-14 mm 30 microl(-1) inhibition zone Folium menthae crispae (peppermint), Origanum onites (thyme) leaves and Alpinia ficinarum (galingale) root, 7-12 mm 30 microl(-1) inhibiton zone Piper nigrum (blackpepper), 7-11 mm 30microl(-1) inhibition zone Flos tiliae (lime) leaves, 7-8 mm 30microl(-1) inhibition zone Coriandrum sativum (coriander) to the microorganisms tested.

  7. Synthesis, anti-microbial activity and molecular docking studies on triazolylcoumarin derivatives

    Indian Academy of Sciences (India)

    Chinnadurai Satheeshkumar; Mahalingam Ravivarma; Pandian Arjun; Vaithiyanathan Silambarasan; Nanjian Raaman; Devadasan Velmurugan; Changsik Song; Perumal Rajakumar

    2015-03-01

    A series of triazolylcoumarins was synthesized by the cycloaddition of acetylenic derivatives to azide in the presence of Cu(I) catalyst at room temperature. All the synthesized compounds were evaluated for their anti-microbial activity against Gram-positive (B. subtilis and S. aureus), Gram-negative bacteria (K. pneumonia and P. vulgaris) and human pathogenic fungi (C. tropicalis and C. krusei), with tetracycline and fluconazole as standards for anti-microbial and anti-fungal activity. Triazolylcoumarins exhibit anti-microbial activity against all the tested pathogens, which is further supported by molecular docking studies.

  8. IN VITRO STUDY OF ANTIMICROBIAL ACTIVITY IN MARINE ALGAE CAULERPA TAXIFOLIA AND CAULERPA RACEMOSA (C. AGARDH).

    OpenAIRE

    Manjula Etcherla; G. M. Narasimha Rao

    2014-01-01

    The present study was carried out to investigate its antimicrobial potentiality of the algae such as Caulerpa taxifolia, Caulerpa racemosa (C. Agardh) were studied against both Gram-positive, Gram- negative and fungal pathogens. For microbiological testing of the different crude algal extracts (Hexane, Chloroform, Methanol and water) was determined by the well diffusion method.The zone of inhibition was measured for all the Crude extracts revealed a wide range of antimicrobial activity agains...

  9. PHYTOCHEMICAL STUDY AND IN VITRO ANTIMICROBIAL ACTIVITY OF PISTACIA LENTISCUS L. IN BOUMERDES MOUNTAINOUS REGION (ALGERIA)

    OpenAIRE

    L. Bendifallah; A. E. Benmahfoud; Y. Hameni; S. Mameche

    2015-01-01

    Pistacia lentiscus L. (Pistaciaceae) is among the most important medicinal plants in Algeria that is known for its antifungal and antimicrobial properties. For this study, the leaves were collected from the mountainous region of Boumerdes, in northern Algeria. In such a propitious context, the aim of this study was to enhance Pistacia lentiscus as a medicinal herb. For their antimicrobial activity, extracts of tannin and polyphenols were screened against three pathogenic bacterial strains and...

  10. COMPARATIVE STUDY OF IN VITRO ANTIMICROBIAL ACTIVITIES OF FOENICULUM VULGARE MILL. (UMBELLIFERAE EXTRACT

    Directory of Open Access Journals (Sweden)

    Khadija Dahak

    2013-01-01

    Full Text Available The importance to push scientifically the investigations on the organic extracts of the plants aromatic as potential source of new antimicrobial compounds comes from the traditional use of the plants. However, the consumption of these natural products requires à thorough research in this field. The antimicrobial effect of organic and aqueous leaves extracts of Foeniculum vulgare Mill., However, which makes difficult this antimicrobial activity, is the insolubility of organic extracts in water. The standard M27-T technique is basically used to cure this problem. The microorganisms under examination were Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus hirea, Escherichia coli and Candida albicans. The M27-T technique allowed us to determine the Minimum Inhibitory Concentrations (MICs of different extracts. Therefore, the test’s results showed that the all samples were clearly different in terms of antimicrobial activities. All extracts of Foeniculum vulgare showed the most activity on all the microorganisms tested. The most significant and active extract under study were methanol and ethyl acetate on all the bacteria tested in comparaison to the hexane and aqueous extracts. On the other hand, the results of antimicrobial activity of aqueous extract were more compelling than the hexane and dichloromethane extracts when used on Candida albicans (ATCC and CBS (MIC = 0,78 mg mL-1. It then appear that C. albicans ATCC is the least susceptible microorganisms to the ethyl acetate extract. The chloramphenicol, amoxicillin and amphotericin B were used as standard antibiotics to carry this study."

  11. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin

    Science.gov (United States)

    Galdiero, Emilia; Siciliano, Antonietta; Maselli, Valeria; Gesuele, Renato; Guida, Marco; Fulgione, Domenico; Galdiero, Stefania; Lombardi, Lucia; Falanga, Annarita

    2016-01-01

    This study attempts to evaluate the antimicrobial activity and the ecotoxicity of quantum dots (QDs) alone and coated with indolicidin. To meet this objective, we tested the level of antimicrobial activity on Gram-positive and Gram-negative bacteria, and we designed an ecotoxicological battery of test systems and indicators able to detect different effects using a variety of end points. The antibacterial activity was analyzed against Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 1025), Escherichia coli (ATCC 11229), and Klebsiella pneumoniae (ATCC 10031), and the results showed an improved germicidal action of QDs-Ind. Toxicity studies on Daphnia magna indicated a decrease in toxicity for QDs-Ind compared to QDs alone, lack of bioluminescence inhibition on Vibrio fisheri, and no mutations in Salmonella typhimurium TA 100. The comet assay and oxidative stress experiments performed on D. magna showed a genotoxic and an oxidative damage with a dose–response trend. Indolicidin retained its activity when bound to QDs. We observed an enhanced activity for QDs-Ind. The presence of indolicidin on the surface of QDs was able to decrease its QDs toxicity. PMID:27616887

  12. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin.

    Science.gov (United States)

    Galdiero, Emilia; Siciliano, Antonietta; Maselli, Valeria; Gesuele, Renato; Guida, Marco; Fulgione, Domenico; Galdiero, Stefania; Lombardi, Lucia; Falanga, Annarita

    2016-01-01

    This study attempts to evaluate the antimicrobial activity and the ecotoxicity of quantum dots (QDs) alone and coated with indolicidin. To meet this objective, we tested the level of antimicrobial activity on Gram-positive and Gram-negative bacteria, and we designed an ecotoxicological battery of test systems and indicators able to detect different effects using a variety of end points. The antibacterial activity was analyzed against Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 1025), Escherichia coli (ATCC 11229), and Klebsiella pneumoniae (ATCC 10031), and the results showed an improved germicidal action of QDs-Ind. Toxicity studies on Daphnia magna indicated a decrease in toxicity for QDs-Ind compared to QDs alone, lack of bioluminescence inhibition on Vibrio fisheri, and no mutations in Salmonella typhimurium TA 100. The comet assay and oxidative stress experiments performed on D. magna showed a genotoxic and an oxidative damage with a dose-response trend. Indolicidin retained its activity when bound to QDs. We observed an enhanced activity for QDs-Ind. The presence of indolicidin on the surface of QDs was able to decrease its QDs toxicity. PMID:27616887

  13. STUDIES ON ANTIMICROBIAL ACTIVITY AND PHYTOCHEMICAL ANALYSIS OF CITRUS FRUIT JUICES AGAINST SELECTED ENTERIC PATHOGENS

    Directory of Open Access Journals (Sweden)

    Bansode.D.S.

    2012-11-01

    Full Text Available The present study was carried out to find out the antimicrobial activity and phytochemical study of citrus fruit juices viz. Lemon (Citrus limon and Orange (Citrus ourantium against medically important selected enteric pathogens. As microorganisms are becoming resistant to present day antibiotics, our study focuses on antimicrobial activity and phytochemical study of Citrus fruit juices against selected enteric pathogens. Biological active compounds present in the medicinal important fruit juices have always been of great interest to scientist. These compounds, not only play an important physiological and etiological role, but are also of commercial interest because of their multitude application in the food and pharmaceutical industries. In the present study, the Lemon and Orange fruit juices were subjected to screening against enteric pathogens, E.coli, Salmonella paratyphy B, and Shigella sonnei. Antimicrobial analysis was done by using agar well diffusion method against selected enteric bacteria. The MIC values were determined by using U.V. Spectrophotometer. The fresh crude Lemon fruit juice produced the highest antimicrobial activity against Salmonella para.B and Shigella sonnei followed by E.coli and fresh crude Orange fruit juice produced the highest antimicrobial activity against Shigella sonnei and Salmonella para.B. followed by E.coli. The antimicrobial activity of standard antibiotic Ampicillin was studied in comparison with Lemon and Orange fruit juices. The Minimum inhibitory concentration observed at 25% conc. of lemon juice against Salmonella paratyphy B, and Shigella sonnei and 25% concentration of orange juice against Shigella sonnei. The phytochemical analysis showed the presence of phenols, flavonoids, glycosides, steroid, saponin, and reducing sugar in citrus fruit juices.

  14. IN VITRO STUDY OF ANTIMICROBIAL ACTIVITY IN MARINE ALGAE CAULERPA TAXIFOLIA AND CAULERPA RACEMOSA (C. AGARDH.

    Directory of Open Access Journals (Sweden)

    Manjula Etcherla

    2014-04-01

    Full Text Available The present study was carried out to investigate its antimicrobial potentiality of the algae such as Caulerpa taxifolia, Caulerpa racemosa (C. Agardh were studied against both Gram-positive, Gram- negative and fungal pathogens. For microbiological testing of the different crude algal extracts (Hexane, Chloroform, Methanol and water was determined by the well diffusion method.The zone of inhibition was measured for all the Crude extracts revealed a wide range of antimicrobial activity against tested pathogens. The overall antimicrobial activity assessed from the above results indicates the presence of active constituents in the extractions of Seaweeds which can be exploited for the production of lead molecules which are use of in pharmaceutical industry.

  15. Initial antimicrobial activity studies of plants of the riverside forests of the southern Uruguay River

    Directory of Open Access Journals (Sweden)

    Ana Bertucci

    2009-03-01

    Full Text Available Development of new antimicrobial compounds against different microorganisms is becoming critically important, as infectious diseases are still one of the leading causes of death in the world. Plants can be a useful source of these lead compounds. In this study, 66 extracts of 25 plants of the riverside forest of southern Uruguay River were studied for antimicrobial activity against Staphylococcus aureus, Listeria inocua, Escherichia coli, Pseudomonas aeruginosa, Mycobacterium tuberculosis, Aspergillus niger and Candida albicans. Fifty-three of these extracts showed some kind of antimicrobial activity. Six of these (Eugenia mansoni, Eugenia repanda, Myrcianthes cisplatensis, Paullinia ellegans, Petunia sp and Ruprechtia laxiflora presented activity against Mycobacterium tuberculosis with MIC values as low as 50 μg/mL.

  16. A Study on Antimicrobial Activities of Essential Oils of Different Cultivars of Lemongrass (Cymbopogon flexuosus

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Gupta, Ritam Muhury, Deepak Ganjewala

    2016-10-01

    Full Text Available Background: Cymbopogon flexuosus popularly known as lemongrass provides a lemon scented essential oil which is widely used in flavour and fragrance, perfumery, food and pharmaceuticals. The aim of the present study was to assess antimicrobial activities of essential oils of three lemongrass cultivars viz., Pragati, Praman and Suvarna. Methods: Essential oils were isolated from one month old plants by hydro-distillation in mini Clevenger apparatus for 2 h. Antimicrobial activities were determined by agar well diffusion method Results: Lemongrass oils exhibited strong antimicrobial activity against all the microbes except E coli. Mean inhibition zone diameter (mm against bacteria was ranged 27-38 mm. B. Subtilis was the most sensitive bacterium to all essential oils. Essential oils also showed strong antifungal effects against both A. niger and C. albicans with mean inhibition zone diameter (mm values 20-26 and 27-29 mm, respectively. Statistical analyses revealed that antimicrobial activity shown by essential oils were significant (p > 0.05. Conclusion: The study revealed strong antimicrobial potential of the essential oil against pathogenic microbial strains which may be of high clinical importance in future.

  17. Model Membrane and Cell Studies of Antimicrobial Activity of Melittin Analogues.

    Science.gov (United States)

    Jamasbi, Elaheh; Mularski, Anna; Separovic, Frances

    2016-01-01

    Melittin is a 26 residue peptide and the major component of bee (Apis mellifera) venom. Although melittin has both anticancer and antimicrobial properties, utilization has been limited due to its high lytic activity against eukaryotic cells. The mechanism of this lytic activity remains unclear but several mechanisms have been proposed, including pore formation or a detergent like mechanism, which result in lysis of cell membranes. Several analogues of melittin have been synthesized to further understand the role of specific residues in its antimicrobial and lytic activity. Melittin analogues that have a proline residue substituted for an alanine, lysine or cysteine have been studied with both model membrane systems and living cells. These studies have revealed that the proline residue plays a critical role in antimicrobial activity and cytotoxicity. Analogues lacking the proline residue and dimers of these analogues displayed decreased cytotoxicity and minimum inhibition concentrations. Several mutant studies have shown that, when key substitutions are made, the resultant peptides have more activity in terms of pore formation than the native melittin. Designing analogues that retain antimicrobial and anticancer activity while minimizing haemolytic activity will be a promising way to utilize melittin as a potential therapeutic agent. PMID:26139117

  18. PHYTOCHEMICAL STUDY AND IN VITRO ANTIMICROBIAL ACTIVITY OF PISTACIA LENTISCUS L. IN BOUMERDES MOUNTAINOUS REGION (ALGERIA

    Directory of Open Access Journals (Sweden)

    L. Bendifallah

    2015-07-01

    Full Text Available Pistacia lentiscus L. (Pistaciaceae is among the most important medicinal plants in Algeria that is known for its antifungal and antimicrobial properties. For this study, the leaves were collected from the mountainous region of Boumerdes, in northern Algeria. In such a propitious context, the aim of this study was to enhance Pistacia lentiscus as a medicinal herb. For their antimicrobial activity, extracts of tannin and polyphenols were screened against three pathogenic bacterial strains and one pathogenic yeast strains. The phytochemical analysis results showed a remarkable combination of chemical components including a high content in tannins, in leucoanthocyanins, in glucosids, alcaloids, flavonoïds and in saponosids. The tannins and the polyphenols have strong antimicrobial activity against some species.

  19. Antimicrobial Activity of Catharanthus roseus – A Detailed Study

    OpenAIRE

    Prajakta J. Patil; Jai S. Ghosh

    2010-01-01

    Catharanthus roseus (periwinkle) is an important medicinal plant for novel pharmaceuticals since most of the bacterial pathogens are developing resistance against many of the currently available anti microbial drugs. Plants have proved to be significant natural resources for effective chemotherapeutic agents and offering a broad spectrum of activity with greater emphasis on preventive action. This study aims to investigate some of the anti microbial properties of this plant. The anticancer pr...

  20. Antimicrobial profile of some novel keto esters: Synthesis, crystal structures and structure-activity relationship studies.

    Science.gov (United States)

    Khan, Imtiaz; Saeed, Aamer; Arshad, Mohammad Ifzan; White, Jonathan Michael

    2016-01-01

    Rapid increase in bacterial resistance has become a major public concern by escalating alongside a lack of development of new anti-infective drugs. Novel remedies in the battle against multidrug-resistant bacterial strains are urgently needed. So, in this context, the present work is towards the investigation of antimicrobial efficacy of some novel keto ester derivatives, which are prepared by the condensation of substituted benzoic acids with various substituted phenacyl bromides in dimethylformamide at room temperature using triethylamine as a catalyst. The structural build-up of the target compounds was accomplished by spectroscopic techniques including FTIR, (1)H and (13)C NMR spectroscopy and mass spectrometry. The purity of the synthesized compounds was ascertained by elemental analysis. The molecular structures of compounds (4b) and (4l) were established by X-ray crystallographic analysis. The prepared analogues were evaluated for their antimicrobial activity against Gram-positive (Staphylococcus aureus, Micrococcus leuteus) and Gram-negative (Pseudomonas picketti, Salmonella setuball) bacteria and two fungal pathogenic strains (Aspergillus niger, Aspergillus flavus), respectively. Among the screened derivatives, several compounds were found to possess significant activity but (4b) and (4l) turned out to be lead molecules with remarkable antimicrobial efficacy. The structure-activity relationship analysis of this study also revealed that structural modifications on the basic skeleton affected the antimicrobial activity of the synthesized compounds. PMID:26826838

  1. Study of antimicrobial activity and root symbionts of Hemionitis arifolia

    OpenAIRE

    Karmakar, Joydip; Mukhopadhyay, Subhra Kanti

    2011-01-01

    Antibacterial and antifungal activity of crude extract, alcoholic extract and extracted phenol from various parts of tropical pteridophyta, Hemionitis arifolia were tested by agar diffusion and tube dilution assay. Both the crude and alcoholic extracts of vegetative and reproductive leaves of H. arifolia showed considerable antibacterial activity against Gram negative test strain of Escherichia coli (MTCC-739). Extract from reproductive leaves also showed moderate antibacterial activity again...

  2. Phytochemical study and antioxidant, antimicrobial and anticancer activities of Melanelia subaurifera and Melanelia fuliginosa lichens.

    Science.gov (United States)

    Ristić, Svetlana; Ranković, Branislav; Kosanić, Marijana; Stanojković, Tatjana; Stamenković, Slaviša; Vasiljević, Perica; Manojlović, Ivana; Manojlović, Nedeljko

    2016-06-01

    The aim of this study was to investigate antioxidant, antimicrobial and anticancerous activity of Melanelia subaurifera and Melanelia fuliginosa. The phytochemical analysis was determined by HPLC-UV method. Antioxidant activity was evaluated by DPPH and reducing power assay while antimicrobial activity was determined by minimal inhibitory concentration. The cytotoxic activity was tested using MTT method. The method for quantification of 2'-O-methyl anziaic acid and lecanoric acid in these lichens using RF-HPLC was also developed and validated. The depsides (lecanoric acid, gyrophoric acid, atranorin, anziaic acid and 2'-O-methyl anziaic acid), and dibenzofurane (usnic acid) were identified in these lichens. The antioxidant activity (IC50) of lichens extracts ranged from 121.52 to 424.51 μg/ml. 2'-O-Methyl anziaic acid showed the highest antimicrobial activity with MIC ranging from 0.0625 to 1 mg/ml. M. subaurifera extract showed the highest cytotoxic activity against the tested cell lines (IC50 = 9.88 to 31.64 μg/ml). PMID:27478237

  3. Antimicrobial Activity of Resveratrol Analogues

    Directory of Open Access Journals (Sweden)

    Malik Chalal

    2014-06-01

    Full Text Available Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew. Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold. The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups and antimicrobial activity.

  4. Anti-microbial Activity of Urine after Ingestion of Cranberry: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Yee Lean Lee

    2010-01-01

    Full Text Available We explore the anti-microbial activity of urine specimens after the ingestion of a commercial cranberry preparation. Twenty subjects without urinary infection, off antibiotics and all supplements or vitamins were recruited. The study was conducted in two phases: in phase 1, subjects collected the first morning urine prior to ingesting 900 mg of cranberry and then at 2, 4 and 6 h. In phase 2, subjects collected urine on 2 consecutive days: on Day 1 no cranberry was ingested (control specimens, on Day 2, cranberry was ingested. The pH of all urine specimens were adjusted to the same pH as that of the first morning urine specimen. Aliquots of each specimen were independently inoculated with Escherichia coli, Klebsiella pneumoniae or Candida albicans. After incubation, colony forming units/ml (CFU ml−1 in the control specimen was compared with CFU ml−1 in specimens collected 2, 4 and 6 h later. Specimens showing ≥50% reduction in CFU ml−1 were considered as having ‘activity’ against the strains tested. In phase 1, 7/20 (35% subjects had anti-microbial activity against E. coli, 13/20 (65% against K. pneumoniae and 9/20 (45% against C. albicans in specimens collected 2–6 h after ingestion of cranberry. In phase 2, 6/9 (67% of the subjects had activity against K. pneumoniae. This pilot study demonstrates weak anti-microbial activity in urine specimens after ingestion of a single dose of commercial cranberry. Anti-microbial activity was noted only against K. pneumoniae 2–6 h after ingestion of the cranberry preparation.

  5. Silver nanoparticles incorporated into nanostructured biopolymer membranes produced by electrospinning: a study of antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Karen Segala

    2015-12-01

    Full Text Available abstract This study examines the antimicrobial activity of silver nanoparticles incorporated into nanostructured membranes made of cellulose acetate (CA and blends of chitosan/poly-(ethylene oxide, CTS/PEO and prepared by electrospinning. The formation of chemically synthesized Ag nanoparticles (AgNPs was monitored by UV-visible spectroscopy (UV-Vis and characterized by transmission electron microscopy (TEM. The size distribution of the AgNPs was measured by dynamic light scattering (DLS, with an average size of approximately 20 nm. The presence of AgNPs on the surface of electrospun nanofibers was observed by field emission electron microscopy (FEG and confirmed by TEM. The antimicrobial activity of AgNPs incorporated into nanostructured membranes made of CA and CTS/PEO electrospun nanofibers was evaluated in the presence of both Gram-positive bacteria, such as Staphylococcus aureus ATCC 29213 and Propionibacterium acnes ATCC 6919, and Gram-negative bacteria, such as Escherichia coli ATCC 25992 and Pseudomonas aeruginosa ATCC 17933. Microbiological results showed that the presence of AgNPs in CA and CTS/PEO nanostructured membranes has significant antimicrobial activity for the Gram-positive bacteria Escherichia coli and Propionibacterium acnes.

  6. Preliminary study on the antimicrobial activity ofEnicostemma littorale using different solvents

    Institute of Scientific and Technical Information of China (English)

    Pitchamuthu Abirami; Muthiah Gomathinayagam; Rajaram Panneerselvam

    2012-01-01

    ABSTRACT Objective:To study the antimicrobial activity ofEnicostemma littorale (E. littorale) using different solvents.Methods:Chloroform, methanol and acetone extracts of different parts of E. littorale(leaf, stem and root) were evaluated for antimicrobial activity using disc diffusion method against some gram-negative species such asEscherichia coli, Klebsiella pnemoniae, Pseudomonas aeruginosa, Salmonella typhi and gram-positive species Staphylococcus aureus, Bacillus cereus,Bacillus subtilis and two fugal speciesviz., Aspergillus fumigates andAspergillus flavus.Results:The chloroform extracts showed the highest antibacterial activity.Among leaf, stem and root extracts, the stem extracts showed maximum antibacterial activity.All of the used extracts had no significant antifungal activity againstAspergillus fumigates andAspergillus flavus.The chloroform stem extract showed highest activity(about20 mm inhibition zone) against Bacillussubtilis(at500 mg/mL) followed by the methanolic stem extract which showed highest activity against the same organism.The lowest antibacterial activity was observed by the acetone leaf extract(about8 mm inhibition zone) againstEscherichia coli.Conclusions:The findings of the study indicate littorale could also be a new source for antibiotics discovery.

  7. Antimicrobial Activity Studies of Bactoriocin Produced by Lactobacilli Isolates from Carrot Kanji

    Directory of Open Access Journals (Sweden)

    Harshada M. Sowani

    2012-01-01

    Full Text Available Problem statement: In the present study, Staphylococcus aureus a causative agent of food poisoning is selected as a test organism to study the antimicrobial effect of bacteriocin. S. aureus produces number of exotoxins and enterotoxins which enters the body via contaminated food causing illness. Approach: In this case the use of antibiotics is one of the ways of treatment, but in addition to this if we advise such patients to consume the carrot kanji then it will cause better effect because carrot kanji is the naturally fermented food beverage consisting of microflora mainly the Lactobacilli. Results: The Lactobacilli have ability to produce antimicrobial compounds called bacteriocin. Isolation of bacteriocin was carried out from the naturally fermented carrot kanji. The bacteriocin produced by Lactobacilli was dialysed and used for the further studies. The well diffusion method is used to study the antimicrobial activity, effect of temperature, pH, enzymes on bacteriocin. From the diameter of zone of inhibition the activity of bacteriocin was determined. The sensitivity of bacteriocin at different pH range showed that at neutral pH the diameter of inhibition zone was greater than that at alkaline as well as acidic pH. Upto 100°C the bacteriocin activity was 80% but as temperature range increased upto 121°C it reduced sharply to 28%. Conclusion/Recommendations: In addition to this the effect of alpha amylase, trypsin, catalase enzyme on bacteriocin activity was also studied which shows positive results with alpha amylase, reduced activity with trypsin and catalase remained unaffected.

  8. Antimicrobial activity of antiproteinases.

    Science.gov (United States)

    Sallenave, J M

    2002-04-01

    Low-molecular-mass neutrophil elastase inhibitors have been shown to be important in the control of lung inflammation. In addition to inhibiting the enzyme neutrophil elastase, these low-molecular-mass compounds (10 kDa) have been shown to have other activities. For example, secretory leucocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor/SKALP (skin-derived antileucoproteinase)/elafin have also been shown to have "defensin"-like antimicrobial activities. Indeed, these inhibitors have antimicrobial properties in vitro against bacteria, fungi and, potentially, HIV. In addition, we have shown, using an adenovirus-mediated gene transfer overexpression strategy, that elafin is also active against Pseudomonas aeruginosa infection in mice in vivo. The mechanism of action is currently under investigation. In addition to these direct or indirect effects on microbes, it has been shown that lipopolysaccharide is able to up-regulate SPLI production in macrophages in vitro, and that the addition of recombinant SLPI to human monocytes or the transfection of macrophages with SPLI can down-regulate pro-inflammatory mediators such as tumour necrosis factor, presumably to limit self-damaging excessive inflammation. Using viral gene transfer vectors, we are currently investigating the potential of these inhibitors in various models of inflammation in vivo. PMID:12023836

  9. Studies on Chemical Composition, Antimicrobial and Antioxidant Activities of Five Thymus vulgaris L. Essential Oils

    Directory of Open Access Journals (Sweden)

    Emilia Mancini

    2015-07-01

    Full Text Available This study is aimed at assessing the essential oil composition, total phenolic content, antimicrobial and antioxidant activities of Thymus vulgaris collected in five different area of the Campania Region, Southern Italy. The chemical composition of the essential oils was studied by GC-flame ionization detector (FID and GC/MS; the biological activities were evaluated through determination of MIC and minimum bactericidal concentration (MBC and evaluation of antioxidant activity. In total, 134 compounds were identified. The oils were mainly composed of phenolic compounds, and all oils belonged to the chemotype thymol. The antimicrobial activity of the five oils was assayed against ten bacterial strains. The oils showed different inhibitory activity against some Gram-positive pathogens. The total phenol content in the essential oils ranged from 77.6–165.1 mg gallic acid equivalents (GAE/g. The results reported here may help to shed light on the complex chemotaxonomy of the genus Thymus. These oils could be used in many fields as natural preservatives of food and as nutraceuticals.

  10. Antimicrobial/Antibiofilm Activity and Cytotoxic Studies of β-Thujaplicin Derivatives.

    Science.gov (United States)

    Fotopoulou, Theano; Ćirić, Ana; Kritsi, Eftichia; Calhelha, Ricardo C; Ferreira, Isabel C F R; Soković, Marina; Zoumpoulakis, Panagiotis; Koufaki, Maria

    2016-09-01

    Natural β-thujaplicin displays a remarkable array of biological activities for the prevention or treatment of various disorders while its tropolone scaffold inspired the synthesis of new analogs. The main goal of the current study was to evaluate the influence of 4-substituted piperazine moieties at position 7 of the β-thujaplicin scaffold, on the antimicrobial activity. In order to determine the biological activity of the β-thujaplicin derivatives, a microdilution method was used against a wide variety of bacteria and fungi. Pseudomonas aeruginosa PAO 1 was used for testing antiquorum and antibiofilm effects. Four human tumor cell lines (MCF-7, NCI-H460, HeLa, and HepG2) and a porcine liver derived cell line (PLP2) were used for testing antitumor and cytotoxic activity. The compounds present better antibacterial and antifungal activity in comparison with approved antimicrobials used as control agents. β-Thujaplicin showed strong antibacterial and antifungal activities against all tested species. Further studies of their antibacterial activity revealed that all compounds presented good antibiofilm and antiquorum effects. Fungi were more susceptible than bacteria to the tested compounds, with the exception of MK150, which possessed the best antibacterial effect. None of the tested compounds, at the GI50 values obtained for the tumor cell lines, have shown toxicity for non-tumor liver cells (PLP2). The prediction of physicochemical properties of the compounds was performed to further explain the structure-activity relationship. Finally, in order to explore a possible mechanism of action of the synthesized compounds, molecular docking studies were performed on CYP51 (14-a lanosterol demethylase), an important component of the fungal cell membrane. PMID:27400808

  11. Antimicrobial activity of Eucalyptus globulus oil, xylitol and papain: a pilot study

    Directory of Open Access Journals (Sweden)

    Valéria de Siqueira Mota

    2015-04-01

    Full Text Available OBJECTIVE To evaluate the in vitro antimicrobial activity of the Eucalyptus globulus essential oil, and of the xylitol and papain substances against the following microorganisms: Pseudomonas aeruginosa; Samonella sp.; Staphylococus aureus; Proteus vulgaris; Escherichia coli and Candida albicans. METHOD The in vitro antimicrobial evaluation was used by means of the agar diffusion test and evaluation of the inhibition zone diameter of the tested substances. Chlorhexidine 0.5% was used as control. RESULTS The Eucalyptus globulus oil showed higher inhibition than chlorhexidine when applied to Staphylococcus aureus, and equal inhibition when applied to the following microorganisms: Escherichia coli, Proteus vulgaris and Candida albicans. Papain 10% showed lower antimicrobial effect than chlorhexidine in relation to Candida albicans. Xylitol showed no inhibition of the tested microorganisms. CONCLUSION The Eucalyptus globulus oil has antimicrobial activity against different microorganisms and appears to be a viable alternative as germicidal agent hence, further investigation is recommended.

  12. Antimicrobial Activity of Drosera rotundifolia L.

    Directory of Open Access Journals (Sweden)

    Miroslava Kačániová

    2014-11-01

    Full Text Available Droseracae spp. is widely used in folk medicine. In the present study, the antimicrobial activities of the four Drosera rotundifolia L. (D8.11, D15.12, 18.10, 8.11 samples were investigated. The antimicrobial activities were determined by using agar disc diffusion method against grampositive bacteria (Bacillus thurigiensis, Staphylococcus aureus, Listeria monocytogenes and gramnegative bacteria (Yersinia enterocolitica, Salmonella enteritidis.  The results of the disk diffusion method showed very different activity against all tested strains of microorganisms. The best antimicrobial activity of ethanolic extract Drosera rotundifolia L. against Salmonella enteritidis was found at Drosera rotundifolia (D8.11.

  13. Comparative study of antimicrobial activity of AgBr and Ag nanoparticles (NPs.

    Directory of Open Access Journals (Sweden)

    Petr Suchomel

    Full Text Available The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60-70 nm were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120-130 nm. The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends--the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains.

  14. A STUDY OF ANTIMICROBIAL ACTIVITY OF ETHANOLIC EXTRACTS OF VARIOUS PLANT LEAVES AGAINST SELECTED MICROBIAL SPECIES

    Directory of Open Access Journals (Sweden)

    K.Valarmathy,

    2010-09-01

    Full Text Available To evaluate the antimicrobial activities of extract of leaves were examined against four common bacterial isolates. The ethanolic extracts of various leaves such as Moringa oleifera (Murungai , Musa paradisiaca (Banana, Azardiratica indica (Neem, Cynodon dactylon(Grass, Alternanthera sessilis (Ponnangkani, Anisochilus carnosus (Karpooravalli, investigated individually for antimicrobial activity by disc diffusion method .These were investigated against selected species of Escherichia coli, Bacillus subtilis, Vibrio cholerae, Klebsiella pneumoniae to find the inhibitory activities of the microbes. The ethanolic extract of Azardiratica indica showed considerably high activity against Escherichia coli than other extracts. These results were compared with standard antibiotic Penicillin. But the extract showed higher activity than the given standard antibiotic.

  15. Antimicrobial activity of Eucalyptus globulus oil, xylitol and papain: a pilot study

    OpenAIRE

    Valéria de Siqueira Mota; Ruth Natalia Teresa Turrini; Vanessa de Brito Poveda

    2015-01-01

    OBJECTIVE To evaluate the in vitro antimicrobial activity of the Eucalyptus globulus essential oil, and of the xylitol and papain substances against the following microorganisms: Pseudomonas aeruginosa; Samonella sp.; Staphylococus aureus; Proteus vulgaris; Escherichia coli and Candida albicans. METHOD The in vitro antimicrobial evaluation was used by means of the agar diffusion test and evaluation of the inhibition zone diameter of the tested substances. Chlorhexidine 0.5% was used as contro...

  16. New Milk Protein-Derived Peptides with Potential Antimicrobial Activity: An Approach Based on Bioinformatic Studies

    Science.gov (United States)

    Dziuba, Bartłomiej; Dziuba, Marta

    2014-01-01

    New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs) from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM), random forest (RF), artificial neural networks (ANN) and discriminant analysis (DA) available in the Collection of Anti-Microbial Peptides (CAMP database). Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins. PMID:25141106

  17. New Milk Protein-Derived Peptides with Potential Antimicrobial Activity: An Approach Based on Bioinformatic Studies

    Directory of Open Access Journals (Sweden)

    Bartłomiej Dziuba

    2014-08-01

    Full Text Available New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM, random forest (RF, artificial neural networks (ANN and discriminant analysis (DA available in the Collection of Anti-Microbial Peptides (CAMP database. Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins.

  18. Spectroscopic studies, antimicrobial activities and crystal structures of N-(2-hydroxy-3-methoxybenzalidene)1-aminonaphthalene

    Science.gov (United States)

    Ünver, Hüseyin; Yıldız, Mustafa; Dülger, Başaran; Özgen, Özen; Kendi, Engin; Durlu, Tahsin Nuri

    2005-03-01

    Schiff base N-(2-hydroxy-3-methoxybenzalidene)1-aminonaphthalene has been synthesized from the reaction of 2-hydroxy-3-methoxybenzaldehyde with 1-aminonaphthalene. The compound were characterized by elemental analysis, FT-IR, 1H NMR, 13C NMR and UV-visible techniques. The UV-visible spectra of the Schiff base were studied in polar and nonpolar solvents in acidic and basic media. The structure of the compound has been examined cyrstallographically. There are two independent molecules in the asymmetric unit. It crystallizes in the monoclinic space group P21/c, with unit cell parameters: a=14, 602(2), b=5,800(1), c=16, 899(1) Å, V=1394.4(2) Å 3, Dx=1.321 g cm -3 and Z=4. The crystal structure was solved by direct methods and refined by full-matrix least squares to a find R=0.041 of for 1179 observed reflections. The title compound's antimicrobial activities also have been studied. The antimicrobial activities of the ligand has been screened in vitro against the organisms Escherichia coli ATCC 11230, Staphylococcus aureus ATCC 6538, Klebsiella pneumoniae UC57, Micrococcus luteus La 2971, Proteus vulgaris ATCC 8427, Pseudomonas aeruginosa ATCC 27853, Mycobacterium smegmatis CCM 2067, Bacillus cereus ATCC 7064 and Listeria monocytogenes ATCC 15313, the yeast cultures Candida albicans ATCC 10231, Kluyveromyces fragilis NRRL 2415, Rhodotorula rubra DSM 70403, Debaryomyces hansenii DSM 70238 and Hanseniaspora guilliermondii DSM 3432.

  19. Anti-microbial Activities of Protic Ionic Liquids Studied with Microcalorimetry Method

    Institute of Scientific and Technical Information of China (English)

    DING Yang-jun; NIE Yi; YU You

    2011-01-01

    The anti-microbial activities of seven protic ionic liquids(ILs) against Escherichia coli and Staphylococcus aureus were studied by a micro-calorimetric method at 310 K.The bacterial growth rate constants were determined based on the bacterial growth power-time curves,and minimum biocidal concentrations were estimated.The results indicate that the protic ILs studied show inhibitory activities on the bacteria,implying a potential eoo-toxicity to the microorganisms in the water system.Moreover,the inhibition effect of ionic liquids is related to the structure of the cation and anion of protic ILs.This type of proactive approach could aid in the assessment of the greenness of ILs to be used in the future.

  20. Antimicrobial and anti-adherence activity of various combinations of coffee-chicory solutions on Streptococcus mutans: An in-vitro study

    OpenAIRE

    Rama Sharma; Vamsi Krishna L Reddy; G M Prashant; Vivek Ojha; Naveen PG Kumar

    2014-01-01

    Context: Several studies have demonstrated the activity of natural plants on the dental biofilm and caries development. But few studies on the antimicrobial activity of coffee-based solutions were found in the literature. Further there was no study available to check the antimicrobial effect of coffee solutions with different percentages of chicory in it. Aims: To evaluate the antimicrobial activity of different combinations of coffee-chicory solutions and their anti-adherence effect on Strep...

  1. Antimicrobial activity of some Iranian medicinal plants

    Directory of Open Access Journals (Sweden)

    Ghasemi Pirbalouti Abdollah

    2010-01-01

    Full Text Available The major aim of this study was to determine the antimicrobial activity of the extracts of eight plant species which are endemic in Iran. The antimicrobial activities of the extracts of eight Iranian traditional plants, including Hypericum scabrum, Myrtus communis, Pistachia atlantica, Arnebia euchroma, Salvia hydrangea, Satureja bachtiarica, Thymus daenensis and Kelussia odoratissima, were investigated against Escherichia coli O157:H7, Bacillus cereus, Listeria monocytogenes and Candida albicans by agar disc diffusion and serial dilution assays. Most of the extracts showed a relatively high antimicrobial activity against all the tested bacteria and fungi. Of the plants studied, the most active extracts were those obtained from the essential oils of M. communis and T. daenensis. The MIC values for active extract and essential oil ranged between 0.039 and 10 mg/ml. It can be said that the extract and essential oil of some medicinal plants could be used as natural antimicrobial agents in food preservation. .

  2. Byrsonima crassa Niedenzu (IK: antimicrobial activity and chemical study

    Directory of Open Access Journals (Sweden)

    M. SANNOMIYA

    2009-01-01

    Full Text Available

    The methanolic extract of leaves from Byrsonima crassa, a Brazilian medicinal plant, was analyzed by CC and HPLC. Four constituents were isolated and identified as quercetin, methyl gallate, (--epigallocatechin gallate and quercetin-3-O-(2”-galloyl-a-L-arabinopyranoside. The methanolic and hydromethanolic extract, as well as fractions, were evaluated regarding their possible antimicrobial activity using in vitro methods. Results showed that both extracts and fractions exhibited significant antimicrobial activity against all tested strains. Keywords: Byrsonima crassa, antimicrobial activity, Malpighiaceae.

  3. ANTIMICROBIAL ACTIVITY OF LACTIC ACID BACTERIAL ISOLATES

    Directory of Open Access Journals (Sweden)

    Utkarsha S. Shivsharan

    2013-08-01

    Full Text Available Micro-organisms have tendency to produce antimicrobial substances which show biological activity against other kind of micro-organisms. This phenomenon of bacterial antagonism is observed in lactic acid bacteria with competitive advantages. The lactic acid bacteria are commonly present in many fermented products, fruits and milk products. The variety of antimicrobial substances produced by lactic acid bacteria showing good inhibition capacity include production of lactic acid, acetic acid, hydrogen peroxide, carbon dioxide, diacetyl and bacteriocin. Bacteriocins produced by lactic acid bacteria are the subject of intense research because of their antimicrobial activity against food born bacteria such as Listeria monocytogenes, staphylococcus aureus, Bacillus cereus, Clostridium botulinum and several others .Bacteriocins may be bacteriostatic or bactericidal with narrow or broad range of activity. The main of the study was to study the antimicrobial activity of such lactic acid bacterial isolates.

  4. Automation of antimicrobial activity screening.

    Science.gov (United States)

    Forry, Samuel P; Madonna, Megan C; López-Pérez, Daneli; Lin, Nancy J; Pasco, Madeleine D

    2016-03-01

    Manual and automated methods were compared for routine screening of compounds for antimicrobial activity. Automation generally accelerated assays and required less user intervention while producing comparable results. Automated protocols were validated for planktonic, biofilm, and agar cultures of the oral microbe Streptococcus mutans that is commonly associated with tooth decay. Toxicity assays for the known antimicrobial compound cetylpyridinium chloride (CPC) were validated against planktonic, biofilm forming, and 24 h biofilm culture conditions, and several commonly reported toxicity/antimicrobial activity measures were evaluated: the 50 % inhibitory concentration (IC50), the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Using automated methods, three halide salts of cetylpyridinium (CPC, CPB, CPI) were rapidly screened with no detectable effect of the counter ion on antimicrobial activity. PMID:26970766

  5. Antimicrobial Activity of Drosera rotundifolia L.

    OpenAIRE

    Miroslava Kačániová; Dominika Ďurechová; Nenad Vuković; Attila Kántor; Jana Petrová; Lukáš Hleba; Alexander Vatľák

    2014-01-01

    Droseracae spp. is widely used in folk medicine. In the present study, the antimicrobial activities of the four Drosera rotundifolia L. (D8.11, D15.12, 18.10, 8.11) samples were investigated. The antimicrobial activities were determined by using agar disc diffusion method against grampositive bacteria (Bacillus thurigiensis, Staphylococcus aureus, Listeria monocytogenes) and gramnegative bacteria (Yersinia enterocolitica, Salmonella enteritidis).  The results of the disk diffusion method show...

  6. The antimicrobial activity of Physalis peruviana L.

    OpenAIRE

    Göztok, Ferda; Zengin, Fikriye

    2013-01-01

    In this study, the antimicrobial activity of Physalis peruviana L. was investigated. The antimicrobial activity was evaluated according to the microdilution method by using Bacillus megaterium DMS 32, Pseudomonas aeruginosa DMS 50071, Escherichia coli ATCC 25922, Klebsiella pneumoniae FMC 5, Proteus vulgaris FMC 1, Enterobacter aeregenes CCM 2531, Candida albicans FMC 17, Candida globrata ATCC 66032, Candida tropicalis ATCC 13803, Trichophyton sp. and Epidermaphyton sp. In the end of experim...

  7. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications.

    Science.gov (United States)

    Dutta, J; Tripathi, S; Dutta, P K

    2012-02-01

    In recent years, active biomolecules such as chitosan and its derivatives are undergoing a significant and very fast development in food application area. Due to recent outbreaks of contaminations associated with food products, there have been growing concerns regarding the negative environmental impact of packaging materials of antimicrobial biofilms, which have been studied. Chitosan has a great potential for a wide range of applications due to its biodegradability, biocompatibility, antimicrobial activity, nontoxicity and versatile chemical and physical properties. It can be formed into fibers, films, gels, sponges, beads or nanoparticles. Chitosan films have been used as a packaging material for the quality preservation of a variety of foods. Chitosan has high antimicrobial activities against a wide variety of pathogenic and spoilage microorganisms, including fungi, and Gram-positive and Gram-negative bacteria. A tremendous effort has been made over the past decade to develop and test films with antimicrobial properties to improve food safety and shelf-life. This review highlights the preparation, mechanism, antimicrobial activity, optimization of biocide properties of chitosan films and applications including biocatalysts for the improvement of quality and shelf-life of foods.

  8. Preliminary Study of Cytotoxic and Antimicrobial Activities of Algae from South Sulawesi Waters

    OpenAIRE

    Zainuddin, Elmi Nurhaidah

    2013-01-01

    This presentation will cover recent progress from our laboratory into South Sulawesi marine algae and their microbial symbionts, as a source of cytotoxic and antimicrobial compounds. Preliminary data on the activities of algae extracts against human, aquaculture organism and plant pathogens will be presented along with the identification and characterization of microbial symbionts and pathogens.

  9. Antimicrobial activities of squalamine mimics.

    Science.gov (United States)

    Kikuchi, K; Bernard, E M; Sadownik, A; Regen, S L; Armstrong, D

    1997-07-01

    We investigated the antimicrobial properties of compounds with structural features that were designed to mimic those of squalamine, an antibiotic isolated from the stomach of the dogfish shark. The mimics, like squalamine, are sterol-polyamine conjugates. Unlike squalamine, the mimics were simple to prepare, at high yield, from readily available starting materials. Several squalamine mimics showed activity against gram-negative rods, gram-positive cocci including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and fungi. Some had little or no hemolytic activity. The hydrophobicity of the sterol backbone and the length and the cationic charge of the side chains appeared to be critical determinants of activity. One of the squalamine mimics, SM-7, was bactericidal against Escherichia coli, Pseudomonas aeruginosa, and S. aureus; its activity was decreased by divalent or monovalent cations and by bovine serum albumin. Subinhibitory concentrations of SM-7 markedly enhanced the antimicrobial activity of rifampin against gram-negative rods. These results suggest that the compounds may disrupt an outer membrane of gram-negative rods. Squalamine mimics are a new class of broad-spectrum antimicrobial agents. The antagonism of their activity by serum and albumin and their hemolytic properties may limit their use as systemic agents. The squalamine mimics, because of their potencies, broad spectra of antimicrobial activity, and potential for systemic toxicity, appear to be good candidates for development as topical antimicrobial agents. PMID:9210661

  10. An optical tweezer-based study of antimicrobial activity of silver nanoparticles

    Indian Academy of Sciences (India)

    Yogesha; Sarbari Bhattacharya; M K Rabinal; Sharath Ananthamurthy

    2012-08-01

    Understanding and characterizing microbial activity reduction in the presence of antimicrobial agents can help in the design and manufacture of antimicrobial drugs. We demonstrate the use of an optical tweezer setup in recording the changes in bacterial activity with time, induced by the presence of foreign bodies in a bacterial suspension. This is achieved by monitoring the fluctuations of an optically trapped polystyrene bead immersed in it. Examining the changes in the fluctuation pattern of the bead with time provides an accurate characterization of the reduction in the microbial activity. Here, we report on the effect of addition of silver nanoparticles on bacterial cultures of Pseudomonas aeroginosa, Escherichia coli and Bacillus subtilis. We observe a decrease in the bacterial activity with time for the investigated bacterial samples. This method in our opinion, enables one to track changes in bacterial activity levels as a function of time of contact with the antibacterial agent with greater efficacy than traditional cell counting methods.

  11. Study on the synthesis and antimicrobial activity of novel cationic porphyrins

    Institute of Scientific and Technical Information of China (English)

    Ke Gui Yu; Dong Hong Li; Cheng He Zhou; Jun Lin Diao

    2009-01-01

    A novel series of quaternary ammonium cationic derivatives based on tetrapyridyl-porphyrin was synthesized.All the compounds were evaluated for their in vitro antibacterial activities against S.aureus,E.coli and P aeruginosa,and antifunga activities against C. albicans.where microorganisms were exposed and unexposed to the irradiation.The results revealed that some of these compounds,especially,3a and 4a displayed satisfactory antibacterial activity against Gram-positive bacteria S. aureus and moderate antifungal activity against C. albicans.Unfortunately.Gram-negative bacteria P. aeruginasa was resistant to all compounds.The antimicrobial activity was found to be sensitive to the functional groups attached on the aromatic ring and the complex metal in the porphyrin ring,and decreased with the increase of electron-withdrawing capability of the functional groups.These preliminary results suggested that the remarkable antibacterial efficiency against S.aureus makes these substances promising antimicrobial agents.

  12. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin

    Directory of Open Access Journals (Sweden)

    Galdiero E

    2016-08-01

    Full Text Available Emilia Galdiero,1 Antonietta Siciliano,1 Valeria Maselli,1 Renato Gesuele,1 Marco Guida,1 Domenico Fulgione,1 Stefania Galdiero,2 Lucia Lombardi,3 Annarita Falanga2 1Department of Biology, University of Naples “Federico II”, Naples, Italy; 2Department of Pharmacy and Cirpeb, University of Naples “Federico II”, Naples, Italy; 3Department of Experimental Medicine, Second University of Naples, Naples, Italy Abstract: This study attempts to evaluate the antimicrobial activity and the ecotoxicity of quantum dots (QDs alone and coated with indolicidin. To meet this objective, we tested the level of antimicrobial activity on Gram-positive and Gram-negative bacteria, and we designed an ecotoxicological battery of test systems and indicators able to detect different effects using a variety of end points. The antibacterial activity was analyzed against Staphylococcus aureus (ATCC 6538, Pseudomonas aeruginosa (ATCC 1025, Escherichia coli (ATCC 11229, and Klebsiella pneumoniae (ATCC 10031, and the results showed an improved germicidal action of QDs-Ind. Toxicity studies on Daphnia magna indicated a decrease in toxicity for QDs-Ind compared to QDs alone, lack of bioluminescence inhibition on Vibrio fisheri, and no mutations in Salmonella typhimurium TA 100. The comet assay and oxidative stress experiments performed on D. magna showed a genotoxic and an oxidative damage with a dose–response trend. Indolicidin retained its activity when bound to QDs. We observed an enhanced activity for QDs-Ind. The presence of indolicidin on the surface of QDs was able to decrease its QDs toxicity. Keywords: peptide, quantum dots, ecotoxicity, antimicrobial activity, oxidative stress, genotoxicity

  13. Synthesis of novel coumarin appended bis(formylpyrazole) derivatives: Studies on their antimicrobial and antioxidant activities.

    Science.gov (United States)

    Nagamallu, Renuka; Srinivasan, Bharath; Ningappa, Mylarappa B; Kariyappa, Ajay Kumar

    2016-01-15

    A series of novel coumarin pyrazole hybrids of biological interest were synthesized from the hydrazones, carbazones and thiocarbazones via Vilsmeier Haack formylation reaction. These intermediates and formyl pyrazoles were evaluated for antimicrobial and antioxidant activities. Among the series, compounds 6g and 6h showed excellent antimicrobial activity against different bacterial and fungal strains and compounds 7g, 7h were found to be potent antioxidant agents in both DPPH and hydroxyl radical scavenging assays. Further, detailed quantitative structure-activity relationship (QSAR) analysis indicated the molecular parameters that contribute to increased potency of inhibition. The above findings would further encourage our understanding in employing coumarin pyrazole hybrids as potential antibiotic agents for treating infections caused by pathogenic microbes and fungi. Further, it also paves the way for exploration of these compounds as potential therapeutic agents to treat conditions arising because of excessive oxidative damage.

  14. Polar extracts from (Tunisian Acacia salicina Lindl. Study of the antimicrobial and antigenotoxic activities

    Directory of Open Access Journals (Sweden)

    Boubaker Jihed

    2012-04-01

    Full Text Available Abstract Background Methanolic, aqueous and Total Oligomer Flavonoids (TOF-enriched extracts obtained from the leaves of Acacia salicina 'Lindl.' were investigated for antibacterial, antimutagenic and antioxidant activities. Methods The antimicrobial activity was tested on the Gram positive and Gram negative reference bacterial strains. The Mutagenic and antimutagenic activities against direct acting mutagens, methylmethane sulfonate (MMS and 4-nitro-o-phenylenediamine (NOPD, and indirect acting mutagens, 2-aminoanthracene (2-AA and benzo[a]pyrene (B(aP were performed with S. typhimurium TA102 and TA98 assay systems. In addition, the enzymatic and nonenzymatic methods were employed to evaluate the anti-oxidative effects of the tested extracts. Results A significant effect against the Gram positive and Gram negative reference bacterial strains was observed with all the extracts. The mutagenic and antimutagenic studies revealed that all the extracts decreased the mutagenicity induced by B(aP (7.5 μg/plate, 2-AA (5 μg/plate, MMS (1.3 mg/plate and NOPD (10 μg/plate. Likewise, all the extracts showed an important free radical scavenging activity towards the superoxide anion generated by the xanthine/xanthine oxidase assay system, as well as high Trolox Equivalent Antioxidant Capacity (TEAC, against the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS+• radical. TOF-enriched extract exhibited the highest protective effect against free radicals, direct acting-mutagen and metabolically activated S9-dependent mutagens. Conclusions The present study indicates that the extracts from A. salicina leaves are a significant source of compounds with the antimutagenic and antioxidant activities, and this may be useful for developing potential chemopreventive substances.

  15. Antimicrobial activity of Securidaca longipedunculata.

    Science.gov (United States)

    Ajali, U; Chukwurah, B K C

    2004-11-01

    The folk herbal uses of Securidaca longipedunculata in the treatment of diarrhea, boils, gonorrhea, and cough prompted phytochemical analyses and antimicrobial activity screening of extracts of the root. Some flavonoids isolated showed activity against many micro-organisms. These flavonoids were isolated using chromatographic methods. PMID:15636189

  16. Lipase-catalyzed synthesis of palmitanilide: Kinetic model and antimicrobial activity study.

    Science.gov (United States)

    Liu, Kuan-Miao; Liu, Kuan-Ju

    2016-01-01

    Enzymatic syntheses of fatty acid anilides are important owing to their wide range of industrial applications in detergents, shampoo, cosmetics, and surfactant formulations. The amidation reaction of Mucor miehei lipase Lipozyme IM20 was investigated for direct amidation of triacylglycerol in organic solvents. The process parameters (reaction temperature, substrate molar ratio, enzyme amount) were optimized to achieve the highest yield of anilide. The maximum yield of palmitanilide (88.9%) was achieved after 24 h of reaction at 40 °C at an enzyme concentration of 1.4% (70 mg). Kinetics of lipase-catalyzed amidation of aniline with tripalmitin has been investigated. The reaction rate could be described in terms of the Michaelis-Menten equation with a Ping-Pong Bi-Bi mechanism and competitive inhibition by both the substrates. The kinetic constants were estimated by using non-linear regression method using enzyme kinetic modules. The enzyme operational stability study showed that Lipozyme IM20 retained 38.1% of the initial activity for the synthesis of palmitanilide (even after repeated use for 48 h). Palmitanilide, a fatty acid amide, exhibited potent antimicrobial activity toward Bacillus cereus. PMID:26672452

  17. Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies

    Indian Academy of Sciences (India)

    N Raman; J Dhaveethu Raja; A Sakthivel

    2007-07-01

    A new series of transition metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) have been synthesized from the Schiff base (L) derived from 4-aminoantipyrine, 3-hydroxy-4-nitrobenzaldehyde and -phenylenediamine. Structural features were obtained from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV-Vis, 1H NMR and ESR spectral studies. The data show that these complexes have composition of ML type. The UV-Vis, magnetic susceptibility and ESR spectral data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The redox behaviour of copper and vanadyl complexes was studied by cyclic voltammetry. Antimicrobial screening tests gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that Cu, Ni and Co complexes cleave DNA through redox chemistry whereas other complexes are not effective.

  18. Comparative study of the antimicrobial activity of essential oil and two different extract from Salvia urmiensis Bunge

    Institute of Scientific and Technical Information of China (English)

    Mohammad Hossein Farjam

    2012-01-01

    Objective: In this study, antimicrobial activity of essential oil, ethyl acetate and ether extracts of S. urmiensis Bunge were screened against some species of bacteria and fungi. Also, the essential oil of the aerial part of S. urmiensis Bunge was examined by GC and GC-MS. Methods:The oils obtained by hydrodistillation in a Clevenger apparatus from fresh and dried aerial parts of S. urmiensis Bunge were analyzed by GC and GC-MS to investigate the variations of oil components. Ethyl acetate and ether extracts of S. urmiensis Bunge were obtained using powdered aerial part and appropriate amounts of each solvent (ethyl acetate, ether) by maceration method. The minimum inhibitory concentration (MIC) of essential oil and extracts against the bacteria and fungi was determined using broth microdilution method. Results: In the essential oil of S. urmiensis Bunge 27 Compounds have been identified. Benzyl benzoate (60.3 %), n-hexyl benzoate (16.7 %), Amyl benzoate (5.2 %) and 2- octyl benzoate (4.2 %) were the main components of the essential oil. The essential oil analysis showed greatest antimicrobial activity againstStaphylococcus epidermidis (5.3 μg/ml) and S. cerevisiae (9.3 μg/ml). The ethyl acetate showed greatest antimicrobial activity against Bacillus subtilis (106.7 μg/ml), Candida albicans (5.3 μg/ml) and ether extract showed greatest antimicrobial activity against Klebseilla pneumoniae (10.7 μg/ml) and Saccharomyces cerevisiae (10.7 μg/ml). Conclusions: we suggest that the antimicrobial activity of S. urmiensis may be due to its content of germacrene and linalool.

  19. Comparative Studies on Polyphenolic Composition, Antioxidant and Antimicrobial Activities of Schisandra chinensis Leaves and Fruits

    Directory of Open Access Journals (Sweden)

    Andrei Mocan

    2014-09-01

    Full Text Available The aim of this paper was to evaluate the antioxidant and antimicrobial activities and the polyphenolic content of Schisandra chinensis (Turcz. Baill. leaves and fruits. The leaves are an important source of flavonoids (35.10 ± 1.23 mg RE/g plant material. Qualitative and quantitative analyses of the polyphenolic compounds were achieved using a HPLC-UV-MS method. The main flavonoid from the leaves was isoquercitrin (2486.18 ± 5.72 μg/g plant material, followed by quercitrin (1645.14 ± 2.12 μg/g plant material. Regarding the fruit composition, the dominant compound there was rutin (13.02 ± 0.21 μg/g plant material, but comparing with the leaves, fruits can be considered a poor source of phenolic compounds. The antioxidant activity was evaluated by DPPH, TEAC, hemoglobin ascorbate peroxidase activity inhibition (HAPX, inhibition of lipid peroxidation catalyzed by cytochrome c and EPR spectroscopic assays, revealing a better antioxidant activity for the S. chinensis leaves extract. In the antimicrobial assay, S. chinensis leaves extract showed efficient activities against the targeted bacteria, being more active than the fruits extract. The results suggest the leaves of S. chinensis as a valuable source of antioxidant compounds with significant antioxidant activity.

  20. Comparative studies on polyphenolic composition, antioxidant and antimicrobial activities of Schisandra chinensis leaves and fruits.

    Science.gov (United States)

    Mocan, Andrei; Crișan, Gianina; Vlase, Laurian; Crișan, Ovidiu; Vodnar, Dan Cristian; Raita, Oana; Gheldiu, Ana-Maria; Toiu, Anca; Oprean, Radu; Tilea, Ioan

    2014-01-01

    The aim of this paper was to evaluate the antioxidant and antimicrobial activities and the polyphenolic content of Schisandra chinensis (Turcz.) Baill. leaves and fruits. The leaves are an important source of flavonoids (35.10 ± 1.23 mg RE/g plant material). Qualitative and quantitative analyses of the polyphenolic compounds were achieved using a HPLC-UV-MS method. The main flavonoid from the leaves was isoquercitrin (2486.18 ± 5.72 μg/g plant material), followed by quercitrin (1645.14 ± 2.12 μg/g plant material). Regarding the fruit composition, the dominant compound there was rutin (13.02 ± 0.21 μg/g plant material), but comparing with the leaves, fruits can be considered a poor source of phenolic compounds. The antioxidant activity was evaluated by DPPH, TEAC, hemoglobin ascorbate peroxidase activity inhibition (HAPX), inhibition of lipid peroxidation catalyzed by cytochrome c and EPR spectroscopic assays, revealing a better antioxidant activity for the S. chinensis leaves extract. In the antimicrobial assay, S. chinensis leaves extract showed efficient activities against the targeted bacteria, being more active than the fruits extract. The results suggest the leaves of S. chinensis as a valuable source of antioxidant compounds with significant antioxidant activity.

  1. Study on Antimicrobial and Antiviral Activities of Lysozyme From Marine Strain S-12-86 In Vitro

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this study, the in vitro antimicrobial and antiviral activities of the lysozyme from marine strain S-12-86 (LS) were investigated. The antimicrobial activity of LS was tested by minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) method. The inhibiting effects of LS on pseudo rabies virus (PRV) in swine kidney cells (PK-15 cells) were judged by cytopathogenic effect test (CPE). The results showed LS had a broad antimicrobial spectrum against several standard strains including gram-positive bacteria, gram-negative bacteria, fungi, etc. The MIC of LS was 0.25-4.00 mg mL-1 and its MBC was 0.25-8.00 mg mL-1, respectively. Observation under the transmission electron microscope revealed that the cell wall of Candida albicans was distorted seriously, and the cytoplasm with many cavities was asymmetrical after being hydrolyzed by LS. The median cytotoxicity concentration (TC50) of LS was 100.0 μg mL-1, the median effective concentration (EC50) was 0.46 μg mL-1, and the selectivity index (TI = TC50/EC50) was 217. LS could inhibit PRV in PK-15 cells when it was added to cell culture medium at 0, 2, 4, 6, and 8 h after PK-15 cells had been infected by PRV. From the results, we concluded that LS had broad antimicrobial spectrum and good inhibiting effects on PRV.

  2. Solid Phase Chemical Synthesis and Structure - Activity Study of Brevinin - 2R and Analogues as Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Hashem Yaghoubi

    2015-10-01

    Full Text Available Background: Brevinin-2R, as 25 amino acids peptide of the skin of Rana ridibunda frog, possesses potent antimicrobial and low hemolytic activity. It has an N-terminal hydrophilic region and a C-terminal loop that is delineated by an intra-disulfide bridge. In our study, Brevinin-2R and its diastereomer as well  as its  cyclic  analogue  were  synthesized  and  characterized  in  order  to investigate its structural features and biological implications.Methods: MIC determination is based on the recommended classical method of national comittee for labratory safety standard (NCLSS and standard by Hancock With some change on cationic peptides. In this study All bacterial strains were obtained from Industrial-Scientific Research center.Results: Both analogues showed lower antimicrobial activities compared to Brevinin-2R. In spite of Brevinin-2R peptide which shows low hemolytic activity, these analogues failed to show any hemolytic activity even at higherconcentrations (up to 400 µ g/ml. Based on proteolytic stability measurements,diastereomer and cyclic analogues displayed 90% and 60% residual antimicrobial activity, respectively, while antimicrobial activity of Brevinin-2R was 20%. The CD analysis revealed that amphipathic α-helical conformation of the synthesized peptides is involved in antimicrobial effects.Conclusion: CD studies and HPLC based measurement of retention time using a reverse phase column indicated that the Brevinin-2R can form an amphipathic loop  resulting  in  an  enhanced  hydrophobicity.  The  hemolytic  activity  ofBrevinin-2R and its analogues appeared to correlate with the retention time aswell as the α-helicity. Accordingly, it seems that the combination of incorporating of D-amino acids into lytic peptides and their cyclization may result in developing new antimicrobial peptides with improved properties for treating infectious diseases.

  3. Antimicrobial activity of plant extracts on Candida albicans: An in vitro study

    OpenAIRE

    Sunitha Jagalur Doddanna; Shilpa Patel; Madhusudan Astekar Sundarrao; Ravindra Setru Veerabhadrappa

    2013-01-01

    Background and Objectives: Plants as sources of medicinal compounds have continued to play a predominant role in the maintenance of human health since ancient times. Even though several effective antifungal agents are available for oral candida infections, the failure is not uncommon because isolates of Candida albicans may exhibits resistance to the drug during therapy. The present study was conducted to evaluate the antimicrobial effects of few plant extracts on Candida albicans. An additio...

  4. Study on antioxidant and antimicrobial activities of turmeric clear liquid soap for wound treatment of HIV patients

    Directory of Open Access Journals (Sweden)

    Pechnoi Singchangchai

    2005-08-01

    Full Text Available Ethanol extract of turmeric [Curcuma longa Linn. (Zingiberaceae] was investigated for its in vitro antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging assay and activities against six microorganisms (Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphyloccoccus aureus, Candida albicans and Cryptococcus neoformans. Clear liquid soaps containing 0.5% w/v turmeric extract were formulated. The only one preparation with acceptable appearance, foam and viscosity was selected for antimicrobial activity and stability studies. It was found that turmeric extract had 50% radical scavenging ability (EC50 at concentration of 11.26 μg/ml against DPPH. Turmeric extract was showed no activity against Escherichia coli and Pseudomonas aeruginosa. The minimum inhibitory concentration of turmeric extract against Bacillus subtilis, Staphyloccocus aureus, Cryptococcus neoformans and Candida albicans were 16, 128, 128 and 256 μg/ml, respectively. The selected preparation was physically and chemically stable and the antimicrobial activity did not change (p<0.05 under the heating-cooling stability test. However, curcumin content and the antimicrobial activities against S. aureus and C. neoformans decreased significantly (p<0.05 under the accelerated test conditions (temperature 45oC, 75% RH for 4 months and after storage at room temperature for 12 months. The results of a clinical trial with HIV patients found that this liquid soap decreased itching symptom (100% and infectious wound and abscess became dryness scabs (78.6% within 2 weeks.

  5. Design, synthesis, antimicrobial activity and molecular modeling studies of novel benzofuroxan derivatives against Staphylococcus aureus.

    Science.gov (United States)

    Jorge, Salomão Dória; Masunari, Andrea; Rangel-Yagui, Carlota Oliveira; Pasqualoto, Kerly Fernanda Mesquita; Tavares, Leoberto Costa

    2009-04-15

    Molecular modification is a quite promising strategy in the design and development of drug analogs with better bioavailability, higher intrinsic activity and less toxicity. In the search of new leads with potential antimicrobial activity, a new series of 14 4-substituted [N'-(benzofuroxan-5-yl)methylene]benzohydrazides, nifuroxazide derivatives, were synthesized and tested against standard and multidrug-resistant Staphylococcus aureus strains. The selection of the substituent groups was based on physicochemical properties, such as hydrophobicity and electronic effect. These properties were also evaluated through the lipophilic and electrostatic potential maps, respectively, considering the compounds with better biological profile. Twelve compounds exhibited similar bacteriostatic activity against standard and multidrug-resistant strains. The most active compound was the 4-CF(3) substituted derivative, which presented a minimum inhibitory concentration (MIC) value of 14.6-13.1 microg/mL, and a ClogP value of 1.87. The results highlight the benzofuroxan derivatives as potential leads for designing new future antimicrobial drug candidates. PMID:19324556

  6. Studies on antimicrobial and antifungal activities of ziziphus mauritiana human clinical bacterial and fungal pathogens

    International Nuclear Information System (INIS)

    The antimicrobial and antifungal activities of crude extracts of Ziziphus mauritiana leaves were investigated against six selected bacterial (Staphylococcus aureus, Micrococcus luteus, Escherichia coli, Pseudomonas aeruginosa, Enterobacter, Klebsiella pneumoniae) and one fungal pathogen (Aspel-gillus niger). The crude extract was further fractionated in butanol, choloroform, n-hexane and methanol. Agar well diffusion and agar dilution assay were employed for determination of zones of inhibition and MICs, respectively, whereas MBC was determined using broth dilution test. The butanol fraction presented encouraging antimicrobial activity (15.0%0.02), while methanol (7.03:1:0.05) and chloroform (7.0%0,05) fractions emerged with significantly low susceptibility. The n-hexane fraction was recorded as almost inactive (0%0) against all bacterial pathogens. Unlike the antibacterial activities, all fractions possessed momentous antifungal activities except the methanol fraction (0%0). The n-hexane fraction showed widest zone of inhibition (11:1:0.05) followed by butanol (8.0%0.02) and chloroform (7.0%0.02). (author)

  7. Antimicrobial activities of squalamine mimics.

    OpenAIRE

    Kikuchi, K.; Bernard, E M; Sadownik, A; Regen, S L; Armstrong, D

    1997-01-01

    We investigated the antimicrobial properties of compounds with structural features that were designed to mimic those of squalamine, an antibiotic isolated from the stomach of the dogfish shark. The mimics, like squalamine, are sterol-polyamine conjugates. Unlike squalamine, the mimics were simple to prepare, at high yield, from readily available starting materials. Several squalamine mimics showed activity against gram-negative rods, gram-positive cocci including methicillin-resistant Staphyl...

  8. Antimicrobial Activity of Three Root Canal Irrigants on Enterococcus Faecalis: An in Vitro Study

    OpenAIRE

    Ahangari, Zohreh; Samiee, Mohammad; Yolmeh, Mohammad Amin; Eslami, Gita

    2008-01-01

    INTRODUCTION: The aim of this study was to compare the antimicrobial effects of 2.5% Sodium hypochlorite (NaOCl), 2% Chlorhexidine Gluconate (CHX) and BioPure MTAD (MTAD) on Enterococcus (E) faecalis-contaminated root canals of human extracted teeth. MATERIALS AND METHODS: Seventy human intact extracted single-rooted teeth with straight root canal randomly divided into 5 groups: positive control (n=5), negative control (n=5), 2.5% NaOCl (n=20), 2% CHX (n=20), and MTAD (n=20). Each tooth was i...

  9. The antimicrobial efficiency of silver activated sorbents

    Science.gov (United States)

    Đolić, Maja B.; Rajaković-Ognjanović, Vladana N.; Štrbac, Svetlana B.; Rakočević, Zlatko Lj.; Veljović, Đorđe N.; Dimitrijević, Suzana I.; Rajaković, Ljubinka V.

    2015-12-01

    This study is focused on the surface modifications of the materials that are used for antimicrobial water treatment. Sorbents of different origin were activated by Ag+-ions. The selection of the most appropriate materials and the most effective activation agents was done according to the results of the sorption and desorption kinetic studies. Sorption capacities of selected sorbents: granulated activated carbon (GAC), zeolite (Z), and titanium dioxide (T), activated by Ag+-ions were following: 42.06, 13.51 and 17.53 mg/g, respectively. The antimicrobial activity of Ag/Z, Ag/GAC and Ag/T sorbents were tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. After 15 min of exposure period, the highest cell removal was obtained using Ag/Z against S. aureus and E. coli, 98.8 and 93.5%, respectively. Yeast cell inactivation was unsatisfactory for all three activated sorbents. The antimicrobial pathway of the activated sorbents has been examined by two separate tests - Ag+-ions desorbed from the activated surface to the aqueous phase and microbial cell removal caused by the Ag+-ions from the solid phase (activated surface sites). The results indicated that disinfection process significantly depended on the microbial-activated sites interactions on the modified surface. The chemical state of the activating agent had crucial impact to the inhibition rate. The characterization of the native and modified sorbents was performed by X-ray diffraction technique, X-ray photoelectron spectroscopy and scanning electron microscope. The concentration of adsorbed and released ions was determined by inductively coupled plasma optical emission spectroscopy and mass spectrometry. The antimicrobial efficiency of activated sorbents was related not only to the concentration of the activating agent, but moreover on the surface characteristics of the material, which affects the distribution and the accessibility of the activating agent.

  10. Antimicrobial activity of mangrove plant (Lumnitzera littorea)

    Institute of Scientific and Technical Information of China (English)

    Shahbudin Saad; Muhammad Taher; Deny Susanti; Haitham Qaralleh; Nurul Afifah Binti Abdul Rahim

    2011-01-01

    Objective:To investigate the antimicrobial activities ofn-hexane, ethyl acetate and methanol extracts of the leaves ofLumnitzera littorea (L. littorea) against six human pathogenic microbes. Methods: The antimicrobial activity was evaluated using disc diffusion and microdilution methods.Results:The antimicrobial activities of the crude extracts were increased with increasing the concentration. It is clear thatn-hexane extract was the most effective extract. Additionally, Gram positiveBacillus cereus (B. cereus) appear to be the most sensitive strain whilePseudomonas aeruginosa (P. aeruginosa) and the yeast strains (Candida albicans (C. albicans) andCryptococcus neoformans (C. neoformans)) appear to be resistance to the tested concentrations since no inhibition zone was observed. The inhibition of microbial growth at concentration as low as0.04 mg/mL indicated the potent antimicrobial activity ofL. littorea extracts.Conclusions:The obtained results are considered sufficient for further study to isolate the compounds responsible for the activity and suggesting the possibility of finding potent antibacterial agents fromL. littorea extracts.

  11. Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study

    Science.gov (United States)

    Cristescu, R.; Visan, A.; Socol, G.; Surdu, A. V.; Oprea, A. E.; Grumezescu, A. M.; Chifiriuc, M. C.; Boehm, R. D.; Yamaleyeva, D.; Taylor, M.; Narayan, R. J.; Chrisey, D. B.

    2016-06-01

    The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.

  12. Evaluation of the antimicrobial activity of various concentrations of Tulsi (Ocimum sanctum extract against Streptococcus mutans: An in vitro study

    Directory of Open Access Journals (Sweden)

    Agarwal Pooja

    2010-01-01

    Full Text Available Aim: To determine if Tulsi (Ocimum sanctum extract has an antimicrobial activity against Streptococcus mutans and to determine which concentration of Tulsi (Ocimum sanctum extract among the 15 concentrations investigated has the maximum antimicrobial activity. Setting and Design: Experimental design, in vitro study, Lab setting. Materials and Methods: Ethanolic extract of Tulsi was prepared by the cold extraction method. The extract was then diluted with an inert solvent, dimethyl formamide, to obtain 15 different concentrations (0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 6%, 7% 8%, 9%, 10% of the extract. 0.2% chlorhexidine was used as a positive control and dimethyl formamide was used as a negative control. The extract, along with the controls, was then subjected to microbiological investigation to determine which concentration among the 15 different concentrations of the extract gave a wider inhibition zone against Streptococcus mutans. The zones of inhibition were measured in millimeters using a vernier caliper. Results: At the 4% concentration of Tulsi extract, a zone of inhibition of 22 mm was obtained. This was the widest zone of inhibition observed among all the 15 different concentrations of Tulsi that were investigated. Conclusion: Tulsi extract demonstrated an antimicrobial property against Streptococcus mutans.

  13. Antimicrobial activity of complete denture cleanser solutions based on sodium hypochlorite and Ricinus communis – a randomized clinical study

    Science.gov (United States)

    SALLES, Marcela Moreira; BADARÓ, Maurício Malheiros; de ARRUDA, Carolina Noronha Ferraz; LEITE, Vanessa Maria Fagundes; da SILVA, Cláudia Helena Lovato; WATANABE, Evandro; OLIVEIRA, Viviane de Cássia; PARANHOS, Helena de Freitas Oliveira

    2015-01-01

    ABSTRACT To preserve oral health and to maintain the prosthetic devices, it is important not only to improve the properties of commonly known hygiene products, but also to investigate new materials with antimicrobial action. Objectives This study evaluated the antimicrobial activity of sodium hypochlorite (0.25% and 0.50%) and 10% Ricinus communis’ solutions against specific microorganisms. Material and Methods Sixty four maxillary complete denture wearers were instructed to brush their dentures three times a day and to soak them (20 min/day) in the solutions: SH1: 0.25% sodium hypochlorite; SH2: 0.5% sodium hypochlorite; RC: 10% R. communis oil; and C: 0.85% saline (control). The solutions were used for 7 days in a randomized sequence. Following each period of use, there was a 1-week washout period. Antimicrobial activity was determined by Colony Forming Units (CFU) counts of Streptococcus mutans, Candida spp., and gram-negative microorganisms. For collecting biofilm, the internal surface of maxillary dentures was brushed with saline solution, and biofilm suspension obtained. After dilutions (100 - 10-3), aliquots were seeded in Mitis salivarius, CHROMagar Candida®, and MacConkey agar for detecting S. mutans, Candida spp., or gram-negative microorganisms, respectively. After incubation, colonies were counted, and CFU/mL values were calculated. Then, transformation - log10 (CFU+1) - data were analyzed using the Friedman test (α=0.05). Results showed significant differences between the solutions (p<0.001). Results All three solutions showed antimicrobial activity against S. mutans. Against Candida spp., RC and SH1 solutions showed similar effect while SH2 showed superior activity. SH1 and SH2 solutions showed antimicrobial action against gram-negative microorganisms. The Candida species most frequently isolated was C. albicans, followed by C. tropicalis and C. glabrata. Conclusions The 0.5% sodium hypochlorite solution was the most effective and might be used to

  14. Antimicrobial activity of benzylisoquinoline alkaloids.

    Science.gov (United States)

    Villar, A; Mares, M; Rios, J L; Canton, E; Gobernado, M

    1987-04-01

    The antimicrobial in vitro activity of 14 benzylisoquinoline alkaloids was investigated by agar diffusion and agar dilution methods against several genera of microorganisms that included Streptococcus, Staphylococcus, Bacillus, Lysteria, Escherichia, Salmonella, Klebsiella, Pseudomonas, Enterobacter, Serratia, Shigella, Mycobacterium and Candida. Anolobine was the most active compound against grampositive bacteria with MIC90 between 12 and 50 mg/l; less active were anonaine, lysicamine and liriodenine. All the alkaloids of the noraporphine and oxoaporphine groups, with the exception of isopiline, showed activity against Mycobacterium phlei (MIC 6-25 mg/l). Candida albicans ATCC26555 was inhibited by anonaine, nornantenine and xylopine (MIC 3-12 mg/l). None of the alkaloids tested had a significant activity against gramnegative rods. The action against susceptible microorganisms was bactericidal. PMID:3615557

  15. Antimicrobial activity of Argemone ochroleuca Sweet (Chicalote)

    OpenAIRE

    Francisco Daniel REYES; Celia Jimena PEÑA; Canales, Margarita; Jiménez, Manuel; Samuel MERÁZ; Tzasna HERNANDEZ

    2011-01-01

    Argemone ochroleuca Sweet (Papaveraceae) is used to treat eye infection, respiratory and dermatological disorders in Tepotzotlán, State of México (México). The aim of this work was to investigate antimicrobial activity of hexane, ethyl acetate and methanol extracts from aerial parts of A. ochroleuca. The antimicrobial activity was evaluated against thirteen bacteria and nine fungal strains. Only methanol extract showed antimicrobial activity. S. aureus (MIC= 125 ¿g/mL) and C. neoformans (MIC=...

  16. ANTIMICROBIAL ACTIVITY OF EXTRACTS FROM ECUADORIAN LICHENS.

    Science.gov (United States)

    Matvieieva, N A; Pasichnyk, L A; Zhytkevych, N V; Jacinto, Pabón Garcés Galo; Pidgorskyi, V S

    2015-01-01

    Antimicrobial activity of the ethanolic, isopropanolic, acetone, DMSO and aqueous extracts of the two lichen species from Ecuadorian highland, Usnea sp. and Stereocaulon sp. were explored in vitro against bacteria Bacillus subtilis, Escherichia coli and Staphylococcus aureus by the disc-diffusion method. Also the minimal inhibitory concentration (MIC) was determined. The strongest antimicrobial activity was found in DMSO extract of Usnea sp. compared to antibacterial activity of ciprfloxacin and cefazolin antibiotics. The inhibition zone was 28 mm, 30 mm, 31mm (DMSO extract, ciprfloxacin and cefazolin respectively) in case of B. subtilis usage as the test bacteria. MIC value for Usnea sp. and Stereocaulon sp. DMSO extracts was 0.4 mg/ml. E. coli was resistant to all kinds of extracts. The S. aureus sensitivity to lichen DMSO extracts was comparable to sensitivity of these microorganisms to tetracycline and vancomycin. Thereby, most kinds of extracts (ethanol, isopropanol, hexane, DMSO and acetone solvents) from Ecuadorian lichens Usnea sp. and Stereocaulon sp. with the exception of aqueous Stereocaulon sp. extracts possessed antibacterial activity against B. subtilis. DMSO lichen extracts had also antimicrobial activity against S. aureus. At the same time the extracts studied didn't demonstrate antibacterial activity against the representatives of the most common and harmful phytopathogenic bacteria tested. Further investigations of Ecuadorian lichens especially study of plants collected from extremal highland biotops can be very important in study of possibility of treatment of numerous diseases caused by pathogenic microorganisms. PMID:26214895

  17. ANTIMICROBIAL ACTIVITY OF TINOSPORA CRISPA ROOT EXTRACTS

    Directory of Open Access Journals (Sweden)

    Asif Iqbal Chittur Mohammed

    2012-06-01

    Full Text Available The aim of this study was to determine the in vitro antimicrobial activity of ethanol, distilled water, methanol and chloroform crude extracts of the roots of Tinospora crispa. Antimicrobial activity was examined by disc diffusion method against gram positive bacterial strains of Streptococcus pneumonia, gram negative bacterial strains of Escherichia coli and fungal strains of Candida albicans. The maximum zone of inhibition was obtained with ethanol extract against Escherichia coli and Streptococcus pneumonia followed by chloroform extract against the same organisms. Whilst distilled water extract showed a minimal zone of inhibition, methanol extract showed a moderate zone of inhibition against the bacterial strains used. The values were compared with a standard antibiotic. The ethanol extract also showed the maximum zone of inhibition against the growth of Candida albicans, whereas the lowest activity was shown with distilled water crude extract. Methanol and chloroform crude extracts showed considerably moderate activities against the fungal strain, as compared to the standard antibiotic used.

  18. Phytochemical and Antimicrobial Studies of Chlorophytum borivilianum

    OpenAIRE

    Guno Sindhu Chakraborthy; Vidhu Aeri

    2009-01-01

    Extracts of leaves and stems of Chlorophytum borivilianum were subjected to preliminary phytochemical screening and in-vitro antimicrobial studies. The results of the preliminary investigation revealed the presence of alkaloids, glycosides, steroidal nucleus, saponins and tannins in both parts. The methanolic extract of leaf and stems part were investigated for antimicrobial activity using agar disc diffusion method. Six clinical strains of human pathogenic microorganisms, comprising 3 Gram +...

  19. Comparative chemical composition and antimicrobial activity study of essential oils from two imported lemon fruits samples against pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Najwa Nasser AL-Jabri

    2014-12-01

    Full Text Available The aim of this work to isolate and identify two essential oils by hydro distillation method from two imported lemon fruits samples collected from local supermarket and evaluate their antimicrobial activity against pathogenic bacteria through disc diffusion method. The essential oil was obtained from Turkish and Indian lemon fruits samples by hydro distillation method using Clevenger type apparatus. Both isolated essential oils were identified by GC–MS and determine their in vitro antimicrobial activity against pathogenic bacteria through agar gel method. Twenty two bioactive ingredients with different percentage were identified based on GC retention time from Turkish and Indian lemon collected from local supermarket. The predominant bioactive ingredients with high percentage in Turkish essential oil were dl-limonene (78.92%, α-pinene (5.08%, l-α-terpineol (4.61%, β-myrcene (1.75%, β-pinene (1.47% and β-linalool (0.95% and in Indian essential oil were dl-limonene (53.57%, l-α-terpineol (15.15%, β-pinene (7.44%, α-terpinolene (4.33%, terpinen-4-ol (3.55%, cymene (2.88% and E-citral (2.38% respectively. Both isolated essential oils by hydro distillation were used for the study of antimicrobial activity against four pathogenic bacterial strains such as Staphylococcus aureus (S. aureus, Escherichia coli (E. coli, Pseudomonas aeruginosa (P. aeruginosa and Proteus vulgaris (Pseudomonas vulgaris. Almost all bacterial strains did not give any activity against the employed essential oils at different concentrations. Therefore, the obtained results show that both essential oils could be needed further extensive biological study and their mechanism of action.

  20. Comparative Study of Composition, Antioxidant, and Antimicrobial Activities of Essential Oils of Selected Aromatic Plants from Balkan Peninsula.

    Science.gov (United States)

    Stanković, Nemanja; Mihajilov-Krstev, Tatjana; Zlatković, Bojan; Matejić, Jelena; Stankov Jovanović, Vesna; Kocić, Branislava; Čomić, Ljiljana

    2016-05-01

    The objective of the present study to perform a comparative analysis of the chemical composition, antioxidant, and antimicrobial activities of the essential oils of plant species Hyssopus officinalis, Achillea grandifolia, Achillea crithmifolia, Tanacetum parthenium, Laserpitium latifolium, and Artemisia absinthium from Balkan Peninsula. The chemical analysis of essential oils was performed by using gas chromatography and gas chromatography-mass spectrometry. Monoterpenes were dominant among the recorded components, with camphor in T. parthenium, A. grandifolia, and A. crithmifolia (51.4, 45.4, and 25.4 %, respectively), 1,8-cineole in H. officinalis, A. grandifolia, and A. crithmifolia (49.1, 16.4, and 14.8 %, respectively), and sabinene in L. latifolium and A. absinthium (47.8 and 21.5 %). The antiradical and antioxidant activities were determined by using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging methods. The essential oil of A. grandifolia has shown the highest antioxidant activity [IC50 of 33.575 ± 0.069 mg/mL for 2,2-diphenyl-1-picrylhydrazyl and 2.510 ± 0.036 mg vitamin C/g for the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) assay]. The antimicrobial activity against 16 multiresistant pathogenic bacteria isolated from human source material was tested by the broth microdilution assay. The resulting minimum inhibitory concentration/minimum bactericidal concentration values ranged from 4.72 to 93.2 mg/mL. Therefore, the essential oils of the plant species included in this study may be considered to be prospective natural sources of antimicrobial substances, and may contribute as effective agents in the battle against bacterial multiresistance. PMID:26891001

  1. Synthesis and characterization of 3-aminoquinoline derivatives and studies of photophysicochemical behaviour and antimicrobial activities

    Science.gov (United States)

    Zengin, Gulay; Nafea Al Kawaz, Ali Muayad; Zengin, Huseyin; Mert, Adem; Kucuk, Bedia

    2016-01-01

    A series of 3-aminoquinoline derivatives were synthesized, where their chemical structures were confirmed by various analytical techniques, such as, Elemental Analysis, Nuclear Magnetic Resonance Spectroscopy (1H and 13C NMR), Liquid Chromatography-Mass-Mass Spectroscopy (LC-MS-MS), Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence (PL). The quinoline ring core, typical of aminoquinolines, and a naphthalene group was combined to devise (4-alkyl-1-naphthyl)-quinolin-3-ylamide derivatives. These derivatives were designed and synthesized in light of the chemical and biological profiles of these important subunits. All the compounds were evaluated for their in vitro antibacterial and antifungal activities by the paper disc diffusion method with Gram-positive Bacillus subtilis, Bacillus megaterium and Staphylococcus aureus, Gram-negative Enterobacter aerogenes, Eschericha coli, Klebsiella pneumoniae and Pseudomonas aeruginosa and yeasts Candida albicans, Saccharomyces cerevisiae and Yarrovia lipolytica. These compounds showed antimicrobial activities against Gram-positive and Gram-negative bacteria and several yeasts, and thus their activity was not restricted to any particular type of microorganism.

  2. Antimicrobial activity of galls of Quercus infectoria

    OpenAIRE

    Fırat Zafer Mengeloğlu; Umre Metin; Nesibe Özdemir; M. Kadir Oduncu

    2011-01-01

    Objectives: Gall oak (Quercus infectoria) is a species of tree belonging to fagaceae family and its galls has been used in the treatment of burn wounds traditionally. In this study, it is aimed to investigate the antimicrobial activity of the extract of oak galls on some microorganisms.Materials and methods: With using microdilution method, a solution which was obtained by boiling the galls was studied on 20 staphylococci, 20 Pseudomonas aeruginosa and 20 Candida albicans isolates which were ...

  3. Antimicrobial activities of Barringtonia acutangula.

    Science.gov (United States)

    Rahman, M Mukhlesur; Polfreman, David; MacGeachan, Jodie; Gray, Alexander I

    2005-06-01

    Crude extracts and VLC fractions from the stem bark of Barringtonia acutangula (L.) Gaertn (Fam. Lecythidaceae) were screened for their antimicrobial activities against two Gram-positive bacteria, two Gram-negative bacteria and two fungi using a microdilution titre assay. Among the crude extracts, petroleum ether extract showed good activity against all test organisms. The VLC fraction PE 16 was found to be very effective against Bacillus subtilis (MIC=25 microg/ml) and Aspergillus niger (MIC=12.5 microg/ml). The activities were compared to standard antibiotics-kanamycin and fluconazole. The major compound from PE16 was identified as 12, 20(29)-lupadien-3-ol by NMR spectroscopy. PMID:16114086

  4. IN-VITRO ANTIMICROBIAL ACTIVITY OF BRONCHOSOL.

    Science.gov (United States)

    Witkowska-Banaszczak, Ewa; Michalak, Anna; Kędzia, Anna

    2015-01-01

    Bronchosol is a traditional medicinal product in the form of syrup used in cough and impeded expectoration. The active ingredients that it contains include extracts from the herb of thyme, the root of primrose and thymol. It is recommended in disorders of the respiratory tract when expectoration is impeded and secretion of liquid mucus in bronchi is insufficient. Antimicrobial activity of the components of Bronchosol, especially thyme and thymol, has frequently been reported in the literature. To date, there have not been any studies to confirm such activity of Bronchosol, though. The results of our research are the first one to point to the great activity of Bronchosol against microorganisms causing infections of the respiratory tract. It has been demonstrated that this product displayed antimicrobial activity against reference strains as well as strains of anaerobic and aerobic bacteria and fungi isolated from patients. The confirmation of the antimicrobial activity of Bronchosol provides an explanation of its effectiveness in the therapy of the respiratory tract infections. PMID:26642688

  5. Detection of antimicrobial activity of banana peel (Musa paradisiaca L. on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study

    Directory of Open Access Journals (Sweden)

    Suraj Premal Kapadia

    2015-01-01

    Full Text Available Introduction and Aim: Banana is used widely because of its nutritional values. In past, there are studies that show banana plant parts, and their fruits can be used to treat the human diseases. Banana peel is a part of banana fruit that also has the antibacterial activity against microorganisms but has not been studied extensively. Since, there are no studies that relate the antibacterial activity of banana peel against periodontal pathogens. Hence, the aim of this study is to determine the antimicrobial activity of banana peel extract on Porphyromonas gingivalis (P. gingivalis and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans. Material and Methods: Standard strains of P. gingivalis and A. actinomycetemcomitans were used in this study which was obtained from the in-house bacterial bank of Department of Molecular Biology and Immunology at Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre. The banana peel extract was prepared, and the antibacterial activity was assessed using well agar diffusion method and minimum inhibitory concentration was assessed using serial broth dilution method. Results: In the current study, both the tested microorganisms showed antibacterial activity. In well diffusion method, P. gingivalis and A. actinomycetemcomitans showed 15 mm and 12 mm inhibition zone against an alcoholic extract of banana peel, respectively. In serial broth dilution method P. gingivalis and A. actinomycetemcomitans were sensitive until 31.25 μg/ml dilutions. Conclusion: From results of the study, it is suggested that an alcoholic extract of banana peel has antimicrobial activity against P. gingivalis and A. actinomycetemcomitans.

  6. Studies on the antimicrobial activity and brine shrimp toxicity of Zeyheria tuberculosa (Vell. Bur. (Bignoniaceae extracts and their main constituents

    Directory of Open Access Journals (Sweden)

    Rocha Eliana MM

    2009-05-01

    Full Text Available Abstract Background Due to the indiscriminate use of antimicrobial drugs, the emergence of human pathogenic microorganisms resistant to major classes of antibiotics has been increased and has caused many clinical problems in the treatment of infectious diseases. Thus, the aim of this study was to evaluate for the first time the in vitro antimicrobial activity and brine shrimp lethality of extracts and isolated compounds from Zeyheria tuberculosa (Vell. Bur., a species used in Brazilian folk medicine for treatment of cancer and skin diseases. Methods Using the disc diffusion method, bioautography assay and brine shrimp toxicity test (Artemia salina Leach, we studied the antimicrobial activity and lethality of extracts and isolated compounds against three microorganisms strains, including Gram-positive (Staphylococcus aureus and Gram-negative (Pseudomonas aeruginosa bacteria and yeasts (Candida albicans. Results In this study, the extracts inhibited S. aureus (8.0 ± 0.0 to 14.0 ± 0.0 mm and C. albicans (15.3 ± 0.68 to 25.6 ± 0.4 mm growth. In the brine shrimp test, only two of them showed toxic effects (LC50 29.55 to 398.05 μg/mL and some extracts were non-toxic or showed weak lethality (LC50 705.02 to > 1000 μg/mL. From these extracts, four flavones [5,6,7,8-tetramethoxyflavone (1, 5,6,7-trimethoxyflavone (2, 4'-hydroxy-5,6,7,8-tetramethoxyflavone (3, and 4'-hydroxy-5,6,7-trimethoxyflavone (4] were isolated through bioassay-guided fractionation and identified based on the 1D and 2D NMR spectral data. By bioautography assays, compounds 1 [S. aureus (16.0 ± 0.0 mm and C. albicans (20.0 ± 0.0 mm] and 3 [S. aureus (10.3 ± 0.6 mm and C. albicans (19.7 ± 0.6 mm] inhibited both microorganisms while 2 inhibited only S. aureus (11.7 ± 0.6 mm. Compound 4 did not restrain the growth of any tested microorganism. Conclusion Our results showed that extracts and isolated flavones from Z. tuberculosa may be particularly useful against two pathogenic

  7. Study on antimicrobial activity of mozzarella cheese extract%Mozzarella干酪提取液的抗菌活性

    Institute of Scientific and Technical Information of China (English)

    彭登峰; 柴春祥; 马玲; 王伟

    2013-01-01

    Mozzarella干酪中酪蛋白抗菌肽对人体有非常重要的作用.为了研究酪蛋白提取液的抑菌作用,对成熟期为40 d、50 d和60 d的Mozzarella干酪,分别用无菌蒸馏水、醋酸-醋酸钠缓冲溶液和TCA提取法制备干酪提取液,探讨了干酪提取液对大肠杆菌、枯草芽孢杆菌、酵母菌和黑曲霉的抑制作用.结果显示,不同成熟期Mozzarella干酪的提取液对大肠杆菌、枯草芽孢杆菌和酵母菌均有一定的抑制作用.成熟期为40 d的Mozzarella干酪,用无菌蒸馏水提取出的提取液对大肠杆菌的抑菌性最强;成熟期为60 d的Mozzarella干酪,用TCA提取法提取出的提取液对枯草芽孢杆菌、酵母菌和黑曲霉的抑菌性最强.%Casein antimicrobial peptide of Mozzarella Cheese plays a very important role in human health. In order to study antibacterial activity of casein extract, the liquid was extracted from Mozzarella cheese after maturation for 40, 50 and 60 days using sterile distilled water, acetic acid-sodium acetate buffer solution and TCA extraction. The antibacterial activity of cheese extract against Escherichia coli, Bacillus subtilis, S. cerevisiae and Aspergillus niger was investigated. The results showed that extracts from cheeses during different ripening stages all exhibited strong antimicrobial activity against Escherichia coli, Bacillus subtilis and S. cerevisiae. The extract obtained from cheese in mature stage of 40 days by sterile distilled water extraction showed strongest antimicrobial activity against Escherichia coli. The extract obtained from cheese in mature stage of 60 days by TCA extraction showed strongest antimicrobial activity against Bacillus subtilis, S. cerevisiae and Aspergillus niger.

  8. Antioxidant and antimicrobial activities of Shorea kunstleri

    Institute of Scientific and Technical Information of China (English)

    Siti Suria Daud; Muhammad Taher; Deny Susanti

    2014-01-01

    Objective:To evaluate antioxidant and antimicrobial activities of stembark of Shorea kunstleri (S. kunstleri) together with analysis of phytochemical and total phenolic contents. Methods:Extraction was conducted with different solvent polarity of n-hexane, dichloromethane (DCM) and methanol by using Soxhlet extraction. Total phenolic content was determined using Folin-Ciocalteu method. Free radical scavenging activity and inhibition of lipid peroxidation were evaluated with DPPH radical scavenging and ferric thiocyanate assays, respectively. Antimicrobial activities were performed using disc diffusion method, minimum inhibition concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration. Results:S. kunstleri stembark extracts revealed presence of steroids, terpenoids, saponins, flavonoids, and phenolic compounds. Methanol extract exhibited the highest total phenolic content and free radical scavenging activity resulting in phenolic content of (8.340±0.003) g GAE/100 g of extract and (95.90±1.07)% DPPH inhibition (IC50 value of 18.6 µg/mL), respectively. Ferric thiocyanate assay of n-hexane, DCM, and methanol extracts indicated lipid peroxidation inhibitory activity of (74.20±0.35)%, (74.00±0.10)%, and (72.80±0.27)%, respectively. In antimicrobial and antifungal tests, methanol extract showed inhibition against Staphylococcus aureus (S. aureus), Candida albicans, and Candida tropicalis with inhibition zones of 10-12, 18-22, and 18-19 mm, respectively. The MIC test of methanol extract showed highest inhibition against Candida albicans and S. aureus (0.04 and 0.08 mg/mL, respectively) while DCM extract exhibited the highest activity towards Candida tropicalis (MIC value of 0.63 mg/mL). Taken together, MBC test of methanol extract strongly demonstrated bactericidal effect against S. aureus with MBC value of 0.08 mg/mL. Conclusions:The study demonstrated that stembark extracts of S. kunstleri possessed antioxidant and

  9. Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics

    Directory of Open Access Journals (Sweden)

    Ziwei Liu

    2013-01-01

    Full Text Available Chitosan (CS is a linear polysaccharide with good biodegradability, biocompatibility and antimicrobial activity, which makes it potentially useful for biomedical applications, including an antimicrobial agent either alone or blended with other polymers. However, the poor solubility of CS in most solvents at neutral or high pH substantially limits its use. Quaternary ammonium CS, which was prepared by introducing a quaternary ammonium group on a dissociative hydroxyl group or amino group of the CS, exhibited improved water solubility and stronger antibacterial activity relative to CS over an entire range of pH values; thus, this quaternary modification increases the potential biomedical applications of CS in the field of anti-infection. This review discusses the current findings on the antimicrobial properties of quaternized CS synthesized using different methods and the mechanisms of its antimicrobial actions. The potential antimicrobial applications in the orthopedic field and perspectives regarding future studies in this field are also considered.

  10. Evaluation of Antimicrobial Activity of Root Extracts of Abitulon indicum

    Directory of Open Access Journals (Sweden)

    Krishna Rao MORTHA

    2015-06-01

    Full Text Available Antimicrobial activity of Abitulon indicum roots was studied against seven pathogenic bacteria and three fungal strains by agar well diffusion method. Antimicrobial activity was recorded for hexane, chloroform, methanol, ethanol and aqueous extracts. Alcohol (ethanol and methanol extracts exhibited the highest degree of antimicrobial activity compared to aqueous, chloroform and hexane extracts. Pseudomonas aeruginosa was turned out to be the most susceptible bacterium to the crude root chemical constituents, using the standard Tetracycline and Clotrimazole. Minimum inhibition concentration values of hexane, chloroform, methanol, ethanol and aqueous extracts were determined by the agar dilution method and ranged between 62.5 and 1,000 µg. The study suggested that the root extracts possess bioactive compounds with antimicrobial activity against the tested bacteria and fungi, revealing a significant scope to develop a novel broad spectrum of antimicrobial drug formulation from Abitulon indicum.

  11. Synthesis and antimicrobial activity of squalamine analogue.

    Science.gov (United States)

    Kim, H S; Choi, B S; Kwon, K C; Lee, S O; Kwak, H J; Lee, C H

    2000-08-01

    Synthesis and antimicrobial activity of squalamine analogue 2 are reported. The synthesis of 2 was accomplished from bisnoralcohol 3. The spermidine moiety was introduced via reductive amination of an appropriately functionalized 3beta-aminosterol with spermidinyl aldehyde 17 utilizing sodium triacetoxyborohydride as the reducing agent. Compound 2 shows weaker antimicrobial activity than squalamine. PMID:11003150

  12. Antimicrobial activity of plant extracts on Candida albicans: An in vitro study

    Directory of Open Access Journals (Sweden)

    Sunitha Jagalur Doddanna

    2013-01-01

    Full Text Available Background and Objectives: Plants as sources of medicinal compounds have continued to play a predominant role in the maintenance of human health since ancient times. Even though several effective antifungal agents are available for oral candida infections, the failure is not uncommon because isolates of Candida albicans may exhibits resistance to the drug during therapy. The present study was conducted to evaluate the antimicrobial effects of few plant extracts on Candida albicans. An additional objective was to identify an alternative, inexpensive, simple, and effective method of preventing and controlling Candida albicans. Materials and Methods: Fine texture powder or paste form of leaves was soaked in sterile distilled water and 100% ethyl alcohol, which were kept in refrigerator at 4°C for 24 h. Then filtrates were prepared and kept in a hot air oven to get a black shining crystal powder/paste form. Stock solutions of plant extracts were inoculated on petri plates containing species of Candida albicans and incubated at 25 ± 2°C for 72 h. Results: Alcoholic curry leaves showed the maximum zone of inhibition on Candida albicans followed by aqueous tea leaves. The other plant extracts like alcoholic onion leaves, alcoholic tea leaves, alcoholic onion bulb, alcoholic aloe vera, and alcoholic mint leaves also inhibited the growth of Candida albicans but lesser extent. Conclusion: The present study renders few medicinal plants as an alternative medicines to the field of dentistry which can be used adjunct to conventional therapy of oral candidasis.

  13. Antimicrobial activity of galls of Quercus infectoria

    Directory of Open Access Journals (Sweden)

    Fırat Zafer Mengeloğlu

    2011-09-01

    Full Text Available Objectives: Gall oak (Quercus infectoria is a species of tree belonging to fagaceae family and its galls has been used in the treatment of burn wounds traditionally. In this study, it is aimed to investigate the antimicrobial activity of the extract of oak galls on some microorganisms.Materials and methods: With using microdilution method, a solution which was obtained by boiling the galls was studied on 20 staphylococci, 20 Pseudomonas aeruginosa and 20 Candida albicans isolates which were obtained from various clinical samples and the values of minimum inhibitor concentration (MIC were detected.Results: At the end of incubation MIC50 and MIC90 values were determined as 0,5 and 1 μg/ml for staphylococci, 1 and 2 μg/ml for Pseudomonas, 2 and 2 μg/ml for Candida, respectively.Conclusion: As a result, we concluded that galls of Q.infectoria has antimicrobial effect on common factors of burn wound infections. Larger studies about the antimicrobial and antiinflamatorial activity and in vivo effect of topical treatment of Q.infectoria will obtain more accurate data about using this plant in the treatment of burn wounds.

  14. REACTION AROILMETHYLENTRIPHENILPHOSPHRILIDES WITH ARILDIASONIY BORPHTORIDES AND ANTIMICROBIAL ACTIVITY PHOSPHONIYHIDROSONES

    Directory of Open Access Journals (Sweden)

    Malanchuk SG

    2013-06-01

    Full Text Available The reactions of electrophilic accession borftoryds aryldizoniy by P-C connection aroyilmetylentryphenylfosforilids were studied. Found that the reaction formed borftoryds hidrazonofosfoniy salts. Studied the chemical and physical properties and antimicrobial activity of synthesized compounds.

  15. Antimicrobial activity of peppermint essential oil (Mentha piperita L.)

    OpenAIRE

    Shapoval O.G.; Durnova N.A.; Shub G.M.; Golikov A.G.; Raikova S.V.; Rakhmetova A.Yu.

    2011-01-01

    Рurposе. To study antimicrobial activity of fume of the essential oil of peppermint against gram-positive and gram-negative bacteria. Materials and methods: The screening study of antimicrobial activity of solutions of essential oil by disk-diffusion method and activity of essential oil fume of own preparation and pharmaceutical form of oil according to standard strains of Staphylococcus aureus, Pseudomonas aeruginosa, Esсherichia coli and 12 clinical strains of staphylococci (6 methicillin-r...

  16. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study

    Directory of Open Access Journals (Sweden)

    Azam A

    2012-12-01

    Full Text Available Ameer Azam,1,2 Arham S Ahmed,2 Mohammad Oves,3 Mohammad S Khan,3 Sami S Habib,1 Adnan Memic11Centre of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia; 2Centre of Excellence in Materials Science (Nanomaterials, 3Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, IndiaBackground: Nanomaterials have unique properties compared to their bulk counterparts. For this reason, nanotechnology has attracted a great deal of attention from the scientific community. Metal oxide nanomaterials like ZnO and CuO have been used industrially for several purposes, including cosmetics, paints, plastics, and textiles. A common feature that these nanoparticles exhibit is their antimicrobial behavior against pathogenic bacteria. In this report, we demonstrate the antimicrobial activity of ZnO, CuO, and Fe2O3 nanoparticles against Gram-positive and Gram-negative bacteria.Methods and results: Nanosized particles of three metal oxides (ZnO, CuO, and Fe2O3 were synthesized by a sol–gel combustion route and characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy techniques. X-ray diffraction results confirmed the single-phase formation of all three nanomaterials. The particle sizes were observed to be 18, 22, and 28 nm for ZnO, CuO, and Fe2O3, respectively. We used these nanomaterials to evaluate their antibacterial activity against both Gram-negative (Escherichia coli and Pseudomonas aeruginosa and Gram-positive (Staphylococcus aureus and Bacillus subtilis bacteria.Conclusion: Among the three metal oxide nanomaterials, ZnO showed greatest antimicrobial activity against both Gram-positive and Gram-negative bacteria used in this study. It was observed that ZnO nanoparticles have excellent bactericidal potential, while Fe2O3 nanoparticles exhibited the least bactericidal activity. The order of antibacterial activity was demonstrated to be the following: ZnO > CuO > Fe2O3

  17. Studies on the Antimicrobial Activity of Chitooligosaccharides from Housefly Larvae,Musca domestica vicina Macquart (Diptera:Muscidae)

    Institute of Scientific and Technical Information of China (English)

    WEI Xin-kui; LEI Chao-liang

    2004-01-01

    The inhibition effect of chitooligosaccharides from housefly larvae on pathogens ofcrops seeds, fruits or vegetables was studied and the main factors influencing theantimicrobial activity of chitooligosaccharides were also investigated. It was foundthat chitooligosaccharides from housefly larvae had wide spectrum fungistasis. It canstrongly inhibit the development of 31 kinds of plant pathogenic fungi such as corticiumrolfsii Saccardo. The results indicated that the degree of deacelylation (DD) or theaverage molecular weight (MW) of chitooligosaccharides were related to the antimicrobialactivity. The antimicrobial activity increased with the rising of DD or the declining ofMW. Pot culture results showed that chitooligosaccharide could enhance the rate ofgermination and emergence of the seeds of maize, wheat and cotton. Chitooligosaccharidehad certain effect on corn southern leaf blight caused by Helminthosporium maydis.

  18. Antimicrobial activity of peppermint essential oil (Mentha piperita L.

    Directory of Open Access Journals (Sweden)

    Shapoval O.G.

    2011-12-01

    Full Text Available Рurposе. To study antimicrobial activity of fume of the essential oil of peppermint against gram-positive and gram-negative bacteria. Materials and methods: The screening study of antimicrobial activity of solutions of essential oil by disk-diffusion method and activity of essential oil fume of own preparation and pharmaceutical form of oil according to standard strains of Staphylococcus aureus, Pseudomonas aeruginosa, Esсherichia coli and 12 clinical strains of staphylococci (6 methicillin-resistant and 6 methicillin-sensitive has been carried out. Results: Essential oil of own preparation and pharmaceutical form showed equal antimicrobial activity against strains of staphylococci. Essential oil of own preparation has been determined to reveal higher activity against gram-negative strains. Conclusion: Received data have proved the presence of antimicrobial activity against all strains of microorganisms and mostly against staphy-lococci

  19. Antimicrobial activity of Aspilia latissima (Asteraceae)

    OpenAIRE

    Souza, Jeana M.E.; Chang, Marilene R.; Brito, Daniela Z.; Katyuce S. Farias; Damasceno-Junior, Geraldo A.; Izabel C.C. Turatti; Norberto P. Lopes; Santos, Edson A.; Carollo, Carlos A.

    2015-01-01

    Abstract We evaluated the antimicrobial activity of Aspilia latissima - an abundant plant from the Brazilian Pantanal region - against Candida albicans, Candida parapsilosis, Candida krusei, Candida tropicalis, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli and Staphylococcus aureus. The crude extracts and fractions showed activity in all tested microorganisms. The chloroform fraction of the leaves and roots showed the most antimicrobial activity against S. aureus, with an MI...

  20. Screening of some Malay medicated oils for antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Khalid Khalisanni

    2010-01-01

    Full Text Available Oils from six Malay medicated oils, used traditionally in the treatment of infectious and septic diseases in humans, were tested for their antimicrobial property. The aim was to evaluate the antimicrobial properties of six Malay medicated oils against certain microbial isolates. Locally available Malay medicated oils were checked for their antimicrobial activities using six species of bacteria: E. coli, Salmonella spp., Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus, Bacillus subtilis and 2 fungi with 1 yeast (Aspergillus niger, Penicillum spp. and Candida albicans. Clove oil showed the highest antibacterial activity followed, respectively, by 'bunga merah', cajaput, nutmeg, lemon grass and 'gamat' oil. Clove oil and lemon grass showed anticandidal activity. The Malay medicated oil studies did not show any antifungal activity. The study shows that Malay medicated oils, like antibiotics, have antimicrobial activities against some microorganisms.

  1. Antimicrobial Activity of Bee Collected Pollen against Clostridia

    Directory of Open Access Journals (Sweden)

    Miroslava Kačániová

    2014-11-01

    Full Text Available Clostridium is an anaerobic, endospore forming Gram-positive bacillus genus containing many important pathogenic species. Many naturally occurring compounds present in plants, herbs, and spices have been shown to possess antimicrobial effect against foodborne pathogens. In the present study, the antimicrobial activities of the bee collected pollen samples were investigated. The antimicrobial activities were determined by using agar disc diffusion method against Clostridium genus. Antibacterial activity was assessed on the clostridia: Clostridium butyricum, Clostridium hystoliticum, Clostridium intestinale, Clostridium perfringens and Clostridium ramosum. The results of the disk diffusion method showed very different activity against all tested strains of clostridia. The best antimicrobial activity of bee collected pollen against C. butyricum and C. perfringens were found.

  2. Antioxidant and antimicrobial activities of Saraca thaipingensis Cantley ex Prain

    Institute of Scientific and Technical Information of China (English)

    Supaluk Prachayasittikul; Apilak Worachartcheewan; Sakda Yainoy; Natthakaln Lomchoey; Paveena Kittiphatcharin; Somsak Ruchirawat; Virapong Prachayasittikul

    2012-01-01

    Objective: To investigate antioxidant and antimicrobial activities of Saraca thaipingensis Cantley ex Prain; and isolation of its flower extracts. Methods: The plant species (flowers, leaves, and twigs) were extracted by hexane, dichloromethane, ethyl acetate and methanol; and tested for antioxidant activity (DPPH assay) and antimicrobial activity (agar dilution method) against twenty-seven strains of microorganisms; gram positive and gram negative bacteria, and diploid fungus. Bioactive constituents were isolated by column chromatography. Results: The plant extracts has been firstly reported to display strong antioxidant activity and antimicrobial activity selective against gram positive bacteria (Corynebacterium diphtheriae NCTC 10356 and Streptococcus pyogenes) with MIC of 256 μg/mL. Stigmasterol and a mixture of triterpenoids and phenolic compounds were isolated from the flower extracts. Conclusions: The study revealed that the S. thaipingensis is a new source of natural antioxidants and antimicrobials with potential for medicinal uses.

  3. Antimicrobial activity of amazonian medicinal plants

    OpenAIRE

    Oliveira, Amanda A; Segovia, Jorge FO; Sousa, Vespasiano YK; Mata, Elida CG; Gonçalves, Magda CA; Bezerra, Roberto M; Junior, Paulo OM; Kanzaki, Luís IB

    2013-01-01

    Objectives The aqueous extracts of currently utilized Amazonian medicinal plants were assayed in vitro searching for antimicrobial activity against human and animal pathogenic microorganisms. Methods Medium resuspended lyophilized aqueous extracts of different organs of Amazonian medicinal plants were assayed by in vitro screening for antimicrobial activity. ATCC and standardized microorganisms obtained from Oswaldo Cruz Foundation/Brazil were individually and homogeneously grown in agar plat...

  4. ANTIMICROBIAL ACTIVITY OF TUSSILAGO FARFARA L.

    Directory of Open Access Journals (Sweden)

    Miroslava Kačániová

    2013-02-01

    Full Text Available In this study, ethanolic extracts of Tussilago farfara L. which had been described in herbal books, were screened for their antimicrobial activity. The following strains of bacteria for antimicrobial activity were used Escherichia coli CCM 3988, Serratia rubidea CCM 4684, Staphylococcus epidermis CC 4418, Lactobacillus rhamnosus CCM 1828, Pseudomonas aeroginosa CCM 1960 and Enterococcus raffinosus CCM 4216. The yeast strain used in this study was Saccharomyces cerevisiae CCM 8191 using disc diffusion method and microbroth dilution technique. The highest antibacterial activity of Tussilago farfara L. ethanolic extract was measured in Grampositive bacteria Lactobacillus rhamnosus (6.67±1.53 mm and lower in yeast Saccharomyces cerevisiae (1.67±0.58 mm with disc diffusion method used. The ethanolic extract present an important activity against Saccharomyces cerevisiae (MIC50=24 µg.ml-1; MIC90=25.69 µg.ml-1 and Serratia rubidaea (MIC=48.01 µg.ml-1; MIC90=51.26 µg.ml-1 with microbroth dilution technique used.

  5. ANTIMICROBIAL ACTIVITY OF MEDICINAL PLANTS AGAINST DIFFERENT STRAINS OF BACTERIA

    OpenAIRE

    Alexander Vatľák; Adriana Kolesárová; Nenad Vukovič; Katarína Rovná; Jana Petrová; Viktória Vimmerová; Lukáš Hleba; Martin Mellen; Miroslava Kačániová

    2014-01-01

    In this study, methanolic extracts of Tilia cordata Mill. and Aesculus hippocastanum which had been described in herbal books, were screened for their antimicrobial activity against gramnegative and grampositive bacteria. The following strains of bacteria for antimicrobial activity were used gramnegative bacteria: Escherichia coli CCM 3988, Listeria ivanovii CCM 5884, Listeria innocua CCM 4030, Pseudomonas aeruginosa CCM 1960, Serratia rubidaea CCM 4684 and grampositive bacteria: Brochothrix ...

  6. Antimicrobial and antipathogenic activity of Fallopia japonica leaves alcoholic extract

    OpenAIRE

    Ioana-Cristina Marinaş; Elisabeta-Irina Geană; Eliza Oprea; Carmen Chifiriuc; Veronica Lazăr

    2014-01-01

    The aim of the study consists in the investigation of the antimicrobial and antiphatogenic activity of ethanol extracts obtain from F. japonica leaves. Total phenolic content was determined by Folin-Ciocalteu method, while their phenolic composition was specified by HPLC. In vitro antimicrobial activity of various concentrations ranging from 6.25 to 200 μL/mL of alcoholic (ethanol 70%) extract of F. japonica were analyzed on different clinical and reference bacterial strains (Staphylococcus a...

  7. The study of the antimicrobial activity of colloidal solutions of silver nanoparticles prepared using food stabilizers.

    Science.gov (United States)

    Balandin, G V; Suvorov, O A; Shaburova, L N; Podkopaev, D O; Frolova, Yu V; Ermolaeva, G A

    2015-06-01

    The bactericidal effect of colloidal solutions of silver nanoparticles based on food stabilizers, gum arabic and chitosan, against bacterial cultures of microorganisms in food production is described. The antibacterial activity of nanotechnology products containing different amounts of stabilizing additives when applied to solid pH-neutral substrates is studied. For its evaluation a method making it possible to take into account the capability of nanoparticles to diffuse in solid media was applied. Minimal inhibitory concentrations of nanoparticles used against Erwinia herbicola, Pseudomonas fluorescens, Bacillus subtilis, Sarcina flava were found. A suggestion was made concerning the influence of the spatial structure of bacteria on the antibacterial activity of colloidal solutions of silver nanoparticles. The data concerning the antibacterial activity and minimal inhibiting concentrations of nanoparticles may be used for development of products suppressing activity of microorganisms hazardous for food production. PMID:26028773

  8. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  9. Multicenter assessment of the linezolid spectrum and activity using the disk diffusion and Etest methods: report of the Zyvox® Antimicrobial Potency Study in Latin America (LA-ZAPS)

    OpenAIRE

    Ballow Charles H.; Biedenbach Douglas J.; Rossi Flavia; Jones Ronald N.

    2002-01-01

    Linezolid was the first clinically applied member of the new antimicrobial class called the "oxazolidinones". These agents have a powerful spectrum of activity focussed against Gram-positive organisms including strains with documented resistances to other antimicrobial classes. We conducted a multicenter surveillance (Zyvox Antimicrobial Potency Study; ZAPS) trial of qualifying Gram-positive isolates from 24 medical centers in eight countries in Latin America. The activity and spectrum of lin...

  10. Antimicrobial and anti-adherence activity of various combinations of coffee-chicory solutions on Streptococcus mutans: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Rama Sharma

    2014-01-01

    Full Text Available Context: Several studies have demonstrated the activity of natural plants on the dental biofilm and caries development. But few studies on the antimicrobial activity of coffee-based solutions were found in the literature. Further there was no study available to check the antimicrobial effect of coffee solutions with different percentages of chicory in it. Aims: To evaluate the antimicrobial activity of different combinations of coffee-chicory solutions and their anti-adherence effect on Streptococcus mutans to glass surface. Materials and Methods: Test solutions were prepared. For antimicrobial activity testing, tubes containing test solution and culture medium were inoculated with a suspension of S. mutans followed by plating on Brain Heart Infusion (BHI agar. S. mutans adherence to glass in presence of the different test solutions was also tested. The number of adhered bacteria (CFU/mL was determined by plating method. Statistical Analysis: Statistical significance was measured using one way ANOVA followed by Tukey′s post hoc test. P value < 0.05 was considered statistically significant. Results: Pure chicory had shown significantly less bacterial count compared to all other groups. Groups IV and V had shown significant reduction in bacterial counts over the period of 4 hrs. Regarding anti-adherence effect, group I-IV had shown significantly less adherence of bacteria to glass surface. Conclusions: Chicory exerted antibacterial effect against S. mutans while coffee reduced significantly the adherence of S. mutans to the glass surface.

  11. Ecological Study, Antioxidant and Antimicrobial Activity of Ziziphora clinopodioides Lam. in Golestan province (Deraznoo Mountain, Iran

    Directory of Open Access Journals (Sweden)

    Mazandarani Masoumeh

    2015-10-01

    Full Text Available Objective: Many of Ziziphora species have been used in traditional medicine in North of Iran. This work was determined on ecological requirements, antioxidant and antibacterial activity of Ziziphora clinopodioides Lam. from Bovanloo region, Iran. Materials and Methods: Aerial parts of plant in blooming were collected from Deraznoo mountain (2500 m in August 2013, ecological and traditional data were recorded. The aqueous and methanol extracts were isolated by maceration, antioxidant capacity were measured by total antioxidant capacity (TAC, reducing power (RP and 2,2-diphenyl-1-picrylhydrazyl (DPPH in comparison with butylated hydroxy toluene (BHT and butylated hydroxyanisole BHA antioxidant standard and then their antibacterial activity were studied in vitro against 9 gram positive and negative bacteria by using well method and the minimum inhibitory concentration (MIC assay. Results: Ziziphora clinopodioides Lam. (Z. clinopodioides Lam often grows in sunny environment in Deraznoo mountain (2500 m, with annual rainfall of 334 mm and annual temperature of 10.3°C in temperate cold climate and sandy loam soil with Ec = 0.6 and pH = 6.9. It has been used by the rural people as an antispasm, anti-inflammatory, antifungal , anti-infective, sedative and expectorant agent to treat cold, flu, diarrhea, gasterointestinal disorder and stomach ache. The ethanol extract of plant had high antioxidant activity with IC50 values (32.5 ± 0.4 μg/ml especially in DPPH assay and exhibited good antibacterial activity on Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus and Pseudomonas aeruginosa with IZ (28.1 ± 0.5, 24.8 ± 0.1, 19.4 ± 1.1 and 14.8 ± 1 mm, respectively with high MIC value of 14.5 μg/ml, respectively. Conclusion: The methanol extract of Z. clinopodioides Lam. have suitable antibacterial and antioxidant activity which can be used as natural anti-infective agent to treat many infectious diseases.

  12. Antimicrobial activity of UMFix tissue fixative

    OpenAIRE

    Cleary, T J; Morales, A. R.; Nadji, M.; Nassiri, M.; Vincek, V.

    2005-01-01

    Aims: The aim of this study was to determine the antimicrobial effects of UMFix, an alcohol based tissue fixative, on various microorganisms. The UMFix solution was compared with 10% neutral buffered formalin.

  13. In Vitro Antimicrobial Bioassays, DPPH Radical Scavenging Activity, and FTIR Spectroscopy Analysis of Heliotropium bacciferum

    OpenAIRE

    Ahmad, Sohail; AbdEl-Salam, Naser M.; Ullah, Riaz

    2016-01-01

    The present study deals with the antimicrobial, antioxidant, and functional group analysis of Heliotropium bacciferum extracts. Disc diffusion susceptibility method was followed for antimicrobial assessment. Noteworthy antimicrobial activities were recorded by various plant extracts against antibiotic resistant microorganisms. Plant flower extracts antioxidant activity was investigated against 2, 2-diphenyl-1-picryl hydrazyl radical by ultraviolet spectrophotometer (517 nm). Plant extracts di...

  14. Studies on antimicrobial activity and brine shrimp lethality of crude samples of six different species of puffer fishes

    Directory of Open Access Journals (Sweden)

    Masilamani Mohan Raj

    2015-07-01

    Full Text Available Objective: To evaluate the antimicrobial activity and brine shrimp lethality activity of six different species of puffer fishes, including Cyclichthys orbicularis, Diodon holocanthus, Canthigaster solandri, Arthron hispidus, A. inermis and Lagocephalua inermis (L. inermis. Methodology: The puffer fishes were collected from Annangkovil Fish Landing Centre (Lattitude 11°30.47' N; Longitude 79°47.02' E, Parangipettai, Southeast Coast of India during summer season because of availability. Fresh tissue samples were collected from the clearly washed specimens, extracted with methanol at 37 °C for 3 days and filtered through Whatman No. 1 filter paper. The solvents such as methanol and ethanol were concentrated by using rotary evaporator under reduced pressure. The dark brown gummy mass was stored at 4 °C for further analysis. Prepared crude samples were analysed with human pathogens to assess the antibacterial activity and this was carried out by using standard disc diffusion method. The brine shrimp lethality was calculated as the percentage of mortality which was firstly calculated by dividing the number of dead larvae by the total number and then multiplied to 100%. Results: The antibacterial activity of crude extract of puffer fishes were exhibited against 10 different human bacterial pathogens. Among the ten human pathogens, Arthron hispidus showed maximum zone of inhibition (8 mm against Staphylococcus aureus while L. inermis showed minimum activity (1 mm against Proteus mirabilis and no zone of inhibition was observed against Staphylococcus aureus. Brine shrimp lethality was examined with six puffer fish extracts. Cyclichthys orbicularis showed maximum mortalities as 100% and L. inermis showed minimum mortalities as 70% at a concentration of 500 µg/mL. Conclusion: In conclusion, the study showed the preliminary investigation of crude extracts of puffer fishes about the prominent activity against human bacterial pathogens. The extracts had

  15. Studies on antimicrobial activity and brine shrimp lethality of crude samples of six different species of puffer ifshes

    Institute of Scientific and Technical Information of China (English)

    Masilamani Mohan Raj; Subramanian Bragadeeswaran; Anbukkarasu Suguna; Muthuramalingam Uthaya Siva

    2015-01-01

    Objective:To evaluate the antimicrobial activity and brine shrimp lethality activity of six different species of puffer fishes, includingCyclichthys orbicularis, Diodon holocanthus, Canthigaster solandri, Arthron hispidus, A. inermis andLagocephalua inermis(L. inermis). Methodology:The puffer fishes were collected from Annangkovil Fish Landing Centre (Lattitude 11°30.47' N; Longitude 79°47.02' E), Parangipettai, Southeast Coast of India during summer season because of availability. Fresh tissue samples were collected from the clearly washed specimens, extracted with methanol at 37°C for 3 days and filtered through Whatman No. 1 filter paper. The solvents such as methanol and ethanol were concentrated by using rotary evaporator under reduced pressure. The dark brown gummy mass was stored at 4°C for further analysis. Prepared crude samples were analysed with human pathogens to assess the antibacterial activity and this was carried out by using standard disc diffusion method. The brine shrimp lethality was calculated as the percentage of mortality which was firstly calculated by dividing the number of dead larvae by the total number and then multiplied to 100%. Results:The antibacterial activity of crude extract of puffer fishes were exhibited against 10 different human bacterial pathogens. Among the ten human pathogens,Arthron hispidus showed maximum zone of inhibition (8 mm) againstStaphylococcus aureus whileL. inermis showed minimum activity (1 mm) againstProteus mirabilis and no zone of inhibition was observed againstStaphylococcus aureus. Brine shrimp lethality was examined with six puffer fish extracts.Cyclichthys orbicularis showed maximum mortalities as 100% andL. inermis showed minimum mortalities as 70% at a concentration of 500 µg/mL. Conclusion:In conclusion, the study showed the preliminary investigation of crude extracts of puffer fishes about the prominent activity against human bacterial pathogens. The extracts had a good cytotoxic potential

  16. The Medicinal Plant of Mimusops Elengi (Sapodaceae in Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Kannadhasan M.

    2016-07-01

    Full Text Available The selected study area for this study is Pachaimalai Hills, situated in Eastern ghats of Tamil Nadu. This study was focussed on the antimicrobial activity of Mimosopselengi, one of the medicinal plant belongs to the family sapotaceae. It is a tropically distributed the highly medicinal plant. Antimicrobial activities and extracts of petroleum ether, Ethyl acetate and methanol were also found to be better with respect to inhibitory function against the two fungal species, Fusarium oxysporum and Aspergillus flavus. The study scientifically validates the use of plant in traditional and ethno medicine. Three solvents such as Petroleum ether, Ethyl acetate and Ethanol were used to take plant extract. These extracts were studied for antimicrobial activity against two gram positive bacterial strains such as Bacillus substilis andBacillus thuriengensis and two gram negative bacterial strains such as Klebsiella pneumonia and Escherichia coli. This study also extended to find antifungal activity against four fungal strains.

  17. Nanoliposomes containing Eucalyptus citriodora as antibiotic with specific antimicrobial activity.

    Science.gov (United States)

    Lin, Lin; Cui, Haiying; Zhou, Hui; Zhang, Xuejing; Bortolini, Christian; Chen, Menglin; Liu, Lei; Dong, Mingdong

    2015-02-14

    Bacterial infections are a serious issue for public health and represent one of the major challenges of modern medicine. In this work, a selective antimicrobial strategy based on triggering of pore-forming toxin, which is secreted by infective bacteria, was designed to fight Staphylococcus aureus. The antimicrobial activity is realized by employing Eucalyptus citriodora oil as antibiotic which in this study is encapsulated in nanoliposomes. PMID:25573466

  18. Phytochemical and Antimicrobial Studies of Chlorophytum borivilianum

    Directory of Open Access Journals (Sweden)

    Guno Sindhu Chakraborthy

    2009-07-01

    Full Text Available Extracts of leaves and stems of Chlorophytum borivilianum were subjected to preliminary phytochemical screening and in-vitro antimicrobial studies. The results of the preliminary investigation revealed the presence of alkaloids, glycosides, steroidal nucleus, saponins and tannins in both parts. The methanolic extract of leaf and stems part were investigated for antimicrobial activity using agar disc diffusion method. Six clinical strains of human pathogenic microorganisms, comprising 3 Gram +ve, 1 Gram -ve and 2 fungi were utilized in the studies. The leaf extract of Chlorophytum borivilianum displayed overwhelming concentration dependent antimicrobial properties, inhibiting the growth of Staphylococcus aureus and Bacillus cereus, far above that of ampicillin used in a concentration of 1.0 g/ml. The extract was less sensitive to 2 Gram -ve bacteria in the assay. In antifungal assay, the growth of Aspergillus niger and Candida albicans, were inhibited in the same manner comparable to voriconazole the reference drug used in the study. The methanol extract of stem also displayed a concentration related antibacterial activity, inhibiting the growth of S. aureus comparable to ampicillin at 1.0 g/ml. The extract was least active against Escherichia coli with a mild activity at 1.0 g/ml. The extract exhibited weak activities against C. albicans as well as A. niger. Both plant parts seem to justify their ethno medical uses.

  19. ANTIMICROBIAL ACTIVITY OF FICUS GLOMERATA LINN. BARK

    Directory of Open Access Journals (Sweden)

    Jagtap Supriya G.

    2012-05-01

    Full Text Available Ficus glomerata Linn. (Moraceae, commonly known as Ficus racemosa. A large deciduous tree distributed all over India and Ceylon, found throughout the year, grows in evergreen forest, moist localities, along the sides of ravines and banks of streams. Gular (Ficus glomerata Linn. is well known, commonly used plant in various disorders. It has been traditionally claimed to be useful in asthmatic condition, as an antitussive and anti-inflammatory. Successive soxhlet extractions of dried powdered bark were carried out using petroleum ether and methanol as a solvent. The antimicrobial activity of the extracts were tested in vitro against two different bacterial species Bacillus substilis and Escherichia coli by cup plate diffusion method were used in this investigation. The results of antimicrobial activity revealed that methanolic extract showed good activity as compared to petroleum ether extract. Methanolic extract is more potent towards gram - positive bacteria. The antimicrobial activities of the extracts were compared with standard antibiotics.

  20. Effect of Different Obturation Materials on Residual Antimicrobial Activity of 2% Chlorhexidine in Dentin at Different Time Intervals: An Ex Vivo Study

    Directory of Open Access Journals (Sweden)

    Behnam Bolhari

    2016-03-01

    Full Text Available Objectives: The aim of this study was to evaluate the effect of gutta percha/AH26 and Resilon/RealSeal SE on residual antimicrobial activity of chlorhexidine (CHX in human root dentin and suggest the best filling material when CHX is used as final irrigant.Materials and Methods: One-hundred and forty-four single-rooted human teeth were selected for this study. Canals were instrumented to the apical size #35. Smear layer was removed using 5.25% NaOCl and 17% EDTA and then 108 teeth were irrigated with 2% CHX and randomly divided into three groups of gutta percha/AH26, Resilon/RealSeal SE and positive controls. Each group was divided into three subgroups for different time intervals (one, three and six weeks. Thirty-six teeth, as negative controls, were irrigated with saline and obturated with gutta percha/AH26 and Resilon/RealSeal SE. Dentin powder was prepared at the afore-mentioned intervals. After exposure to Enterococcus faecalis for 24 hours, colony forming units (CFUs were counted and residual antimicrobial activity was calculated. The data were analyzed using the Kruskal Wallis test and one-way ANOVA. The significance level was set at P<0.05.Results: The antimicrobial activity of CHX gradually decreased in a time-dependent manner but it maintained over 95% of its antimicrobial activity after six weeks. Moreover, Resilon/RealSeal SE significantly decreased the antimicrobial activity of CHX in comparison with gutta-percha/AH26 (P<0.05.Conclusion: After a final irrigation with CHX, gutta-percha/AH26 is a better choice for root canal obturation.Key words: Chlorhexidine; Gutta-Percha; Epoxy resin AH-26; Resilon sealer. 

  1. Nicotinamide polymeric nanoemulsified systems: a quality-by-design case study for a sustained antimicrobial activity

    Science.gov (United States)

    Zidan, Ahmed S; Ahmed, Osama AA; Aljaeid, Bader M

    2016-01-01

    Nicotinamide, the amide form of vitamin B3, was demonstrated to combat some of the antibiotic-resistant infections that are increasingly common around the world. The objective of this study was to thoroughly understand the formulation and process variabilities affecting the preparation of nicotinamide-loaded polymeric nanoemulsified particles. The quality target product profile and critical quality attributes of the proposed product were presented. Plackett–Burman screening design was employed to screen eight variables for their influences on the formulation’s critical characteristics. The formulations were prepared by an oil-in-water emulsification followed by solvent replacement. The prepared systems were characterized by entrapment capacity (EC), entrapment efficiency (EE), particle size, polydispersity index, zeta potential, transmission electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, in vitro drug release, and their antibacterial activity against bacterial scrums. EC, EE, particle size, polydispersity index, zeta potential, and percentage release in 24 hours were found to be in the range of 33.5%–68.8%, 53.1%–67.1%, 43.3–243.3 nm, 0.08–0.28, 9.5–53.3 mV, and 5.8%–22.4%, respectively. One-way analysis of variance and Pareto charts revealed that the experimental loadings of 2-hydroxypropyl-β-cyclodextrin and Eudragit® S100 were the most significant for their effects on nicotinamide EC and EE. Moreover, the polymeric nanoemulsified particles demonstrated a sustained release profile for nicotinamide. The Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction demonstrated a significant interaction between the drug and 2-hydroxypropyl-β-cyclodextrin that might modulate the sustained release behavior. Furthermore, the formulations provided a sustained antibacterial activity that depended on nicotinamide-loading concentration

  2. Synthesis, spectroscopic, structural characterization, electrochemical and antimicrobial activity studies of the Schiff base ligand and its transition metal complexes

    Science.gov (United States)

    Aslantaş, Mehmet; Kendi, Engin; Demir, Necmettin; Şabik, Ali E.; Tümer, Mehmet; Kertmen, Metin

    2009-10-01

    In this study, the Schiff base ligand trans-N,N'-bis[(2,4-dichlorophenyl) methylidene] cyclohexane-1,2-diamine (L) and its copper(II), nickel(II) and palladium(II) transition metal complexes were prepared and characterized by the analytical and spectroscopic methods. The 1H( 13C) NMR spectra of the ligand and its diamagnetic complexes were recorded in DMSO-d 6 solvent and obtained data confirm that the nitrogen atoms of the imine groups coordinated to the metal ions. Electrochemical properties of the ligand and its metal complexes were investigated in the DMF solvent at the 100 and 250 mV s -1 scan rates. The ligand and metal complexes showed both reversible and irreversible processes at these scan rates. The single crystal of the ligand (L) was obtained from MeOH solution, and its crystal structure was determined by X-ray diffraction. The C-H⋯Cl hydrogen bonding interactions in the molecule were seen which increase the stability of the crystal structure. The antimicrobial activity studies of the ligand and its metal complexes were carried out by using the various bacteria and fungi.

  3. The Antimicrobial Activity of Porphyrin Attached Polymers

    Science.gov (United States)

    Thompson, Lesley

    2008-03-01

    We are interested in testing the antimicrobial activity of a porphyrin that is attached to a polymer. The porphyrin (5-(4-carboxyphenyl)-10,15,20-tris-(4-pryridyl)) was synthesized from methyl 4-formyl benzoate, 4-pyridinecarboxaldehyde, and pyrrole and attached to a copolymer of polystyrene/poly(vinyl benzyl chloride), which was synthesized by free radical polymerization. The antimicrobial activity of the polymer-attached porphyrin was then determined for gram-negative E. Coli grown to 0.80 OD. In this procedure, glass slides were coated with polymer-attached porphyrin via dip-coating, and the E. Coli bacteria were plated in Luria Broth media. The plates were subsequently exposed to light overnight before they were incubated as porphyrins act as photo-sensitizers when irradiated with light. The polymer-attached porphyrin did exhibit antimicrobial activity and parameters that affect its efficiency will be discussed.

  4. Antimicrobial and Antioxidant Activity of Fruit Pulp of Livistonia Chinensis

    OpenAIRE

    Tanu P; Thakur K; Kaur G

    2013-01-01

    The present study reveals the in-vitro antimicrobial activity and antioxidant activity of ethanolic extractof fruit pulp of plant of Livistonia chinensis has been evaluated using disc diffusion method againstbacterial strains of Bacillus subtilis, Staphylococcus aureus, Shigella dysenteriae, Salmonella enteritidisand fungal strain of Candida albicans using specific standard Ciprofloxacin and Fluconazolerespectively and DPPH method for antioxidant activity.

  5. THE STUDY OF ANTIMICROBIAL ACTIVITY OF COMBINATIONS OF FOSFOMYCIN WITH CEFEPIME AND FOSFOMYCIN WITH TIENAM IN RESPECT POLYANTIBIOTIC-RESISTANT STRAINS OF ENTEROBACTERIA

    Directory of Open Access Journals (Sweden)

    Dyachenko V.F.

    2016-06-01

    Full Text Available Introduction. The rapid decrease in sensitivity of pathogens of septic infections to antimicrobial agents has led to significant difficulties in the treatment of antibioticresistant infections. One solution of this problem is the method of combining of antimicrobial medications from different pharmacological groups. Antimicrobial synergy resulting from antibiotic combination therapy is often important in the treatment of serious bacterial infections. The aim of the study is investigation of combined antimicrobial action of fosfomycin with cefepim and fosfomycin with tienam in respect polyantibiotic-resistent strains of enterobacteria. Materials and methods. The polyantibioticresistant strains used in this study were isolated from patients hospitalised in the Hospital of Kharkov. The study of combinations of antibiotics efficacy was carried out by determining the minimum inhibitory concentrations using routine in vitro “checkerboard” method. Results and discussion. Calculation of the fraction inhibitory index showed that the combination of fosfomycin with cefepime demonstrated synergistic inhibitory activity against 71,43 % of enterobacteria strains tested; combination of fosfomycin with tienam result in summation or indifferent effect against 71,43 % polyantibioticresistant strains of enterobacteria. Conclusion. Thereby combination of fosfomycin with cefepime may be considered as synergistic and perspective for further experimental in vivo studies and studies of their clinical effectiveness against polyantibioticresistant strains of enterobacteria – causative agents of pyoinflammatory diseases.

  6. Synthesis, antitumor and antimicrobial activity of some new 6-methyl-3-phenyl-4(3H)-quinazolinone analogues: in silico studies.

    Science.gov (United States)

    Alanazi, Amer M; Abdel-Aziz, Alaa A-M; Shawer, Taghreed Z; Ayyad, Rezk R; Al-Obaid, Abdulrahman M; Al-Agamy, Mohamed H M; Maarouf, Azza R; El-Azab, Adel S

    2016-10-01

    Some new derivatives of substituted-4(3H)-quinazolinones were synthesized and evaluated for their in vitro antitumor and antimicrobial activities. The results of this study demonstrated that compound 5 yielded selective activities toward NSC Lung Cancer EKVX cell line, Colon Cancer HCT-15 cell line and Breast Cancer MDA-MB-231/ATCC cell line, while NSC Lung Cancer EKVX cell line and CNS Cancer SF-295 cell line were sensitive to compound 8. Additionally, compounds 12 and 13 showed moderate effectiveness toward numerous cell lines belonging to different tumor subpanels. On the other hand, the results of antimicrobial screening revealed that compounds 1, 9 and 14 are the most active against Staphylococcus aureus ATCC 29213 with minimum inhibitory concentration (MIC) of 16, 32 and 32 μg/mL respectively, while compound 14 possessed antimicrobial activities against all tested strains with the lowest MIC compared with other tested compounds. In silico study, ADME-Tox prediction and molecular docking methodology were used to study the antitumor activity and to identify the structural features required for antitumor activity. PMID:26162029

  7. Phytochemical characterization and antimicrobial activity of Curcuma xanthorrhiza Roxb.

    Institute of Scientific and Technical Information of China (English)

    Mary Helen PA; Susheela Gomathy K; Jayasree S; Nizzy AM; Rajagopal B; Jeeva S

    2012-01-01

    Objective: To study the antimicrobial activity and phytochemical characterization of essential oil isolated from the rhizome of Curcuma xanthorrhiza against pathogenic bacteria and fungi.Methods:Fresh rhizomes of Curcuma xanthorrhiza were subjected to hydro distillation process to obtain essential oil and characterized by Gas Chromatography- Mass Spectroscopy (GC-MS). The essential oil was evaluated for antibacterial and antifungal activity against thirteen pathogenic bacteria and six fungi by the disc diffusion method. Results: GC – MS analysis of the essential oil extracted from the rhizome of Curcuma xanthorrhiza contained the derivatives of xanthorihizol, camphene and curcumene, monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene, hydrocarbons and other minor compounds. The antimicrobial activity of the oil showed significant inhibitory activity against the human pathogenic bacteria, no activity was observed against the fungi Aspergillus niger and Fusarium oxysporum. Conclusions: The findings of the present study indicate that the rhizome extract of Curcuma xanthorrhiza possess secondary metabolites and potential to develop antimicrobial drugs.

  8. Studies of antimicrobial activities of some 4-thiazolidinone fused pyrimidines, [1,5]-benzodiazepines and their oxygen substituted hydroxylamine derivatives

    Directory of Open Access Journals (Sweden)

    Singh Bhawani

    2010-01-01

    Full Text Available Thiazolidin-4-one fused pyrimidines, [1,5]-benzodiazepines and their oxygen substituted hydroxylamine derivatives have been screened for antibacterial, antifungal and antimalarial activity. Bacillus subtilis, Escherichia coli, Proteus mirabilis and Salmonella typhi were used for antibacterial screening. Aspergillus fumigatus and Candida albicans were used for antifungal screening and Plasmodium species were used for antimalarial screening. The antibacterial and antifungal activities are expressed in terms of zone of inhibition and antimalarial activity is expressed in IC 50 value. Fifteen compounds 2Xa, 2Xb, 2Xc, 2Xs, 3IV, 3Va, 3Vc, 3VIIIa, 3VIIIh, 3IXa, 3IXb, 3IXc, 3Xa, 4IXa and 4Xa were tested for antibacterial as well as antifungal activity and seven compounds 2IXb, 2Xb, 3VIIIc, 3Xc, 4IXa, 4Xa and 4IXw were tested for antimalarial activity. Streptomycin, griseofulvin and chloroquine were taken as standard drugs in antibacterial, antifungal and antimalarial activity, respectively. The compound 2Xs was found significant antimicrobial against Bacillus subtilis, E. coli, Aspergillus fumigatus and Candida albicans as well as compound 3Xa was significant antimicrobial against Bacillus subtilis, E. coli, Salmonella typhi, Aspergillus fumigatus and Candida albicans. The compound 2Xb showed significant antimalarial activity.

  9. Antimicrobial Activity of Protamine against Oral Microorganisms.

    Science.gov (United States)

    Kim, Yeon-Hee; Kim, Sang Moo; Lee, Si Young

    2015-01-01

    Protamine is an arginine-rich polycationic protein extracted from sperm cells of vertebrates including fishes such as salmon. The purpose of this study was to investigate the suppressive effects of protamine on the growth of oral pathogens for possible usage in dental materials. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by the microdilution method. Twelve strains of oral viridans streptococci, Actinomyces naeslundii, Actinomyces odontolyticus, Enterococcus faecalis, Lactobacillus acidophilus, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis and Candida albicans were suppressed by protamine. MIC and MBC values were between 0.009 ~ 20 mg/mL and 0.019 ~ 80 mg/mL, respectively. The bactericidal activities of protamine against susceptible bacterial species were dependent on the concentration of protamine and incubation time. Based on the results of this study, protamine would be a useful compound for the development of antimicrobial agents against oral pathogens in dental materials. PMID:26699859

  10. Antimicrobial Activity of Carbon-Based Nanoparticles

    Directory of Open Access Journals (Sweden)

    Solmaz Maleki Dizaj

    2015-03-01

    Full Text Available Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs (especially single-walled carbon nanotubes (SWCNTs and graphene oxide (GO nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery.

  11. ANTIMICROBIAL ACTIVITY OF THE FRUIT-SEEDS MADHUCA LONGIFOLIA (KOENIG

    Directory of Open Access Journals (Sweden)

    Chirantan S Chakma

    2011-09-01

    Full Text Available The investigation was carried out to study the antibacterial activity of the Madhuca longifolia(Koenig in gram positive and gram negative organism.. Antimicrobial activity of the acetone and aqueous extracts of M.longifolia were determined against various pathogenic bacteria. The extracts were tested against various bacteria like Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginos, .E.coli by disk diffusion method. Minimum Inhibitory Concentration (MIC values of both extracts were determined. It is concluded that acetone extract exhibited significant antimicrobial activity. The study lends scientific support for it’s use in folk medicine.

  12. Enhancement of antimicrobial activity of chitosan by irradiation

    International Nuclear Information System (INIS)

    Antimicrobial activity of irradiated chitosan was studied against Escherichia coli B/r. Irradiation of chitosan at 100 kGy under dry conditions was effective in increasing the activity, and inhibited the growth of E. coli completely. The molecular weight of chitosan significantly decreased with the increase in irradiation dose, whereas the relative surface charge of chitosan was decreased only 3% by 100 kGy irradiation. Antimicrobial activity assay of chitosan fractionated according to molecular weight showed that 1 x 105-3 x 105 fraction was most effective in suppressing the growth of E coli. This fraction comprised only 8% of the 100 kGy irradiated chitosan. On the other hand, chitosan whose molecular weight was less than 1 x 105 had no activity. The results show that low dose irradiation, specifically 100 kGy, of chitosan gives enough degradation to increase its antimicrobial activity as a result of a change in molecular weight. (Author)

  13. Antimicrobial activities of secondary metabolites and phylogenetic study of sponge endosymbiotic bacteria, Bacillus sp. at Agatti Island, Lakshadweep Archipelago

    Directory of Open Access Journals (Sweden)

    Gopi Mohan

    2016-09-01

    Full Text Available Twenty-one species of sponges were recorded under the class of Demospongiae and Calcareous sponges of which 19 species were new to Agatti reef. A total of 113 Sponge endosymbiotic bacterial strains were isolated from twenty-one species of sponges and screened for antimicrobial activity. Five bacterial strains of sponge endosymbiotic bacteria (SEB namely SEB32, SEB33, SEB36, SEB43 and SEB51 showed antimicrobial activity against virulent marine fish pathogens such as Vibrio alginolyticus, Vibrio vulnificus, Vibrio parahaemolyticus, Aeromonas salmonicida, Flavobacterium sp., Edwardsiella sp., Proteus mirabilis and Citrobacter brackii. The secondary metabolites produced by SEB32 from sponge Dysidea fragilis (Montagu, 1818 [48] was selected with broad range of antibacterial activity and subjected for production, characterization by series of chromatography techniques and spectroscopic methods. Based on the results of FT-IR and mass spectrometry, the active molecule was tentatively predicted as “Pyrrol” and the structure is Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- with molecular formula of C7H10N2O2. The LC50 of active molecule was 31 μg/ml and molecular weight of the metabolites was 154. The potential strain SEB32 was identified by gene sequence (GenBank Accession number JX985748 and identified as Bacillus sp. from GenBank database.

  14. Plasma components and platelet activation are essential for the antimicrobial properties of autologous platelet-rich plasma: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Lorenzo Drago

    Full Text Available Autologous platelet concentrates are successfully adopted in a variety of medical fields to stimulate bone and soft tissue regeneration. The rationale for their use consists in the delivery of a wide range of platelet-derived bioactive molecules that promotes wound healing. In addition, antimicrobial properties of platelet concentrates have been pointed out. In this study, the effect of the platelet concentration, of the activation step and of the presence of plasmatic components on the antimicrobial activity of pure platelet-rich plasma was investigated against gram positive bacteria isolated from oral cavity. The antibacterial activity, evaluated as the minimum inhibitory concentration, was determined through the microdilution two-fold serial method. Results seem to suggest that the antimicrobial activity of platelet-rich plasma against Enterococcus faecalis, Streptococcus agalactiae, Streptococcus oralis and Staphylococcus aureus is sustained by a co-operation between plasma components and platelet-derived factors and that the activation of coagulation is a fundamental step. The findings of this study may have practical implications in the modality of application of platelet concentrates.

  15. Antimicrobial Activity of Indigofera suffruticosa.

    Science.gov (United States)

    Leite, Sônia Pereira; Vieira, Jeymesson Raphael Cardoso; de Medeiros, Paloma Lys; Leite, Roberta Maria Pereira; de Menezes Lima, Vera Lúcia; Xavier, Haroudo Satiro; de Oliveira Lima, Edeltrudes

    2006-06-01

    Various organic and aqueous extracts of leaves of Indigofera suffruticosa Mill (Fabaceae) obtained by infusion and maceration were screened for their antibacterial and antifungal activities. The extracts were tested against 5 different species of human pathogenic bacteria and 17 fungal strains by the agar-solid diffusion method. Most of the extracts were devoid of antifungal and antibacterial activities, except the aqueous extract of leaves of I. suffruticosa obtained by infusion, which showed strong inhibitory activity against the Gram-positive bacteria Staphylococcus aureus with a minimal inhibitory concentration (MIC) of 5000 microg ml(-1). The MIC values to dermatophyte strains were 2500 microg ml(-1) against Trichophyton rubrum (LM-09, LM-13) and Microsporum canis. This study suggests that aqueous extracts of leaves of I. suffruticosa obtained by infusion can be used in the treatment of skin diseases caused by dermatophytes. PMID:16786057

  16. Antimicrobial Activity of Indigofera suffruticosa

    Directory of Open Access Journals (Sweden)

    Sônia Pereira Leite

    2006-01-01

    Full Text Available Various organic and aqueous extracts of leaves of Indigofera suffruticosa Mill (Fabaceae obtained by infusion and maceration were screened for their antibacterial and antifungal activities. The extracts were tested against 5 different species of human pathogenic bacteria and 17 fungal strains by the agar-solid diffusion method. Most of the extracts were devoid of antifungal and antibacterial activities, except the aqueous extract of leaves of I. suffruticosa obtained by infusion, which showed strong inhibitory activity against the Gram-positive bacteria Staphylococcus aureus with a minimal inhibitory concentration (MIC of 5000 µg ml−1. The MIC values to dermatophyte strains were 2500 µg ml−1 against Trichophyton rubrum (LM-09, LM-13 and Microsporum canis. This study suggests that aqueous extracts of leaves of I. suffruticosa obtained by infusion can be used in the treatment of skin diseases caused by dermatophytes.

  17. Study on the Antimicrobial activity and Minimum Inhibitory Concentration of Essential Oils of Spices

    Directory of Open Access Journals (Sweden)

    R.V.N.Srujan and M.Sravanthi

    Full Text Available Antibacterial activity and minimum inhibitory concentration (MIC of essential oils of garlic, clove and cinnamon were estimated by using various bacterial pathogens. Among the bacterial pathogens tested against essential oil of garlic, Staphylococcus aureus was found to be highly sensitive followed by E.coli. L.monocytogenes and S.pyogenes were found to be less sensitive. The essential oil of clove was found to be most active against S.aureus followed by E.coli. B.cereus and C. jejuni. The essential oil of cinnamon was also most active against S.aureus followed by E.coli and C.jejuni. Essential oil of cinnamon was found to be active against all the bacterial pathogens tested, when compared to garlic and clove oils. However Staph. aureus, E. coli and C.jejuni were found to be most sensitive to the action of essential oils of garlic, clove and cinnamon. Among the bacterial pathogens tested against essential oils of spices to know the MIC by agar diffusion method, C.jejuni was found to be most sensitive to the essential oil of garlic followed by E.coli, S. typhimurium and Staphylococcus aureus. L. monocytogenes and Methicillin resistant Staph. aureus were found to be comparatively less sensitive. Essential oil of clove was also found to be highly effective against C.jejuni followed by E.coli, S.typhimurium and S.aureus. Again L.monocytogenes and Methicillin resistant S.aureus were comparatively less sensitive to the action of essential oil of clove. All most all the bacterial pathogens tested were found to be sensitive to the essential oil of cinnamon. However C.jejuni and E.coli were found to be most sensitive followed by S.typhimurium, Staph. aureus and Methicillin resistant Staph. aureus . [Vet. World 2011; 4(7.000: 311-316

  18. Antimicrobial Activity of Iberian macroalgae

    OpenAIRE

    Salvador Soler, Noemi; Gómez Garreta, Ma. Amelia; Lavelli, Luca; Ribera Siguán, María Antonia

    2007-01-01

    The antibacterial and antifungal activity of 82 marine macroalgae (18 Chlorophyceae, 25 Phaeophyceae and 39 Rhodophyceae) was studied to evaluate their potential for being used as natural preservatives in the cosmetic industry. The bioactivity was analysed from crude extracts of fresh and lyophilised samples against three Gram-positive bacteria, two Gram-negative bacteria and one yeast using the agar diffusion technique. The samples were collected seasonally from Mediterranean and Atlantic co...

  19. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria.

    Directory of Open Access Journals (Sweden)

    Anna Ebbensgaard

    Full Text Available The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram-negative bacteria. We compared the potency of Cap18, Cap11, Cap11-1-18m2, Cecropin P1, Cecropin B, Bac2A, Bac2A-NH2, Sub5-NH2, Indolicidin, Melittin, Myxinidin, Myxinidin-NH2, Pyrrhocoricin, Apidaecin and Metalnikowin I towards Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, Aeromonas salmonicida, Listeria monocytogenes, Campylobacter jejuni, Flavobacterium psychrophilum, Salmonella typhimurium and Yersinia ruckeri by minimal inhibitory concentration (MIC determinations. Additional characteristics such as cytotoxicity, thermo and protease stability were measured and compared among the different peptides. Further, the antimicrobial activity of a selection of cationic AMPs was investigated in various E. coli LPS mutants.Of all the tested AMPs, Cap18 showed the most efficient antimicrobial activity, in particular against Gram-negative bacteria. In addition, Cap18 is highly thermostable and showed no cytotoxic effect in a hemolytic assay, measured at the concentration used. However, Cap18 is, as most of the tested AMPs, sensitive to proteolytic digestion in vitro. Thus, Cap18 is an excellent candidate for further development into practical use; however, modifications that should reduce the protease sensitivity would be needed. In addition, our findings from analyzing LPS mutant strains suggest that the core oligosaccharide of the LPS

  20. Synergistic Antimicrobial Activity of Camellia sinensis and Juglans regia against Multidrug-Resistant Bacteria

    OpenAIRE

    Amber Farooqui; Adnan Khan; Ilaria Borghetto; Kazmi, Shahana U.; Salvatore Rubino; Bianca Paglietti

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, ...

  1. Antimicrobial peptides: a review of how peptide structure impacts antimicrobial activity

    Science.gov (United States)

    Soares, Jason W.; Mello, Charlene M.

    2004-03-01

    Antimicrobial peptides (AMPs) have been discovered in insects, mammals, reptiles, and plants to protect against microbial infection. Many of these peptides have been isolated and studied exhaustively to decipher the molecular mechanisms that impart protection against infectious bacteria, fungi, and viruses. Unfortunately, the molecular mechanisms are still being debated within the scientific community but valuable clues have been obtained through structure/function relationship studies1. Biophysical studies have revealed that cecropins, isolated from insects and pigs, exhibit random structure in solution but undergo a conformational change to an amphipathic α-helix upon interaction with a membrane surface2. The lack of secondary structure in solution results in an extremely durable peptide able to survive exposure to high temperatures, organic solvents and incorporation into fibers and films without compromising antibacterial activity. Studies to better understand the antimicrobial action of cecropins and other AMPs have provided insight into the importance of peptide sequence and structure in antimicrobial activities. Therefore, enhancing our knowledge of how peptide structure imparts function may result in customized peptide sequences tailored for specific applications such as targeted cell delivery systems, novel antibiotics and food preservation additives. This review will summarize the current state of knowledge with respect to cell binding and antimicrobial activity of AMPs focusing primarily upon cecropins.

  2. Antimicrobial activity of Aspilia latissima (Asteraceae

    Directory of Open Access Journals (Sweden)

    Jeana M.E. Souza

    2015-12-01

    Full Text Available Abstract We evaluated the antimicrobial activity of Aspilia latissima - an abundant plant from the Brazilian Pantanal region - against Candida albicans, Candida parapsilosis, Candida krusei, Candida tropicalis, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli and Staphylococcus aureus. The crude extracts and fractions showed activity in all tested microorganisms. The chloroform fraction of the leaves and roots showed the most antimicrobial activity against S. aureus, with an MIC of 500 μg/mL. This fraction was submitted to bioautographic assays to characterize the activity of the compounds. Two bands from the leaves (L-A and L-B and three bands from the roots (R-C, R-D and R-E were bioactive. Within the root-derived bands, the terpene derivatives stigmasterol, kaurenoic acid and kaura-9(11, 16-dien-18-oic acid were identified. Antibiotic activity of A. latissima is reported for the first time.

  3. Synthesis and Characterization of Carboxymethyl Chitosan Nanogels for Swelling Studies and Antimicrobial Activity

    OpenAIRE

    Reem K. Farag; Mohamed, Riham R.

    2012-01-01

    Nanogels of a binary system of carboxymethyl chitosan (CMCh) and poly- (vinyl alcohol) PVA, were successfully synthesized by a novel in situ process. They were also characterized by various analytical tools like Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray diffraction (XRD). They were studied for their unique swelling properties in water and different pH solutions. They were also investigated for their great ability to capture or isolate bac...

  4. Anti-microbial Activity of Tulsi {Ocimum Sanctum (Linn.)} Extract on a Periodontal Pathogen in Human Dental Plaque: An Invitro Study

    Science.gov (United States)

    Devaraj, C.G.; Agarwal, Payal

    2016-01-01

    Introduction Tulsi is a popular healing herb in Ayurvedic medicine. It is widely used in the treatment of several systemic diseases because of its anti-microbial property. However, studies documenting the effect of Tulsi on oral disease causing organisms are rare. Hence, an attempt was made to determine the effect of Tulsi on a periodontal microorganism in human dental plaque. Aim To determine if Ocimum sanctum (Linn.) has an anti-microbial activity (Minimum Inhibitory Concentration and zone of inhibition) against Actinobacillus actinomycetemcomitans in human dental plaque and to compare the antimicrobial activity of Ocimum sanctum(Linn.) extract with 0.2% chlorhexidine as the positive control and dimethyl sulfoxide as the negative control. Materials and Methods A lab based invitro experimental study design was adopted. Ethanolic extract of Ocimum sanctum (Linn.) was prepared by the cold extraction method. The extract was diluted with an inert solvent, dimethyl sulfoxide, to obtain ten different concentrations (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%) of extract. Plaque sample was collected from 05 subjects diagnosed with periodontal disease. Isolation of Actinobacillus actinomycetemcomitans from plaque samples was done using Tryptic Soy Serum Bacitracin Vancomycin agar (TSBV) medium. Identification of Actinobacillus actinomycetemcomitans was done based on cultural, microscopic, biochemical characterization and multiple drug resistance patterns. Anti-microbial activity of Ocimum sanctum (Linn.) extract was tested by agar well-diffusion method against 0.2% chlorhexidine as a positive control and dimethyl sulfoxide as a negative control. The zone of inhibition was measured in millimeters using Vernier callipers. Results At the 6% w/v concentration of Ocimum sanctum (Linn.) extract, a zone of inhibition of 22 mm was obtained. This was the widest zone of inhibition observed among all the 10 different concentrations tested. The zone of inhibition for positive control

  5. A comparative study of the antimicrobial, antioxidant, and cytotoxic activities of methanol extracts from fruit bodies and fermented mycelia of caterpillar medicinal mushroom Cordyceps militaris (Ascomycetes).

    Science.gov (United States)

    Dong, Cai-Hong; Yang, Tao; Lian, Tiantian

    2014-01-01

    Cordyceps militaris is one of the most popular mushrooms and nutraceuticals in Eastern Asia. This study assayed and compared the antimicrobial, antioxidant, and cytotoxic properties of the methanol extracts from fruiting bodies and fermented mycelia of C. militaris, as well as the contents of total phenol, flavonoids, and cordycepin. The results showed that the extracts from fruiting bodies possessed broad antimicrobial activities against all microorganisms tested (both bacteria and fungi), whereas that from the fermented mycelia showed selective activity. The antioxidant potential of two extracts is significant in the four tested systems in vitro, including total antioxidant capacity, scavenging abilities on 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radicals, reducing power, and chelating ability on ferrous ions. The fruiting bodies had stronger DPPH· radical scavenging activity, whereas the fermented mycelia had stronger total antioxidant capacity, chelating ability, and reducing power, which suggested that they had their own role and worked in different ways. Both extracts present strong activities against tumor cell line A549. The results obtained indicated that extracts from C. militaris might be valuable antimicrobial, antioxidant, and cytotoxic natural sources and seemed to be applicable in health and medicine as well as in the food industry. PMID:25271983

  6. Synthesis and Characterization of Carboxymethyl Chitosan Nanogels for Swelling Studies and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Reem K. Farag

    2012-12-01

    Full Text Available Nanogels of a binary system of carboxymethyl chitosan (CMCh and poly- (vinyl alcohol PVA, were successfully synthesized by a novel in situ process. They were also characterized by various analytical tools like Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM and X-ray diffraction (XRD. They were studied for their unique swelling properties in water and different pH solutions. They were also investigated for their great ability to capture or isolate bacteria and fungi from aquatic environments.

  7. In vitro study of antimicrobial activity of irrigating solutions in the elimination of Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Luiz Fernando TOMAZINHO

    2007-05-01

    Full Text Available Facultative bacteria such as Enterococcus faecalis, have been isolatedfrom pathologically involved root canals, being considered one of themost resistant species in the oral cavity one of the possible causes of failure of root canal treatment. The aim of this study was to assess, in vitro, the effectiveness of the several irrigating solutions in the elimination of Enterococcus faecalis. The disk-diffusion in agar test was utilized in this study. The bacteria utilized was Enterococcus faecalis ATCC 29212 and the irrigating solutions were NaOCl 0,5%, 1%, 2,5% and 5%; chlorhexidine 0,12% and 2%; EDTA 17% and H2O2 10 vol Chlorhexidine 2% and NaOCl 5% were the most effective irrigators and NaOCl 0,5%; EDTA 17% and H2O2 showed ineffectiveness in the elimination of this specie. These results suggest that the elimination of E. faecalis depends on the concentration and type of irrigator used.

  8. Antimicrobial Activity of Chitosan-Carbon Nanotube Hydrogels

    Directory of Open Access Journals (Sweden)

    Jayachandran Venkatesan

    2014-05-01

    Full Text Available In the present study, we have prepared chitosan-carbon nanotube (Chitosan-CNT hydrogels by the freeze-lyophilization method and examined their antimicrobial activity. Different concentrations of CNT were used in the preparation of Chitosan-CNT hydrogels. These differently concentrated CNT hydrogels were chemically characterized using Fourier Transform-Infrared Spectroscopy, Scanning Electron Microscopy and Optical microscopy. The porosity of the hydrogels were found to be >94%. Dispersion of chitosan was observed in the CNT matrix by normal photography and optical microscopy. The addition of CNT in the composite scaffold significantly reduced the water uptake ability. In order to evaluate antimicrobial activity, the serial dilution method was used towards Staphylococcus aureus, Escherichia coli and Candida tropicalis. The composite Chitosan-CNT hydrogel showed greater antimicrobial activity with increasing CNT concentration, suggesting that Chitosan-CNT hydrogel scaffold will be a promising biomaterial in biomedical applications.

  9. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Carmen Steluta Ciobanu

    2013-01-01

    Full Text Available The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO46(OH2 nanoparticles (Ag:HAp-NPs for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.

  10. ANTIMICROBIAL ACTIVITY OF MENTHA ARVENSIS AGAINST CLINICAL ISOLATES OF HUMAN CARIOGENIC PATHOGENS- AN IN-VITRO STUDY

    Directory of Open Access Journals (Sweden)

    Vinod Singh et al.

    2012-05-01

    Full Text Available Patients with chronic dental infection are usually treated with antibiotics. However, the value of antibiotics was decreasing because increased resistance in bacteria. The objective of this study is to evaluate the efficacy of herbal crude extract of Mentha arvensis in human Cariogenic pathogens. In this study we obtained crud extract of Mentha arvensis in different solvent 50% and 10% methanol, ethyl acetate, chloroform and was tested against human Cariogenic pathogens Streptococcus mutans, Streptococcus sangunis, Staphylococcus aurues, Lactobacillus casei were isolated from patients having dental disease. The crude extracts activity were studied by disc diffusion and both dilution methods in different concentration. Studies were also undertaken to assess the phytochemical composition of the Mentha arvensis extract. 50% methanolic extract at 2.5mg/ml and 5mg/ml concentration shows slightly bigher zone of inhibition (ranging from 26 to 30 mm and 28 to 32 mm, and 10% methanolic 2.5mg/ml and 5mg/ml extract shows slightly small zone (ranging from 20 to 24 mm and 22 to 27 mm and comparison with ethyl acetate and chloroform shows small zone at 5mg/ml ranging from 15 to 18 mm and 13 to 17 mm and in 2.5gm/ml ranging from 14 to 15mm and 09 to 16 mm or to be moderately sensitive. MIC results exhibit the profound and promising activity of Mentha arvensis on BHI 0.090 mg/ml. The secondary metabolites commonly present in the test leaves are Alkaloids, Tannins, Flavonols, Steroids, Xantones and glycosides, The GCMS analysis of revealed, the presence of Eucalyptol, Isomethone, Linalool, methnol, 4-Terpineol, OleicAcid, Tetradecanoic acid, 12-methyl-, methyl ester, Hexadecanoic acid, (Palmitic acid methyl ester. These data suggest that extracts of Mentha arvensis contain significant amounts of phytochemicals with antioxidative properties which could serve antimicrobial property of the Mentha arvensis and it is exploited as a potential source for plant

  11. Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration.

    Science.gov (United States)

    Al-Bakri, Amal G; Afifi, Fatma U

    2007-01-01

    The aim of this study was to screen and evaluate the antimicrobial activity of indigenous Jordanian plant extracts, dissolved in dimethylsulfoxide, using the rapid XTT assay and viable count methods. XTT rapid assay was used for the initial screening of antimicrobial activity for the plant extracts. Antimicrobial activity of potentially active plant extracts was further assessed using the "viable plate count" method. Four degrees of antimicrobial activity (high, moderate, weak and inactive) against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, respectively, were recorded. The plant extracts of Hypericum triquetrifolium, Ballota undulata, Ruta chalepensis, Ononis natrix, Paronychia argentea and Marrubium vulgare had shown promising antimicrobial activity. This study showed that while both XTT and viable count methods are comparable when estimating the overall antimicrobial activity of experimental substances, there is no strong linear correlation between the two methods. PMID:16831479

  12. Magnesium Based Materials and their Antimicrobial Activity

    Science.gov (United States)

    Robinson, Duane Allan

    The overall goals of this body of work were to characterize the antimicrobial properties of magnesium (Mg) metal and nano-magnesium oxide (nMgO) in vitro, to evaluate the in vitro cytotoxicity of Mg metal, and to incorporate MgO nanoparticles into a polymeric implant coating and evaluate its in vitro antimicrobial properties. In the course of this work it was found that Mg metal, Mg-mesh, and nMgO have in vitro antimicrobial properties that are similar to a bactericidal antibiotic. For Mg metal, the mechanism of this activity appears to be related to an increase in pH (i.e. a more alkaline environment) and not an increase in Mg2+. Given that Mg-mesh is a Mg metal powder, the assumption is that it has the same mechanism of activity as Mg metal. The mechanism of activity for nMgO remains to be elucidated and may be related to a combination of interaction of the nanoparticles with the bacteria and the alkaline pH. It was further demonstrated that supernatants from suspensions of Mg-mesh and nMgO had the same antimicrobial effect as was noted when the particles were used. The supernatant from Mg-mesh and nMgO was also noted to prevent biofilm formation for two Staphylococcus strains. Finally, poly-epsilon-caprolactone (PCL) composites of Mg-mesh (PCL+Mg-mesh) and nMgO (PCL+nMgO) were produced. Coatings applied to screws inhibited growth of Escherichia coli and Pseudomonas aeruginosa and in thin disc format inhibited the growth of Staphylococcus aureus in addition to the E. coli and P. aeruginosa. Pure Mg metal was noted to have some cytotoxic effect on murine fibroblast and osteoblast cell lines, although this effect needs to be characterized further. To address the need for an in vivo model for evaluating implant associated infections, a new closed fracture osteomyelitis model in the femur of the rat was developed. Magnesium, a readily available and inexpensive metal was shown to have antimicrobial properties that appear to be related to its corrosion products and

  13. In vitro studies of antimicrobial activity of crude extracts of the Indian grasses Dhaman (Cenchrus ciliaris and Kala-Dhaman (Cenchrus setigerus

    Directory of Open Access Journals (Sweden)

    Premlata Singariya

    2012-01-01

    Full Text Available The aim of present study was to investigate the antimicrobial activity of Cenchrus ciliaris and Cenchrus setigerus extracts in order to use it as a possible source for new antimicrobial substances against important human pathogens. Crude extracts of the stem of Cenchrus ciliaris and Cenchrus setigerus were evaluated against some medically important pathogens viz. Escherichia coli, Raoultella planticola, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Enterobacter aerogenes, Candida albicans and Aspergillus flavus. The dried and powdered stems were successively extracted with hexane, toluene, isopropyl alcohol, acetone and ethanol using soxhlet assembly. The antimicrobial activity assay was done by both disc diffusion and serial dilution methods. Isopropyl alcohol extract of Cenchrus setigerus showed highest activity against Escherichia coli. The test pathogens were more sensitive to the isopropyl alcohol, acetone and ethanol extracts than to the hexane and toluene extracts except against Bacillus subtilis. Result reveals that the most bioactive compound was cycloleucolenol-9,19-cycloergost-24 (28-en-3-ol, 4, 14-dimethyl acetate in both the species of Cenchrus grass, (19.15% in isopropanol extract of Cenchrus setigerus whereas, (14.03% in acetone extract of Cenchrus ciliaris.

  14. Synthesis, structural characterization and biological activity of a trinuclear zinc(II) complex: DNA interaction study and antimicrobial activity

    Indian Academy of Sciences (India)

    Bhaskar Biswas; Niranjan Kole; Moumita Patra; Shampa Dutta; Mousumi Ganguly

    2013-11-01

    A trinuclear zinc(II) complex [Zn3L2(-O2CCH3)2(H2O)2]·H2O·2CH3OH (1) was synthesized from an in situ reaction between zinc acetate and a Schiff base ligand (H2L = 2-((2-hydroxyphenylimino) methyl)-6-methoxyphenol). The ligand was prepared by (1:1) condensation of ortho-vanillin and ortho-aminophenol. The ligand and zinc(II) complex were characterized by elemental analysis, Fourier Transform Infrared (FTIR), 1H-Nuclear Magnetic Resonance (NMR), UV-Vis spectroscopy, Powder X-ray Diffraction (PXRD) and thermogravimetric analysis. 1 crystallizes in P-1 space group with = 11.9241(3) Å, = 12.19746 Å, = 20.47784 Å with unit cell volume is 2674.440 (Å)3. Binding property of the complex with calf thymus DNA (CT-DNA) has been investigated using absorption and emission studies. Thermal melting and viscosity experiments were further performed to determine the mode of binding of 1 with CT-DNA. Spectroscopic and viscosity investigations revealed an intercalative binding mode of 1 with CT-DNA. The ligand and its zinc complex were screened for their biological activity against bacterial species and fungi. Activity data show that the metal complex has more antibacterial and antifungal activity than the parent Schiff base ligand and against those bacterial or fungi species.

  15. PARTIAL OPTIMIZATION AND STUDY OF ANTIMICROBIAL ACTIVITY OF POLYPHENOL OXIDASE (PPO AND PEROXIDASE (POD EXTRACTED FROM CHILLY PEPPER PERICARP

    Directory of Open Access Journals (Sweden)

    Atrayee Roy

    2013-03-01

    Full Text Available Polyphenol oxidase(PPO (E.C. number 1.10.3.1 has ubiquitous distribution in almost all living organism. Whereas, peroxidase(POD (E.C. number 1.11.1 act as hormone regulation and defense mechanism in plants. Keeping in pace with their present-day industrial application, efforts have been made to evaluate the activity of these two enzymes (PPO and POD using pepper pericarp (Capsicum annuum L. as an experimental material using catechol and guaiacol as a substrate, respectively. The effects of enzyme extract, substrate, hydrogen peroxide concentration (only for POD, pH and temperature and antimicrobial activity against different bacterial strains were investigated.

  16. ANTIMICROBIAL AND ANTIOXIDANT ACTIVITY ON EMBLICA OFFICINALIS SEED EXTRACT

    OpenAIRE

    Gupta Priya; Nain Parminder; Sidana Jaspreet

    2012-01-01

    The present study was carried out to evaluate in vitro antibacterial and free radical scavenging activity of methanolic extract of Emblica officinalis seed. The antimicrobial activity was assessed against gram positive and gram negative bacteria namely E.coli, P.aeruginosa, K.pneumoniae, S. aureus, Enterococcus by using agar well diffusion method. The antioxidant activity of seed extract was evaluated by using the free radical scavenging activity assay i.e DPPH method, hydrogen peroxide and r...

  17. Punica granatum L. (Pomegranate) Extract: In Vivo Study of Antimicrobial Activity against Porphyromonas gingivalis in Galleria mellonella Model

    Science.gov (United States)

    Aparecida Procópio Gomes, Livia; Alves Figueiredo, Lívia Mara; Corrêa Geraldo, Barbara Maria; Isler Castro, Kelly Cristine; Ruano de Oliveira Fugisaki, Luciana; Olavo Cardoso Jorge, Antônio; Dias de Oliveira, Luciane; Campos Junqueira, Juliana

    2016-01-01

    Due to the increase of bacterial resistance, medicinal alternatives are being explored. Punica granatum L. is an effective herbal extract with broad spectrum of action and bactericidal, antifungal, anthelmintic potential and being able to modulate the immune response. The aim was to evaluate the antimicrobial activity of pomegranate glycolic extract (PGE) against the periodontal pathogen Porphyromonas gingivalis by using Galleria mellonella as in vivo model. Fifteen larvae were used per group. Injection of high concentration (200, 100, and 25 mg/mL) of PGE showed a toxic effect, leading them to death. A suspension of P. gingivalis (106 cells/mL) was inoculated in the left last proleg and PGE (12.5, 6.25, 3.1, and 2.5 mg/mL) were injected into the right proleg. The larvae were then kept at 37°C under the dark. Injection of PGE at any dose statistically improved larvae survival rates. The data were analysed (log-rank test, Mantel-Cox, P < 0.05) and showed that all concentrations of PGE (12.5, 6.25, 3.1, and 2.5 mg/mL) presented higher larval survival rates, with significant statistical difference in relation to control group (P. gingivalis). In conclusion, the PGE had antimicrobial action against P. gingivalis in vivo model using G. mellonella. PMID:27668280

  18. Antimicrobial activity of Michelia champaca.

    Science.gov (United States)

    Khan, M R; Kihara, M; Omoloso, A D

    2002-12-01

    The methanol extracts of leaves, seeds, stem and root barks, stem and root heart-woods of Michelia champaca and the obtained fractions (petrol, dichloromethane, ethyl acetate, butanol) exhibited a broad spectrum of antibacterial activity. Fractionation drastically enhanced the level of activity particularly in all fractions of the stem bark and dichloromethane fraction of the root bark. Some fractions of the leaves, stem and root barks demonstrated antifungal activity against some of the tested moulds. Liriodenine was the active constituent of the root bark, with a broader and, in some cases, better level of activity as compared to the standard. PMID:12490248

  19. Antimicrobial activity and agricultural properties of bitter melon (Momordica charantia L.) grown in northern parts of Turkey: a case study for adaptation.

    Science.gov (United States)

    Yaldız, Gülsüm; Sekeroglu, Nazım; Kulak, Muhittin; Demirkol, Gürkan

    2015-01-01

    This study was designed to determine the adaptation capability of bitter melon (Momordica charantia L.), which is widely grown in tropical and subtropical climates, in northern parts of Turkey. In this study, plant height, number of fruits, fruit length, fruit width, number of seeds and fruit weight of bitter melon grown in field conditions were determined. The antimicrobial effect of the ethanol extract of fruit and seeds against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Salmonella typhi, Aspergillus niger and Candida albicans microorganisms was tested in vitro by the disc diffusion method. In conclusion, plant height (260 cm), number of fruits (16 per  plant), number of seeds (30.2  per fruit), fruit width (3.8 cm), fruit length (10.6 cm) and fruit weight (117.28 g fruit(- 1)) were determined; fruits were found to have antimicrobial activity against A. niger; oil and seeds were found to have antimicrobial activity against A. niger and E. coli. PMID:25141891

  20. Antimicrobial activity of preparation Bioaron C.

    Science.gov (United States)

    Gawron-Gzella, Anne; Michalak, Anna; Kędzia, Anna

    2014-01-01

    The antimicrobial activity of sirupus Bioaron C, a preparation, whose main ingredient is an extract from the leaves of Aloe arborescens, was tested against different microorganisms isolated from patients with upper respiratory tract infections. The experiments were performed on 40 strains: 20 strains of anaerobic bacteria, 13 strains of aerobic bacteria and 7 strains of yeast-like fungi from the genus Candida and on 18 reference strains (ATCC). The antimicrobial activity of Bioaron C (MBC and MFC) was determined at undiluted concentration. Bioaron C proved to be very effective against the microorganisms causing infections. At the concentration recommended by the producer, the preparation showed biocidal activity (MBC, MFC) against the strains of the pathogenic microorganisms, which cause respiratory infections most frequently, including, among others, Peptostreptococcus anaerobius, Parvimonas micra, Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Streptococcus anginosus, Haemophilus influenzae, Moraxella catarrhalis, Pseudomonas aeruginosa and Candida albicans, already after 15 min. The MIC of Bioaron C against most of the tested microorganisms was 5 to 100 times lower than the usually applied concentration. The great antimicrobial activity means that the preparation may be used in the prevention and treatment of infections of the upper respiratory tract. Bioaron C may be an alternative or complement to classical therapy, especially in children. PMID:25362808

  1. Copper(II) complexes with cyanoguanidine and o-phenanthroline: Theoretical studies, in vitro antimicrobial activity and alkaline phosphatase inhibitory effect

    Science.gov (United States)

    Martínez Medina, Juan J.; Islas, María S.; López Tévez, Libertad L.; Ferrer, Evelina G.; Okulik, Nora B.; Williams, Patricia A. M.

    2014-01-01

    Calculations based on density functional methods are carried out for two Cu(II) complexes with cyanoguanidine (cnge) and o-phenanthroline (o-phen): [Cu(o-phen)2(cnge)](NO3)2ṡ2H2O (1) and [Cu(o-phen)(cnge)(H2O)(NO3)2] (2). The calculated geometrical parameters are in agreement with the experimental values. The results of Atoms in Molecules (AIM) topological analysis of the electron density indicate that the Cu-N(phen) bonds in complex (1) have lower electron density, suggesting that those bonds are stronger in complex (2). Moreover, the ionic character of the Cu-N bond in the complex (1) is slightly stronger than that in the complex (2) and this situation would explain the fact that only complex (2) was stable in water solution. For this reason, the antimicrobial and enzymatic assays were performed using complex (2). It is well known that the increased use of antibiotics has resulted in the development of resistant bacterial and fungal strains. In this context, the study of novel antimicrobial agents has an enormous importance and metal complexes represent an interesting alternative for the treatment of infectious diseases. The aim of this work is to prove the modification of some biological properties like antimicrobial activity or alkaline phosphatase inhibitory activity upon copper complexation.

  2. Prediction of Antibacterial Activity from Physicochemical Properties of Antimicrobial Peptides

    NARCIS (Netherlands)

    de Sousa Pereira Simoes de Melo, Manuel; Ferre, Rafael; Feliu, Lidia; Bardaji, Eduard; Planas, Marta; Castanho, Miguel A. R. B.

    2011-01-01

    Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible co

  3. Antimicrobial activity of carvacrol toward Bacillus cereus on rice

    NARCIS (Netherlands)

    Ultee, A.; Slump, R.A.; Steging, G.; Smid, E.J.

    2000-01-01

    The antimicrobial activity of carvacrol, a compound present in the essential oil fraction of oreganum and thyme, toward the foodborne pathogen Bacillus cereus on rice was studied. Carvacrol showed a dose-related inhibition of growth of the pathogen. Concentrations of 0.15 mg/g and higher inhibited t

  4. Antimicrobial activities of selected Cyathus species.

    Science.gov (United States)

    Liu, Ya-Jun; Zhang, Ke-Qin

    2004-02-01

    Twelve selected Cyathus species were tested for their abilities to produce antimicrobial metabolites. Most of them were found to produce secondary exo-metabolites that could induce morphological abnormalities of rice pathogenic fungi Pyricularia oryzae. Some extracts from the cultivated liquid obviously inhibited human pathogenic fungi Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans. Activities against six human pathogenic bacteria were also obtained from some of these extracts. PMID:15119855

  5. Studies on the In Vitro Antiproliferative, Antimicrobial, Antioxidant, and Acetylcholinesterase Inhibition Activities Associated with Chrysanthemum coronarium Essential Oil

    Directory of Open Access Journals (Sweden)

    Sanaa K. Bardaweel

    2015-01-01

    Full Text Available The essential oil of the Jordanian Chrysanthemum coronarium L. (garland was isolated by hydrodistillation from dried flowerheads material. The oil was essayed for its in vitro scavenging activity using the 1,1-diphenyl-2-picrylhydrazyl (DPPH method. The results demonstrate that the oil exhibits moderate radical scavenging activity relative to the strong antioxidant ascorbic acid. In addition, cholinesterase inhibitory activity of C. coronarium essential oil was evaluated for the first time. Applying Ellman’s colorimetric method, interesting cholinesterase inhibitory activity, which is not dose dependent, was evident for the oil. Furthermore, antimicrobial activities of the oil against both Gram-negative and Gram-positive bacteria were evaluated. While it fails to inhibit Gram-negative bacteria growth, the antibacterial effects demonstrated by the oil were more pronounced against the Gram-positive strains. Moreover, the examined oil was assessed for its in vitro antiproliferative properties where it demonstrated variable activities towards different human cancer cell lines, of which the colon cancer was the most sensitive to the oil treatment.

  6. Antimicrobial and antioxidant activity of natural honeys of different origin

    Directory of Open Access Journals (Sweden)

    Miartina Fikselová

    2014-11-01

    Full Text Available To examine the antimicrobial and antioxidant activity of 15 natural honeys, honey samples were collected from different locations of Slovakia, Poland and Serbia. For antimicrobial activity determination honey solutions were prepared at three concentrations: 50, 25 and 12.5 % (by mass per volume. The potential antimicrobial activity of  selected samples against four species of bacteria (Escherichia coli CCM 3988, Pseudomonas aeroginosa CCM 1960, Staphylococcus epidermis CCM 4418, Bacillus cereus CCM 2010 and two species of yeasts (Saccharomyces cerevisiae CCM 8191, Candida albicans CCM 8216 was studied using the disc diffusion method. After incubation, the zones of inhibition of the growth of the microorganisms around the disks were measured. The strongest antimicrobial activity was shown at honey samples of 50 % concentration against Escherichia coli, Pseudomonas aeroginosa and Staphylococcus epidermis. Against Saccharomyces cerevisae and Candida albicans very low (at 50 %, 25 % concentration or zero antifugal (at 12.5 % concentration activity was determined. From the results obtained it was shown the variable ability of honey samples to scavenge stable free radical DPPH. TEACDPPH values ranged between 0.1-1.0 mmol.kg-1. As the antioxidative best source buckwheat honey was manifested and the lowest antioxidant activity was shown at acacia honey.

  7. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    Science.gov (United States)

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control. PMID:26137678

  8. Antimicrobial Activity of Indigofera suffruticosa

    OpenAIRE

    Leite, Sônia Pereira; Vieira, Jeymesson Raphael Cardoso; de Medeiros, Paloma Lys; Leite, Roberta Maria Pereira; de Menezes Lima, Vera Lúcia; Xavier, Haroudo Satiro; de Oliveira Lima, Edeltrudes

    2006-01-01

    Various organic and aqueous extracts of leaves of Indigofera suffruticosa Mill (Fabaceae) obtained by infusion and maceration were screened for their antibacterial and antifungal activities. The extracts were tested against 5 different species of human pathogenic bacteria and 17 fungal strains by the agar-solid diffusion method. Most of the extracts were devoid of antifungal and antibacterial activities, except the aqueous extract of leaves of I. suffruticosa obtained by infusion, which showe...

  9. Antimicrobial Activity of Indigofera suffruticosa

    OpenAIRE

    Sônia Pereira Leite; Jeymesson Raphael Cardoso Vieira; Paloma Lys de Medeiros; Roberta Maria Pereira Leite; Vera Lúcia de Menezes Lima; Haroudo Satiro Xavier; Edeltrudes de Oliveira Lima

    2006-01-01

    Various organic and aqueous extracts of leaves of Indigofera suffruticosa Mill (Fabaceae) obtained by infusion and maceration were screened for their antibacterial and antifungal activities. The extracts were tested against 5 different species of human pathogenic bacteria and 17 fungal strains by the agar-solid diffusion method. Most of the extracts were devoid of antifungal and antibacterial activities, except the aqueous extract of leaves of I. suffruticosa obtained by infusion, which sh...

  10. Antimicrobial activity ofGymnema sylvestre (Asclepiadaceae)

    Institute of Scientific and Technical Information of China (English)

    Beverly C. David; G. Sudarsanam

    2013-01-01

    Objective:To evaluate antimicrobial activities of aqueous, methanol, chloroform and hexane extract of leaves plant ofGymnema sylvestre(G. sylvestre).Methods:The antimicrobial screening of the extracts ofG. sylvestre against most prevalent microbes likeStaphylococcus aureus(S. aureus),Bacillus cereus(B. cereus),Klebsiella pneumoniae(K. pneumoniae),Escherichia coli(E. coli),Candida albicans(C. albicans),Candida tropicalis(C. tropicalis),Candida krusei(C. krusei) andCandida kefyr(C. kefyr) by agar well diffusion method, minimum inhibitory concentration, minimum bactericidal concentration, minimum fungicidal concentration were carried out. Results:The aqueous and methanol leaf extract showed significant antibacterial and antifungal activities against the selected microorganisms when compared to the standard drugs respectively. Conclusions:The dried scale leaves ofG. sylvestre might represent a new antimicrobial source with stable, biologically active components that can establish a scientific base for the use in modern medicine.

  11. Antimicrobial Peptide from the Wild Bee Hylaeus signatus Venom and Its Analogues: Structure-Activity Study and Synergistic Effect with Antibiotics.

    Science.gov (United States)

    Nešuta, Ondřej; Hexnerová, Rozálie; Buděšínský, Miloš; Slaninová, Jiřina; Bednárová, Lucie; Hadravová, Romana; Straka, Jakub; Veverka, Václav; Čeřovský, Václav

    2016-04-22

    Venoms of hymenopteran insects have attracted considerable interest as a source of cationic antimicrobial peptides (AMPs). In the venom of the solitary bee Hylaeus signatus (Hymenoptera: Colletidae), we identified a new hexadecapeptide of sequence Gly-Ile-Met-Ser-Ser-Leu-Met-Lys-Lys-Leu-Ala-Ala-His-Ile-Ala-Lys-NH2. Named HYL, it belongs to the category of α-helical amphipathic AMPs. HYL exhibited weak antimicrobial activity against several strains of pathogenic bacteria and moderate activity against Candida albicans, but its hemolytic activity against human red blood cells was low. We prepared a set of HYL analogues to evaluate the effects of structural modifications on its biological activity and to increase its potency against pathogenic bacteria. This produced several analogues exhibiting significantly greater activity compared to HYL against strains of both Staphylococcus aureus and Pseudomonas aeruginosa even as their hemolytic activity remained low. Studying synergism of HYL peptides and conventional antibiotics showed the peptides act synergistically and preferentially in combination with rifampicin. Fluorescent dye propidium iodide uptake showed the tested peptides were able to facilitate entrance of antibiotics into the cytoplasm by permeabilization of the outer and inner bacterial cell membrane of P. aeruginosa. Transmission electron microscopy revealed that treatment of P. aeruginosa with one of the HYL analogues caused total disintegration of bacterial cells. NMR spectroscopy was used to elucidate the structure-activity relationship for the effect of amino acid residue substitution in HYL. PMID:26998557

  12. Study of antimicrobial property of some hypoglycemic drugs

    Directory of Open Access Journals (Sweden)

    Arun Kumar Dash

    2011-01-01

    Full Text Available In the present work, a comparative antimicrobial study of different hypoglycemic drugs (Metformin, Phenformin, and Rosiglitazone was carried out. The main objective was to ascertain the antimicrobial activity by using "non-antibiotics" as the test substances. The antimicrobial activity was carried out against different bacteria and fungi namely Bacillus liceniformis, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Shigella flexneri, Bacillus subtilis, Staphylococcus aureus subspp., and Staphylococcus epidermidis by using disc diffusion method and agar dilution method. Ciprofloxacin was taken as the standard antibiotic. The entire procedure was carried out in an aseptic area under the laminar flow by inoculating the bacterial strain to the agar media in which the drug solution was added. Different concentrations (300 and 400 μg/ml of the standard antibiotic and selected drugs were subjected for minimum inhibitory concentration, and zone of inhibition tests and the antimicrobial activity of the selected drugs were determined.

  13. ANTIMICROBIAL ACTIVITY OF MEDICINAL PLANTS AGAINST DIFFERENT STRAINS OF BACTERIA

    Directory of Open Access Journals (Sweden)

    Alexander Vatľák

    2014-02-01

    Full Text Available In this study, methanolic extracts of Tilia cordata Mill. and Aesculus hippocastanum which had been described in herbal books, were screened for their antimicrobial activity against gramnegative and grampositive bacteria. The following strains of bacteria for antimicrobial activity were used gramnegative bacteria: Escherichia coli CCM 3988, Listeria ivanovii CCM 5884, Listeria innocua CCM 4030, Pseudomonas aeruginosa CCM 1960, Serratia rubidaea CCM 4684 and grampositive bacteria: Brochothrix thermosphacta CCM 4769, Enterococcus raffinosus CCM 4216, Lactobacillus rhamnosus CCM 1828, Paenobacillus larvae CCM 4483 and Staphylococcus epidermis CCM 4418 using disc diffusion method and microbroth dilution technique according to CLSI. Probit analysis was used in this experiment. Of the 2 plant extracts tested, all extracts showed antimicrobial activity against one or more species of microorganisms. The highest antibacterial activity of Tilia cordata and Aesculus hippocastanum methanolic extract was measured against gramnegative bacteria Pseudomonas aeruginosa used with disc diffusion method. The strong antimicrobial activity with microbroth dilution method of Tilia cordata and Aesculus hippocastanum were found against Listeria ivanovii.

  14. Capping Agent-Dependent Toxicity and Antimicrobial Activity of Silver Nanoparticles: An In Vitro Study. Concerns about Potential Application in Dental Practice

    Science.gov (United States)

    Niska, Karolina; Knap, Narcyz; Kędzia, Anna; Jaskiewicz, Maciej; Kamysz, Wojciech; Inkielewicz-Stepniak, Iwona

    2016-01-01

    Objectives: In dentistry, silver nanoparticles (AgNPs) have drawn particular attention because of their wide antimicrobial activity spectrum. However, controversial information on AgNPs toxicity limited their use in oral infections. Therefore, the aim of the present study was to evaluate the antibacterial activities against a panel of oral pathogenic bacteria and bacterial biofilms together with potential cytotoxic effects on human gingival fibroblasts of 10 nm AgNPs: non-functionalized - uncapped (AgNPs-UC) as well as surface-functionalized with capping agent: lipoic acid (AgNPs-LA), polyethylene glycol (AgNPs-PEG) or tannic acid (AgNPs-TA) using silver nitrate (AgNO3) as control. Methods: The interaction of AgNPs with human gingival fibroblast cells (HGF-1) was evaluated using the mitochondrial metabolic potential assay (MTT). Antimicrobial activity of AgNPs was tested against anaerobic Gram-positive and Gram-negative bacteria isolated from patients with oral cavity and respiratory tract infections, and selected aerobic Staphylococci strains. Minimal inhibitory concentration (MIC) values were determined by the agar dilution method for anaerobic bacteria or broth microdilution method for reference Staphylococci strains and Streptococcus mutans. These strains were also used for antibiofilm activity of AgNPs. Results: The highest antimicrobial activities at nontoxic concentrations were observed for the uncapped AgNPs and the AgNPs capped with LA. It was found that AgNPs-LA and AgNPs-PEG demonstrated lower cytotoxicity as compared with the AgNPs-TA or AgNPs-UC in the gingival fibroblast model. All of the tested nanoparticles proved less toxic and demonstrated wider spectrum of antimicrobial activities than AgNO3 solution. Additionally, AgNPs-LA eradicated Staphylococcus epidermidis and Streptococcus mutans 1-day biofilm at concentration nontoxic to oral cells. Conclusions: Our results proved that a capping agent had significant influence on the antibacterial

  15. Assessing the antimicrobial activities of Ocins.

    Science.gov (United States)

    Choyam, Shilja; Lokesh, Dhanashree; Kempaiah, Bettadaiah Bheemakere; Kammara, Rajagopal

    2015-01-01

    The generation of a zone of inhibition on a solid substrate indicates the bioactivity of antimicrobial peptides such as bacteriocin and enterocin. The indicator strain plays a significant role in bacteriocin assays. Other characteristics of bacteriocins, such as their dispersal ability and the different zymogram components, also affect bacteriocin assays. However, universal well diffusion assays for antimicrobials, irrespective of their ability to diffuse (bacteriocin and enterocin), do not exist. The ability of different zymography components to generate non-specific activities have rarely been explored in the literature. The purpose of the present work was to evaluate the impact of major factors (diffusion and rate of diffusion) in a solid substrate bioassay, and to document the adverse effects of sodium dodecyl sulfate in zymograms used to estimate the approximate molecular weight of bacteriocins. PMID:26441952

  16. Assessing the antimicrobial activities of Ocins

    Directory of Open Access Journals (Sweden)

    Shilja eChoyam

    2015-09-01

    Full Text Available The generation of a zone of inhibition on a solid substrate indicates the bioactivity of antimicrobial peptides such as bacteriocin and enterocin. The indicator strain plays a significant role in bacteriocin assays. Other characteristics of bacteriocins, such as their dispersal ability and the different zymogram components, also affect bacteriocin assays. However, universal well diffusion assays for antimicrobials, irrespective of their ability to diffuse (bacteriocin, enterocin, do not exist. The ability of different zymography components to generate non-specific activities have rarely been explored in the literature. The purpose of the present work was to evaluate the impact of two major factors (diffusion and no diffusion in a solid substrate bioassay, and to document the adverse effects of sodium dodecyl sulfate in zymograms used to estimate the approximate molecular weight of bacteriocins.

  17. Essential Oil Prepared from Cymbopogon citrates Exerted an Antimicrobial Activity Against Plant Pathogenic and Medical Microorganisms

    OpenAIRE

    Jeong, Mi-Ran; Park, Pyeong Beom; Kim, Dae-Hyuk; Jang, Yong-Suk; Jeong, Han Sol; Choi, Sang-Hoon

    2009-01-01

    Essential oils are mixtures of volatile, lipophilic compounds originating from plants. Some essential oils have useful biological activities including antimicrobial, spasmolytic, antiplasmodial, and insect-repelling activities. In this study, we tested the antimicrobial activity of essential oil prepared from the aromatic plant, Cymbopogon citrates, against three important plant pathogenic and medical microorganisms, Pectobacterium carotovorum, Colletotrichum gloeosporioides, and Aspergillus ...

  18. In vitro antimicrobial activity of mangrove plant Sonneratia alba

    Institute of Scientific and Technical Information of China (English)

    Shahbudin Saad; Muhammad Taher; Deny Susanti; Haitham Qaralleh; Anis Fadhlina Izyani Bt Awang

    2012-01-01

    Objective:To investigate the antimicrobial property of mangrove plant Sonneratia alba (S. alba). Methods: The antimicrobial activity was evaluated using disc diffusion and microdilution methods against six microorganisms. Soxhlet apparatus was used for extraction with a series of solvents, n-hexane, ethyl acetate and methanol in sequence of increasing polarity. Results:Methanol extract appeared to be the most effective extract while n-hexane extract showed no activity. The antimicrobial activities were observed against the gram positive bacteria Staphylococcus aureus (S. aureus) and Bacillus cereus (B. cereus), the gram negative Escherichia coli (E. coli) and the yeast Cryptococcus neoformans. Pseudomonas aeruginosa and Candida albicans appeared to be not sensitive to the concentrations tested since no inhibition zone was observed. E. coli (17.5 mm) appeared to be the most sensitive strain followed by S. aureus (12.5 mm) and B. cereus (12.5 mm). Conclusions:From this study, it can be concluded that S. alba exhibits antimicrobial activities against certain microorganisms.

  19. A STUDY OF CARDIOVASCULAR AND ANTIMICROBIAL EFFECTS OF TINOSPORA CORDIFOLIA

    OpenAIRE

    Jorige Archana et al

    2012-01-01

    Tinospora cordifolia is known for a wide range of medicinal properties. In this study, cardiovascular and antimicrobial properties of aqueous and ethanolic extracts of Tinospora cordifolia were evaluated. Dose dependent negative ionotropic and chronotropic effects were observed with both aqueous and ethanolic extracts. The effects were antagonized by atropine indicating involvement of muscarinic receptors. Maximum antimicrobial activity was found with ethanolic extract of Tinospora cordifolia...

  20. ANTIMICROBIAL ACTIVITY OF ALOE VERA LEAF EXTRACT

    OpenAIRE

    Kedarnath; Kamble Kaveri M; Vishwanath B Chimkod; C. S. Patil

    2013-01-01

    The antimicrobial activity of aloe vera extract was tested against pathogenic bacteria like Staphylococcus aureus, Klebisella pneumonia and E.coli and fungi like Aspergillus niger and Candida at a dose of 1:20 mg/ml and 2:40 mg/ml by using cup plate diffusion method. Various solvents such as petroleum ether, chloroform and methanol were used for extracts. The results reveal that, methanol and petroleum ether at a dose of 20 mg/ml has showed significant activity against Klebisella pneumonia an...

  1. INVESTIGATION OF ANTIMICROBIAL AND ANTI-INFLAMMATORY ACTIVITY OF CURCUMA LONGA

    Directory of Open Access Journals (Sweden)

    Mohammad Basir Khan , Md. Atai Rabby , Md Hasmat Ullah and Chowdhury Faiz Hossain*

    2013-03-01

    Full Text Available ABSTRACT: Turmeric (Curcuma longa is a rhizomatous herbaceous perennial plant used as a food additive. It has been reported that rhizome of this plant have antibacterial, antifungal, anti-inflammatory, antioxidant and antitumor property. Methanol extract of Rhizome of Curcuma longa was investigated here to see the antimicrobial actions and anti-inflammatory effect. During the extraction process a purified single compound (D1 was isolated and investigated for its antimicrobial activity. Significant antimicrobial activity than penicillin were found for 500µg C. longa extract. Anti-inflammatory action of C. longa was also assessed using mice models. The purified compound D1 fraction showed antimicrobial action in 50µg concentration. Our study reveal that C. longa has antimicrobial activity against various gram positive and gram negative bacteria where curcumin may not be the only compound that is responsible for the antimicrobial activity. On the other hand, C. longa extract had shown significant anti-inflammatory action.

  2. PHYTOCHEMICAL ANALYSIS AND ANTIMICROBIAL ACTIVITY OF CASIA OCCIDENTALIS (L

    Directory of Open Access Journals (Sweden)

    Venkanna Lunavath

    2013-02-01

    Full Text Available The trend of using natural products has increased and the active plant extracts are frequently screened for new drug discoveries. The present study deals with the screening of Casia occidentalis leaves for their antimicrobial activity against various strains of bacteria. Plant Cassia occidentalis belongs to family Caesalpiniaceae, is a diffuse offensively odorous under shrub. Casia occidentalis were shade dried, powered and was extracted using solvents Methanol. The antimicrobial activity test performed by the disc diffusion method. Preliminary phytochemical analysis of the plant extracts fractions of HXF, CTF, CFF and AQF showed the presence of carbohydrates, amino acids, phytosterols, fixed oils and phenolic compounds. The AQF fraction of C. occidentalis showed high activity across pseudomonas aeuruginosa and staphylococcus aureus bacteria. The present study indicates the potential usefulness of Casia occidentalis leaves in the treatment of various diseases caused by micro-organisms.

  3. Antimicrobial activity of different endodontic sealers: An in vitro evaluation

    Directory of Open Access Journals (Sweden)

    Saha S

    2010-01-01

    Full Text Available Background: Microbes are considered as the primary etiological agents in endodontic diseases. The ways of reducing these agents are root canal debridement, antimicrobial irrigants, and antibacterial filling materials. But the complexity of the pulp canal system presents a problem for chemomechanical preparation. One of the factors determining the success of endodontic treatment is the sealing material with a potent bactericidal effect. Aim: The aim of the present study was to assess the antimicrobial activity of endodontic sealers of different bases - in vitro. Materials and Method: The antimicrobial activity of three root canal sealers (endomethasone, AH 26, and apexit was evaluated against seven strains of bacteria at various time intervals using the agar diffusion test. The freshly mixed sealers were placed in prepared wells of agar plates inoculated with the test microorganisms. The plates were incubated for 24, 48, 72 hours, and 7 and 15 days. The mean zones of inhibition were measured. Statistical Analysis: All statistical analysis was performed using the SPSS 13 statistical software version. The analysis of variance (ANOVA, post-hoc Bonferroni test, and paired t test were performed to reveal the statistical significance. Results: Statistically significant zones of bacterial growth inhibition were observed in descending order of antimicrobial activity: endomethasone, AH 26, and apexit. Conclusion: Zinc oxide eugenol based root canal sealer produced largest inhibitory zones followed in decreasing order by epoxy resin based sealer and least by calcium hydroxide based root canal sealer.

  4. ANTIMICROBIAL ACTIVITY OF THE FRUIT-SEEDS MADHUCA LONGIFOLIA (KOENIG)

    OpenAIRE

    Chirantan S Chakma

    2011-01-01

    The investigation was carried out to study the antibacterial activity of the Madhuca longifolia(Koenig) in gram positive and gram negative organism.. Antimicrobial activity of the acetone and aqueous extracts of M.longifolia were determined against various pathogenic bacteria. The extracts were tested against various bacteria like Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginos, .E.coli by disk diffusion method. Minimum Inhibitory Concentration (MIC) values of both extracts we...

  5. ANTIMICROBIAL ACTIVITY OF PERICARP EXTRACT OF GARCINIA MANGOSTANA LINN.

    OpenAIRE

    Vishnu Priya V; Mallika Jainu; Surapaneni Krishna Mohan; Saraswathi P,; Chandra Sada Gopan V S

    2010-01-01

    Garcinia mangostana Linn is used as a phytomedicine in South East Asia for the treatment of trauma, diahorrea and skin infections. In the present study anti microbial activity of Garcinia mangostana extract powder was carried out. Antimicrobial activity was examined by determining the minimal inhibitory concentration (MIC) using macrodilution broth technique. Garcinia mangostana extract powder at different concentrations were tested against Staphylococcus aureus, Staphylococcus albus, Microco...

  6. ANTIMICROBIAL ACTIVITY OF PERICARP EXTRACT OF GARCINIA MANGOSTANA LINN.

    Directory of Open Access Journals (Sweden)

    Vishnu Priya V

    2010-09-01

    Full Text Available Garcinia mangostana Linn is used as a phytomedicine in South East Asia for the treatment of trauma, diahorrea and skin infections. In the present study anti microbial activity of Garcinia mangostana extract powder was carried out. Antimicrobial activity was examined by determining the minimal inhibitory concentration (MIC using macrodilution broth technique. Garcinia mangostana extract powder at different concentrations were tested against Staphylococcus aureus, Staphylococcus albus, Micrococcus lutus.

  7. In vitro comparative study of Bougainvillea spectabilis “stand” leaves and Bougainvillea variegata leaves in terms of phytochemicals and antimicrobial activity

    Institute of Scientific and Technical Information of China (English)

    Sardar Atiq Fawad; Nauman Khalid; Waqas Asghar; Hafiz Ansar Rasul Suleria

    2012-01-01

    AIM:To study the qualitative analysis of phytochemicals and antibacterial activity of the ethanolic and methanolic extracts of Bougainvillea spectabilis and Bougainvillea variegata leaves.METHODS:Phytochemical constituents were determined qualitatively by the Harborne method,while antimicrobial activities were determined by measuring the zone of inhibition on Mueller Hinton Agar.RESULTS:The maximum inhibitory effects were obtained against the Gram positive microbe Staphylococcus aureus for the methanolic extracts of both B.spectabilis [(28.54 ± 0.18) mm]and B.variegata [(21.97 ± 0.06) mm].The Gram negative microbes Proteus vulgaris [(16.00 ± 0.15) mm]and Serratia marcescens [(16.00 ± 0.06) mm]gave maximum inhibitory effects for the ethanolic extracts of B.variegata,while Salmonella typhimurium [(17.26 ± 0.12) mm]gave a maximum zone of inhibition for the methanolic extract of B.spectabilis.No inhibitory effects were observed for the extracts of B.spectabilis or B.variegate against Enterococcus faecalis,Vibro cholera or Klebsiella pneumoniae.CONCLUSION:Both B.spectabilis and B.variegata possess significant antimicrobial activity that,following additional studies,could replace commercially known antibiotics.

  8. Synthesis, spectroscopic studies and electrochemistry of palladium (II) macrocyclic complexes derived from a new tetraazahalogen substituted ligands by template method and their antimicrobial and pesticidal activities

    Science.gov (United States)

    Masih, Iffat; Fahmi, Nighat

    2011-09-01

    A new series of Pd(II) macrocyclic complexes have been synthesized by template condensation of bis(benzil)4-chloro 1,2-phenylenediamine (ML 1) and bis(benzil)4-fluro 1,2-phenylenediamine (ML 2) respectively, with appropriate diamine i.e. 1,2-phenylenediamine, 4-chloro 1,2-phenylenediamine and 4-fluro 1,2-phenylenediamine in the presence of PdCl 2 to form complexes of the type [Pd(C 40H 26N 4ClF)]Cl 2, [Pd(C 40H 27N 4X)]Cl 2 and [Pd(C 40H 26N 4X 2)]Cl 2, where X = Cl, F. The complexes have been characterized with the help of elemental analysis, IR, 1H NMR, electronic spectra, conductance measurement, magnetic susceptibility, cyclic voltammetry and X-ray powder diffraction studies. On the basis of these studies a square planar geometry has been proposed around the metal ion. The newly synthesized ligands and their complexes have been screened for antimicrobial and pesticidal activities. The results obtained from bioassays indicate that this class of compounds can be utilized for the design of new substance with pesticidal activity and promising antimicrobial activity.

  9. Anti-Inflammatory and Antimicrobial activity of Flacourtia Ramontchi Leaves

    Directory of Open Access Journals (Sweden)

    Sulbha Lalsare

    2011-06-01

    Full Text Available The literature survey revealed that a very merge amount of pharmacological work has been carried out on Flacourtia ramontchi. Also it was observed from the Ayurvedic literature and Ethnobotanical studies that the plant is very useful in treating inflammation and infectious diseases but no scientific investigation has been done in such direction. Very merge work has been done regarding phytochemical and pharmacological effectiveness on this plant. Successive extraction of the leaves with solvents of increasing polarity; preliminary phytochemical studies of different extracts; screening of chloroform, methanol and hydromethanolic extracts for anti-inflammatory (by Carrageenan induced rat paw model and antimicrobial activity (by Cup and plate method and thin layer chromatographic studies of active extracts using mobile phase i.e. chloroform and methanol. The results clearly indicate that all three extracts i.e. chloroform, methanol and hydromethanolic, of the leaves having anti-inflammatory activity. But the chloroform and methano extract showed promising results and even chloroform extract at the dose 150mg/kg exhibits equipotent anti-inflammatory activity as that of the standard Indomethacin. Methanol extract possess broad-spectrum antimicrobial activity at concentration 10000 mg/ml whereas hydromethanolic and chloroform extracts having more or less antimicrobial activity.

  10. Antimicrobial, antioxidant, and antimutagenic activities of Gladiolus illyricus.

    Directory of Open Access Journals (Sweden)

    Burcu Basgedik

    2014-08-01

    Full Text Available Context: In the present study, the ethanolic extracts of the aerial parts and the rhizomes of G. illyricus were obtained. Aims: To determine the antimicrobial, antioxidant, and antimutagenic properties of G. illyricus extracts. Methods: The antimicrobial activity was studied with the disc diffusion method and the antioxidant capacity by inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH radical and the total antioxidant activity. The antimutagenic activity was investigated by Ames Salmonella/microsome mutagenic test. The bacterial mutant strains Salmonella typhimurium TA98 and TA100 were used to determine antigenotoxic potentials of the extracts. Results: The ethanolic extracts of the aerial parts and the rhizomes showed moderate antimicrobial activity only on Bacillus subtilis. The IC50 value for DPPH radical of the aerial parts and rhizomes were 57.1 ± 1.3 and 48.1 ± 1.1 mg/mL, respectively. The total antioxidant activities of the aerial parts and the rhizomes of G. illyricus at 3.15 mg/mL concentration were 92.3 ± 1.4% and 91.5 ± 2.1%, respectively. These extracts showed antimutagenic effects at 0.5 and 5 mg/plate concentrations. Conclusions: To our knowledge, this is the first study on antimicrobial, antioxidant, and antimutagenic activity of the ethanolic extracts of the aerial parts and the rhizomes from G. illyricus. Our results indicate that the used of these extracts would exert several beneficial effects by virtue of their antioxidant and antimutagenic activities. These activities could be an important topic in the medical and cosmetic fields.

  11. Antimicrobial activity of Iranian propolis and its chemical composition

    Directory of Open Access Journals (Sweden)

    Yaghoubi M.J.

    2007-04-01

    Full Text Available The objective of this study was to investigate the antimicrobial activity of ethanol extract of Iranian propolis on some microorganisms using disc diffusion method. The chemical composition of the propolis was also investigated using thin layer chromatography and spectrophotometric methods. Ethanol extract of propolis showed activity only against Gram-positives and fungi, whereas no activity was observed against Gram-negatives. Thin layer chromatography screening revealed the presence of pinocembrine, caffeic acid, kaempferol, phenethyl caffeate, chrysin, and galangin in Iranian propolis. The total flavonoid and phenolic contents were 7.3% and 36%, respectively, which suggests that the strong antimicrobial activity of Iranian propolis may be due to high levels of phenolic and flavonoid compounds.

  12. Comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain and aloe vera (all in gel formulation), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis: An in vitro study

    OpenAIRE

    Anuj Bhardwaj; Suma Ballal; Natanasabapathy Velmurugan

    2012-01-01

    Aim: A comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain, and aloe vera (all in gel formulations), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis-an in vitro study. Materials and Methods: The antimicrobial efficacy was assessed in vitro using dentin shavings collected at 2 depths of 200 and 400 μm. The total colony forming units at the end of 1, 3, and 5 days were assessed. Results: The overall percentage ...

  13. ANTIMICROBIAL ACTIVITY AND PHOTOCHEMICAL SCREENING OF TINOSPORA CORDIFOLIA AND EUPHORBIA HIRTA

    OpenAIRE

    Amit Sandhu; Neha bhardwaj; Vikas Menon; Ruby Gupta

    2013-01-01

    The present study deals with the antimicrobial activity and phytochemical screening of the two medicinal plants, Tinospora cordifolia and Euphorbia hirta those are commonly available in India. Results of antimicrobial activity revealed that these medicinal plant extracts were very effective against Serratia marcescens, E. coli, Streptococcus thermophilus, Fusarium oxysporium, Aspergillus niger while these extracts showed very less inhibition against Trichoderma reesei. Phytochemical analysis ...

  14. Potentiating effect of ecofriendly synthesis of copper oxide nanoparticles using brown alga: antimicrobial and anticancer activities

    Indian Academy of Sciences (India)

    SRI VISHNU PRIYA RAMASWAMY; S NARENDHRAN; RAJESHWARI SIVARAJ

    2016-04-01

    This study reports the in vitro antimicrobial and anticancer activities of biologically synthesized copper nanoparticles. The antimicrobial activity of green synthesized copper oxide nanoparticles was assessed by well diffusion method. The anticancer activity of brown algae-mediated copper oxide nanoparticles was determined by MTT assay against the cell line (MCF-7). Maximum activity was observed with Pseudomonas aeruginosa and Aspergillus niger. Effective growth inhibition of cells was observed to be more than 93% in antibacterial activity. Thus, the results of the present study indicates that biologically synthesized copper nanoparticles can be used for several diseases, however, it necessitates clinical studies to ascertain their potential as antimicrobial and anticancer agents.

  15. Antimicrobial activity of chicken NK-lysin against Eimeria sporozoites.

    Science.gov (United States)

    Hong, Yeong H; Lillehoj, Hyun S; Siragusa, Gregory R; Bannerman, Douglas D; Lillehoj, Erik P

    2008-06-01

    NK-lysin is an antimicrobial and antitumor polypeptide that is considered to play an important role in innate immunity. Chicken NK-lysin is a member of the saposin-like protein family and exhibits potent antitumor cell activity. To evaluate the antimicrobial properties of chicken NK-lysin, we examined its ability to reduce the viability of various bacterial strains and two species of Eimeria parasites. Culture supernatants from COS7 cells transfected with a chicken NK-lysin cDNA and His-tagged purified NK-lysin from the transfected cells both showed high cytotoxic activity against Eimeria acervulina and Eimeria maxima sporozoites. In contrast, no bactericidal activity was observed. Further studies using synthetic peptides derived from NK-lysin may be useful for pharmaceutical and agricultural uses in the food animal industry.

  16. Antimicrobial and cytotoxic activities of Tripleurospermum parviflorum (Willd. Pobed

    Directory of Open Access Journals (Sweden)

    Tuğçe Fafal Erdoğ an

    2013-01-01

    Full Text Available The antimicrobial and cytotoxic activities of n-hexane, methanol, ethanol, ethylacetate and water extracts ofTripleurospermum parviflorum(Willd. Pobed. were evaluatedin this study. The antimicrobial activities of the extracts were reported againstEscherichia coli ATCC 29998,Escherichia coli ATCC 25922,Escherichia coli ATCC 11230,Staphylococcus aureus ATCC 6538P,Staphylococcus aureus ATCC 29213,Enterobacter cloacae ATCC 13047, Enterococcus faecalis ATCC 29212,Pseudomonas aeroginosa ATCC 27853 as bacteria and Candida albicansATCC 10239 as yeastlike fungi by disc diffusion method. Cytotoxicactivity of the extracts was tested in vitro against Brine shrimp. All of the extracts showed a range of activity against the tested bacteria and brine shrimp

  17. Synthesis and antimicrobial activity of some novel fused heterocyclic moieties

    Directory of Open Access Journals (Sweden)

    Nareshvarma Seelam

    2013-06-01

    Full Text Available Since the discovery of heterocyclic moieties the chemistry of 1,3,4-thiadiazole and their fused compounds continue to draw attention of organic chemists due to their various biological activities. Here a new class of 1, 3, 4-thiadiazoles which are incorporating with isoxazolo-thiazole moieties were synthesized by the reaction of chalcone derivatives of [ 1, 3, 4 ] thiadiazol-2-yl-thiazolidin-4-one with hydroxylamine hydrochloride. The chemical structures of these compounds were confirmed by IR, NMR ( 1H & 13C and mass spectral studies. The new synthesized compounds were evaluated for their antimicrobial activity. The final results revealed that some of the compounds were exhibited well antimicrobial activity compared to the standard drugs.

  18. Design and characterization of an acid-activated antimicrobial peptide.

    Science.gov (United States)

    Li, Lina; He, Jian; Eckert, Randal; Yarbrough, Daniel; Lux, Renate; Anderson, Maxwell; Shi, Wenyuan

    2010-01-01

    Dental caries is a microbial biofilm infection in which the metabolic activities of plaque bacteria result in a dramatic pH decrease and shift the demineralization/remineralization equilibrium on the tooth surface towards demineralization. In addition to causing a net loss in tooth minerals, creation of an acidic environment favors growth of acid-enduring and acid-generating species, which causes further reduction in the plaque pH. In this study, we developed a prototype antimicrobial peptide capable of achieving high activity exclusively at low environmental pH to target bacterial species like Streptococcus mutans that produce acid and thrive under the low pH conditions detrimental for tooth integrity. The features of clavanin A, a naturally occurring peptide rich in histidine and phenylalanine residues with pH-dependent antimicrobial activity, served as a design basis for these prototype 'acid-activated peptides' (AAPs). Employing the major cariogenic species S. mutans as a model system, the two AAPs characterized in this study exhibited a striking pH-dependent antimicrobial activity, which correlated well with the calculated charge distribution. This type of peptide represents a potential new way to combat dental caries. PMID:19878192

  19. Antimicrobial and Antioxidant Activities of Two Endemic Plants from Aksaray in Turkey

    OpenAIRE

    Ozusaglam, Meltem Asan; Darilmaz, Derya Onal; Erzengin, Mahmut; Teksen, Mehtap; Erkul, Seher Karaman

    2013-01-01

    This study was designed to examine the in vitro antimicrobial and antioxidant activities of the methanol, ethanol, water, n-hexane and dicholoromethane extracts of two Allium species (Allium scabriflorum and Allium tchihatschewii) which are endemic for the flora of Turkey. The antimicrobial efficiency of the plant was evaluated according to disc diffusion and microdilution broth methods. The antimicrobial test results showed that the extracts of A. scabriflorum and A. tchihatschewii showed va...

  20. Antimicrobial activity of propolis and essential oils and synergism between these natural products

    OpenAIRE

    IS Probst; JM Sforcin; VLM Rall; AAH Fernandes; A Fernandes Júnior

    2011-01-01

    In the present study, Apis mellifera propolis and essential oils (EOs) obtained from aromatic plants were evaluated as alternative antimicrobials. We aimed to establish the antimicrobial activity of ethanolic extracts of propolis (EEP) from Apis mellifera and of EOs from Caryophyllus aromaticus, Zingiber officinale, Cinnamomum zeylanicum and Mentha piperita against 32 Staphylococcus aureus and Escherichia coli strains from human clinical specimens. The antimicrobials were diluted in agar and ...

  1. The Antimicrobial Activity of Gramicidin A Is Associated with Hydroxyl Radical Formation

    OpenAIRE

    Liou, Je-Wen; Hung, Yu-Jiun; Yang, Chin-Hao; Chen, Yi-Cheng

    2015-01-01

    Gramicidin A is an antimicrobial peptide that destroys gram-positive bacteria. The bactericidal mechanism of antimicrobial peptides has been linked to membrane permeation and metabolism disruption as well as interruption of DNA and protein functions. However, the exact bacterial killing mechanism of gramicidin A is not clearly understood. In the present study, we examined the antimicrobial activity of gramicidin A on Staphylococcus aureus using biochemical and biophysical methods, including h...

  2. Evaluation of anti-microbial activity of spore powder of Ganoderma lucidum on clinical isolates of Prevotella intermedia: A pilot study

    Directory of Open Access Journals (Sweden)

    Ranganath N Nayak

    2015-01-01

    Full Text Available Aim: This study aimed at evaluating the anti-microbial activity of spore powder of Ganoderma lucidum on Prevotella intermedia isolated from subgingival plaque from chronic periodontitis patients. Settings and Design: Written informed consent was obtained from each subject enrolled in the study. The Institutional Ethics Committee granted the ethical clearance for the study. Materials and Methods: This study included 20 patients diagnosed with chronic periodontitis. Pooled subgingival plaque samples were collected using sterile curettes from the deepest sites of periodontal pockets. The collected samples were then transported in 1 mL of reduced transport fluid. The organisms were cultured and confirmed. These organisms were then used for minimum inhibitory concentration (MIC procedure. Statistical Analysis: Mean of the MIC value obtained was calculated. Results: Thirteen out of the 20 clinical samples were tested that showed sensitivity at various concentrations. Five samples showed sensitivity at all concentrations. Twelve samples showed sensitivity at 8 mcg/ml. Eleven samples showed sensitivity at 4 mcg/ml, 8 samples showed sensitivity at 2 mcg/ml, and 5 samples showed sensitivity even at 1 mcg/ml. Mean MIC value of G. lucidum spore powder for P. intermedia obtained was 3.62 mcg/ml. Conclusion: G. lucidum with its multipotential bioactivity could be used as an anti-microbial, in conjunction with conventional therapy in periodontal disease.

  3. Antimicrobial activity of essential oils against Paenibacillus larvae

    OpenAIRE

    Gende, L. B.; Pires, Sância; Fernandez, N.J.; Damiani, M; Churio, M.S.; Fritz, R.; Eguaras, M. J.

    2012-01-01

    American foulbrood is a serious bacterial disease that affects Apis mellifera colonies; the causative agent is Paenibacillus larvae [1 ]. The aim of the study was to evaluate in vitro the antimicrobial activity of 32 essential oils against P. larvae. Oils from 21 botanical species were analyzed by gas chromatography (CG and CG/EM). All essential oils were classified according to the composition of their main components in two groups: benzene ring compounds (BRC) and terpene com...

  4. Design and Characterization of an Acid-Activated Antimicrobial Peptide

    OpenAIRE

    Li, Lina; He, Jian; Eckert, Randal; Yarbrough, Daniel; Lux, Renate; Anderson, Maxwell; Shi, Wenyuan

    2009-01-01

    Dental caries is a microbial biofilm infection in which the metabolic activities of plaque bacteria result in a dramatic pH decrease and shift the demineralization/ remineralization equilibrium on the tooth surface towards demineralization. In addition to causing a net loss in tooth minerals creation of an acidic environment favors growth of acid enduring and acid generating species, which causes further reduction in the plaque pH. In this study we developed a prototype antimicrobial peptide ...

  5. ANTIMICROBIAL ACTIVITY OF NINE MEDICINAL PLANTS FROM VERACRUZ, MEXICO

    OpenAIRE

    Chena-Becerra, F; Palmeros-Sánchez, B; Fernández, M.S; Lozada-García, J.A

    2014-01-01

    The medicinal plants are an alternative source to the treatment of primary health care problems. An ethnobotanical study performed on Tlalchy, Ixhuacán de los Reyes, Veracruz, México, allowed the selection of nine plant species involved in infectious diseases treatments. Antimicrobial activities of ethanolic crude extracts were tested on fifteen bacterial and yeast clinical isolates. Every extract showed a level of inhibition against almost all the microorganisms assayed. According to the Cli...

  6. Screening of Australian plants for antimicrobial activity against Campylobacter jejuni.

    Science.gov (United States)

    Kurekci, Cemil; Bishop-Hurley, Sharon L; Vercoe, Philip E; Durmic, Zoey; Al Jassim, Rafat A M; McSweeney, Christopher S

    2012-02-01

    Campylobacter jejuni is the most common cause of acute enteritis in humans, with symptoms such as diarrhoea, fever and abdominal cramps. In this study, 115 extracts from 109 Australian plant species were investigated for their antimicrobial activities against two C. jejuni strains using an in vitro broth microdilution assay. Among the plants tested, 107 (93%) extracts showed activity at a concentration between 32 and 1024 µg/mL against at least one C. jejuni strain. Seventeen plant extracts were selected for further testing against another six C. jejuni strains, as well as Campylobacter coli, Escherichia coli, Salmonella typhimurium, Bacillus cereus, Proteus mirabilis and Enterococcus faecalis. The extract from Eucalyptus occidentalis demonstrated the highest antimicrobial activity, with an inhibitory concentration of 32 µg/mL against C. jejuni and B. cereus. This study has shown that extracts of selected Australian plants possess antimicrobial activity against C. jejuni and thus may have application in the control of this organism in live poultry and retail poultry products.

  7. Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36.

    Directory of Open Access Journals (Sweden)

    Yinfeng Lv

    Full Text Available Antimicrobial peptides (AMPs, which present in the non-specific immune system of organism, are amongst the most promising candidates for the development of novel antimicrobials. The modification of naturally occurring AMPs based on their residue composition and distribution is a simple and effective strategy for optimization of known AMPs. In this study, a series of truncated and residue-substituted derivatives of antimicrobial peptide PMAP-36 were designed and synthesized. The 24-residue truncated peptide, GI24, displayed antimicrobial activity comparable to the mother peptide PMAP-36 with MICs ranging from 1 to 4 µM, which is lower than the MICs of bee venom melittin. Although GI24 displayed high antimicrobial activity, its hemolytic activity was much lower than melittin, suggesting that GI24 have optimal cell selectivity. In addition, the crucial site of GI24 was identified through single site-mutation. An amino acid with high hydrophobicity at position 23 played an important role in guaranteeing the high antimicrobial activity of GI24. Then, lipid vesicles and whole bacteria were employed to investigate the membrane-active mechanisms. Membrane-simulating experiments showed that GI24 interacted strongly with negatively charged phospholipids and weakly with zwitterionic phospholipids, which corresponded well with the data of its biological activities. Membrane permeabilization and flow cytometry provide the evidence that GI24 killed microbial cells by permeabilizing the cell membrane and damaging membrane integrity. GI24 resulted in greater cell morphological changes and visible pores on cell membrane as determined using scanning electron microscopy (SEM and transmission electron microscope (TEM. Taken together, the peptide GI24 may provide a promising antimicrobial agent for therapeutic applications against the frequently-encountered bacteria.

  8. Antimicrobial activity of human salivary mucin-derived peptides

    NARCIS (Netherlands)

    Wei, G.

    2008-01-01

    We investigated: a) relationships between molecular properties and antimicrobial functions of MUC7 peptides, b) effects of host physiological factors on the antimicrobial activity of MUC7 peptides, c) enhancement of antifungal activity by combination of MUC7 peptides with EDTA or other agents, d) an

  9. Antimicrobial and Cytotoxic Activities of Extracts from Laurus nobilis Leaves

    KAUST Repository

    Felemban, Shaza

    2011-05-01

    The cytotoxic activity and antimicrobial properties of crude extracts from Laurus nobilis were investigated. With the use of the organic solvents, methanol and ethanol, crude extracts were obtained. To determine the availability of active bio‐compounds, an analysis using liquid chromatography was conducted. The crude extract was also tested for antimicrobial activity. The disc diffusion method was used against the bacterium Escherichia coli. The results showed a weak antimicrobial activity against E. coli. For cytotoxicity testing, the crude extract was studied on four cell-­lines: human breast adenocarcinoma, human embryonic kidney, HeLa (human cervical adenocarcinoma), and human lung fibroblast. From the alamarBlue® assay results, the extracts most potently affected the cell-­lines of human breast adenocarcinoma and human embryonic kidney. Using the lactate dehydrogenase (LDH) assay, an effect on human embryonic kidney was most prominent. With these findings, a suggestion that the crude extract of Laurus nobilis may have antiproliferative properties is put forth, with the possibility of this mechanism being induction of apoptosis with the involvement of Nuclear Factor Kappa κB (NF κB).

  10. Comparative evaluation of antimicrobial activity of hydroalcoholic extract of Aloe vera, garlic, and 5% sodium hypochlorite as root canal irrigants against Enterococcus faecalis: An in vitro study

    Directory of Open Access Journals (Sweden)

    Swati Ramesh Karkare

    2015-01-01

    Full Text Available Introduction: Enterococcus faecalis are the most resistant and predominant microorganisms recovered from root canals of teeth where previous treatment has failed. Over the past decade, interest in drugs derived from medicinal plants has markedly increased. In dentistry, phytomedicines has been used as an anti-inflammatory, antibiotic, analgesic, sedative, and also as an endodontic irrigant. In endodontics, because of the cytotoxic reactions of most of the commercial intracanal medicaments and their inability to eliminate bacteria completely from dentinal tubules, the trend is shifting toward use of biologic medication extracted from natural plants. Aim: To compare the antimicrobial efficacy of newer irrigating agents which would probably be as effective or more and at the same time less irritating to the tissues than sodium hypochlorite (NaOCl. The objective of this study was to compare the antimicrobial activity of saturated and diluted (1:1 hydroalcoholic extract of Aloe vera, garlic, and 5% NaOCl against E. faecalis using the commonly used agar diffusion method. Results: Saturated hydroalcoholic extract of A. vera showed the highest zone of inhibition against E. faecalis. NaOCl, which is considered as gold standard, also showed higher zones of inhibition.

  11. Screening antimicrobial activity of various extracts of Urtica dioica.

    Science.gov (United States)

    Modarresi-Chahardehi, Amir; Ibrahim, Darah; Fariza-Sulaiman, Shaida; Mousavi, Leila

    2012-12-01

    Urtica dioica or stinging nettle is traditionally used as an herbal medicine in Western Asia. The current study represents the investigation of antimicrobial activity of U. dioica from nine crude extracts that were prepared using different organic solvents, obtained from two extraction methods: the Soxhlet extractor (Method I), which included the use of four solvents with ethyl acetate and hexane, or the sequential partitions (Method II) with a five solvent system (butanol). The antibacterial and antifungal activities of crude extracts were tested against 28 bacteria, three yeast strains and seven fungal isolates by the disc diffusion and broth dilution methods. Amoxicillin was used as positive control for bacteria strains, vancomycin for Streptococcus sp., miconazole nitrate (30 microg/mL) as positive control for fungi and yeast, and pure methanol (v/v) as negative control. The disc diffusion assay was used to determine the sensitivity of the samples, whilst the broth dilution method was used for the determination of the minimal inhibition concentration (MIC). The ethyl acetate and hexane extract from extraction method I (EA I and HE I) exhibited highest inhibition against some pathogenic bacteria such as Bacillus cereus, MRSA and Vibrio parahaemolyticus. A selection of extracts that showed some activity was further tested for the MIC and minimal bactericidal concentrations (MBC). MIC values of Bacillus subtilis and Methicillin-resistant Staphylococcus aureus (MRSA) using butanol extract of extraction method II (BE II) were 8.33 and 16.33mg/mL, respectively; while the MIC value using ethyl acetate extract of extraction method II (EAE II) for Vibrio parahaemolyticus was 0.13mg/mL. Our study showed that 47.06% of extracts inhibited Gram-negative (8 out of 17), and 63.63% of extracts also inhibited Gram-positive bacteria (7 out of 11); besides, statistically the frequency of antimicrobial activity was 13.45% (35 out of 342) which in this among 21.71% belongs to

  12. The Molecular Basis for Antimicrobial Activity of Pore-Forming Cyclic Peptides

    NARCIS (Netherlands)

    Cirac, Anna D.; Moiset, Gemma; Mika, Jacek T.; Kocer, Armagan; Salvador, Pedro; Poolman, Bert; Marrink, Siewert J.; Sengupta, Durba

    2011-01-01

    The mechanism of action of antimicrobial peptides is, to our knowledge, still poorly understood. To probe the biophysical characteristics that confer activity, we present here a molecular-dynamics and biophysical study of a cyclic antimicrobial peptide and its inactive linear analog. In the simulati

  13. Synthesis, antimicrobial evaluation and QSAR studies of 3-ethoxy-4-hydroxybenzylidene/4-nitrobenzylidene hydrazides

    Institute of Scientific and Technical Information of China (English)

    Davinder Kumar; Archana Kapoor; Ananda Thangadurai; Pradeep Kumar; Balasubramanian Narasimhan

    2011-01-01

    A series of 3-ethoxy-4-hydroxybenzylidene/4-nitrobenzylidene hydrazides (1-20) was synthesized and tested for in vitro antimicrobial activity. The results of antimicrobial studies indicated that the compounds having dinitro, methoxy, hydroxy and nitro substituents on phenyl ring of the aromatic acids were most active ones. The QSAR investigation indicated the importance of the topological parameter, third order molecular connectivity index (3x) in describing the antimicrobial activity of synthesized hydrazides.

  14. Design of host defence peptides for antimicrobial and immunity enhancing activities.

    Science.gov (United States)

    McPhee, Joseph B; Scott, Monisha G; Hancock, Robert E W

    2005-05-01

    Host defense peptides are a vital component of the innate immune systems of humans, other mammals, amphibians, and arthropods. The related cationic antimicrobial peptides are also produced by many species of bacteria and function as part of the antimicrobial arsenal to help the producing organism reduce competition for resources from sensitive species. The antimicrobial activities of many of these peptides have been extensively characterized and the structural requirements for these activities are also becoming increasingly clear. In addition to their known antimicrobial role, many host defense peptides are also involved in a plethora of immune functions in the host. In this review, we examine the role of structure in determining antimicrobial activity of certain prototypical cationic peptides and ways that bacteria have evolved to usurp these activities. We also review recent literature on what structural components are related to these immunomodulatory effects. It must be stressed however that these studies, and the area of peptide research, are still in their infancy.

  15. Studies on the syntheses, structural characterization, antimicrobial-, and DPPH radical scavenging activity of the cocrystals caffeine:cinnamic acid and caffeine:eosin dihydrate

    Science.gov (United States)

    Suresh Kumar, G. S.; Seethalakshmi, P. G.; Bhuvanesh, N.; Kumaresan, S.

    2013-10-01

    Two organic cocrystals namely, caffeine:cinnamic acid [(caf)(ca)] (1) and caffeine:eosin dihydrate [(caf)(eos)]·2H2O (2) were synthesized and studied by FT-IR, TGA/DTA, and single crystal XRD. The crystal system of cocrystal 1 is triclinic with space group P-1 and Z = 2 and that of cocrystal 2 is monoclinic with space group P21/C and Z = 4. An imidazole-carboxylic acid synthon is observed in the cocrystal 1. The intermolecular hydrogen bond, O-H⋯N and π-π interactions play a major role in stabilizing 1 whereas the intermolecular hydrogen bonds, O-H⋯O, O-H⋯N, and intramolecular hydrogen bond, O-H⋯Br; along with π-π interactions together play a vital role in stabilizing the structure of 2. The antimicrobial- and DPPH radical scavenging activities of both the cocrystals were studied.

  16. 竹醋液抑菌活性及其稳定性研究%Study on antimicrobial activities and stability of bamboo vinegar

    Institute of Scientific and Technical Information of China (English)

    邬国胜; 李敏; 应国清

    2011-01-01

    本实验主要对竹醋液的抑菌作用进行研究,结果表明:竹醋液具有较强的抑菌活性,其对大肠杆菌、金黄色葡萄球菌、绿脓杆菌的最小抑菌质量浓度为7.813μg/mL,对酿酒酵母、白色念珠菌和黑曲霉的最小抑菌质量浓度为62.5 μg/mL.同时,以除酿酒酵母的上述菌种为指示菌,研究竹醋液抑菌成分的稳定性,结果表明:竹醋液在酸性条件下具有较好的抑菌活性,经碱处理后抑菌活性显著降低.温度对其抑菌稳定性并无影响,紫外照射后使其抑菌活性有微弱下降.%Antimicrobial activities of bamboo vinegar were tested in this study. The results showed that bamboo vinegar has strong antibacterial activities. The minimal inhibitory concentration of bamboo vinegar to Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa were 7. 813 μg/mL, while to Saccharomyces cerevisiae, Canidia albicans and Aspergillus niger were 62. 5 μg/mL. Bamboo vinegar was also investigated concerning its stability under the influence of different factors such as acid, alkali, temperature and ultraviolet.The results showed that the bamboo vinegar was very stable to temperature. After treatment with alkaline the bamboo vinegar has almost no antibacterial activity. The UV radiation showed little effect on the antimicrobial activity of bamboo vinegar.

  17. Chemical Composition and Antimicrobial Activity of Thymus praecox Opiz ssp. polytrichus Essential Oil from Serbia

    Directory of Open Access Journals (Sweden)

    Nada V. Petrović

    2016-03-01

    Full Text Available Chemical composition and antimicrobial activity of the essential oil of wild growing Thymus praecox Opiz ssp. polytrichus were studied. trans-Nerolidol (19.79%, germacrene D (18.48% and thymol (9.62% were the main components in essential oil. This study is the first report of the antimicrobial activity of essential oil obtained from the T. praecox Opiz ssp. polytrichus. Antimicrobial activity of essential oil was investigated on Bacillus cereus, Micrococcus flavus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa, Enterobacter cloacae, Salmonella typhimurium, Aspergillus fumigatus, A. versicolor, A. ochraceus, A. niger, Trichoderma viride, Penicillium funiculosum, P. ochrochloron, and P. verrucosum var. cyclopium strains. In the antimicrobial assays, essential oil showed high antimicrobial potential (MIC 19–150 m g/mL, MBC 39–300 m g/mL for bacteria; and MIC 19.5–39 m g/mL, MFC 39–78 m g/mL for fungi.

  18. ANTIMICROBIAL ACTIVITY OF ALOE VERA LEAF EXTRACT

    Directory of Open Access Journals (Sweden)

    Kedarnath

    2013-12-01

    Full Text Available The antimicrobial activity of aloe vera extract was tested against pathogenic bacteria like Staphylococcus aureus, Klebisella pneumonia and E.coli and fungi like Aspergillus niger and Candida at a dose of 1:20 mg/ml and 2:40 mg/ml by using cup plate diffusion method. Various solvents such as petroleum ether, chloroform and methanol were used for extracts. The results reveal that, methanol and petroleum ether at a dose of 20 mg/ml has showed significant activity against Klebisella pneumonia and E.coli whereas in fungi, methanol extract showed significant activity against Aspergillus niger and Candida. Methanol extract has showed maximum inhibitory activity against E.coli and Candida. Petroleum ether has showed moderate inhibitory activity against Klebisella pneumonia and Candida. The zone of inhibition was measured and compared with standard Gentamycin (1 mg/ml. However, in none of the above mentioned extracts the inhibition zone was not more than that found in standard i.e., Gentamycin.

  19. Surface-engineered core-shell nano-size ferrites and their antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Baraliya, Jagdish D., E-mail: jdbaraliya@yahoo.co.in; Joshi, Hiren H., E-mail: jdbaraliya@yahoo.co.in [Department of Physics, Saurashtra University, Rajkot - 360 005, Gujarat (India)

    2014-04-24

    We report the results of biological study on core-shell structured MFe{sub 2}O{sub 4} (where M = Co, Mn, Ni) nanoparticles and influence of silica- DEG dual coating on their antimicrobial activity. Spherical MFe{sub 2}O{sub 4} nanoparticles were prepared via a Co-precipitation method. The microstructures and morphologies of these nanoparticles were studied by x-ray diffraction and FTIR. The antimicrobial activity study carried out in nutrient agar medium with addition of antimicrobial synthesis compound which is tested for its activity against different types of bacteria.

  20. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides.

    Science.gov (United States)

    Malanovic, Nermina; Lohner, Karl

    2016-05-01

    A number of cationic antimicrobial peptides, effectors of innate immunity, are supposed to act at the cytoplasmic membrane leading to permeabilization and eventually membrane disruption. Thereby, interaction of antimicrobial peptides with anionic membrane phospholipids is considered to be a key factor in killing of bacteria. Recently, evidence was provided that killing takes place only when bacterial cell membranes are completely saturated with peptides. This adds to an ongoing debate, which role cell wall components such as peptidoglycan, lipoteichoic acid and lipopolysaccharide may play in the killing event, i.e. if they rather entrap or facilitate antimicrobial peptides access to the cytoplasmic membrane. Therefore, in this review we focused on the impact of Gram-positive cell wall components for the mode of action and activity of antimicrobial peptides as well as in innate immunity. This led us to conclude that interaction of antimicrobial peptides with peptidoglycan may not contribute to a reduction of their antimicrobial activity, whereas interaction with anionic lipoteichoic acids may reduce the local concentration of antimicrobial peptides on the cytoplasmic membrane necessary for sufficient destabilization of the membranes and bacterial killing. Further affinity studies of antimicrobial peptides toward the different cell wall as well as membrane components will be needed to address this problem on a quantitative level. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.

  1. Aedesin: structure and antimicrobial activity against multidrug resistant bacterial strains.

    Directory of Open Access Journals (Sweden)

    Sylvain Godreuil

    Full Text Available Multidrug resistance, which is acquired by both Gram-positive and Gram-negative bacteria, causes infections that are associated with significant morbidity and mortality in many clinical settings around the world. Because of the rapidly increasing incidence of pathogens that have become resistant to all or nearly all available antibiotics, there is a need for a new generation of antimicrobials with a broad therapeutic range for specific applications against infections. Aedesin is a cecropin-like anti-microbial peptide that was recently isolated from dengue virus-infected salivary glands of the Aedes aegypti mosquito. In the present study, we have refined the analysis of its structural characteristics and have determined its antimicrobial effects against a large panel of multidrug resistant bacterial strains, directly isolated from infected patients. Based the results from nuclear magnetic resonance spectroscopy analysis, Aedesin has a helix-bend-helix structure typical for a member of the family of α-helix anti-microbial peptides. Aedesin efficiently killed Gram-negative bacterial strains that display the most worrisome resistance mechanisms encountered in the clinic, including resistance to carbapenems, aminoglycosides, cephalosporins, 4th generation fluoroquinolones, folate inhibitors and monobactams. In contrast, Gram-positive strains were insensitive to the lytic effects of the peptide. The anti-bacterial activity of Aedesin was found to be salt-resistant, indicating that it is active under physiological conditions encountered in body fluids characterized by ionic salt concentrations. In conclusion, because of its strong lytic activity against multidrug resistant Gram-negative bacterial strains displaying all types of clinically relevant resistance mechanisms known today, Aedesin might be an interesting candidate for the development of alternative treatment for infections caused by these types of bacteria.

  2. Study on gamma-irradiation degradation of chitosan swollen in H2O2 solution and its antimicrobial activity for E. coli

    International Nuclear Information System (INIS)

    Degradation of chitosan in swollen state with hydrogen peroxide solution (5% w/v) by γ-irradiation was investigated. Molecular weight (Mw) of irradiated chitosan was determined by gel permeation chromatography (GPC). Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-vis) spectra were analyzed to study the structure changes of degraded chitosan. The results showed that the chitosan of low Mw (30-45 kDa) was efficiently prepared by γ-irradiation of chitosan swollen in hydrogen peroxide solution at low dose less than 20 kGy. The main structure as well as the degree of deacetylation of the degraded chitosan was almost no significant change. Furthermore, the radiation degradation yield (Gs) was remarkably enhanced by the presence of H2O2. The obtained low Mw chitosan revealed high antimicrobial activity for E. coli that can be used for food preservation and other purposes as well. (author)

  3. Study on the antimicrobial activity of Ethanol Extract of Propolisagainst enterotoxigenic Methicillin-Resistant Staphylococcus aureus in lab prepared Ice-cream

    Directory of Open Access Journals (Sweden)

    T A El-Bassiony

    2012-06-01

    Full Text Available The objective of this study was to investigate the antimicrobial activity of ethanol extract of propolis against enterotoxigenic strain of MRSA which inoculated into lab prepared ice cream. EEP was added to ice cream in 3 concentrations (150, 300 and 600 mg/L. The prepared ice cream was divided into 2 groups, one stored at freezer temp. at (-5˚C, while the other was kept in deep freezer temp. at (-20˚C. MRSA could not be counted from the 4th, 2nd and 1st week of storage at freezer temp, while at deep freezer temp. MRSA could not be enumerated from the 3rd, 1st week and 3rd day of storage in portions contained 150, 300 and 600mg/L EEP, respectively. [Vet. World 2012; 5(3.000: 155-159

  4. Structure-activity relationships of the antimicrobial peptide arasin 1 - and mode of action studies of the N-terminal, proline-rich region.

    Directory of Open Access Journals (Sweden)

    Victoria S Paulsen

    Full Text Available Arasin 1 is a 37 amino acid long proline-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. In this work the active region of arasin 1 was identified through structure-activity studies using different peptide fragments derived from the arasin 1 sequence. The pharmacophore was found to be located in the proline/arginine-rich NH(2 terminus of the peptide and the fragment arasin 1(1-23 was almost equally active to the full length peptide. Arasin 1 and its active fragment arasin 1(1-23 were shown to be non-toxic to human red blood cells and arasin 1(1-23 was able to bind chitin, a component of fungal cell walls and the crustacean shell. The mode of action of the fully active N-terminal arasin 1(1-23 was explored through killing kinetic and membrane permeabilization studies. At the minimal inhibitory concentration (MIC, arasin 1(1-23 was not bactericidal and had no membrane disruptive effect. In contrast, at concentrations of 5×MIC and above it was bactericidal and interfered with membrane integrity. We conclude that arasin 1(1-23 has a different mode of action than lytic peptides, like cecropin P1. Thus, we suggest a dual mode of action for arasin 1(1-23 involving membrane disruption at peptide concentrations above MIC, and an alternative mechanism of action, possibly involving intracellular targets, at MIC.

  5. Spectroscopic study, antimicrobial activity and crystal structures of N-(2-hydroxy-5-nitrobenzalidene)4-aminomorpholine and N-(2-hydroxy-1-naphthylidene)4-aminomorpholine

    Science.gov (United States)

    Yıldız, Mustafa; Ünver, Hüseyin; Dülger, Başaran; Erdener, Diğdem; Ocak, Nazan; Erdönmez, Ahmet; Durlu, Tahsin Nuri

    2005-03-01

    Schiff bases N-(2-hydroxy-3-nitrobenzalidene)4-aminomorpholine ( 1) and N-(2-hydroxy-1-naphthylidene)4-aminomorpholine ( 2) were synthesized from the reaction of 4-aminomorpholine with 2-hydroxy-5-nitrobenzaldehyde and 2-hydroxy-1-naphthaldehyde. Compounds 1 and 2 were characterized by elemental analysis, IR, 1H NMR, 13C NMR and UV-Visible techniques. The UV-Visible spectra of the Schiff bases with OH group in ortho position to the imino group were studied in polar and nonpolar solvents in acidic and basic media. The structures of compounds 1 and 2 have been examined cyrstallographically, for two compounds exist as dominant form of enol-imines in both the solutions and solid state. The title compounds 1 and 2 crystallize in the monoclinic space group P2 1/ c and P2 1/ n with unit cell parameters: a=8.410(1) and 11.911(3), b=6.350(9) and 4.860(9), c=21.728(3) and 22.381(6) Å, β=90.190(1) and 95.6(2)°, V=1160.6(3) and 1289.5(5) Å 3, Dx=1.438 and 1.320 g cm -3, respectively. The crystal structures were solved by direct methods and refined by full-matrix least squares. The antimicrobial activities of compounds 1 and 2 have also been studied. The antimicrobial activities of the ligands have been screened in vitro against the organisms Escherichia coli ATCC 11230, Staphylococcus aureus ATCC 6538, Klebsiella pneumoniae UC57, Micrococcus luteus La 2971, Proteus vulgaris ATCC 8427, Pseudomonas aeruginosa ATCC 27853, Mycobacterium smegmatis CCM 2067, Bacillus cereus ATCC 7064, Listeria monocytogenes ATCC 15313, Candida albicans ATCC 10231, Kluyveromyces fragilis NRRL 2415, Rhodotorula rubra DSM 70403, Debaryomyces hansenii DSM 70238 and Hanseniaspora guilliermondii DSM 3432.

  6. Synthesis, structural characterization, in vitro antimicrobial and anticancer activity studies of ternary metal complexes containing glycine amino acid and the anti-inflammatory drug lornoxicam

    Science.gov (United States)

    Mahmoud, Walaa H.; Mohamed, Gehad G.; El-Dessouky, Maher M. I.

    2015-02-01

    Mixed ligand complexes were synthesized using lornoxicam (LOR) as the primary ligand and glycine amino acid (HGly) as the secondary ligand. They were characterized by FT-IR, UV-Vis, mass, 1H NMR, ESR spectral studies, TG-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesized complexes, general formulae of [M(LOR)2(Gly)]·Xn·yH2O where M = Cr(III) (X = Cl, n = 2, y = 3), Mn(II) (X = Cl, n = 1, y = 1), Co(II) (X = BF4, n = 1, y = 0), Ni(II) (X = Cl, n = 1, y = 0), Cu(II) (X = BF4, n = 1, y = 2) and Zn(II) (X = BF4, n = 1, y = 2) and (M = Fe(II) (X = BF4, n = 1, y = 1) and Fe(III) (X = Cl, n = 2, y = 1) with an octahedral structure were proposed. Thermal analyses show that the complexes lose water molecules of hydration initially and subsequently expel anionic parts and organic ligands in continuous steps. The kinetic parameters namely E, ΔH∗, ΔS∗ and ΔG∗ illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficiency of the LOR and HGly ligands and the ternary complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to possess efficient antimicrobial properties compared to lornoxicam and most of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. Also, the two ligands, in comparison to ternary metal complexes are screened for their anticancer activity against breastic cancer cell line. The results showed that the metal complexes be more active than the parent LOR and glycine free ligands except Cr(III) ternary complex which was found to be inactive.

  7. Synthesis, Characterization, and Antimicrobial Activity of Copper Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maqusood Ahamed

    2014-01-01

    Full Text Available We studied the structural and antimicrobial properties of copper oxide nanoparticles (CuO NPs synthesized by a very simple precipitation technique. Copper (II acetate was used as a precursor and sodium hydroxide as a reducing agent. X-ray diffraction patter (XRD pattern showed the crystalline nature of CuO NPs. Field emission scanning electron microscope (FESEM and field emission transmission electron microscope (FETEM demonstrated the morphology of CuO NPs. The average diameter of CuO NPs calculated by TEM and XRD was around 23 nm. Energy dispersive X-ray spectroscopy (EDS spectrum and XRD pattern suggested that prepared CuO NPs were highly pure. CuO NPs showed excellent antimicrobial activity against various bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterococcus faecalis, Shigella flexneri, Salmonella typhimurium, Proteus vulgaris, and Staphylococcus aureus. Moreover, E. coli and E. faecalis exhibited the highest sensitivity to CuO NPs while K. pneumonia was the least sensitive. Possible mechanisms of antimicrobial activity of CuO NPs should be further investigated.

  8. ANTIMICROBIAL ACTIVITY OF CLEMATIS BRACHIATA THUNB LEAF EXTRACTS

    Directory of Open Access Journals (Sweden)

    M. Mostafa* and A.J. Afolayan

    2013-01-01

    Full Text Available The antimicrobial activity as well as phytochemical screening of the hexane, acetone, methanol and water extracts of Clematis brachiata Thunb (Ranunculaceae leaves was investigated. The agar dilution assay method was used for the evaluation of the antimicrobial activity of extracts against 10 bacteria and four fungal species. The phytochemical screenings were performed by using the standard procedures. The acetone and methanol extracts were active against the 10 bacteria strains with MIC ranging between 1.0 and 3.0 mg/ml, whereas the water extract was only active against two Gram-negative bacterial strains at 10.0 mg/ml. There was no activity from the hexane extract. While there was complete growth inhibition by the acetone and methanol extracts against all the fungal species at 10 mg/ml, the hexane extract was active against all the fungal species except Candida albicans at 10 mg/ml. In contrast, the water extract did not show any activity against the fungal species. Phytochemical screening revealed the presence of phenols, tannin, saponin, flavonoids, terpenoids and glycosidic compounds and could be responsible for the above activities of the extracts. The results of this study support the traditional uses of this plant as antibiotics.

  9. Testing methods for antimicrobial activity of TiO2 photocatalyst

    Directory of Open Access Journals (Sweden)

    Markov Siniša L.

    2014-01-01

    Full Text Available In recent years, a lot of commercial TiO2 photocatalyst products have been developed and extensively studied for prospective and safe antimicrobial application in daily life, medicine, laboratories, food and pharmaceutical industry, waste water treatments and in development of new self-cleaning and antimicrobial materials, surfaces and paints. This paper reviews the studies published worldwide on killing microorganisms, methods for testing the antimicrobial activity, light sources and intensities, as well as calculation methods usually used when evaluating the antimicrobial properties of the TiO2-based products. Additionally, some strengths and weaknesses of the available methods for testing the antimicrobial activity of TiO2 photocatalyst products have been pointed out.[Projekat Ministarstva nauke Republike Srbije, br. III45008

  10. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    Science.gov (United States)

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  11. ANTIMICROBIAL ACTIVITY OF DIFFERENT THIOSEMICARBAZONE COMPOUNDS AGAINST MICROBIAL PATHOGENS

    Directory of Open Access Journals (Sweden)

    Negi Parul

    2012-05-01

    Full Text Available Thiosemicarbazone belongs to a large group of thiourea derivatives, whose biological activities are a function of parent aldehyde or ketone moiety. They have been evaluated over the last 50 year as antiviral, antibacterial, antifungal, antimalarial, anticancer, leprosy, rheumatism, trypanosomiasis and coccidiodis. Thiosemicarbazones were prepared by simple process in which N4-thiosemicarbazone moiety was replaced by aliphatic, arylic and cyclic amines. Present study reported the anti-microbial activity of different thiosemicarbazone compounds against certain bacterial and fungal pathogens viz. Bacillus cereus, Staphylococcus epidermis, Moraxella cattarhalis, Staph. Saprophyticus, Candida albicans and Aspergillus flavans.

  12. STANDARDIZATION AND ANTIMICROBIAL ACTIVITY OF FICUS RELIGIOSA LINN. (FAMILY: MORACEAE

    Directory of Open Access Journals (Sweden)

    Jagtap Supriya

    2013-07-01

    Full Text Available Ficus religiosa Linn. (Moraceae has been traditionally claimed to be useful in asthmatic conditions, antidiarrhoeal, antiviral and astringent. It also shows antivenom activity. It is used in the treatment of various diseases such as cancer, inflammation or infectious diseases. In the present study, it includes standardization parameters which are carried out on leaves where successive soxhlet extraction of dried powdered leaves was carried out using petroleum ether, chloroform, methanol and water. All these extracts were subjected for in-vitro antimicrobial activity against the strains Escherichia coli and Staphylococcus aureus by cup plate method.

  13. A STUDY OF CARDIOVASCULAR AND ANTIMICROBIAL EFFECTS OF TINOSPORA CORDIFOLIA

    Directory of Open Access Journals (Sweden)

    Jorige Archana et al

    2012-09-01

    Full Text Available Tinospora cordifolia is known for a wide range of medicinal properties. In this study, cardiovascular and antimicrobial properties of aqueous and ethanolic extracts of Tinospora cordifolia were evaluated. Dose dependent negative ionotropic and chronotropic effects were observed with both aqueous and ethanolic extracts. The effects were antagonized by atropine indicating involvement of muscarinic receptors. Maximum antimicrobial activity was found with ethanolic extract of Tinospora cordifolia (15mm against Pseudomonas aeruginosa. The organism showed resistance to aqueous extract giving an inhibition zone of 0.3mm. The data suggest that Tinospora cordifolia could be of benefit in arrhythmias and microbial infections.

  14. ANTIMICROBIAL ACTIVITIES OF 1,3,4-OXADIAZOLE : A REVIEW

    Directory of Open Access Journals (Sweden)

    Bachwani Mukesh

    2011-06-01

    Full Text Available 1, 3, 4-Oxadiazole is a highly privileged structure the derivatives of which exhibit a wide range of biological activities including antibacterial, antitubercular, vasodialatory, antifungal, cytotoxic, anti-inflammatory and analgesic, hypolipidemic, anticancer and ulcerogenic activities. Resistance to number of antimicrobial agents among a variety of clinically significant species of bacteria is becoming increasingly important global problem. The search for new antimicrobial agents will consequently always remain as an important and challenging task for medicinal chemists. This Review has basic information about 1,3,4-oxadiazole and its antimicrobial activity work for further development in this field.

  15. Isolation and Antimicrobial and Antioxidant Evaluation of Bio-Active Compounds from Eriobotrya Japonica Stems

    OpenAIRE

    Khaled Nabih Rashed; Monica Butnariu

    2013-01-01

    Purpose: The present study was carried out to evaluate antimicrobial and antioxidant activities from Eriobotrya japonica stems as well investigation of its chemical composition. Methods: Methanol 80% extract of Eriobotrya japonica stems was tested for antimicrobial activity against bacterial and fungal strains and for antioxidant activity using oxygen radical absorbance capacity (ORAC) and the trolox equivalent antioxidant capacity (TEAC) assays and also total content of polyphenols with p...

  16. Evaluation of the Antioxidant and Antimicrobial Activities of Clary Sage (Salvia sclarea L.)

    OpenAIRE

    GÜLÇİN, İlhami

    2004-01-01

    The present work evaluates the antioxidant and antimicrobial activity of clary sage (CS) Salvia sclarea L. Antimicrobial, total antioxidant, DPPH radical scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging and metal chelating activities, reducing power, and total contents of phenolic compounds of dried herb samples extracted with chloroform and acetone were studied. The chloroform extract had stronger total antioxidant activity than the acetone extract and exhibited ...

  17. In vitro evaluation on antioxidant and antimicrobial activity of spice extracts of ginger, turmeric and garlic

    Directory of Open Access Journals (Sweden)

    Virendra V. Panpatil

    2013-09-01

    Full Text Available Spices like turmeric, ginger, alliums are indispensable for the preparation of our daily food and are reported to possess compounds, which have varied beneficial biological effects and also prevent the microbial spoilage of food. This study evaluates the antioxidant and antimicrobial activity of spice extracts such as ginger, turmeric and garlic by 2, 2’-Diphenyl-1-picrylhydrazyl (DPPH Radical Scavenging Method and also to evaluate their antimicrobial effects by Slant method. The antioxidant activities when compared among ginger, turmeric and garlic the potency of these spices was found to be in the order of Vit C > Ginger > Turmeric ≥ Dry garlic > Fresh garlic. The antimicrobial activity of these spices was found to be in the order of Turmeric > Ginger > Garlic. The study indicates that the spices like ginger, garlic and turmeric have antimicrobial and antioxidant activity. Further studies are needed to study the biological effects of antioxidant-rich herbs and spices on oxidative stress related diseases.

  18. ANTIMICROBIAL ACTIVITY OF CLEMATIS BRACHIATA THUNB LEAF EXTRACTS

    OpenAIRE

    M. Mostafa* and A.J. Afolayan

    2013-01-01

    The antimicrobial activity as well as phytochemical screening of the hexane, acetone, methanol and water extracts of Clematis brachiata Thunb (Ranunculaceae) leaves was investigated. The agar dilution assay method was used for the evaluation of the antimicrobial activity of extracts against 10 bacteria and four fungal species. The phytochemical screenings were performed by using the standard procedures. The acetone and methanol extracts were active against the 10 bacteria strains with MIC ran...

  19. PRELIMINARY PHYTOCHEMICAL INVESTIGATION AND IN VITRO ANTIMICROBIAL ACTIVITY OF ETHANOLIC EXTRACT OF SONNERATIA APETALA PLANT

    Directory of Open Access Journals (Sweden)

    V. Prabhu Teja

    2013-06-01

    Full Text Available The aim of present study is to investigate the phytochemical constituents and antimicrobial activity of Ethanolic extract of Sonneratia apetala. Preliminary Phytochemical tests revealed the presence of alkaloids, flavonoids, tannins, saponins, phytosterols and carbohydrates. Antimicrobial activity was evaluated by Agar well Diffusion method. In vitro screening of Sonneratia apetala mangrove Ethanolic plant extract showed species specific activity in inhibiting growth of bacteria and fungi. The Ethanolic plant extract showed good activity against selected gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, Staphylococcus werneri, gram-negative bacteria (Pseudomonas putida, Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumonia and fungal strain (Candida albicans. The observations revealed significant zone of inhibition and supports to antimicrobial activity. The bioactive compounds responsible for these antimicrobial activities could be isolated and identified to develop a new drug of pharmaceutical interest.

  20. Effects of D-Lysine Substitutions on the Activity and Selectivity of Antimicrobial Peptide CM15

    Directory of Open Access Journals (Sweden)

    Heather M. Kaminski

    2011-12-01

    Full Text Available Despite their potent antimicrobial activity, the usefulness of antimicrobial peptides (AMPs as antibiotics has been limited by their toxicity to eukaryotic cells and a lack of stability in vivo. In the present study we examined the effects of introducing D-lysine residues into a 15-residue hybrid AMP containing residues 1–7 of cecropin A and residues 2–9 of melittin (designated CM15. Diastereomeric analogs of CM15 containing between two and five D-lysine substitutions were evaluated for their antimicrobial activity, lysis of human erythrocytes, toxicity to murine macrophages, ability to disrupt cell membranes, and protease stability. All of the analogs caused rapid permeabilization of the Staphylococcus aureus cell envelope, as indicated by uptake of SYTOX green. Permeabilization of the plasma membrane of RAW264.7 macrophages was also observed for CM15, but this was substantially diminished for the D-lysine containing analogs. The introduction of D-lysine caused moderate decreases in antimicrobial activity for all analogs studied, with a much more pronounced reduction in toxicity to eukaryotic cells, leading to marked improvements in antimicrobial efficacy. Circular dichroism studies indicated a progressive loss of helical secondary structure upon introduction of D-lysine residues, with a good correspondence between helical content and eukaryotic cell cytotoxicity. Overall, these studies indicate that disruption of amphipathic secondary structure reduces both antimicrobial activity and eukaryotic cell toxicity, but that the reduction in eukaryotic cell cytotoxicity is more pronounced, leading to an overall gain in antimicrobial selectivity.

  1. Antimicrobial and antipathogenic activity of Fallopia japonica leaves alcoholic extract

    Directory of Open Access Journals (Sweden)

    Ioana-Cristina Marinaş

    2014-08-01

    Full Text Available The aim of the study consists in the investigation of the antimicrobial and antiphatogenic activity of ethanol extracts obtain from F. japonica leaves. Total phenolic content was determined by Folin-Ciocalteu method, while their phenolic composition was specified by HPLC. In vitro antimicrobial activity of various concentrations ranging from 6.25 to 200 μL/mL of alcoholic (ethanol 70% extract of F. japonica were analyzed on different clinical and reference bacterial strains (Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumanii and fungal strains belonging to Candida spp. using agar disk diffusion method and broth dilution method. The anti-pathogenic properties were studied by determining the adhesion capacity of microbial strains to inert substrate. The soluble virulence factors were quantified using specific media with different biochemical substrats for revealing haemolysins, lecithinase, gelatinase, lipase, DN-ase, amylase and iron chelating agents. The antibiogram adapted technique assesseded the synergic effects of F. japonica leaves extracts with the clinical used antibiotics for different bacterial strains. The studied extract showed the best antimicrobial activity against P. aeruginosa (6.25 μL/mL due to phenolic compound identified (epicatechin, rutin and quercetin. In the Gram-positive strains’ case were observed phenotypic changes in the DNA-ase and lechitinase enzymes expression. In the antibioresistance pattern profiling it was observed that F. japonica leaves improved the Kanamycin activity for S. aureus, Colistin for P. aeruginosa and Meropenem for A. baumanii. In this respect, could be assumed that this extract could be used complementarily with antibiotherapy, by inhibiting the specific virulence factors.

  2. IDENTIFICATION AND ANTIMICROBIAL ACTIVITY OF SAPONIN FRACTION FROM THE LEAVES OF BARLERIA CRISTATA L.

    Directory of Open Access Journals (Sweden)

    D. Victor Arokia Doss et al

    2012-10-01

    Full Text Available A simple HPTLC method was used to determine the saponin profile of Barleria cristata L. crude leaf extract. The antimicrobial activity of saponin fraction from the leaves of Barleria cristata L. was studied in-vitro against four bacterial species and four fungal species by agar disc diffusion method. Klebsiella Pneumonia, Staphylococcus aureus, E. coli, Aspergillus parasites were the most inhibited microorganism. The present study suggests that the saponin fraction possess significant antimicrobial activity and can be used to develop a potential antimicrobial agent.

  3. Purification and in vitro Activity of an Antimicrobial Peptide from Skin of Rana Temporaria Chensinensis, David

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jie; MENG Qing-fan; XU Xue-song; TIAN Xiao-le; JIANG Fu-jia; LI Qing-shan; TENG Li-rong

    2007-01-01

    In this study, an antimicrobial component (RTCI) was purified from the skin of Rana temporaria chensinensis,David. Antimicrobial activities of RTCI against clinical multi-drug resistant bacterial strains, including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureaus, Klebsiella oxytoca, Klebsiella pneumoniae, Enterococcus faecalis, and Proteus mirabilis were measured in vitro by means of minimal inhibitory concentration and time-kill studies.The results indicate that RTCI could inhibit the growth of these bacteria at a proper concentration and suggest that RTCI shows a better antimicrobial activity to Gram-negative bacterial strains than to Gram-positive bacterial strains.

  4. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    Science.gov (United States)

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  5. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Amber Farooqui

    Full Text Available Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  6. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    Science.gov (United States)

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens. PMID:25719410

  7. Quinoxaline based bio-active mixed ligand transition metal complexes: Synthesis, characterization, electrochemical, antimicrobial, DNA binding, cleavage, antioxidant and molecular docking studies.

    Science.gov (United States)

    Dhanaraj, C Justin; Johnson, Jijo

    2015-10-01

    Co(II), Ni(II), Cu(II) and Zn(II) mixed ligand complexes have been synthesized from N(2), N(3)-bis(4-nitrophenyl)quinoxaline-2,3-diamine and 1,10-phenanthroline. The compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility, IR, UV-Vis., (1)H NMR, mass and ESR spectra. Octahedral geometry has been assigned for Co(II), Ni(II) and Zn(II) complexes and distorted octahedral geometry for Cu(II) complex. Electrochemical behavior of the synthesized complexes was studied using cyclic voltammetry. Grain size and surface morphologies of the complexes were determined by powder XRD and SEM analyses. The mixed ligand metal complexes were screened for antimicrobial activity against bacterial species Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus; fungal species Aspergillus niger, and Candida albicans by disc diffusion method. The DNA binding and DNA cleavage activities of the compounds were determined using electronic absorption titration and agarose gel electrophoresis respectively. The superoxide radical scavenging and free radical scavenging activities of the Cu(II) complex was also evaluated. Molecular docking studies of the synthesized mixed ligand metal complexes were carried out against B-DNA dodecamer and the protein Plasmodium falciparum dihydrofolate reductase (pf DHFR).

  8. Activity of Antimicrobial Silver Polystyrene Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Palomba

    2012-01-01

    Full Text Available A simple technique based on doping polymers with in situ generated silver nanoparticles (Ag/PS films has been developed. In particular, an antiseptic material has been prepared by dissolving silver 1,5-cyclooctadiene-hexafluoroacetylacetonate in amorphous polystyrene, and the obtained solid solution has been heated for ca. 10 s at a convenient temperature (180°C. Under such conditions the metal precursor decomposes producing silver atoms that diffuse into the polymer and clusterize. The antimicrobial characteristics of the resulting polystyrene-based material have been accurately evaluated toward Escherichia coli (E. coli comparing the cytotoxicity effect of 10 wt.% and 30 wt.% (drastic and mild annealing silver-doped polystyrene to the corresponding pure micrometric silver powder. Two different bacterial viability assays were performed in order to demonstrate the cytotoxic effect of Ag/PS films on cultured E. coli: (1 turbidimetric determination of optical density; (2 BacLight fluorescence-based test. Both methods have shown that silver-doped polystyrene (30 wt.% provides higher antibacterial activity than pure Ag powder, under similar concentration and incubation conditions.

  9. EVALUATION OF ANTIMICROBIAL ACTIVITY OF CANANGA ODORATA (LAM.)HOOK.F. & THOMSON LEAF EXTRACT: AN IN VITRO STUDY

    OpenAIRE

    R. Gomathi; V.SELVI; Isaivani Indrakumar; S. KARPAGAM

    2012-01-01

    Medicinal plants are important source of potentially useful structures for the development of novel chemotherapeutic agents. The first step towards this goal is the in vitro antibacterial activity assay( Tona et al., 1998). The present study was aimed to evaluate the antmicrobial effect of Cananga odorata leaf extract on some bacterial cultures such as Staphylococcus aureus, Salmonella typhi, Escherichia coli, Vibrio cholerae and fungi such as Epidermophyton floccosum. Microsporum gypseum and...

  10. Antimicrobial activities of laboratory produced essential oil solutions against five selected fungal strains

    Directory of Open Access Journals (Sweden)

    Ivanova Emilija

    2013-01-01

    Full Text Available It is well known that essential oils possess significant antimicrobial activity. This study was conducted to estimate the antimicrobial activity of various types of Biokill, a laboratory produced solution composed of several essential oils (Biokill dissolved in 96% ethanol; Biokill 96% further dissolved in DMSO; Biokill dissolved in 70% ethanol and Biokill 70% further dissolved in DMSO. The antimicrobial activity was evaluated against five selected fungal strains, Candida albicans ATCC 10231, Saccharomyces cerevisiae ATCC 9763, Aspergillus niger I.N. 1110, Aspergillus sojae CCF and Penicillium spp. FNS FCC 266. A variation of the microtiter plate-based antimicrobial assay was used in order to assess the antimicrobial activity of the solutions. By applying this assay minimal inhibitory concentrations (MIC of the Biokill solutions were determined for each strain of the selected test microorganisms. The results demonstrated that all variations of Biokill showed antimicrobial activity at concentrations lower than 2.5μg/mL. Biokill 70% further dissolved in DMSO showed the best antimicrobial properties against all the selected strains with MICs less than 1.25μg/mL. These results indicated that Biokill could find application in the pharmaceutical industry, in food preservation and conservation, in the prevention and treat­ment of plants infected by certain phytopathogens, etc.

  11. Antimicrobial, antibiofilm and cytotoxic activities of Hakea sericea Schrader extracts

    OpenAIRE

    Ângelo Luís; Luiza Breitenfeld; Susana Ferreira; Ana Paula Duarte; Fernanda Domingues

    2014-01-01

    Background: Hakea sericea Schrader is an invasive shrub in Portuguese forests. Objective: The goal of this work was to evaluate the antimicrobial activity of H. sericea extracts against several strains of microorganisms, including the ability to inhibit the formation of biofilms. Additionally the cytotoxic properties of these extracts, against human cells, were assessed. Materials and Methods: The antimicrobial activity of the methanolic extracts of H. sericea was assessed by disk diffusion a...

  12. COW DUNG- A BOON FOR ANTIMICROBIAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    SUSHMITA SHRIVASTAVA*, ALKA MISHRA ARTI PAL

    2014-09-01

    Full Text Available India is an agricultural country having variety of plants and animals. Among the animals, cattle like cow has a prominent place in our country. It is considered as go-mata and worshipped by every hindu of India. The five products of cow called “Panchgavya” is a precious gift of this holy animal to our society, which consist of milk, curd, ghee, urine and dung. Among these, cow dung also called cow pad, is a component having crude protein, cellulose, hemicellulose and minerals. It is an efficient organic manure used to increase plant yield in fields. Cow dung slurry is also used by people of our country for plastering the floors and walls of their houses. Considering this custom of our society, a study had been done to evaluate antibacterial and antifungal properties of cow dung extract in distil water, ethanol and n- hexane against Candida, E. coli, Pseudomonas and Staphylococcus aureus and found it highly effective against these microbes. The study revealed that cow dung extract possess antimicrobial properties, which can be used to fight against certain pathogenic diseases and other ailments.

  13. Mixed ligand complexes of cobalt(III) and iron(III) containing N2O2-chelating Schiff base: Synthesis, characterisation, antimicrobial activity, antioxidant and DFT study

    Science.gov (United States)

    Pramanik, Harun A. R.; Paul, Pradip C.; Mondal, Paritosh; Bhattacharjee, Chira R.

    2015-11-01

    Six mixed ligand complexes, namely, [Co(acac)L1] (1), [Fe(acac)L1] (2), [Co(acac)L2] (3), [Fe(acac)L2] (4), [Co(acac)L3] (5), and [Fe(acac)L3] (6) (H2L1 = NN/-bis(salicylidene)-trans 1,2 diaminocyclohexane, H2L2 = NN/-bis(salicylidene)-1,2 phenylenediamine, H2L3 = NN/-bis(salicylidene)-4-methyl-1,2-phenylenediamine) were synthesised and characterized using elemental analysis, IR spectra, UV-Vis spectra, mass spectra, magnetic susceptibility measurements, 1H and 13C NMR spectroscopy, thermogravimetric analysis. The molar conductance measurement confirmed the non-electrolytic nature of the complexes in DMF solution. Antioxidant activity of the complexes was studied using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method. Biological studies of the complexes have been carried out in vitro for antimicrobial activity against some selected gram-positive and gram-negative bacteria. DFT calculations were performed using GAUSSIAN 09 program to ascertain the stable electronic structure, HOMO-LUMO energy gap, chemical hardness and dipole moment of the complexes.

  14. PHYTOCHEMICAL STUDY AND EVALUATION OF THE ANTIMICROBIAL AND ANTIOXIDANT ACTIVITY OF ESSENTIAL OILS AND PHENOLIC COMPOUNDS OF PISTACIA LENTISCUS L

    Directory of Open Access Journals (Sweden)

    K. Arab

    2014-06-01

    Full Text Available This work aims for the phytochemical study and evaluation of the antioxidant activity of phenolic compounds and essential oils of medicinal plant Pistacia lentiscus L. quantitatively and qualitatively. Through the results obtained, it appears that the leaves and fruits are rich in substances with a high antioxidant power. The yield of the phenolic compounds obtained from 10g to powder of plant is for leaves 116.49 % and 61.34 % for fruit . For essential oils, it is 0.253 ± 0.131 % for 100 g of plant material. The chromatographic profile of the essential oil of Pistacia lentiscus L. shows that monoterpenes are the major compound (9.675 % of identified molecules. The strong antioxidant activity of extracts obtained only confirms the traditional use of this plant by the local population.

  15. PHYTOCHEMICAL STUDY AND EVALUATION OF THE ANTIMICROBIAL AND ANTIOXIDANT ACTIVITY OF ESSENTIAL OILS AND PHENOLIC COMPOUNDS OF PISTACIA LENTISCUS L

    Directory of Open Access Journals (Sweden)

    K. Arab

    2015-07-01

    Full Text Available This work aims for the phytochemical study and evaluation of the antioxidant activity of phenolic compounds and essential oils of medicinal plant Pistacia lentiscus L. quantitatively and qualitatively. Through the results obtained, it appears that the leaves and fruits are rich in substances with a high antioxidant power. The yield of the phenolic compounds obtained from 10g  to powder of plant  is for leaves 116.49 %  and 61.34 % for fruit . For essential oils, it is 0.253 ± 0.131 % for 100 g of plant material. The chromatographic profile of the essential oil of Pistacia lentiscus L. shows that monoterpenes are the major compound (9.675 % of identified molecules. The strong antioxidant activity of extracts obtained only confirms the traditional use of this plant by the local population.

  16. In vitro antimicrobial activity of Pistacia lentiscus L. edible oil and phenolic extract.

    Science.gov (United States)

    Mezni, F; Aouadhi, C; Khouja, M L; Khaldi, A; Maaroufi, A

    2015-01-01

    Pistacia lentiscus L. is known in some Tunisian forest area by its fixed oil used in traditional medicine as an antiseptic product. This investigation is the first to study the antimicrobial activity of P.lentiscus edible oil and its phenolic extract. Oil was extracted from fruits harvested from six provenances located in Tunisia. The antimicrobial activity was tested using disc diffusion assay and the broth dilution method. Kbouch and Sidi Zid oils were most efficient (p oil and extract.

  17. Benzofuranyl Esters: Synthesis, Crystal Structure Determination, Antimicrobial and Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    C. S. Chidan Kumar

    2015-09-01

    Full Text Available A series of five new 2‐(1‐benzofuran‐2‐yl‐2‐oxoethyl 4-(un/substitutedbenzoates 4(a–e, with the general formula of C8H5O(C=OCH2O(C=OC6H4X, X = H, Cl, CH3, OCH3 or NO2, was synthesized in high purity and good yield under mild conditions. The synthesized products 4(a–e were characterized by FTIR, 1H-, 13C- and 1H-13C HMQC NMR spectroscopic analysis and their 3D structures were confirmed by single-crystal X-ray diffraction studies. These compounds were screened for their antimicrobial and antioxidant activities. The tested compounds showed antimicrobial ability in the order of 4b < 4a < 4c < 4d < 4e and the highest potency with minimum inhibition concentration (MIC value of 125 µg/mL was observed for 4e. The results of antioxidant activities revealed the highest activity for compound 4e (32.62% ± 1.34% in diphenyl-2-picrylhydrazyl (DPPH radical scavenging, 4d (31.01% ± 4.35% in ferric reducing antioxidant power (FRAP assay and 4a (27.11% ± 1.06% in metal chelating (MC activity.

  18. PHYTOCHEMICAL STUDY AND EVALUATION OF THE ANTIMICROBIAL AND ANTIOXIDANT ACTIVITY OF ESSENTIAL OILS AND PHENOLIC COMPOUNDS OF PISTACIA LENTISCUS L

    OpenAIRE

    K. Arab; O. Bouchenak; K. Yahiaoui

    2014-01-01

    This work aims for the phytochemical study and evaluation of the antioxidant activity of phenolic compounds and essential oils of medicinal plant Pistacia lentiscus L. quantitatively and qualitatively. Through the results obtained, it appears that the leaves and fruits are rich in substances with a high antioxidant power. The yield of the phenolic compounds obtained from 10g  to powder of plant  is for leaves 116.49 %  and 61.34 % for fruit . For essential oils, it is 0.253 ± 0.131 % for 100 ...

  19. Antimicrobial Activity of Ultra-fine Fiber Nonwoven Fabrics Produced by Electrospinning

    Science.gov (United States)

    Ogushi, Yukiko; Sasaki, Naokazu; Imashiro, Yasuo; Minagawa, Mie; Matsumoto, Hidetoshi; Tanioka, Akihiko

    Electrospinning is based on an electrohydrodynamic process, and it is a straightforward and versatile method for forming continuous thin fibers from several nanometers to several tens of micrometers in diameter. One major advantage of electrospinning is the one-step forming of nonwoven fibrous fabrics. In the present study, we prepared ultra-fine fiber nonwoven fabrics from 13 kinds of commercial polymers (e.g., PLA, PA, PU, Cellulose, PVDC, and PS) by electrospinning and tested their antimicrobial activity. Most of ultra-fine fiber nonwoven fabrics showed excellent antimicrobial activity. Our experimental results showed that there is close correlation between fiber diameter of nonwoven fabrics and their antimicrobial activity: the nonwoven fabrics with average fiber diameter of smaller than 800 nm showed better antimicrobial activity.

  20. Comparative Antimicrobial Activities of Aerosolized Sodium Hypochlorite, Chlorine Dioxide, and Electrochemically Activated Solutions Evaluated Using a Novel Standardized Assay

    OpenAIRE

    Thorn, R. M. S.; G.M. Robinson; Reynolds, D M

    2013-01-01

    The main aim of this study was to develop a standardized experimental assay to enable differential antimicrobial comparisons of test biocidal aerosols. This study represents the first chlorine-matched comparative assessment of the antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solution (ECAS) to determine their relative abilities to decontaminate various surface-associated health care-relevant microbial challenges. Standard micro...

  1. Antimicrobial activity of mosquito cecropin peptides against Francisella.

    Science.gov (United States)

    Kaushal, Akanksha; Gupta, Kajal; Shah, Ruhee; van Hoek, Monique L

    2016-10-01

    Francisella tularensis is the cause of the zoonotic disease tularemia. In Sweden and Scandinavia, epidemiological studies have implicated mosquitoes as a vector. Prior research has demonstrated the presence of Francisella DNA in infected mosquitoes but has not shown definitive transmission of tularemia from a mosquito to a mammalian host. We hypothesized that antimicrobial peptides, an important component of the innate immune system of higher organisms, may play a role in mosquito host-defense to Francisella. We established that Francisella sp. are susceptible to two cecropin antimicrobial peptides derived from the mosquito Aedes albopictus as well as Culex pipiens. We also demonstrated induced expression of Aedes albopictus antimicrobial peptide genes by Francisella infection C6/36 mosquito cell line. We demonstrate that mosquito antimicrobial peptides act against Francisella by disrupting the cellular membrane of the bacteria. Thus, it is possible that antimicrobial peptides may play a role in the inability of mosquitoes to establish an effective natural transmission of tularemia. PMID:27235883

  2. The antimicrobial activity of the Cnicus benedictus L. extracts

    Directory of Open Access Journals (Sweden)

    Annamaria PALLAG

    2009-05-01

    Full Text Available Our goal was to test the antimicrobial effect of the aqueous solutions obtained from the soft extract of Cnicus benedictus L. (Asteraceae family flowers. The test was performed on Mueller - Hinton and blood-agar culture medium, on 8 standardized bacterial strains and microbiological strains obtained from infected secretions, using the diffusimetric method.The antimicrobial action of the plant extracts was confirmed by all bacterial tested strains, which presented inhibition zones, of approximately same values, at solutions with different concentrations. The values we obtained reveal significant differences of the intensity of the antimicrobial activity of the mature and immature flowers extract.

  3. Study on antimicrobial activity and stability of citrus peel pigment%桔皮色素的抑菌性及稳定性研究

    Institute of Scientific and Technical Information of China (English)

    汪洪涛

    2011-01-01

    The antimicrobial activity and stability of citrus peel pigment were studied. Determine orange peel pigment's antimicrobial activity and stability on used food additives and light illumination by single-factor. The pigment had active resistance to familiar microbe such as staphylococcus aureus, escherichia coli, hansenula sp and as-pergillus flavus ,having good resistance against native light in room and heat,in 100 1C thermostatic lh pigment save ratio was 88%;Ox-idant H2Ozhad biggish effecton pigment stability while reducer Naz SO3 had lesser effect; Expert Mg2+ , Cuz+ and Fe3+ ,other metal ion including Na+,Ca2+ .Zn2+and K+ had no adverse effect on pigment stability. Food composition and additive such as Sugar, Vc and antiseptic had no negative effects on the pigment stability.%探讨桔皮色素的抑菌性和稳定性.通过单因素试验确定桔皮色素对常见微生物的抑菌效果以及常用的食品添加剂和光照对色素稳定性的影响.结果表明:桔皮色素对常见的致病性细菌、酵母和霉菌均有不同程度的抑制作用;色素在室内自然光下稳定,在强光照射下易破坏,对热稳定,在100℃恒温1h色素保存率为88%;氧化剂H2O2对色素的稳定性影响较大,还原剂Na2SO3对色素的稳定性影响较小;色素抗Na+、Ca2+、Zn2+和K+的干扰能力强,抗Mg2+、Cu2+和Fe3+的干扰能力较弱;Vc、幕甲酸钠、蔗糖、葡萄糖等食品成分和添加剂对色素的影响不大.

  4. Antimicrobial, Antiviral and Immunomodulatory Activity Studies of Pelargonium sidoides (EPs® 7630 in the Context of Health Promotion

    Directory of Open Access Journals (Sweden)

    Herbert Kolodziej

    2011-10-01

    Full Text Available Pelargonium species contribute significantly to the health care of a large population in the Southern African region, as part of a long-standing medical system intimately linked to traditional healing practices. Most notably, extracts of the roots of P. sidoides have commonly been applied for the treatment of dysentery and diarrhoea but only occasionally for respiratory complaints. Clinical trials have shown that a modern aqueous-ethanolic formulation of P. sidoides extracts (EPs® 7630 is an efficacious treatment for disorders of the respiratory tract, for example bronchitis and sinusitis. It should be noted that EPs® 7630 is the most widely investigated extract and therefore is the focus of this review. In order to provide a rationale for its therapeutic activity extracts have been evaluated for antibacterial activity and for their effects on non-specific immune functions. Only moderate direct antibacterial capabilities against a spectrum of bacteria, including Mycobacteria strains, have been noted. In contrast, a large body of in vitro studies has provided convincing evidence for an anti-infective principle associated with activation of the non-specific immune system. Interestingly, significant inhibition of interaction between bacteria and host cells, a key to the pathogenesis of respiratory tract infections, has emerged from recent studies. In addition, antiviral effects have been demonstrated, including inhibition of the replication of respiratory viruses and the enzymes haemagglutinin and neuraminidase. Besides, an increase of cilliary beat frequency of respiratory cells may contribute to the beneficial effects of P. sidoides extracts. This example provides a compelling argument for continuing the exploration of Nature and traditional medical systems as a source of therapeutically useful herbal medicines.

  5. Chemical constituents, antimicrobial and antimalarial activities of Zanthoxylum monophyllum.

    Science.gov (United States)

    Rodríguez-Guzmán, Raquel; Fulks, Laura C Johansmann; Radwan, Mohamed M; Burandt, Charles L; Ross, Samir A

    2011-09-01

    From the leaves and bark of Zanthoxylum monophyllum, a new lignan, 3-methoxy-3',4'-methylenedioxylignan-4,8,9,9'-tetraol (1), has been isolated along with 22 known compounds (2- 23), fifteen of them reported for the first time from Z. monophyllum. Their chemical structures were elucidated using detailed spectroscopic studies and chemical analysis. All compounds were evaluated for antimicrobial and antiprotozoal activities. Alkaloids BIS-[6-(5,6-dihydro-chelerythrinyl)] ether (2) and 6-ethoxy-chelerythrine (4) exhibited strong activity against Aspergillus fumigatus and methicillin-resistant Staphylococcus aureus (MRSA). Compound 4-methoxy-N-methyl-2-quinolone (9) exhibited significant activity against MRSA (IC50 value of 8.0 µM) while compound 5,8,4'-trihydroxy-3,7,3'-trimethoxyflavone (10) showed weak activity against Plasmodium falciparum.

  6. Study on Antimicrobial and Insecticidal Activity of Caffeine in Tea Plant%茶树中咖啡碱抑菌抗虫作用的研究

    Institute of Scientific and Technical Information of China (English)

    张和禹; 贾国云; 刘金珠

    2012-01-01

    Caffeine is the major component of alkaloids in tea plant. Biological function of caffeine in tea plant was studied in this paper. Filter paper dispersion and mycelial growth rate methods were used to determine the antimicrobial activity. The method of feeding insect with caffeine to determine the insecticidal activity. The results showed the caffeine could inhibit the growth of tested bacteria and fungi, and the caffeine had high toxicity to tested insect.%咖啡碱是茶树的主要生物碱和特征性物质之一,通过滤纸片法、生长速率法、饲喂称重法对咖啡碱抑菌、抗虫作用的研究,发现咖啡碱对供试细菌和真菌有一定的抑菌能力,对棉铃虫和菜粉蝶、家蚕幼虫具有毒害和抑制生长的影响.咖啡碱作为茶树的次生代谢产物具有抗病抗虫的的生物学功能.

  7. Development of elastin-like recombinamer films with antimicrobial activity

    DEFF Research Database (Denmark)

    Costa, André; Machado, Raul; Ribeiro, Artur;

    2015-01-01

    In the present work we explored the ABP-CM4 peptide properties from Bombyx mori for the creation of biopolymers with broad antimicrobial activity. An antimicrobial recombinant protein-based polymer (rPBP) was designed by cloning the DNA sequence coding for ABP-CM4 in frame with the N-terminus of ......In the present work we explored the ABP-CM4 peptide properties from Bombyx mori for the creation of biopolymers with broad antimicrobial activity. An antimicrobial recombinant protein-based polymer (rPBP) was designed by cloning the DNA sequence coding for ABP-CM4 in frame with the N......-terminus of the elastin-like recombinamer consisting of 200 repetitions of the pentamer VPAVG, here named A200. The new rPBP, named CM4-A200, was purified via a simplified nonchromatographic method, making use of the thermoresponsive behavior of the A200 polymer. ABP-CM4 peptide was also purified through...... the incorporation of a formic acid cleavage site between the peptide and the A200 sequence. In soluble state the antimicrobial activity of both CM4-A200 polymer and ABP-CM4 peptide was poorly effective. However, when the CM4-A200 polymer was processed into free-standing films high antimicrobial activity against...

  8. Synthesis, characterization, optical band gap, in vitro antimicrobial activity and DNA cleavage studies of some metal complexes of pyridyl thiosemicarbazone

    Science.gov (United States)

    Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.; Bedier, R. A.

    2013-03-01

    A new series of Cr(III), Mn(II), Ni(II), Zn(II) and Hg(II) complexes of Schiff-bases derived from the condensation of 4-(2-pyridyl)-3-thiosemicarbazide and pyruvic acid (H2PTP) have been synthesized and characterized by spectroscopic studies. Schiff-base exhibit thiol-thione tautomerism wherein sulfur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analysis, spectral (IR, UV-vis, 1H NMR and 13C NMR), magnetic and thermal studies. IR spectra show that H2PTP is coordinated to the metal ions in a mononegative tridentate manner except in Cr(III) complex in which the ligand exhibits mononegative bidentate manner. The parameters total energy, binding energy, isolated atomic energy, electronic energy, heat of formation, dipole moment, HOMO and LUMO were calculated for the ligand and its complexes. Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) of the metal complexes has been calculated. The optical transition energy (Eg) is direct and equals 3.20, 3.27 and 3.26 eV for Cr, Mn and Ni complexes, respectively. The synthesized ligand, in comparison to its metal complexes is screened for its antibacterial activity against the bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeuroginosa and Escherichia coli. The results show that the metal complexes be more potent in activity antibacterial than the parent Shciff base ligand towards one or more bacterial species. Finally, the biochemical studies showed that, Mn complex have powerful and complete degradation effect on DNA.

  9. Studies on total phenolics, total flavonoids and antimicrobial activity from the leaves crude extracts of neem traditionally used for the treatment of cough and nausea

    Directory of Open Access Journals (Sweden)

    Hoda Salim Khamis Al-Jadidi

    2015-06-01

    Full Text Available The objective of this work is to prepare different crude extracts from the leaves of neem through maceration method and determine their total phenolics, flavonoids and antimicrobial activity by established methods. The different crude extracts were prepared solvents by maceration method using solvents of different polarities. Total phenolics and total flavonoids contents were determined by using UV–visible spectroscopy method. The antimicrobial activity of different crude extracts from the leaves of neem was determined by disc diffusion method against food borne pathogenic bacterial strains Staphylococcus aureus (S. aureus, Escherichia coli (E. coli, Pseudomonas aeruginosa (P. aeruginosa and Vulgaris. Amoxicillin was used as a positive control. The content of total phenolics of different leaves crude extracts was in the range of 20.80–107.29 mg/100 g of powder crude extracts. The content of total flavonoids of different leaves crude extracts was in the range of 61.50–529.50 mg/100 g powder samples. All crude extracts from neem by maceration method at different working concentrations did not show any potential antimicrobial activity. In conclusion, our results of all crude extracts prepared by solvents of different polarities do not support their use as medicine for treating cough and nausea due to high content of total phenolics and flavonoids.

  10. Antimicrobial Active Clothes Display No Adverse Effects on the Ecological Balance of the Healthy Human Skin Microflora

    OpenAIRE

    Dirk Hoefer; Timo R. Hammer

    2011-01-01

    The progressive public use of antimicrobial clothes has raised issues concerning skin health. A placebo-controlled side-to-side study was run with antimicrobial clothes versus fabrics of similar structure but minus the antimicrobial activity, to evaluate possible adverse effects on the healthy skin microflora. Sixty volunteers were enrolled. Each participant received a set of form-fitting T-shirts constructed in 2 halves: an antibacterial half, displaying activities of 3–5 log-step reductions...

  11. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity.

    Science.gov (United States)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J; Dong, He

    2015-12-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.

  12. Antimicrobial activities of essential oil from Artemisiae argyi leaves

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; ZHANG Xue-ke; WU Nan; FU Yu-jie; ZU Yuan-gang

    2006-01-01

    A study was conducted to determine the antimicrobial activities of essential oil from Artemisiae argyi leaves. The sample of the essential oil was analyzed by GC-MS. From 18 compounds representing the oils, Eucalyptole (18.42%), Spathulenol (14.32), 4-Methyl-1-(1-methylethyl)-3-cyclohexen-1-ol (3.10%), 3-Carene (2.64%) appeared as the main components. The screening of antimicro bial activity of the essential oil was evaluated using agar diffusion and broth microdilution methods. Gram-positive bacterial were more sensitive than gram-negative bacterial of the 8 microorganisms, and Staphylococcus aureus ATCC 6538 showed the lowest MIC (0.3125%) and MBC (0.625%). In the disc diffusion assay, Staphylococcus epidermidis ATCC 49134 and Bacillus subtilis ATCC 6633 showed obvious inhibitory activity. Survival curve showed that, 2MIC ofArtemisiae argyi essential oil had a lethal effect on Candida albicans within the first 1 h. Results presented here suggest that the essential oil of Artemisiae argyi leaves possesses antimicrobial properties, and provides scientific foundations for exploition ofArtemisiae argyi.

  13. EVALUATION OF ANTIMICROBIAL ACTIVITY OF CANANGA ODORATA (LAM.HOOK.F. & THOMSON LEAF EXTRACT: AN IN VITRO STUDY

    Directory of Open Access Journals (Sweden)

    R.Gomathi

    2012-01-01

    Full Text Available Medicinal plants are important source of potentially useful structures for the development of novel chemotherapeutic agents. The first step towards this goal is the in vitro antibacterial activity assay( Tona et al., 1998. The present study was aimed to evaluate the antmicrobial effect of Cananga odorata leaf extract on some bacterial cultures such as Staphylococcus aureus, Salmonella typhi, Escherichia coli, Vibrio cholerae and fungi such as Epidermophyton floccosum. Microsporum gypseum and Trichophyton mentagrophytes. The solvents Methanol, Chloroform and Petroleum ether were used for extraction.The inhibitory effect was assessed by well diffusion method. The zone of inhibition was measured. Among the solvent extracts tested, methanol was more effective than chloroform and petroleum ether.

  14. Oxidized amylose with high carboxyl content: A promising solubilizer and carrier of linalool for antimicrobial activity.

    Science.gov (United States)

    Zhou, Ying; Ye, Youxin; Zhang, Wenwen; Li, Songling; Chen, Jing; Wang, Shiting; Li, Defu; Mu, Changdao

    2016-12-10

    The oxidized amyloses with different carboxyl content were prepared to include linalool for antimicrobial activity in aqueous environment. The results show that linalool can be effectively reserved from volatilization through encapsulation into amylose and oxidized amyloses. The inclusion ability of oxidized amyloses towards linalool is decreasing with the increase of oxidation level due to the depolymerization of amylose. However, the solubilization effect of oxidized amyloses to linalool is enhanced efficiently owning to the high water solubility of oxidized amyloses. It is interesting that the inclusion complexes have good antimicrobial activity in aqueous environment. Linalool solubilized by oxidized amyloses presents better antimicrobial performance than that solubilized by amylose, mainly resulting from that amylose-linalool inclusion complex would aggregate and retrograde fast in aqueous solution, which is disadvantageous for the release of linalool. The study suggests that oxidized amylose is a promising solubilizer and carrier of linalool for antimicrobial activity in aqueous environment.

  15. A novel approach to the antimicrobial activity of maggot debridement therapy

    DEFF Research Database (Denmark)

    Andersen, Anders S; Sandvang, Dorthe; Schnorr, Kirk M;

    2010-01-01

    activity along with other activities beneficial for wound healing. With the rise of multidrug-resistant bacteria, new approaches to identifying the active compounds responsible for the antimicrobial activity within this treatment are imperative. Therefore, the aim of this study was to use a novel approach...

  16. ANTIOXIDANT, CYTOTOXIC AND ANTIMICROBIAL ACTIVITY OF SONNERATIA ALBA BARK

    Directory of Open Access Journals (Sweden)

    Md. Ali Milon*1, Md. Abdul Muhit , Durajan Goshwami , Mohammad Mehedi Masud and Bilkis Begum

    2012-07-01

    Full Text Available The present study was undertaken to evaluate antioxidant, cytotoxic and antimicrobial activity of Sonneratia alba bark. The carbon tetrachloride, chloroform soluble partitionate of methanolic extract and crude methanolic extract showed significant antioxidant property using 1,1-diphenyl-2-pecrylhydrazyl(DPPH scavenging assay ,of which chloroform partitionate and crude extract demonstrated highest activity with IC50 value of 12µg/ml and 14µg/ml respectively. In the brine shrimp lethality bioassay, LC50 values obtained from the best fit line slope were 0.812, 14.94, 0.831 and 3.288 µg/ml for standard (Vincristine sulphate, n-Hexane, carbon tetrachloride and chloroform soluble partitionate of methanolic extract respectively. The carbon tetrachloride soluble fraction revealed moderate activities against Bacillus cereus, Bacillus subtilis, Sarcina lutea, Pseudomonas aeruginosa and Shigella dysenteriae test organisms.

  17. Effects of different heat treatments on lysozyme quantity and antimicrobial activity of jenny milk.

    Science.gov (United States)

    Cosentino, C; Labella, C; Elshafie, H S; Camele, I; Musto, M; Paolino, R; D'Adamo, C; Freschi, P

    2016-07-01

    Thermal treatments are used to improve milk microbial safety, shelf life, and biological activity of some of its components. However, thermal treatments can reduce the nutritional quality of milk, affecting the molecular structure of milk proteins, such as lysozyme, which is a very important milk component due to its antimicrobial effect against gram-positive bacteria. Jenny milk is characterized by high lysozyme content. For this reason, in the last few years, it has been used as an antimicrobial additive in dairy products as an alternative to hen egg white lysozyme, which can cause allergic reactions. This study aimed to investigate the effect of pasteurization and condensation on the concentration and antimicrobial activity of lysozyme in jenny milk. Furthermore, lysozyme quantity and activity were tested in raw and pasteurized milk after condensation at 40 and 20% of the initial volume. Reversed-phase HPLC was performed under fluorescence detection to monitor lysozyme in milk samples. We evaluated the antimicrobial activity of the tested milk against Bacillus megaterium, Bacillus mojavensis, Clavibacter michiganensis, Clostridium tyrobutyricum, Xanthomonas campestris, and Escherichia coli. Condensation and pasteurization did not affect the concentration or antimicrobial activity of lysozyme in jenny milk, except for B. mojaventis, which showed resistance to lysozyme in milk samples subjected to heat treatments. Moreover, lysozyme in jenny milk showed antimicrobial activity similar to synthetic antibiotics versus some gram-positive strains and also versus the gram-negative strain X. campestris. PMID:27157571

  18. Chemical Composition and Antimicrobial Activity of Echinophora spinosa L. (Apiaceae Essential Oil

    Directory of Open Access Journals (Sweden)

    Jasmina M. Glamočlija

    2011-01-01

    Full Text Available The present study was undertaken to investigate the chemical composition and effectiveness of the essential oil isolated from Echinophora spinosa on different bacterial and fungal species. Chemical analysis (GC/MS showed that δ³-carene (60,86 %, α-phellandrene (7,12%, p-cymene (6,22 %, myrcene (4,82 % and β-phellandrene (2,73 % were dominant components in this oil. Essential oil tested showed good antimicrobial activity. Antimicrobial potential of this oil was higher than potential of commercial antimicrobial drugs tested, streptomycin, bifonozole and ketoconazole.

  19. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Juan David Guzman

    2014-11-01

    Full Text Available Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  20. Synthesis and Antimicrobial Activity of 1,2-Benzothiazine Derivatives.

    Science.gov (United States)

    Patel, Chandani; Bassin, Jatinder P; Scott, Mark; Flye, Jenna; Hunter, Ann P; Martin, Lee; Goyal, Madhu

    2016-01-01

    A number of 1,2-benzothiazines have been synthesized in a three-step process. Nine chalcones 1-9 bearing methyl, fluoro, chloro and bromo substituents were chlorosulfonated with chlorosulfonic acid to generate the chalcone sulfonyl chlorides 10-18. These were converted to the dibromo compounds 19-27 through reaction with bromine in glacial acetic acid. Compounds 19-27 were reacted with ammonia, methylamine, ethylamine, aniline and benzylamine to generate a library of 45 1,2-benzothiazines 28-72. Compounds 28-72 were evaluated for their antimicrobial activity using broth microdilution techniques against two Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram-negative bacteria (Proteus vulgaris and Salmonella typhimurium). The results demonstrated that none of the compounds showed any activity against Gram-negative bacteria P. vulgaris and S. typhimurium; however, compounds 31, 33, 38, 43, 45, 50, 53, 55, 58, 60, 63 and 68 showed activity against Gram-positive bacteria Bacillus subtilis and Staphylococcous aureus. The range of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) was 25-600 µg/mL, though some of the MIC and MBC concentrations were high, indicating weak activity. Structure activity relationship studies revealed that the compounds with a hydrogen atom or an ethyl group on the nitrogen of the thiazine ring exerted antibacterial activity against Gram-positive bacteria. The results also showed that the compounds where the benzene ring of the benzoyl moiety contained a methyl group or a chlorine or bromine atom in the para position showed higher antimicrobial activity. Similar influences were identified where either a bromine or chlorine atom was in the meta position. PMID:27376253

  1. ANTIMICROBIAL ACTIVITY OF ROSA CANINA FLOWERS AGAINST SELECTED MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Katarína Rovná

    2015-02-01

    Full Text Available Rosa canina flowers were screened against various plant pathogenic microbial strains to study the antimicrobial properties of the plant. Ethanolic and methanolic extracts of flowers were screened applying agar well diffusion method against two Gram-negative bacteria including Escherichia coli CCM 3988 and Pseudomonas aeruginosa CCM 1960 and three microscopic filamentous fungi strains Aspergillus niger, Fusarium culmorum and Alternaria alternata, respectively. The best antimicrobial effect of ethanolic extract of Rosa canina flowers was found against Pseudomonas aeruginosa and the best antimicrobial effect of methanolic extract of Rosa canina flowers was found against Escherichia coli.

  2. Synthesis, DNA interaction and antimicrobial activities of three rimantadine analogues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing-Mi; Zhang, Jun [Department of Pharmacy, Liaoning University, Shenyang 110036 (China); Wang, Xin, E-mail: wangxinlnu@163.com [Department of Pharmacy, Liaoning University, Shenyang 110036 (China); Zhang, Li-Ping; Liu, Yang [Department of Pharmacy, Liaoning University, Shenyang 110036 (China); Niu, Hua-Ying [Jinan Dachpharm Development Co., Ltd., Jinan 250100 (China); Liu, Bin, E-mail: liubinzehao@163.com [Department of Pharmacy, Liaoning University, Shenyang 110036 (China)

    2015-03-15

    The interactions of three rimantadine analogues (RAs) with calf thymus deoxyribonucleic acid (ct-DNA) in buffer solution (pH 7.4) were investigated using berberine (BR) as a probe by various methods. Fluorescence studies revealed that the RAs interacted with DNA in vitro and the quenchings were all static. Furthermore, the binding modes of these compounds to DNA were disclosed as groove binding supported by absorption spectroscopy, viscosity measurement and denatured DNA experiment. The antimicrobial activities of the RAs were also evaluated in Staphylococcus aureus and Escherichia coli, and they all exhibited good bacteriostasic effects. The results might provide an important reference for investigation of the molecular mechanism associated with the DNA binding of the RAs. - Highlights: • Three rimantadine analogues were synthesized. • The RAs effectively quenched the intrinsic fluorescence of DNA via a static combination. • These analogues can bind to DNA via groove binding mode. • The antimicrobial activities of three analogues were also evaluated by the disk diffusion method.

  3. Antimicrobial activity of Uncaria tomentosa against oral human pathogens.

    Science.gov (United States)

    Ccahuana-Vasquez, Renzo Alberto; Santos, Silvana Soléo Ferreira dos; Koga-Ito, Cristiane Yumi; Jorge, Antonio Olavo Cardoso

    2007-01-01

    Uncaria tomentosa is considered a medicinal plant used over centuries by the peruvian population as an alternative treatment for several diseases. Many microorganisms usually inhabit the human oral cavity and under certain conditions can become etiologic agents of diseases. The aim of the present study was to evaluate the antimicrobial activity of different concentrations of Uncaria tomentosa on different strains of microorganisms isolated from the human oral cavity. Micropulverized Uncaria tomentosa was tested in vitro to determine the minimum inhibitory concentration (MIC) on selected microbial strains. The tested strains were oral clinical isolates of Streptococcus mutans, Staphylococcus spp., Candida albicans, Enterobacteriaceae and Pseudomonas aeruginosa. The tested concentrations of Uncaria tomentosa ranged from 0.25-5% in Müeller-Hinton agar. Three percent Uncaria tomentosa inhibited 8% of Enterobacteriaceae isolates, 52% of S. mutans and 96% of Staphylococcus spp. The tested concentrations did not present inhibitory effect on P. aeruginosa and C. albicans. It could be concluded that micropulverized Uncaria tomentosa presented antimicrobial activity on Enterobacteriaceae, S. mutans and Staphylococcus spp. isolates.

  4. Evidence for antimicrobial activity associated with common house spider silk

    Directory of Open Access Journals (Sweden)

    Wright Simon

    2012-06-01

    Full Text Available Abstract Background Spider silk is one of the most versatile materials in nature with great strength and flexibility. Native and synthetically produced silk has been used in a wide range of applications including the construction of artificial tendons and as substrates for human cell growth. In the literature there are anecdotal reports that suggest that native spider silk may also have antimicrobial properties. Findings In this study we compared the growth of a Gram positive and a Gram negative bacterium in the presence and absence of silk produced by the common house spider Tegenaria domestica. We demonstrate that native web silk of Tegenaria domestica can inhibit the growth of the Gram positive bacterium, Bacillus subtilis. No significant inhibition of growth was detected against the Gram negative bacterium, Escherichia coli. The antimicrobial effect against B. subtilis appears to be short lived thus the active agent potentially acts in a bacteriostatic rather than bactericidal manner. Treatment of the silk with Proteinase K appears to reduce the ability to inhibit bacterial growth. This is consistent with the active agent including a protein element that is denatured or cleaved by treatment. Tegenaria silk does not appear to inhibit the growth of mammalian cells in vitro thus there is the potential for therapeutic applications.

  5. Antimicrobial studies on extracts of four species of Stachys

    Directory of Open Access Journals (Sweden)

    Saeedi M

    2008-01-01

    Full Text Available The antimicrobial activity of the methanol extracts of the dried flowering aerial parts of Stachys byzantina , S. inflata , S. lavandulifolia and S. laxa (Labiatae were studied using the disc diffusion method and determination of minimum inhibitory concentration (MIC values against Staphylococcus aureus , Streptococcus sanguis , Escherichia coli , Pseudomonas aeroginosa , Klebsiella pneumoniae , Aspergilus niger and Candida albicans . The extracts of plants exhibited concentration-dependent antibacterial activity against the bacteria tested. The extracts were more active against Gram-positive microorganisms. The extracts, however, did not show any antifungal activity.

  6. In vitro studies on antioxidant and antimicrobial activities of sulforaphane%萝卜硫素的体外抗氧化和抑菌活性

    Institute of Scientific and Technical Information of China (English)

    吴华彰; 费鸿君; 黄银久; 赵云利; 刘晓佳; 刘从森

    2012-01-01

    目的 观察萝卜硫素(SFN)体外抗氧化和抑菌活性.方法 试剂盒检测SFN总抗氧化能力(TAC)、抑制超氧阴离子(O2-)活力;水杨酸比色法和邻苯三酚自氧化法检测羟自由基(OH-)与超氧阴离子(O2-)清除能力;滤纸片法检测SFN的抑菌作用,连续二倍稀释法测定其最低抑菌浓度( MIC)、最低杀菌浓度(MBC)和对大肠杆菌和金色葡球菌生长的抑制.结果 SFN在体外模拟系统中总抗氧化活性和抑制抑制O2-生成活力较高,但对OH-和O2-的直接清除率较低,低于30%.抑菌结果表明SFN对大肠杆菌、金色葡萄球菌、绿脓杆菌、枯草杆菌、表皮葡萄球菌5种受试菌均有较强的抑制作用,MIC为0.78~6.25 μg/ml之间.结论 SFN具有较好的抗氧化活性和较强的抑菌效果.%Objective To investigate the antioxidation and antimicrobial activity of sulforaphane. Methods Antimicrobial diameters to bacteria and molds were assayed with filter paper; the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of sulforaphane were detected by serial two-fold dilution method; and the antioxidant effect of sulforaphane was studied according to total antioxidant capacity ( TAC) , the ability to scavenge superoxide anion radicals ( O2- ) and hydroxyl radicals ( OH ~ ) were observed by salicylic acid colorimetry and pyrogallol autoxidation method. Results The different concentration of sulforaphane scavenge O2~ and OH" under 30% , with the TAC and the resisting ability exceed to 160 U/ml. MIC of sulforaphane against the E. Coli, S. Aur, P. Aer, B. Sub, S. Epi was 0. 78 ~ 6. 25 μg /ml. Conclusions Sulforaphane seems has good prospect of exploitation and utilization.

  7. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation

    Science.gov (United States)

    Jesus, D.; Oliveira, J. R.; Oliveira, F. E.; Higa, K. C.; Junqueira, J. C.; Jorge, A. O. C.; Back-Brito, G. N.; Oliveira, L. D.

    2015-01-01

    This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7). To determine the minimum inhibitory concentration (MIC), microdilution in broth (CLSI M27-S4 protocol) was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n = 10) with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n = 10). After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h), the values of colony forming units per milliliter (CFU/mL) were converted to log10 and analyzed (ANOVA and Tukey test, 5%). The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P < 0.001) of the biofilm at concentrations of 50 (0.580 ± 0.209 log10), 100 (0.998 ± 0.508 log10), and 200 mg/mL (1.093 ± 0.462 log10) was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%. PMID:26605376

  8. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation

    Directory of Open Access Journals (Sweden)

    D. Jesus

    2015-01-01

    Full Text Available This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7. To determine the minimum inhibitory concentration (MIC, microdilution in broth (CLSI M27-S4 protocol was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n=10 with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n=10. After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h, the values of colony forming units per milliliter (CFU/mL were converted to log10 and analyzed (ANOVA and Tukey test, 5%. The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P<0.001 of the biofilm at concentrations of 50 (0.580±0.209 log10, 100 (0.998±0.508 log10, and 200 mg/mL (1.093±0.462 log10 was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%.

  9. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation.

    Science.gov (United States)

    Jesus, D; Oliveira, J R; Oliveira, F E; Higa, K C; Junqueira, J C; Jorge, A O C; Back-Brito, G N; Oliveira, L D

    2015-01-01

    This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7). To determine the minimum inhibitory concentration (MIC), microdilution in broth (CLSI M27-S4 protocol) was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n = 10) with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n = 10). After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h), the values of colony forming units per milliliter (CFU/mL) were converted to log10 and analyzed (ANOVA and Tukey test, 5%). The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P < 0.001) of the biofilm at concentrations of 50 (0.580 ± 0.209 log10), 100 (0.998 ± 0.508 log10), and 200 mg/mL (1.093 ± 0.462 log10) was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%. PMID:26605376

  10. Immunomodulatory and Antimicrobial Activity of Babassu Mesocarp Improves the Survival in Lethal Sepsis

    Science.gov (United States)

    Prado, Dayanna S.; Barcellos, Priscila S.; Gonçalves, Azizedite G.

    2016-01-01

    Attalea speciosa syn Orbignya phalerata Mart. (babassu) has been used in the treatment of inflammatory and infectious diseases. Aim of the study. To investigate the antimicrobial and immunological activity of babassu mesocarp extract (EE). Material and Methods. The in vitro antimicrobial activity was evaluated by disk diffusion assay and by determination of the minimum inhibitory concentration (MIC) to Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA). The flavonoids and phenolic acids content were determined by chromatography. The in vivo assays were performed in Swiss mice submitted to sepsis by cecal ligation and puncture (CLP). The mice received EE subcutaneously (125 or 250 mg/Kg), 6 hours after the CLP. The number of lymphoid cells was quantified and the cytokines production was determined by ELISA after 12 h. Results. EE was effective as antimicrobial to E. faecalis, S. aureus, and MRSA. EE is rich in phenolic acids, a class of compounds with antimicrobial and immunological activity. An increased survival can be observed in those groups, possibly due to a significant inhibition of TNF-α and IL-6. Conclusions. The EE showed specific antimicrobial activity in vitro and an important antiseptic effect in vivo possibly due to the antimicrobial and immunomodulatory activity. PMID:27630733

  11. Immunomodulatory and Antimicrobial Activity of Babassu Mesocarp Improves the Survival in Lethal Sepsis.

    Science.gov (United States)

    Barroqueiro, Elizabeth S B; Prado, Dayanna S; Barcellos, Priscila S; Silva, Tonicley A; Pereira, Wanderson S; Silva, Lucilene A; Maciel, Márcia C G; Barroqueiro, Rodrigo B; Nascimento, Flávia R F; Gonçalves, Azizedite G; Guerra, Rosane N M

    2016-01-01

    Attalea speciosa syn Orbignya phalerata Mart. (babassu) has been used in the treatment of inflammatory and infectious diseases. Aim of the study. To investigate the antimicrobial and immunological activity of babassu mesocarp extract (EE). Material and Methods. The in vitro antimicrobial activity was evaluated by disk diffusion assay and by determination of the minimum inhibitory concentration (MIC) to Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA). The flavonoids and phenolic acids content were determined by chromatography. The in vivo assays were performed in Swiss mice submitted to sepsis by cecal ligation and puncture (CLP). The mice received EE subcutaneously (125 or 250 mg/Kg), 6 hours after the CLP. The number of lymphoid cells was quantified and the cytokines production was determined by ELISA after 12 h. Results. EE was effective as antimicrobial to E. faecalis, S. aureus, and MRSA. EE is rich in phenolic acids, a class of compounds with antimicrobial and immunological activity. An increased survival can be observed in those groups, possibly due to a significant inhibition of TNF-α and IL-6. Conclusions. The EE showed specific antimicrobial activity in vitro and an important antiseptic effect in vivo possibly due to the antimicrobial and immunomodulatory activity. PMID:27630733

  12. Spectrum and activity of novel antimicrobial peptidomimetics

    DEFF Research Database (Denmark)

    Hein-Kristensen, Line

    Antibiotics have been an effective weapon against bacterial infections for over 50 years. However, bacterial resistance towards conventional antibiotics has increased considerably within the last decades and the number of antibacterial agents available for treating complicated bacterial infections...... the activity of the peptidomimetics against a range food borne and nosocomial pathogenic bacteria. These structure-activity studies demonstrated that peptide length was important for high antibacterial activity since analogues with a length shorter than 12 residues were virtually inactive. In the present...

  13. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs.

    Science.gov (United States)

    Mathew, Basil; Nagaraj, Ramakrishnan

    2015-09-01

    Human α-defensin 5 (HD5) exhibits broad spectrum antimicrobial activity and plays an important role in mucosal immunity of the small intestine. Although there have been several studies, the structural requirements for activity and mechanism of bacterial killing is yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD5 and linear analogs. Cysteine deletions attenuated the antibacterial activity considerably. Candidacidal activity was affected to a lesser extent. Fatty acid conjugated linear analogs showed antimicrobial activity comparable activity to HD5. Effective surface charge neutralization of bacteria was observed for HD5 as compared to the non-fatty acylated linear analogs. Our results show that HD5 and non-fatty acylated linear analogs enter the bacterial cytoplasm without causing damage to the bacterial inner membrane. Although fatty acylated peptides exhibited antimicrobial activity comparable to HD5, their mechanism of action involved permeabilization of the Escherichia coli inner membrane. HD5 and analogs had the ability to bind plasmid DNA. HD5 had greater binding affinity to plasmid DNA as compared to the analogs. The three dimensional structure of HD5 favors greater interaction with the bacterial cell surface and also with DNA. Antibacterial activity of HD5 involves entry into bacterial cytoplasm and binding to DNA which would result in shut down of the bacterial metabolism leading to cell death. We show how a moderately active linear peptide derived from the α-defensin HD5 can be engineered to enhance antimicrobial activity almost comparable to the native peptide. PMID:26206286

  14. The antimicrobial activity of as-prepared silver-loaded phosphate glasses and zirconium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Wang; Jiang, Ji Zhi; Yang, Yang; Yan, Zhao Chun; Yan, Wang Xiao [China Building Materials Academy, Beijing (China); He, Shui Zhong [Wuhan University of Technology, Wuhan (China)

    2016-03-15

    The antimicrobial activities of silver-loaded zirconium phosphate (JDG) and silver-loaded phosphate glasses (ZZB) against Escherichia coli were studied. Although the silver content in JDG was higher than that in ZZB, ZZB suspensions showed better antimicrobial property than JDG suspensions, especially at low concentrations. The antimicrobial activity was analyzed using minimum inhibitory concentrations, bacterial inhibition ring tests, and detection of silver ions in the suspensions. Furthermore, the amounts of silver ions in suspensions with/without bacterial cells were analyzed. Results revealed that only a portion of released silver ions could be adsorbed by E. coli cells, which are critical to cell death. The damaged microstructures of E. coli cells observed by transmission electron microscopy may further prove that the adsorbed silver ions play an important role in the antimicrobial process.

  15. Antimicrobial activity of Gel-entrapped catechins toward oral microorganisms.

    Science.gov (United States)

    Tamura, Muneaki; Saito, Hideo; Kikuchi, Kuniyoshi; Ishigami, Tomohiko; Toyama, Yoshio; Takami, Masao; Ochiai, Kuniyasu

    2011-01-01

    The oral cavity contains almost half of the commensal bacterial population present in the human body. An increase in the number of these microorganisms may result in systemic diseases such as infective endocarditis and aspiration pneumonia as well as oral infections. It is essential to control the total numbers of these microorganisms in order to suppress disease onset. Thus, we examined the antimicrobial activity of a newly developed gel-entrapped catechin (GEC) preparation against oral microorganisms. The minimum inhibitory concentration (MIC) of GEC was determined based on the relationship between a modified agar diffusion method and a broth microdilution method. GEC inhibited the growth of the Actinomyces, periodontopathic bacteria and Candida strains tested, but did not inhibit the growth of the oral streptococci that are important in the normal oral flora. Commercially available moisture gels containing antimicrobial components showed antimicrobial activity against all of the tested strains. After a series of washes and after a 24-h incubation, GEC retained the antimicrobial activity of the catechins. Catalase prevented GEC-induced growth inhibition of Actinomyces naeslundii and Streptococcus mutans suggesting that hydrogen peroxide may be involved in the antimicrobial activity of catechins. These results suggest that GEC may be useful for controlling oral microorganism populations and reducing the accumulation of dental plaque, thereby helping to prevent periodontal disease and oral candidiasis. PMID:21532150

  16. Semisynthetic Modification of Cedrelone and its Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    P. Malairajana

    2012-12-01

    Full Text Available Cedrelone was isolated from Toona ciliata heart wood and the compound was modified with various chemical reagents and the resultant product was characterized by IR, 1H NMR, 13C NMR and Mass spectra. The synthesized compounds were screened for antimicrobial activities and the zone of inhibition was ascertained by disc diffusion method. The microorganisms selected for the study was Gram positive organisms such as a Staphylococcus aureus (ATCC 9144, b Staphylococcus epidermitis (ATCC 155, c Bacillus subtilis (ATCC 6633, d Bacillus cereus (ATCC 11778, e Micrococcus luteus (ATCC 46789 and Gram negative organisms a Escherichia coli (ATCC 25922, b Pseudomonas aeruginosa (ATCC 9027. Fungi organism a Candida albicans (ATCC 1091, b Aspergillus niger (ATCC 6275. Cedrelone and its derivatives exerted pronounced inhibitory response against all the species of bacterial organism tested, except E. coli. Bromohydroxy cedrelone and Michael adduct showed good antifungal activity.

  17. Antimicrobial Activity of Metabolites of Various Strains of Lactobacillus acidophilus

    Directory of Open Access Journals (Sweden)

    Hassan Pyar Ali Hassan

    2011-01-01

    Full Text Available The antimicrobial activity of metabolites of eight strains of Lactobacillus acidophilus (FTDC 2804, FTDC 0785, FTDC 8592, FTDC 1295, FTDC 4793, FTDC 4462, FTDC 0582 and FTDC 2916 against  Staphylococcus aureus (gram positive and Escherichia coli (gram negative, was examined and compared using agar well diffusion method.  Lactobacillus acidophilus was cultivated in two different types of dairy growth medium namely, full cream milk and skim milk. The results showed that the metabolites of all the eight strains had significant antimicrobial effect based on zone of inhibition results when compared to control. There was a statistically significant difference in the zone of inhibition data for Staphylococcus aureus and Escherichia coli among the metabolites of the eight strains cultivated in the two different growth medium. Certain L. acidophilus strains were more effective against  Staphylococcus aureus, while other strains were more effective against  Escherichia coli. On the other hand, the growth medium had no significant influence on the antimicrobial effect of metabolites of seven strains except  L. acidophilus FTDC 4462 against Escherichia coli. As for  Staphylococcus aureus, the growth medium only affected the antimicrobial effect of metabolite of strain  L. acidophilus FTDC 1295, but did not affect the antimicrobial effect of metabolites of the other seven strains. It can be concluded that L. acidophilus cultivated in dairy products produced metabolites with antimicrobial property, which could provide beneficial medicinal values to human.

  18. Antimicrobial activity of thin metallic silver flakes, waste products of a manufacturing process

    Institute of Scientific and Technical Information of China (English)

    Manuela Anzano; Alessandra Tosti; Marina Lasagni; Alfredo Campiglio; Demetrio Pitea; Elena Collina*

    2011-01-01

    The aim of the research was to develop new products and processes from a manufacturing waste from an Italian metallurgic company.The company produced thin silver metallic films and the production scraps were silver flakes.The possibility to use the silver flakes in water disinfection processes was studied.The antimicrobial activity of the flakes was investigated in batch using Escherichia coli as Gram-negative microorganism model.The flakes did not show any antimicrobial activity,so they were activated with two different processes:thermal activation in reducing atmosphere and chemical activation,obtaining,respectively,reduced flakes (RF) and chemical flakes (CF).The flakes,activated with either treatment,showed antimicrobial activity against E.coli.The kill rate was dependent on the type of activated flakes.The chemical flakes were more efficient than reduced flakes.The kill rate determined for 1 g of CF,1.0 ± 0.2min-1,was greater than the kill rate determined for 1 g of RF,0.069 + 0.004 min-1.This was confirmed also by the minimum inhibitory concentration values.It was demonstrated that the antimicrobial capability was dependent on flakes amount and on the type of aqueous medium.Furthermore,the flakes maintained their properties also when used a second time.Finally,the antimicrobial activities of flakes were tested in an effluent of a wastewater treatment plant where a variety of heterotrophic bacteria were present.

  19. Study the antimicrobial activity of six marine sponges and three parts of sea anemone onCandida albicans

    Institute of Scientific and Technical Information of China (English)

    Homa Hamayeli; Abdolhamid Namaki Shoshtari; Mehdi Hassanshahian; Majid Askari Hesni

    2016-01-01

    Objective:To evaluate the antifungal and inhibitory activity of six different species of marine sponges and one species of sea anemone that were collected from the Persian Gulf on the growth ofCandida albicans (C. albicans). Methods: Sea anemone and six different sponges were gathered from the Persian Gulf and extracted by methanol macerated with dichloromethane solvents. The activity of each extracts againstC. albicanswas determined by paper disc diffusion and agar well diffusion methods. Also, minimum inhibitory concentration and minimal bactericidal concentration of each extract were determined. Results: The finding of current research confirmed that all sponge extracts had sufficient inhibitory effect againstC. albicans but the extracts of sponge type 2 and 5 had the best inhibitory effect onC. albicans and their zones of inhibition were 45 mm and 38 mm, respectively. The tentacle of sea anemone had the best inhibitory effect againstC. albicans compared to other part of the body and its zone of inhibition was 41 mm. Besides, the sponge type 5 extracts had the best minimum inhibitory concentration and minimal bactericidal concentration values with 6.25 and 12.5 mg/mL, respectively. Conclusions: It could be concluded that the crude extracts of six different sponges and sea anemone have high potential to produce broad spectral antifungal activity with minimal concentration against different pathogenic fungi.

  20. Human β-Defensin 4 with Non-Native Disulfide Bridges Exhibit Antimicrobial Activity

    Science.gov (United States)

    Sharma, Himanshu; Nagaraj, Ramakrishnan

    2015-01-01

    Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency. PMID:25785690

  1. Effect of Pulmonary Surfactant on Antimicrobial Activity In Vitro

    OpenAIRE

    Schwameis, R; Erdogan-Yildirim, Z.; Manafi, M.; Zeitlinger, M. A.; Strommer, S.; Sauermann, R.

    2013-01-01

    Time-kill curve experiments were performed with linezolid, doripenem, tigecycline, moxifloxacin, and daptomycin against Staphylococcus aureus and with colistin, moxifloxacin, and doripenem against Pseudomonas aeruginosa to evaluate the effect of porcine pulmonary surfactant on antimicrobial activity. Pulmonary surfactant significantly impaired the activities of moxifloxacin and colistin. When antibiotics are being developed for respiratory tract infections, the method described here might be ...

  2. Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin

    Science.gov (United States)

    Lv, Guocheng; Pearce, Cody W.; Gleason, Andrea; Liao, Libing; MacWilliams, Maria P.; Li, Zhaohui

    2013-11-01

    Antibiotics are used not only to fight infections and inhibit bacterial growth, but also as growth promotants in farm livestock. Farm runoff and other farm-linked waste have led to increased antibiotic levels present in the environment, the impact of which is not completely understood. Soil, more specifically clays, that the antibiotic contacts may alter its effectiveness against bacteria. In this study a swelling clay mineral montmorillonite was preloaded with antibiotics tetracycline and ciprofloxacin at varying concentrations and bioassays were conducted to examine whether the antibiotics still inhibited bacterial growth in the presence of montmorillonite. Escherichia coli was incubated with montmorillonite or antibiotic-adsorbed montmorillonite, and then the number of viable bacteria per mL was determined. The antimicrobial activity of tetracycline was affected in the presence of montmorillonite, as the growth of non-resistant bacteria was still found even when extremely high TC doses were used. Conversely, in the presence of montmorillonite, ciprofloxacin did inhibit E. coli bacterial growth at high concentrations. These results suggest that the effectiveness of antimicrobial agents in clayey soils depends on the amount of antibiotic substance present, and on the interactions between the antibiotic and the clays in the soil, as well.

  3. Antimicrobial activity of the leaves of Myxopyrum serratulum A. W. Hill.

    Directory of Open Access Journals (Sweden)

    S. Gopalakrishnan

    2012-01-01

    Full Text Available The antibacterial and antifungal activities of petroleum ether (40-60oC, benzene, chloroform, ethanol and water extracts of the leaves of Myxopyrum serratulum A. W. Hill. (Oleaceae were tested for their antimicrobial activity in Agar diffusion assay. Significant antimicrobial activities were found against three gram positive bacteria, Streptococcus faecalis, Baccillus subtilis and Baccillus cereus, four gram negative bacteria; Klebsiella aerogens, Escherichia coli, Pseudomonas aeruginosa, Proteas vulgaris and two fungi, Candida albicans, Asparagillus flavans strains by using zone of inhibition assay. The activities were confirmed by Activity Index (AI. Activity Index values were found to be higher for ethanolic extract followed by the water extract. Among all the extracts tested; the ethanolic extract showed a good antimicrobial potential against microorganisms used in the study. The Minimum Inhibitory Concentration (MIC for the ethanolic extract was also determined. The results support the ethnomedicinal use of Myxopyrum serratulum for the treatment of wounds and cuts.

  4. One-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using sulfonic acid functionalized SBA-15 and the study on their antimicrobial activities

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammadi Ziarani

    2015-11-01

    Full Text Available A simple and clean one-pot method for the preparation of 7-amino-2,4-dioxo-5-aryl-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-6-carbonitrile derivatives using 6-amino uracil, various aromatic aldehydes and malononitrile in the presence of sulfonic acid functionalized SBA-15 (SBA-Pr-SO3H is described. Some of synthesized pyrido[2,3-d]pyrimidines showed antimicrobial activities against some fungi and gram positive and negative bacteria.

  5. Novel Zinc(II Complexes of Heterocyclic Ligands as Antimicrobial Agents: Synthesis, Characterisation, and Antimicrobial Studies

    Directory of Open Access Journals (Sweden)

    Ramesh S. Yamgar

    2014-01-01

    Full Text Available The synthesis and antimicrobial activity of novel Zn(II metal complexes derived from three novel heterocyclic Schiff base ligands 8-[(Z-{[3-(N-methylaminopropyl]imino}methyl]-7-hydroxy-4-methyl-2H-chromen-2-one, 2-[(E-{[4-(1H-1,2,4-triazol-1-ylmethylphenyl]imino}methyl]phenol, and (4S-4-{4-[(E-(2-hydroxybenzylideneamino]benzyl}-1,3-oxazolidin-2-one have been described. These Schiff base ligands and metal complexes are characterised by spectroscopic techniques. According to these data, we propose an octahedral geometry to all the metal complexes. Antimicrobial activity of the Schiff base ligand and its metal complexes was studied against Gram negative bacteria: E. coli and Pseudomonas fluorescens, Gram positive bacteria: Staphylococcus aureus, and also against fungi, that is, C. albicans and A. niger. Some of the metal complexes show significant antifungal activity (MIC < 0.2 μg/mL. The “in vitro” data has identified [Zn(NMAPIMHMC2]·2H2O, [Zn(TMPIMP2]·2H2O, and [Zn(HBABO2]·2H2O as potential therapeutic antifungal agents against C. albicans and A. niger.

  6. Antimicrobial activity of magnolol and honokiol against periodontopathic microorganisms.

    Science.gov (United States)

    Chang, B; Lee, Y; Ku, Y; Bae, K; Chung, C

    1998-05-01

    Magnolol (1) and honokiol (2), main compounds from the stem bark of Magnolia obovata Thunb., were evaluated for an antimicrobial activity against periodontopathic microorganisms, Porphyromonas gingivalis, Prevotella gingivalis, Actinobacillus actinomycetemcomitans, Capnocytophaga gingivalis, and Veillonella disper, and a cytotoxicity against human gingival fibroblasts and epithelial cells. Our results indicate that magnolol and honokiol, although less potent than chlorhexidine, show a significant antimicrobial activity against these microorganisms, and a relatively low cytotoxic effect on human gingival cells. Thus, it is suggested that magnolol and honokiol may have a potential therapeutic use as a safe oral antiseptic for the prevention and the treatment of periodontal disease. PMID:9619121

  7. Antimicrobial activity of Ulva reticulata and its endophytes

    Science.gov (United States)

    Dhanya, K. I.; Swati, V. I.; Vanka, Kanth Swaroop; Osborne, W. J.

    2016-04-01

    Seaweeds are known to exhibit various antimicrobial properties, since it harbours an enormous range of indigenous bioactive compounds. The emergence of drug resistant strains has directed to the identification of prospective metabolites from seaweed and its endophytes, thereby exploiting the properties in resisting bacterial diseases. The current study was aimed to assess the antimicrobial activity of extracts obtained from Ulva reticulate, for which metabolites of Ulva reticulata and its endophytes were extracted and assessed against human pathogens like Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Bacillus subtilis. It was observed that the hexane extract of isolate VITDSJ2 was effective against all the tested pathogens but a significant inhibition was observed for Staphylococcus aureus and Escherichia coli. Further, Gas chromatography coupled with Mass spectroscopy (GC-MS) revealed the existence of phenol, 3, 5-bis (1, 1-dimethylethyl) in the crude hexane extract which is well-known to possess antibacterial activity. The effective isolate VITDSJ2 was identified to be the closest neighbour of Pseudomonas stutzeri by phenotypic and genotypic methods. The crude extracts of the seaweed Ulva reticulata was also screened for antibacterial activity and the hexane extract was effective in showing inhibition against all the tested pathogens. The compound in the crude extract of Ulva reticulata was identified as hentriacontane using GC-MS. The extracts obtained from dichloromethane did not show significant activity in comparison with the hexane extracts. Hence the metabolites of Ulva reticulata and the bacterial secondary metabolites of the endophytes could be used in the treatment of bacterial infections.

  8. ANTIMICROBIAL ACTIVITY OF MENTHA ARVENSIS AGAINST CLINICAL ISOLATES OF HUMAN CARIOGENIC PATHOGENS- AN IN-VITRO STUDY

    OpenAIRE

    Vinod Singh et al.

    2012-01-01

    Patients with chronic dental infection are usually treated with antibiotics. However, the value of antibiotics was decreasing because increased resistance in bacteria. The objective of this study is to evaluate the efficacy of herbal crude extract of Mentha arvensis in human Cariogenic pathogens. In this study we obtained crud extract of Mentha arvensis in different solvent 50% and 10% methanol, ethyl acetate, chloroform and was tested against human Cariogenic pathogens Streptococcus mutans...

  9. Development and evaluation of antimicrobial activated carbon fiber filters using Sophora flavescens nanoparticles.

    Science.gov (United States)

    Sim, Kyoung Mi; Kim, Kyung Hwan; Hwang, Gi Byoung; Seo, SungChul; Bae, Gwi-Nam; Jung, Jae Hee

    2014-09-15

    Activated carbon fiber (ACF) filters have a wide range of applications, including air purification, dehumidification, and water purification, due to their large specific surface area, high adsorption capacity and rate, and specific surface reactivity. However, when airborne microorganisms such as bacteria and fungi adhere to the carbon substrate, ACF filters can become a source of microbial contamination, and their filter efficacy declines. Antimicrobial treatments are a promising means of preventing ACF bio-contamination. In this study, we demonstrate the use of Sophora flavescens in antimicrobial nanoparticles coated onto ACF filters. The particles were prepared using an aerosol process consisting of nebulization-thermal drying and particle deposition. The extract from S. flavescens is an effective, natural antimicrobial agent that exhibits antibacterial activity against various pathogens. The efficiency of Staphylococcus epidermidis inactivation increased with the concentration of S. flavescens nanoparticles in the ACF filter coating. The gas adsorption efficiency of the coated antimicrobial ACF filters was also evaluated using toluene. The toluene-removal capacity of the ACF filters remained unchanged while the antimicrobial activity was over 90% for some nanoparticle concentrations. Our results provide a scientific basis for controlling both bioaerosol and gaseous pollutants using antimicrobial ACF filters coated with S. flavescens nanoparticles.

  10. Nisin Z, mutant nisin Z and lacticin 481 interactions with anionic lipids correlate with antimicrobial activity. A monolayer study

    NARCIS (Netherlands)

    Demel, Rudolf A.; Peelen, Tamara; Siezen, Roland J.; Kruijff, Ben de; Kuipers, Oscar P.

    1996-01-01

    Monomolecular layers of lipids at the air/water interface have been used as a model membrane to study membrane interactions of the lantibiotic nisin. The natural lantibiotics nisin A and nisin Z proved to have a high affinity for the anionic lipids phosphatidylglycerol and bis(phosphatidyl)glycerol

  11. Comparative study of in-vitro antimicrobial activity and phytochemical composition of Sida cuneifolia fruits, leaves, and stem bark extracts

    Directory of Open Access Journals (Sweden)

    Rebecca Nalubega

    2014-10-01

    Conclusion: The study provides scientific evidence for ethno-veterinary use of S. cuneifolia leaves, fruits and stem bark, and this can be exploited in the transformative development of ethno-medicine. [Int J Basic Clin Pharmacol 2014; 3(5.000: 781-788

  12. Comparative chemical and antimicrobial study of nine essential oils obtained from medicinal plants growing in Egypt

    OpenAIRE

    Nashwa Tarek; Hossam M Hassan; Sameh M.M. AbdelGhani; I.A. Radwan; Ola Hammouda; Ahmed O. El-Gendy

    2014-01-01

    Essential oils are one of interesting natural products group that are used in different aspects of life due to their various biological activities. This study investigate the antimicrobial activities of 9 herbal essential oils on survival and growth of selected pathogenic and spoilage microorganisms. Essential oils were obtained by hydrodistillation method and were analyzed using GC/MS technique. The oils were tested for their antimicrobial activity against 2 Gram +ve, Staphylococcus aureus (...

  13. Isolation of actinomycetes from mangrove and estuarine sediments of Cochin and screening for antimicrobial activity

    Institute of Scientific and Technical Information of China (English)

    Emilda Rosmine

    2016-01-01

    Objective:To isolate and screen actinomycetes for antimicrobial activity from mangroves and estuarine soil samples of Cochin. Methods: In the present study, sediment samples collected from mangroves and various stations of Cochin estuary were pretreated and actinomycetes were isolated on different selective media. The isolates were screened for antibiotic activity by following disc diffusion assay (Kirby-Bauer method) against human pathogens, fish pathogens and Gram-positive bacteria. The isolates were identified based on their morphology. Results:Only 2 actinomycete isolates (ER7and ER10) of the 50 isolates screened had antimicrobial activities against one or more pathogens tested. ER7 isolate showed higher antimicrobial activity as compared to that of ER10 isolate. The maximum inhibition zone of crude extract from ER7 was 16.7 mm. The methanol extract of ER7 showed antimicrobial activity against all the pathogens tested with a maximum zone of 21.0 mm. The isolates with antimicrobial activity were found to belong to the genusStreptomyces. Conclusions:There is no significant report on bioactive actinomycetes from the present study areas. Potent antibiotics from the selected isolates could contribute to fight against several human and fish diseases. Further purification, structural elucidation and characterization are recommended to know the quality, novelty and commercial value of these antibiotics. Hence, the mangroves and estuary of Kochi show great promise for the discovery of bioactive actinomycetes.

  14. Antioxidant and antimicrobial activities of selected medicinal plants from Algeria

    Institute of Scientific and Technical Information of China (English)

    Krimat Soumia; Dob Tahar; Lamari Lynda; Boumeridja Saida; Chelghoum Chabane; Metidji Hafidha

    2014-01-01

    Objective:To evaluate the antioxidant and antimicrobial activity of methanolic extract extracts of selected Algerian medicinal plants. Methods:Antioxidant activity of extracts was evaluated in terms of radical scavenging potential (2,2-diphenyl-1-picrylhydrazyl) and β-carotene bleaching assay. Total phenolic contents and flavonoid contents were also measured. Antimicrobial activity of these plants was examined against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. Results:The values of IC50 ranged from 4.30 μg/mL to 486.6 μg/mL for the DPPH method, while total antioxidant activity using β-carotene/linoleic acid bleaching assay ranged from 17.03%to 86.13%. It was found that Pistacia lentiscus showed the highest antioxidant capacities using DPPH assay (IC50=4.30 μg/mL), while Populus trimula, Origanum glandulosum, Centaurea calcitrapa, Sysimbrium officinalis and Rhamnus alaternus showed the highest percent of total antioxidant activity inβ-carotene/linoleic acid bleaching assay. Total phenolic and flavonoid contents ranged from 3.96 to 259.65 mg GAE/g extract and from 1.13 to 26.84 mg QE/g extract, respectively. The most interesting antimicrobial activity was obtained from Sysimbrium officinalis, Rhamnus alaternus, Origanum glandulosum, Cupressus sempervirens, Pinus halipensis and Centaurea calcitrapa. Conclusions:The results indicated that the plants tested may be potential sources for isolation of natural antioxidant and antimicrobial compounds.

  15. Antioxidant and antimicrobial activities of selected medicinal plants from Algeria

    Directory of Open Access Journals (Sweden)

    Krimat Soumia

    2014-06-01

    Full Text Available Objective: To evaluate the antioxidant and antimicrobial activity of methanolic extract extracts of selected Algerian medicinal plants. Methods: Antioxidant activity of extracts was evaluated in terms of radical scavenging potential (2,2-diphenyl-1-picrylhydrazyl and β-carotene bleaching assay. Total phenolic contents and flavonoid contents were also measured. Antimicrobial activity of these plants was examined against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. Results: The values of IC50 ranged from 4.30 μg/mL to 486.6 μg/mL for the DPPH method, while total antioxidant activity using β-carotene/linoleic acid bleaching assay ranged from 17.03% to 86.13%. It was found that Pistacia lentiscus showed the highest antioxidant capacities using DPPH assay (IC50=4.30 μg/mL, while Populus trimula, Origanum glandulosum, Centaurea calcitrapa, Sysimbrium officinalis and Rhamnus alaternus showed the highest percent of total antioxidant activity in β-carotene/linoleic acid bleaching assay. Total phenolic and flavonoid contents ranged from 3.96 to 259.65 mg GAE/g extract and from 1.13 to 26.84 mg QE/g extract, respectively. The most interesting antimicrobial activity was obtained from Sysimbrium officinalis, Rhamnus alaternus, Origanum glandulosum, Cupressus sempervirens, Pinus halipensis and Centaurea calcitrapa. Conclusions: The results indicated that the plants tested may be potential sources for isolation of natural antioxidant and antimicrobial compounds.

  16. Antimicrobial activity of leaf extracts of Justicia adhatoda L. in comparison with vasicine

    Institute of Scientific and Technical Information of China (English)

    Rashmi Pa; Linu Mathew

    2012-01-01

    Objective: To ascertain the antimicrobial activity of methanolic leaf extracts of Justicia adhatoda and vasicine against Staphylococcus aureus, Streptococcus pyogenes, Serratia marcescens, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Cryptococcus neoformans and Aspergillus flavus. Methods: The antimicrobial activity of the concentrated leaf extracts of J. adhatoda was evaluated by determination of the diameter of zone of inhibition against bacteria and fungi. 25μg ml-1 concentration was used to check the antimicrobial activity of plant extracts and vasicine. Minimum inhibitory concentrations and minimum microbicidal concentrations were determined against all the pathogens. Sensitivity of the pathogens was also checked with four standard antibiotics, ciprofloxacin and ofloxacin for bacteria and nystatin and amphotericin B for fungi. Results: The phytochemical studies revealed the presence of alkaloids in the extracts were active against both bacteria and fungi. Studies on the minimum inhibitory concentration of the extracts on the test organisms showed that the lowest minimum inhibitory concentration and minimum microbicidal concentrations were demonstrated against Serratia marcescens, Escherichia coli and Pseudomonas aeruginosa and the highest minimum inhibitory concentration was exhibited against Staphylococcus aureus, Streptococcuspyogenes, Klebsiella pnuemoniae. Among fungi Aspergillus flavus showed lowest minimum inhibitory concentration whereas Candida albicans and Cryptococcus neoformans showed highest minimum inhibitory concentration. Conclusion: The present study revealed that J. adhatoda has broad spectrum of antimicrobial activity and a potential source of antimicrobial agents that could be useful for chemotherapy and control of infectious diseases.

  17. Reevaluation of antimicrobial and antioxidant activity of Thymus spp. extracts before and after encapsulation in liposomes.

    Science.gov (United States)

    Gortzi, Olga; Lalas, Stavros; Chinou, Ioanna; Tsaknis, John

    2006-12-01

    The antioxidant and antimicrobial activity of four Thymus species (boissieri, longicaulis, leucospermus, and ocheus) extracts were determined. Two methods (Rancimat and malondialdehyde by high-performance liquid chromatography) were used to measure the antioxidant action in comparison with common commercial antioxidants, including butylated hydroxytoluene and alpha-tocopherol. The extracts that presented high antioxidant activity were encapsulated in liposomes and their antioxidant action was again estimated. Thermal-oxidative decomposition of the samples (pure liposomes and encapsulating extracts) was studied using the differential scanning calorimetry method. The modification of the main transition temperature for the lipid mixture and the splitting of the calorimetric peak in the presence of the antioxidants were also demonstrated by differential scanning calorimetry. All extracts showed antioxidant and antimicrobial activities. Some extracts showed superior or equal antioxidant activity to alpha-tocopherol. When the extracts were encapsulated in liposomes, their antioxidant as well as antimicrobial activities proved to be superior from the same extracts in pure form. PMID:17186670

  18. Synthesis and antimicrobial activity of amphiphilic carbohydrate derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Roberta C.N.; Oda, Simone C.; Almeida, Mauro V. de; Le Hyaric, Mireille [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil). Dept. de Quimica]. E-mail: mireille.hyaric@ufjf.edu.br; Lourenco, Maria C.S.; Vicente, Felipe R.C. [Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil ). Instituto de Pesquisa Clinica Evandro Chagas (IPEC); Barbosa, Nadia R.; Trevizani, Rafael; Santos, Priscila L.C. [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil). Faculdade de Farmacia e Bioquimica

    2008-07-01

    N-monoalkylated diamines were synthesised and treated with D-ribonolactone or D-gluconolactone. The resulting aldonamides were evaluated for their antimicrobial activity against S. aureus, E. coli, M. tuberculosis and C. albicans. Two hydrazides were also prepared from ribonohydrazide and their biological activity was compared to their amide analogues. All the ribono-derivatives displayed moderated antitubercular activity, and some of them were also active against S. aureus. (author)

  19. Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis.

    Science.gov (United States)

    Salami, Maryam; Moosavi-Movahedi, Ali Akbar; Ehsani, Mohammad Reza; Yousefi, Reza; Haertlé, Thomas; Chobert, Jean-Marc; Razavi, Seyed Hadi; Henrich, Robert; Balalaie, Saeed; Ebadi, Seyed Ahmad; Pourtakdoost, Samineh; Niasari-Naslaji, Amir

    2010-03-24

    The compositions and structures of bovine and camel milk proteins are different, which define their functional and biological properties. The aim of this study was to investigate the effects of enzymatic hydrolysis of camel and bovine whey proteins (WPs) on their antioxidant and antimicrobial properties. After enzymatic treatment, both the antioxidant and the antimicrobial activities of bovine and camel WPs were improved. The significantly higher antioxidant activity of camel WPs and their hydrolysates as compared with that of bovine WPs and their hydrolysates may result from the differences in amounts and/or in accessibilities of antioxidant amino acid residues present in their primary structures and from the prevalence of alpha-lactalbumin and beta-lactoglobulin as proteolytic substrates in camel and bovine whey, respectively. The results of this study reveal differences in antimicrobial and antioxidant activities between WP hydrolysates of bovine and camel milk and the effects of limited proteolysis on these activities.

  20. Studies on Chemical Constituents and Antimicrobial Activities of Persimmon Leaves%柿叶化学成分及其抑菌活性研究

    Institute of Scientific and Technical Information of China (English)

    季志平; 苏印泉; 吕平会; 张存莉

    2006-01-01

    对柿叶的化学成分进行了定性分析和抗菌活性的研究.通过系统预试,初步确定柿叶中含有生物碱、皂苷、氨基酸、多肽、有机酸、酚类和鞣质、糖类、甾体、总黄酮、强心苷、蒽醌、挥发油等物质.抑制活性试验结果显示:乙醇提取物和乙酸乙酯萃取物对供试的6种细菌有较强的抑制作用;水相对供试的5种真菌有较强的抑制作用,而且对细菌有较小抑制作用;石油醚相对真菌和细菌几乎无抑制作用;正丁醇萃取物对细菌有不同程度的抑制作用,而对真菌无抑制作用.用不同质量浓度的乙酸乙酯提取物进行抑菌活性试验,结果显示:质量浓度越高,其抑菌能力越强,而且,在不同质量浓度下,对测试的6个细菌的抑制活性的大小顺序不一致.%Chemical constituents of persimmon leaves and antimicrobial activities were studied. Results showed that persimmon leaves contained alkaloids, saponins, amino acids, polypeptides, organic acids, phenolic compounds and tannins, saccharides,steroids, flavones, cardiac glycosides, anthraquinones, naphtha, etc. Results of experiments on antibacterial and antifungal activities showed that extracts of alcohol and acetic ester had remarkable bacteriostasis effects against 6 bacteria; aqueous extract was more effective against fungi, and slight against bacteria; petroleum ether extract had no effect against bacteria and fungi; butylalcohol extract had different effects against bacteria, but had no effects against fungi. Results of bacteriostasis activities of acetic ester extract under different concentrations showed that the higher concentration,the stronger bacteriostasis effect was, and that the sequence of bacteriostasis activities was different under different concentrations.

  1. A Study of Anti-Microbial Effect of Pycnocycla Spinosa's Fruit Extracts

    Directory of Open Access Journals (Sweden)

    M. Jalali, Ph.D.

    2007-09-01

    Full Text Available Background and purpose: Infectious diseases account for approximately one-half of all deaths in tropical country. In developed country, despite the progress made on the control of disease, incidence of epidemics due to drug resistant microorganisms and unknown diseases spreading microbes pose enormous public health concerns. On the other hand, in spite of improvements in food production hygiene, food safety is increasingly an important health issue. There is, therefore, still a need for new antimicrobial agent to reduce or eliminate foodborne pathogen as well as food spoilage microorganisms. Historically, plants play a major role in primary health-care as therapeutic remedies in developing countries. The screening of plant extracts has been of great interest to scientists for the discovery of new drugs effective in the treatment of infectious disease. Umbelleferea is known to be a potential source for the antimicrobial agents. The present study attempts to investigate the antimicrobial activity of Pycnocycla spinosa as a member of Umbelleferea against selected microorganisms.Materials and Methods: The plants were collected from Isfahan and different solvent extracts of plants were prepared. Then, the antimicrobial activity of extract was determined, using disk diffusion method. The minimal inhibitory concentration (MIC was determined by tube dilution method.Results: Results demonstrated that different extracts of plants indicate antimicrobial activity against bucillu subtilis, aspergiluse niger and candida albicans. Generally, the antimicrobial activity of the plant’s fruit extracts is considered medium.Conclusion: Pycnocycla spinosa fruit's extract showed medium antimicrobial activity. Hydroalcoholic extract of the fruit demonstrated higher antimicrobial activity. This may reflect a low concentration of active components in extracts. Further studies are needed to investigate antimicrobial activity of the plant's essential oil and other parts

  2. Comparison of antimicrobial activity of essential oils, plant extracts and methylparaben in cosmetic emulsions: 2 months study.

    Science.gov (United States)

    Herman, Anna

    2014-09-01

    The aim of the study was to compare the preservative effectiveness of plant extracts (Matricaria chamomilla, Aloe vera, Calendula officinalis) and essential oils (Lavandulla officinalis, Melaleuca alternifolia, Cinnamomum zeylanicum) with methylparaben in cosmetic emulsions against skin microflora during 2 months of application by volunteers. Cosmetic emulsions with extracts (2.5 %), essential oils (2.5 %), methylparaben (0.4 %) or placebo were tested by 40 volunteers during 2 months of treatment. In order to determine microbial purity of the emulsions, the samples were taken after 0, 2, 4, 6 and 8 weeks of application. Throughout the trial period it was revealed that only cinnamon oil completely inhibited the growth of bacteria, yeast and mould, as compared to all other essential oils, plant extracts and methylparaben in the tested emulsions. This result shows that cinnamon oil could successfully replace the use of methylparaben in cosmetics, at the same time ensuring microbiological purity of a cosmetic product under its in-use and storage conditions. PMID:24891745

  3. Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies

    Science.gov (United States)

    Murali Krishna, I.; Bhagavanth Reddy, G.; Veerabhadram, G.; Madhusudhan, A.

    2016-06-01

    An economically viable and "green" process has been developed for the synthesis of silver nanoparticles (AgNPs) with an average size of 7 nm using non-toxic and renewable salmalia malabarica gum (SMG) as reducing and capping agent without using any chemical reducing agent. The effect of various parameters such as concentration of SMG and silver nitrate and reaction time for the synthesis of AgNPs was studied. The synthesized AgNPs are systematically characterized by UV/Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and Transmission electron microscopy. The resultant SMG-capped AgNPs are highly stable and had significant antibacterial action on both Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). The catalytic action of the SMG-capped AgNPs to initiate the reduction of 4-nitrophenol (4-NP) in the presence of NaBH4 has also been reported. The kinetics of the reaction was found to be of pseudo-first-order with respect to the 4-NP.

  4. MOLECULAR PROFILING AND ANTIMICROBIAL ACTIVITY OF BACTERIOCIN FROM BACILLUS SUBTILIS

    Directory of Open Access Journals (Sweden)

    Berlina Dhas S

    2012-12-01

    Full Text Available Development of multi drug resistant organism has been high due to improper use of antibiotics. That made the necessity to develop new drug molecules. In this study an effort was made to find a new alternative. A wild type microorganism was isolated from soil and was identified as Bacillus and confirmed as Bacillus subtilis species by 16S r RNA sequencing. The strain was identified to have the ability to produce bacteriocin by stab overlay assay. Bacteriocin was produced in nutrient broth and that was extracted by organic solvent extraction using chloroform and further purification was carried out by HPLC and the molecular weight of the bacteriocin was analysed by SDSPAGE. Antimicrobial activity was analysed on four strains Pseudomonas sp, Staphylococcus sp, Klebsiella sp and Proteus sp. and was found to be sensitive towards the analyzed strains.

  5. ANTIMICROBIAL ACTIVITY OF NINE MEDICINAL PLANTS FROM VERACRUZ, MEXICO

    Directory of Open Access Journals (Sweden)

    Chena-Becerra, F

    2014-11-01

    Full Text Available The medicinal plants are an alternative source to the treatment of primary health care problems. An ethnobotanical study performed on Tlalchy, Ixhuacán de los Reyes, Veracruz, México, allowed the selection of nine plant species involved in infectious diseases treatments. Antimicrobial activities of ethanolic crude extracts were tested on fifteen bacterial and yeast clinical isolates. Every extract showed a level of inhibition against almost all the microorganisms assayed. According to the Clinical and Laboratory Standards Institute norms, representative results emerged over three species: T. diversifolia, C. nitidula y L. racemosa, therefore, Minimal Inhibitory Concentration values were determined on these species. The data suggest that using medicinal plants of Tlalchy is convenient, for this reason, we put forward further investigation on several species

  6. Studies on antimicrobial activity, in vitro, of Physalis angulata L. (Solanaceae fraction and physalin B bringing out the importance of assay determination

    Directory of Open Access Journals (Sweden)

    Melissa TG Silva

    2005-11-01

    Full Text Available Complex physalin metabolites present in the capsules of the fruit of Physalis angulata L. have been isolated and submitted to a series of assays of antimicrobial activity against Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213, S. aureus ATCC 25923, S. aureus ATCC 6538P, Neisseria gonorrhoeae ATCC 49226, Escherichia coli ATCC 8739; E. coli ATCC 25922, Candida albicans ATCC 10231 applying different methodologies such as: bioautography, dilution broth, dilution agar, and agar diffusion techniques. A mixture of physalins (pool containing physalins B, D, F, G inhibit S. aureus ATCC 29213, S. aureus ATCC 25923, S. aureus ATCC 6538P, and N. gonorrhoeae ATCC 49226 at a concentration of 200 mg/µl, using agar dilution assays. The mixture was inactive against P. aeruginosa ATCC27853, E. coli ATCC 8739; E. coli ATCC 25922, C. albicans ATCC 10231 when applying bioautography assays. Physalin B (200 µg/ml by the agar diffusion assay inhibited S. aureus ATCC 6538P by ± 85%; and may be considered responsible for the antimicrobial activity.

  7. THE STUDY OF ANTIMICROBIAL ACTIVITY OF COMBINATIONS OF FOSFOMYCIN WITH CEFEPIME AND FOSFOMYCIN WITH TIENAME IN RESPECT POLYANTIBIOTIC-RESISTANT STRAINS OF PSEUDOMONAS AERUGINOSA

    Directory of Open Access Journals (Sweden)

    Dyachenko V. F.

    2014-12-01

    Full Text Available The rapid decrease in sensitivity of pathogens septic infections to antimicrobial agents has led to significant difficulties in the fight against antibiotic-resistant infections even in developed countries. One solution to this problem is a method of combining antimicrobial different pharmacological groups. The most promising for combination drugs are derivatives of phosphonic acids, which are able to deeply penetrate biological film and microbial cells and enhance the antibacterial action of other antibiotics. A study of the effectiveness of combination antibiotic fosfomycin with cefepime and fosfomycin with tiename on polyantibiotic-resistant strains Pseudomonas aeruginosa. Set the antibiotic used in the experiments performed by P.aeruginosa strains of "serial dilutions" and the disco-diffusion method. The efficacy of combinations of antibiotics was carried out by determining the minimum inhibitory concentrations routine method in vitro method "checkerboard". The results of experimental studies the combination of cefepime on multiresistant strains Fosfomycin on Pseudomonas aeruginosa show a significant decrease in the MIC of cefepime in combination on ten of the thirteen strains. MIC Fosfomycin significantly decreased relative to the nine strains. In calculating the index FIX appears that a synergistic effect of the combination of antibiotics studied (FIX ≤ 0,5 was observed on 69.2% of the subjects strains of P.aeruginosa. In experiments on three strains observed effect summation antimicrobial antibiotics specified combinations (FIX> 0,5, ≤ 1,0, one strain - indifferent effect (FIX> 1.0. You can also combined fosfomycin with tiename significant (greater than 2-fold reduction in MIC these antibiotics was observed only for 2 subjects cultures P. aeruginosa. Calculation of the FIX showed that combined use of fosfomycin with tiename created largely indifferent effect refers to the strains of P. aeruginosa. Thus, studies have shown a high

  8. Antimicrobial Activity of Bacteriocins and Their Applications

    Science.gov (United States)

    Drosinos, Eleftherios H.; Mataragas, Marios; Paramithiotis, Spiros

    Bacteriocins are peptides or proteins that exert an antimicrobial action against a range of microorganisms. Their production can be related to the antagonism within a certain ecological niche, as the producer strain, being itself immune to its action, generally gains a competitive advantage. Many Gram-positive and Gram-negative microorganisms have been found to produce bacteriocins. The former, and especially the ones produced by lactic acid bacteria, has been the field of intensive research during the last decades mainly due to their properties that account for their suitability in food preservation and the benefits arising from that, and secondarily due to the broader inhibitory spectrum compared to the ones produced by Gramnegative microorganisms.

  9. Antimicrobial activity of Avicennia marina extracts ethanol, methanol & glycerin against Penicillium digitatum (citrus green mold

    Directory of Open Access Journals (Sweden)

    Behrooz Alizadeh Behbahani

    2013-01-01

    Full Text Available Finding natural antimicrobial compound with minimum side effects on health the is important because of microorganisms are more antibiotics resistance. Avicenniaceae family is a member of true mangrove plants which has one genus, 11 species and several sub species. Avicennia marina (Forssk. Vierh is the most current species among these plants in Iranian mangrove forest. In this study, mangrove leaves were dried in shadow and appropriate condition. After extraction with ethanol 96 degree, methanol 96 degree and 20% glycerin antimicrobial effect of extract were determined by "screening antimicrobial activity" and "disk agar diffusion test" in 20, 40, 60 and 80 Percent concentration of the extract against Penicillium digitatum. The results showed that mangrove leaf extract in screening antimicrobial activity method in 2000 μg/ml, were inhibited Penicillium digitatum of growth. In "disk agar diffusion test, mangrove extract, in 20, 40, 60 and 80 Percent concentration, the mentioned extract were shown inhibition effect on mold pathogen growth. Ethanol 96 degree extract was more effective than methanol 96 degree and 20% glycerin extract as antimicrobial against on Penicillium digitatum (p Results showed extract of mangrove can be used as natural antimicrobial in food products.

  10. Black cobra (Naja naja karachiensis) lysates exhibit broad-spectrum antimicrobial activities

    Science.gov (United States)

    Sagheer, Mehwish; Siddiqui, Ruqaiyyah; Iqbal, Junaid; Khan, Naveed Ahmed

    2014-01-01

    It is hypothesized that animals living in polluted environments possess antimicrobials to counter pathogenic microbes. The fact that snakes feed on germ-infested rodents suggests that they encounter pathogenic microbes and likely possess antimicrobials. The venom is used only to paralyze the rodent, but the ability of snakes to counter potential infections in the gut due to disease-ridden rodents requires robust action of the immune system against a broad range of pathogens. To test this hypothesis, crude lysates of different organs of Naja naja karachiensis (black cobra) were tested for antimicrobial properties. The antimicrobial activities of extracts were tested against selected bacterial pathogens (neuropathogenic Escherichia coli K1, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Streptococcus pneumonia), protist (Acanthamoeba castellanii), and filamentous fungus (Fusarium solani). The findings revealed that plasma and various organ extracts of N. n. karachiensis exhibited antimicrobial activity against E. coli K1, MRSA, P. aeruginosa, S. pneumoniae, A. castellanii, and F. solani in a concentration-dependent manner. The results of this study are promising for the development of new antimicrobials. PMID:24625321

  11. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract

    Directory of Open Access Journals (Sweden)

    Amgad A Awad El-Gied

    2015-01-01

    Full Text Available Medicinal plants have curative properties due to the presence of various complex chemical substance of different composition, which are found as secondary plant metabolites in one or more parts of these plants. Mangifera indica Linn (MI L. is a species of mango in the Anacardiaceae family. Phytoconstituents in the seed extracts may be responsible for the antimicrobial activity of the plant. The purpose of the study was to formulate and evaluate the antimicrobial herbal ointment and cream from extracts of the seeds of mango (MI L. The formulated ointments containing oleaginous-based showed the best formulation compared to the emulsion water in oil type, the ointment and cream bases in different concentration 1%, 5% and 10%. The formulated ointment and cream of MI L. were subjected to evaluation of Uniformity of Weight, measurement of pH, viscosity, Spreadability, Acute skin irritation study, stability study and antimicrobial activity. Our study shows that MI has high potential as an antimicrobial agent when formulated as ointment and creams for topical use. Thus, the present study concludes that the formulated formulations of the MI are safe and efficient carriers, with potent antimicrobial activity.

  12. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract.

    Science.gov (United States)

    Awad El-Gied, Amgad A; Abdelkareem, Abdelkareem M; Hamedelniel, Elnazeer I

    2015-01-01

    Medicinal plants have curative properties due to the presence of various complex chemical substance of different composition, which are found as secondary plant metabolites in one or more parts of these plants. Mangifera indica Linn (MI L.) is a species of mango in the Anacardiaceae family. Phytoconstituents in the seed extracts may be responsible for the antimicrobial activity of the plant. The purpose of the study was to formulate and evaluate the antimicrobial herbal ointment and cream from extracts of the seeds of mango (MI L.) The formulated ointments containing oleaginous-based showed the best formulation compared to the emulsion water in oil type, the ointment and cream bases in different concentration 1%, 5% and 10%. The formulated ointment and cream of MI L. were subjected to evaluation of Uniformity of Weight, measurement of pH, viscosity, Spreadability, Acute skin irritation study, stability study and antimicrobial activity. Our study shows that MI has high potential as an antimicrobial agent when formulated as ointment and creams for topical use. Thus, the present study concludes that the formulated formulations of the MI are safe and efficient carriers, with potent antimicrobial activity. PMID:25878974

  13. Antimicrobial activity of kombucha made from Rtanj tea

    Directory of Open Access Journals (Sweden)

    Cvetković Dragoljub D.

    2005-01-01

    Full Text Available Kombucha is a beverage with special therapeutic properties produced by the metabolic activity of yeasts and acetic acid bacteria in sweetened black tea (traditional cultivation medium. The antimicrobial activity of kombucha (for consumption made from black tea and Rtanj tea, as well as particular control samples, was examined by the modified disc diffusion method. Salmonella enteritidis, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa Staphylococcus aureus, Bacillus sp., Sarcina lutea, Penicillium aurantiogriseum, Aspergilus niger, Aspergilus flavus, Rhodotorula sp. Candida pseudotropi-calis and Saccharomyces cerevisae have been used as test organisms. Acetic acid and kombucha samples show significant antimicrobial activity against all bacteria except Sarcina lutea. The other control samples (neutralized kombucha, tea and a "model sistem" show less bacteriostatic activity. Kombucha and acetic acid solution show borderline inhibitory activity against some moulds, while was no activity against yeasts.

  14. Antimicrobial and Antifungal Activity of Pelargonium roseum Essential Oils

    Directory of Open Access Journals (Sweden)

    Gâlea Carmen

    2014-12-01

    Conclusion: The volatile oils exhibited considerable inhibitory effects against all the organisms under test, in some cases comparable with those of the reference antibiotics. There were no considerable differences between the antimicrobial activities of the oil obtained by distillation and commercially available Pelargonium oils.

  15. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species

    Directory of Open Access Journals (Sweden)

    Snežana Marković

    2011-08-01

    Full Text Available The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+ bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells.

  16. Synthesis and Antimicrobial Activities of Some Pyrazoline Derivatives

    Directory of Open Access Journals (Sweden)

    Ganguly Sushmita S

    2012-10-01

    Full Text Available An efficient synthesis of 3, 5-disubstituted-2-pyrazoline was carried out by the condensation of chalcones with hydrazine hydrate in ethanol in presence of piperidine. The newly synthesized compounds were characterized by 1H NMR spectroscopy, IR spectroscopy, MS, elemental analysis and screened for their antimicrobial activity against various strains of bacteria and fungi.

  17. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria

    OpenAIRE

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U.; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, ...

  18. SCREENING OF ANTIMICROBIAL ACTIVITY AND GENES CODING POLYKETIDE SYNTHETASE AND NONRIBOSOMAL PEPTIDE SYNTHETASE OF ACTINOMYCETE ISOLATES

    Directory of Open Access Journals (Sweden)

    Silvia Kovácsová

    2013-12-01

    Full Text Available The aim of this study was to observe antimicrobial activity using agar plate diffusion method and screening genes coding polyketide synthetase (PKS-I and nonribosomal peptide synthetase (NRPS from actinomycetes. A total of 105 actinomycete strains were isolated from arable soil. Antimicrobial activity was demonstrated at 54 strains against at least 1 of total 12 indicator organisms. Antifungal properties were recorded more often than antibacterial properties. The presence of PKS-I and NRPS genes were founded at 61 of total 105 strains. The number of strains with mentioned biosynthetic enzyme gene fragments matching the anticipated length were 19 (18% and 50 (47% respectively. Overall, five actinomycete strains carried all the biosynthetical genes, yet no antimicrobial activity was found against any of tested pathogens. On the other hand, twenty-one strains showed antimicrobial activity even though we were not able to amplify any of the PKS or NRPS genes from them. Combination of the two methods showed broad-spectrum antimicrobial activity of actinomycetes isolated from arable soil, which indicate that actinomycetes are valuable reservoirs of novel bioactive compounds.

  19. ANTIMICROBIAL ACTIVITY OF WATER EXTRACTS OF TRIKATU CHURNA AND ITS INDIVIDUAL INGREDIENT

    Directory of Open Access Journals (Sweden)

    P.R. Malvankar* and M. M. Abhyankar

    2012-04-01

    Full Text Available Trikatu churna is one of the traditional poly herbal preparation, formed by mixing equal quantities of three important spicy materials such as Piper longum L. (Piperaceae, Piper nigrum L. (Piperaceae and Zingiber officinale Roscoe (Zingiberaceae. Trikatu is also known as “ Three Bitters”. The trikatu preparation was reported to contain alkaloids, phenols, tannins, flavanoids, steroids, lignin & saponins. The objective of study is to evaluate the antimicrobial activity of trikatu churna & its individual ingredients with their preliminary phytochemical study. The aqueous extracts of trikatu churna & its each ingredient were tested for antimicrobial activity against certain bacterial strains of Escherichia coli, Staphylococcus aureus by in vitro agar well diffusion method and the results are recorded as the zone of inhibition. Trikatu churna was found to possess higher extent of phytoconstituents with promising antimicrobial activity.

  20. Antimicrobial activity of methanolic extracts of indigenous traditional Indian folk Medicinal Plant, Gnaphalium polycaulon

    Directory of Open Access Journals (Sweden)

    Shanmugapriya Kaminidevi

    2015-01-01

    Full Text Available Background and Aim: Gnaphalium polycaulon (L. Pers. (Asteraceae plant, locally known as Nerabu chedi, collected from Nilgiri District, Tamil Nadu was subjected to antimicrobial screening and minimum inhibitory concentration of methanolic extracts of leaf, stem, and flower. Methodology: The selected plant used in traditional Indian medicine was examined for antimicrobial activity and minimum inhibitory concentration against human pathogenic bacteria and fungus using the agar well diffusion method. The antilog of the corresponding value of concentration was taken as the minimum inhibitory concentration value. Statistical Analysis: All the values of the results of the assay were expressed as means of triplicates, mean ΁ standard deviation. Results: The antimicrobial activity of methanolic leaf extracts of G. polycaulon showed a high level of antimicrobial activity against the studied bacterial and fungal pathogens. Conclusion: Based on the results obtained, the medicinal value of this plant could be attributed to the presence of secondary metabolites in the traditional herbal medicines. Therefore, this antimicrobial activity shows a source for traditional use of the plant as a local health remedy to the indigenous communities of Tamil Nadu. Further studies on knowledge of the medicinal plant used medicinally by indigenous people could lead to further research and new drug discovery for the treatment of different diseases.

  1. Probiotic Potential of Lactobacillus Strains with Antimicrobial Activity against Some Human Pathogenic Strains

    Directory of Open Access Journals (Sweden)

    Parisa Shokryazdan

    2014-01-01

    Full Text Available The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits.

  2. Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins.

    Science.gov (United States)

    Brahma, Biswajit; Patra, Mahesh Chandra; Karri, Satyanagalakshmi; Chopra, Meenu; Mishra, Purusottam; De, Bidhan Chandra; Kumar, Sushil; Mahanty, Sourav; Thakur, Kiran; Poluri, Krishna Mohan; Datta, Tirtha Kumar; De, Sachinandan

    2015-01-01

    Cathelicidins are an ancient class of antimicrobial peptides (AMPs) with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4), which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s) displayed potent antimicrobial activity against selected Gram positive (G+) and Gram negative (G-) bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics.

  3. Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins.

    Directory of Open Access Journals (Sweden)

    Biswajit Brahma

    Full Text Available Cathelicidins are an ancient class of antimicrobial peptides (AMPs with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4, which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s displayed potent antimicrobial activity against selected Gram positive (G+ and Gram negative (G- bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics.

  4. Antimicrobial activity of Rosmarinus eriocalyx essential oil and polyphenols: An endemic medicinal plant from Algeria

    Directory of Open Access Journals (Sweden)

    Fethi Benbelaïd

    2016-01-01

    Full Text Available Objective: To evaluate the antimicrobial potency of Rosmarinus eriocalyx (R. eriocalyx essential oil and total polyphenols against pathogenic microorganisms. Methods: Antimicrobial activity of R. eriocalyx extracts was assessed by disc diffusion method and minimum inhibitory concentrations determination. Essential oil obtained from endemic rosemary by hydrodistillation was analysed by gas chromatograph/retention index and gas chromatograph-mass spectrometer. Results: An interesting antimicrobial activity was shown by R. eriocalyx extracts. Polyphenols, constituted mainly by flavonoids, were the most effective extract with very low minimum inhibitory concentrations values, ranged between 0.06 and 8.00 mg/mL, while essential oil was less efficient. It should be noted that antimicrobial activities of both R. eriocalyx extracts were more directed against fungi and Gram-positive bacteria than Gram-negative ones, in which Staphylococcus aureus, Enterococcus faecalis, and Candida albicans were the most sensitive strains. Concerning chemical composition of R. eriocalyx essential oil, camphor (37.8%, 1,8- cineole (17.4%, camphene (13.3%, and α-pinene (10.9% were the major compounds. Conclusions: The findings of the present study indicate that R. eriocalyx extracts possess significant bactericidal and fungicidal activities. Because of its richness in essential oil, and especially flavonoids, R. eriocalyx may be a source for effective and safe antimicrobial agents.

  5. Antimicrobial activities of ozenoxacin against isolates of propionibacteria and staphylococci from Japanese patients with acne vulgaris.

    Science.gov (United States)

    Nakajima, Akiko; Ikeda, Fumiaki; Kanayama, Shoji; Okamoto, Kazuaki; Matsumoto, Tatsumi; Ishii, Ritsuko; Fujikawa, Akira; Takei, Katsuaki; Kawashima, Makoto

    2016-08-01

    Ozenoxacin, a novel non-fluorinated topical quinolone, was assessed for in vitro antimicrobial activity against clinical isolates of propionibacteria and staphylococci according to the broth microdilution method recommended by the Clinical and Laboratory Standards Institute. The isolates used in this study were collected from Japanese patients with acne vulgaris during a period from 2012 to 2013. The MIC90s of ozenoxacin against Propionibacterium acnes (n=266), Propionibacterium granulosum (n=10), Staphylococcus aureus (n=23), Staphylococcus epidermidis (n=229) and other coagulase-negative staphylococci (n=82) were ≤0.06, ≤0.06, ≤0.06, 0.125 and ≤0.06 µg ml-1, respectively. The antimicrobial activity of ozenoxacin against the clinical isolates of propionibacteria and staphylococci was greater than that of five reference antimicrobial agents which have been used for the treatment of acne vulgaris. The MICs of ozenoxacin were correlated with those of nadifloxacin in P. acnes and S. epidermidis isolates. However, the MICs of ozenoxacin were 0.25-0.5 µg ml-1 and 0.5-8 µg ml-1 against nadifloxacin-resistant P. acnes (MIC: ≥8 µg ml-1; n=8) and S. epidermidis (MIC: ≥64 µg ml-1; n=10), respectively. These results indicated the potent antimicrobial activity against P. acnes and S. epidermidis isolates resistant to nadifloxacin. Topical ozenoxacin could represent an alternative therapeutic drug for acne vulgaris based on its potent antimicrobial activity against the isolates of propionibacteria and staphylococci from acne patients. PMID:27305898

  6. Antimicrobial activities of ozenoxacin against isolates of propionibacteria and staphylococci from Japanese patients with acne vulgaris.

    Science.gov (United States)

    Nakajima, Akiko; Ikeda, Fumiaki; Kanayama, Shoji; Okamoto, Kazuaki; Matsumoto, Tatsumi; Ishii, Ritsuko; Fujikawa, Akira; Takei, Katsuaki; Kawashima, Makoto

    2016-08-01

    Ozenoxacin, a novel non-fluorinated topical quinolone, was assessed for in vitro antimicrobial activity against clinical isolates of propionibacteria and staphylococci according to the broth microdilution method recommended by the Clinical and Laboratory Standards Institute. The isolates used in this study were collected from Japanese patients with acne vulgaris during a period from 2012 to 2013. The MIC90s of ozenoxacin against Propionibacterium acnes (n=266), Propionibacterium granulosum (n=10), Staphylococcus aureus (n=23), Staphylococcus epidermidis (n=229) and other coagulase-negative staphylococci (n=82) were ≤0.06, ≤0.06, ≤0.06, 0.125 and ≤0.06 µg ml-1, respectively. The antimicrobial activity of ozenoxacin against the clinical isolates of propionibacteria and staphylococci was greater than that of five reference antimicrobial agents which have been used for the treatment of acne vulgaris. The MICs of ozenoxacin were correlated with those of nadifloxacin in P. acnes and S. epidermidis isolates. However, the MICs of ozenoxacin were 0.25-0.5 µg ml-1 and 0.5-8 µg ml-1 against nadifloxacin-resistant P. acnes (MIC: ≥8 µg ml-1; n=8) and S. epidermidis (MIC: ≥64 µg ml-1; n=10), respectively. These results indicated the potent antimicrobial activity against P. acnes and S. epidermidis isolates resistant to nadifloxacin. Topical ozenoxacin could represent an alternative therapeutic drug for acne vulgaris based on its potent antimicrobial activity against the isolates of propionibacteria and staphylococci from acne patients.

  7. Synthesis, characterizations and antimicrobial activities of well dispersed ultra-long CdO nanowires

    Directory of Open Access Journals (Sweden)

    Sumeet Kumar

    2013-05-01

    Full Text Available We present a simple, efficient, low cost and template free method for preparation of well dispersed ultra-long (1 μm CdO nanowires. The CdO nanowires were characterized by x-ray diffraction (XRD, Transmission electron microscopy (TEM, UV-visible spectroscopy and Raman measurements. The direct and indirect band gaps were calculated to be 3.5 eV and 2.6 eV, respectively. In the Raman spectra only second order features were observed. The CdO nanowires were used to study antimicrobial activities against B.subtilis and E.coli microbes. It shows antimicrobial activity against B.subtilis and E.coli. However, the antimicrobial activities are better against B.subtilis than that of E.coli.

  8. EVALUATION OF ANTI-MICROBIAL ACTIVITY OF OCIMUM SANCTUM METHANOLIC EXTRACT

    Directory of Open Access Journals (Sweden)

    Bhatt Mehul K

    2012-08-01

    Full Text Available The present study was conducted to investigate anti-microbial activity of Ocimum sanctum methanolic extract against strains of gram positive and gram negative bacteria. Tulsi plant is known to possess therapeutic potentials and have been used, by traditional medicinal practitioners, as an expectorant, analgesic, anticancer, antiasthmatic, antiemetic, diaphoretic, antidiabetic, antifertility, hepatoprotective, hypotensive, hypolipidmic, anti-microbial, antifungal activity against Asperigillus niger. The extract was tested for its antimicrobial activity against Gram-positive bacteria like Bacillus subtilis and Gram-negative bacteria like Escherichia coli. Inhibition of microbial growth was investigated using agar well diffusion method. UV-Visible and HPLC analysis of the extract was carried out for the presence of eugenol.

  9. A Broad-Spectrum Antimicrobial Activity of Bacillus subtilis RLID 12.1

    Directory of Open Access Journals (Sweden)

    Ramya Ramachandran

    2014-01-01

    Full Text Available In the present study, an attempt was made to biochemically characterize the antimicrobial substance from the soil isolate designated as RLID 12.1 and explore its potential applications in biocontrol of drug-resistant pathogens. The antimicrobial potential of the wild-type isolate belonging to the genus Bacillus was determined by the cut-well agar assay. The production of antimicrobial compound was recorded maximum at late exponential growth phase. The ultrafiltered concentrate was insensitive to organic solvents, metal salts, surfactants, and proteolytic and nonproteolytic enzymes. The concentrate was highly heat stable and active over a wide range of pH values. Partial purification, zymogram analysis, and TLC were performed to determine the preliminary biochemical nature. The molecular weight of the antimicrobial peptide was determined to be less than 2.5 kDa in 15% SDS-PAGE and in zymogram analysis against Streptococcus pyogenes. The N-terminal amino acid sequence by Edman degradation was partially determined to be T-P-P-Q-S-X-L-X-X-G, which shows very insignificant identity to other antimicrobial peptides from bacteria. The minimum inhibitory concentrations of dialysed and partially purified ion exchange fractions were determined against some selected gram-positive and gram-negative bacteria and some pathogenic yeasts. The presence of three important antimicrobial peptide biosynthesis genes ituc, fend, and bmyb was determined by PCR.

  10. Antimicrobial and cytotoxic activities of Abroma augusta Lnn. leaves extract

    Institute of Scientific and Technical Information of China (English)

    FK Saikot; Alam Khan; MF Hasan

    2012-01-01

    Objective: To evaluate the antimicrobial and cytotoxic activity of acetone extract of leaves ofAbroma augusta. Methods: Disc diffusion method was used to demonstrate antibacterial and antifungal activities. Cytotoxicity was determined against brine shrimp nauplii. In addition, minimum inhibitory concentration (MIC) was determined using serial dilution technique to determine antibacterial potency. Results: The extract showed significant antibacterial activities against three gram-positive (Bacillus subtilis, Bacillus megaterium and Staphylococcus aureus) and four gram-negative (Escherichia coli, Shigella dysenteriae, Shigella sonnei and Salmonella typhi) bacteria. The antifungal activity was found strong against five fungi (Aspergillus flavus, Aspergillus niger, Candida albicans, Rhizopus oryzae and Aspergillus fumigatus). In cytotoxicity determination, LC50 of the extract against brine shrimp nauplii was 7.06μg/ml. Conclusions: The Abroma leaves extract may be consider as a potent antimicrobial and cytotoxic agent for further advance research.

  11. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    Science.gov (United States)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  12. Antimicrobial activity of methanol extracts of four Parmeliaceae lichen species

    Directory of Open Access Journals (Sweden)

    Stojanović Igor

    2013-01-01

    Full Text Available Antimicrobial activity of methanol extracts of four Parmeliaceae lichens (Hypogymnia physodes (L. Nyl., Evernia prunastri (L. Ach., Flavoparmelia caperata (L. Hale and Parmelia sulcata Taylor against a panel of microbial strains (11 Gram-positive (Enterococus sp., Bacillus subtilllis, Sarcina lutea, Micrococus luteus, Staphylococcus aureus, Clostridium sporogenes and Gram-negative bacteria (Escherichia coli, Proteus vulgaris, Salmonela enteritidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, the filamentous fungus A. niger and the yeast C. albicans was assayed using a disk diffusion method (1 mg of the extract per disc; extracts were dissolved in methanol, 25 mg/mL. All tested extracts showed moderate antimicrobial activity. Multivariate statistical treatment (agglomerative hierarchical clustering analysis, AHC of the obtained results allowed grouping of the samples according to their antimicrobial potential against different strains: antimicrobial profile of H. physodes and E. prunastri extracts were comparable; the similar is true for F. caperata and P. sulcata samples. In addition, based on the similarities/ dissimilarities in their susceptibility toward the tested extracts, two groups of microorganisms could be distinguished: Group I - P. vulgaris, K. pneumoniae (Gram-negative bacteria, A. niger and C. albicans; Group II - E. coli, S. enteritidis, P. aeruginosa (Gram-negative bacteria and all of the assayed Gram-positive strains. [Projekat Ministarstva nauke Republike Srbije, br. 172044

  13. Production and characterization of antimicrobial active substance from Spirulina platensis.

    Directory of Open Access Journals (Sweden)

    Mostafa M El-Sheekh

    2014-04-01

    Full Text Available The present work was carried out to investigate the ability of Spirulina platensis to produce antimicrobial substance against bacteria and fungi.The cells of the cyanobacterium were subjected to different extractions and the purified antagonistic compound proved to be effective against broad spectrum of bacteria and fungi. The antagonistic compound was purified using thin layer chromatography.The results indicated that the IR spectrum showed bands at 1269 cm(-1, 1414 cm(-1 (C-O-C, 1643 cm(-1 (CO of amide,1563 cm(-1 (C = C and broad band 3441 cm(-1 (of OH and NH., (1HNMR showed δ 0.8 (-CH3, δ 1.2 (-CH2, δ 4.2(-OH, δ 7.2(-NH, δ 7.4 and δ 7.7 (aromatic CH., Mass spectrum showed molecular ion beak at m/z = 341 (abundance (0.03%. Also, the elemental analysis gave molecular formula,C15H18NO8.The purified antimicrobial compound produced by S. platensis was more active against Gram positive, Gram negative bacteria and unicellular fungi, C. albicans. The highest biological activity was recorded against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Aspergillus niger. The results of this investigation proved that cyanobacteria could be a good source for production of antimicrobial agents which could be effective when compared with contemporary antimicrobial compounds.

  14. Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel

    Directory of Open Access Journals (Sweden)

    Chen M

    2011-11-01

    Full Text Available Meiwan Chen1,2,‡, Zhiwen Yang1,‡, Hongmei Wu1, Xin Pan1, Xiaobao Xie3, Chuanbin Wu11Research and Development Center of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China; 2State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; 3Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, China ‡These authors contributed equally to this workPurpose: The purpose of the present study was to elucidate the antimicrobial activity and mechanism of silver nanoparticles incorporated into thermosensitive gel (S-T-Gel on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa.Patients and methods: This study investigated the growth, permeability, and morphology of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa cells in order to observe the action of S-T-Gel on the membrane structure of these three bacteria. The cell morphology of normal and treated bacteria cells was assessed by transmission electron microscopy (TEM, and the effects of S-T-Gel on genome DNA of bacterial cells were evaluated by agarose gel electrophoresis.Results: S-T-Gel showed promising activity against Staphylococcus aureus and moderate activity against Escherichia coli and Pseudomonas aeruginosa. The observation with TEM suggested that S-T-Gel may destroy the structure of bacterial cell membranes in order to enter the bacterial cell. S-T-Gel then condensed DNA and combined and coagulated with the cytoplasm of the damaged bacteria, resulting in the leakage of the cytoplasmic component and the eventual death of these three bacteria. In addition, the analysis of agarose gel electrophoresis demonstrated that S-T-Gel could increase the decomposability of genome DNA.Conclusion: These results about promising antimicrobial activity and mechanism of S-T-Gel may be useful for further research

  15. Antimicrobial activity in vitro of plumbagin isolated from Plumbago species

    OpenAIRE

    Selma Ribeiro de Paiva; Maria Raquel Figueiredo; Tânia Verônica Aragão; Maria Auxiliadora Coelho Kaplan

    2003-01-01

    Plumbagin is a naturally occurring naphthoquinone isolated from roots of Plumbago scandens. The plant was collected at the Campus of Fundação Oswaldo Cruz, Rio de Janeiro, Brazil. P. scandens is used as a traditional medicine for the treatment of several diseases. The antimicrobial activity of plumbagin was evaluated using the macrodilution method. The compound exhibited relatively specific activity against bacteria and yeast. The minimum inhibitory concentration test showed the growth inhibi...

  16. Antioxidant and antimicrobial activity of Turkish endemic Sonchus erzincanicus extracts

    OpenAIRE

    MAVİ, Ahmet; YİĞİT, Nimet; YİĞİT, DEMET; KANDEMİR, Ali

    2011-01-01

    Sonchus erzincanicus (Asteraceae) is a plant species that is endemic to Turkey and grows in Erzincan. Lipid peroxidation inhibition, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and total phenolic content of the methanol and water extracts of the plant were determined. Antimicrobial activity of the extracts was also tested against 107 clinical isolates of human pathogenic microorganism strains belonging to Enterobacter aerogenes, Escherichia coli, Proteus mirabilis, Pseud...

  17. 不同溶剂提取的薄荷浸提物的抑菌效果研究%Study on Antimicrobial Activities of Different Solvent Extracts from HERBA MENTHAE

    Institute of Scientific and Technical Information of China (English)

    刘锐; 莫倩美

    2011-01-01

    [目的]研究不同溶剂提取的薄荷(HERBA MENTHAE HAPLOCLYCIS)浸提物的抑菌效果,以期为优化薄荷提取工艺,减少2次污染,为薄荷进一步开发利用提供新途径.[方法]采用琼脂扩散法测定不同溶剂提取的薄荷浸提物对大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌、沙门氏菌的抑菌活性.[结果]不同溶剂提取的薄荷浸提物对4种指示菌均具有的明显的抑菌作用;不同溶剂提取的薄荷浸提物的抑菌能力也不同,其中无水乙醇的薄荷浸提物的抑菌效果最好;薄荷浸提物的抑菌能力受到菌种的影响,相同的薄荷浸提物对不同菌种的抑制能力并不相同.[结论]用无水乙醇的薄荷浸提物的抑菌效果最好.%[Objective] The research aimed to study the antimicrobial activities of different solvent extrcts from HERBA MENTHAE, so as to optimize the extraction technology, decrease the second pollution and provide a new way for further exploitation and utilization of food industry.[ Method ] Agar diffusion method was performed to determine the antimicrobial activities of different solvent extracts from HERBA MENTHAE against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Salmonella. [ Result ] Different solvent extracts from HERBA MENTHAE had obvious antimicrobial activities against 4 indicator bacteria, in which absolute ethyl alcohol extracts performed the best. As for the same extract,the antimicrobial activities were varied for different strains. [ Conclusion ] Absolute ethyl alcohol extracts had the best antimicrobial activity.

  18. Synthesis and Antimicrobial Activity of Novel Ag-N-Hetero-cyclic Carbene Complexes

    Directory of Open Access Journals (Sweden)

    İlknur Özdemir

    2010-04-01

    Full Text Available A series of imidazolidinium ligand precursors are metallated with Ag2O to give silver(I N-heterocyclic carbene complexes. All compounds were fully characterized by elemental analyses, 1H-NMR, 13C-NMR and IR spectroscopy techniques. All compounds studied in this work were screened for their in vitro antimicrobial activities against the standard strains: Enterococcus faecalis (ATCC 29212, Staphylococcus aureus (ATCC 29213, Escherichia coli (ATCC 25922, Pseudomonas aeruginosa (ATCC 27853 and the fungi Candida albicans and Candida tropicalis. The new imidazolidin-2-ylidene silver complexes have been found to display effective antimicrobial activity against a series of bacteria and fungi.

  19. Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole.

    Science.gov (United States)

    Seenaiah, D; Reddy, P Ramachandra; Reddy, G Mallikarjuna; Padmaja, A; Padmavathi, V; Krishna, N Siva

    2014-04-22

    A variety of pyrimidinyl benzoxazoles, benzothiazoles and benzimidazoles linked by thio, methylthio and amino moieties were prepared and studied their antimicrobial and cytotoxic activities. The compound pyrimidinyl bis methylthio benzimidazole 22 was a potent antimicrobial agent particularly against Staphylococcus aureus (29 mm, MIC 12.5 μg/mL) and Penicillium chrysogenum (38 mm, MIC 12.5 μg/mL). The amino linked pyrimidinyl bis benzothiazole 24 exhibited cytotoxic activity on A549 cells with IC50 value of 10.5 μM.

  20. Trachyspermum ammi (L.) sprague: chemical composition of essential oil and antimicrobial activities of respective fractions.

    Science.gov (United States)

    Moein, Mahmoodreza R; Zomorodian, Kamiar; Pakshir, Keyvan; Yavari, Farnoosh; Motamedi, Marjan; Zarshenas, Mohammad M

    2015-01-01

    Resistance to antibacterial agents has become a serious problem for global health. The current study evaluated the antimicrobial activities of essential oil and respective fractions of Trachyspermum ammi (L.) Sprague. Seeds of the essential oil were extracted and fractionated using column chromatography. All fractions were then analyzed by gas chromatography/mass spectrometry. Antifungal and antibacterial activities of the oil and its fractions were assessed using microdilution method. Compounds γ-terpinene (48.07%), ρ-cymene (33.73%), and thymol (17.41%) were determined as major constituents. The effect of fraction II was better than total essential oil, fraction I, and standard thymol. The greater effect of fraction II compared to standard thymol showed the synergistic effects of the ingredients in this fraction. As this fraction and also total oil were effective on the studied microorganism, the combination of these products with current antimicrobial agents could be considered as new antimicrobial compounds in further investigations.

  1. Antimicrobial Activity and Phytochemical Analysis of Organic Extracts from Cleome spinosa Jaqc.

    Science.gov (United States)

    da Silva, Ana P Sant'Anna; Nascimento da Silva, Luís C; Martins da Fonseca, Caíque S; de Araújo, Janete M; Correia, Maria T Dos Santos; Cavalcanti, Marilene da Silva; Lima, Vera L de Menezes

    2016-01-01

    Due to the use of Cleome spinosa Jacq. (Cleomaceae) in traditional medicine against inflammatory and infectious processes, this study evaluated the in vitro antimicrobial potential and phytochemical composition of extracts from its roots and leaves. From leaves (L) and roots (R) of C. spinosa different extracts were obtained (cyclohexane: ChL and ChR; chloroform: CL and CR; ethyl acetate: EAL and EAR, methanol: ML and MR). The antimicrobial activity was evaluated by the broth microdilution method to obtain the minimum inhibitory (MIC) and microbicidal (MMC) concentrations against 17 species, including bacteria and yeasts. Additionally, antimicrobial and combinatory effects with oxacillin were assessed against eight clinical isolates of Staphylococcus aureus. All C. spinosa extracts showed a broad spectrum of antimicrobial activity, as they have inhibited all tested bacteria and yeasts. This activity seems to be related to the phytochemicals (flavonoid, terpenoids and saponins) detected into the extracts of C. spinosa. ChL and CL extracts were the most actives, with MIC less than 1 mg/mL against S. aureus, Bacillus subtilis, and Micrococcus luteus. It is important to note that these concentrations are much lower than their 50% hemolysis concentration (HC50) values. Strong correlations were found between the average MIC against S. aureus and their phenolic (r = -0.89) and flavonoid content (r = -0.87), reinforcing the possible role of these metabolite classes on the antimicrobial activity of C. spinosa derived extracts. Moreover, CL and CR showed the best inhibitory activity against S. aureus clinical isolates, they also showed synergistic action with oxacillin against all these strains (at least at one combined proportion). These results encourage the identification of active substances which could be used as lead(s) molecules in the development of new antimicrobial drugs. PMID:27446005

  2. In Vitro Antimicrobial and Antiproliferative Activity of Amphipterygium adstringens

    Directory of Open Access Journals (Sweden)

    A. Rodriguez-Garcia

    2015-01-01

    Full Text Available Amphipterygium adstringens is a plant widely used in Mexican traditional medicine for its known anti-inflammatory and antiulcer properties. In this work, we evaluated the in vitro antimicrobial and antiproliferative activities of the methanolic extract of A. adstringens against oral pathogens such as Streptococcus mutans, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Candida albicans, and Candida dubliniensis, using microdilution (MIC and agar diffusion methods (MBC, and the antiproliferative activity evaluating total growth inhibition (TGI by staining the protein content with sulforhodamine B (SRB, using nine human cancer cell lines. Crude extract (CE of A. adstringens showed some degree of activity against one or more of the strains with a MIC from 0.125 mg/mL to 63 mg/mL and MBC from 1.6 to 6.3 mg/mL and cytotoxic activity, particularly against NCI-ADR/RES, an ovarian cell line expressing multiple resistance drugs phenotype. The CE is a complex mixture of possible multitarget metabolites that could be responsible for both antimicrobial and antiproliferative activities, and further investigation is required to elucidate the identity of active compounds. Nevertheless the CE itself is useful in the development of new antimicrobial treatment based on natural products to prevent oral diseases and as alternative natural source for cancer treatment and prevention.

  3. Antioxidant, Antimicrobial Activity and Toxicity Test of Pilea microphylla

    Directory of Open Access Journals (Sweden)

    Amir Modarresi Chahardehi

    2010-01-01

    Full Text Available A total of 9 plant extracts were tested, using two different kinds of extracting methods to evaluate the antioxidant and antimicrobial activities from Pilea microphylla (Urticaceae family and including toxicity test. Antioxidant activity were tested by using DPPH free radical scavenging, also total phenolic contents and total flavonoid contents were determined. Toxicity assay carried out by using brine shrimps. Methanol extract of method I (ME I showed the highest antioxidant activity at 69.51±1.03. Chloroform extract of method I (CE I showed the highest total phenolic contents at 72.10±0.71 and chloroform extract of method II (CE II showed the highest total flavonoid contents at 60.14±0.33. The antimicrobial activity of Pilea microphylla extract was tested in vitro by using disc diffusion method and minimum inhibitory concentration (MIC. The Pilea microphylla extract showed antibacterial activity against some Gram negative and positive bacteria. The extracts did not exhibit antifungal and antiyeast activity. The hexane extract of method I (HE I was not toxic against brine shrimp (LC50 value was 3880 μg/ml. Therefore, the extracts could be suitable as antimicrobial and antioxidative agents in food industry.

  4. Study on antimicrobial activity of thymol and its influencing factors%麝香草酚抑菌活性及其影响因素研究

    Institute of Scientific and Technical Information of China (English)

    王娣; 谢海伟; 曹珂珂; 柯春林; 钱时权; 石亚中; 任茂生

    2012-01-01

    The antimicrobial activity of thymol to 10 important foodborne pathogens bacteria and influencing factors were studied by means of filter paper disks and diffused tests. The results showed that foodborne pathogens bacteria were obviously inhibited. The test obtained the minimum inhibition concentrations of thymol to foodborne pathogens bacteria, including StapHylococcus aureus, Bacillus subtilis, Escherichia coli, Proteus vulgaris, Lactobacillus bulgaricus, Streptococus thermopHilus, Hansenula anomala, Saccharmuces cerevisiae , Aspergillus niger, Aspergillus flavus, were as follows: 10,20,20,40,40,40,80,40,80 and 160μg/m L. The factors affecting antibacterial action experiment results showed that Tween-80 and BSA remarkably decreased the antibacterial action and low DH condition stronalv increased antibacterial action.%采用滤纸片法和扩散法,研究不同浓度的麝香草酚对食品中常见10种污染菌的体外抑菌作用,并对其抑菌影响因素进行了研究。实验结果表明,麝香草酚对细菌、酵母和霉菌均有一定抑制作用。经测定,麝香草酚对金黄色葡萄球菌、枯草芽孢杆菌、大肠杆菌、变形杆菌、保加利亚乳杆菌、嗜热乳酸链球菌、异常汉逊氏酵母、酿酒酵母、黑曲霉、黄曲霉的最低抑茵浓度分别为10、20、20、40、40、40、80、40、80、160μg/mL。抑菌影响因素研究表明.吐温-80和有机氮(BSA)能明显消弱麝香草酚的抑菌能力;低pH则会明显增强麝香草酚的抑菌作用。

  5. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    Science.gov (United States)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  6. Bioproduction, Antimicrobial and Antioxidant Activities of Compounds from Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Danielli M.M. Dantas

    2015-09-01

    Full Text Available Various crude extract preparations (ethanol, methanol, buthanol, acetone, DMSO and water from the green alga Chlorella vulgaris were examined for Antioxidant activity, Phytochemical screening and Antimicrobial properties. In vitro free radical quenching and total antioxidant activity of extracts were investigated with 1, 1-diphenyl-2- picryl hydrazyl (DPPH, and compared with cathequin and Gallic acid as positive controls. In most cases, results showed a significant association between the antioxidant potency and the total phenolics content. The aqueous extract showed both the highest antioxidant activity for inhibition scavenging (68.5% and highest phenolic content (3.45 mg/ mL. Antimicrobial activities were carried out using disc diffusion assays and the broth dilution method against Gram-positive and Gram-negative bacteria. Results demonstrated activity between the aqueous extract and most specimens (Proteus mirabilis, Klebsiella pneumoniae, Salmonella enteretidis, Bacillus subtilis and Escherichia coli. These results suggest that the aqueous crude extract of C. vulgaris could be considered as a biological antioxidant and antimicrobial agent, and a valuable tool for the biotechnology field.

  7. Antimicrobial Activity of UV-Induced Phenylamides from Rice Leaves

    Directory of Open Access Journals (Sweden)

    Hye Lin Park

    2014-11-01

    Full Text Available Rice produces a wide array of phytoalexins in response to pathogen attacks and UV-irradiation. Except for the flavonoid sakuranetin, most phytoalexins identified in rice are diterpenoid compounds. Analysis of phenolic-enriched fractions from UV-treated rice leaves showed that several phenolic compounds in addition to sakuranetin accumulated remarkably in rice leaves. We isolated two compounds from UV-treated rice leaves using silica gel column chromatography and preparative HPLC. The isolated phenolic compounds were identified as phenylamide compounds: N-trans-cinnamoyltryptamine and N-p-coumaroylserotonin. Expression analysis of biosynthetic genes demonstrated that genes for arylamine biosynthesis were upregulated by UV irradiation. This result suggested that phenylamide biosynthetic pathways are activated in rice leaves by UV treatment. To unravel the role of UV-induced phenylamides as phytoalexins, we examined their antimicrobial activity against rice fungal and bacterial pathogens. N-trans-Cinnamoyltryptamine inhibited the growth of rice brown spot fungus (Bipolaris oryzae. In addition to the known antifungal activity to the blast fungus, sakuranetin had antimicrobial activity toward B. oryzae and Rhizoctonia solani (rice sheath blight fungus. UV-induced phenylamides and sakuranetin also had antimicrobial activity against rice bacterial pathogens for grain rot (Burkholderia glumae, blight (Xanthomonas oryzae pv. oryzae and leaf streak (X. oryzae pv. oryzicola diseases. These findings suggested that the UV-induced phenylamides in rice are phytoalexins against a diverse array of pathogens.

  8. Quantitative analysis of catechins in Saraca asoca and correlation with antimicrobial activity

    Institute of Scientific and Technical Information of China (English)

    Amey Shirolkar; Anjum Gahlaut; Anil K. Chhillar; Rajesh Dabur

    2013-01-01

    Herbal medicines are highly complex and have unknown mechanisms in diseases treatment. Saraca asoca (Roxb.), De. Wild has been recommended to treat gynecological disorders and used in several commercial polyherbal formulations. In present study, efforts have been made to explore antimicrobial activity and its co-relation with the distributions of catechins in the organs of S. asoca using targeted MS/MS. Eight extracts (cold and hot water) from four different organs of S. asoca and two drugs were prepared and antimicrobial activity was assessed by microbroth dilution assay. Quantitative and qualitative analysis of catechins in crude extracts was done by using targeted and auto-MS/MS and correlated with antimicrobial activity. (þ)-Catechin and (þ)-epicatechin and their biosynthesis related compound were found to be up-regulated in regenerated bark and leaves extracts. (?)-Epigallocatechin was found to be significantly higher in bark water extract as compared to others but showed low antimicrobial activity. Result showed down-regulation of (?)-epigallocatechin and up-regulation of (þ)-catechin and (þ)-epicatechin in the regenerated bark and leaves of S. asoca. It might be the contributing factor in the antimicrobial activity of regenerated bark and leaves of the plant. The concentration of (þ)-epicatechin in processed drugs (Ashokarishta) from Baidyanath was found to be seven times higher than that of Dabur Pvt. Ltd., but no antimicrobial activity was observed, indicating the variations among the plant based drugs. This will be helpful in rational use of S. asoca parts. Furthermore, the analytical method developed is sensitive, repeatable and reliable; therefore, it is suitable for quality control of herbal drugs.

  9. Phytochemical investigation and antimicrobial activity of Caesalpinia bonduc (linn Roxb seeds

    Directory of Open Access Journals (Sweden)

    V. Subramani

    2014-06-01

    Full Text Available The aim of the study was to investigate phytochemical properties, antimicrobial activity and trace metal concentrations of Caesalpinia bonducella. The phytochemical screening of the extracts of leaves of C. bonducella revealed the presence of bioactive compounds such as Steroid, Triterpenoids, Reducing Sugar(A, Reducing Sugar(B, Sugars, Flavonoids, Saponin, Amino acids with absence of Alkaloids, Phenolic Compounds, Catachins, Tannins, Anthroquinones.  The ethanol solvent was used for extraction and was used to screen the antimicrobial activity of C. bonducella leaves against certain pathogens by disc diffusion method. In the antimicrobial study, in bacteria, the test sample was most effective against Escherichia coli NCIM 2931 (B2 while smaller effect was noticed from Staphylococcus aureus NCIM 5021 (B3. In fungi, this was effective against Epidermophyton floccosum var. nigricans MTCC 613 (F2 whereas smaller effect was observed in Candida glabrata MTCC 3984 (F1. All the microbial strains depict higher sensitivity to the higher concentration (1.2 mg / disc for the test sample when compared to the positive control except bacterial strains such as Bacillus subtilis NCIM 2920 (B1 and Staphylococcus aureus NCIM 5021 (B3.  The result was supported the view that C. bonducella is a potent antimicrobial agent compared with the conventional antibiotic. The concentrations of trace metals in plants were not cross the standard level. Hence, it is signified that Aloe vera plant extract is safe to be used as an antimicrobial agent.

  10. Antimicrobial Activity of Serbian Propolis Evaluated by Means of MIC, HPTLC, Bioautography and Chemometrics.

    Science.gov (United States)

    Ristivojević, Petar; Dimkić, Ivica; Trifković, Jelena; Berić, Tanja; Vovk, Irena; Milojković-Opsenica, Dušanka; Stanković, Slaviša

    2016-01-01

    New information has come to light about the biological activity of propolis and the quality of natural products which requires a rapid and reliable assessment method such as High Performance Thin-Layer Chromatography (HPTLC) fingerprinting. This study investigates chromatographic and chemometric approaches for determining the antimicrobial activity of propolis of Serbian origin against various bacterial species. A linear multivariate calibration technique, using Partial Least Squares, was used to extract the relevant information from the chromatographic fingerprints, i.e. to indicate peaks which represent phenolic compounds that are potentially responsible for the antimicrobial capacity of the samples. In addition, direct bioautography was performed to localize the antibacterial activity on chromatograms. The biological activity of the propolis samples against various bacterial species was determined by a minimum inhibitory concentration assay, confirming their affiliation with the European poplar type of propolis and revealing the existence of two types (blue and orange) according to botanical origin. The strongest antibacterial activity was exhibited by sample 26 against Staphylococcus aureus, with a MIC value of 0.5 mg/mL, and Listeria monocytogenes, with a MIC as low as 0.1 mg/mL, which was also the lowest effective concentration observed in our study. Generally, the orange type of propolis shows higher antimicrobial activity compared to the blue type. PLS modelling was performed on the HPTLC data set and the resulting models might qualitatively indicate compounds that play an important role in the activity exhibited by the propolis samples. The most relevant peaks influencing the antimicrobial activity of propolis against all bacterial strains were phenolic compounds at RF values of 0.37, 0.40, 0.45, 0.51, 0.60 and 0.70. The knowledge gained through this study could be important for attributing the antimicrobial activity of propolis to specific chemical

  11. Antimicrobial Activity of Croton macrostachyus Stem Bark Extracts against Several Human Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Jackie K. Obey

    2016-01-01

    Full Text Available In Kenya, leaves and roots from Croton macrostachyus are used as a traditional medicine for infectious diseases such as typhoid and measles, but reports on possible antimicrobial activity of stem bark do not exist. In this study, the antibacterial and antifungal effects of methanol, ethyl acetate and butanol extracts, and purified lupeol of C. macrostachyus stem bark were determined against important human gram-negative pathogens Escherichia coli, Salmonella typhi, Klebsiella pneumoniae, and Enterobacter aerogenes, gram-positive Listeria monocytogenes, and a fungus Candida albicans. The most promising broad scale antimicrobial activity against all the studied pathogens was shown by the ethyl acetate extract. The ethyl acetate extract induced the zone of inhibition between 10.1±0.6 mm and 16.0±1.2 mm against S. typhi, E. coli, K. pneumoniae, E. aerogenes, and L. monocytogenes with weaker antimicrobial activity against C. albicans (zone of inhibition: 5.6±1.0 mm. The antibiotic controls (amoxicillin, ciprofloxacin, ampicillin, benzylpenicillin, clotrimazole, and cefotaxime showed antimicrobial activity with zones of inhibition within 13.4±0.7–22.1±0.9 mm. The ethyl acetate extract had MIC in the range of 125–250 mg/mL against all the studied bacteria and against C. albicans MIC was 500 mg/mL. The present results give scientific evidence and support the traditional use of C. macrostachyus stem bark as a source for antimicrobials. We show that C. macrostachyus stem bark lupeol is a promising antimicrobial agent against several important human pathogens.

  12. Antimicrobial Activity of Croton macrostachyus Stem Bark Extracts against Several Human Pathogenic Bacteria

    Science.gov (United States)

    Obey, Jackie K.; von Wright, Atte; Orjala, Jimmy; Kauhanen, Jussi; Tikkanen-Kaukanen, Carina

    2016-01-01

    In Kenya, leaves and roots from Croton macrostachyus are used as a traditional medicine for infectious diseases such as typhoid and measles, but reports on possible antimicrobial activity of stem bark do not exist. In this study, the antibacterial and antifungal effects of methanol, ethyl acetate and butanol extracts, and purified lupeol of C. macrostachyus stem bark were determined against important human gram-negative pathogens Escherichia coli, Salmonella typhi, Klebsiella pneumoniae, and Enterobacter aerogenes, gram-positive Listeria monocytogenes, and a fungus Candida albicans. The most promising broad scale antimicrobial activity against all the studied pathogens was shown by the ethyl acetate extract. The ethyl acetate extract induced the zone of inhibition between 10.1 ± 0.6 mm and 16.0 ± 1.2 mm against S. typhi, E. coli, K. pneumoniae, E. aerogenes, and L. monocytogenes with weaker antimicrobial activity against C. albicans (zone of inhibition: 5.6 ± 1.0 mm). The antibiotic controls (amoxicillin, ciprofloxacin, ampicillin, benzylpenicillin, clotrimazole, and cefotaxime) showed antimicrobial activity with zones of inhibition within 13.4 ± 0.7–22.1 ± 0.9 mm. The ethyl acetate extract had MIC in the range of 125–250 mg/mL against all the studied bacteria and against C. albicans MIC was 500 mg/mL. The present results give scientific evidence and support the traditional use of C. macrostachyus stem bark as a source for antimicrobials. We show that C. macrostachyus stem bark lupeol is a promising antimicrobial agent against several important human pathogens. PMID:27293897

  13. INVESTIGATION ON ANTIMICROBIAL ACTIVITY OF BIOSURFACTANT PRODUCED BY PSEUDOMONAS FLUORESCENS ISOLATED FROM MANGROVE ECOSYSTEM

    Directory of Open Access Journals (Sweden)

    Govindammal M

    2013-01-01

    Full Text Available The aim of this present study is to investigate the antimicrobial activity of rhamnolipid biosurfactant produced by Pseudomonas fluorescens MFS03 isolated from mangrove forest soil using groundnut oil cake as substrate. The biosurfactant was extracted with an equal amount of ethyl acetate and the concentrated extract was subjected to FT-IR analysis. The important adsorption bands at 3466.24, 2926.45, 1743.47, 1407.30 and 1162.26 cm-1indicate the chemical structure of rhamnolipid. The rhamnolipid biosurfactant was investigated for the potential antimicrobial activity by using disc-diffusion method against Gram positive bacteria (Bacillus subtilis, Listeria monocytogenes, Staphylococcus aureus, Methicillin resistance S. aureus Gram negative bacteria (Escherichia coli, Salmonella typhimurium and a yeast (Candida albicans. The biosurfactant showed distinct antibacterial activity towards tested bacteria and shows an antifungal activity against yeast. The biosurfactant with different concentration was performed for the evaluation of antimicrobial activity. Maximum antimicrobial activity of the biosurfactant (50µl was observed in S. aureus (23 mm and it was found that the biosurfactant activity was dependent on the concentration. So it could be used as a therapeutic agent in pharmaceutical application.

  14. Chemical Composition, Antimicrobial and Antioxidant Activities of Hyssop (Hyssopus officinalis L. Essential Oil

    Directory of Open Access Journals (Sweden)

    Süleyman KIZIL

    2010-12-01

    Full Text Available The essential oil of hyssop is widely used in food, pharmaceutical and cosmetic industries throughout the world. Therefore, it is very important to know the chemical characteristics of the oil for economic use and enhanced performance of the end products. This study was carried out to determine antimicrobial and antioxidant activities of the essential oil of Hyssopus officinalis (L. (Lamiaceae collected from wild in the Southeast Anatolian, Turkey. Chemical compositions of hydrodistilled essential oils obtained from hyssop leaves were analyzed by gas chromatography-mass spectrometry (GC-MS. For antimicrobial activity, disc diffusion tests were carried out on Escherichia coli line ATCC25922, Pseudomonas aeroginosa line ATCC27853, Staphylococcus aureus line 25923, Staphylococcus pyogenes line ATCC19615 and Candida albicans line ATCC10231, and the antioxidant activity was determined by using the diphenylpicrylhydrazyl (DPPH radical-scavenging method. It was determined that hyssop essential oil contained isopinocamphone (57.27%, (--?-pinene (7.23%, (--terpinen-4-ol (7.13%, pinocarvone (6.49%, carvacrol (3.02%, p-cymene (2.81% and myrtenal (2.32% as major components. As shown by treatments with 5 and 10 ?l of oil; which exhibited strong antimicrobial activity against S. pyogenes, S. aureus, C. albicans and E. coli, but not against P. aeruginosa. The antioxidant activity of H. officinalis essential oil was lower compared to butylated hydroxytoluene (BHT and ascorbic acid. These results demonstrated that hyssop essential oil has relatively low antioxidant activity and good antimicrobial activity against some test organisms.

  15. In vitro antimicrobial activity of methanolic leaf extract of Psidium guajava L.

    Directory of Open Access Journals (Sweden)

    Anju Dhiman

    2011-01-01

    Full Text Available Aim: This study was designed to examine the chemical composition and in vitro antimicrobial potential of methanolic extract of Psidium guajava Linn (Myrtaceae. Materials and Methods: The inhibitory effect of methanolic extract of P. guajava was tested against three bacterial and two fungal strains by using the paper disc diffusion method. Results: The methanolic extract exhibited antibacterial activity against E. coli with minimum inhibitory concentration, 0.78 μg/ml, minimum bactericidal concentration of 50 μg/ml, and appreciable antifungal activity with minimum inhibitory concentration of 12.5 μg/ml. Preliminary phytochemical analysis of methanolic extract revealed the presence of antimicrobial compounds such as flavonoids, steroids, and tannins, which may contribute for the antimicrobial action of P. guajava. Conclusion: The extract was found to be bacteriostatic and fungistatic in action.

  16. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity.

    Science.gov (United States)

    Takahashi, Daisuke; Shukla, Sanjeev K; Prakash, Om; Zhang, Guolong

    2010-09-01

    Antimicrobial host defense peptides (HDPs) are a critical component of the innate immunity with microbicidal, endotoxin-neutralizing, and immunostimulatory properties. HDPs kill bacteria primarily through non-specific membrane lysis, therefore with a less likelihood of provoking resistance. Extensive structure-activity relationship studies with a number of HDPs have revealed that net charge, amphipathicity, hydrophobicity, and structural propensity are among the most important physicochemical and structural parameters that dictate their ability to interact with and disrupt membranes. A delicate balance among these factors, rather than a mere alteration of a single factor, is critically important for HDPs to ensure the antimicrobial potency and target cell selectivity. With a better understanding of the structural determinants of HDPs for their membrane-lytic activities, it is expected that novel HDP-based antimicrobials with minimum toxicity to eukaryotic cells can be developed for resistant infections, which have become a global public health crisis.

  17. Antimicrobial and antihyperglycemic activities of Musa paradisiaca flowers

    Institute of Scientific and Technical Information of China (English)

    Sunil Jawla; Y Kumar; MSY Khan

    2012-01-01

    Objective: To screen the antimicrobial and antihyperglycemic activities of Musa paradisiaca (M. paradisiaca) flowers. Methods: The EtOH and EtOH: water (1:1) extracts of M. paradisiaca flowers were screened for antibacterial and antifungal activity against standard strains of Bacillussubtilis (K. pneumoniae), Proteus mirabilis (P. mirabilis), Pseudomonas aeruginosa (P. aeruginosa),Streptococcus pneumoniae (B. subtilis), Bacillus cereus (B. cereus), Escherichia coli (E. coli), Klebsiella pneumoniae typhimurium (S. typhimurium) and Candida albicans (C. albicans), Cryptococcus albidus (C.albidus (S. pneumoniae), Staphylococcus aureus (S. aureus), Salmonella ) against amikacin and clotrimazole respectively. Both the extracts were also administered to normal and alloxan induced diabetic rats. The blood glucose levels were measured daily after oral administration of extracts at doses of 100, 250 and 500 mg/(kg.d). Result: The EtOH and EtOH:water (1:1) extracts exhibited antimicrobial activity with minimum inhibitory concentrations ranging from 5.62-25.81 and 7.60-31.50 μg/mL respectively. Both the extracts reversed the permanent hyperglycemia within a week in alloxan induced diabetic rats. The EtOH extract (250 mg/kg) was found to be 7.69% more potent hypoglycemic effect than standard oral hypoglycemic drug, glibenclamide 0.2 mg/kg b.w., respectively. Conclusion: The alcoholic extracts of M. paradisiaca flowers showed potent antihyperglycemic and moderate antimicrobial activities.

  18. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae

    Directory of Open Access Journals (Sweden)

    Liang Hanqiao

    2012-11-01

    Full Text Available Abstract Background Drug resistance in bacteria has become a global concern and the search for new antibacterial agents is urgent and ongoing. Endophytes provide an abundant reservoir of bioactive metabolites for medicinal exploitation, and an increasing number of novel compounds are being isolated from endophytic fungi. Ophiopogon japonicus, containing compounds with antibacterial activity, is a traditional Chinese medicinal plant used for eliminating phlegm, relieving coughs, latent heat in the lungs, and alleviating diabetes mellitus. We investigated the antimicrobial activities of 30 strains of O. japonicus. Methods Fungal endophytes were isolated from roots and stems of O. japonicus collected from Chongqing City, southwestern China. Mycelial extracts (MC and fermentation broth (FB were tested for antimicrobial activity using peptide deformylase (PDF inhibition fluorescence assays and MTT cell proliferation assays. Results A total of 30 endophytic strains were isolated from O. japonicus; 22 from roots and eight from stems. 53.33% of the mycelial extracts (MC and 33.33% of the fermentation broths (FB displayed potent inhibition of PDF. 80% of MC and 33.33% of FB significantly inhibited Staphylococcus aureus. 70% of MC and 36.67% of FB showed strong activities against Cryptococcus neoformans. None showed influence on Escherichia coli. Conclusion The secondary metabolites of endophytic fungi from O. japonicus are potential antimicrobial agents.

  19. Antimicrobial activity of Rubus chamaemorus leaves.

    Science.gov (United States)

    Thiem, B; Goślińska, O

    2004-01-01

    The antibacterial activity of Rubus chamaemorus leaf butanolic fraction of the methanol extract and ellagic acid was evaluated against some Gram-positive and Gram-negative bacteria. Antimycotic activity was assayed against Candida albicans. MICs and MBCs were determined by broth dilution test and by disc diffusion method. PMID:14693229

  20. Synthesis, antimicrobial and antioxidative activity of some new isatin derivatives

    Directory of Open Access Journals (Sweden)

    Šekularac Gavrilo M.

    2014-01-01

    Full Text Available The isatin derivatives, Schiff bases, were synthesized by the reaction of isatin and various substituted primary amines and characterized by several spectroscopic methods. Investigation of the antimicrobial activity of the synthesized compounds was performed by the agar dilution method, against different strains of bacteria and one fungi. The antioxidative activity of the synthesized compounds was also determined. Some of the compounds have shown the significant activity against the selected strains of microorganisms and the antioxidative activity. [Projekat Ministarstva nauke Republike Srbije, br. 172013 i III 46010

  1. Antimicrobial activity in vitro of plumbagin isolated from Plumbago species

    Directory of Open Access Journals (Sweden)

    Selma Ribeiro de Paiva

    2003-10-01

    Full Text Available Plumbagin is a naturally occurring naphthoquinone isolated from roots of Plumbago scandens. The plant was collected at the Campus of Fundação Oswaldo Cruz, Rio de Janeiro, Brazil. P. scandens is used as a traditional medicine for the treatment of several diseases. The antimicrobial activity of plumbagin was evaluated using the macrodilution method. The compound exhibited relatively specific activity against bacteria and yeast. The minimum inhibitory concentration test showed the growth inhibiton of Staphylococcus aureus at a concentration of 1.56 µg/ml and of Candida albicans at a concentration of 0.78 µg/ml. These results suggest the naphthoquinone plumbagin as a promising antimicrobial agent.

  2. Antimicrobial activity and chemical investigation of Brazilian Drosera.

    Science.gov (United States)

    Ferreira, Dalva Trevisan; Andrei, César Cornélio; Saridakis, Halha Ostrensky; Faria, Terezinha de Jesus; Vinhato, Elisângela; Carvalho, Kátia Eliane; Daniel, Juliana Feijó Souza; Machado, Sílvio Luiz; Saridakis, Dennis Panayotis; Braz-Filho, Raimundo

    2004-11-01

    The antimicrobial activity of three different extracts (hexanic, ethyl acetate, methanol) obtained from Brazilian Drosera species (D. communis, D. montana var. montana, D. brevifolia, D. villosa var. graomogolensis, D. villosa var. villosa, Drosera sp. 1, and Drosera sp. 2 ) were tested against Staphylococcus aureus (ATCC 25923), Enterococcus faecium (ATCC23212), Pseudomonas aeruginosa (ATCC27853), Escherichia coli (ATCC11229), Salmonella choleraesuis (ATCC10708), Klebsiella pneumoniae (ATCC13883), and Candida albicans (a human isolate). Better antimicrobial activity was observed with D. communis and D. montana var. montana ethyl acetate extracts. Phytochemical analyses from D. communis, D. montana var. montana and D. brevifolia yielded 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin); long chain aliphatic hydrocarbons were isolated from D. communis and from D. villosa var. villosa, a mixture of long chain aliphatic alcohols and carboxylic acids, was isolated from D. communis and 3b-O-acetylaleuritolic acid from D. villosa var. villosa. PMID:15654434

  3. Antimicrobial activity and chemical investigation of Brazilian Drosera

    Directory of Open Access Journals (Sweden)

    Dalva Trevisan Ferreira

    2004-11-01

    Full Text Available The antimicrobial activity of three different extracts (hexanic, ethyl acetate, methanol obtained from Brazilian Drosera species (D. communis, D. montana var. montana, D. brevifolia, D. villosa var. graomogolensis, D. villosa var. villosa, Drosera sp. 1, and Drosera sp. 2 were tested against Staphylococcus aureus (ATCC 25923, Enterococcus faecium (ATCC23212, Pseudomonas aeruginosa (ATCC27853, Escherichia coli (ATCC11229, Salmonella choleraesuis (ATCC10708, Klebsiella pneumoniae (ATCC13883, and Candida albicans (a human isolate. Better antimicrobial activity was observed with D. communis and D. montana var. montana ethyl acetate extracts. Phytochemical analyses from D. communis, D. montana var. montana and D. brevifolia yielded 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin; long chain aliphatic hydrocarbons were isolated from D. communis and from D. villosa var. villosa, a mixture of long chain aliphatic alcohols and carboxylic acids, was isolated from D. communis and 3b-O-acetylaleuritolic acid from D. villosa var. villosa.

  4. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Perez Espitia, Paula Judith; Ferreira Soares, Nilda de Fatima, E-mail: nfsoares1@gmail.com [Department of Food Technology, Federal University of Vicosa (Brazil); Teofilo, Reinaldo F. [Federal University of Vicosa, Department of Chemistry (Brazil); Vitor, Debora M.; Reis Coimbra, Jane Selia dos; Andrade, Nelio Jose de [Department of Food Technology, Federal University of Vicosa (Brazil); Sousa, Frederico B. de; Sinisterra, Ruben D. [Federal University of Minas Gerais, Department of Chemistry (Brazil); Medeiros, Eber Antonio Alves [Department of Food Technology, Federal University of Vicosa (Brazil)

    2013-01-15

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na{sub 4}P{sub 2}O{sub 7}), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  5. Antimicrobial activity of oregano oil on iceberg lettuce with different attachment conditions

    Science.gov (United States)

    In this study, the antimicrobial activity of oregano oil was investigated under different attachment conditions of Salmonella spp. to iceberg lettuce. Inoculated lettuce was either not dried or dried for 30 min, 60 min or 120 min, under either static air or moving air. Washing iceberg lettuce with 5...

  6. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion.

    Science.gov (United States)

    Zhang, Zijie; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-05-01

    d-Limonene has been considered to be a safer alternative compared to synthetic antimicrobial food additives. However, its hydrophobic and oxidative nature has limited its application in foods. The purpose of this research was to study effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion and develop a novel antimicrobial delivery system by combining the positive effect of these two antibacterial agents at the same time. By the checkerboard method, both the synergistic and additive effects of d-limonene and nisin were found against four selected food-related microorganisms. Then, d-limonene nanoemulsion with or without nisin was prepared by catastrophic phase inversion method, which has shown good droplet size and stability. The positive effects and outstanding antimicrobial activity of d-limonene nanoemulsion with nisin were confirmed by MICs comparison, scanning electron microscopy and determination of cell constituents released. Overall, the research described in the current article would be helpful in developing a more effective antimicrobial system for the production and preservation of foods.

  7. Phytochemical and Antimicrobial Activity of Digera Muricata (L.) Mart.

    OpenAIRE

    2010-01-01

    The successive Soxhlet extract of Digera muricata (L.) Mart. (Amaranthaceae) were extracted using petroleum ether, chloroform, ethanol and distilled water in ascending order of the polarity. These extracts were subjected to screening of preliminary phytochemicals tests. The results indicate the presence of alkaloids, flavonoids, phenols, tannins, terpenes and saponins. These extracts further subjected to the antimicrobial activity. Among the bacteria used, the petroleum ether extract gave hig...

  8. Antimicrobial activity and chemical investigation of Brazilian Drosera

    OpenAIRE

    Dalva Trevisan Ferreira; César Cornélio Andrei; Halha Ostrensky Saridakis; Terezinha de Jesus Faria; Elisângela Vinhato; Kátia Eliane Carvalho; Juliana Feijó de Souza Daniel; Sílvio Luiz Machado; Dennis Panayotis Saridakis; Raimundo Braz-Filho

    2004-01-01

    The antimicrobial activity of three different extracts (hexanic, ethyl acetate, methanol) obtained from Brazilian Drosera species (D. communis, D. montana var. montana, D. brevifolia, D. villosa var. graomogolensis, D. villosa var. villosa, Drosera sp. 1, and Drosera sp. 2 ) were tested against Staphylococcus aureus (ATCC 25923), Enterococcus faecium (ATCC23212), Pseudomonas aeruginosa (ATCC27853), Escherichia coli (ATCC11229), Salmonella choleraesuis (ATCC10708), Klebsiella pneumoniae (ATCC1...

  9. Screening marine organisms for antimicrobial activity against clinical pathogens

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Wahidullah, S.; Tonima, K.; DeSouza, L.

    extracts of forty marine organisms belonging to different phyla and fractions of active extracts were screened for their antimicrobial effects on human pathogens. A broad panel of microbial pathogens associated with various skin infections, urinary... aeruginosa B2 Gram Negative Urinary tract infection 3. Staphylococcus aureus B3 Gram Positive Skin infection 4. Salmonella typhi (i) B4 Gram Negative Typhoid 5. Shigella flexineri B5 Gram Negative Gastrointestin al infection 6. Klebsiella sp. B6 Gram...

  10. A new active and antimicrobial package for preservation of vegetables

    OpenAIRE

    Taboada Rodríguez, Amaury

    2013-01-01

    [ENG] The food packaging industry is demanding new packages able to improve the quality of the packed products. In this regard some of the problems to be solved are the recyclable and compostable character of the materials, the antimicrobial properties of some substances to be involved in the packaging system and the optimum control of the internal atmosphere in the package. As a solution for these problems a new flow-pack active packaging design was proposed to be developed in this investiga...

  11. Synthesis and Antimicrobial Activity of Some Chalcone Derivatives

    OpenAIRE

    Prasad, Y. Rajendra; Rao, A. Lakshmana; Rambabu, R.

    2008-01-01

    In an effort to develop antimicrobial agents, a series of chalcones were prepared by Claisen-Schmidt condensation of appropriate acetophenones with appropriate aromatic aldehydes in the presence of aqueous solution of potassium hydroxide and ethanol at room temperature. The synthesized compounds were characterized by means of their IR, 1H-NMR spectral data and elemental analysis. All the compounds were tested for their antibacterial and antifungal activities by the cup plate method.

  12. ANTIMICROBIAL ACTIVITY OF WHITE AND PINK NELUMBO NUCIFERA GAERTN FLOWERS

    OpenAIRE

    D.BRINDHA, D.ARTHI

    2013-01-01

    Nelumbo nucifera Gaertn (Family: Nelumbonaceae), medicinally versatile and used as an important raw material of age-old traditional medical practices like Ayurveda and folk medicine. Bioassays for antimicrobial activities were carried out using hydroethanolic extract of both white and pink flowers of Nelumbo nucifera Gaertn plant. Both the flower extracts were tested against five important bacterial strains and two fungal strains. Further, Minimum Inhibitory Concentration (MIC) was evaluated ...

  13. Antimicrobial activity of Amazonian oils against Paenibacillus species.

    Science.gov (United States)

    Santos, Roberto Christ Vianna; dos Santos Alves, Camilla Filippi; Schneider, Taiane; Lopes, Leonardo Quintana Soares; Aurich, Carlos; Giongo, Janice Luehring; Brandelli, Adriano; de Almeida Vaucher, Rodrigo

    2012-03-01

    The Gram-positive, spore-forming bacterium Paenibacillus larvae is the primary bacterial pathogen of honeybee brood and the causative agent of American foulbrood disease (AFB). One of the feasible alternative treatments being used for their control of this disease is essential oils. In this study in vitro antimicrobial activity of Andiroba and Copaíba essential oils against Paenibacillus species, including P. larvae was evaluated. Minimal inhibitory concentration (MIC) in Mueller-Hinton broth by the microdilution method was assessed. Andiroba registered MIC values of 1.56-25%, while the MICs values obtained for Copaíba oil were of 1.56-12.5%. In order to determine the time-response effect of essential oils on P. larvae, this microorganism was exposed to the oils for up to 48 h. After 24 h treatment with Andiroba oil and after 48 h treatment with Copaíba oil no viable cells of P. larvae ATCC 9545 were observed. The possible toxic effect of essential oils were assessed by the spraying application method of the same concentrations of MICs. Bee mortality was evident only in treatment with Andiroba oil and the Copaíba oil shows no toxic effects after 10 days of observation. Taking together ours results showed for the first time that these oils presented a high activity against Paenibacillus species showing that Copaíba oil may be a candidate for the treatment or prevention of AFB. PMID:22200645

  14. Salacia crassifolia (Celastraceae: CHEMICAL CONSTITUENTS AND ANTIMICROBIAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Vanessa G. Rodrigues

    2015-02-01

    Full Text Available The phytochemical study of hexane extract from leaves of Salacia crassifolia resulted in the isolation of 3β-palmitoxy-urs-12-ene, 3-oxofriedelane, 3β-hydroxyfriedelane, 3-oxo-28-hydroxyfriedelane, 3-oxo-29-hydroxyfriedelane, 28,29-dihydroxyfriedelan-3-one, 3,4-seco-friedelan-3-oic acid, 3β-hydroxy-olean-9(11:12-diene and the mixture of α-amirin and β-amirin. β-sitosterol, the polymer gutta-percha, squalene and eicosanoic acid were also isolated. The chemical structures of these constituents were established by IR, 1H and 13C NMR spectral data. Crude extracts and the triterpenes were tested against Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis and no activity was observed under the in vitro assay conditions. The hexane, chloroform, ethyl acetate and ethanol crude extracts, and the constituent 3,4-seco-friedelan-3-oic acid and 28,29-dihydroxyfriedelan-3-one showed in vitro antimicrobial activity against Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Streptococcus sanguinis and Candida albicans.

  15. Antimicrobial and Cytotoxic Activity of Three Bitter Plants-Enhydra fluctuans, Andrographis Peniculata and Clerodendrum Viscosum.

    Directory of Open Access Journals (Sweden)

    M. Ruhul Amin

    2012-08-01

    Full Text Available Purpose: In this study, three important medicinal plants (Enhydra fluctuans Lour, Clerodendrum viscosum Vent and Andrographis peniculata Wall of Bangladesh were investigated to analyze their antimicrobial and cytotoxic activities against some pathogenic microorganisms and Artemia salina (brine shrimp nauplii. Methods: The coarse powder material of leaves of each plant was extracted separately with methanol and acetone to yield methanol extracts of leaves of Enhydra fluctuans (MLE, Clerodendrum viscosum (MLC and Andrographis peniculata (MLA, and acetone extracts of leaves of Enhydra fluctuans (ALE, Clerodendrum viscosum (ALC and Andrographis peniculata (ALA. The disc diffusion method and the method described by Meyer were used to determine the antimicrobial and cytotoxic activities of each plant extract. Results: Among the test samples, MLE and ALE showed comparatively better antimicrobial activity against a number of bacteria and fungi with inhibition zones in the range of 06-15 mm and according to the intensity of activity, the efficacy against microorganisms were found in the order of Enhydra fluctuans> Andrographi speniculata> Clerodendrum viscosum. In cytotoxicity assay, all samples were found to be active against brine shrimp nauplii (Artemia salina and ALA produced lowest LC50 value (7.03 μg/ml. Conclusion: Enhydra fluctuans and Andrographi speniculata possesses significant antimicrobial and cytotoxic activities.

  16. Antioxidant and antimicrobial activity of lecithin free egg yolk protein preparation hydrolysates obtained with digestive enzymes

    Directory of Open Access Journals (Sweden)

    Aleksandra Zambrowicz

    2012-12-01

    Full Text Available ABSTRACT:Several biological activities have now been associated with egg protein- derived peptides, including antihypertensive, antimicrobial, immunomodulatory, anticancer and antioxidantactivities, highlighting the importance of these biopeptides in human health, and disease prevention and treatment. Special attention has been given to peptides with antioxidant and antimicrobial activities as a new source of natural preservatives in food industry. In this study, the antioxidant properties of the egg-yolk protein by-product (YP hydrolysates were evaluated based on their radical scavenging capacity (DPPH, Fe2+chelating effect and ferric reducing power (FRAP. Furthermore, antimicrobial properties of obtained hydrolysates against Bacillus species were studied. The degrees (DHs of hydrolysis for 4h hydrolysates were: 19.1%, 13.5% and 13.0%, for pepsin, chymotrypsin and trypsin, respectively. Pepsin was the most effective in producing the free amino groups (1410.3 μmolGly/g. The RP-HPLC profiles of the protein hydrolysates showed differences in the hydrophobicity of the generated peptides.Trypsin hydrolysate obtained after 4h reaction demonstrated the strongest DPPH free radical scavenging activity (0.85 µmol Troloxeq/mg. Trypsin and chymotrypsin hydrolysates obtained after 4h reaction exhibited 4 times higher ferric reducing capacity than those treated bypepsin. The hydrolysis products obtained from YP exhibited significant chelating activity. The 4h trypsin hydrolysate exhibited weak antimicrobial activity against B. subtilis B3; B. cereus B512; B. cereus B 3p and B. laterosporum B6.

  17. Antimicrobial activity of bone cements embedded with organic nanoparticles

    Directory of Open Access Journals (Sweden)

    Perni S

    2015-10-01

    Full Text Available Stefano Perni,1,2 Victorien Thenault,1 Pauline Abdo,1 Katrin Margulis,3 Shlomo Magdassi,3 Polina Prokopovich1,2 1School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK; 2Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; 3Casali Institute, Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, IsraelAbstract: Infections after orthopedic surgery are a very unwelcome outcome; despite the widespread use of antibiotics, their incidence can be as high as 10%. This risk is likely to increase as antibiotics are gradually losing efficacy as a result of bacterial resistance; therefore, novel antimicrobial approaches are required. Parabens are a class of compounds whose antimicrobial activity is employed in many cosmetic and pharmaceutical products. We developed propylparaben nanoparticles that are hydrophilic, thus expanding the applicability of parabens to aqueous systems. In this paper we assess the possibility of employing paraben nanoparticles as antimicrobial compound in bone cements. The nanoparticles were embedded in various types of bone cement (poly(methyl methacrylate [PMMA], hydroxyapatite, and brushite and the antimicrobial activity was determined against common causes of postorthopedic surgery infections such as: Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, and Acinetobacter baumannii. Nanoparticles at concentrations as low as 1% w/w in brushite bone cement were capable of preventing pathogens growth, 5% w/w was needed for hydroxyapatite bone cement, while 7% w/w was required for PMMA bone cement. No ­detrimental effect was determined by the addition of paraben nanoparticles on bone cement compression strength and cytocompatibility. Our results demonstrate that paraben nanoparticles can be encapsulated in bone cement, providing concentration-dependent antimicrobial

  18. Preliminary study of the antimicrobial activity of Mentha x villosa Hudson essential oil, rotundifolone and its analogues Estudo preliminar da atividade antimicrobiana do óleo essencial de Mentha x villosa Hudson, rotundifolona e seus análogos

    OpenAIRE

    Thúlio A. Arruda; Rossana M.P. Antunes; Raissa M.R. Catão; Lima, Edeltrudes de O.; Damião P. De Sousa; Xirley P. Nunes; Maria S.V. Pereira; José M. Barbosa-Filho; Emidio V. L. da Cunha

    2006-01-01

    Essential oils present antimicrobial activity against a variety of bacteria and yeasts, including species resistant to antibiotics and antifungicals. In this context, this work aims at the evaluation of the antimicrobial activity of the essential oil of Mentha x villosa Hudson ("hortelã da folha miúda"), its major component (rotundifolone) and four similar analogues of rotundifolone (limonene oxide, pulegone oxide, carvone epoxide and (+)-pulegone) against strain standards of Staphylococcus a...

  19. Antimicrobial activity of silver/starch/polyacrylamide nanocomposite.

    Science.gov (United States)

    Abdel-Halim, E S; Al-Deyab, Salem S

    2014-07-01

    A novel silver/starch/polyacrylamide nanocomposite hydrogel was prepared by grafting acrylamide onto starch in presence of silver nitrate by use of ammonium persulphate as an initiator and N,N-methylene-bisacrylamide as a crosslinking agent, then reducing the silver ions enclosed in the hydrogel structure to silver nanoparticles by treating the hydrogel with sodium hydroxide solution. All factors which affect the grafting/crosslinking reaction were optimized and the concentration of silver ion was changed from 0ppm to 50ppm. The produced nanocomposite hydrogel was characterized for its nanosilver content and the UV-spectra showed similar absorption spectra at wavelength 405nm for all AgNO3 concentrations but the plasmon showed increase in the intensity of the absorption peak as AgNO3 concentration incorporated to the hydrogel structure increases. The nanocomposite hydrogel was also characterized for its antimicrobial activity toward two types of bacteria and two types of fungi. The results showed that the hydrogel with 0ppm silver content has no antimicrobial activity, and that the antimicrobial activity expressed as inhibition zone increases as the silver content increases from 5ppm to 50ppm.

  20. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity.

    Science.gov (United States)

    Peng, Na; Wang, Yanfeng; Ye, Qifa; Liang, Lei; An, Yuxing; Li, Qiwei; Chang, Chunyu

    2016-02-10

    Current superabsorbent hydrogels commercially applied in the disposable diapers have disadvantages such as weak mechanical strength, poor biocompatibility, and lack of antimicrobial activity, which may induce skin allergy of body. To overcome these hassles, we have developed novel cellulose based hydrogels via simple chemical cross-linking of quaternized cellulose (QC) and native cellulose in NaOH/urea aqueous solution. The prepared hydrogel showed superabsorbent property, high mechanical strength, good biocompatibility, and excellent antimicrobial efficacy against Saccharomyces cerevisiae. The presence of QC in the hydrogel networks not only improved their swelling ratio via electrostatic repulsion of quaternary ammonium groups, but also endowed their antimicrobial activity by attraction of sections of anionic microbial membrane into internal pores of poly cationic hydrogel leading to the disruption of microbial membrane. Moreover, the swelling properties, mechanical strength, and antibacterial activity of hydrogels strongly depended on the contents of quaternary ammonium groups in hydrogel networks. The obtained data encouraged the use of these hydrogels for hygienic application such as disposable diapers.

  1. Determination of Yeasts Antimicrobial Activity in Milk and Meat Products

    Directory of Open Access Journals (Sweden)

    L.B. Roostita

    2011-12-01

    Full Text Available The research was arranged to isolate yeasts from livestock products and then the yeasts antimicrobial activity was tested towards putrefaction and pathogenic bacteria. Yeasts isolated from livestock products using Malt Extract Agar (MEA, the total yeasts population counted with using total plate count method, antimicrobial activity tested using diffusion methods against Pseudomonas aerugenes, Staphylococcus aureus and Escherichia coli and then the chosen isolate identified with using 18s RNA method. The results have shown that the total yeasts population on pasteurized cow’s milk were 1.2×106 cfu/g, fruit yoghurt 5.4×106 cfu/g, lamb meat 1×105 cfu/g, beef 1×105 cfu/g and beef sausages 1×106 cfu/g total yeasts population. Fruit yoghurt isolate shown the best antimicrobial activity with 35 mm clear zone diameter against Pseudomonas aerugenes, 8 mm clear zone diameter against Staphylococcus aureus and 10 mm clear zone diameter against Escherichia coli. The 18 s RNA test shown that fruit yoghurt isolate was 100% (FR3-F primer and 99% (FR3-R primer identical with Candida parapsilosis.

  2. Synthesis, characterization and antimicrobial activity of some novel benzimidazole derivatives

    Directory of Open Access Journals (Sweden)

    Immadisetty Sri Krishnanjaneyulu

    2014-01-01

    Full Text Available A series of novel N-((1H-benzoimidazol-1-yl methyl-4-(1-phenyl-5-substituted-4, 5-dihydro-1-benzoimidazol-1-yl methyl-4-(1-phenyl-5-substituted-4, 5-dihydro-1H-pyrazol-3-yl benzenamine were synthesized by treating various 1-(4-((1H-benzoimidazol-1-yl methylamino phenyl-3-substitutedprop-2-en-1-one with phenyl hydrazine in the presence of sodium acetate through a simple ring closure reaction. The starting material, 1-(4-((1H-benzoimidazol-1-yl methylamino phenyl-3-substitutedprop-2-en-1-one,-benzoimidazol-1-yl methylamino phenyl-3-substitutedprop-2-en-1-one, was synthesized from o-phenylenediamine by a multistep synthesis. All the synthesized compounds were characterized by spectroscopic means and elemental analyses. The title compounds were investigated for in vitro antibacterial and antifungal properties against some human pathogenic microorganisms by employing the agar streak dilution method using Ciprofloxacin and Ketoconazole as standard drugs. All title compounds showed activity against the entire strains of microorganism. Structural activity relationship studies reveal that compounds possessing an electron-withdrawing group display better activity than the compounds containing electron-donating groups, whereas the unsubstituted derivatives display moderate activity. Based on the results obtained, N-((1H-benzoimidazol-1-yl methyl-4-(1-phenyl-5-(4-(trifluoromethyl phenyl-4,5-dihydro-1H-pyrazol-3-yl benzenamine 5i was found to be very active compared with the rest of the compounds and standard drugs that were subjected to antimicrobial assay.

  3. Antimicrobial activity of propolis extract against Staphylococcus coagulase positive and Malassezia pachydermatis of canine otitis.

    Science.gov (United States)

    Cardoso, Rosemari Laura; Maboni, Franciele; Machado, Gustavo; Alves, Sydney Hartz; de Vargas, Agueda Castagna

    2010-05-19

    The aims of this study were to evaluate the antimicrobial potential of propolis extract by determining the minimum bactericidal concentration (MBC) for coagulase-positive Staphylococcus isolates (Staphylococcus aureus and Staphylococcus intermedius) and the minimum fungicidal concentration (MFC) for Malassezia pachydermatis isolates. The microorganisms were assayed using broth microdilution techniques. The MBC(90) was 21 mg mL(-1), and the MFC(90) was 5.3 mg mL(-1). The propolis extract was found to exhibit antimicrobial activity against both pathogens.

  4. Antimicrobial activity of some isatin-3--thiosemicarbazone complexes

    OpenAIRE

    SANDRA S. KONSTANTINOVIC; Radovanovic, Blaga C.; Sovilj, Sofija P.; SVETLANA STANOJEVIC

    2008-01-01

    Isatin-3-thiosemicarbazone complexes with Co(II), Ni(II), Cu(II), Zn(II), Hg(II) and Pd(II) were synthesized and evaluated for their antimicrobial activity against 7 pathogenic bacteria and 4 fungi. The complexes have an enhanced activity compared to the ligand due to transition metal involved in coordination. The anti-amoebic activity in vitro was evaluated against the HM1:IMSS strain of Entamoeba histolytica and the results were compared with the standard drug, metronidazole. The preliminar...

  5. Assessment of antioxidant, anticancer and antimicrobial activity of two vegetable species of Amaranthus in Bangladesh

    OpenAIRE

    Al-Mamun, M. Abdulla; Husna, Jamiatul; Khatun, Masuda; Hasan, Rubait; Kamruzzaman, M.; Hoque, K. M. F.; Reza, M. Abu; Ferdousi, Z.

    2016-01-01

    Background Amaranthus (Amaranthaceae) has previously been reported to possess different bioactive phytochemicals including phenols, tannins and flavonoids. The current study was designed to evaluate the antioxidant, anti-proliferative and antimicrobial activity of stem and seed extracts of Amaranthus lividus (AL) and Amaranthus hybridus (AH), respectively. Methods Antioxidant activity of methanol extract was assessed by DPPH radical scavenging assay. Determination of lectin activity of Amaran...

  6. In Vitro Antimicrobial Activity of Iris pseudacorus and Urtica dioica

    Directory of Open Access Journals (Sweden)

    Maryam Ramtin

    2014-03-01

    Full Text Available Background: In this study, the effects of antibacterial activity of Urtica dioica and Iris pseudacorus essential oils, native plant northern of Iran, were investigated for some selected bacteria. Material and Methods: The influence of essential oils was tested by the using of disk diffusion and micro-broth dilution methods against standard strains of the picked out bacteria. Gas Chromatography/Mass Spectroscopy (GC/MS analysis, bioactivity determination, Minimum inhibitory concentrations (MIC and minimum bactericidal concentration (MBC of essential oils were utilized for this goal. Results: This study showed that, Inhibition zone diameter varied from 11 to 19 mm and 9 to 17 mm for Urtica dioica and Iris pseudacorus respectively. In contrast, this figure fluctuated from 19 to 28 mm and 7 to 17 mm for gentamicin and ampicillin separately. By the application of micro-broth dilution technique, MICs for 1% essential oils were 1.8-7.5 μg/ml and 3.75-15 μg/ml for, Urtica dioica and Iris pseudacorus against gram-positive and gram-negative bacteria individually. Furthermore, the MBCs of herbal essences were 1.8-15 μg/ml for, Urtica dioica and 15-30 μg/ml for Iris. Conclusion: The application of essential oils for the bio-control of diseases, as a novel emerging alternative to antimicrobial treatments, lead to safer and more environmental management for infective diseases4T.4T

  7. Preparation and Antimicrobial Activity Study of Oregano Oil Microcapsule%牛至精油微胶囊的制备及其抑菌效果研究

    Institute of Scientific and Technical Information of China (English)

    刘光发; 王建清; 赵亚珠

    2012-01-01

    以海藻酸钠为壁材制备牛至精油微胶囊,通过正交试验优化了微胶囊的最佳制备工艺条件,并对其进行了结构表征和抑茵效果研究。结果表明,制备牛至微胶囊的最佳工艺条件为:海藻酸钠质量分数2.5%、氯化钙质量分数1.5%、壁芯比为1:1、乳化剂为0.2%的吐温-80和0.1%的单甘酯,在此条件下,微胶囊中牛至精油的包埋率为60.48%,其内部为多孔结构,且抑菌效果良好,当其用量达到0.02g时,对灰霉的抑茵圈直径达到90mm。%Oregano oil microcapsule was prepared by utilizing sodium alginate as wall materials. The technology of preparing oregano oil microcapsule was optimized by orthogonal experiment design, and its structural characterization and antimicrobial activity were also tested. The results showed that oregano oil microeapsule shows the best quality when the concentration of sodium alginate, calcium chloride, Tween-80 and monoglyeerides were 2.5%, 1.5 %,0.2% and 0.1% respectively, and the ratio between wall and core materials was 1 : 1. The embedding rate was 60.48% under the condition. There are vesicular structures in the internal of the prepared oregano oil microcapsule, which showed obvious antimicrobial activity, and the inhibition zone diameter of Botrytis cinerea arrived at 90 millimeters when the addition amount of oregano oil microcapsule achieved 0.02 gram.

  8. Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis

    Directory of Open Access Journals (Sweden)

    Stanojković Tatjana P

    2011-10-01

    Full Text Available Abstract Background The aim of this study is to investigate in vitro antioxidant, antimicrobial and anticancer activity of the acetone extracts of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. Methods Antioxidant activity was evaluated by five separate methods: free radical scavenging, superoxide anion radical scavenging, reducing power, determination of total phenolic compounds and determination of total flavonoid content. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method against six species of bacteria and ten species of fungi. Anticancer activity was tested against FemX (human melanoma and LS174 (human colon carcinoma cell lines using MTT method. Results Of the lichens tested, Lecanora atra had largest free radical scavenging activity (94.7% inhibition, which was greater than the standard antioxidants. Moreover, the tested extracts had effective reducing power and superoxide anion radical scavenging. The strong relationships between total phenolic and flavonoid contents and the antioxidant effect of tested extracts were observed. Extract of Cladonia furcata was the most active antimicrobial agent with minimum inhibitory concentration values ranging from 0.78 to 25 mg/mL. All extracts were found to be strong anticancer activity toward both cell lines with IC50 values ranging from 8.51 to 40.22 μg/mL. Conclusions The present study shows that tested lichen extracts demonstrated a strong antioxidant, antimicrobial and anticancer effects. That suggest that lichens may be used as as possible natural antioxidant, antimicrobial and anticancer agents to control various human, animal and plant diseases.

  9. Design of embedded-hybrid antimicrobial peptides with enhanced cell selectivity and anti-biofilm activity.

    Directory of Open Access Journals (Sweden)

    Wei Xu

    Full Text Available Antimicrobial peptides have attracted considerable attention because of their broad-spectrum antimicrobial activity and their low prognostic to induce antibiotic resistance which is the most common source of failure in bacterial infection treatment along with biofilms. The method to design hybrid peptide integrating different functional domains of peptides has many advantages. In this study, we designed an embedded-hybrid peptide R-FV-I16 by replacing a functional defective sequence RR7 with the anti-biofilm sequence FV7 embedded in the middle position of peptide RI16. The results demonstrated that the synthetic hybrid the peptide R-FV-I16 had potent antimicrobial activity over a wide range of Gram-negative and Gram-positive bacteria, as well as anti-biofilm activity. More importantly, R-FV-I16 showed lower hemolytic activity and cytotoxicity. Fluorescent assays demonstrated that R-FV-I16 depolarized the outer and the inner bacterial membranes, while scanning electron microscopy and transmission electron microscopy further indicated that this peptide killed bacterial cells by disrupting the cell membrane, thereby damaging membrane integrity. Results from SEM also provided evidence that R-FV-I16 inherited anti-biofilm activity from the functional peptide sequence FV7. Embedded-hybrid peptides could provide a new pattern for combining different functional domains and showing an effective avenue to screen for novel antimicrobial agents.

  10. In vitro antimicrobial activity of leaves and bark extracts of Ficus religiosa (Linn.

    Directory of Open Access Journals (Sweden)

    G.Ramakrishnaiah *1, T.Hariprasad2

    2013-03-01

    Full Text Available In the present study we investigated antimicrobial activity of diethyl ether and methanol extractions of bark and leaves of Ficus religiosa plant against three bacteria (E.coli, Staphylococcus aureus & Pseudomonas aurignosa and one fungi (Aspergillus niger. The results showed that the methanol extracts of both leaves and bark showed antimicrobial activity on three tested bacteria and no effect on A.niger. In methanol extracts S.aureus showed maximum sensitivity (inhibition zone 28mm followed by E.coli (inhibition zone 16mm and Pseudomonas aeruginosa (inhibition zone 12mm. Diethyl ether extracts of leaves were also showed maximum inhibition on S.aureus followed by E.coli and P.aeruginosa. Both methanol and diethyl ether extracts of bark showed antimicrobial activity on three types of tested bacteria and very less inhibition activity on A.niger. But comparatively bark extracts of both the solvents were showed less antimicrobial activity than leaves extracts on the tested microbes.

  11. IN VITRO ANTIMICROBIAL ACTIVITY OF LEAVES AND BARK EXTRACTS OF FICUS RELIGIOSA (Linn.

    Directory of Open Access Journals (Sweden)

    Gampa Ramakrishnaiah

    2012-09-01

    Full Text Available In the present study we investigated antimicrobial activity of diethyl ether and methanol extractions of bark and leaves of Ficus religiosa plant against three bacteria (E.coli, Staphylococcus aureus & Pseudomonas aurignosa and one fungi (Aspergillus niger. The results showed that the methanol extracts of both leaves and bark showed antimicrobial activity on three tested bacteria and no effect on A.niger. In methanol extracts S.aureus showed maximum sensitivity (inhibition zone 28mm followed by E.coli (inhibition zone 16mm and Pseudomonas aeruginosa (inhibition zone 12mm. Diethyl ether extracts of leaves were also showed maximum inhibition on S.aureus followed by E.coli and P.aeruginosa. Both methanol and diethyl ether extracts of bark showed antimicrobial activity on three types of tested bacteria and very less inhibition activity on A.niger. But comparatively bark extracts of both the solvents were showed less antimicrobial activity than leaves extracts on the tested microbes.

  12. In vitro antimicrobial activities of methanolic extract from marine alga Enteromorpha intestinalis

    Institute of Scientific and Technical Information of China (English)

    Ibrahim; Darah; Sheh-Hong; Lim

    2015-01-01

    Objective:To extract the bioactive compound from Enteromorpha intestinalis(E. intestinalis) and determine its in vitro antimicrobial activity. Methods: E. intestinalis was extracted by methanol and subjected to antimicrobial screening. The antimicrobial activity was studied by using disc diffusion and broth dilution method. The effect of the extract on the growth profile of the bacterial was also examined via time-kill assay. Microscopy observations using SEM was done to determine the major alterations in the microstructure of methicillin-resistant Staphylococcus aureus(MRSA). Results: The results showed methanolic extract of E. intestinalis exhibited a favourable antimicrobial activity against tested bacteria with produced inhibition zone ranging from 8.0-19.0 mm. However, all the tested fungi and yeast were resistant to the extract treatment. Time kill assay suggested that methanolic extract of E. intestinalis had completely inhibited MRSA growth and also exhibited prolonged antibacterial activity. The main abnormalities noted from the microscopic observations were the structural deterioration in the normal morphology and complete collapsed of the bacteria cells after 36 h of treatment. Conclusions: The significant antibacterial activity shown by crude extract suggested its potential against MRSA infection. The extract may have potential to develop as antibacterial agent in pharmaceutical use.

  13. In vitro antimicrobial activities of methanolic extract from marine alga Enteromorpha intestinalis

    Institute of Scientific and Technical Information of China (English)

    Ibrahim Darah; Sheh-Hong Lim

    2015-01-01

    To extract the bioactive compound from Enteromorpha intestinalis (E. intestinalis) and determine its in vitro antimicrobial activity. Methods: E. intestinalis was extracted by methanol and subjected to antimicrobial screening. The antimicrobial activity was studied by using disc diffusion and broth dilution method. The effect of the extract on the growth profile of the bacterial was also examined via time-kill assay. Microscopy observations using SEM was done to determine the major alterations in the microstructure of methicillin-resistant Staphylococcus aureus (MRSA). Results: The results showed methanolic extract of E. intestinalis exhibited a favourable antimicrobial activity against tested bacteria with produced inhibition zone ranging from 8.0-19.0 mm. However, all the tested fungi and yeast were resistant to the extract treatment. Time kill assay suggested that methanolic extract of E. intestinalis had completely inhibited MRSA growth and also exhibited prolonged antibacterial activity. The main abnormalities noted from the microscopic observations were the structural deterioration in the normal morphology and complete collapsed of the bacteria cells after 36 h of treatment. Conclusions: The significant antibacterial activity shown by crude extract suggested its potential against MRSA infection. The extract may have potential to develop as antibacterial agent in pharmaceutical use.

  14. Antimicrobial activity of methanolic extracts of selected marine macroalgae against some pathogenic microorganisms

    Institute of Scientific and Technical Information of China (English)

    Ehab Omer Abdalla; Mohammed Taha Abdalla Shigidi; Hassan Elsubki Khalid; Nahid Abdel Rahim Osman

    2016-01-01

    Objective:To evaluate the antimicrobial activity of methanolic extracts of six marine macroalgae belonging to green algae (Chlorophyceae), brown algae (Phaeophyceae) and the red algae (Rhodophyceae) collected from the intertidal area of the Sudanese Red Sea coast near Port Sudan. Methods:Methanol was used for extracting the active principles of the algae and the disc diffusion method was performed to examine the activity and the minimum inhibitory concentration of the samples against four pathogenic bacteria and two fungi. Results: All tested algal extracts exhibited considerable bioactivity and inhibited the growth of all pathogenic microorganisms under investigation. The green alga Caulerpa racemosa produced the maximum inhibition zone (21 mm) againstCandida albicans while the red alga Laurencia papillosa showed low antimicrobial activity with the minimum inhibition zone of 10 mm againstPseudomonas aeruginosa. The tested algal extracts did not show any special antimicrobial influence on the selected microorganisms when they were considered as Gram-positive and Gram-negative bacteria and fungi but the most efficient methanolic extracts in inhibiting microbial growth were those of green macroalgae followed by the brown and the red macroalgae respectively. Conclusions: The study demonstrated that the tested marine macroalgae from Sudanese Red Sea coast may represent a potential and alternative source for secondary metabolites with antimicrobial activity.

  15. Chemical Diversity and Antimicrobial Activity of Salvia multicaulis Vahl Essential Oils.

    Science.gov (United States)

    Fahed, Layal; Stien, Didier; Ouaini, Naïm; Eparvier, Véronique; El Beyrouthy, Marc

    2016-05-01

    The chemical compositions and antimicrobial activities of the essential oils (EOs) of aerial parts of Salvia multicaulis Vahl, collected during the same week from two different Lebanese regions, were investigated. The EOs were obtained by hydrodistillation using a Clevenger-type apparatus and characterized by GC and GC/MS analyses. The minimum inhibitory concentrations of these EOs were determined against one Gram-negative and two Gram-positive bacteria, one yeast, and five dermatophytes using the broth microdilution technique. One EO was notably active against Staphylococcus aureus, methicillin-resistant S. aureus, and all of the Trichophyton species tested. Nerolidol was found to be the major compound in the active oil; nerolidol was also absent from the inactive oil. This study demonstrated that nerolidol shows antimicrobial activity and therefore significantly contributes to the antimicrobial potential of the oil. The chemical diversity of worldwide S. multicaulis EOs was analyzed, revealing that the EOs of this study belong to two different chemotypes found in the literature. The nerolidol chemotype appears to be restricted to Lebanon, and it can be used as antimicrobial agent against external bacterial and fungal infections. PMID:27038067

  16. Antimicrobial activity of Algerian honey on subclinical mastitis pathogens isolated from goat's milk

    Directory of Open Access Journals (Sweden)

    A. Bourabah

    2014-04-01

    Full Text Available Aim: The aim of the present study was to determine the susceptibility of subclinical mastitis pathogens isolated from goat's milk and to evaluate the antimicrobial activity of Algerian honey on mastitis causing bacteria. Materials and Methods: The antibacterial activity against the isolated bacteria was evaluated by determining the Minimal Inhibitory Concentration (MIC, using the agar incorporation method. Results: The results showed that both Micrococcus spp. and Klebsiella spp. were susceptible to Streptomycin and tetracycline, while Pseudomonas aeruginosa, E coli, Enterobacter spp., Bacillus spp., and Coagulase Negative Staphyloccoci (CNS were preferentially susceptible to Streptomycin. However, Streptococcus D was the most resistant to the tested antibiotics whereas Staphylococcus aureus was the most susceptible to all the studied antibiotics. As regards to the antimicrobial activity of honey, the measured values were comprised between 11 and 14%. Conclusion: The results reveal that antimicrobial drugs susceptibility tests in goat subclinical mastitis might be necessary before the treatment. Algerian honey exhibited in vitro antimicrobial activity against different isolated bacteria in goat mastitis.

  17. Screening for Antimicrobial Activity of Wood Rotting Higher Basidiomycetes Mushrooms from Uruguay against Phytopathogens.

    Science.gov (United States)

    Barneche, Stephanie; Jorcin, Gabriela; Cecchetto, Gianna; Cerdeiras, María Pía; Vázquez, Alvaro; Alborés, Silvana

    2016-01-01

    In this work, the antimicrobial activity of extracts of wood rotting higher Basidiomycetes mushrooms isolated from Eucalyptus plantations in Uruguay was studied using bacterial and fungal phytopathogens as targets. Fifty-one extracts from mycelia and growth broth were prepared from higher Basidiomycetes mushrooms, from which eight extracts (from Ganoderma resinaceum, Laetiporus sulphureus, Dictyopanus pusillus, and Bjerkandera adusta) showed antimicrobial activity against Xanthomonas vesicatoria, Aspergillus oryzae, Penicillium expansum, Botrytis cinerea, and Rhizopus stolonifer as assayed in the qualitative test. The minimum inhibitory concentration (MIC) for those fungal extracts was determined and the results showed that L. sulphureus deserved further study, with low MIC values against X. vesicatoria. The antimicrobial activity of L. sulphureus culture broth extracts grown under different culture conditions was evaluated against X. vesicatoria. From the results of these assays, larger-scale cultures for the production of the compound(s) with antimicrobial activity should be performed using malt extract broth, at pH 5, at 20°C and static culture conditions. PMID:27481160

  18. ANTIMICROBIAL ACTIVITY OF CASSIA FISTULA LINN. LEGUMES

    OpenAIRE

    Chauhan Neelam; Bairwa Ranjan; Sharma Komal; Chauhan Nootan

    2011-01-01

    Cassia fistula Linn. (Leguminoseae), commonly known as the Golden Shower, Indian Laburnum. Cassia fistula trees as leguminous plants are popularly grown in Thailand. It is native to India, the Amazon and Sri Lanka and diffused in various countries including Mexico, China, Mauritius, South Africa, East Africa, and West Indies. The antibacterial activities of the petroleum ether, chloroform, ethyle acetate, methanolic and 50% (v/v) hydro alcoholic successive extracts of Cassia fistula (L) fruit...

  19. Antimicrobial activity of nerolidol and its derivatives against airborne microbes and further biological activities.

    Science.gov (United States)

    Krist, Sabine; Banovac, Daniel; Tabanca, Nurhayat; Wedge, David E; Gochev, Velizar K; Wanner, Jürgen; Schmidt, Erich; Jirovetz, Leopold

    2015-01-01

    Nerolidol and its derivatives, namely cis-nerolidol, O-methyl-nerolidol, O-ethyl-nerolidol, (-)-α-bisabolol, trans,trans-farnesol and its main natural source cabreuva essential oil, were tested for their antimicrobial activity against airborne microbes and antifungal properties against plant pathogens. Among the tested compounds, α-bisabolol was the most effective antimicrobial agent and trans,trans-farnesol showed the best antifungal activity. PMID:25920237

  20. Multilayer hydrogel coatings to combine hemocompatibility and antimicrobial activity.

    Science.gov (United States)

    Fischer, Marion; Vahdatzadeh, Maryam; Konradi, Rupert; Friedrichs, Jens; Maitz, Manfred F; Freudenberg, Uwe; Werner, Carsten

    2015-07-01

    While silver-loaded catheters are widely used to prevent early-onset catheter-related infections [1], long term antimicrobial protection of indwelling catheters remains to be achieved [2] and antiseptic functionalization of coatings often impairs their hemocompatibility characteristics. Therefore, this work aimed to capitalize on the antimicrobial properties of silver nanoparticles, incorporated in anticoagulant poly(ethylene glycol) (PEG)-heparin hydrogel coatings [3] on thermoplastic polyurethane materials. For prolonged antimicrobial activity, the silver-containing starPEG-heparin hydrogel layers were shielded with silver-free hydrogel layers of otherwise similar composition. The resulting multi-layered gel coatings showed long term antiseptic efficacy against Escherichia coli and Staphylococcus epidermidis strains in vitro, and similarly performed well when incubated with freshly drawn human whole blood with respect to hemolysis, platelet activation and plasmatic coagulation. The introduced hydrogel multilayer system thus offers a promising combination of hemocompatibility and long-term antiseptic capacity to meet an important clinical need.

  1. Chemical properties and antioxidant and antimicrobial activities of Slovenian propolis.

    Science.gov (United States)

    Mavri, Ana; Abramovič, Helena; Polak, Tomaž; Bertoncelj, Jasna; Jamnik, Polona; Smole Možina, Sonja; Jeršek, Barbara

    2012-08-01

    The chemical composition as well as the antioxidant and antimicrobial activities of two EtOH extracts of propolis (PEEs) from Slovenia were determined. EtOH was used as extracting solvent at 70 and 96%, providing the extracts PEE70 and PEE96, respectively. The extraction with 70% EtOH was more efficient than that with 96% EtOH, as the PEE70 was richer in total phenolic compounds than the PEE96. The Slovenian propolis was characterized by different phenolic acids and flavonoids. The PEE96 was slightly richer in three specific compounds, i.e., caffeic acid, ferulic acid, and luteolin, while all other substances detected showed higher contents in the PEE70. The PEE70 showed a stronger reducing power and ability to scavenge free radicals and metal ions than the PEE96. Both PEEs were in the main more effective against Gram-positive bacteria than against fungi and Gram-negative bacteria like Salmonella and Escherichia coli, with the exception of Campylobacter. The PEE96 decreased the intracellular oxidation in Saccharomyces cerevisiae in a dose-dependent manner. The antimicrobial activities and antioxidant properties were related to the total phenolic contents. The two PEEs have the potential for use as natural antimicrobial and antioxidant additives in foods.

  2. Synthesis and Antimicrobial Activity of a Silver-Hydroxyapatite Nanocomposite

    Directory of Open Access Journals (Sweden)

    Marcos Díaz

    2009-01-01

    Full Text Available A silver-hydroxyapatite nanocomposite has been obtained by a colloidal chemical route and subsequent reduction process in H2/Ar atmosphere at 350∘C. This material has been characterized by TEM, XRD, and UV-Visible spectroscopy, showing the silver nanoparticles (∼65 nm supported onto the HA particles (∼130 nm surface without a high degree of agglomeration. The bactericidal effect against common Gram-positive and Gram-negative bacteria has been also investigated. The results indicated a high antimicrobial activity for Staphylococcus aureus, Pneumococcus and Escherichia coli, so this material can be a promising antimicrobial biomaterial for implant and reconstructive surgery applications.

  3. Gram-positive antimicrobial activity of amino acid-based hydrogels.

    Science.gov (United States)

    Irwansyah, I; Li, Yong-Qiang; Shi, Wenxiong; Qi, Dianpeng; Leow, Wan Ru; Tang, Mark B Y; Li, Shuzhou; Chen, Xiaodong

    2015-01-27

    Antimicrobial hydrogels are prepared based on the co-assembly of commercial Fmoc-phenylalanine and Fmoc-leucine, which act as the hydrogelator and antimicrobial building block, respectively. This co-assembled antimicrobial hydrogel is demonstrated to exhibit selective bactericidal activity for gram-positive bacteria while being biocompatible with normal mammalian cells, showing great potential as an antimicrobial coating for clinical anti-infective applications.

  4. Evaluation of Membrane Stabilizing Activity, Total Phenolic Content, Brine Shrimp Lethality Bioassay, Thrombolytic and Antimicrobial Activities of Tagetes patula L.

    Directory of Open Access Journals (Sweden)

    Md. Ruhul Kuddus

    2012-11-01

    Full Text Available The methanol extract of leaf of Tagetes patula L. as well as its n-hexane, carbon tetrachloride, chloroform and aqueous soluble partitionates were subjected to screening for total phenolic content, brine shrimp lethality, membrane stabilizing, thrombolytic and antimicrobial activity. The membrane stabilizing activity was assessed by hypotonic solution-and heat-induced methods and was compared with acetyl salicylic acid. In the present studies, the n-hexane soluble fraction demonstrated strong membrane stabilizing activity in both hypotonic solution-and heat-induced methods with 44.48% and 42.68% inhibition of haemolysis, respectively. The total phenolic content was also determined and expressed in gallic acid equivalent. In brine shrimp bioassay, the crude methanol extract of leaf showed strong cytotoxic activity with LC50 value of 8.58 μg/ml compared to that of 0.451 μg/ml exhibited by standard vincristine sulphate. During assay for thrombolytic activity, the n-hexane soluble fraction revealed 43.7% lysis of clot while standard streptokinase and water, used as positive and negative controls, demonstrated 65.8% and 3.62% lysis of clot, respectively. In antimicrobial assay by disc diffusion method, all the samples exhibited moderate to significant antimicrobial activity (zone of inhibition = 9.0-22.0 mm against all the test organisms. Among all the samples, the carbon tetrachloride soluble fraction displayed strong antimicrobial activity against Escherichia coli (22.0 mm.

  5. Multicenter assessment of the linezolid spectrum and activity using the disk diffusion and Etest methods: report of the Zyvox® Antimicrobial Potency Study in Latin America (LA-ZAPS

    Directory of Open Access Journals (Sweden)

    Ballow Charles H.

    2002-01-01

    Full Text Available Linezolid was the first clinically applied member of the new antimicrobial class called the "oxazolidinones". These agents have a powerful spectrum of activity focussed against Gram-positive organisms including strains with documented resistances to other antimicrobial classes. We conducted a multicenter surveillance (Zyvox Antimicrobial Potency Study; ZAPS trial of qualifying Gram-positive isolates from 24 medical centers in eight countries in Latin America. The activity and spectrum of linezolid was compared to numerous agents including glycopeptides, quinupristin/dalfopristin, b-lactams and fluoroquinolones when testing 2,640 strains by the standardized disk diffusion method or Etest (AB BIODISK, Solna, Sweden. The linezolid spectrum was complete against staphylococci (median zone diameter, 29 - 32 mm, as was the spectrum of vancomycin and quinupristin/dalfopristin. Among the enterococci, no linezolid resistance was detected, and the susceptibility rate was 93.1 - 96.4%. Only the vancomycin-susceptible Enterococcus faecium strains remained susceptible (92.8% to quinupristin/dalfopristin. Marked differences in the glycopeptide resistance patterns (van A versus van B were noted for the 22 isolates of VRE, thus requiring local susceptibility testing to direct therapy. Streptococcus pneumoniae and other species were very susceptible (100.0% to linezolid, MIC90 at 0.75 mug/ml. Penicillin non-susceptible rate was 27.7% and erythromycin resistance was at 17.4%. Other streptococci were also completely susceptible to linezolid (MIC90, 1 mug/ml. These results provide the initial benchmark of potency and spectrum for linezolid in Latin American medical centers. Future comparisons should recognize that the oxazolidinones possess essentially a complete spectrum coverage of the monitored staphylococci, enterococci and streptococcal isolates in 2000-2001. This positions linezolid as the widest spectrum empiric choice against multi-resistant Gram

  6. Antimicrobial activity and hydrophobicity of edible whey protein isolate films formulated with nisin and/or glucose oxidase.

    Science.gov (United States)

    Murillo-Martínez, María M; Tello-Solís, Salvador R; García-Sánchez, Miguel A; Ponce-Alquicira, Edith

    2013-04-01

    The use of edible antimicrobial films has been reported as a means to improve food shelf life through gradual releasing of antimicrobial compounds on the food surface. This work reports the study on the incorporation of 2 antimicrobial agents, nisin (N), and/or glucose oxidase (GO), into the matrix of Whey protein isolate (WPI) films at pH 5.5 and 8.5. The antimicrobial activity of the edible films was evaluated against Listeria innocua (ATCC 33090), Brochothrix thermosphacta (NCIB10018), Escherichia coli (JMP101), and Enterococcus faecalis (MXVK22). In addition, the antimicrobial activity was related to the hydrophobicity and water solubility of the WPI films. The greatest antibacterial activity was observed in WPI films containing only GO. The combined addition of N and GO resulted in films with lower antimicrobial activity than films with N or GO alone. In most cases, a pH effect was observed as greater antimicrobial response at pH 5.5 as well as higher film matrix hydrophobicity. WPI films supplemented with GO can be used in coating systems suitable for food preservation.

  7. The in vitro activity of 15 antimicrobial agents against bacterial isolates from dogs.

    Science.gov (United States)

    Awji, Elias Gebru; Damte, Dereje; Lee, Seung-Jin; Lee, Joong-Su; Kim, Young-Hoan; Park, Seung-Chun

    2012-08-01

    The in vitro activity of 15 antimicrobial agents against clinical isolates of Staphylococcus pseudintermedius, Staphylococcus aureus, Escherichia coli, Pasteurella spp. and Streptococcus canis from dogs was investigated. For Staphylococcus spp., the highest frequency of resistance was observed for penicillin, followed by ampicillin, tetracycline and chloramphenicol. The highest frequency of resistance in E. coli isolates was recorded for tetracycline and streptomycin. Pasteurella spp. and S. canis had the highest resistance rate for tetracycline and chloramphenicol. Most isolates showed full susceptibility to low-level resistance to colistin, florfenicol and fluoroquinolones. Further studies using larger number of isolates from both healthy and diseased dogs would provide a broader picture of antimicrobial resistance at a national level and promote prudent use of antimicrobial agents in companion animals. PMID:22516694

  8. In Vitro Antimicrobial Activity of Essential Oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globulus, and Rosmarinus officinalis.

    Science.gov (United States)

    Mekonnen, Awol; Yitayew, Berhanu; Tesema, Alemnesh; Taddese, Solomon

    2016-01-01

    In this study, the in vitro antimicrobial activities of four plant essential oils (T. schimperi, E. globulus, R. officinalis, and M. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils of T. schimperi, E. globulus, and R. officinalis were active against bacteria and some fungi. The antimicrobial effect of M. chamomilla was found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values of T. schimperi were <15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75-36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil of E. globulus, M. chamomilla, T. Schimperi, and R. officinalis. The results indicated that T. schimperi have shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation. PMID:26880928

  9. Phytochemical analysis and antimicrobial activities of methanolic stem extracts of Ochna schweinfurthiana F.Hoffm.

    Directory of Open Access Journals (Sweden)

    Umar Mukhtar Danmusa

    2015-12-01

    Full Text Available Context: Medicinal plants are an enormous source of alternative antimicrobial therapy, particularly in this era of emerging resistance against orthodox antimicrobial agents. Aims: To evaluate the phytochemical and antimicrobial activities of methanolic stem extracts of Ochna schweinfurthiana F.Hoffm. and various fractions (chloroform, n-hexane, ethyl acetate, and n-butanol obtained through liquid-liquid partition. Methods: The basic phytochemistry assay and disc diffusion/broth dilution techniques were used. The microorganisms tested were pure isolates of Methicillin Resistance Staphylococcus aureus, Staphylococcus aureus, Streptococcus pyogenes, Salmonella typhi, Shigella dysenteriae, Klebsiella pneumonia, Neisseria gonnorhea, Pseudomonas aeruginosa, Corynebacterium ulcerans, Bacillus subtilis, Escherichia coli, Proteus mirabilis, Candida albicans, Candida tropicalis, Candida stellatoidea and Candida krusei. Results: Thin layer chromatography results showed 13 prominent coloured spots from chloroform extract using dichloromethane/methanol 10:1 as the solvent system. The crude extract revealed the presence of flavonoids, saponins, tannins, glycosides and steroids/terpenes. Antimicrobial susceptibilities and zones of inhibition (ZI findings showed that stem extracts inhibited growth of all microbes at ZI range of 22 – 29 mm except C. ulcerans, B. subtilis, E. coli, P. mirabilis, C. stellatoidea and C. krusei. It was observed that chloroform fraction had the highest antimicrobial activities with minimum inhibitory concentration of 1.25 mg/mL against all susceptible pathogens except P. aeruginosa (2.5 mg/mL. Conclusions: Ochna schweinfurthiana F.Hoffm. stem contains bioactive constituents with potent antimicrobial activities at low MIC, especially in the chloroform soluble fraction. This study validates and encourages the ethnomedicinal use of this plant in treating infections caused by these susceptible microbes.

  10. Phytochemical analysis, antimicrobial, antioxidant activities and total phenols of Ferulago carduchorum in two vegetative stages (flower and fruit).

    Science.gov (United States)

    Golfakhrabadi, Fereshteh; Shams Ardekani, Mohammad Reza; Saeidnia, Soodabeh; Yousefbeyk, Fatemeh; Jamalifar, Hossein; Ramezani, Nasrin; Akbarzadeh, Tahmineh; Khanavi, Mahnaz

    2016-03-01

    Ferulago carduchorum (Apiaceae family) is an endemic plant of Iran. The crude extract and four fractions of aerial parts of F. carduchorum in two vegetative stages (flower and fruit) were studied for their total phenolic contents, antimicrobial and antioxidant activities using folin-ciocalteu assay, micro dilution method and DPPH assay, respectively. The results indicated that the best antioxidant activity was determined in flower crude extract (IC50=0.44 mg/mL). The flower ethyl acetate fraction (FLE) showed better antimicrobial and antifungal activities than other fractions. So, FLE was selected for phytochemical investigations, resulting in isolation of a flavonoid (hesperetin). Hesperetin showed antimicrobial activity. The results showed that the antimicrobial and antioxidant effects during the flowering are obviously more than the fruit season. PMID:27087085

  11. Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract

    Directory of Open Access Journals (Sweden)

    Umer Shemsu

    2013-01-01

    Full Text Available Abstract Background In Ethiopia, Calpurnia aurea is used for the treatment of syphilis, malaria, rabies, diabetes, hypertension, diarrhoea, leishmaniasis, trachoma, elephantiasis, fungal diseases and different swellings. However, despite its traditional usage as an antidiarrhoeal and antimicrobial agent, there is limited or no information regarding its effectiveness and mode of action in diarrhoea which may be caused by Shigella flexneri, Staphylococcus aureus, Escherichia coli and Salmonella typhi. Hence, we evaluated the 80% methanol (MeOH extract of dried and powdered leaves of C. aurea for its antidiarrhoeal and antimicrobial activities. Methods Swiss albino mice of either sex were divided into five groups (five/group: Group I served as control and received vehicle (1% Tween 80 at a dose of 10 ml/kg orally; Group II served as standard and received loperamide at the dose of 3 mg/kg orally; Groups III, IV and V served as test groups and received the 80% MeOH leaf extract of C. aurea at doses of 100, 200 and 400 mg/kg orally, respectively. Diarrhoea was induced by oral administration of 0.5 ml castor oil to each mouse, 1 h after the above treatments. During an observation period of 4 h, time of onset of diarrhea, total number of faecal output (frequency of defecation and weight of faeces excreted by the animals were recorded. Data were analyzed using one way analysis of variance followed by Tukey post test. Antimicrobial activity test was conducted using agar well diffusion assay. Clinical isolates tested were Salmonella typhi, Salmonella paratyphi, Salmonella typhimurium, Shigella species, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. Results In castor oil induced diarrhea model, the 80% methanol leaf extract of C. aurea at 100, 200 and 400 mg/kg and the standard drug loperamide (3 mg/kg significantly reduced the time of onset of diarrhea, the frequency of defecation (total number of faecal output and weight of faeces. C

  12. Research Concerning Antimicrobial Activities of Some Essential Oils Extracted from Plants

    OpenAIRE

    ADRIANA DALILA CRISTE; Mihaela Giuburunca; Octavian Negrea; Nicodim Fit

    2014-01-01

    The principal components of some essential oils extracted from plants have been found to have microbial activity. Depending on the concentration, the members of this class are known to be bactericide or bacteriostatic. Their action mechanism is unclear, but some studies suggest that the compounds penetrate the cell, where they interfere with cellular metabolism. The purpose of this study was to evaluate the antimicrobial activity of 5 essential oils extracted from plants on Escherichia coli, ...

  13. Assessing the antimicrobial activity of polyisoprene based surfaces.

    Science.gov (United States)

    Badawy, Hope; Brunellière, Jérôme; Veryaskina, Marina; Brotons, Guillaume; Sablé, Sophie; Lanneluc, Isabelle; Lambert, Kelly; Marmey, Pascal; Milsted, Amy; Cutright, Teresa; Nourry, Arnaud; Mouget, Jean-Luc; Pasetto, Pamela

    2015-01-01

    There has been an intense research effort in the last decades in the field of biofouling prevention as it concerns many aspects of everyday life and causes problems to devices, the environment, and human health. Many different antifouling and antimicrobial materials have been developed to struggle against bacteria and other micro- and macro-organism attachment to different surfaces. However the "miracle solution" has still to be found. The research presented here concerns the synthesis of bio-based polymeric materials and the biological tests that showed their antifouling and, at the same time, antibacterial activity. The raw material used for the coating synthesis was natural rubber. The polyisoprene chains were fragmented to obtain oligomers, which had reactive chemical groups at their chain ends, therefore they could be modified to insert polymerizable and biocidal groups. Films were obtained by radical photopolymerization of the natural rubber derived oligomers and their structure was altered, in order to understand the mechanism of attachment inhibition and to increase the efficiency of the anti-biofouling action. The adhesion of three species of pathogenic bacteria and six strains of marine bacteria was studied. The coatings were able to inhibit bacterial attachment by contact, as it was verified that no detectable leaching of toxic molecules occurred. PMID:25706513

  14. Assessing the Antimicrobial Activity of Polyisoprene Based Surfaces

    Directory of Open Access Journals (Sweden)

    Hope Badawy

    2015-02-01

    Full Text Available There has been an intense research effort in the last decades in the field of biofouling prevention as it concerns many aspects of everyday life and causes problems to devices, the environment, and human health. Many different antifouling and antimicrobial materials have been developed to struggle against bacteria and other micro- and macro-organism attachment to different surfaces. However the “miracle solution” has still to be found. The research presented here concerns the synthesis of bio-based polymeric materials and the biological tests that showed their antifouling and, at the same time, antibacterial activity. The raw material used for the coating synthesis was natural rubber. The polyisoprene chains were fragmented to obtain oligomers, which had reactive chemical groups at their chain ends, therefore they could be modified to insert polymerizable and biocidal groups. Films were obtained by radical photopolymerization of the natural rubber derived oligomers and their structure was altered, in order to understand the mechanism of attachment inhibition and to increase the efficiency of the anti-biofouling action. The adhesion of three species of pathogenic bacteria and six strains of marine bacteria was studied. The coatings were able to inhibit bacterial attachment by contact, as it was verified that no detectable leaching of toxic molecules occurred.

  15. A Study on Antimicrobial Effects of Plantago Psyllium

    OpenAIRE

    Sharifi, A; M Naghmachi; S Jahedi; SAM Khosravani

    2011-01-01

    Introduction & Objective: Due to emergence of resistance of antibiotics to microorganisms, investigations for novel antimicrobial agents have always been one of the major preoccupations of the medical societies. The present investigation aimed to study the antimicrobial properties of Plantago psyllium on some of pathogen microorganisms. Materials & Methods: This experimental study was carried out at Yasouj University of Medical Sciences in 2010. After collection and preparation of hy...

  16. FT-IR, dispersive Raman, NMR, DFT and antimicrobial activity studies on 2-(Thiophen-2-yl)-1H-benzo[d]imidazole

    Science.gov (United States)

    Ünal, Arslan; Eren, Bilge

    2013-10-01

    2-(Thiophen-2-yl)-1H-benzo[d]imidazole (TBI) was synthesized under microwave conditions and was characterized by FT-IR, dispersive Raman, 1H-, 13C-, DEPT-, HETCOR-NMR spectroscopies and density functional theory (DFT) computations. The FT-IR and dispersive Raman spectra of TBI were recorded in the regions 4000-400 cm-1 and 4000-100 cm-1. The experimental vibrational spectra were interpreted with the help of normal coordinate analysis based on DFT/B3LYP/6-311++G(d,p) theory level for the more stable tautomeric form (Tautomer 1). The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. A satisfactory consistency between the experimental and theoretical findings was obtained. The frontier molecular orbitals (FMOs), atomic charges and NMR shifts of the two stable tautomeric forms were also obtained at the same theory level without any symmetry restrictions. In addition, the title compound was screened for its antimicrobial activity and was found to be exhibit antifungal and antibacterial effects.

  17. Mono- and binuclear copper(II) complexes of new hydrazone ligands derived from 4,6-diacetylresorcinol: Synthesis, spectral studies and antimicrobial activity

    Science.gov (United States)

    Shebl, Magdy; El-ghamry, Mosad A.; Khalil, Saied M. E.; Kishk, Mona A. A.

    Two new hydrazone ligands, H2L1 and H2L2, were synthesized by the condensation of 4,6-diacetylresorcinol with 3-hydrazino-5,6-diphenyl-1,2,4-triazine and isatin monohydrazone, respectively. The structures of the ligands were elucidated by elemental analyses, IR, 1H NMR, electronic and mass spectra. Reactions of the ligands with several copper(II) salts, including AcO-, NO3-, SO42-, Cl- and Br- afforded mono- and binuclear metal complexes. Also, the ligands were allowed to react with Cu(II) ion in the presence of a secondary ligand (L‧) [N,O-donor; 8-hydroxyquinoline, N,N-donor; 1,10-phenanthroline or O,O-donor; benzoylacetone]. Characterization and structure elucidation of the prepared complexes were achieved by elemental and thermal analyses, IR, electronic, mass and ESR spectra as well as conductivity and magnetic susceptibility measurements. The ESR spin Hamiltonian parameters of some complexes were calculated. The spectroscopic data showed that the H2L1 ligand acts as a neutral or monobasic tridentate ligand while the H2L2 ligand acts as a bis(monobasic tridentate) ligand. The coordination sites with the copper(II) ion are phenolic oxygen, azomethine nitrogen and triazinic nitrogen (H2L1 ligand) or isatinic oxygen (H2L2 ligand). The metal complexes exhibited octahedral and square planar geometrical arrangements depending on the nature of the anion. The ligands and some metal complexes showed antimicrobial activity.

  18. The Activity of Antimicrobial Surfaces Varies by Testing Protocol Utilized

    Science.gov (United States)

    Campos, Matias D.; Zucchi, Paola C.; Phung, Ann; Leonard, Steven N.; Hirsch, Elizabeth B.

    2016-01-01

    Background Contaminated hospital surfaces are an important source of nosocomial infections. A major obstacle in marketing antimicrobial surfaces is a lack of efficacy data based on standardized testing protocols. Aim We compared the efficacy of multiple testing protocols against several “antimicrobial” film surfaces. Methods Four clinical isolates were used: one Escherichia coli, one Klebsiella pneumoniae, and two Staphylococcus aureus strains. Two industry methods (modified ISO 22196 and ASTM E2149), a “dried droplet”, and a “transfer” method were tested against two commercially available antimicrobial films, one film in development, an untreated control, and a positive (silver) control film. At 2 (only ISO) and 24 hours following inoculation, bacteria were collected from film surfaces and enumerated. Results Compared to untreated films in all protocols, there were no significant differences in recovery on either commercial brand at 2 or 24 hours after inoculation. The silver surface demonstrated significant microbicidal activity (mean loss 4.9 Log10 CFU/ml) in all methods and time points with the exception of 2 hours in the ISO protocol and the transfer method. Using our novel droplet method, no differences between placebo and active surfaces were detected. The surface in development demonstrated variable activity depending on method, organism, and time point. The ISO demonstrated minimal activity at 2 hours but significant activity at 24 hours (mean 4.5 Log10 CFU/ml difference versus placebo). The ASTEM protocol exhibited significant differences in recovery of staphylococci (mean 5 Log10 CFU/ml) but not Gram-negative isolates (10 fold decrease). Minimal activity was observed with this film in the transfer method. Conclusions Varying results between protocols suggested that efficacy of antimicrobial surfaces cannot be easily and reproducibly compared. Clinical use should be considered and further development of representative methods is needed. PMID

  19. Antimicrobial activity and identification of potential antimicrobial compounds from aquatic pteridophyte, Azolla microphylla Kaulf.

    Science.gov (United States)

    Abraham, G; Yadav, R K; Kaushik, G K

    2015-04-01

    Azolla microphylla Kaulf. is an aquatic nitrogen fixing pteridophyte commonly found in aquatic habitats including paddy fields. Methanolic extract of the fronds of A. microphylla was subjected to partial purification by solvent partitioning with diethyl ether and ethyl acetate followed by hydrolysis, and further partitioning with ethyl acetate. The two fractions, thus obtained were tested for antibacterial activity. It was observed that the ethyl acetate fraction inhibited the growth of the pathogenic bacterium Xanthomonas oryzae. The GC-MS analysis of the ethyl acetate fraction showed several prominent peaks with retention time ranging from 8.83 to 45.54 min. A comparison of these peaks with the GC-MS libraries revealed that it could be eicosenes and heptadecanes with potential of antimicrobial activity. PMID:26011985

  20. Purification Technology and Antimicrobial Activity Analysis of Antimicrobial Peptide from Ovotransferrin

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tie-hua; ZHENG Jian; YE Hai-qing; YU Ya-li; ZHAO Ping; LIU Jing-bo

    2011-01-01

    Antibacterial peptides mixture purified from Ovotransferrin by pepsin digest was used as the raw material.Peptide sections with good antibacterial activity were determined after bacteriostasis experiments, its molecular weight and amino acid composition were analyzed. The results of experiments indicate that with Sephadex G-50 and distilled water as mobile phase, detection wavelength 220 nm, flow rate 1.5 mL/min, sample density 0.2 g/mL, and volume 0.2 mL are the optimal conditions. Bacteriostasis experiments of the fraction of purified peaks were carried out and the result was: peak 1>peak 3>peak 2; the molecular weight of peak 1 was about 3015 by high performance liquid chromatography; active peptide possessed positive charges by amino acid analysis, its cationic characteristics are in accordance with the nature of antimicrobial peptides.

  1. Evaluation of antimicrobial and antibiofilm activity of electron beam irradiated endodontic sealer

    International Nuclear Information System (INIS)

    The complete disinfection of root canal is achieved by endodontic instrumentation, irrigation and medications followed by complete filling of the canal space by appropriate sealer. However careful cleaning and shaping of the canal system do not assure the complete eradication of microorganisms from tubular or lateral canals. Therefore, to avoid the possible growth of microorganisms, the filling endodontic material should have good antimicrobial effect on the pathogens causing root canal failure or pulpo-periapical pathosis. Zinc Oxide- Eugenol (ZOE) is the most commonly used filling material in endodontics. Electron beam (e-beam) radiation is a form of ionizing radiation known to induce physiochemical and biological changes in the irradiated substances. Hence, the present study was carried out to evaluate the effect of e-beam radiation on antimicrobial property of ZOE sealer against root canal pathogens like Enterococcus faecalis, Streptococcus mutans, Staphylococcus aureus and Candida albicans. The homogenous paste of Zinc oxide and Eugenol prepared by mixing at the ratio of 3:1 was loaded into the sterile molds of 6 mm diameter. After complete drying of paste, discs were aseptically separated from the mould. The prepared discs were subjected to e-beam irradiation of 250 Gy, 500 Gy, 750 Gy and 1000 Gy at Microtron Centre, Mangalore University. Antimicrobial and antibiofilm properties of control and irradiated sealer were determined by well diffusion method and growing the biofilm according to O'Toole method, respectively. The antimicrobial effect was observed only against S.aureus and C. albicans in non-irradiated ZOE. The ZOE sealer irradiated at 1000 Gy showed the significantly increased (P<0.001) antimicrobial effect against S. aureus and C. albicans. However, the substantially increased antibiofilm activity against C.albicans was noticed in the ZOE irradiated at 250 Gy. This study showed that e-beam irradiation at 1000 Gy and 250 Gy were found to be optimum

  2. The Influence of Interfering Substances on the Antimicrobial Activity of Selected Quaternary Ammonium Compounds

    Directory of Open Access Journals (Sweden)

    Paula A. Araújo

    2013-01-01

    Full Text Available Standard cleaning processes may not remove all the soiling typically found in food industry, such as carbohydrates, fats, or proteins. Contaminants have a high impact in disinfection as their presence may reduce the activity of disinfectants. The influence of alginic acid, bovine serum albumin, yeast extract, and humic acids was assessed on the antimicrobial activities of benzalkonium chloride and cetyltrimethyl ammonium bromide against Bacillus cereus vegetative cells and Pseudomonas fluorescens. The bacteria (single and consortium were exposed to surfactants (single and combined in the absence and presence of potential disinfection interfering substances. The antimicrobial effects of the surfactants were assessed based on the bacterial respiratory activity measured by oxygen uptake rate due to glucose oxidation. The tested surfactants were efficient against both bacteria (single and consortium with minimum bactericidal concentrations ranging from 3 to 35 mg·L−1. The strongest effect was caused by humic acids that severely quenched antimicrobial action, increasing the minimum bactericidal concentration of the surfactants on P. fluorescens and the consortium. The inclusion of the other interfering substances resulted in mild interferences in the antibacterial activity. This study clearly demonstrates that humic acids should be considered as an antimicrobial interfering substance in the development of disinfection strategies.

  3. Phytochemical screening, antioxidant, and antimicrobial activities of the crude leaves′ extract from Ipomoea batatas (L. Lam

    Directory of Open Access Journals (Sweden)

    Márcia Thaís Pochapski

    2011-01-01

    Full Text Available Background: Ipomoea batatas (L. Lam., popularly known as sweet potato (SP, has played an important role as an energy and a phytochemical source in human nutrition and animal feeding. Ethnopharmacological data show that SP leaves have been effectively used in herbal medicine to treat inflammatory and/or infectious oral diseases in Brazil. The aim of this research was to evaluate the phytochemical, antioxidant, and antimicrobial activities of the crude leaves′ extract of SP leaves. Materials and Methods: The screening was performed for triterpenes/steroids, alkaloids, anthraquinones, coumarins, flavonoids, saponins, tannins, and phenolic acids. The color intensity or the precipitate formation was used as analytical responses to these tests. The total antioxidant capacity was evaluated by the phosphomolybdenum complex method. Antimicrobial activity was made by agar disk and agar well diffusion tests. Results: The phytochemical screening showed positive results for triterpenes/steroids, alkaloids, anthraquinones, coumarins, flavonoids, saponins, tannins, and phenolic acids. Total contents of 345.65, 328.44, and 662.02 mg were respectively obtained for alkaloids, anthraquinones, and phenolic compounds in 100 g of the dry sample. The total antioxidant capacity was 42.94% as compared to ascorbic acid. For antimicrobial studies, no concentration of the SP freeze dried extract was able to inhibit the growth of Streptococcus mutans, S. mitis, Staphylococcus aureus, and Candida albicans in both agar disk and agar well diffusion tests. Conclusions: SP leaves demonstrated the presence of secondary metabolites with potential biological activities. No antimicrobial activity was observed.

  4. In vitro antimicrobial activity of AH Plus, EndoREZ and Epiphany against microorganisms

    Directory of Open Access Journals (Sweden)

    Lilian Eiko Maekawa

    2012-01-01

    Full Text Available Objective : The aim of the present study was to evaluate the antimicrobial activity of endodontic sealers against microorganisms. Materials and Methods : The agar diffusion method was used. A double base layer of Mueller Hinton agar was done. The microorganisms used were: Candida albicans, Enterococcus faecalis, Escherichia coli and Staphylococcus aureus. The wells were obtained by removing a standardized portion of the agar. After the distribution of the sealers, Petri plates were incubated for 24 h. Inhibition halos formed around the wells were measured. Results : Epiphany did not show any antimicrobial activity on the tested microorganisms (without inhibition halo. The AH Plus showed the greatest inhibition halo on C. albicans followed by EndoREZ on S. aureus. EndoREZ also showed greater inhibition halo in comparison to AH Plus on E. faecalis and E. coli. Conclusion : It could be concluded that AH Plus and EndoREZ showed antimicrobial activity against all the tested microorganisms. No antimicrobial activity was observed for Epiphany.

  5. High Antimicrobial Activity and Low Human Cell Cytotoxicity of Core-Shell Magnetic Nanoparticles Functionalized with an Antimicrobial Peptide.

    Science.gov (United States)

    Maleki, Hajar; Rai, Akhilesh; Pinto, Sandra; Evangelista, Marta; Cardoso, Renato M S; Paulo, Cristiana; Carvalheiro, Tiago; Paiva, Artur; Imani, Mohammad; Simchi, Abdolreza; Durães, Luísa; Portugal, António; Ferreira, Lino

    2016-05-11

    Superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with antimicrobial agents are promising infection-targeted therapeutic platforms when coupled with external magnetic stimuli. These antimicrobial nanoparticles (NPs) may offer advantages in fighting intracellular pathogens as well as biomaterial-associated infections. This requires the development of NPs with high antimicrobial activity without interfering with the biology of mammalian cells. Here, we report the preparation of biocompatible antimicrobial SPION@gold core-shell NPs based on covalent immobilization of the antimicrobial peptide (AMP) cecropin melittin (CM) (the conjugate is named AMP-NP). The minimal inhibitory concentration (MIC) of the AMP-NP for Escherichia coli was 0.4 μg/mL, 10-times lower than the MIC of soluble CM. The antimicrobial activity of CM depends on the length of the spacer between the CM and the NP. AMP-NPs are taken up by endothelial (between 60 and 170 pg of NPs per cell) and macrophage (between 18 and 36 pg of NPs per cell) cells and accumulate preferentially in endolysosomes. These NPs have no significant cytotoxic and pro-inflammatory activities for concentrations up to 200 μg/mL (at least 100 times higher than the MIC of soluble CM). Our results in membrane models suggest that the selectivity of AMP-NPs for bacteria and not eukaryotic membranes is due to their membrane compositions. The AMP-NPs developed here open new opportunities for infection-site targeting. PMID:27074633

  6. Chemical Composition and Antimicrobial Activity of Artemisiatschernieviana Besser from Iran

    Directory of Open Access Journals (Sweden)

    Masoud Kazemi

    2009-01-01

    Full Text Available The oil obtained from hydrodistillation of the aerial parts of Artemisia tschernieviana was analyzed by GC and GC/MS. The main constituents of the 30 identified components were p-cymene (21.3%, β-pinene (17.8%, α-pinene (9.4%, γ-terpinene (9.1%, (Z-cis-ocimene (8.8%, and α-cadinol (8.1%. This species is rich in monoterpenes. Antimicrobial activity was determined against six bacterial strains and one fungal strain. The results show that this oil is active against all the tested strains.

  7. Antimicrobial activity of oil from the root of Cinnamomum porrectum

    OpenAIRE

    Arunporn Itarat; Sopa Kummee; Souwalak Phongpaichit; Ladda Nilrat

    2007-01-01

    The steam-distilled oil from the root of Cinnamomum porrectum was tested for its antimicrobial activity against human pathogens including bacteria, yeasts and dermatophytes. It exhibited strongestactivity against Streptococcus mutans (MIC 0.01 mg/ml) followed by Candida albicans and dermatophytes (0.5-1.0 mg/ml), Bacillus subtilis (2 mg/ml), and susceptible strains of Staphylococcus aureus (4-16 mg/ml).It showed moderate activity against Cryptococcus neoformans (MIC 16-64 mg/ml) but no activi...

  8. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    Science.gov (United States)

    Rodina, N. P.; Yudenko, A. N.; Terterov, I. N.; Eliseev, I. E.

    2013-08-01

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested.

  9. Super-SERS-active and highly effective antimicrobial Ag nanodendrites

    Science.gov (United States)

    Li, H. B.; Liu, P.; Liang, Y.; Xiao, J.; Yang, G. W.

    2012-07-01

    We have developed simple and green electrochemistry to synthesize Ag nanostructures with high purity, good crystallinity and smooth surface for applications as super-SERS (surface-enhanced Raman scattering), SERS-active substrates and with highly effective antimicrobial activities. This synthesis takes place in a clean and slow reaction environment without any chemical additives, which ensures an ultrahigh active surface of the as-synthesized Ag nanostructures owing to their purity, good crystallinity and smooth morphology. Using this method, we synthesized nearly perfect Ag nanodendrites (NDs), which exhibit super-SERS sensitivity when they are used to detect the SERS spectra of rhodamine 6G at concentrations as low as 5 × 10-16 M, and have an ultrahigh electromagnetic (EM) enhancement factor of the order of 1013, breaking through the theoretical limit of EM enhancement. Meanwhile, the as-synthesized Ag NDs possess highly effective antimicrobial activities for Escherichia coli, Candida albicans and Staphylococcus aureus, which are over 10 times that of silver nanoparticles. Additionally, the basic physics and chemistry involved in the fabrication of Ag nanostructures are pursued. These investigations show that silver nanostructures with highly active surfaces can make the most of Ag nanostructures functioning as super-SERS-active substrates and multiple antibiotics.

  10. Synthesis, Characterization, and Antimicrobial Activity of Copper Oxide Nanoparticles

    OpenAIRE

    Ahamed, Maqusood; Alhadlaq, Hisham A.; Khan, M. A. Majeed; Karuppiah, Ponmurugan; Naif A. Al-Dhabi

    2014-01-01

    We studied the structural and antimicrobial properties of copper oxide nanoparticles (CuO NPs) synthesized by a very simple precipitation technique. Copper (II) acetate was used as a precursor and sodium hydroxide as a reducing agent. X-ray diffraction patter (XRD) pattern showed the crystalline nature of CuO NPs. Field emission scanning electron microscope (FESEM) and field emission transmission electron microscope (FETEM) demonstrated the morphology of CuO NPs. The average diameter of CuO N...

  11. An Antimicrobial Metabolite from Bacillus sp.: Significant activity against pathogenic bacteria including multidrug-resistant clinical strains

    Directory of Open Access Journals (Sweden)

    AJAY GHOSH CHALASANI

    2015-12-01

    Full Text Available In this study, the cell free modified trypticase soya broth (pH 7.4+0.2 of Bacillus subtilis URID 12.1 showed significant antimicrobial activity against multidrug-resistant strains of Staphylococcus aureus, S. epidermidis, Streptococcus pyogenes and Enterococcus faecalis. The partially purified antimicrobial molecule was found to be resistant to extremes of pH and temperatures and also to higher concentrations of trypsin and proteinase K. The antimicrobial molecule was purified by a three-step method that included reverse-phased high performance liquid chromatography (RP-HPLC. The minimum inhibitory concentration (MIC values were determined for 11 species of bacteria using a microbroth dilution technique. The HPLC-purified fraction showed the MICs ranging from 0.5 to 1 µg/ml for methicillin and vancomycin resistant Staphylococcus aureus (MVRSA and methicillin-resistant Staphylococcus epidermidis (MRSE strains. The molecular mass of the antimicrobial compound was determined to be 842.37 Da. The same antimicrobial fraction showed negligible haemolytic activity against human red blood cells even at a concentration as high as 100µg/ml. Because of its significant antimicrobial activity at low MIC values coupled with its non-haemolytic property, it may prove to be a novel antimicrobial lead molecule.

  12. Studies on Chemical Constituents and Antimicrobial Activity of Mentha arvensis Oil of Yunnan%云南薄荷精油的化学成分及其抗菌活性研究

    Institute of Scientific and Technical Information of China (English)

    周露; 谢文申

    2011-01-01

    采用GC/MS法对云南薄荷精油挥发性成分进行鉴定,检测出49个成分,鉴定了其中44个成分.薄荷精油主要化学成分为薄荷醇、薄荷酮、苧烯、1,8-桉叶素、胡椒酮、大根香叶烯D、乙酸薄荷酯等.试验研究了薄荷精油对大肠杆菌、金黄葡萄球菌、烟曲霉菌、白念珠菌的抗菌活性.结果显示精油对大肠杆菌、金黄葡萄球菌、白念珠菌有明显的抗菌活性.%The chemical constituents of the Mentha arvensis oil of Yunnan were studied by GC/MS method in this paper. 49 Constituents were isolated, 44 constituents were identified. They are menthol, menthone, limonene, 1,8-cineole, piperitone, germacrene-D and menthyl acetate, etc. The study on the antimicrobial activity of the Mentha arvensis essential oil against Staphylococcus aureus, Escherichia coli, Aspergillus fumigatus and Candida albicans were also conducted. The results show that the oil has antimicrobial activity to Escherichia coli, Staphylococcus aureus and Candida albicans.

  13. COMPARATIVE ANALYSIS OF ANTIMICROBIAL ACTIVITY OF DIFFERENT VARIETIES OF MURRAYA BY USING MOLECULAR MARKER

    Directory of Open Access Journals (Sweden)

    Dutta Amit Kumar

    2013-06-01

    Full Text Available Murraya koenigii is used as a stimulant, stomachic, febrifuge, analgesic and for treatment of diahrea, dysentery and insect bite. In present study, the antimicrobial activity of different part of Murraya kenigii(leaf, root and barkwas investigated by well diffusion method. As per result, plant extract showed a broad spectrum of very significant antibacterial activity of producing a clear zone of inhibition against, E. coli, Serratia, Klebsiella, Aspergillus niger, Fuesarrium, Penicilium, In this study Murraya is tested for antibacterial and antifungal activity by using Gram positive and Gram negative bacteria and fungi. In the present investigation, all the extract (methanol, ethanol, acetone, petroleum ether were found to be effective against tested pathogenic strains except aqueous extract. Methanol extract showed more pronounced antimicrobial activity than other extracts.

  14. Absolute configuration and antimicrobial activity of acylhomoserine lactones.

    Science.gov (United States)

    Pomini, Armando M; Marsaioli, Anita J

    2008-06-01

    (S)-N-Heptanoylhomoserine lactone is an uncommon acyl odd-chain natural product employed by many Gram-negative bacteria as a signaling substance in chemical communication mechanisms known as quorum sensing. The absolute configuration determination of the metabolite produced by the phytopathogen Pantoea ananatis Serrano is reported herein. As with all other substances of this class, the lactone moiety possesses S configuration, corroborating the hypothesis that it shares the same biosynthetic pathway as the (S)-N-hexanoylhomoserine lactone and also that some LuxI homologues can accept both hexanoyl- and heptanoyl-ACP as precursors. Evaluation of the antimicrobial activity of enantiomeric acylhomoserine lactones against three Gram-positive bacteria (Bacillus cereus, B. subtilis, and Staphylococcus aureus) revealed important features between absolute configuration and antimicrobial activity. The N-heptanoylhomoserine lactone was considerably less active than the 3-oxo derivatives. Surprisingly, non-natural (R)-N-(3-oxo-octanoyl)homoserine lactone was as active as the S enantiomer against B. cereus, while the synthetic racemic product was less active than either enantiomer. PMID:18465897

  15. Organogel nanoemulsion containing Nisin and D-limonene and its antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Weiya eBei

    2015-09-01

    Full Text Available The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low surfactant to oil ratio. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by MICs comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents’ release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

  16. Antimicrobial activity of latex silver nanoparticles using Calotropis procera

    Institute of Scientific and Technical Information of China (English)

    Nadia Hussein Mohamed; Mady Ahmed Ismail; Wael Moustfa Abdel-Mageed

    2014-01-01

    Objective: To synthesize silver nanoparticles (AgNPs) by green methods using serum latex of Calotropis procera at 80 °C and evaluate them against bacteria, dermatophytes and phytopathogenic fungi comparing with the activity of untreated latex.Methods:The synthesis of AgNPs was performed by mixing 3% latex serum extract with the same volume of silver nitrate (2 mmol/L) solution in round flask and heating in water bath at 80 °C. Characterization of silver particles were determined using UV-vis spectrophotometer, transmission electron microscopy (TEM), X-ray diffraction and Fourier transform infrared spectroscopy. The antimicrobial activity of the green synthesized AgNPs was determined against bacteria, dermatophytes and phytopathogenic fungi and compared to the crude untreated latex by agar-well diffusion methods.Results:Biosynthesis of latex silver nanoparticles was successfully obtained by green method. The formation of AgNPs has been confirmed by UV-vis, TEM microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. TEM analysis showed that synthesized AgNPs are highly stable spherical shaped particles, well dispersed with a diameter ranged from 4 nm up to 25 nm and an average size of 12.33 nm. AgNPs showed strong antibacterial activity against Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Serratia sp.) and antifungal activity against Trichophyton rubrum, Candida albicans and Aspergillus terreus.Conclusions:It can be concluded that serum latex of Calotropis procera was found to display strong potential for the synthesis of AgNPs as antimicrobial agents through rapid reduction of silver ions (Ag+ to Ag0). The green synthesized AgNPs were found to show higher antimicrobial efficacy than crude latex.

  17. Antimicrobial activity of latex silver nanoparticles using Calotropis procera

    Institute of Scientific and Technical Information of China (English)

    Nadia; Hussein; Mohamed; Mady; Ahmed; Ismail; Wael; Moustfa; Abdel-Mageed; Ahmed; Abdelfattah; Mohamed; Shoreit

    2014-01-01

    Objective:To synthesize silver nanoparticles(AgNPs) by green methods using scrum latex of Calotropis procera at 80 ℃ and evaluate them against bacteria,dermatophytes and phytopathogenic fungi comparing with the activity of untreated latex.Methods:The synthesis of AgNPs was performed by mixing 3%latex scrum extract with the same volume of silver nitrate(2 mmol/L) solution in round flask and heating in water bath at80 ℃.Characterization of silver particles were determined using UV-vis spectrophotometer,transmission electron microscopy(TEM),X-ray diffraction and Fourier transform infrared spectroscopy.The antimicrobial activity of the green synthesized AgNPs was determined against bacteria,dermatophytes and phytopathogenic fungi and compared to the crude untreated latex by agar-well diffusion methods.Results:Biosynthesis of latex silver nanoparticles was successfully obtained by green method.The formation of AgNPs has been confirmed by UV-vis,TEM microscopy.X-ray diffraction and Fourier transform infrared spectroscopy.TEM analysis showed that synthesized AgNPs are highly stable spherical shaped particles,well dispersed with a diameter ranged from 4 nm up to 25 nm and an average size of 12.33 nm.AgNPs showed strong antibacterial activity against Gram-negative bacteria(Escherichia coli,Pseudomonas aeruginosa and Serratia sp.) and antifungal activity against Trichophyton rubrum,Candida albicans and Aspergillus terreus.Conclusions:It can be concluded that serum latex of Calotropis pmcera was found to display strong potential for the synthesis of AgNPs as antimicrobial agents through rapid reduction of silver ions(Ag~+ to Ag~0).The green synthesized AgNPs were found to show higher antimicrobial efficacy than crude latex.

  18. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells.

    Science.gov (United States)

    Chien, Rao-Chi; Yen, Ming-Tsung; Mau, Jeng-Leun

    2016-03-15

    Chitosan was prepared by alkaline N-deacetylation of chitin obtained from shiitake stipes and crab shells and its antimicrobial and antitumor activities were studied. Chitosan from shiitake stipes and crab shells exhibited excellent antimicrobial activities against eight species of Gram positive and negative pathogenic bacteria with inhibition zones of 11.4-26.8mm at 0.5mg/ml. Among chitosan samples, shiitake chitosan C120 was the most effective with inhibition zones of 16.4-26.8mm at 0.5mg/ml. In addition, shiitake and crab chitosan showed a moderate anti-proliferative effect on IMR 32 and Hep G2 cells. At 5mg/ml, the viability of IMR 32 cells incubated with chitosan was 68.8-85.0% whereas that of Hep G2 cells with chitosan was 60.4-82.9%. Overall, shiitake chitosan showed slightly better antimicrobial and antitumor activities than crab chitosan. Based on the results obtained, shiitake and crab chitosan were strong antimicrobial agents and moderate antitumor agents.

  19. Antimicrobial Activity of TiO2 Nanoparticle-Coated Film for Potential Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Siti Hajar Othman

    2014-01-01

    Full Text Available Recent uses of titanium dioxide (TiO2 have involved various applications which include the food industry. This study aims to develop TiO2 nanoparticle-coated film for potential food packaging applications due to the photocatalytic antimicrobial property of TiO2. The TiO2 nanoparticles with varying concentrations (0–0.11 g/ 100 mL organic solvent were coated on food packaging film, particularly low density polyethylene (LDPE film. The antimicrobial activity of the films was investigated by their capability to inactivate Escherichia coli (E. coli in an actual food packaging application test under various conditions, including types of light (fluorescent and ultraviolet (UV and the length of time the film was exposed to light (one–three days. The antimicrobial activity of the TiO2 nanoparticle-coated films exposed under both types of lighting was found to increase with an increase in the TiO2 nanoparticle concentration and the light exposure time. It was also found that the antimicrobial activity of the films exposed under UV light was higher than that under fluorescent light. The developed film has the potential to be used as a food packaging film that can extend the shelf life, maintain the quality, and assure the safety of food.

  20. Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil.

    Science.gov (United States)

    Santos, Olinda C S; Pontes, Paula V M L; Santos, Juliana F M; Muricy, Guilherme; Giambiagi-deMarval, Marcia; Laport, Marinella S

    2010-09-01

    Bacteria associated with marine sponges represent a rich source of bioactive metabolites. The aim of this study was to isolate and characterize bacteria with antimicrobial activities from Brazilian sponges. A total of 158 colony-forming units were isolated from nine sponge species. Among these, 12 isolates presented antimicrobial activities against pathogenic bacteria. Based on comparative sequence analysis of their 16S rRNA genes, the sponge-associated bacterial strains could be subdivided into three phylogenetically different clusters. Five strains were affiliated with Firmicutes (genera Bacillus and Virgibacillus), three with alpha-Proteobacteria (Pseudovibrio sp.) and four with gamma-Proteobacteria (genera Pseudomonas and Stenotrophomonas). The sponge-associated bacterial strains Pseudomonas fluorescens H40 and H41 and Pseudomonas aeruginosa H51 exhibited antimicrobial activity against both Gram-negative and Gram-positive bacteria, including strains such as vancomycin-resistant Enterococcus faecium and multiresistant Klebsiella pneumoniae. Bacillus pumilus Pc31 and Pc32, Pseudovibrio ascidiaceicola Pm31 and Ca31 and Pseudovibrio denitrificans Mm37 strains were more effective against Gram-positive bacteria. These findings suggest that the identified strains may contribute to the search for new sources of antimicrobial substances, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria. PMID:20600863

  1. Assessment of the antimicrobial activity of Casearia sylvestris extract against oral pathogenic microorganisms

    Directory of Open Access Journals (Sweden)

    V. R. SANTOS

    2009-05-01

    Full Text Available An ethanolic extract of leaves from the tree Casearia sylvestris, known as guaçatonga in Brazil, was tested for in vitro activity against oral pathogenic bacteria and fungi. The results showed susceptibility of all the microorganisms tested. This study suggests a potential use of ethanolic extract of C. sylvestris as a novel treatment of oral infectious conditions, such as denture stomatitis, periodontitis and dental caries. Keywords: Casearia sylvestris; guaçatonga; oral microorganisms; antimicrobial activity.

  2. Antimicrobial and antioxidant activities of commercially available essential oils and their oleoresins

    OpenAIRE

    Rodr??guez Calleja, Jos?? Mar??a; Cruz-Romero, Malco C.; Garc??a-L??pez, Mar??a-Luisa; Kerry, Joe P.

    2015-01-01

    P. 221-233 Entidades Financiadoras: Junta de Castilla y Le??n??? (Proyecto LE331A12-2) y Universidad de Le??n (Proyecto ULE2010-6) The objectives of this study were to evaluate and compare in vitro antibacterial and antioxidant activities of commercially available oregano, rosemary, sage and thyme essential oils (EOs) against their corresponding oleoresins (ORs) for potential application in food packaging systems. Thyme EO showed the best antimicrobial activity against Staphylococcus au...

  3. CHEMICAL COMPOSITION, ANTIOXIDANT AND ANTIMICROBIAL ACTIVITY OF ALLIUM HIRTIFOLIUM ESSENTIAL OIL

    OpenAIRE

    Mohaddese Mahboubi; Nastaran Kazempour

    2014-01-01

    Allium hirtifolium belongs to Alliaceae family is traditionally used as flavoring agent and as natural remedy for treatment of infectious diseases. In this study, we analyzed A. hirtifolium essential oil by GC and GC-MS; the antioxidant and antimicrobial activity of A. hirtifolium essential oil were evaluated in vitro condition. 5-chloroorcylaldehyde (55.1%), methyl methylthiomethyl disulfide (24.6%) were the major components of oil. The antioxidant activity of oil (IC50 = 1.59%) wer...

  4. Antioxidant and Antimicrobial Activities of an Aquatic Plant: Duckweed (Lemna minor L.)

    OpenAIRE

    GÜLÇİN, İlhami; *,; KİREÇCİ, Ekrem; AKKEMİK, Ebru; TOPAL, Fevzi; HİSAR, Olcay

    2010-01-01

    Duckweed (Lemna minor L. Lemnaceae) is a widespread, free-floating aquatic macrophyte, a source of food for waterfowl and a shelter for small aquatic invertebrates. It grows quickly and reproduces faster than other vascular plants. The objective of this study was to determine the antioxidant, antiradical, antimicrobial, and anticandidal activities of duckweed using different in vitro methodologies. For evaluation of antioxidant and antiradical activities, 2,2´-azino-bis(3-ethylbenzthiazoline-...

  5. Evaluation of Antioxidant and Antimicrobial Activities from 28 Chinese Herbal Medicines

    OpenAIRE

    Ho-Yang Lin; Li-Yeh Chuang; Hsueh-Wei Chang; Cheng-Hong Yang

    2013-01-01

    Background: Many Chinese medicines have been reported to exhibit high antimicrobial and antioxidantactivities. In this study, 28 traditional Chinese herbal medicines were tested for their antioxidant and antibacterial activities.Materials and Methods: Total flavonoid content of the ethanol extracts were determined by a colorimetric method. Total phenol content was estimated as gallic acid equivalents. The antioxidant activities of the extracts were evaluated by various antioxidant assays, inc...

  6. An Antimicrobial Compound Isolated from Cinnamomum Iners Leaves with Activity against Methicillin-Resistant Staphylococcus Aureus

    OpenAIRE

    Sharif Mahsufi Mansor; Marina Shah; Sabariah Ismail; Jayant Indurkar; Fazlina Mustaffa

    2011-01-01

    This study was designed to investigate the antimicrobial activity of Cinnamomum iners standardized leave methanolic extract (CSLE), its fractions and isolated compounds. CSLE and fractions were subjected to disc diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests using different Gram positive and Gram negative bacteria and yeast. Within the series of fractions tested, the ethyl acetate fraction was the most active, particularly against methicil...

  7. Antimicrobial and antioxidant activity of brown algae from the Aegean Sea

    OpenAIRE

    ZELIHA DEMIREL; FERDA F. YILMAZ-KOZ; ULKU N. KARABAY-YAVASOGLU; GUVEN OZDEMIR; ATAKAN SUKATAR

    2009-01-01

    The present study was conducted to evaluate the antioxidant and antimicrobial activity of methanol, dichloromethane and hexane extracts, as well as the essential oils of brown algae (Phaeophyta) Colpomenia sinuosa, Dictyota dichotoma, Dictyota dichotoma var. implexa, Petalonia fascia and Scytosiphon lomentaria. The essential oil of the macroalgae was obtained by steam distillation and analyzed by GC and GC/MS. The antioxidant activity of the algal extracts was determined using the procedures ...

  8. 牛至精油微胶囊抑菌效果研究%Study on the antimicrobial activity of Oregano essential oil microcapsule

    Institute of Scientific and Technical Information of China (English)

    田永强; 卢燕霞

    2016-01-01

    选用明胶、阿拉伯胶为壁材,采用复凝聚法制备了明胶/阿拉伯胶牛至精油微胶囊,研究该微胶囊对大肠杆菌、金黄色葡萄球菌、番茄灰霉菌、番茄早疫菌的抑制效果.结果表明,牛至精油微胶囊的包埋率为80.34%,产率为83.69%,牛至精油经微胶囊化后对四种供试菌株的抑制效果更加持久.%Gelatin and gum arabic were taken as wall material to prepare Oregano essential oil microcap-sule using complex coacervation method.What is more,antimicrobial effect of the microcapsules on Esche-richia coli,Staphylococcus aureus,Alternaria Solani Sorauer and Botrytis Cinerea Pers were studied.Results showed that the embedding rate is 80.34% and inclusion yield is 83.69%.After the Oregano oil micro-encapsulated,which shows a lasting effect on the four tested strains.

  9. Antimicrobial and antifungal activities of the extracts and essential oils of Bidens tripartita.

    Directory of Open Access Journals (Sweden)

    Michał Tomczyk

    2008-12-01

    Full Text Available The aim of this study was to determine the antibacterial and antifungal properties of the extracts, subextracts and essential oils of Bidens tripartita flowers and herbs. In the study, twelve extracts and two essential oils were investigated for activity against different Gram-positive Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Gram-negative bacteria Escherichia coli, E. coli (beta-laktamase+, Klebsiella pneumoniae (ESBL+, Pseudomonas aeruginosa and some fungal organisms Candida albicans, C. parapsilosis, Aspergillus fumigatus, A. terreus using a broth microdilution and disc diffusion methods. The results obtained indicate antimicrobial activity of the tested extracts (except butanolic extracts, which however did not inhibit the growth of fungi used in this study. Bacteriostatic effect of both essential oils is insignificant, but they have strong antifungal activity. These results support the use of B. tripartita to treat a microbial infections and it is indicated as an antimicrobial and antifungal agent, which may act as pharmaceuticals and preservatives.

  10. Antimicrobial activity of the Nisin Z producer Lactococcus lactis subsp. lactis Lc08 against Listeria monocytogenes in skim milk

    Directory of Open Access Journals (Sweden)

    L.M. Perin

    2013-10-01

    Full Text Available The presented study aimed to verify the effect of different pH values, enzyme solutions and heat treatments on the antimicrobial activity of the bacteriocinogenic strain Lactococcus lactis subsp. lactis Lc08 and to test their antimicrobial activity against Listeria monocytogenes in reconstituted skim milk at refrigeration temperatures. This strain was previously described as a nisin Z producer and capable of inhibiting L. monocytogenes growth in in vitro tests. The antimicrobial activity of the bacteriocin cell-free supernatant of Lc08 was sensitive to enzyme treatments (except papain. The pH values and heating (65ºC for 30min, 75ºC for 15s had no apparent effect on the antimicrobial activity of the bacteriocin produced by Lc08. Only treatment at autoclave conditions result in loss of their antimicrobial activity. Lc08 presented antimicrobial activity against L. monocytogenes in the milk system after 12h at 25ºC. No effect was found at 7ºC. The results show the application viability of the Lc08 in food systems as a biopreservative against L. monocytogenes.

  11. Antimicrobial activity of human prion protein is mediated by its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Mukesh Pasupuleti

    Full Text Available BACKGROUND: Cellular prion-related protein (PrP(c is a cell-surface protein that is ubiquitously expressed in the human body. The multifunctionality of PrP(c, and presence of an exposed cationic and heparin-binding N-terminus, a feature characterizing many antimicrobial peptides, made us hypothesize that PrP(c could exert antimicrobial activity. METHODOLOGY AND PRINCIPAL FINDINGS: Intact recombinant PrP exerted antibacterial and antifungal effects at normal and low pH. Studies employing recombinant PrP and N- and C-terminally truncated variants, as well as overlapping peptide 20mers, demonstrated that the antimicrobial activity is mediated by the unstructured N-terminal part of the protein. Synthetic peptides of the N-terminus of PrP killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen after treatment with the "classical" human antimicrobial peptide LL-37. In contrast to LL-37, however, no marked helix induction was detected for the PrP-derived peptides in presence of negatively charged (bacteria-mimicking liposomes. PrP furthermore showed an inducible expression during wounding of human skin ex vivo and in vivo, as well as stimulation of keratinocytes with TGF-alpha in vitro. CONCLUSIONS: The demonstration of an antimicrobial activity of PrP, localisation of its activity to the N-terminal and heparin-binding region, combined with results showing an increased expression of PrP during wounding, indicate that PrPs could have a previously undisclosed role in host defense.

  12. Fluorescein dye derivatives and their nanohybrids: Synthesis, characterization and antimicrobial activity.

    Science.gov (United States)

    Negm, Nabel A; Abou Kana, Maram T H; Abd-Elaal, Ali A; Elwahy, Ahmed H M

    2016-09-01

    Fluorescein (resorcinolphthalein) is a synthetic organic photoactive dye compound soluble in water, alcohol and polar solvents. It is widely used as a fluorescent tracer in medicinal and biological applications and tumor infected tissues tracer. In this study, fluorescein (F) was condensed by five coupling agents namely: p,p-phenylene diamine, p-hydroxy aniline, o-hydroxy aniline, p-methoxy aniline and p-methyl aniline in a molar ratio of 2(F):1 (coupling agent). The chemical structures of the synthesized fluorescein derivatives were confirmed using: microelemental analysis, FTIR spectroscopy, 1H-NMR spectroscopy, and mass spectroscopy. The synthesized compounds were loaded on chemically prepared silver nanoparticles via reduction reaction of silver nitrate. The structures and properties of the formed fluorescein derivatives silver nanohybrids were determined using: UV/Vis spectroscopy, TEM images and dynamic light scattering (DLS). The synthesized compounds and their nanohybrids were evaluated for their antimicrobial activities against different bacterial strains and fungi. The results showed that the formed fluorescein derivatives silver nanohybrids are in moderate diameter range, and the loading of the synthesized compounds protect the silver nanoparticles against coagulation. The antimicrobial activity against the studied microorganisms was comparable to the standard used. Moreover, the antimicrobial activity was increased considerably in case of using fluorescein derivatives silver nanohybrids. The antimicrobial activities were correlated to the chemical structures of the compounds, diameter of the formed nanohybrids and to the nature of the tested bacterial strains. The mechanism of the antimicrobial action of the synthesized compounds and their nanohybrids was proposed. PMID:27450296

  13. Synthesis, antimicrobial, and antiproliferative activities of substituted phenylfuranylnicotinamidines

    Directory of Open Access Journals (Sweden)

    Youssef MM

    2016-03-01

    Full Text Available Magdy M Youssef,1,2 Reem K Arafa,3,4 Mohamed A Ismail1,21Department of Chemistry, College of Science, King Faisal University, Hofuf, Saudi Arabia; 2Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 3Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 4Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, EgyptAbstract: This research work deals with the design and synthesis of a series of substituted phenylfuranylnicotinamidines 4a–i. Facile preparation of the target compounds was achieved by Suzuki coupling-based synthesis of the nitrile precursors 3a–i, followed by their conversion to the corresponding nicotinamidines 4a–i utilizing LiN(TMS2. The antimicrobial activities of the newly synthesized nicotinamidine derivatives were evaluated against the Gram-negative bacterial strains Escherichia coli and Pseudomonas aeruginosa as well as the Gram-positive bacterial strains Staphylococcus aureus and Bacillus megaterium. The minimum inhibitory concentration values of nicotinamidines against all tested microorganisms were in the range of 10–20 µM. In specific, compounds 4a and 4b showed excellent minimum inhibitory concentration values of 10 µM against Staphylococcus aureus bacterial strain and were similar to ampicillin as an antibacterial reference. On the other hand, selected nicotinamidine derivatives were biologically screened for their cytotoxic activities against a panel of 60 cell lines representing nine types of human cancer at a single high dose at National Cancer Institute, Bethesda, MD, USA. Nicotinamidines showing promising activities were further assessed in a five-dose screening assay to determine their compound concentration causing 50% growth inhibition of tested cell (GI50, compound concentration causing 100% growth inhibition of tested cell (TGI, and compound concentration causing 50% lethality of tested

  14. Synthesis, structural characterization and antimicrobial activities of diorganotin(IV) complexes with azo-imino carboxylic acid ligand: Crystal structure and topological study of a doubly phenoxide-bridged dimeric dimethyltin(IV) complex appended with free carboxylic acid groups

    Science.gov (United States)

    Roy, Manojit; Roy, Subhadip; Devi, N. Manglembi; Singh, Ch. Brajakishor; Singh, Keisham Surjit

    2016-09-01

    Diorganotin(IV) complexes appended with free carboxylic acids were synthesized by reacting diorganotin(IV) dichlorides [R2SnCl2; R = Me (1), Bu (2) and Ph (3)] with an azo-imino carboxylic acid ligand i.e. 2-{4-hydroxy-3-[(2-hydroxyphenylimino)methyl]phenylazo}benzoic acid in presence of triethylamine. The complexes were characterized by elemental analysis, IR and multinuclear NMR (1H, 13C and 119Sn) spectroscopy. The structure of 1 in solid state has been determined by X-ray crystallography. Crystal structure of 1 reveals that the compound crystallizes in monoclinic space group P21/c and is a dimeric dimethyltin(IV) complex appended with free carboxylic acid groups. In the structure of 1, the Sn(IV) atoms are hexacoordinated and have a distorted octahedral coordination geometry in which two phenoxy oxygen atoms and the azomethine nitrogen atom of the ligand coordinate to each tin atom. One of the phenoxy oxygen atom bridges the two tin centers resulting in a planar Sn2O2 core. Topological analysis is used for the description of molecular packing in 1. Tin NMR spectroscopy study indicates that the complexes have five coordinate geometry around tin atom in solution state. Since the complexes have free carboxylic acids, these compounds could be further used as potential metallo-ligands for the synthesis of other complexes. The synthesized diorganotin(IV) complexes were also screened for their antimicrobial activities and compound 2 showed effective antimicrobial activities.

  15. Antimicrobial, antioxidant activities and chemical composition of selected Thai spices

    Directory of Open Access Journals (Sweden)

    Juraithip Wungsintaweekul

    2010-12-01

    Full Text Available Nine volatile oils and six methanol extracts from Ocimum americanum, O. basilicum, O. sanctum, Citrus hystrix,Alpinia galanga, Curcuma zedoaria, Kaempferia parviflora and Zingiber cassumunar were assessed for antimicrobial andantioxidant activities. The volatile oils and extracts were investigated against eight bacteria and three fungi. The resultsillustrated that O. americanum volatile oil exhibited broad spectrum activity against tested bacteria with the MICs ranging1.4-3.6 mg/ml and Candida spp. with the MICs ranging from 0.5-0.6 mg/ml. The O. sanctum volatile oil showed a considerableactivity against only Candida spp. with the MICs ranging from 0.8-1.4 mg/ml. Interestingly, growth of Mycobacteriumphlei was inhibited by the volatiles of O. americanum, C. hystrix peel, and C. zedoaria with MIC of 1.7, 3.5 and 1.2 mg/ml,respectively. For antioxidant activity evaluation, the methanol extracts of C. hystrix (leaf and peel and K. parviflora hadpotent antioxidant activity by the radical-scavenging DPPH method with IC50 of 24.6, 66.3 and 61.5 mg/ml, respectively.GC-MS analysis revealed the typical chemical profiles of the volatile oils. The major component showed the characteristicsof the volatile oils and was probably responsible for the antimicrobial effect.

  16. ANTIMICROBIAL ACTIVITY OF WHITE AND PINK NELUMBO NUCIFERA GAERTN FLOWERS

    Directory of Open Access Journals (Sweden)

    D.BRINDHA, D.ARTHI

    2013-09-01

    Full Text Available Nelumbo nucifera Gaertn (Family: Nelumbonaceae, medicinally versatile and used as an important raw material of age-old traditional medical practices like Ayurveda and folk medicine. Bioassays for antimicrobial activities were carried out using hydroethanolic extract of both white and pink flowers of Nelumbo nucifera Gaertn plant. Both the flower extracts were tested against five important bacterial strains and two fungal strains. Further, Minimum Inhibitory Concentration (MIC was evaluated against Escherichia coli (gram negative and Staphylococcus aureus (gram positive organisms. Both the flower extracts showed considerable activity against all tested bacteria and fungi strains. The white and pink flower extracts more or less showed similar antimicrobial activities. MIC for white flower extract against Escherichia coli and Staphylococcus aureus was found to be 430μg and 450μg respectively and pink flower showed 480μg and 490μg respectively. The antibacterial and antifungal activities of both flower extracts were comparable to those of selected chemical antibiotics suggesting their potential as alternatives to orthodox antibiotics in the treatment of infectious caused by these microorganisms.

  17. Antimicrobial activity of traditional wines (Sopi and Moke against Salmonella sp. and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Annytha Ina Rohi Detha

    2016-09-01

    Full Text Available Objective: Sopi and Moke are two traditional wines in Indonesia. The present study aimed at investigating the antimicrobial effects of Sopi and Moke as compared to other commercial disinfectants. Materials and methods: The alcohol level and pH of the traditional wines (Sopi and Moke were determined by alcohol meter and pH meter, respectively. The susceptibility test was perfomed to determine the antimicrobial activity of Sopi against Escherichia coli which was isolated from cattle, and the activity of Moke was tested against Salmonella sp. which was a local isolate of poultry. Results: In susceptibility test, Sopi showed 17.5 mm in zone of inhibition against E. coli, while Formades and reg;, a commercial disinfectant showed 16 mm of zone of inhibition against the same bacteria. Moke showed 17.5 mm inhibition zone against Salmonella sp., whereas Antisep and reg;, a commercial disinfectant had 28 mm of inhibition zone against the same isolate. Conclusion: The results indicate that Sopi and Moke have antimicrobial effects on E. coli and Salmonella sp., respectively. The findings of this study suggest that Sopi and Moke can be used as potential antimicrobial agents. [J Adv Vet Anim Res 2016; 3(3.000: 282-285

  18. Antimicrobial and antioxidant activities of traditional Thai herbal remedies for aphthous ulcers.

    Science.gov (United States)

    Mekseepralard, Chantana; Kamkaen, Narisa; Wilkinson, Jenny M

    2010-10-01

    Four medicinal plants (Quercus infectoria, Kaempferia galanga, Coptis chinensis and Glycyrrhiza uralensis) as well as one traditional Thai treatment for aphthous ulcers based on these four plants were tested for antimicrobial activity. MIC values for a range of bacteria and Candida albicans were determined, with both type strains and clinical isolates being used. Antioxidant activity was determined using the ABTS radical scavenging assay. Among the four plants, Q. infectoria showed antimicrobial activity against Staphylococcus aureus with an MIC of 0.41 mg/mL, while C. chinensis showed antifungal activity against C. albicans with an MIC of 6.25 mg/mL. Activity was also shown against a range of other organisms including Salmonella typhi, Serratia marcescens, Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas aeruginosa and Enterococcus faecalis. The antimicrobial activity of the traditional aphthous ulcer preparation (a powder) was comparable to that for the individual plant extracts, however, incorporation of the powder into a gel formulation resulted in the loss of almost all activity. All extracts, with the exception of K. galanga, also showed good antioxidant activity. This study supports the traditional use of these plants and suggests that they may also be useful in the treatment of other infections. PMID:20878703

  19. Antimicrobial and antioxidant activity of essential oil and different plant extracts of Psidium cattleianum Sabine.

    Science.gov (United States)

    Scur, M C; Pinto, F G S; Pandini, J A; Costa, W F; Leite, C W; Temponi, L G

    2016-02-01

    The goals of the study were to determinethe antimicrobial and antioxidant activities of essential oil and plant extracts aqueous and ethanolic of Psidium cattleianum Sabine; the chemical composition of the essential oil of P. cattleianum; and the phytochemical screening of aqueous and ethanolic extracts of the same plant. Regarding the antimicrobial activity, the ethanolic extract exhibited moderate antimicrobial activity with respect to bacteria K. pneumoniae and S. epidermidis, whereas, regarding other microorganisms, it showed activity considered weak. The aqueous extract and the essential oil showed activity considered weak, although they inhibited the growth of microorganisms. About the antioxidant potential, the ethanolic and aqueous extracts exhibited a scavenging index exceeding 90%, while the essential oil didn´t show significant antioxidant activity. Regarding the phytochemical composition, the largest class of volatile compounds identified in the essential oil of P. cattleianum included the following terpenic hydrocarbons: α-copaene (22%); eucalyptol (15%), δ-cadinene (9.63%) and α-selinene (6.5%). The phytochemical screening of extracts showed the presence of tannins, flavonoids, and triterpenoids for aqueous and ethanolic extracts. The extracts and essential oils inhibit the growth of microrganisms and plant extracts showed significant antioxidant activity. Also, the phytochemical characterization of the essential oil showed the presence of compounds interest commercial, as well as extracts showed the presence of important classes and compounds with biological activities. PMID:26871744

  20. Evaluation of three medicinal plants for anti-microbial activity.

    Science.gov (United States)

    Pratap, Gowd M J S; Manoj, Kumar M G; Sai, Shankar A J; Sujatha, B; Sreedevi, E

    2012-07-01

    Herbal remedies have a long history of use for gum and tooth problems such as dental caries. The present microbiological study was carried out to evaluate the antimicrobial efficacy of three medicinal plants (Terminalia chebula Retz., Clitoria ternatea Linn., and Wedelia chinensis (Osbeck.) Merr.) on three pathogenic microorganisms in the oral cavity (Streptococcus mutans, Lactobacillus casei, and Staphylococcus aureus). Aqueous extract concentrations (5%, 10%, 25%, and 50%) were prepared from the fruits of Terminalia chebula, flowers of Clitoria ternatea, and leaves of Wedelia chinensis. The antimicrobial efficacy of the aqueous extract concentrations of each plant was tested using agar well diffusion method and the size of the inhibition zone was measured in millimeters. The results obtained showed that the diameter of zone of inhibition increased with increase in concentration of extract and the antimicrobial efficacy of the aqueous extracts of the three plants was observed in the increasing order - Wedelia chinensis Clitoria ternatea < Terminalia chebula. It can be concluded that the tested extracts of all the three plants were effective against dental caries causing bacteria. PMID:23723653

  1. Antimicrobial Activity of Nisin and Natamycin Incorporated Sodium Caseinate Extrusion-Blown Films: A Comparative Study with Heat-Pressed/Solution Cast Films.

    Science.gov (United States)

    Colak, Basak Yilin; Peynichou, Pierre; Galland, Sophie; Oulahal, Nadia; Prochazka, Frédéric; Degraeve, Pascal

    2016-05-01

    Antimicrobial edible films based on sodium caseinate, glycerol, and 2 food preservatives (nisin or natamycin) were prepared by classical thermomechanical processes. Food preservatives were compounded (at 65 °C for 2.5 min) with sodium caseinate in a twin-screw extruder. Anti-Listeria activity assays revealed a partial inactivation of nisin following compounding. Thermoplastic pellets containing food preservatives were then used to manufacture films either by blown-film extrusion process or by heat-press. After 24 h of incubation on agar plates, the diameters of K. rhizophila growth inhibition zones around nisin-incorporated films prepared by solution casting (control), extrusion blowing or heat pressing at 80 °C for 7 min of nisin-containing pellets were 15.5 ± 0.9, 9.8 ± 0.2, and 8.6 ± 1.0 mm, respectively. Since heat-pressing for 7 min at 80 °C of nisin-incorporated pellets did not further inactivate nisin, this indicates that nisin inactivation during extrusion-blowing was limited. Moreover, the lower diameter of the K. rhizophila growth inhibition zone around films prepared with nisin-containing pellets compared to that observed around films directly prepared by solution casting confirms that nisin inactivation mainly occurred during the compounding step. Natamycin-containing thermoplastic films inhibited Aspergillus niger growth; however, by contrast with nisin-containing films, heat-pressed films had higher inhibition zone diameters than blown films, therefore suggesting a partial inactivation of natamycin during extrusion-blowing.

  2. Antimicrobial Activity of Nisin and Natamycin Incorporated Sodium Caseinate Extrusion-Blown Films: A Comparative Study with Heat-Pressed/Solution Cast Films.

    Science.gov (United States)

    Colak, Basak Yilin; Peynichou, Pierre; Galland, Sophie; Oulahal, Nadia; Prochazka, Frédéric; Degraeve, Pascal

    2016-05-01

    Antimicrobial edible films based on sodium caseinate, glycerol, and 2 food preservatives (nisin or natamycin) were prepared by classical thermomechanical processes. Food preservatives were compounded (at 65 °C for 2.5 min) with sodium caseinate in a twin-screw extruder. Anti-Listeria activity assays revealed a partial inactivation of nisin following compounding. Thermoplastic pellets containing food preservatives were then used to manufacture films either by blown-film extrusion process or by heat-press. After 24 h of incubation on agar plates, the diameters of K. rhizophila growth inhibition zones around nisin-incorporated films prepared by solution casting (control), extrusion blowing or heat pressing at 80 °C for 7 min of nisin-containing pellets were 15.5 ± 0.9, 9.8 ± 0.2, and 8.6 ± 1.0 mm, respectively. Since heat-pressing for 7 min at 80 °C of nisin-incorporated pellets did not further inactivate nisin, this indicates that nisin inactivation during extrusion-blowing was limited. Moreover, the lower diameter of the K. rhizophila growth inhibition zone around films prepared with nisin-containing pellets compared to that observed around films directly prepared by solution casting confirms that nisin inactivation mainly occurred during the compounding step. Natamycin-containing thermoplastic films inhibited Aspergillus niger growth; however, by contrast with nisin-containing films, heat-pressed films had higher inhibition zone diameters than blown films, therefore suggesting a partial inactivation of natamycin during extrusion-blowing. PMID:27061434

  3. Bioprotective properties of seaweeds: In vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content

    Directory of Open Access Journals (Sweden)

    Kesika Periyanaina

    2008-07-01

    Full Text Available Abstract Background For many years chemical preservatives have been used in food, to act as either antimicrobials or antioxidants or both. In general, consumers regard additive-free foods as safer since preservatives can cause health hazards like asthma and cancer and are suspected to be mutagenic and neurotoxic. The present study was carried out to evaluate the antimicrobial and antioxidant activity of methanolic extracts of seaweeds, with a view to developing safer food preservatives. Methods Ten edible seaweeds, which have wide pharmaceutical application, were collected from Central Marine Fisheries Research Institute, Tamil Nadu, India and evaluated for antioxidant and antimicrobial activity against food borne pathogens. Results The results indicate that Gelidiella acerosa has the highest antioxidant activity while Haligra sps exhibited antibacterial activity against Staphylococcus aureus (MTCC 96. Conclusion Quantitative analysis of the total phenolic content of the seaweeds indicated that Gelidella acerosa and Haligra sps have high phenolic contents, which correlated to their respective antioxidant and antimicrobial activity

  4. Synthesis, Antimicrobial and Anti-inflammatory Activity of Some New Benzoxazinone and Quinazolinone Candidates.

    Science.gov (United States)

    El-Hashash, Maher Abd El-Aziz; Azab, Mohammad Emad; Faty, Rasha Abd El-Aziz; Amr, Abd El-Galil Elsyed

    2016-01-01

    Benzoxazinones and quinazolinones have a wide spectrum of biological activity. In this paper we focused on studying the antimicrobial and anti-inflammatory activities of some newly synthesized benzoxazinone and quinazolinone derivatives. Thus we prepared 2-[α-benzoylaminostyryl]-6,8-dibromo-3,1-benzoxazin-4(H)-one 2 which underwent a reaction with primary and secondary amines, and hydrazine hydrate to give compounds 3, 4 and 5, respectively. Treatment of 2 with hydroxylamine hydrochloride, formamide and/or NaN3/AcOH afforded compounds 7, 8, 11 and 12, respectively. Also, compound 2 reacted with maleic anhydride, aromatic hydrocarbons and/or active methylene compounds to produce compounds 13, 15a-c and 16, respectively. Most of the newly synthesized compounds showed significant antimicrobial and anti-inflammatory activities comparable to ampicillin, mycostatine and indomethacin positive controls. PMID:26699093

  5. Weaner production with low antimicrobial usage: a descriptive study

    DEFF Research Database (Denmark)

    Fertner, Mette Ely; Boklund, Anette; Dupont, Nana Hee;

    2015-01-01

    source, as well as active participation in management by a committed farm owner. Most farmers had a specific point of focus in their management, and were convinced that this was the reason for their success. This included; feeding, treatment strategy, refurbishment of facilities and presence in the shed.......Conclusion: According to register data, participating farms were alike; in the good league regarding use of antimicrobials, mortality and daily growth. However, on-farm interviews elucidated more heterogeneity among farmers than expected. Most of the farmers had a specific point of focus, which they considered...... to be crucial for their good results. These results indicate the importance of non-registerable factors, highlighting the value of qualitative study techniques in the understanding of human actions. Further studies on the effect of various farmer types are recommended....

  6. Antimicrobial activity of crude methanolic extracts from Ganoderma lucidum and Trametes versicolor

    Directory of Open Access Journals (Sweden)

    Lukáš Hleba

    2014-11-01

    Full Text Available In this paper the antimicrobial activity of crude methanolic extracts obtained from Ganoderma lucidum and Trametes versicolor were investigated. The antimicrobial activities of the extracts against E. coli, P. aeruginosa, S. epidermis, E. raffinosus, S. cerevisiae and C. albicans were determined by the microbroth dillution method according by EUCAST in 96-well microplates. Microorganisms were obtained from Czech Collection of Microorganisms. Absorbances after and before the experiment were subtracted, converted to binary system and obtained values to Probit analysis were used. Of the two macromycetes extracts tested, not all extracts showed antimicrobial activity in tested MICs range. The highest antimicrobial activity showed the both extracts to Saccharomyces cerevisiae. The less antimicrobial effects had the both macromycetes extracts to Staphylococcus epidermis. Antimicrobial activity of macromycetes methanolic crude extracts to others tested microorganisms showed no effect or used concentration could be higher.

  7. Alternative hand contamination technique to compare the activities of antimicrobial and nonantimicrobial soaps under different test conditions.

    Science.gov (United States)

    Fuls, Janice L; Rodgers, Nancy D; Fischler, George E; Howard, Jeanne M; Patel, Monica; Weidner, Patrick L; Duran, Melani H

    2008-06-01

    Antimicrobial hand soaps provide a greater bacterial reduction than nonantimicrobial soaps. However, the link between greater bacterial reduction and a reduction of disease has not been definitively demonstrated. Confounding factors, such as compliance, soap volume, and wash time, may all influence the outcomes of studies. The aim of this work was to examine the effects of wash time and soap volume on the relative activities and the subsequent transfer of bacteria to inanimate objects for antimicrobial and nonantimicrobial soaps. Increasing the wash time from 15 to 30 seconds increased reduction of Shigella flexneri from 2.90 to 3.33 log(10) counts (P = 0.086) for the antimicrobial soap, while nonantimicrobial soap achieved reductions of 1.72 and 1.67 log(10) counts (P > 0.6). Increasing soap volume increased bacterial reductions for both the antimicrobial and the nonantimicrobial soaps. When the soap volume was normalized based on weight (approximately 3 g), nonantimicrobial soap reduced Serratia marcescens by 1.08 log(10) counts, compared to the 3.83-log(10) reduction caused by the antimicrobial soap (P soap resulted in a bacterial recovery of 2.49 log(10) counts, compared to the 4.22-log(10) (P soap. This indicates that nonantimicrobial soap was less active and that the effectiveness of antimicrobial soaps can be improved with longer wash time and greater soap volume. The transfer of bacteria to objects was significantly reduced due to greater reduction in bacteria following the use of antimicrobial soap.

  8. Antimicrobial activity of some isatin-3--thiosemicarbazone complexes

    Directory of Open Access Journals (Sweden)

    SANDRA S. KONSTANTINOVIC

    2008-01-01

    Full Text Available Isatin-3-thiosemicarbazone complexes with Co(II, Ni(II, Cu(II, Zn(II, Hg(II and Pd(II were synthesized and evaluated for their antimicrobial activity against 7 pathogenic bacteria and 4 fungi. The complexes have an enhanced activity compared to the ligand due to transition metal involved in coordination. The anti-amoebic activity in vitro was evaluated against the HM1:IMSS strain of Entamoeba histolytica and the results were compared with the standard drug, metronidazole. The preliminary test results showed that the complexes had better anti-amoebic activity than their respective ligands. Moreover, the complexes showed better inhibition of the test organism.

  9. Isolation, identification and antimicrobial activity of propolis-associated fungi.

    Science.gov (United States)

    de Souza, Giovanni Gontijo; Pfenning, Ludwig Heinrich; de Moura, Fabiana; Salgado, Mírian; Takahashi, Jacqueline Aparecida

    2013-01-01

    Propolis is a natural product widely known for its medicinal properties. In this work, fungi present on propolis samples were isolated, identified and tested for the production of antimicrobial metabolites. Twenty-two fungal isolates were obtained, some of which were identified as Alternaria alternata, Aspergillus flavus, Bipolaris hawaiiensis, Fusarium merismoides, Lasiodiplodia theobromae, Penicillium citrinum, Penicillium crustosum, Penicillium janthinellum, Penicillium purpurogenum, Pestalotiopsis palustris, Tetracoccosporium paxianum and Trichoderma koningii. These fungi were grown in liquid media to obtain crude extracts that were evaluated for their antibiotic activity against pathogenic bacteria, yeast and Cladosporium cladosporioides and A. flavus. The most active extract was obtained from L. theobromae (minimum inhibitory concentration = 64 μg/mL against Listeria monocitogenes). Some extracts showed to be more active than the positive control in the inhibition of Staphylococcus aureus and L. monocitogenes. Therefore, propolis is a promising source of fungi, which produces active agents against relevant food poisoning bacteria and crop-associated fungi.

  10. SCREENING FOR ANTIMICROBIAL ACTIVITY AND PHYTOCHEMICAL ANALYSIS OF VARIOUS LEAF EXTRACT OF MURRAYA KOENIGII

    Directory of Open Access Journals (Sweden)

    C. Baskaran

    2011-06-01

    Full Text Available To investigate the antimicrobial activity and phytochemical screening Ethanol, methanol, Ethyl acetate, aceton,chloroform, Petroleum ether, hexane, hot water, and extracts of Murraya koenigii. The aim of the present study was to evaluate the qualitative analysis of phytochemicals and antimicrobial activity of various solvent extracts of Murraya koenigii. The antimicrobial activity of different solvent extracts of Murraya koenigii were tested against the Gram-positive and Gram-negative bacterial strains and fungus by observing the zone of inhibition. The Gram-positive bacteria used in the test were Staphylococcus aureus, Bacillus cereus and Micrococcus luteus, and the Gram-negative bacteria were Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae, fungus like Aspergillus niger, Candida albicans, Candida tropicalis, Cryptococcus neoformans and Candida kefyr. It was observed that ethanol, methanol, ethyl acetate, aceton, chloroform, petroleum ether, hexane and aquas extracts showed activity against bacteria and fungus. The Hot water extract of Murraya koenigii showed more activity against Staphylococcus aureus, zone of diameter 28.17±0.29mm and Ethanol extract of Murraya koenigii showed more activity against Aspergillus niger and Candida tropicalis, zone of diameter 12.17±0.15mm compared to other solvent extracts. In this study Hot water Extract in bacteria and Ethanol Extract in fungus showed a varying degree of inhibition to the growth of tested organism, than methanol, Ethyl acetate, aceton, chloroform, Petroleum ether, hexane, and acetone extracts, The results confirmed the presence of antibacterial activity of Murraya koenigii extract against various human pathogenic bacteria. Presences of phytochemical and antimicrobial activity are confirmed.

  11. SYNTHESIS AND ANTIMICROBIAL ACTIVITIES OF NEW PYRAZOLOPYRIDAZINE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Mahfuz Alam

    2015-03-01

    Full Text Available Several new pryrazolo-pyridazine derivatives (4a-h were synthesized through multi-step synthesis and evaluated for their antimicrobial activities. In the first step, 6-phenyl-2,3,4,5-tetrahydropyridazin-3-one (2 was prepared by reacting 4-(4-chlorophenyl-4-oxobutanoic acid (1 with hydrazine hydrate. Then, aryl-aldehydes were reacted with 2 to furnish pyridazinone derivatives (3a-g. Finally, pyridazinones (3a-h were reacted with hydrazine hydrate to furnish the title compounds (4a-h. The newly synthesized compounds were evaluated for their in vitro antibacterial and antifungal activities against six microbial strains. Compounds 4d, 4e and 4f exhibited significant antibacterial action, whereas compounds 4c and 4d showed potential antifungal activity. Compound 4d, 5-(4-Chlorophenyl-3-(4-fluorophenyl-3,3a,4,7-tetrahydro-2H-pyrazolo[3,4- ]pyridazine, emerged as lead compound having broad spectrum of antimicrobial action.

  12. Polyphenolic Content, Antioxidant and Antimicrobial Activities of Lycium barbarum L. and Lycium chinense Mill. Leaves

    Directory of Open Access Journals (Sweden)

    Andrei Mocan

    2014-07-01

    Full Text Available This study was performed to evaluate the in vitro antioxidant and antimicrobial activities and the polyphenolic content of Lycium barbarum L. and L. chinense Mill. leaves. The different leave extracts contain important amounts of flavonoids (43.73 ± 1.43 and 61.65 ± 0.95 mg/g, respectively and showed relevant antioxidant activity, as witnessed by the quoted methods. Qualitative and quantitative analyses of target phenolic compounds were achieved using a HPLC-UV-MS method. Rutin was the dominant flavonoid in both analysed species, the highest amount being registered for L. chinense. An important amount of chlorogenic acid was determined in L. chinense and L. barbarum extracts, being more than twice as high in L. chinense than in L. barbarum. Gentisic and caffeic acids were identified only in L. barbarum, whereas kaempferol was only detected in L. chinense. The antioxidant activity was evaluated by DPPH, TEAC, hemoglobin ascorbate peroxidase activity inhibition (HAPX and inhibition of lipid peroxidation catalyzed by cytochrome c assays revealing a better antioxidant activity for the L. chinense extract. Results obtained in the antimicrobial tests revealed that L. chinense extract was more active than L. barbarum against both Gram-positive and Gram-negative bacterial strains. The results suggest that these species are valuable sources of flavonoids with relevant antioxidant and antimicrobial activities.

  13. Antimicrobial Activity and Brine Shrimp Lethality Bioassay of the Leaves Extract of Dillenia indica Linn.

    Science.gov (United States)

    Apu, As; Muhit, Ma; Tareq, Sm; Pathan, Ah; Jamaluddin, Atm; Ahmed, M

    2010-01-01

    The crude methanolic extract of Dillenia indica Linn. (Dilleniaceae) leaves has been investigated for the evaluation of antimicrobial and cytotoxic activities. Organic solvent (n-hexane, carbon tetrachloride and chloroform) fractions of methanolic extract and methanolic fraction (aqueous) were screened for their antimicrobial activity by disc diffusion method. Besides, the fractions were screened for cytotoxic activity using brine shrimp (Artemia salina) lethality bioassay. Among the four fractions tested, n-hexane, carbon tetrachloride, and chloroform fractions showed moderate antibacterial and antifungal activity compared to standard antibiotic, kanamycin. The average zone of inhibition was ranged from 6 to 8 mm at a concentration of 400 µg/disc. But the aqueous fraction was found to be insensitive to microbial growth. Compared to vincristine sulfate (with LC(50) of 0.52 µg/ ml), n-hexane and chloroform fractions demonstrated a significant cytotoxic activity (having LC(50) of 1.94 µg/ml and 2.13 µg/ml, respectively). The LC(50) values of the carbon tetrachloride and aqueous fraction were 4.46 µg/ml and 5.13 µg/ ml, respectively. The study confirms the moderate antimicrobial and potent cytotoxic activities of Dillenia indica leaves extract and therefore demands the isolation of active principles and thorough bioassay. PMID:21331191

  14. Bioactive metabolite profiles and antimicrobial activity of ethanolic extracts from Muntingia calabura L. leaves and stems

    Institute of Scientific and Technical Information of China (English)

    William Patrick Cruiz Buhian; Raquel Orejudos Rubio; Demetrio Lim Valle Jr; Juliana Janet Martin-Puzon

    2016-01-01

    Objective: To determine the bioactive phytochemicals and antimicrobial activity of leaf and stem ethanolic extracts from Muntingia calabura L. (M. calabura). Methods: Dried leaves and stems of M. calabura were extracted with 95%ethanol. The antibacterial and antifungal activities of the extracts were examined using the disc diffusion assay. The minimum inhibitory concentration (MIC) of each extract showing antimicrobial activity was determined. The dried extracts were subjected to phyto-chemical screening to determine the presence of bioactive components. Total phenolic and flavonoid contents were also determined by the Folin-Ciocalteu method and the aluminum chloride method, respectively. Results: Varying degrees of antimicrobial activity were exhibited by the leaf and stem extracts against Pseudomonas aeruginosa (P. aeruginosa), Salmonella typhimurium, Staphylococcus aureus (S. aureus), Bacillus subtilis, and Candida albicans (C. albicans), with minimal activity against Escherichia coli. Based on the MIC, the extracts showed the highest activity against C. albicans, S. aureus and P. aeruginosa. Phytochemical screening revealed the presence of sterols, flavonoids, alkaloids, saponins, glycosides and tannins in the leaf extract; however, no triterpenes were detected. In the stem extract, triterpenes were detected along with relative amounts of flavonoids, saponins, glycosides and tannins. Alkaloids and sterols were absent in the stem extract. Conclusions: M. calabura leaf and stem ethanol extracts are potential sources of anti-bacterial agents against P. aeruginosa and S. aureus. This study reports for the first time the high degree of antifungal activity of M. calabura ethanolic extract, especially against C. albicans.

  15. Antimicrobial and hemolytic activity of fish epidermal mucus Cynoglossus arel andArius caelatus

    Institute of Scientific and Technical Information of China (English)

    Subramanian Bragadeeswaran; Selvam Priyadharshini; Kolandhasamy Prabhu; Solomon Raj Sophia Rani

    2011-01-01

    Objective:To study the antimicrobial, hemolytic activity and immunomodulatory activity of fish epidermal mucus and their chemical constituents fromCynoglossus arel (C. arel) and Arius caelatus (A. caelatus). Mucus plays an important role in the prevention of colonization by parasites, bacteria and fungi.Methods: Epidermal mucus was obtained from two marine fishes, lyophilized and the chemical composition of epidermal mucus was analysed byFT-IR analysis. Thein vitro antimicrobial activity against human pathogens (fungi, gram positive and gram-negative bacteria) and also the hemolytic activity and immunomodulatory activity were determined.Results:Totally ten human pathogens were tested against the fish mucus. Out of the ten pathogens, five pathogens have proved to be sensitive to the mucus. Maximum zone of inhibition was observed againstVibrio cholera (V. cholera) (9 mm and2 mm in diameter), followed byStaphylococcus aureus (S. aureus) with a inhibition zone of (6 mm and3 mm),Streptococcus areus (S. areus) (5 mm and4 mm),Vibrio parahemolyticus (V. parahemolyticus) (4mm and5 mm) respectively.Conclusions: The present investigation has revealed that positive progresses in the fish mucus extracts against human pathogens and hemolytic activity. But further efforts are required for the purification and isolation of the active antimicrobial compounds in order to establish their possible applications.

  16. Antimicrobial Activity of Starch Hydrogel Incorporated with Copper Nanoparticles.

    Science.gov (United States)

    Villanueva, María Emilia; Diez, Ana María Del Rosario; González, Joaquín Antonio; Pérez, Claudio Javier; Orrego, Manuel; Piehl, Lidia; Teves, Sergio; Copello, Guillermo Javier

    2016-06-29

    In order to obtain an antimicrobial gel, a starch-based hydrogel reinforced with silica-coated copper nanoparticles (Cu NPs) was developed. Cu NPs were synthesized by use of a copper salt and hydrazine as a reducing agent. In order to enhance Cu NP stability over time, they were synthesized in a starch medium followed by a silica coating. The starch hydrogel was prepared by use of urea and water as plasticizers and it was treated with different concentrations of silica-coated copper nanoparticles (Si-Cu NPs). The obtained materials were characterized by Fourier transform infrared (FT-IR) spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, scanning electron microscopy (SEM), and rheometry. FT-IR and EPR spectra were used for characterization of Cu NPs and Si-Cu NPs, confirming that a starch cap was formed around the Cu NP and demonstrating the stability of the copper nanoparticle after the silica coating step. SEM images showed Cu NP, Si-Cu NP, and hydrogel morphology. The particle size was polydisperse and the structure of the gels changed along with particle concentration. Increased NP content led to larger pores in starch structure. These results were in accordance with the rheological behavior, where reinforcement by the Si-Cu NP was seen. Antimicrobial activity was evaluated against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial species. The hydrogels were demonstrated to maintain antimicrobial activity for at least four cycles of use. A dermal acute toxicity test showed that the material could be scored as slightly irritant, proving its biocompatibility. With these advantages, it is believed that the designed Si-Cu NP loaded hydrogel may show high potential for applications in various clinical fields, such as wound dressings and fillers.

  17. Evaluation of the antimicrobial and physical properties of an orthodontic photo-activated adhesive modified with an antiplaque agent: An in vitro study

    Directory of Open Access Journals (Sweden)

    Chanjyot Singh

    2013-01-01

    Results: The findings indicated that (1 addition of chlorhexidine to the orthodontic composite resin enhanced its antimicrobial properties, (2 there was no significant difference between the bond strengths of the control and the experimental resins tested after 24 h and 25 days and (3 maximum release of chlorhexidine from the modified resin was much higher than the minimum inhibitory concentration level.

  18. Characteristics and antimicrobial activity of copper-based materials

    Science.gov (United States)

    Li, Bowen

    In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger

  19. Artichoke and milk thistle pills and syrups as sources of phenolic compounds with antimicrobial activity.

    Science.gov (United States)

    Pereira, Carla; Barros, Lillian; José Alves, Maria; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2016-07-13

    Dietary supplements based on hepatoprotective plants have been increasingly used in the prevention of liver injuries. In the present work, the aim was to study the phenolic profile and possibly relate it to the in vitro antimicrobial activity of two different formulations (pills and syrups) of artichoke and milk thistle, the antioxidant and anti-hepatocellular carcinoma activities of which were previously reported by our research group. The phenolic profiles were obtained by HPLC-DAD-ESI/MS, and the antimicrobial activity evaluation was performed with the clinical isolates of multiresistant bacteria (Escherichia coli, extended spectrum β-lactamases (ESBL) producing Escherichia coli, Proteus mirabilis, methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa). Artichoke syrup revealed the presence of vanillic acid and luteolin-7-O-glucoside while the pills possessed higher concentrations of 4-O-caffeoylquinic, 5-O-caffeoylquinic and 1,3-O-dicaffeoylquinic acids, this latest being able to inhibit the growth of MRSA. Regarding milk thistle formulations, the syrup presented isorhamnetin-O-deoxyhexoside-O-dihexoside, isorhamnetin-O-deoxyhexoside-O-hexoside and isorhamnetin-3-O-rutinoside as the major phenolic constituents whereas the pills were richer in taxifolin, silymarin derivatives and hydroxylated silibinin; the syrup revealed antimicrobial activity against all the studied bacteria with the exception of Proteus mirabilis whereas the pills revealed activity against ESBL producing Escherichia coli. Overall, all of the studied formulations revealed to be a good source of phenolic compounds, among which milk thistle syrup presented the highest variety and concentration of flavonoids, which is possibly related to its strongest antimicrobial activity. PMID:27273551

  20. Antimicrobial activity of hybrid hydrogels based on poly(vinylpyrrolidone containing silver

    Directory of Open Access Journals (Sweden)

    Jovašević Jovana S.

    2010-01-01

    Full Text Available In this work new hybrid hydrogels were prepared by radical copolymerization of 2-hydroxyethyl methacrylate, itaconic acid, poly(vinylpyrrolidone and silver particles. FTIR spectroscopy has confirmed binding of silver particels in hydrogels. Swelling studies performed in in vitro conditions showed dependence on PVP content and temperature. It can be seen that the antimicrobial activity of the Ag/P(HEMA/IAPVP hybrid hydrogels depends on the PVP moiety and with the increase of PVP content the microbial contamination is more efficiently reduced. The best sensitivity was obtained for the polymers tested for antimicrobial activity against the yeast C. albicans, one of the most commonly encountered human pathogens, causing a wide variety of infections ranging from mucosal infections in generally healthy persons to life-threatening systemic infections in individuals with impaired immunity. A slightly less susceptible to antimicrobial effect of hydrogels was obtained for the Gram-positive bacteria S. aureus, where the reduction of cells was about 70 % after two hours of exposure, for the sample with the highest PVP content. The least susceptible to the antimicrobial activity of hydrogels examined was the Gram-negative bacteria E. coli, where the percent of cell reduction was below 20 %. Bearing in mind the influence of the time of exposure of microbes to the Ag/P(HEMA/IA/PVP hybrid hydrogels, it was observed that the reduction of the number of cells depends on time, microbial culture and type of hybrid hydrogel sample. Due to their swelling and antimicrobial properties, silver/poly(2-hydroxyethyl methacrylate/itaconic acid/poly(vinylpyrrolidone hybrid hydrogles show potential to use in the field of biomedicine, especially for treatment of skin and burns in dermocosmetics.