WorldWideScience

Sample records for antimicrobial activity studies

  1. Studies on some active components and antimicrobial activities of ...

    African Journals Online (AJOL)

    Research into plant-derived endophytic fungi has grown in recent decades. Endophytic fungi still have enormous potential to inspire and influence modern agriculture. In this study, the endophytic fungi DZY16 isolated from Eucommia ulmoides Oliv. was tested for its bioactive components and antimicrobial activities using ...

  2. Byrsonima crassa Niedenzu (IK: antimicrobial activity and chemical study

    Directory of Open Access Journals (Sweden)

    W. Vilegas

    2009-01-01

    Full Text Available

    The methanolic extract of leaves from Byrsonima crassa, a Brazilian medicinal plant, was analyzed by CC and HPLC. Four constituents were isolated and identified as quercetin, methyl gallate, (--epigallocatechin gallate and quercetin-3-O-(2”-galloyl-a-L-arabinopyranoside. The methanolic and hydromethanolic extract, as well as fractions, were evaluated regarding their possible antimicrobial activity using in vitro methods. Results showed that both extracts and fractions exhibited significant antimicrobial activity against all tested strains. Keywords: Byrsonima crassa, antimicrobial activity, Malpighiaceae.

  3. A study on antimicrobial, antioxidant and antimutagenic activities of ...

    African Journals Online (AJOL)

    Whereas, the inhibition zone was not determined by methanol extract against Escherichia coli ATCC 1122 and Candida albicans RSKK 02029. The MIC was evaluated on plant extracts as antimicrobial activity. All of bacterial strains showed the lowest sensitivity to methanol extract of E. angustifolia (3.5 mg/mL), except ...

  4. Photochemically synthesized heparin-based silver nanoparticles: an antimicrobial activity study

    Science.gov (United States)

    Rodriguez-Torres, Maria del Pilar; Acosta-Torres, Laura Susana; Díaz-Torres, Luis Armando

    2017-08-01

    The antimicrobial activity of silver nanoparticles has been extensively studied in the last years. Such nanoparticles constitute a potential and promising approach for the development of new antimicrobial systems especially due to the fact that several microorganisms are developing resistance to some already existing antimicrobial agents, therefore making antibacterial and antimicrobial studies on alternative materials necessary to overcome this issue. Silver nanoparticle concentration and size are determining factors on the antimicrobial activity of these nano systems. Heparin is a polysaccharide that belongs to the glycosaminoglycans (GAGs) family, molecules formed by a base disaccharide whose components are joined by a glycosidic linkage that is a repeating unit along their structure. It is highly sulfated making it a negatively charged material that is also widely used as an anticoagulant in Medicine because its biocompatibility besides it is also produced within the human body, specifically in the mast cells. Heparin alone possesses antimicrobial activity although it has not been studied very much in detail, it only has been demonstrated that it inhibits E. coli, P. aeruginosa, S. aureus and S. epidermidis, so taking this into account, this study is dedicated to assess UV photochemically-synthesized (λ=254 nm) heparin-based silver nanoparticles antimicrobial activity using the agar disk diffusion method complemented by the broth microdilution method to estimate de minimum inhibitory concentration (MIC), that is the lowest concentration at which an antimicrobial will inhibit visible growth of a microorganism. The strains used were the ones aforementioned to assess the antimicrobial activity degree these heparinbased nanoparticles exhibit.

  5. Studies on some active components and antimicrobial activities of ...

    African Journals Online (AJOL)

    edoja

    2013-04-10

    Apr 10, 2013 ... activities of the fermentation broth of endophytic fungi ... The test microorganisms were obtained from the School of Plant. Protection, Anhui ..... techniques for the extraction of the hypotensive drugs geniposidic acid and ...

  6. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin.

    Science.gov (United States)

    Galdiero, Emilia; Siciliano, Antonietta; Maselli, Valeria; Gesuele, Renato; Guida, Marco; Fulgione, Domenico; Galdiero, Stefania; Lombardi, Lucia; Falanga, Annarita

    This study attempts to evaluate the antimicrobial activity and the ecotoxicity of quantum dots (QDs) alone and coated with indolicidin. To meet this objective, we tested the level of antimicrobial activity on Gram-positive and Gram-negative bacteria, and we designed an ecotoxicological battery of test systems and indicators able to detect different effects using a variety of end points. The antibacterial activity was analyzed against Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 1025), Escherichia coli (ATCC 11229), and Klebsiella pneumoniae (ATCC 10031), and the results showed an improved germicidal action of QDs-Ind. Toxicity studies on Daphnia magna indicated a decrease in toxicity for QDs-Ind compared to QDs alone, lack of bioluminescence inhibition on Vibrio fisheri, and no mutations in Salmonella typhimurium TA 100. The comet assay and oxidative stress experiments performed on D. magna showed a genotoxic and an oxidative damage with a dose-response trend. Indolicidin retained its activity when bound to QDs. We observed an enhanced activity for QDs-Ind. The presence of indolicidin on the surface of QDs was able to decrease its QDs toxicity.

  7. Initial antimicrobial activity studies of plants of the riverside forests of the southern Uruguay River

    Directory of Open Access Journals (Sweden)

    Ana Bertucci

    Full Text Available Development of new antimicrobial compounds against different microorganisms is becoming critically important, as infectious diseases are still one of the leading causes of death in the world. Plants can be a useful source of these lead compounds. In this study, 66 extracts of 25 plants of the riverside forest of southern Uruguay River were studied for antimicrobial activity against Staphylococcus aureus, Listeria inocua, Escherichia coli, Pseudomonas aeruginosa, Mycobacterium tuberculosis, Aspergillus niger and Candida albicans. Fifty-three of these extracts showed some kind of antimicrobial activity. Six of these (Eugenia mansoni, Eugenia repanda, Myrcianthes cisplatensis, Paullinia ellegans, Petunia sp and Ruprechtia laxiflora presented activity against Mycobacterium tuberculosis with MIC values as low as 50 μg/mL.

  8. A Study on Antimicrobial Activities of Essential Oils of Different Cultivars of Lemongrass (Cymbopogon flexuosus

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Gupta, Ritam Muhury, Deepak Ganjewala

    2016-10-01

    Full Text Available Background: Cymbopogon flexuosus popularly known as lemongrass provides a lemon scented essential oil which is widely used in flavour and fragrance, perfumery, food and pharmaceuticals. The aim of the present study was to assess antimicrobial activities of essential oils of three lemongrass cultivars viz., Pragati, Praman and Suvarna. Methods: Essential oils were isolated from one month old plants by hydro-distillation in mini Clevenger apparatus for 2 h. Antimicrobial activities were determined by agar well diffusion method Results: Lemongrass oils exhibited strong antimicrobial activity against all the microbes except E coli. Mean inhibition zone diameter (mm against bacteria was ranged 27-38 mm. B. Subtilis was the most sensitive bacterium to all essential oils. Essential oils also showed strong antifungal effects against both A. niger and C. albicans with mean inhibition zone diameter (mm values 20-26 and 27-29 mm, respectively. Statistical analyses revealed that antimicrobial activity shown by essential oils were significant (p > 0.05. Conclusion: The study revealed strong antimicrobial potential of the essential oil against pathogenic microbial strains which may be of high clinical importance in future.

  9. Synthesis, antimicrobial activities and computational studies of some ...

    African Journals Online (AJOL)

    The quantitative structure-antibacterial activity relationship was studied using some quantum chemical parameters with the aid of Spartan 10 (V1.0.1) and XLSTAT (add-in) software. A good correlation was observed between the antibacterial activity of the compounds and the calculated quantum chemical descriptors.

  10. Study on Antimicrobial Activities and Wound Healing Activities of Some Traditional Medicinal Herbs

    Energy Technology Data Exchange (ETDEWEB)

    Win, San San; Than, Mar lar; Thwe, Moe Moe

    2011-12-15

    Herbs extracts were extracted from the four medicinal herbs, Alternanthera sessili Linn. (pazun-sa) , Heliotropium indicum Linn. (sin-nha-maung-gyi), Plantago asiatica Linn. (se-gyaw gyi) and Scoparia dulcis Linn. (Thagya-pin), by extract with water and soxhlet method with 95% ethonal and petroleum ether.These herbs do not contain cyanogenic glycosides according to the phytochemical tests. Extracts from these foure herbs have various effects on Gram-positive and Gram-negative bacteria and fungus. The anti-microbial activity of these plant extracts were tested by agar well diffusion method. The six selected microorganism such as Bacillus subtilis , Staphylococcus aureus, Pseudomonas aeurginosa, Bacillus pumilus, Candda albicons, Escherichia coli, were assumed. Each medicinal herbs enable us to be applied not only many diseases but to swelling, wounds, skin-inflammation. Cell viability studies showed its degradation. In vivo screenins of antimicrobial activity of four selected medicinal herbs extracts were experimented by evaluation of their healing affects on the wound of mice.

  11. Study on Antimicrobial Activities and Wound Healing Activities of Some Traditional Medicinal Herbs

    International Nuclear Information System (INIS)

    San San Win; Mar lar Than; Moe Moe Thwe

    2011-12-01

    Herbs extracts were extracted from the four medicinal herbs, Alternanthera sessili Linn. (pazun-sa) , Heliotropium indicum Linn. (sin-nha-maung-gyi), Plantago asiatica Linn. (se-gyaw gyi) and Scoparia dulcis Linn. (Thagya-pin), by extract with water and soxhlet method with 95% ethonal and petroleum ether.These herbs do not contain cyanogenic glycosides according to the phytochemical tests. Extracts from these foure herbs have various effects on Gram-positive and Gram-negative bacteria and fungus. The anti-microbial activity of these plant extracts were tested by agar well diffusion method. The six selected microorganism such as Bacillus subtilis , Staphylococcus aureus, Pseudomonas aeurginosa, Bacillus pumilus, Candda albicons, Escherichia coli, were assumed. Each medicinal herbs enable us to be applied not only many diseases but to swelling, wounds, skin-inflammation. Cell viability studies showed its degradation. In vivo screenins of antimicrobial activity of four selected medicinal herbs extracts were experimented by evaluation of their healing affects on the wound of mice.

  12. Comparative study of volatile oil content and antimicrobial activity of pecan cultivars growing in Egypt.

    Science.gov (United States)

    El Hawary, Seham S; Zaghloul, Soumaya S; El Halawany, Ali M; El Bishbishy, Mahitab H

    2013-11-01

    The volatile oils obtained from the leaves of four pecan cultivars growing in Egypt were evaluated for their chemical composition and antimicrobial activity. The selected cultivars (cv.) were Carya illinoinensis (Wangneh.) K. Koch. cv. Wichita, C. illinoinensis cv. Western Schley, C. illinoinensis cv. Cherokee, and C. illinoinensis cv. Sioux. The gas chromatography-mass spectrometry analyses revealed that the volatile oils from samples of the different cultivars differ in composition and percentage of their components. β-Curcumene was found as the major constituent of the cv. Wichita oil, whereas germacrene D was the major component of cv. Sioux, cv. Cherokee, and cv. Western Schley. The antimicrobial activity was assayed using the Kirby-Bauer Method by measuring the zone of inhibition of growth. All volatile oils displayed an antimicrobial activity against the tested bacterial strains. On the other hand, only the volatile oil of cv. Wichita showed an antifungal effect on Aspergillus flavus. This work has identified candidates of volatile oils for future in vivo studies to develop antibiotic substitutes for the diminution of human and animal pathogenic bacteria. Nevertheless, the variations of the volatile oil components and antimicrobial potencies of the different studied cultivars, necessitate identifying the cultivars used in future studies.

  13. Antimicrobial activity, cytotoxicity and DNA binding studies of carbon dots

    Science.gov (United States)

    Jhonsi, Mariadoss Asha; Ananth, Devanesan Arul; Nambirajan, Gayathri; Sivasudha, Thilagar; Yamini, Rekha; Bera, Soumen; Kathiravan, Arunkumar

    2018-05-01

    In recent years, quantum dots (QDs) are one of the most promising nanomaterials in life sciences community due to their unexploited potential in biomedical applications; particularly in bio-labeling and sensing. In the advanced nanomaterials, carbon dots (CDs) have shown promise in next generation bioimaging and drug delivery studies. Therefore the knowledge of the exact nature of interaction with biomolecules is of great interest to designing better biosensors. In this study, the interaction between CDs derived from tamarind and calf thymus DNA (ct-DNA) has been studied by vital spectroscopic techniques, which revealed that the CDs could interact with DNA via intercalation. The apparent association constant has been deduced from the absorption spectral changes of ct-DNA-CDs using the Benesi-Hildebrand equation. From the DNA induced emission quenching experiments the apparent DNA binding constant of the CDs (Kapp) have also been evaluated. Furthermore, we have analyzed the antibacterial and antifungal activity of CDs using disc diffusion assay method which exhibited excellent activity against E. coli and C. albicans with inhibition zone in the range of 7-12 mm. The biocompatible nature of CDs was confirmed by an in vitro cytotoxicity test on L6 normal rat myoblast cells by using MTT assay. The cell viability is not affected till the high dosage of CDs (200 μg/mL) for >48 h. As a consequence of the work, future development of CDs for microbial control and DNA sensing among the various biomolecules is possible in view of emerging biofields.

  14. Antimicrobial Activity of Resveratrol Analogues

    Directory of Open Access Journals (Sweden)

    Malik Chalal

    2014-06-01

    Full Text Available Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew. Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold. The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups and antimicrobial activity.

  15. Cymantrenyl-Nucleobases: Synthesis, Anticancer, Antitrypanosomal and Antimicrobial Activity Studies

    Directory of Open Access Journals (Sweden)

    Artur Jabłoński

    2017-12-01

    Full Text Available The synthesis of four cymantrene-5-fluorouracil derivatives (1–4 and two cymantrene-adenine derivatives (5 and 6 is reported. All of the compounds were characterized by spectroscopic methods and the crystal structure of two derivatives (1 and 6, together with the previously described cymantrene-adenine compound C was determined by X-ray crystallography. While the compounds 1 and 6 crystallized in the triclinic P-1 space group, compound C crystallized in the monoclinic P21/m space group. The newly synthesized compounds 1–6 were tested together with the two previously described cymantrene derivatives B and C for their in vitro antiproliferative activity against seven cancer cell lines (MCF-7, MCF-7/DX, MDA-MB-231, SKOV-3, A549, HepG2m and U-87-MG, five bacterial strains Staphylococcus aureus (methicillin-sensitive, methicillin-resistant and vancomycin-intermediate strains, Staphylococcus epidermidis, and Escherichia coli, including clinical isolates of S. aureus and S. epidermidis, as well as against the protozoan parasite Trypanosoma brucei. The most cytotoxic compounds were derivatives 2 and C for A549 and SKOV-3 cancer cell lines, respectively, with 50% growth inhibition (IC50 values of about 7 µM. The anticancer activity of the cymantrene compounds was determined to be due to their ability to induce oxidative stress and to trigger apoptosis and autophagy in cancer cells. Three derivatives (1, 4 and 5 displayed promising antitrypanosomal activity, with GI50 values in the low micromolar range (3–4 µM. The introduction of the 5-fluorouracil moiety in 1 enhanced the trypanocidal activity when compared to the activity previously reported for the corresponding uracil derivative. The antibacterial activity of cymantrene compounds 1 and C was within the range of 8–64 µg/mL and seemed to be the result of induced cell shrinking.

  16. Short Communication: Studies of antimicrobial activity and chemical ...

    African Journals Online (AJOL)

    Chemical constituents of the extract were also determined. The extract of was active against the test organisms including Escherischia coli, Pseudomonas aeruginosa and Candida albicans. Tannins, flavonoids, alkaloids, saponins, anthrax-quinones, starch, general glycosides and bitter principles were found to be present ...

  17. Synthesis, anti-microbial activity and molecular docking studies on ...

    Indian Academy of Sciences (India)

    Molecular structures of triazolylcoumarins 1–8. method and are ... organic layer was washed with water (100 mL) and sat- ... (0.5mmol) in a mixture of THF and water (1:1) solution. ..... for docking studies with the target DNA gyrase B (PDB.

  18. Antimicrobial activity Study of triclosan-loaded WBPU on Proteus mirabilis in vitro.

    Science.gov (United States)

    Tian, Ye; Jian, Zhongyu; Wang, Jianzhong; He, Wei; Liu, Qinyu; Wang, Kunjie; Li, Hong; Tan, Hong

    2017-04-01

    To evaluate the antimicrobial activity study of triclosan-loaded waterborne polyurethanes (WBPU) on Proteus mirabilis in vitro. Inhibition zone assays on petri plates with triclosan-loaded WBPU samples were used to test its antimicrobial activity on Proteus mirabilis. Models of the catheterized bladder supplied with artificial urine infected with Proteus mirabilis were employed to confirm the antimicrobial activity of triclosan-loaded WBPU. Bacteria colony counting, pH of the residual urine at each time point and catheter blockage time were recorded. Confocal laser scanning microscopy, scanning electron microscopy and encrustation deposits dry weighing were used for evaluating the biofilm formation. Inhibition zones formed in the triclosan-loaded WBPU groups in a dose-response manner (the radius for samples with 1, 0.1 and 0.01 mg triclosan were 9.93 ± 1.08, 6.07 ± 0.54 and 2.47 ± 0.25 mm, P Proteus mirabilis biofilm formation (33.9 ± 13.9 mg vs. 1.4 ± 1.5 mg, P = 0.016). Triclosan-loaded WBPU significantly inhibited Proteus mirabilis' growth and biofilm formation, indicating the promising antibacterial effects on Proteus mirabilis in vitro. Further efforts are under way that involves coating the material onto the urinary catheters and in vivo studies.

  19. Silver nanoparticles incorporated into nanostructured biopolymer membranes produced by electrospinning: a study of antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Karen Segala

    2015-12-01

    Full Text Available abstract This study examines the antimicrobial activity of silver nanoparticles incorporated into nanostructured membranes made of cellulose acetate (CA and blends of chitosan/poly-(ethylene oxide, CTS/PEO and prepared by electrospinning. The formation of chemically synthesized Ag nanoparticles (AgNPs was monitored by UV-visible spectroscopy (UV-Vis and characterized by transmission electron microscopy (TEM. The size distribution of the AgNPs was measured by dynamic light scattering (DLS, with an average size of approximately 20 nm. The presence of AgNPs on the surface of electrospun nanofibers was observed by field emission electron microscopy (FEG and confirmed by TEM. The antimicrobial activity of AgNPs incorporated into nanostructured membranes made of CA and CTS/PEO electrospun nanofibers was evaluated in the presence of both Gram-positive bacteria, such as Staphylococcus aureus ATCC 29213 and Propionibacterium acnes ATCC 6919, and Gram-negative bacteria, such as Escherichia coli ATCC 25992 and Pseudomonas aeruginosa ATCC 17933. Microbiological results showed that the presence of AgNPs in CA and CTS/PEO nanostructured membranes has significant antimicrobial activity for the Gram-positive bacteria Escherichia coli and Propionibacterium acnes.

  20. Synthesis, characterization and antimicrobial activity of mixed ...

    African Journals Online (AJOL)

    Synthesis, characterization and antimicrobial activity of mixed ascorbic acid - nicotinamide metal complexes. ... The result of the antimicrobial studies showed that the mixed complexes have higher inhibitory activity than the original ligands against the tested bacteria and fungi species. KEY WORDS: Ascorbic acid, ...

  1. Phytochemical study and evaluation of the antimicrobial activity and cytotoxicity of Cuscuta racemosa

    Directory of Open Access Journals (Sweden)

    Helena O. Ferraz

    2011-02-01

    Full Text Available Cuscuta racemosa Mart. is a parasitic plant of the Convolvulaceae family, used in popular medicine as an anti-inflammatory and a diuretic, for stomach and hepatic disorders, and for treating fresh wounds. This plant is popularly known as "cipó-chumbo" and "fios-de-ovos". In this study, it was chemically investigated and tested for its antimicrobial activity and cytotoxicity. The flavonoid and tannin content of the dried plant were 2.79% and 2.01%, respectively. Furthermore, the 4'-methoxyquercetin flavanoid compound was isolated from the ethanolic fraction. The minimum inhibiting concentration in the antimicrobial test was 2.0 mg/ml for Staphylococcus aureus, and a DL50 of 0.231 mg/mL was obtained in the cytotoxicity experiment. The fraction directed to alkaloids was able to eliminate 100% of the brine shrimp used for the test.

  2. Phytochemical study and evaluation of the antimicrobial activity and cytotoxicity of Cuscuta racemosa

    Directory of Open Access Journals (Sweden)

    Helena O. Ferraz

    2010-11-01

    Full Text Available Cuscuta racemosa Mart. is a parasitic plant of the Convolvulaceae family, used in popular medicine as an anti-inflammatory and a diuretic, for stomach and hepatic disorders, and for treating fresh wounds. This plant is popularly known as "cipó-chumbo" and "fios-de-ovos". In this study, it was chemically investigated and tested for its antimicrobial activity and cytotoxicity. The flavonoid and tannin content of the dried plant were 2.79% and 2.01%, respectively. Furthermore, the 4'-methoxyquercetin flavanoid compound was isolated from the ethanolic fraction. The minimum inhibiting concentration in the antimicrobial test was 2.0 mg/ml for Staphylococcus aureus, and a DL50 of 0.231 mg/mL was obtained in the cytotoxicity experiment. The fraction directed to alkaloids was able to eliminate 100% of the brine shrimp used for the test.

  3. Antimicrobial activity of Nigerian medicinal plants

    Science.gov (United States)

    Anyanwu, Madubuike Umunna; Okoye, Rosemary Chinazam

    2017-01-01

    Antimicrobial resistance (AMR) is currently one of the major threats facing mankind. The emergence and rapid spread of multi- and pan-drug-resistant organisms (such as vancomycin-, methicillin-, extended-spectrum β-lactam-, carbapenem- and colistin-resistant organisms) has put the world in a dilemma. The health and economic burden associated with AMR on a global scale are dreadful. Available antimicrobials have been misused and are almost ineffective with some of these drugs associated with dangerous side effects in some individuals. Development of new, effective, and safe antimicrobials is one of the ways by which AMR burden can be reduced. The rate at which microorganisms develop AMR mechanisms outpaces the rate at which new antimicrobials are being developed. Medicinal plants are potential sources of new antimicrobial molecules. There is renewed interest in antimicrobial activities of phytochemicals. Nigeria boasts of a huge heritage of medicinal plants and there is avalanche of researches that have been undertaken to screen antimicrobial activities of these plants. Scientific compilation of these studies could provide useful information on the antimicrobial properties of the plants. This information can be useful in the development of new antimicrobial drugs. This paper reviews antimicrobial researches that have been undertaken on Nigerian medicinal plants. PMID:28512606

  4. Antimicrobial activity and bioautographic study of antistaphylococcal components from Caesalpinia pyramidalis Tull.

    OpenAIRE

    Antonio Marcos Saraiva; Cristiane Lopes Saraiva; Admário Marques Gonçalves; Rogério Ribeiro Soares; Fabrício de Oliveira Mendes; Risonildo Pereira Cordeiro; Haroudo Satiro Xavier; Maria Nelly Caetano Pisciottano

    2012-01-01

    The antimicrobial activity of dry methanol and ethyl acetate extracts for the leaves, bark of the stem, peel of the root, flower, fruit and seed of Caesalpinia pyramidalis Tull. (catingueira) was performed against seventeen isolates of Staphylococcus aureus MRSA multiresistant strains, which included two isolates of S. aureus MSSA and two ATCC strains. The antimicrobial activity was tested by the agar diffusion method and the Minimum Inhibitory Concentration (MIC) was determined. The dry meth...

  5. Antimicrobial activity of Gentiana lutea L. extracts.

    Science.gov (United States)

    Savikin, Katarina; Menković, Nebojsa; Zdunić, Gordana; Stević, Tatjana; Radanović, Dragoja; Janković, Teodora

    2009-01-01

    Methanolic extracts of flowers and leaves of Gentiana lutea L., together with the isolated compounds mangiferin, isogentisin and gentiopicrin, were used to investigate the antimicrobial activity of the plant. A variety of Gram-positive and Gram-negative bacteria as well as the yeast Candida albicans has been included in this study. Both extracts and isolated compounds showed antimicrobial activity with MIC values ranging from 0.12-0.31 mg/ml. Our study indicated that the synergistic activity of the pure compounds may be responsible for the good antimicrobial effect of the extracts. Quantification of the secondary metabolites was performed using HPLC.

  6. Study of in vitro antimicrobial and antiproliferative activities of selected Saharan plants.

    Science.gov (United States)

    Palici, Ionut F; Liktor-Busa, Erika; Zupkó, István; Touzard, Blaise; Chaieb, Mohamed; Urbán, Edit; Hohmann, Judit

    2015-12-01

    The aim of the present study was the evaluation of the antimicrobial and antiproliferative activities of selected Saharan species, which are applied in the traditional medicine but not studied thoroughly from chemical and pharmacological point of view. The studied plants, namely Anthyllis henoniana, Centropodia forskalii, Cornulaca monacantha, Ephedra alata var. alenda, Euphorbia guyoniana, Helianthemum confertum, Henophyton deserti, Moltkiopsis ciliata and Spartidium saharae were collected from remote areas of North Africa, especially from the Tunisian region of Sahara. After drying and applying the appropriate extraction methods, the plant extracts were tested in antimicrobial screening assay, performed on 19 Gram-positive and -negative strains of microbes. The inhibition zones produced by plant extracts were determined by disc-diffusion method. Remarkable antibacterial activities were exhibited by extracts of Ephedra alata var. alenda and Helianthemum confertum against B. subtilis, M. catarrhalis and methicillin-resistant and non-resistant S. aureus. Minimum inhibitory concentrations of these two species were also determined. Antiproliferative effects of the extracts were evaluated against 4 human adherent cell lines (HeLa, A431, A2780 and MCF7). Notable cell growth inhibition was found for extract of Helianthemum confertum and Euphorbia guyoniana. Our results provided data for selection of some plant species for further detailed pharmacological and phytochemical examinations.

  7. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs)

    Science.gov (United States)

    Suchomel, Petr; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Hrbac, Jan; Vecerova, Renata; Zboril, Radek

    2015-01-01

    The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains. PMID:25781988

  8. New Milk Protein-Derived Peptides with Potential Antimicrobial Activity: An Approach Based on Bioinformatic Studies

    Directory of Open Access Journals (Sweden)

    Bartłomiej Dziuba

    2014-08-01

    Full Text Available New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM, random forest (RF, artificial neural networks (ANN and discriminant analysis (DA available in the Collection of Anti-Microbial Peptides (CAMP database. Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins.

  9. Study of the relationship between chemical structure and antimicrobial activity in a series of hydrazine-based coordination compounds.

    Science.gov (United States)

    Dobrova, B N; Dimoglo, A S; Chumakov, Y M

    2000-08-01

    The dependence of antimicrobial activity on the structure of compounds is studied in a series of compounds based on hydrazine coordinated with ions of Cu(II), Ni(II) and Pd(II). The study has been carried out by means of the original electron-topological method developed earlier. A molecular fragment has been found that is only characteristic of biologically active compounds. Its spatial and electron parameters have been used for the quantitative assessment of the activity in view. The results obtained can be used for the antimicrobial activity prediction in a series of compounds with similar structures.

  10. Spectroscopic studies, antimicrobial activities and crystal structures of N-(2-hydroxy-3-methoxybenzalidene)1-aminonaphthalene

    Science.gov (United States)

    Ünver, Hüseyin; Yıldız, Mustafa; Dülger, Başaran; Özgen, Özen; Kendi, Engin; Durlu, Tahsin Nuri

    2005-03-01

    Schiff base N-(2-hydroxy-3-methoxybenzalidene)1-aminonaphthalene has been synthesized from the reaction of 2-hydroxy-3-methoxybenzaldehyde with 1-aminonaphthalene. The compound were characterized by elemental analysis, FT-IR, 1H NMR, 13C NMR and UV-visible techniques. The UV-visible spectra of the Schiff base were studied in polar and nonpolar solvents in acidic and basic media. The structure of the compound has been examined cyrstallographically. There are two independent molecules in the asymmetric unit. It crystallizes in the monoclinic space group P21/c, with unit cell parameters: a=14, 602(2), b=5,800(1), c=16, 899(1) Å, V=1394.4(2) Å 3, Dx=1.321 g cm -3 and Z=4. The crystal structure was solved by direct methods and refined by full-matrix least squares to a find R=0.041 of for 1179 observed reflections. The title compound's antimicrobial activities also have been studied. The antimicrobial activities of the ligand has been screened in vitro against the organisms Escherichia coli ATCC 11230, Staphylococcus aureus ATCC 6538, Klebsiella pneumoniae UC57, Micrococcus luteus La 2971, Proteus vulgaris ATCC 8427, Pseudomonas aeruginosa ATCC 27853, Mycobacterium smegmatis CCM 2067, Bacillus cereus ATCC 7064 and Listeria monocytogenes ATCC 15313, the yeast cultures Candida albicans ATCC 10231, Kluyveromyces fragilis NRRL 2415, Rhodotorula rubra DSM 70403, Debaryomyces hansenii DSM 70238 and Hanseniaspora guilliermondii DSM 3432.

  11. preliminary phytochemical screening and antimicrobial activity

    African Journals Online (AJOL)

    DR. AMINU

    1Department of Pre-ND and General Studies, School of Technology, Kano State Polytechnic, ... revealed the presence of flavonoids, saponins, tannins, steroids alkaloids and terpenoids. ... phytochemical and antimicrobial activity of extract.

  12. Antimicrobial activity of some Iranian medicinal plants

    Directory of Open Access Journals (Sweden)

    Ghasemi Pirbalouti Abdollah

    2010-01-01

    Full Text Available The major aim of this study was to determine the antimicrobial activity of the extracts of eight plant species which are endemic in Iran. The antimicrobial activities of the extracts of eight Iranian traditional plants, including Hypericum scabrum, Myrtus communis, Pistachia atlantica, Arnebia euchroma, Salvia hydrangea, Satureja bachtiarica, Thymus daenensis and Kelussia odoratissima, were investigated against Escherichia coli O157:H7, Bacillus cereus, Listeria monocytogenes and Candida albicans by agar disc diffusion and serial dilution assays. Most of the extracts showed a relatively high antimicrobial activity against all the tested bacteria and fungi. Of the plants studied, the most active extracts were those obtained from the essential oils of M. communis and T. daenensis. The MIC values for active extract and essential oil ranged between 0.039 and 10 mg/ml. It can be said that the extract and essential oil of some medicinal plants could be used as natural antimicrobial agents in food preservation. .

  13. Antimicrobial Activity of Girardinia heterophylla

    OpenAIRE

    P. S. Bedi; Neayti Thakur; Balvinder Singh

    2013-01-01

    In the present study an attempt has been made to prepare the crude extracts of leaves and stem of ‘Girardinia heterophylla’ by using various solvents like petroleum ether, ethanol and double distilled water. The samples were given the code NGLS 1, NGLS 2, NGLS 3 and NGSS 1, NGSS 2 and NGSS 3 respectively. All the extracts were used to study their antimicrobial activity against gram positive bacteria e.g. Bacillus subtilis, gram negative bacteria e.g. E. coli and K. pneumonia and antifungal ac...

  14. Antimicrobial activity of Agave sisalana

    African Journals Online (AJOL)

    STORAGESEVER

    2009-11-16

    Nov 16, 2009 ... cancer treatment, transplantation or are immuno- suppressed for ... machine after the decortication process of the leaves of A. sisalana in a sisal .... Composition and antimicrobial activity of the essential oils of two Origanum ...

  15. Antimicrobial activity of Dracaena cinnabari resin from Soqotra ...

    African Journals Online (AJOL)

    Background: Few studies showed that Dracaena cinnabari resin, collected from Soqotra Island, Yemen, has antimicrobial activity. This study is the first to investigate antimicrobial activity of the resin on both antibiotic multi-resistant human pathogens and on poly-microbial culture. Material and Methods: Antimicrobial activity ...

  16. Detailed solvent, structural, quantum chemical study and antimicrobial activity of isatin Schiff base

    Science.gov (United States)

    Brkić, Dominik R.; Božić, Aleksandra R.; Marinković, Aleksandar D.; Milčić, Miloš K.; Prlainović, Nevena Ž.; Assaleh, Fathi H.; Cvijetić, Ilija N.; Nikolić, Jasmina B.; Drmanić, Saša Ž.

    2018-05-01

    The ratios of E/Z isomers of sixteen synthesized 1,3-dihydro-3-(substituted phenylimino)-2H-indol-2-one were studied using experimental and theoretical methodology. Linear solvation energy relationships (LSER) rationalized solvent influence of the solvent-solute interactions on the UV-Vis absorption maxima shifts (νmax) of both geometrical isomers using the Kamlet-Taft equation. Linear free energy relationships (LFER) in the form of single substituent parameter equation (SSP) was used to analyze substituent effect on pKa, NMR chemical shifts and νmax values. Electron charge density was obtained by the use of Quantum Theory of Atoms in Molecules, i.e. Bader's analysis. The substituent and solvent effect on intramolecular charge transfer (ICT) were interpreted with the aid of time-dependent density functional (TD-DFT) method. Additionally, the results of TD-DFT calculations quantified the efficiency of ICT from the calculated charge-transfer distance (DCT) and amount of transferred charge (QCT). The antimicrobial activity was evaluated using broth microdilution method. 3D QSAR modeling was used to demonstrate the influence of substituents effect as well as molecule geometry on antimicrobial activity.

  17. Antimicrobial Activities of Dorema Auchri

    Directory of Open Access Journals (Sweden)

    A Sharifi

    2011-01-01

    Full Text Available Introduction & Objective: Due to emerging of resistance of microorganisms to antibiotics, investigations for novel antimicrobial agents have always been one of the major preoccupations of the medical society. Traditional medicine systems have played an important role during human evolution and development. Today, a number of medical herbs around the world have been studied for their medicinal activities. Amongst the several herbal medicine used as a medicine, Dorema auchri is yet another potent herbal medicine which has not been extensively studied for the medicinal uses in comparison with other herbal medicine. Dorema auchri has a long history of use as a sore and food additive in Yasuj, Iran. However, not much scientific work has been conducted on Dorema auchri antimicrobial activities. The present study aimed to study the antimicrobial properties of Dorema auchri on some pathogen microorganisms. Materials & Methods: In the present study was conducted at Yasuj University of Medical Sciences in 2009. After collection and preparation of hydro alcoholic extract of Dorena auchri, the extract was used to study its activities against human pathogen microorganisms (overall 10 microorganisms. The determination of minimal inhibitory concentration (MIC and minimum lethal concentration were evaluated for this extract. The antimicrobial potent of Dorema auchri extract was compared with commercial antibiotics. Each experiment was done three times and collected data were analyzed by SPSS using ANOVA and Chi-Square tests. Results: Findings of this study showed that in 10 mg/ml concentration, all bacteria were resistant to Dorema auchri extract. In 20 mg/ml concentration, only Staphylococcus areus and Staphylococcus epidermis showed zone of inhibition (ZOI 10 mm and 13 mm respectively. In 40 mg/ml concentration, the maximum ZOI was 15 mm in Staphylococcus areus and 80 mg/ml concentration, the maximum ZOI was 20 mm in Staphylococcus areus. The acceptable MIC

  18. Antimicrobial activity and bioautographic study of antistaphylococcal components from Caesalpinia pyramidalis Tull.

    Directory of Open Access Journals (Sweden)

    Antonio Marcos Saraiva

    2012-03-01

    Full Text Available The antimicrobial activity of dry methanol and ethyl acetate extracts for the leaves, bark of the stem, peel of the root, flower, fruit and seed of Caesalpinia pyramidalis Tull. (catingueira was performed against seventeen isolates of Staphylococcus aureus MRSA multiresistant strains, which included two isolates of S. aureus MSSA and two ATCC strains. The antimicrobial activity was tested by the agar diffusion method and the Minimum Inhibitory Concentration (MIC was determined. The dry methanol extract of the root showed good antimicrobial activity with a MIC of less than 0.5 mg.mL-1. The dry ethyl acetate extracts exhibited lower antimicrobial activity, which might be explained by solubility problems and less diffusion in the agar medium. Results of the bioautographies also confirmed inhibition halos corresponding to the active substances present in the leaves, as well as in the flower of C. pyramidalis. The phytochemical study of the leaves, bark of the stem, peel of the root, flower and fruit of extracts from C. pyramidalis confirmed the presence of a number of known antimicrobial agents including ursolic acid, quercetin, catechin, ellagic acid, sitosterol, flavonoids, proanthocyanidins and gallic acid.A determinação da atividade antimicrobiana dos extratos metanólicos e em acetato de etila da folha, casca do caule, casca da raiz, flor, fruto e semente de Caesalpinia pyramidalis Tull. foi realizada frente a dezessete isolados de Staphylococcus aureus MRSA multirresistentes, dois isolados de S. aureus MSSA e duas cepas padrão, pelas técnicas de poço/difusão em ágar e determinação das CMI pelo método de diluição em agar/multiinoculador de Stears. O extrato metanólico de casca da raiz indicou uma boa atividade, com CMI inferior a 0.5 mg.mL-1. Os extratos secos por extração em acetato de etila apresentaram menor atividade que se poderia explicar por problemas de solubilidade e menor difusão no meio de cultura em ágar. Resultados

  19. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications.

    Science.gov (United States)

    Dutta, J; Tripathi, S; Dutta, P K

    2012-02-01

    In recent years, active biomolecules such as chitosan and its derivatives are undergoing a significant and very fast development in food application area. Due to recent outbreaks of contaminations associated with food products, there have been growing concerns regarding the negative environmental impact of packaging materials of antimicrobial biofilms, which have been studied. Chitosan has a great potential for a wide range of applications due to its biodegradability, biocompatibility, antimicrobial activity, nontoxicity and versatile chemical and physical properties. It can be formed into fibers, films, gels, sponges, beads or nanoparticles. Chitosan films have been used as a packaging material for the quality preservation of a variety of foods. Chitosan has high antimicrobial activities against a wide variety of pathogenic and spoilage microorganisms, including fungi, and Gram-positive and Gram-negative bacteria. A tremendous effort has been made over the past decade to develop and test films with antimicrobial properties to improve food safety and shelf-life. This review highlights the preparation, mechanism, antimicrobial activity, optimization of biocide properties of chitosan films and applications including biocatalysts for the improvement of quality and shelf-life of foods.

  20. Proximate composition, phytochemical screening, GC-MS studies of biologically active cannabinoids and antimicrobial activities of Cannabis indica

    Directory of Open Access Journals (Sweden)

    Muhammad Saqib Isahq

    2015-11-01

    Full Text Available Objective: To investigate the proximate composition, minerals analysis, phytochemical screening, gas chromatography-mass spectrometry (GC-MS studies of active cannabinoids and antimicrobial activities of Cannabis indica (C. indica leaves, stems, and seeds. Methods: Standard qualitative protocols of phytochemical screening were accomplished for the identification of biologically active phytochemicals. Minerals in plant samples were analyzed by using atomic absorption spectrophotometer. The resins of C. indica were analyzed for medicinally active cannabinoid compounds by GC-MS. The sample for GC-MS study was mixed with small quantity of n-hexane and 30 mL of acetonitrile solution for the identification of cannabinoids. Agar well diffusion method was used for antibacterial activity. For antifungal activity, the tested fungal strains were sub-cultured on Sabouraud’s dextrose agar at 28 °C. Results: Mineral analysis revealed the presence of sodium, potassium, magnesium and some other minerals in all parts of C. indica. Phytochemical investigation showed the presence of alkaloids, saponins, tannins, flavonoids, sterols and terpenoids. C. indica divulged wide spectrum of antibacterial activities against Staphylococcus aureus, Bacillus cereus, Klebsiella pneumoniae, and Proteus mirabilis. The extracts of plant leaves, seeds and stems showed significant antifungal activities against Aspergillus niger, Aspergillus parasiticus, and Aspergillus oryzae. The biologically active cannabinoids of delta-9-tetrahydrocannabinol (25.040% and cannabidiol (resorcinol, 2-p-mentha-1,8-dien-4-yl-5-pentyl (50.077% were found in Cannabis resin in high percentage. Conclusions: The findings of the study suggested that the existence of biologically active remedial cannabinoids in elevated concentrations and antimicrobial bioassays of C. indica make it a treasured source to be used in herbal preparation for various ailments.

  1. THE STUDY OF IMMUNOMODULATORY AND ANTIMICROBIAL ACTIVITY OF SHIITAKE MUSHROOMS POWDER (Lentinus edodes

    Directory of Open Access Journals (Sweden)

    Bobritskaya L.A.

    2013-12-01

    Full Text Available It was found that Shiitake mushroom powder exhibitedimmunomodulatory effects and it could be used in perspective for immunity correction in the complex therapy for the treatment of various infectious and inflammatory diseases. It had moderate antimicrobial activity against aerobic bacteria (Staphylococcus aureus ATCC 26923, Escherichia coli ATCC 25922, Basillus subtilis ATCC 6633, and fungi (Candida albicans ATCC 653/885.

  2. [Study on the Chinese herbal formula for treatment of vaginitis and the antimicrobial activity in murine models].

    Science.gov (United States)

    Fu, Ting-ting; Wu, Jian-yuan; Wang, Li; Ma, Yao; Wang, Ying; Liu, Ying; Ding, Hong

    2006-09-01

    To study on the various proportions of Radix Sophorae Flavescentis, Cortex Phellodendri, Fructus Cnidii and pericarp of Zanthoxylum bungeanum Maxim in the formulas, whose antimicrobial effects on E. coli, S. aureus, P. aeruginosa and C. albicans under different pH values were compared in vitro. According to Chinese ancient proved recipe, the K-B method and plate diluting method were adopted to measure antimicrobial activity, and orthogonal design to ascertain the herbal formula in vitro. Finally, murine models were established to test the antimicrobial activity in vivo through vaginal membrane irritancy experiment, negative rate of pathogeny and pathological grade of vaginal membrane. The results suggested that formulas with different proportions of the herbs had diverse antimicrobial activities, and the effect was shown to be most obvious when one milliliter drug contains 100 microl Fructus Cnidii-pericarp of Zanthoxylum bungeanum (2:1) co-extracted volatile oil and 50 microl Radix Sophorae Flavescentis and Cortex Phenodendri ethanol extraction respectively under pH6. The antimicrobial effect of the formula, which hardly had any membrane irritancy, was better than Jie Eryin in vitro and vivo. The fromula has few components and better effect, and adaptation to the pH value of vaginitis. It is a promising alternative for gynecological diseases.

  3. Report: Antimicrobial activity of Kalanchoe laciniata.

    Science.gov (United States)

    Manan, Maria; Hussain, Liaqat; Ijaz, Hira; Qadir, Muhammad Imran

    2016-07-01

    This study was conducted to identify antimicrobial potential of Kalanchoe laciniata. The plants were extracted with 30-70% aqueous-methanol and n-hexane. The antimicrobial activities were examined using agar well diffusion method against bacteria (Staphylococcus aureus, Escherichia coli) and fungi (Candidaalbicans). Results showed that E. coli were more sensitive than Staphylococcus aureus and Candida albicans. The largest zone of inhibition (52 mm) was recorded against E. coli with the n-hexane extract of Kalanchoe laciniata.

  4. Structure-activity study of macropin, a novel antimicrobial peptide from the venom of solitary bee Macropis fulvipes (Hymenoptera: Melittidae).

    Science.gov (United States)

    Monincová, Lenka; Veverka, Václav; Slaninová, Jiřina; Buděšínský, Miloš; Fučík, Vladimír; Bednárová, Lucie; Straka, Jakub; Ceřovský, Václav

    2014-06-01

    A novel antimicrobial peptide, designated macropin (MAC-1) with sequence Gly-Phe-Gly-Met-Ala-Leu-Lys-Leu-Leu-Lys-Lys-Val-Leu-NH2 , was isolated from the venom of the solitary bee Macropis fulvipes. MAC-1 exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria, antifungal activity, and moderate hemolytic activity against human red blood cells. A series of macropin analogs were prepared to further evaluate the effect of structural alterations on antimicrobial and hemolytic activities and stability in human serum. The antimicrobial activities of several analogs against pathogenic Pseudomonas aeruginosa were significantly increased while their toxicity against human red blood cells was decreased. The activity enhancement is related to the introduction of either l- or d-lysine in selected positions. Furthermore, all-d analog and analogs with d-amino acid residues introduced at the N-terminal part of the peptide chain exhibited better serum stability than did natural macropin. Data obtained by CD spectroscopy suggest a propensity of the peptide to adopt an amphipathic α-helical secondary structure in the presence of trifluoroethanol or membrane-mimicking sodium dodecyl sulfate. In addition, the study elucidates the structure-activity relationship for the effect of d-amino acid substitutions in MAC-1 using NMR spectroscopy. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  5. Antimicrobial activity of Bryum argenteum.

    Science.gov (United States)

    Sabovljevic, Aneta; Sokovic, Marina; Sabovljevic, Marko; Grubisic, Dragoljub

    2006-02-01

    The antimicrobial activity of Bryum argenteum ethanol extracts was evaluated by microdilution method against four bacterial (Escherichia coli, Bacillus subtilis, Micrococcus luteus and Staphilococcus aureus) and four fungal species (Aspergillus niger, Penicillium ochrochloron, Candida albicans and Trichophyton mentagrophyes). All the investigated ethanol extracts have been proved to be active against all bacteria and fungi tested.

  6. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin

    Directory of Open Access Journals (Sweden)

    Galdiero E

    2016-08-01

    Full Text Available Emilia Galdiero,1 Antonietta Siciliano,1 Valeria Maselli,1 Renato Gesuele,1 Marco Guida,1 Domenico Fulgione,1 Stefania Galdiero,2 Lucia Lombardi,3 Annarita Falanga2 1Department of Biology, University of Naples “Federico II”, Naples, Italy; 2Department of Pharmacy and Cirpeb, University of Naples “Federico II”, Naples, Italy; 3Department of Experimental Medicine, Second University of Naples, Naples, Italy Abstract: This study attempts to evaluate the antimicrobial activity and the ecotoxicity of quantum dots (QDs alone and coated with indolicidin. To meet this objective, we tested the level of antimicrobial activity on Gram-positive and Gram-negative bacteria, and we designed an ecotoxicological battery of test systems and indicators able to detect different effects using a variety of end points. The antibacterial activity was analyzed against Staphylococcus aureus (ATCC 6538, Pseudomonas aeruginosa (ATCC 1025, Escherichia coli (ATCC 11229, and Klebsiella pneumoniae (ATCC 10031, and the results showed an improved germicidal action of QDs-Ind. Toxicity studies on Daphnia magna indicated a decrease in toxicity for QDs-Ind compared to QDs alone, lack of bioluminescence inhibition on Vibrio fisheri, and no mutations in Salmonella typhimurium TA 100. The comet assay and oxidative stress experiments performed on D. magna showed a genotoxic and an oxidative damage with a dose–response trend. Indolicidin retained its activity when bound to QDs. We observed an enhanced activity for QDs-Ind. The presence of indolicidin on the surface of QDs was able to decrease its QDs toxicity. Keywords: peptide, quantum dots, ecotoxicity, antimicrobial activity, oxidative stress, genotoxicity

  7. Antimicrobial activity of tempeh gembus hydrolyzate

    Science.gov (United States)

    Noviana, A.; Dieny, F. F.; Rustanti, N.; Anjani, G.; Afifah, D. N.

    2018-02-01

    Tropical disease can be prevented by consumming fermented foods that have antimicrobial activity. One of them is tempeh gembus that has short shelf life. It can be overcome by processing it into hydrolyzate. This study aimed to determine antimicrobial activity of tempeh gembus hydrolyzate. Tempeh gembus was made of local soybean from Grobogan. They were added 5,000 ppm, 8,000 ppm, and 10,000 ppm of bromelain enzyme (TGH BE). Antimicrobial effects of TGH BE were tested against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Steptococcus mutans. Antimicrobial test was carried out using Kirby-Bauer Disc Diffussion method. Soluble protein test used Bradford method. The largest inhibition zone against S. aureus and S. mutans were shown by TGH BE 8,000 ppm, 0.89±0.53 mm and 2.40±0.72 mm. The largest inhibition zone of B. subtilis, 7.33±2,25 mm, was shown by TGH BE 5,000 ppm. There wasn’t antimicrobial effect of TGH BE against E. coli. There weren’t significant differences of soluble protein (P=0.293) and the inhibition zones againt S. aureus (P = 0.967), E. coli (P = 1.000), B. subtilis (P = 0.645), S. mutans (P=0.817) of all treatments. There were antimicrobial activities of TGH BE against S. aureus, B. subtilis, and S. mutans.

  8. Polar extracts from (Tunisian Acacia salicina Lindl. Study of the antimicrobial and antigenotoxic activities

    Directory of Open Access Journals (Sweden)

    Boubaker Jihed

    2012-04-01

    Full Text Available Abstract Background Methanolic, aqueous and Total Oligomer Flavonoids (TOF-enriched extracts obtained from the leaves of Acacia salicina 'Lindl.' were investigated for antibacterial, antimutagenic and antioxidant activities. Methods The antimicrobial activity was tested on the Gram positive and Gram negative reference bacterial strains. The Mutagenic and antimutagenic activities against direct acting mutagens, methylmethane sulfonate (MMS and 4-nitro-o-phenylenediamine (NOPD, and indirect acting mutagens, 2-aminoanthracene (2-AA and benzo[a]pyrene (B(aP were performed with S. typhimurium TA102 and TA98 assay systems. In addition, the enzymatic and nonenzymatic methods were employed to evaluate the anti-oxidative effects of the tested extracts. Results A significant effect against the Gram positive and Gram negative reference bacterial strains was observed with all the extracts. The mutagenic and antimutagenic studies revealed that all the extracts decreased the mutagenicity induced by B(aP (7.5 μg/plate, 2-AA (5 μg/plate, MMS (1.3 mg/plate and NOPD (10 μg/plate. Likewise, all the extracts showed an important free radical scavenging activity towards the superoxide anion generated by the xanthine/xanthine oxidase assay system, as well as high Trolox Equivalent Antioxidant Capacity (TEAC, against the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS+• radical. TOF-enriched extract exhibited the highest protective effect against free radicals, direct acting-mutagen and metabolically activated S9-dependent mutagens. Conclusions The present study indicates that the extracts from A. salicina leaves are a significant source of compounds with the antimutagenic and antioxidant activities, and this may be useful for developing potential chemopreventive substances.

  9. Antimicrobial activity of propolis against Streptococcus mutans

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... Agar well diffusion and minimum inhibitory concentration (MIC) determinations were the methods used in this study. ... being most prevalent in Asian and Latin American countries ... Therefore, this study investigated the antimicrobial activity of .... activity of Turkish propolis and its qualitative and quantitative.

  10. Lipase-catalyzed synthesis of palmitanilide: Kinetic model and antimicrobial activity study.

    Science.gov (United States)

    Liu, Kuan-Miao; Liu, Kuan-Ju

    2016-01-01

    Enzymatic syntheses of fatty acid anilides are important owing to their wide range of industrial applications in detergents, shampoo, cosmetics, and surfactant formulations. The amidation reaction of Mucor miehei lipase Lipozyme IM20 was investigated for direct amidation of triacylglycerol in organic solvents. The process parameters (reaction temperature, substrate molar ratio, enzyme amount) were optimized to achieve the highest yield of anilide. The maximum yield of palmitanilide (88.9%) was achieved after 24 h of reaction at 40 °C at an enzyme concentration of 1.4% (70 mg). Kinetics of lipase-catalyzed amidation of aniline with tripalmitin has been investigated. The reaction rate could be described in terms of the Michaelis-Menten equation with a Ping-Pong Bi-Bi mechanism and competitive inhibition by both the substrates. The kinetic constants were estimated by using non-linear regression method using enzyme kinetic modules. The enzyme operational stability study showed that Lipozyme IM20 retained 38.1% of the initial activity for the synthesis of palmitanilide (even after repeated use for 48 h). Palmitanilide, a fatty acid amide, exhibited potent antimicrobial activity toward Bacillus cereus. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. [Study on the chemical components, antimicrobial and antitumor activities of the essential oil from the leaves of Zanthoxylum avicennae].

    Science.gov (United States)

    Zhang, Da-Shuai; Zhong, Qiong-Xin; Song, Xin-Ming; Liu, Wen-Jie; Wang, Jing; Zhang, Qiong-Yu

    2012-08-01

    To study the chemical constituents, antimicrobial activity and antitumor activity of the essential oil from Zanthoxylum avicennae. The essential oil from the leaves of Zanthoxylum avicennae was extracted by steam distillation. The components of the essential oil were separated and identified by GC-MS. 72 components were identified and accounted for 98.15% of the all peak area. The essential oil exhibited strong antitumor activity against K-562 human tumor cell lines with IC50 of 1.76 microg/mL. It also exhibited moderate antimicrobial activity against three bacteria. The essential oil of Zanthoxylum avicennae contains various active constituents. This result provides scientific reference for the pharmacological further research of Zanthoxylum avicennae.

  12. Studies on Synthesis of Some Novel Heterocyclic Azlactone Derivatives and Imidazolinone Derivatives and their Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Rakesh N. Mistry

    2005-01-01

    Full Text Available p - Methyl benzoic acid on reaction with phosphorus pentachloride gives p - methyl benzoyl chloride derivative which on condensation with glycine gives p - methyl benzoyl glycine derivative. Now, this p - methyl benzoyl glycine derivative on condensation with various substituted aldehydes gives corresponding substituted 4 - [aryl methylidine] - 2 - [p - methyl phenyl] - oxazole - 5 - one derivatives [1(a-j]. Further, these derivatives [1(a-j] on condensation with 4 , 4’ - diamino diphenyl sulphone gives corresponding substituted imidazolinone - dibenzsulphone derivatives [2(a-j], on condensation with 4 , 4’ - diamino diphenyl methane gives corresponding substituted imidazolinone - dibenzmethane derivatives [3(a-j], on condensation with 4,4’- diamino benzanilide gives corresponding substituted imidazolinone - benzanilide derivatives [4(a-j] and on condensation with 2 - amino pyridine gives corresponding substituted imidazolinone - pyridine derivatives [5(a-j] respectively. Structure elucidation of synthesised compounds has been made on the basis of elemental analysis, I.R. spectral studies and 1H N.M.R. spectral studies. The antimicrobial activity of the synthesised compounds has been studied against the cultures “Staphylococcus aureus”, “Escherichia coli” and “Candela albicans”.

  13. Antimicrobial activity of chemically modified dextran derivatives.

    Science.gov (United States)

    Tuchilus, Cristina G; Nichifor, Marieta; Mocanu, Georgeta; Stanciu, Magdalena C

    2017-04-01

    Cationic amphiphilic dextran derivatives with a long alkyl group attached to the reductive end of the polysaccharide chain and quaternary ammonium groups attached as pendent groups to the main dextran backbone were synthesized and tested for their antimicrobial properties against several bacteria and fungi strains. Dependence of antimicrobial activity on both polymer chemical composition (dextran molar mass, length of end alkyl group and chemical structure of ammonium groups) and type of microbes was highlighted by disc-diffusion method (diameter of inhibition zone) and broth microdilution method (minimum inhibitory concentrations). Polymers had antimicrobial activity for all strains studied, except for Pseudomonas aeruginosa ATCC 27853. The best activity against Staphylococcus aureus (Minimun Inhibitory Concentration 60μg/mL) was provided by polymers obtained from dextran with lower molecular mass (Mn=4500), C 12 H 25 or C 18 H 37 end groups, and N,N-dimethyl-N-benzylammonium pendent groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Spectroscopic characterization, antimicrobial activity, DFT computation and docking studies of sulfonamide Schiff bases

    Science.gov (United States)

    Mondal, Sudipa; Mandal, Santi M.; Mondal, Tapan Kumar; Sinha, Chittaranjan

    2017-01-01

    Schiff bases synthesised from the condensation of 2-(hydroxy)naphthaldehyde and sulfonamides (sufathiazole (STZ), sulfapyridine (SPY), sulfadiazine (SDZ), sulfamerazine (SMZ) and sulfaguanidine (SGN)) are characterized by different spectroscopic data (FTIR, UV-Vis, Mass, NMR) and two of them, (E)-4-(((2-hydroxynaphthalen-1-yl)methylene)amino)-N-(thiazol-2-yl)benzenesulfonamide (1a) and (E)-N-(diaminomethylene)-4-(((2-hydroxynaphthalen-1-yl)methylene)amino)benzenesulfonamide (1e) have been confirmed by single crystal X-ray structure determination. Antimicrobial activities of the Schiff bases have been evaluated against certified and resistant Gram positive (Staphylococcus aureus, Enterococcus facelis) and Gram negative (Streptococcus pyogenes, Salmonella typhi, Shigella dysenteriae, Shigella flexneri, Klebsiella pneumonia) pathogens. Performance of Schiff base against the resistant pathogens are better than standard stain and MIC data lie 32-128 μg/ml while parent sulfonamides are effectively inactive (MIC >512 μg/ml). The DFT optimized structures of the Schiff bases have been used to accomplish molecular docking studies with DHPS (dihydropteroate synthase) protein structure (downloaded from Protein Data Bank) to establish the most preferred mode of interaction. ADMET filtration, Cytotoxicity (MTT assay) and haemolysis assay have been examined for evaluation of druglike character.

  15. Study on antioxidant and antimicrobial activities of turmeric clear liquid soap for wound treatment of HIV patients

    Directory of Open Access Journals (Sweden)

    Pechnoi Singchangchai

    2005-08-01

    Full Text Available Ethanol extract of turmeric [Curcuma longa Linn. (Zingiberaceae] was investigated for its in vitro antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging assay and activities against six microorganisms (Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Staphyloccoccus aureus, Candida albicans and Cryptococcus neoformans. Clear liquid soaps containing 0.5% w/v turmeric extract were formulated. The only one preparation with acceptable appearance, foam and viscosity was selected for antimicrobial activity and stability studies. It was found that turmeric extract had 50% radical scavenging ability (EC50 at concentration of 11.26 μg/ml against DPPH. Turmeric extract was showed no activity against Escherichia coli and Pseudomonas aeruginosa. The minimum inhibitory concentration of turmeric extract against Bacillus subtilis, Staphyloccocus aureus, Cryptococcus neoformans and Candida albicans were 16, 128, 128 and 256 μg/ml, respectively. The selected preparation was physically and chemically stable and the antimicrobial activity did not change (p<0.05 under the heating-cooling stability test. However, curcumin content and the antimicrobial activities against S. aureus and C. neoformans decreased significantly (p<0.05 under the accelerated test conditions (temperature 45oC, 75% RH for 4 months and after storage at room temperature for 12 months. The results of a clinical trial with HIV patients found that this liquid soap decreased itching symptom (100% and infectious wound and abscess became dryness scabs (78.6% within 2 weeks.

  16. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits.

    Science.gov (United States)

    Burdulis, Deividas; Sarkinas, Antanas; Jasutiené, Ina; Stackevicené, Elicija; Nikolajevas, Laurynas; Janulis, Valdimaras

    2009-01-01

    Simultaneous comparison of bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L) fruits for their anthocyanin composition, antimicrobial and antioxidant activity is reported. The aim of this study was to investigate and to compare anthocyanin composition, antimicrobial and antioxidant activity in bilberry and blueberry fruits and their skins. The investigations revealed that the highest amount of total anthocyanins was observed in fruits skins of blueberry cultivars. The results, obtained by chromatographic analysis, indicated that cyanidin is a dominant anthocyanidin in bilberry and malvidin in blueberry samples. Extracts of "Herbert", "Coville", "Toro" blueberry cultivars and bilberry fruits revealed antimicrobial properties. Citrobacter freundii (ATCC 8090) and Enterococcus faecalis (ATCC29212) were the most sensitive among eight tested Gram-negative and Gram-positive bacteria. Significant differences between berry and skin extracts were not established. Studies with fruits showed that the strongest antioxidant activity possesses blueberry cultivar "Berkeley" (82.13 +/- 0.51%). Meanwhile, the amount of quenched free radicals in bilberry samples was 63.72 +/- 1.11%, respectively. The lowest antioxidant activity was estimated in blueberry cultivar "Coville". Accordingly, the strongest antiradical properties were estimated in blueberry cultivar "Ama" fruit skins. Bilberry fruit skin samples possess strong antiradical activity as well (82.69 +/- 0.37%).

  17. Synthesis, characterization, antimicrobial activity and molecular ...

    African Journals Online (AJOL)

    Synthesis, characterization, antimicrobial activity and molecular docking studies of combined pyrazol-barbituric acid pharmacophores. Assem Barakat, Bandar M. Al-Qahtani, Abdullah M. Al-Majid, M. Ali Mohammed Rafi Shaik, Mohamed H.M. Al-Agamy, Abdul Wadood ...

  18. Synthesis, Characterization, Antimicrobial Activity and Antioxidant ...

    African Journals Online (AJOL)

    MBI

    2015-12-08

    Dec 8, 2015 ... Synthesis, Characterization, Antimicrobial Activity and Antioxidant. Studies of ... Transition metal complexes of Co(II) and Ni(II) with Schiff base ligand (HL) derived from condensation of 2- ..... 2-((5mercapto-1,3,4-thiadiazol-2-.

  19. Synergistic Antimicrobial Activities Of Phytoestrogens In Crude ...

    African Journals Online (AJOL)

    Ethanolic, methanolic and aqueous extracts of both leaves were studied for their in-vitro synergistic antimicrobial activity against both Gram positive and Gram negative micro-organisms, and Yeast using Agar diffusion method. The GC-MS phytochemical screening of methanolic extract showed that the major compounds in ...

  20. A STUDY OF ANTIMICROBIAL ACTIVITY OF FOAM-WASHING AGENT SPECIMENS AT ACIDIC pH VALUES

    Directory of Open Access Journals (Sweden)

    Strilets O. P.

    2017-06-01

    Full Text Available Introduction. It is well-known that any parapharmaceutical substance, in particular, foam-washing agents comprising water in combination with detergents, extracts, water-soluble vitamins, viscosity regulators, pH, etc., is the ideal environment for microbial growth. Therefore, it is indispensable to use preservatives to protect any foam-washing agent from possible contamination by microorganisms. Their main advantages are: presence of a single antimicrobial and antifungal effect, expanded range of effects, decrease in the risk of resistance of microorganisms and decrease in the toxicity and concentration of the preserving mixture. In this regard, the shelf life of parapharmaceutical substances is not provided through the use of large quantities of preservatives, but thanks to their rational combination. Materials and Methods. For this study, we have made a number of samples of foam washing bases with a number of preservatives, which are often used in developing foam-washing agents with acidic pH value, namely: sample number 1 – foam washing base + sodium benzoate; sample number 2 – foam washing base + «Euxyl K300» (phenoxyethanol, methylparaben, bulylparaben, ethylparaben, propylparaben, isobutylaraben; sample number 3 – foam washing base + «Germaben II» (polypropylene glycol, diazolium dinomovine, methylparaben, propylparaben; sample number 4 – foam washing base + «Nipaquard CMB» (benzyl alcohol, triethylene glycol, chloromethylisothiazoline, methylisothiazoline. The concentration of preservative in each sample was 0.1% (average concentration that is recommended for developing foam-washing agents. The antimicrobial activity of prototype gels was studied in vitro by diffusion in agar (“wells” method. The antimicrobial activity was measured immediately after sample preparation. All the studies were performed in aseptic conditions using a laminar box (biological safety cabinet AS2-4E1 "Esco" Indonesia. Results. According to the

  1. Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma & Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Visan, A.; Socol, G. [National Institute for Lasers, Plasma & Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Surdu, A.V.; Oprea, A.E.; Grumezescu, A.M. [Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1–7 Polizu Street, Bucharest, 011061 Romania (Romania); Chifiriuc, M.C. [Microbiology Immunology Department, Faculty of Biology, Research Institute of the University of Bucharest - ICUB, Bucharest, 77206 (Romania); Boehm, R.D.; Yamaleyeva, D.; Taylor, M.; Narayan, R.J. [Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC (United States); Chrisey, D.B. [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA (United States)

    2016-06-30

    Highlights: • We successfully deposited composite quercetin dehydrate-, resveratrol- and silver nanoparticle-polyvinylpyrrolidone thin coatings with chemical structure close to that of the starting materials by MAPLE. • Thin film morphology studies revealed a uniform surface without aggregates or grains on the top of the surface. • MAPLE-deposited thin films exhibited antibacterial activity against Gram-positive and Gram-negative bacterial strains. • We demonstrated the potential use of these hybrid systems and MAPLE deposition method for the development of new harmless, ecological antimicrobial strategies. - Abstract: The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF{sup *} excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.

  2. Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study

    International Nuclear Information System (INIS)

    Cristescu, R.; Visan, A.; Socol, G.; Surdu, A.V.; Oprea, A.E.; Grumezescu, A.M.; Chifiriuc, M.C.; Boehm, R.D.; Yamaleyeva, D.; Taylor, M.; Narayan, R.J.; Chrisey, D.B.

    2016-01-01

    Highlights: • We successfully deposited composite quercetin dehydrate-, resveratrol- and silver nanoparticle-polyvinylpyrrolidone thin coatings with chemical structure close to that of the starting materials by MAPLE. • Thin film morphology studies revealed a uniform surface without aggregates or grains on the top of the surface. • MAPLE-deposited thin films exhibited antibacterial activity against Gram-positive and Gram-negative bacterial strains. • We demonstrated the potential use of these hybrid systems and MAPLE deposition method for the development of new harmless, ecological antimicrobial strategies. - Abstract: The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF * excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.

  3. Detection of antimicrobial activity of banana peel (Musa paradisiaca L.) on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study.

    Science.gov (United States)

    Kapadia, Suraj Premal; Pudakalkatti, Pushpa S; Shivanaikar, Sachin

    2015-01-01

    Banana is used widely because of its nutritional values. In past, there are studies that show banana plant parts, and their fruits can be used to treat the human diseases. Banana peel is a part of banana fruit that also has the antibacterial activity against microorganisms but has not been studied extensively. Since, there are no studies that relate the antibacterial activity of banana peel against periodontal pathogens. Hence, the aim of this study is to determine the antimicrobial activity of banana peel extract on Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans). Standard strains of P. gingivalis and A. actinomycetemcomitans were used in this study which was obtained from the in-house bacterial bank of Department of Molecular Biology and Immunology at Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre. The banana peel extract was prepared, and the antibacterial activity was assessed using well agar diffusion method and minimum inhibitory concentration was assessed using serial broth dilution method. In the current study, both the tested microorganisms showed antibacterial activity. In well diffusion method, P. gingivalis and A. actinomycetemcomitans showed 15 mm and 12 mm inhibition zone against an alcoholic extract of banana peel, respectively. In serial broth dilution method P. gingivalis and A. actinomycetemcomitans were sensitive until 31.25 μg/ml dilutions. From results of the study, it is suggested that an alcoholic extract of banana peel has antimicrobial activity against P. gingivalis and A. actinomycetemcomitans.

  4. Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study

    Science.gov (United States)

    Cristescu, R.; Visan, A.; Socol, G.; Surdu, A. V.; Oprea, A. E.; Grumezescu, A. M.; Chifiriuc, M. C.; Boehm, R. D.; Yamaleyeva, D.; Taylor, M.; Narayan, R. J.; Chrisey, D. B.

    2016-06-01

    The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.

  5. ANTIMICROBIAL ACTIVITY OF PINEAPPLE (ANANAS COMOSUS L. MERR EXTRACT AGAINST MULTIDRUG-RESISTANT OF PSEUDOMONAS AERUGINOSA: AN IN VITRO STUDY

    Directory of Open Access Journals (Sweden)

    Rahmat Sayyid Zharfan

    2017-08-01

    Full Text Available Pseudomonas aeruginosa is the main cause of nosocomial infection which is responsible for 10% of hospital-acquired infection. Pseudomonas aeruginosa tends to mutate and displays potential for development of antibiotic resistance. Approximately, 10% of global bacterial isolates are found as Multidrug-resistant Pseudomonas aeruginosa. Pseudomonas aeruginosa have a quite tremendous severity index, especially on pneumonia and urinary tract infections, even sepsis, which 50% mortality rate. Pineapple (Ananas comosus L. Merr has antimicrobial properties. The active antimicrobial compounds in Ananas comosus L. Merr include saponin and bromelain. This research aims to find the potency of antimicrobial effect of pineapple (Ananas comosus L. Merr extract towards Multidrug-resistant Pseudomonas aeruginosa. Multidrug-resistant Pseudomonas aeruginosa specimen is obtained from patient’s pus in orthopaedic department, Dr Soetomo Public Hospital, Surabaya. Multidrug-resistant Pseudomonas aeruginosa specimen is resistant to all antibiotic agents except cefoperazone-sulbactam. This research is conducted by measuring the Minimum Inhibitory Concentration (MIC through dilution test with Mueller-Hinton broth medium. Pineapple extract (Ananas comosus L. Merr. is dissolved in aquadest, then poured into test tube at varying concentrations (6 g/ml; 3 g/ml; 1.5 g/ml; 0.75 g/ml, 0.375 g/ml; and 0.1875 g/ml. After 24 hours’ incubation, samples are plated onto nutrient agar plate, to determine the Minimum Bactericidal Concentration (MBC. The extract of pineapple (Ananas comosus L. Merr has antimicrobial activities against Multidrug-resistant Pseudomonas aeruginosa. Minimum Inhibitory Concentration (MIC could not be determined, because turbidity changes were not seen. The Minimum Bactericidal Concentration (MBC of pineapple extract (Ananas comosus L. Merr to Multidrug-resistant Pseudomonas aeruginosa is 0.75 g/ml. Further study of in vivo is needed.

  6. Antimicrobial and antioxidant activities of Momordica charantia from ...

    African Journals Online (AJOL)

    In the present study, unripe/ripe seed and fruit ethanol extracts of M. charantia from Turkey were screened for their potential antimicrobial and antioxidant activities. The antimicrobial activities of the extract were determined against four gram positive bacteria, seven gram negative bacteria, and one yeast with disc diffusion ...

  7. IN-VITRO ANTIMICROBIAL ACTIVITY OF BRONCHOSOL.

    Science.gov (United States)

    Witkowska-Banaszczak, Ewa; Michalak, Anna; Kędzia, Anna

    2015-01-01

    Bronchosol is a traditional medicinal product in the form of syrup used in cough and impeded expectoration. The active ingredients that it contains include extracts from the herb of thyme, the root of primrose and thymol. It is recommended in disorders of the respiratory tract when expectoration is impeded and secretion of liquid mucus in bronchi is insufficient. Antimicrobial activity of the components of Bronchosol, especially thyme and thymol, has frequently been reported in the literature. To date, there have not been any studies to confirm such activity of Bronchosol, though. The results of our research are the first one to point to the great activity of Bronchosol against microorganisms causing infections of the respiratory tract. It has been demonstrated that this product displayed antimicrobial activity against reference strains as well as strains of anaerobic and aerobic bacteria and fungi isolated from patients. The confirmation of the antimicrobial activity of Bronchosol provides an explanation of its effectiveness in the therapy of the respiratory tract infections.

  8. Analysis of components and study on antioxidant and antimicrobial activities of oil in apple seeds.

    Science.gov (United States)

    Tian, Hong-Lei; Zhan, Ping; Li, Kai-Xiong

    2010-06-01

    In order to improve the comprehensive utilization of major by-products in apple-juice processing, the components, antioxidant and antimicrobial activities of oil in two species apple seeds, Fuji and New Red Star, were investigated. The Soxhlet extracted oil content of apple seeds raged from 20.69 to 24.32 g/100 g. The protein, fiber and ash contents were found to be 38.85-49.55 g/100 g, 3.92-4.32 g/100 g and 4.31-5.20 g/100 g, respectively; the extracted oils exhibited an iodine value of 94.14-101.15 g I/100 g oil; refractive index (40 degrees C) was 1.465-1.466; density (25 degrees C) was 0.902-0.903 mg/ml; saponification value was 179.01-197.25 mg KOH/g oil; and the acid value was 4.036-4.323 mg KOH/g oil. The apple seed oils mainly consisted of linoleic acid (50.7-51.4 g/100 g) and oleic acid (37.49-38.55 g/100 g). Other prominent fatty acids were palmitic acid (6.51-6.60 g/100 g), stearic acid (1.75-1.96 g/100 g) and arachidic acid (1.49-1.54 g/100 g). Apple seed oil was proven to possess interesting properties, emerging from its chemical composition and from the evaluation of its in vitro biological activities. The apple seed oil was almost completely active against bacteria, mildews were less sensitive to apple seed oil than yeasts, and the minimum inhibitory concentration (MIC) of apple seed oil ranged from 0.3 to 0.6 mg/ml. The observed biological activities showed that the oil had a good potential for use in the food industry and pharmacy.

  9. Evaluation of Antimicrobial Activity of Root Extracts of Abitulon indicum

    Directory of Open Access Journals (Sweden)

    Krishna Rao MORTHA

    2015-06-01

    Full Text Available Antimicrobial activity of Abitulon indicum roots was studied against seven pathogenic bacteria and three fungal strains by agar well diffusion method. Antimicrobial activity was recorded for hexane, chloroform, methanol, ethanol and aqueous extracts. Alcohol (ethanol and methanol extracts exhibited the highest degree of antimicrobial activity compared to aqueous, chloroform and hexane extracts. Pseudomonas aeruginosa was turned out to be the most susceptible bacterium to the crude root chemical constituents, using the standard Tetracycline and Clotrimazole. Minimum inhibition concentration values of hexane, chloroform, methanol, ethanol and aqueous extracts were determined by the agar dilution method and ranged between 62.5 and 1,000 µg. The study suggested that the root extracts possess bioactive compounds with antimicrobial activity against the tested bacteria and fungi, revealing a significant scope to develop a novel broad spectrum of antimicrobial drug formulation from Abitulon indicum.

  10. ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS

    OpenAIRE

    Dıblan, Sevgin; Kaya, Sevim

    2017-01-01

    Active packaging technology is one of the innovativemethods for preserving of food products, and antimicrobial packaging films is amajor branch and promising application of this technology. In order to controlmicrobial spoilage and also contamination of pathogen onto processed or fresh food,antimicrobial agent(s) is/are incorporated into food packaging structure.Polymer type as a carrier of antimicrobial can be petroleum-based plastic orbiopolymer: because of environmental concerns researcher...

  11. Detection of antimicrobial activity of banana peel (Musa paradisiaca L. on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study

    Directory of Open Access Journals (Sweden)

    Suraj Premal Kapadia

    2015-01-01

    Full Text Available Introduction and Aim: Banana is used widely because of its nutritional values. In past, there are studies that show banana plant parts, and their fruits can be used to treat the human diseases. Banana peel is a part of banana fruit that also has the antibacterial activity against microorganisms but has not been studied extensively. Since, there are no studies that relate the antibacterial activity of banana peel against periodontal pathogens. Hence, the aim of this study is to determine the antimicrobial activity of banana peel extract on Porphyromonas gingivalis (P. gingivalis and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans. Material and Methods: Standard strains of P. gingivalis and A. actinomycetemcomitans were used in this study which was obtained from the in-house bacterial bank of Department of Molecular Biology and Immunology at Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre. The banana peel extract was prepared, and the antibacterial activity was assessed using well agar diffusion method and minimum inhibitory concentration was assessed using serial broth dilution method. Results: In the current study, both the tested microorganisms showed antibacterial activity. In well diffusion method, P. gingivalis and A. actinomycetemcomitans showed 15 mm and 12 mm inhibition zone against an alcoholic extract of banana peel, respectively. In serial broth dilution method P. gingivalis and A. actinomycetemcomitans were sensitive until 31.25 μg/ml dilutions. Conclusion: From results of the study, it is suggested that an alcoholic extract of banana peel has antimicrobial activity against P. gingivalis and A. actinomycetemcomitans.

  12. DNA intercalation studies and antimicrobial activity of Ag@ZrO{sub 2} core–shell nanoparticles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Dhanalekshmi, K.I., E-mail: dhanamveni88@gmail.com; Meena, K.S.

    2016-02-01

    Ag@ZrO{sub 2} core–shell nanoparticles were prepared by one pot simultaneous reduction of AgNO{sub 3} and hydrolysis of zirconium (IV) isopropoxide. The formation of core–shell nanoparticles was confirmed by absorption, XRD, and HR-TEM techniques. The antibacterial activity of Ag@ZrO{sub 2} core–shell nanoparticles against Escherichia coli and Staphylococcus aureus and the antifungal properties against Candida albicans, Candida glabrata, Aspergillus niger and Aspergillus flavus were examined by the agar diffusion method. DNA intercalation studies were carried out in CT-DNA. As a result ZrO{sub 2} supported on the surface of AgNPs not only prevented aggregation, but also proved to have enhanced antimicrobial activity and DNA intercalation than the Ag nanoparticles. - Highlights: • Ag@ZrO{sub 2} core–shell nanoparticles were prepared by one pot synthesis. • The ZrO{sub 2} coated AgNPs prevent aggregation and enhanced stability. • The surfaced modified AgNPs showed higher antimicrobial activity. • DNA intercalation studies show better binding affinity of core–shell NPs.

  13. DNA intercalation studies and antimicrobial activity of Ag@ZrO2 core–shell nanoparticles in vitro

    International Nuclear Information System (INIS)

    Dhanalekshmi, K.I.; Meena, K.S.

    2016-01-01

    Ag@ZrO 2 core–shell nanoparticles were prepared by one pot simultaneous reduction of AgNO 3 and hydrolysis of zirconium (IV) isopropoxide. The formation of core–shell nanoparticles was confirmed by absorption, XRD, and HR-TEM techniques. The antibacterial activity of Ag@ZrO 2 core–shell nanoparticles against Escherichia coli and Staphylococcus aureus and the antifungal properties against Candida albicans, Candida glabrata, Aspergillus niger and Aspergillus flavus were examined by the agar diffusion method. DNA intercalation studies were carried out in CT-DNA. As a result ZrO 2 supported on the surface of AgNPs not only prevented aggregation, but also proved to have enhanced antimicrobial activity and DNA intercalation than the Ag nanoparticles. - Highlights: • Ag@ZrO 2 core–shell nanoparticles were prepared by one pot synthesis. • The ZrO 2 coated AgNPs prevent aggregation and enhanced stability. • The surfaced modified AgNPs showed higher antimicrobial activity. • DNA intercalation studies show better binding affinity of core–shell NPs.

  14. An in Vitro Experimental Study on the Antimicrobial Activity of Silicone Oil against Anaerobic Bacteria.

    Science.gov (United States)

    Arici, Ceyhun; Aras, Cengiz; Tokman, Hrisi Bahar; Torun, Muzeyyen Mamal

    2016-01-01

    To investigate the in vitro antimicrobial activity of silicone oil against anaerobic agents, specifically Propionibacterium acnes, Peptostreptococcus spp., Peptostreptococcus anaerobius, Bacteroides fragilis, Fuobacterium spp., and Clostridium tertium. A 0.5 McFarland turbidity of Propionibacterium acnes, Peptostreptococcus spp., Peptostreptococcus anaerobius, Bacteroides fragilis, Fuobacterium spp., and Clostridium tertium was prepared, and 0.1 mL was inoculated into 0.9 mL of silicone oil. Control inoculations were performed in anaerobic blood agar and fluid thioglycollate medium without silicone oil. Propionibacterium acnes retained their viability on the 3rd day in the presence of silicone oil. In total, 9.7 × 10(6) colonies were enumerated from 1 mL of silicone oil. After a prolonged incubation of 7 days, the number of colonies observed was 9.2 × 10(6). The other bacteria disappeared after the 3rd day of incubation in silicone oil. Propionibacterium acnes, which is the most common chronic postoperative endophthalmitis agent, is thought to be resistant to silicone oil.

  15. The antimicrobial efficiency of silver activated sorbents

    International Nuclear Information System (INIS)

    Đolić, Maja B.; Rajaković-Ognjanović, Vladana N.; Štrbac, Svetlana B.; Rakočević, Zlatko Lj.; Veljović, Đorđe N.; Dimitrijević, Suzana I.; Rajaković, Ljubinka V.

    2015-01-01

    Highlights: • Different sorbents were activated by Ag + -ions and modified sorbents were determined by sorption capacities, in range of values: 42.06–3.28 mg/g. • Granulated activated carbon (GAC), natural zeolit (Z) and titanium dioxide (T) activated by Ag + -ions were tested against E. coli, S. aureus and C. albicans. • The most successful bacteria removal was obtained using Ag/Z against S. aureus and E. coli, while the yeast cell reduction reached unsatisfactory effect for all three activated sorbents. • XRD, XPS and FE-SEM analysis showed that the chemical state of the silver activating agent affects the antimicrobial activity, as well as the structural properties of the material. • An overall microbial cell reduction, which is performed by separated antimicrobial tests on the Ag + -activated surface and Ag + -ions in aquatic solutions, is a consequence of both mechanisms. - Abstract: This study is focused on the surface modifications of the materials that are used for antimicrobial water treatment. Sorbents of different origin were activated by Ag + -ions. The selection of the most appropriate materials and the most effective activation agents was done according to the results of the sorption and desorption kinetic studies. Sorption capacities of selected sorbents: granulated activated carbon (GAC), zeolite (Z), and titanium dioxide (T), activated by Ag + -ions were following: 42.06, 13.51 and 17.53 mg/g, respectively. The antimicrobial activity of Ag/Z, Ag/GAC and Ag/T sorbents were tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. After 15 min of exposure period, the highest cell removal was obtained using Ag/Z against S. aureus and E. coli, 98.8 and 93.5%, respectively. Yeast cell inactivation was unsatisfactory for all three activated sorbents. The antimicrobial pathway of the activated sorbents has been examined by two separate tests – Ag + -ions desorbed from the activated surface to the

  16. Antimicrobial activities of Moringa oleifera Lam leaf extracts | Moyo ...

    African Journals Online (AJOL)

    Plants have been reported to contain important preventative and curative compounds. Studies were conducted to determine the antimicrobial activities of Moringa oleifera extracts using in vitro antimicrobial screening methods. The acetone extract of M. oleifera leaves at a concentration of 5 mg/ml showed antibacterial ...

  17. Comparative Study of Betacyanin Profile and Antimicrobial Activity of Red Pitahaya (Hylocereus polyrhizus) and Red Spinach (Amaranthus dubius).

    Science.gov (United States)

    Yong, Yi Yi; Dykes, Gary; Lee, Sui Mae; Choo, Wee Sim

    2017-03-01

    Betacyanins are reddish to violet pigments that can be found in red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius). This study investigated the impact of sub-fractionation (solvent partitioning) on betacyanin content in both plants. Characterization of betacyanins and evaluation of their antimicrobial activities were also carried out. Betanin was found in both plants. In addition, isobetanin, phyllocactin and hylocerenin were found in red pitahaya whereas amaranthine and decarboxy-amaranthine were found in red spinach. Sub-fractionated red pitahaya and red spinach had 23.5 and 121.5 % more betacyanin content, respectively, than those without sub-fractionation. Sub-fractionation increased the betanin and decarboxy-amaranthine content in red pitahaya and red spinach, respectively. The betacyanin fraction from red spinach (minimum inhibitory concentration [MIC] values: 0.78-3.13 mg/mL) demonstrated a better antimicrobial activity profile than that of red pitahaya (MIC values: 3.13-6.25 mg/mL) against nine Gram-positive bacterial strains. Similarly, the red spinach fraction (MIC values: 1.56-3.13 mg/mL) was more active than the red pitahaya fraction (MIC values: 3.13-6.25 mg/mL) against five Gram-negative bacterial strains. This could be because of a higher amount of betacyanin, particularly amaranthine in the red spinach.

  18. Antimicrobial activity of plant extracts on Candida albicans: An in vitro study

    Directory of Open Access Journals (Sweden)

    Sunitha Jagalur Doddanna

    2013-01-01

    Full Text Available Background and Objectives: Plants as sources of medicinal compounds have continued to play a predominant role in the maintenance of human health since ancient times. Even though several effective antifungal agents are available for oral candida infections, the failure is not uncommon because isolates of Candida albicans may exhibits resistance to the drug during therapy. The present study was conducted to evaluate the antimicrobial effects of few plant extracts on Candida albicans. An additional objective was to identify an alternative, inexpensive, simple, and effective method of preventing and controlling Candida albicans. Materials and Methods: Fine texture powder or paste form of leaves was soaked in sterile distilled water and 100% ethyl alcohol, which were kept in refrigerator at 4°C for 24 h. Then filtrates were prepared and kept in a hot air oven to get a black shining crystal powder/paste form. Stock solutions of plant extracts were inoculated on petri plates containing species of Candida albicans and incubated at 25 ± 2°C for 72 h. Results: Alcoholic curry leaves showed the maximum zone of inhibition on Candida albicans followed by aqueous tea leaves. The other plant extracts like alcoholic onion leaves, alcoholic tea leaves, alcoholic onion bulb, alcoholic aloe vera, and alcoholic mint leaves also inhibited the growth of Candida albicans but lesser extent. Conclusion: The present study renders few medicinal plants as an alternative medicines to the field of dentistry which can be used adjunct to conventional therapy of oral candidasis.

  19. Antioxidant and antimicrobial activities of polyphenols from ...

    African Journals Online (AJOL)

    the medicinal plants were screened for their antioxidant and antimicrobial activities against pathogenic micro organisms (Staphylococcus aureus, Streptococcus pyogenes, Esherichia coli and Candida albicans). The medicinal plants displayed different polyphenols contents and antioxidant activities. In addition, varying ...

  20. Kombucha fermentation and its antimicrobial activity.

    Science.gov (United States)

    Sreeramulu, G; Zhu, Y; Knol, W

    2000-06-01

    Kombucha was prepared in a tea broth (0.5% w/v) supplemented with sucrose (10% w/v) by using a commercially available starter culture. The pH decreased steadily from 5 to 2.5 during the fermentation while the weight of the "tea fungus" and the OD of the tea broth increased through 4 days of the fermentation and remained fairly constant thereafter. The counts of acetic acid-producing bacteria and yeasts in the broth increased up to 4 days of fermentation and decreased afterward. The antimicrobial activity of Kombucha was investigated against a number of pathogenic microorganisms. Staphylococcus aureus, Shigella sonnei, Escherichia coli, Aeromonas hydrophila, Yersinia enterolitica, Pseudomonas aeruginosa, Enterobacter cloacae, Staphylococcus epidermis, Campylobacter jejuni, Salmonella enteritidis, Salmonella typhimurium, Bacillus cereus, Helicobacterpylori, and Listeria monocytogenes were found to be sensitive to Kombucha. According to the literature on Kombucha, acetic acid is considered to be responsible for the inhibitory effect toward a number of microbes tested, and this is also valid in the present study. However, in this study, Kombucha proved to exert antimicrobial activities against E. coli, Sh. sonnei, Sal. typhimurium, Sal. enteritidis, and Cm. jejuni, even at neutral pH and after thermal denaturation. This finding suggests the presence of antimicrobial compounds other than acetic acid and large proteins in Kombucha.

  1. Studying the silver nanoparticles influence on thermodynamic behavior and antimicrobial activities of novel amide Gemini cationic surfactants.

    Science.gov (United States)

    Shaban, Samy M; Abd-Elaal, Ali A

    2017-07-01

    Three novels amide Gemini cationic surfactants with various alkyl chains and their silver nanohybrid with silver nanoparticles were synthesized and a confirmation study for surfactant and their nanoparticles formation has been established using IR, 1 HNMR, TEM and UV-Vis spectroscopy. The surface-active properties of these surfactants and their nanoform were investigated through surface tension and electrical conductivity measurements and a comparative study has been established. The thermodynamic parameters of micellization and adsorption were assessed at temperatures range from 25 to 65°C. The effect of silver particles on the surface behavior of the synthesized surfactant has been discussed. The aggregation behavior of silver nanoparticles with these synthesized Gemini surfactants in water were investigated using dynamic light scattering and transmission electron microscopy. Furthermore, the antimicrobial activities of these synthesized amide Gemini surfactants and their nanostructure with silver against both Gram positive and Gram negative bacteria were also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Spectrum of antimicrobial activity associated with ionic colloidal silver.

    Science.gov (United States)

    Morrill, Kira; May, Kathleen; Leek, Daniel; Langland, Nicole; Jeane, La Deana; Ventura, Jose; Skubisz, Corey; Scherer, Sean; Lopez, Eric; Crocker, Ephraim; Peters, Rachel; Oertle, John; Nguyen, Krystine; Just, Scott; Orian, Michael; Humphrey, Meaghan; Payne, David; Jacobs, Bertram; Waters, Robert; Langland, Jeffrey

    2013-03-01

    Silver has historically and extensively been used as a broad-spectrum antimicrobial agent. However, the Food and Drug Administration currently does not recognize colloidal silver as a safe and effective antimicrobial agent. The goal of this study was to further evaluate the antimicrobial efficacy of colloidal silver. Several strains of bacteria, fungi, and viruses were grown under multicycle growth conditions in the presence or absence of ionic colloidal silver in order to assess the antimicrobial activity. For bacteria grown under aerobic or anaerobic conditions, significant growth inhibition was observed, although multiple treatments were typically required. For fungal cultures, the effects of ionic colloidal silver varied significantly between different genera. No viral growth inhibition was observed with any strains tested. The study data support ionic colloidal silver as a broad-spectrum antimicrobial agent against aerobic and anaerobic bacteria, while having a more limited and specific spectrum of activity against fungi.

  3. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study

    Directory of Open Access Journals (Sweden)

    Azam A

    2012-12-01

    Full Text Available Ameer Azam,1,2 Arham S Ahmed,2 Mohammad Oves,3 Mohammad S Khan,3 Sami S Habib,1 Adnan Memic11Centre of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia; 2Centre of Excellence in Materials Science (Nanomaterials, 3Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, IndiaBackground: Nanomaterials have unique properties compared to their bulk counterparts. For this reason, nanotechnology has attracted a great deal of attention from the scientific community. Metal oxide nanomaterials like ZnO and CuO have been used industrially for several purposes, including cosmetics, paints, plastics, and textiles. A common feature that these nanoparticles exhibit is their antimicrobial behavior against pathogenic bacteria. In this report, we demonstrate the antimicrobial activity of ZnO, CuO, and Fe2O3 nanoparticles against Gram-positive and Gram-negative bacteria.Methods and results: Nanosized particles of three metal oxides (ZnO, CuO, and Fe2O3 were synthesized by a sol–gel combustion route and characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy techniques. X-ray diffraction results confirmed the single-phase formation of all three nanomaterials. The particle sizes were observed to be 18, 22, and 28 nm for ZnO, CuO, and Fe2O3, respectively. We used these nanomaterials to evaluate their antibacterial activity against both Gram-negative (Escherichia coli and Pseudomonas aeruginosa and Gram-positive (Staphylococcus aureus and Bacillus subtilis bacteria.Conclusion: Among the three metal oxide nanomaterials, ZnO showed greatest antimicrobial activity against both Gram-positive and Gram-negative bacteria used in this study. It was observed that ZnO nanoparticles have excellent bactericidal potential, while Fe2O3 nanoparticles exhibited the least bactericidal activity. The order of antibacterial activity was demonstrated to be the following: ZnO > CuO > Fe2O3

  4. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria

    DEFF Research Database (Denmark)

    Ebbensgaard, Anna Elisabeth; Mordhorst, Hanne; Overgaard, Michael Toft

    2015-01-01

    The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various...... AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram...

  5. N-terminal amphipathic helix as a trigger of hemolytic activity in antimicrobial peptides: a case study in latarcins.

    Science.gov (United States)

    Polyansky, Anton A; Vassilevski, Alexander A; Volynsky, Pavel E; Vorontsova, Olga V; Samsonova, Olga V; Egorova, Natalya S; Krylov, Nicolay A; Feofanov, Alexei V; Arseniev, Alexander S; Grishin, Eugene V; Efremov, Roman G

    2009-07-21

    In silico structural analyses of sets of alpha-helical antimicrobial peptides (AMPs) are performed. Differences between hemolytic and non-hemolytic AMPs are revealed in organization of their N-terminal region. A parameter related to hydrophobicity of the N-terminal part is proposed as a measure of the peptide propensity to exhibit hemolytic and other unwanted cytotoxic activities. Based on the information acquired, a rational approach for selective removal of these properties in AMPs is suggested. A proof of concept is gained through engineering specific mutations that resulted in elimination of the hemolytic activity of AMPs (latarcins) while leaving the beneficial antimicrobial effect intact.

  6. Release and antimicrobial activity of silver sulphadiazine from different creams

    NARCIS (Netherlands)

    Saene, J.J.M.; Trooster, J.F.G.; Meulenhoff, A.M.C.; Lerk, C.F.; Bult, A.

    The release and antimicrobial activity of silver sulphadiazine from five different creams were studied: unguentum emulsilicans aquosum, unguentum hydrophy. licum non ionogenicum, paraffin cream (15 per cent), a homemade preparation and a commercially available preparation (Flamazine). A diffusion

  7. Synthesis and Antimicrobial Activity of Some New Formazan Derivatives

    Directory of Open Access Journals (Sweden)

    S. I. Marjadi

    2009-01-01

    Full Text Available A series of new substituted formazan derivatives has been synthesized from corresponding aryl diazonium chloride and Schiff base in pyridine. The synthesized compounds were identified by spectral studies and screened for their antimicrobial activities.

  8. Screening of some Malay medicated oils for antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Khalid Khalisanni

    2010-01-01

    Full Text Available Oils from six Malay medicated oils, used traditionally in the treatment of infectious and septic diseases in humans, were tested for their antimicrobial property. The aim was to evaluate the antimicrobial properties of six Malay medicated oils against certain microbial isolates. Locally available Malay medicated oils were checked for their antimicrobial activities using six species of bacteria: E. coli, Salmonella spp., Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus, Bacillus subtilis and 2 fungi with 1 yeast (Aspergillus niger, Penicillum spp. and Candida albicans. Clove oil showed the highest antibacterial activity followed, respectively, by 'bunga merah', cajaput, nutmeg, lemon grass and 'gamat' oil. Clove oil and lemon grass showed anticandidal activity. The Malay medicated oil studies did not show any antifungal activity. The study shows that Malay medicated oils, like antibiotics, have antimicrobial activities against some microorganisms.

  9. Antimicrobial activities, toxinogenic potential and sensitivity to ...

    African Journals Online (AJOL)

    Antimicrobial activities, toxinogenic potential and sensitivity to antibiotics of ... Bacillus species showed variable ability to inhibit bacterial and/or fungal species. ... to produce Mbuja in order to better control the fermentation process of Mbuja ...

  10. Lipolytic and antimicrobial activities of Pseudomonas strains ...

    African Journals Online (AJOL)

    admin

    Purpose: To identify and determine lipolytic and antimicrobial activities, and antibiotic susceptibility of ... reverse-phase C-18 column high-performance liquid chromatography (HPLC). ..... arabinose, D-cellobiose, D-fructose, D-galactose,.

  11. Isolation, characterization and antimicrobial activity of Streptomyces ...

    African Journals Online (AJOL)

    DR TONUKARI

    2013-12-18

    Dec 18, 2013 ... Available online at http://www.academicjournals.org/AJB ... Key words: Characterization, streptomyces, antimicrobial activity, hot ... MATERIALS AND METHODS ..... chain reaction (PCR) which is currently used as a sen-.

  12. Preliminary study of the antimicrobial activity of Mentha x villosa Hudson essential oil, rotundifolone and its analogues

    Directory of Open Access Journals (Sweden)

    Thúlio. A. Arruda

    Full Text Available Essential oils present antimicrobial activity against a variety of bacteria and yeasts, including species resistant to antibiotics and antifungicals. In this context, this work aims at the evaluation of the antimicrobial activity of the essential oil of Mentha x villosa Hudson ("hortelã da folha miúda", its major component (rotundifolone and four similar analogues of rotundifolone (limonene oxide, pulegone oxide, carvone epoxide and (+-pulegone against strain standards of Staphylococcus aureus ATCC 25923, E. coli ATCC 25922, Pseudomona aeruginosa ATCC 27853, Candida albicans ATCC 76645 and one strain of meticilin - resistant Staphylococcus aureus - MRSA (171c from human clinic. The method of the diffusion in plates with solid medium was used. The results showed that the oil of Mentha x villosa, rotundifolone, limonene oxide and (+-pulegone, are similar regarding the antimicrobial activity against the tested strains of S. aureus and C. albicans. All of the products present antimocrobial potential with antibacterial activity for S. aureus ATCC 25923 and antifungal activity for C. albicans ATCC 76645. None of the products presented antimicrobial activity for the strains of E. coli ATCC 25922 and P. aeruginosa ATCC 27853, representatives of the Gram negative bacteria.

  13. ANTIMICROBIAL ACTIVITY OF TUSSILAGO FARFARA L.

    Directory of Open Access Journals (Sweden)

    Miroslava Kačániová

    2013-02-01

    Full Text Available In this study, ethanolic extracts of Tussilago farfara L. which had been described in herbal books, were screened for their antimicrobial activity. The following strains of bacteria for antimicrobial activity were used Escherichia coli CCM 3988, Serratia rubidea CCM 4684, Staphylococcus epidermis CC 4418, Lactobacillus rhamnosus CCM 1828, Pseudomonas aeroginosa CCM 1960 and Enterococcus raffinosus CCM 4216. The yeast strain used in this study was Saccharomyces cerevisiae CCM 8191 using disc diffusion method and microbroth dilution technique. The highest antibacterial activity of Tussilago farfara L. ethanolic extract was measured in Grampositive bacteria Lactobacillus rhamnosus (6.67±1.53 mm and lower in yeast Saccharomyces cerevisiae (1.67±0.58 mm with disc diffusion method used. The ethanolic extract present an important activity against Saccharomyces cerevisiae (MIC50=24 µg.ml-1; MIC90=25.69 µg.ml-1 and Serratia rubidaea (MIC=48.01 µg.ml-1; MIC90=51.26 µg.ml-1 with microbroth dilution technique used.

  14. Comparative study of the volatile oil content and antimicrobial activity of Psidium guajava L. and Psidium cattleianum Sabine leaves

    Directory of Open Access Journals (Sweden)

    Fathy M. Soliman

    2016-12-01

    Full Text Available The chemical composition of the hydrodistilled oils of the leaves of Psidium guajava L. (guava leaf and Psidium cattleianum Sabine (strawberry guava was determined by GC/MS analysis to identify their chemotypes. Moreover, in vitro antimicrobial activity of these volatile oils against selected bacteria, yeast, and mycelia fungi was studied. The yield of the volatile oil hydrodistilled from the leaves of P. guajava L. and P. cattleianum Sabine was 1.6 and 2.69 g/kg on fresh weight basis, respectively. Limonene was the major identified hydrocarbon in P. guava leaves’ oil (54.70%, whereas, 1, 8-cineole was the major identified oxygenated monoterpenoid (32.14% in common guava leaves. The foliar oil of P. cattleianum was predominated by the sesquiterpene hydrocarbon; β-caryophyllene representing 28.83% of the total oil make-up. The antibacterial activity of guava leaf oil was more pronounced against Bacillus subtilis, Staphylococcus aureus, Streptococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa than that of strawberry guava leaves, while P. cattleianum showed a higher activity against ess. The MIC of the volatile oil of the leaves of P. guajava against S. aureus was 6.75 μg/ml, while that of P. cattleianum exhibited MIC value of 13.01 μg/ml against Neisseria gonorrhoeae. Results demonstrated that the volatile oil of both Psidium species showed different chemotypes. Moreover, the volatile oils of guava and strawberry guava leaves might be good candidates as antimicrobial agents.

  15. Synthesis, spectroscopic studies and antimicrobial activity of chelates 2-(acetyloxy)-benzoic acid with transition metals (CR+3, MN+2, NI+2 AND CU+2)

    International Nuclear Information System (INIS)

    Khan, B.; Mateen, B.; Ahmed, F.; Ahmed, F.

    2007-01-01

    2-(acetyloxy)-Benzoic acid chelates with Cr+3, Mn+2, Ni+2 and Cu+2 were synthesized and characterized by the melting point, solubility, Fourier Transform Infrared (FT-IR) Spectroscopy, Atomic Absorption Spectroscopy (AAS), X-Ray Diffraction (XRD) method and evaluated by antimicrobial activity. The functional group present in the chelates was determined by Fourier Transform Infrared Spectroscopy, by X-Ray Diffraction analysis crystal data of chelates, their inter-atomic and inter-planer spacing was also determined. The amount of metal in the chelates was estimated by Atomic Absorption Spectroscopy and their Antimicrobial Activity was studied against Pseudomonas aeruginosa, Escherisha coli and Staphylococcus aureus. (author)

  16. Antimicrobial activity of different hydroxyapatites

    International Nuclear Information System (INIS)

    Feitosa, G.T.; Santos, M.V.B.; Barreto, H.M.; Osorio, L.R.; Osajima, J.A.; Silva Filho, E.C. da

    2014-01-01

    Among the applications of ceramics in the technological context, hydroxyapatite (HAp) stands out in the scientific community due to chemical biocompatibility and molecular similarity to the structures of bone and dental tissues. Such features are added to the antimicrobial properties that this brings. This work aimed at the synthesis of hydroxyapatite by two different routes, hydrothermal (HD HAp) and co-precipitation (CP HAp), as well as verification of the antimicrobial properties of these through direct contact of the powders synthesized tests with Staphylococcus aureus (SA10) and Escherichia coli (EC7) bacteria. The materials was characterized by XRD, Raman and TEM, and Antimicrobial tests showed inhibitory efficacy of 97% and 9.5% of CP HAp for SA10 and EC7, respectively. The HD HAp had inhibitory effect of 95% and 0% for EC7 and SA10, respectively. The inhibitory effect on SA10 is based on the hydrophilicity that the material possesses. (author)

  17. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  18. Antimicrobial activity of poly(acrylic acid) block copolymers

    International Nuclear Information System (INIS)

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P.; Lackner, Maximilian

    2014-01-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed

  19. The study of the antimicrobial activity of colloidal solutions of silver nanoparticles prepared using food stabilizers.

    Science.gov (United States)

    Balandin, G V; Suvorov, O A; Shaburova, L N; Podkopaev, D O; Frolova, Yu V; Ermolaeva, G A

    2015-06-01

    The bactericidal effect of colloidal solutions of silver nanoparticles based on food stabilizers, gum arabic and chitosan, against bacterial cultures of microorganisms in food production is described. The antibacterial activity of nanotechnology products containing different amounts of stabilizing additives when applied to solid pH-neutral substrates is studied. For its evaluation a method making it possible to take into account the capability of nanoparticles to diffuse in solid media was applied. Minimal inhibitory concentrations of nanoparticles used against Erwinia herbicola, Pseudomonas fluorescens, Bacillus subtilis, Sarcina flava were found. A suggestion was made concerning the influence of the spatial structure of bacteria on the antibacterial activity of colloidal solutions of silver nanoparticles. The data concerning the antibacterial activity and minimal inhibiting concentrations of nanoparticles may be used for development of products suppressing activity of microorganisms hazardous for food production.

  20. Antimicrobial activity of Schinus lentiscifolius (Anacardiaceae).

    Science.gov (United States)

    Gehrke, Ilaine T S; Neto, Alexandre T; Pedroso, Marcelo; Mostardeiro, Clarice P; Da Cruz, Ivana B M; Silva, Ubiratan F; Ilha, Vinicius; Dalcol, Ionara I; Morel, Ademir F

    2013-07-09

    Schinus lentiscifolius Marchand (syn. Schinus weinmannifolius Engl) is a plant native to Rio Grande do Sul (Southern Brazil) and has been used in Brazilian traditional medicine as antiseptic and antimicrobial for the treatment of many different health problems as well as to treat leucorrhea and to assist in ulcer and wound healing. Although it is a plant widely used by the population, there are no studies proving this popular use. The crude aqueous extract, the crude neutral methanol extract, fractions prepared from this extract (n-hexane, ethyl acetate, and n-butanol), pure compounds isolated from these fractions, and derivatives were investigated in vitro for antimicrobial activities against five Gram positive bacteria: Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Streptococcus pyogenes, three Gram negative bacteria: Escherichia coli, Pseudomonas aeruginosa, and Shigella sonnei, and four yeasts: Candida albicans, Candida tropicalis, Cryptococcus neoformans, and Saccharomyces cerevisiae. The isolated compound moronic acid, which is the most active, was tested against a range of other bacteria such as two Gram positive bacteria, namely, Bacillus cereus, Enterococcus spp, and six Gram negative bacteria, namely, Burkholderia cepacia, Providencia stuartii, Morganella morganii, Enterobacter cloacae, Enterobacter aerogenes, and Proteus mirabilis. The leaf aqueous extract (decoction) of Schinus lentiscifolius showed a broad spectrum of antibacterial activity, ranging from 125 to 250 μg/ml (MIC) against the tested bacteria and fungi. The n-hexane extract, despite being very little active against bacteria, showed an excellent antifungal activity, especially against Candida albicans (MIC=25 μg/ml), Candida tropicalis (MIC=15.5 μg/ml), and Cryptococcus neoformans, (MIC=15.5 μg/ml). From the acetate fraction (the most active against bacteria), compounds 1-6 were isolated: nonadecanol (1), moronic acid (2), gallic acid

  1. Antimicrobial activity of southern African medicinal plants with dermatological relevance: From an ethnopharmacological screening approach, to combination studies and the isolation of a bioactive compound.

    Science.gov (United States)

    Mabona, Unathi; Viljoen, Alvaro; Shikanga, Emmanual; Marston, Andrew; Van Vuuren, Sandy

    2013-06-21

    Ethnobotanical reports on more than 100 southern African medicinal plants with dermatological relevance have been highlighted, yet there is still limited scientific data to support claims for their antimicrobial effectiveness against skin pathogens. Guided by ethnobotanical data, this paper explores the antimicrobial efficacies of southern African medicinal plants used to treat skin ailments. To investigate the antimicrobial properties of southern African medicinal plants against dermatologically relevant pathogens. The study also aimed at providing a scientific rationale for the traditional use of plant combinations to treat skin diseases and the isolation of the bio-active compound from the most active species, Aristea ecklonii (Iridaceae). Organic and aqueous extracts (132) were prepared from 47 plant species and screened for antimicrobial properties against dermatologically relevant pathogens using the micro-titre plate dilution method. Four different plant combinations were investigated for interactive properties and the sum of the fractional inhibitory concentration (ƩFIC) calculated. Isobolograms were used to further investigate the antimicrobial interactive properties of Pentanisia prunelloides combined with Elephantorrhiza elephantina at varied ratios. A bioactivity-guided fractionation process was adopted to fractionate the organic leaf extract of Aristea ecklonii. Plants demonstrating notable broad-spectrum activities (MIC values ≤1.00mg/ml) against the tested pathogens included extracts from Aristea ecklonii, Chenopodium ambrosioides, Diospyros mespiliformis, Elephantorrhiza elephantina, Eucalyptus camaldulensis, Gunnera perpensa, Harpephyllum caffrum, Hypericum perforatum, Melianthus comosus, Terminalia sericea and Warburgia salutaris. The organic extract of Elephantorrhiza elephantina, a plant reportedly used to treat acne vulgaris, demonstrated noteworthy antimicrobial activity (MIC value of 0.05mg/ml) against Propionibacterium acnes. Similarly

  2. Evaluation of a radiometric method for studying bacterial activity in the presence of antimicrobial agents

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, R.R.; Wilson, P.; Clarke, F.V. (Newham District Microbiology Labs., St. Andrews Hospital, London (UK))

    1989-06-01

    In a study involving 2760 tests, the BACTEC semi-automatic radiometric method which measures bacterial metabolic activity and produces a BACTEC growth index, was compared with two conventional methods commonly used for determining growth, absorbance and viable counts. In 92% of radiometry tests the suppression of growth was inversely related to the antibiotic concentration. This compared with 83% for absorbance and 63% for viable counts. The radiometric method was found to be more rapid, easier to use and more reproducible in determining the effect of antibiotics on the activity of bacteria than viable counting or absorbance methods. (author).

  3. Evaluation of a radiometric method for studying bacterial activity in the presence of antimicrobial agents

    International Nuclear Information System (INIS)

    Cutler, R.R.; Wilson, P.; Clarke, F.V.

    1989-01-01

    In a study involving 2760 tests, the BACTEC semi-automatic radiometric method which measures bacterial metabolic activity and produces a BACTEC growth index, was compared with two conventional methods commonly used for determining growth, absorbance and viable counts. In 92% of radiometry tests the suppression of growth was inversely related to the antibiotic concentration. This compared with 83% for absorbance and 63% for viable counts. The radiometric method was found to be more rapid, easier to use and more reproducible in determining the effect of antibiotics on the activity of bacteria than viable counting or absorbance methods. (author)

  4. Synthesis and evaluation of antimicrobial and anthelmintic activity of ...

    Indian Academy of Sciences (India)

    compounds were screened for antimicrobial activity and anthelmintic activity. The structural assignments of compounds were made on the basis of spectroscopic data and elemental analysis. Keywords. 10H-phenothiazines; Smiles rearrangement; sulphones; ribofuranosides; antimicrobial activity; anthelmintic activity. 1.

  5. [BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES FROM CHICKENS THROMBOCYTES].

    Science.gov (United States)

    Sycheva, M V; Vasilchenko, A S; Rogozhin, E A; Pashkova, T M; Popova, L P; Kartashova, O L

    2016-01-01

    Isolation and study of biological activity of antimicrobial peptides from chickens thrombocytes. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect--by using fluorescent spectroscopy method with DNA-tropic dyes. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.

  6. Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities.

    Science.gov (United States)

    Thakkar, Sampark S; Thakor, Parth; Ray, Arabinda; Doshi, Hiren; Thakkar, Vasudev R

    2017-10-15

    Benzothiazole analogues are of interest due to their potential activity against malarial and microbial infections. In search of suitable antimicrobial and antimalarial agents, we report here the synthesis, characterization and biological activities of benzothiazole analogues (J 1-J 10). The molecules were characterized by IR, Mass, 1 H NMR, 13 C NMR and elemental analysis. The in vitro antimicrobial activity was investigated against pathogenic strains; the results were explained with the help of DFT and PM6 molecular orbital calculations. In vitro cytotoxicity and genotoxicity of the molecules were studied against S. pombe cells. In vitro antimalarial activity was studied. The active compounds J 1, J 2, J 3, J 5 and J 6 were further evaluated for enzyme inhibition efficacy against the receptor Pf-DHFR, computational and in vitro studies were carried out to examine their candidatures as lead dihydrofolate reductase inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Antimicrobial activity of Diospyros melanoxylon bark from Similipal ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... However, very limited studies on medicinal plants in general and antimicrobial ..... Recio MC (1989). A review of some antimicrobial compounds isolated ... Rwandese medicinal plants for antimicrobial and antiviral properties.

  8. Studies on antimicrobial activity and brine shrimp lethality of crude samples of six different species of puffer fishes

    Directory of Open Access Journals (Sweden)

    Masilamani Mohan Raj

    2015-07-01

    Full Text Available Objective: To evaluate the antimicrobial activity and brine shrimp lethality activity of six different species of puffer fishes, including Cyclichthys orbicularis, Diodon holocanthus, Canthigaster solandri, Arthron hispidus, A. inermis and Lagocephalua inermis (L. inermis. Methodology: The puffer fishes were collected from Annangkovil Fish Landing Centre (Lattitude 11°30.47' N; Longitude 79°47.02' E, Parangipettai, Southeast Coast of India during summer season because of availability. Fresh tissue samples were collected from the clearly washed specimens, extracted with methanol at 37 °C for 3 days and filtered through Whatman No. 1 filter paper. The solvents such as methanol and ethanol were concentrated by using rotary evaporator under reduced pressure. The dark brown gummy mass was stored at 4 °C for further analysis. Prepared crude samples were analysed with human pathogens to assess the antibacterial activity and this was carried out by using standard disc diffusion method. The brine shrimp lethality was calculated as the percentage of mortality which was firstly calculated by dividing the number of dead larvae by the total number and then multiplied to 100%. Results: The antibacterial activity of crude extract of puffer fishes were exhibited against 10 different human bacterial pathogens. Among the ten human pathogens, Arthron hispidus showed maximum zone of inhibition (8 mm against Staphylococcus aureus while L. inermis showed minimum activity (1 mm against Proteus mirabilis and no zone of inhibition was observed against Staphylococcus aureus. Brine shrimp lethality was examined with six puffer fish extracts. Cyclichthys orbicularis showed maximum mortalities as 100% and L. inermis showed minimum mortalities as 70% at a concentration of 500 µg/mL. Conclusion: In conclusion, the study showed the preliminary investigation of crude extracts of puffer fishes about the prominent activity against human bacterial pathogens. The extracts had

  9. Evaluation of antioxidant and antimicrobial activity of seaweed ( Sargassum sp.) extract: A study on inhibition of glutathione-S-transferase Activity

    Digital Repository Service at National Institute of Oceanography (India)

    Patra, J.K.; Rath, S.K.; Jena, K.B.; Rathod, V.K.; Thatoi, H.

    In the present study, the free radical scavenging potentials (DPPH radical and hydroxyl radical), inhibition of lipid peroxidation, and glutathione-S-transferase and antimicrobial properties of Sargassum sp. extract were investigated. The tested...

  10. Synthesis of curcumin-loaded chitosan phosphate nanoparticle and study of its cytotoxicity and antimicrobial activity.

    Science.gov (United States)

    Deka, C; Aidew, L; Devi, N; Buragohain, A K; Kakati, D K

    2016-11-01

    Curcumin has acquired an important position in the treatment of various diseases. But its use, as a chemotherapeutic agent, is limited due to its low water solubility, poor bioavailability, and its sensitive nature at the physiological pH. To overcome this, curcumin was loaded into chitosan phosphate nanoparticles (CPNs). The loading efficiency was found to be 84%. DLS studies revealed the average particle size of CPNs and curcumin-loaded CPNs as 53 and 91 nm, respectively, and TEM results supplemented these values. A sustained release pattern was noticed and the amount of curcumin released in acidic pH was higher than at physiological pH. The curcumin nanoformulation exhibited proficient activity against both Gram-positive and Gram-negative bacteria as well as fungus. Cytocompatibility of the nanoformulations against peripheral blood mononuclear cells (PBMCs) and murine monocyte-macrophage cell line was confirmed by incubating with PBMCs and murine monocyte-macrophage cell line.

  11. Antimicrobial Activity Investigation on Wuyiencin Fractions of Different Polarity

    Directory of Open Access Journals (Sweden)

    Zengjie Cui

    2010-04-01

    Full Text Available The aim of this study was to evaluate the antimicrobial activity of Wuyiencin fractions with different polarities against six indicator microorganisms: Rhodotorula rubra, Bacillus subtilis, Bacillus megaterium, Escherichia coli, Cladosporium fulvum and Staphylococcus aureus. The fermentation broth of Wuyiencin was submitted to AB-8 macroporous adsorptive resin and fractionated with solvents of different polarity. The fraction eluted with water had remarkably antimicrobial activity against all the microorganisms investigated except for C. fulvum and S. aureus (MIC ≤ 0.0625 mg/mL, probably due to the presence of active components. The fraction eluted with methanol showed potential antimicrobial activity against all the test microorganisms except for R.rubra, with MIC values of0.5 and 2 mg/mL. In conclusion, fractions eluted with water and methanol, respectively, represent the main active-part of Wuyiencin, and could be emphasized for agricultural applications in the future.

  12. Enhancement of antimicrobial activity of chitosan by irradiation

    International Nuclear Information System (INIS)

    Matsuhashi, S.; Kume, T.

    1997-01-01

    Antimicrobial activity of irradiated chitosan was studied against Escherichia coli B/r. Irradiation of chitosan at 100 kGy under dry conditions was effective in increasing the activity, and inhibited the growth of E. coli completely. The molecular weight of chitosan significantly decreased with the increase in irradiation dose, whereas the relative surface charge of chitosan was decreased only 3% by 100 kGy irradiation. Antimicrobial activity assay of chitosan fractionated according to molecular weight showed that 1 x 10 5 -3 x 10 5 fraction was most effective in suppressing the growth of E coli. This fraction comprised only 8% of the 100 kGy irradiated chitosan. On the other hand, chitosan whose molecular weight was less than 1 x 10 5 had no activity. The results show that low dose irradiation, specifically 100 kGy, of chitosan gives enough degradation to increase its antimicrobial activity as a result of a change in molecular weight. (Author)

  13. Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis

    OpenAIRE

    da Cunha, Marcos Guilherme; Franchin, Marcelo; Galv?o, L?viaC?maradeCarvalho; de Ruiz, AnaL?ciaTascaG?is; de Carvalho, Jo?o Ernesto; Ikegaki, Masarahu; de Alencar, Severino Matias; Koo, Hyun; Rosalen, Pedro Luiz

    2013-01-01

    Abstract Background Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona sc...

  14. Evaluation of the antimicrobial activity of crude extracts and ...

    African Journals Online (AJOL)

    The study provides some justifications for the folkloric use of AP seed powder as an antiseptic paste and warrants further studies to determine the structure of the active compound in chromatographic fraction ST 13 -15F. Key words: Adenanthera pavonina, antimicrobial activity, chromatographic fractions, methanolic extract.

  15. Antimicrobial Activity of Indigofera suffruticosa

    Directory of Open Access Journals (Sweden)

    Sônia Pereira Leite

    2006-01-01

    Full Text Available Various organic and aqueous extracts of leaves of Indigofera suffruticosa Mill (Fabaceae obtained by infusion and maceration were screened for their antibacterial and antifungal activities. The extracts were tested against 5 different species of human pathogenic bacteria and 17 fungal strains by the agar-solid diffusion method. Most of the extracts were devoid of antifungal and antibacterial activities, except the aqueous extract of leaves of I. suffruticosa obtained by infusion, which showed strong inhibitory activity against the Gram-positive bacteria Staphylococcus aureus with a minimal inhibitory concentration (MIC of 5000 µg ml−1. The MIC values to dermatophyte strains were 2500 µg ml−1 against Trichophyton rubrum (LM-09, LM-13 and Microsporum canis. This study suggests that aqueous extracts of leaves of I. suffruticosa obtained by infusion can be used in the treatment of skin diseases caused by dermatophytes.

  16. Antimicrobial Activity of Actinomycetes Against Multidrug Resistant ...

    African Journals Online (AJOL)

    Antimicrobial Activity of Actinomycetes Against Multidrug Resistant Staphylococcus aureus, E. coli and Various Other Pathogens. ... Purpose: The rapid emergence of drug resistance among pathogenic bacteria, especially multidrugresistant bacteria, underlines the need to look for new antibiotics. Methods: In the present ...

  17. Polyphenols content, antioxidant and antimicrobial activities of ...

    African Journals Online (AJOL)

    25 wild plants were collected from the south of Tunisia. The dried aerial parts were extracted under a continuous reflux set-up in a Soxhlet extractor with hexane, ethyl acetate, methanol and water. The extracts were screened for total phenolic content, antioxidant and antimicrobial activities. Total phenolic contents were ...

  18. Synthesis and antimicrobial activity of some 2 ...

    African Journals Online (AJOL)

    These compounds were investigated for their antimicrobial activity against ten bacteria and five fungi by serial plate dilution method using standard drugs, namely, ofloxacin and ketoconazole, respectively, and their minimum inhibitory concentrations (MICs) were also determined. Results: A total of eighteen new compounds ...

  19. Synthesis, characterization and antimicrobial activity of some ...

    African Journals Online (AJOL)

    Thermogravimetric analyses were also carried out. The data obtained agree with the proposed structures and show that the complexes decomposed to the corresponding metal oxide. The ligand and their metal complexes were screened for their antimicrobial activities by the agar-well diffusion technique using DMSO as a ...

  20. Antimicrobial activities of secondary metabolites and phylogenetic study of sponge endosymbiotic bacteria, Bacillus sp. at Agatti Island, Lakshadweep Archipelago

    Directory of Open Access Journals (Sweden)

    Gopi Mohan

    2016-09-01

    Full Text Available Twenty-one species of sponges were recorded under the class of Demospongiae and Calcareous sponges of which 19 species were new to Agatti reef. A total of 113 Sponge endosymbiotic bacterial strains were isolated from twenty-one species of sponges and screened for antimicrobial activity. Five bacterial strains of sponge endosymbiotic bacteria (SEB namely SEB32, SEB33, SEB36, SEB43 and SEB51 showed antimicrobial activity against virulent marine fish pathogens such as Vibrio alginolyticus, Vibrio vulnificus, Vibrio parahaemolyticus, Aeromonas salmonicida, Flavobacterium sp., Edwardsiella sp., Proteus mirabilis and Citrobacter brackii. The secondary metabolites produced by SEB32 from sponge Dysidea fragilis (Montagu, 1818 [48] was selected with broad range of antibacterial activity and subjected for production, characterization by series of chromatography techniques and spectroscopic methods. Based on the results of FT-IR and mass spectrometry, the active molecule was tentatively predicted as “Pyrrol” and the structure is Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- with molecular formula of C7H10N2O2. The LC50 of active molecule was 31 μg/ml and molecular weight of the metabolites was 154. The potential strain SEB32 was identified by gene sequence (GenBank Accession number JX985748 and identified as Bacillus sp. from GenBank database.

  1. Thrombolytic and antimicrobial activities of andrographis paniculata - a preliminary investigation

    Energy Technology Data Exchange (ETDEWEB)

    Amin, M. M.A.; Shohel, M. [North South Univ., Dhaka (Bangladesh). Dept. of Pharmaceutical; Uddin, M. M.N. [University of Chittagong (Bangladesh). Dept. of Pharmacy

    2014-07-15

    An attempt has been made to investigate thrombolytic and antimicrobial activities of ethanolic extracts of Andrographis paniculata whole plant. Phytochemical constituents of A. paniculata were assessed by human erythrocyte and the results were compared with standard streptokinase (SK). Moreover, the plant extracts were compared with the antibiotic kanamycin to investigate antibacterial activity against several microorganisms. Glycosides, steroids, phenols, alkaloid and tannins were found in the ethanol extract of whole plant. Crude ethanol extract (P<0.05) and soluble fraction of ethanol extract (P<0.05) have shown thrombolytic properties. Crude ethanol extract, n-hexane soluble fractions and carbon tetrachloride soluble fraction of ethanol extract of the whole plant have shown antimicrobial activities against common gram positive and gram negative microorganisms. The results of current study justify thrombolytic and antimicrobial activities of A. paniculata. (author)

  2. Thrombolytic and antimicrobial activities of andrographis paniculata - a preliminary investigation

    International Nuclear Information System (INIS)

    Amin, M.M.A.; Shohel, M.; Uddin, M.M.N.

    2014-01-01

    An attempt has been made to investigate thrombolytic and antimicrobial activities of ethanolic extracts of Andrographis paniculata whole plant. Phytochemical constituents of A. paniculata were assessed by human erythrocyte and the results were compared with standard streptokinase (SK). Moreover, the plant extracts were compared with the antibiotic kanamycin to investigate antibacterial activity against several microorganisms. Glycosides, steroids, phenols, alkaloid and tannins were found in the ethanol extract of whole plant. Crude ethanol extract (P<0.05) and soluble fraction of ethanol extract (P<0.05) have shown thrombolytic properties. Crude ethanol extract, n-hexane soluble fractions and carbon tetrachloride soluble fraction of ethanol extract of the whole plant have shown antimicrobial activities against common gram positive and gram negative microorganisms. The results of current study justify thrombolytic and antimicrobial activities of A. paniculata. (author)

  3. An optical tweezer-based study of antimicrobial activity of silver ...

    Indian Academy of Sciences (India)

    This is achieved by monitoring the fluctuations of an optically trapped polystyrene bead immersed in it. Examining the changes in the fluctuation pattern of the bead with time provides an accurate characterization of the reduction in the microbial activity. Here, we report on the effect of addition of silver nanoparticles on ...

  4. Study on the Antimicrobial activity and Minimum Inhibitory Concentration of Essential Oils of Spices

    Directory of Open Access Journals (Sweden)

    R.V.N.Srujan and M.Sravanthi

    Full Text Available Antibacterial activity and minimum inhibitory concentration (MIC of essential oils of garlic, clove and cinnamon were estimated by using various bacterial pathogens. Among the bacterial pathogens tested against essential oil of garlic, Staphylococcus aureus was found to be highly sensitive followed by E.coli. L.monocytogenes and S.pyogenes were found to be less sensitive. The essential oil of clove was found to be most active against S.aureus followed by E.coli. B.cereus and C. jejuni. The essential oil of cinnamon was also most active against S.aureus followed by E.coli and C.jejuni. Essential oil of cinnamon was found to be active against all the bacterial pathogens tested, when compared to garlic and clove oils. However Staph. aureus, E. coli and C.jejuni were found to be most sensitive to the action of essential oils of garlic, clove and cinnamon. Among the bacterial pathogens tested against essential oils of spices to know the MIC by agar diffusion method, C.jejuni was found to be most sensitive to the essential oil of garlic followed by E.coli, S. typhimurium and Staphylococcus aureus. L. monocytogenes and Methicillin resistant Staph. aureus were found to be comparatively less sensitive. Essential oil of clove was also found to be highly effective against C.jejuni followed by E.coli, S.typhimurium and S.aureus. Again L.monocytogenes and Methicillin resistant S.aureus were comparatively less sensitive to the action of essential oil of clove. All most all the bacterial pathogens tested were found to be sensitive to the essential oil of cinnamon. However C.jejuni and E.coli were found to be most sensitive followed by S.typhimurium, Staph. aureus and Methicillin resistant Staph. aureus . [Vet. World 2011; 4(7.000: 311-316

  5. Toxicity tests, antioxidant activity, and antimicrobial activity of chitosan

    Science.gov (United States)

    Kurniasih, M.; Purwati; Dewi, R. S.

    2018-04-01

    Chitosan is a naturally occurring cationic biopolymer, obtained by alkaline deacetylation of chitin. This research aims to investigate the toxicity, antioxidant activity and antibacterial activity of chitosan from shrimp chitin. In this study, chitin extracted from shrimp waste material. Chitin is then deacetylation with 60% NaOH so that chitosan produced. Degrees of deacetylation, molecular weight, toxicity test, antioxidant activity and antimicrobial activity of chitosan then evaluated. Toxicity test using Brine Shrimp Lethality Test. The antioxidant analysis was performed using DPPH method (2, 2-diphenyl-1-picrylhydrazyl) and FTC method (ferric thiocyanate) in which the radical formed will reduce Ferro to Ferri resulting in a complex with thiocyanate. To determine the antibacterial activity of Staphylococcus aureus, antifungal in Candida albicans and Aspergillus niger by measuring antimicrobial effects and minimum inhibitory concentrations (MIC). Based on the result of research, the value of degrees of deacetylation, molecular weight, and LC50 values of chitosan synthesis was 94,32, 1052.93 g/mol and 1364.41 ppm, respectively. In general, the antioxidative activities increased as the concentration of chitosan increased. MIC value of chitosan against S. aureus, C. albicans, and A. niger was 10 ppm, 15.6 ppm, and 5 ppm, respectively.

  6. Antimicrobial activity of Micrococcus luteus Cartenoid pigment

    Directory of Open Access Journals (Sweden)

    Huda Z. Majeed

    2017-11-01

    Full Text Available Cartenoids are group of pigments, with enormous types different structurally and functionally, have colors range from red to yellow found in a wide variety of plants, fungi, algae and bacteria. The animals took from food because they cannot make it, on contrary, the plants and microbes produce them due to subjection to environment. The aim of the study is to isolate and characterize the cartenoid pigment from Micrococcus luteus. The pigment extraction was done by acetone, and then was characterized with UltraViolet-Visible spectroscopy (UV–Vis and Fourier Transform Infrared (FTIR spectroscopy. Then, it was tested for antibacterial activity against five different bacterial isolates and antifungal activity tests against six different fungal isolates by well diffusion method. The results found that, the extracted pigment having antibacterial activity and antifungal activity and having the ability to absorb UVA rays within the range of 300-500 nm. There was no significant difference in antimicrobial effect of pigment, even when the extraction and isolation were done by two culture mediums (Nutrient Broth and Luria Bertani Broth. There were considerable inhibition percentages of adhesion after subjection to Cartenoid pigment ranged between (5.71, 23.84 % for Klebsiella spp. and Pseudomonas aeruginosa respectively and all the 11 isolate changed from Biofilm producer to non-producer. The isolated compound can be used against different bacterial and fungal infections. So they had a great future in medicine, cosmetics and as a sun protecting agent.

  7. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    Science.gov (United States)

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela

    2013-01-01

    The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures. PMID:23509801

  8. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Carmen Steluta Ciobanu

    2013-01-01

    Full Text Available The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO46(OH2 nanoparticles (Ag:HAp-NPs for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.

  9. Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles.

    Science.gov (United States)

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela

    2013-01-01

    The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca(10-x)Ag(x)(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against gram-positive and gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.

  10. Analysis of the antimicrobial activities of a chemokine-derived peptide (CDAP-4) on Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Martinez-Becerra, Francisco; Silva, Daniel-Adriano; Dominguez-Ramirez, Lenin; Mendoza-Hernandez, Guillermo; Lopez-Vidal, Yolanda; Soldevila, Gloria; Garcia-Zepeda, Eduardo A.

    2007-01-01

    Chemokines are key molecules involved in the control of leukocyte trafficking. Recently, a novel function as antimicrobial proteins has been described. CCL13 is the only member of the MCP chemokine subfamily displaying antimicrobial activity. To determine Key residues involved in its antimicrobial activity, CCL13 derived peptides were synthesized and tested against several bacterial strains, including Pseudomonas aeruginosa. One of these peptides, corresponding to the C-terminal region of CCL13 (CDAP-4) displayed good antimicrobial activity. Electron microscopy studies revealed remarkable morphological changes after CDAP-4 treatment. By computer modeling, CDAP-4 in α helical configuration generated a positive electrostatic potential that extended beyond the surface of the molecule. This feature is similar to other antimicrobial peptides. Altogether, these findings indicate that the antimicrobial activity was displayed by CCL13 resides to some extent at the C-terminal region. Furthermore, CDAP-4 could be considered a good antimicrobial candidate with a potential use against pathogens including P. aeruginosa

  11. Antimicrobial activity of yeasts against some pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Gamal Younis

    2017-08-01

    Full Text Available Aim: This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species. Materials and Methods: A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In addition, all yeast species isolates were subjected to polymerase chain reaction (PCR for detection of khs (kievitone hydratase and pelA (pectate degrading enzyme genes. Results: The recovery rate of yeasts from sausage was 20% (2/10 followed by kareish cheese, processed cheese, and butter 10% (1/10 each as well as raw milk 9% (9/100, and fruit yoghurt 30% (6/20. Different yeast species were recovered, namely, Candida kefyr (5 isolates, Saccharomyces cerevisiae (4 isolates, Candida intermedia (3 isolates, Candida tropicalis (2 isolates, Candida lusitaniae (2 isolates, and Candida krusei (1 isolate. khs gene was detected in all S. cerevisiae isolates, however, pelA gene was not detected in all identified yeast species. Antimicrobial activity of recovered yeasts against the selected bacterial species showed high activity with C. intermedia against S. aureus and E. coli, C. kefyr against E. coli, and C. lusitaniae against S. aureus. Moderate activities were obtained with C. tropicalis, C. lusitaniae, and S. cerevisiae against E. coli; meanwhile, all the tested yeasts revealed a very low antimicrobial activity against P. aeruginosa. Conclusion: The obtained results confirmed that some kinds of yeasts have the ability to produce antimicrobial compounds that could inhibit some pathogenic and spoilage bacteria and these antimicrobial activity of yeasts enables them to be one of the novel agents in controlling spoilage of food.

  12. Phytochemical investigation and antimicrobial activity of Psidium guajava L. leaves

    Science.gov (United States)

    Metwally, A. M.; Omar, A. A.; Harraz, F. M.; El Sohafy, S. M.

    2010-01-01

    Psidium guajava L. leaves were subjected to extraction, fractionation and isolation of the flavonoidal compounds. Five flavonoidal compounds were isolated which are quercetin, quercetin-3-O-α-L-arabinofuranoside, quercetin-3-O-β-D-arabinopyranoside, quercetin-3-O-β-D-glucoside and quercetin-3-O-β-D-galactoside. Quercetin-3-O-β-D-arabinopyranoside was isolated for the first time from the leaves. Fractions together with the isolates were tested for their antimicrobial activity. The antimicrobial studies showed good activities for the extracts and the isolated compounds. PMID:20931082

  13. Antimicrobial activity of GN peptides and their mode of action

    DEFF Research Database (Denmark)

    Mojsoska, Biljana; Nielsen, Hanne Mørck; Jenssen, Håvard

    2016-01-01

    peptides due to their characteristics as naturally derived compounds with antimicrobial activity. In this study, we aimed at characterizing the mechanism of action of a small set of in silico optimized peptides. Following determination of peptide activity against E. coli, S. aureus, and P. aeruginosa......Increasing prevalence of bacteria that carries resistance towards conventional antibiotics has prompted the investigation into new compounds for bacterial intervention to ensure efficient infection control in the future. One group of potential lead structures for antibiotics is antimicrobial...

  14. Synthesis and Characterization of Carboxymethyl Chitosan Nanogels for Swelling Studies and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Reem K. Farag

    2012-12-01

    Full Text Available Nanogels of a binary system of carboxymethyl chitosan (CMCh and poly- (vinyl alcohol PVA, were successfully synthesized by a novel in situ process. They were also characterized by various analytical tools like Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM and X-ray diffraction (XRD. They were studied for their unique swelling properties in water and different pH solutions. They were also investigated for their great ability to capture or isolate bacteria and fungi from aquatic environments.

  15. Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration.

    Science.gov (United States)

    Al-Bakri, Amal G; Afifi, Fatma U

    2007-01-01

    The aim of this study was to screen and evaluate the antimicrobial activity of indigenous Jordanian plant extracts, dissolved in dimethylsulfoxide, using the rapid XTT assay and viable count methods. XTT rapid assay was used for the initial screening of antimicrobial activity for the plant extracts. Antimicrobial activity of potentially active plant extracts was further assessed using the "viable plate count" method. Four degrees of antimicrobial activity (high, moderate, weak and inactive) against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, respectively, were recorded. The plant extracts of Hypericum triquetrifolium, Ballota undulata, Ruta chalepensis, Ononis natrix, Paronychia argentea and Marrubium vulgare had shown promising antimicrobial activity. This study showed that while both XTT and viable count methods are comparable when estimating the overall antimicrobial activity of experimental substances, there is no strong linear correlation between the two methods.

  16. Antimicrobial activity of Lycoperdon perlatum whole fruit body on ...

    African Journals Online (AJOL)

    Antimicrobial activities of extracts of fruit bodies of Lycoperdon perlatum against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Bacillus cereus, Candida albicans and Candida glabrata were investigated. Antimicrobial components from the mushrooms were extracted using ethanol, methanol and ...

  17. Isothiocyanates: An Overview of Their Antimicrobial Activity against Human Infections

    Directory of Open Access Journals (Sweden)

    Letizia Romeo

    2018-03-01

    Full Text Available The use of plant-derived products as antimicrobial agents has been investigated in depth. Isothiocyanates (ITCs are bioactive products resulting from enzymatic hydrolysis of glucosinolates (GLs, the most abundant secondary metabolites in the botanical order Brassicales. Although the antimicrobial activity of ITCs against foodborne and plant pathogens has been well documented, little is known about their antimicrobial properties against human pathogens. This review collects studies that focus on this topic. Particular focus will be put on ITCs’ antimicrobial properties and their mechanism of action against human pathogens for which the current therapeutic solutions are deficient and therefore of prime importance for public health. Our purpose was the evaluation of the potential use of ITCs to replace or support the common antibiotics. Even though ITCs appear to be effective against the most important human pathogens, including bacteria with resistant phenotypes, the majority of the studies did not show comparable results and thus it is very difficult to compare the antimicrobial activity of the different ITCs. For this reason, a standard method should be used and further studies are needed.

  18. Spectroscopic characterization, antimicrobial activity and molecular docking study of novel azo-imine functionalized sulphamethoxazoles

    Science.gov (United States)

    Sahu, Nilima; Mondal, Sudipa; Naskar, Kaushik; Mahapatra, Ananya Das; Gupta, Suvroma; Slawin, Alexandra M. Z.; Chattopadhyay, Debprasad; Sinha, Chittaranjan

    2018-03-01

    [SMXsbnd Ndbnd Nsbnd C6H3sbnd (p-OH)(msbnd CHO)] (1) reacts with ArNH2 to synthesize Schiff bases, [SMXsbnd Ndbnd Nsbnd C6H3sbnd (psbnd OH)(msbnd HCdbnd Nsbnd Ar)] (Ar = sbnd C6H5 (2a), sbnd C6H4sbnd psbnd CH3 (2b), sbnd C6H4sbnd psbnd OCH3 (2c), sbnd C6H4sbnd psbnd Cl (2d), sbnd C6H4sbnd psbnd NO2 (2e), sbnd C10H7 (2f)) and the products have been assessed for antibacterial properties against Gram positive bacteria, B. subtillis: IC50 (μg/ml): 39.2 (1), 60.1 (2a), 64.0 (2b), 85.6 (2c), 55.1 (2d), 88.4 (2e) and 65.1 (2f); and Gram negative bacteria, E. coli: IC50 (μg/ml): 159.0 (1), 151.4 (2a), 155.3 (2b), 140 (2c), 156.0 (2d), 153.5 (2e) and 157 (2f). The cell line toxicity (Vero cells) has also been evaluated with these compounds and EC50 (μg/ml) values are 129.9 (1), 74.2 (2a) and 93.0 (2b), 191.9 (2c), 99.1 (2d), 93.2 (2e) and 62.0 (2f). The anti-viral efficiency against harpies virus (HSVsbnd 1F ATCC-733) infection demonstrates that the compound 1 has highest selectivity index (CC50/EC50), 5.06 than the compounds 2a-f (CC50/EC50: 1.18 (2a), 1.42 (2b), 3.50 (2c), 1.45 (2d), 1.58 (2e), 1.29 (2f)). The compounds have been spectroscopically characterized and the structural confirmation has been established in one case by single crystal X-ray diffraction studies of 2c. In silico Molecular Docking study has been done using optimized geometries of the compounds to search the most favored binding mode of these drugs and hence useful to explain their competitive drug efficiency.

  19. Comparative phytochemical screening and antimicrobial activity of ...

    African Journals Online (AJOL)

    The leaves and bark of Carica papaya (Pawpaw) were subjected to solvent extraction using both water and methanol. Preliminary phytochemical evaluation of the extracts was performed followed by antimicrobial studies against some bacteria using the agar-well diffusion method. The phytochemical analysis showed that ...

  20. Antimicrobial Activity and Phytochemical Screening of Ficus ...

    African Journals Online (AJOL)

    Prelimlinary phytochemical screening of Ficus exasperata root bark showed that it contains saponin, alkaloids, cardiac glycoside and reducing sugar with no traces of tannin and anthraquinone. The results of the study provide scientific basis for developing a novel broad spectrum antimicrobial herbal formulation in future.

  1. Antimicrobial activity of immobilized lactoferrin and lactoferricin.

    Science.gov (United States)

    Chen, Renxun; Cole, Nerida; Dutta, Debarun; Kumar, Naresh; Willcox, Mark D P

    2017-11-01

    Lactoferrin and lactoferricin were immobilized on glass surfaces via two linkers, 4-azidobenzoic acid (ABA) or 4-fluoro-3-nitrophenyl azide (FNA). The resulting surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antimicrobial activity of the surfaces was determined using Pseudomonas aeruginosa and Staphylococcus aureus strains by fluorescence microscopy. Lactoferrin and lactoferricin immobilization was confirmed by XPS showing significant increases (p lactoferricin immobilized on glass significantly (p lactoferricin were successfully immobilized on glass surfaces and showed promising antimicrobial activity against pathogenic bacteria. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2612-2617, 2017. © 2016 Wiley Periodicals, Inc.

  2. Punica granatum L. (Pomegranate) Extract: In Vivo Study of Antimicrobial Activity against Porphyromonas gingivalis in Galleria mellonella Model

    Science.gov (United States)

    Aparecida Procópio Gomes, Livia; Alves Figueiredo, Lívia Mara; Corrêa Geraldo, Barbara Maria; Isler Castro, Kelly Cristine; Ruano de Oliveira Fugisaki, Luciana; Olavo Cardoso Jorge, Antônio; Dias de Oliveira, Luciane; Campos Junqueira, Juliana

    2016-01-01

    Due to the increase of bacterial resistance, medicinal alternatives are being explored. Punica granatum L. is an effective herbal extract with broad spectrum of action and bactericidal, antifungal, anthelmintic potential and being able to modulate the immune response. The aim was to evaluate the antimicrobial activity of pomegranate glycolic extract (PGE) against the periodontal pathogen Porphyromonas gingivalis by using Galleria mellonella as in vivo model. Fifteen larvae were used per group. Injection of high concentration (200, 100, and 25 mg/mL) of PGE showed a toxic effect, leading them to death. A suspension of P. gingivalis (106 cells/mL) was inoculated in the left last proleg and PGE (12.5, 6.25, 3.1, and 2.5 mg/mL) were injected into the right proleg. The larvae were then kept at 37°C under the dark. Injection of PGE at any dose statistically improved larvae survival rates. The data were analysed (log-rank test, Mantel-Cox, P < 0.05) and showed that all concentrations of PGE (12.5, 6.25, 3.1, and 2.5 mg/mL) presented higher larval survival rates, with significant statistical difference in relation to control group (P. gingivalis). In conclusion, the PGE had antimicrobial action against P. gingivalis in vivo model using G. mellonella. PMID:27668280

  3. Antimicrobial activity of Helichrysum plicatum DC

    Directory of Open Access Journals (Sweden)

    Bigović Dubravka J.

    2017-01-01

    Full Text Available Dry flower heads of Helichrysum plicatum were characterized by HPLC-DAD and a detailed antimicrobial assay of its ethanol extract was performed. Identification of phenolic compounds indicated the presence of apigenin, naringenin and kaempferol as free aglycones, glycosides of apigenin, naringenin, quercetin and kaempferol as well as chlorogenic acid and chalcone derivate. Antimicrobial activity of the extract was evaluated against various bacteria and fungi as well as yeast Candida albicans using microdilution method. Grampositive bacteria were more sensitive to the tested extract (MIC values were to 0.02 mg/mL than Gram-negative bacteria (the greatest MIC was 0.055 mg/mL. Regarding pathogenic fungi, our tests demonstrated that fungi were more sensitive to the tested extract than bacteria. The growth of the majority of the tested fungi was inhibited by concentration of 0.005 mg/mL. Moreover, the extract was significantly more active than commercial fungicide, fluconazole. The results of our tests indicate that the extract of H. plicatum has significant antimicrobial activity and may find application in the pharmaceutical and food industry and organic agriculture.

  4. Antimicrobial activity and agricultural properties of bitter melon (Momordica charantia L.) grown in northern parts of Turkey: a case study for adaptation.

    Science.gov (United States)

    Yaldız, Gülsüm; Sekeroglu, Nazım; Kulak, Muhittin; Demirkol, Gürkan

    2015-01-01

    This study was designed to determine the adaptation capability of bitter melon (Momordica charantia L.), which is widely grown in tropical and subtropical climates, in northern parts of Turkey. In this study, plant height, number of fruits, fruit length, fruit width, number of seeds and fruit weight of bitter melon grown in field conditions were determined. The antimicrobial effect of the ethanol extract of fruit and seeds against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Salmonella typhi, Aspergillus niger and Candida albicans microorganisms was tested in vitro by the disc diffusion method. In conclusion, plant height (260 cm), number of fruits (16 per  plant), number of seeds (30.2  per fruit), fruit width (3.8 cm), fruit length (10.6 cm) and fruit weight (117.28 g fruit(- 1)) were determined; fruits were found to have antimicrobial activity against A. niger; oil and seeds were found to have antimicrobial activity against A. niger and E. coli.

  5. Antimicrobial and anti-inflammatory activities of the volatile oil ...

    African Journals Online (AJOL)

    Of the qualitative methods used for the control of the antimicrobial activity, the method of diffusion on filter paper discs proved to be the most efficient, the results correlating well with the MIC. Our studies have demonstrated the efficiency of the natural compounds' of T. majus L. in anti-inflammatory treatments in animals.

  6. Phytochemical screening and antimicrobial activity of roots, stem ...

    African Journals Online (AJOL)

    The roots, stem-bark and leaves of Grewia mollis which is used as herbal remedies for the cure of diarrhea and dysentery by natives in northern part of Nigeria were studied. The ethanol and water extracts of roots, stem-bark and leaves of the plant were subjected to phytochemical screening and antimicrobial activity against ...

  7. Comparison of antimicrobial activities of brine salting, Chlorinated ...

    African Journals Online (AJOL)

    Chemical preservatives can be used to reduce the overall microbial populations in fish and fish products. This study was set to determine the antimicrobial activities of brine salting, chlorinated solution, and Moringa oleifera plant extracts treatments on enteric bacteria in Rastrineobola argentea and Oreochromis niloticus fish ...

  8. Antimicrobial activity of moringa on ear, nose and throat associated ...

    African Journals Online (AJOL)

    This study was aimed at evaluating the antimicrobial activity of Moringa on ear, nose and throat associated fungi and vancomycin resistant cocci. The plant material was extracted with methanol and petroleum ethe and screened for phytochemical contents. The microbial isolates were obtained from females and males ...

  9. Antimicrobial activity of the leaf extracts of Moringa oleifera and ...

    African Journals Online (AJOL)

    This study evaluates the antimicrobial activity of the leaf extracts of Moringa oleifera and Jatropha curcas against Staphylococcus aureus and Escherichia coli. Different concentrations of the extracts were subjected to these organisms in which Moringa oleifera showed a higher zone of inhibition on Staphylococcus aureus ...

  10. In vitro Antimicrobial Activity of Clerodendron Polycephalum Against ...

    African Journals Online (AJOL)

    Clerodendron polycephalum Baker (known as Ewe Agbosa in Yoruba land) is used by the traditional people in South West Nigeria for arresting bleeding from cuts and treating bacteria infections especially wound infection without scientific proof of its efficacy. This study aimed at investigating the antimicrobial activity of C.

  11. Antimicrobial activities of essential oils from Southern Africa against ...

    African Journals Online (AJOL)

    In the present study, essential oils from four plants including Melissa officinalis, Mentha piperita, Pelargonium graveolens and Leucosidea sericea, traditionally used to treat infectious diseases were tested for antimicrobial activity against seven Gram-positive bacteria, eight Gram-negative bacteria and six yeast species ...

  12. An Investigation on the antimicrobial activity of some endemic plant ...

    African Journals Online (AJOL)

    In this study performed on six endemic plant species, antimicrobial activity was observed in Campanula lyrata subsp.lyrata and Abies nordmanniana subsp. bornmuelleriana plants. The minimum inhibitory concentration of C. lyrata subsp. lyrata (leaf and flower) extract was found to be 29 mg/ml for Baccillus subtilis and 14.5 ...

  13. Antimicrobial and antioxidant activity of natural honeys of different origin

    Directory of Open Access Journals (Sweden)

    Miartina Fikselová

    2014-10-01

    Full Text Available To examine the antimicrobial and antioxidant activity of 15 natural honeys, honey samples were collected from different locations of Slovakia, Poland and Serbia. For antimicrobial activity determination honey solutions were prepared at three concentrations: 50, 25 and 12.5 % (by mass per volume. The potential antimicrobial activity of  selected samples against four species of bacteria (Escherichia coli CCM 3988, Pseudomonas aeroginosa CCM 1960, Staphylococcus epidermis CCM 4418, Bacillus cereus CCM 2010 and two species of yeasts (Saccharomyces cerevisiae CCM 8191, Candida albicans CCM 8216 was studied using the disc diffusion method. After incubation, the zones of inhibition of the growth of the microorganisms around the disks were measured. The strongest antimicrobial activity was shown at honey samples of 50 % concentration against Escherichia coli, Pseudomonas aeroginosa and Staphylococcus epidermis. Against Saccharomyces cerevisae and Candida albicans very low (at 50 %, 25 % concentration or zero antifugal (at 12.5 % concentration activity was determined. From the results obtained it was shown the variable ability of honey samples to scavenge stable free radical DPPH. TEACDPPH values ranged between 0.1-1.0 mmol.kg-1. As the antioxidative best source buckwheat honey was manifested and the lowest antioxidant activity was shown at acacia honey.

  14. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    Science.gov (United States)

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control.

  15. Antimicrobial and immunomodulatory activities of PR-39 derived peptides.

    Directory of Open Access Journals (Sweden)

    Edwin J A Veldhuizen

    Full Text Available The porcine cathelicidin PR-39 is a host defence peptide that plays a pivotal role in the innate immune defence of the pig against infections. Besides direct antimicrobial activity, it is involved in immunomodulation, wound healing and several other biological processes. In this study, the antimicrobial- and immunomodulatory activity of PR-39, and N- and C-terminal derivatives of PR-39 were tested. PR-39 exhibited an unexpected broad antimicrobial spectrum including several Gram positive strains such as Bacillus globigii and Enterococcus faecalis. Of organisms tested, only Staphylococcus aureus was insensitive to PR-39. Truncation of PR-39 down to 15 (N-terminal amino acids did not lead to major loss of activity, while peptides corresponding to the C-terminal part of PR-39 were hampered in their antimicrobial activity. However, shorter peptides were all much more sensitive to inhibition by salt. Active peptides induced ATP leakage and loss of membrane potential in Bacillus globigii and Escherichia coli, indicating a lytic mechanism of action for these peptides. Finally, only the mature peptide was able to induce IL-8 production in porcine macrophages, but some shorter peptides also had an effect on TNF-α production showing differential regulation of cytokine induction by PR-39 derived peptides. None of the active peptides showed high cytotoxicity highlighting the potential of these peptides for use as an alternative to antibiotics.

  16. Antimicrobial and Immunomodulatory Activities of PR-39 Derived Peptides

    Science.gov (United States)

    Veldhuizen, Edwin J. A.; Schneider, Viktoria A. F.; Agustiandari, Herfita; van Dijk, Albert; Tjeerdsma-van Bokhoven, Johanna L. M.; Bikker, Floris J.; Haagsman, Henk P.

    2014-01-01

    The porcine cathelicidin PR-39 is a host defence peptide that plays a pivotal role in the innate immune defence of the pig against infections. Besides direct antimicrobial activity, it is involved in immunomodulation, wound healing and several other biological processes. In this study, the antimicrobial- and immunomodulatory activity of PR-39, and N- and C-terminal derivatives of PR-39 were tested. PR-39 exhibited an unexpected broad antimicrobial spectrum including several Gram positive strains such as Bacillus globigii and Enterococcus faecalis. Of organisms tested, only Staphylococcus aureus was insensitive to PR-39. Truncation of PR-39 down to 15 (N-terminal) amino acids did not lead to major loss of activity, while peptides corresponding to the C-terminal part of PR-39 were hampered in their antimicrobial activity. However, shorter peptides were all much more sensitive to inhibition by salt. Active peptides induced ATP leakage and loss of membrane potential in Bacillus globigii and Escherichia coli, indicating a lytic mechanism of action for these peptides. Finally, only the mature peptide was able to induce IL-8 production in porcine macrophages, but some shorter peptides also had an effect on TNF-α production showing differential regulation of cytokine induction by PR-39 derived peptides. None of the active peptides showed high cytotoxicity highlighting the potential of these peptides for use as an alternative to antibiotics. PMID:24755622

  17. for antimicrobial and antioxidant activities

    African Journals Online (AJOL)

    Yomi

    2012-01-31

    Jan 31, 2012 ... The CCl4 extract was active against six out of the nine microbial strains used and was .... Briefly, 10 µl of 0.3 mM DPPH in ethanol was added to 25 µl of ..... compounds: correlation among electrochemical, visible spectroscopy.

  18. Antimicrobial activity of an aspartic protease from Salpichroa origanifolia fruits.

    Science.gov (United States)

    Díaz, M E; Rocha, G F; Kise, F; Rosso, A M; Guevara, M G; Parisi, M G

    2018-05-08

    Plant proteases play a fundamental role in several processes like growth, development and in response to biotic and abiotic stress. In particular, aspartic proteases (AP) are expressed in different plant organs and have antimicrobial activity. Previously, we purified an AP from Salpichroa origanifolia fruits called salpichroin. The aim of this work was to determine the cytotoxic activity of this enzyme on selected plant and human pathogens. For this purpose, the growth of the selected pathogens was analysed after exposure to different concentrations of salpichroin. The results showed that the enzyme was capable of inhibiting Fusarium solani and Staphylococcus aureus in a dose-dependent manner. It was determined that 1·2 μmol l -1 of salpichroin was necessary to inhibit 50% of conidial germination, and the minimal bactericidal concentration was between 1·9 and 2·5 μmol l -1 . Using SYTOX Green dye we were able to demonstrate that salpichroin cause membrane permeabilization. Moreover, the enzyme treated with its specific inhibitor pepstatin A did not lose its antibacterial activity. This finding demonstrates that the cytotoxic activity of salpichroin is due to the alteration of the cell plasma membrane barrier but not due to its proteolytic activity. Antimicrobial activity of the AP could represent a potential alternative for the control of pathogens that affect humans or crops of economic interest. This study provides insights into the antimicrobial activity of an aspartic protease isolated from Salpichroa origanifolia fruits on plant and human pathogens. The proteinase inhibited Fusarium solani and Staphylococcus aureus in a dose-dependent manner due to the alteration of the cell plasma membrane barrier but not due to its proteolytic activity. Antimicrobial activity of salpichroin suggests its potential applications as an important tool for the control of pathogenic micro-organisms affecting humans and crops of economic interest. Therefore, it would

  19. The study of antimicrobial activity of 2-((4-R-3-(morpholinomethylene-4H-1,2,4-triazole-5-ylthioacetic acid salts

    Directory of Open Access Journals (Sweden)

    R. О. Shcherbyna

    2016-08-01

    Full Text Available The purpose of the work was to study the antimicrobial activity of 2-((4-R-3-(morfolinomethylene-4H-1,2,4-triazole-5-ylthio acetic acid salts by "hanging drop" and “serial dilution” methods in broth (limiting concentration option and establish some patterns of "structure – action" depending. Materials and methods. The objects of research were 9 new compounds of 2-((4-R-3-(morfolinomethylene-4H-1,2,4-triazole-5-ylthio acetic acid salts. These compounds are the crystal substances which are odorless, soluble in water and organic solvents. To achieve a more objective picture of the research we applied two methods: "hanging drop" and “serial dilution” in broth (limiting concentration option. To study the effectiveness of substances we used the test cultures of E. coli, Salmonella typhymurium, Staphylococcus epidermidis, P. aeruginosa. Results and discussion. In the study we have found that 2-((4-R-3-(morfolinomethylene-4H-1,2,4-triazole-5-ylthio acetic acid salts can differently inhibit the growth of test cultures. The results show that the data obtained by two methods correlated with each other. Thus, the 2-((4-R-3-(morfolinomethylene-4H-1,2,4-triazole-5-ylthio acetic acid salts are active against most strains of E. Coli. and Salmonella typhymurium. Analyzing the impact of 2-((4-R-3-(morfolinomethylene-4H-1,2,4-triazole-5-ylthio acetic acid salts we have noted that the replacement of the phenyl radical (PKR-135, 139 on the free amino group at N4 nitrogen of 1,2,4- triazole cycle (PKR-173, 177 leads to the disappearance of antimicrobial activity against the studied strains. It was established that the transition from morfolin cation (PKR-133 to the piperydyn cation (PKR-134 in the molecules of 2-((4-phenyl-3-(morfolinometylen-4H-1,2,4-triazole-5-yl thio acetic acid is accompanied by a significant increase in antimicrobial effect. It was interesting that among all the cations in the molecules of 2-((4-amino-3-(morfolinometylen-4H-1

  20. The Antimicrobial Activity of Aliquidambar orientalis mill. Against ...

    African Journals Online (AJOL)

    Background: Medicinal plants are an important source of substances which are claimed to induce antimicrobial, antimutagenic and antioxidant effects. Many plants have been used due to their antimicrobial treatments. Antimicrobial and antioxidant activities of L. orientalis have not been reported to the present day. The aim ...

  1. Biosynthesis, characterization and antimicrobial study of silver ...

    African Journals Online (AJOL)

    Both the characterization and antimicrobial activity test were very successful and could lead to significant economic viability, as well as being environmentally friendly for treatment of some infectious diseases. Keywords: Syzygium guineenses, Green Chemistry, Spectroscopy, Optoelectronics, Biomedical Sensors ...

  2. Assessing the antimicrobial activities of Ocins

    Directory of Open Access Journals (Sweden)

    Shilja eChoyam

    2015-09-01

    Full Text Available The generation of a zone of inhibition on a solid substrate indicates the bioactivity of antimicrobial peptides such as bacteriocin and enterocin. The indicator strain plays a significant role in bacteriocin assays. Other characteristics of bacteriocins, such as their dispersal ability and the different zymogram components, also affect bacteriocin assays. However, universal well diffusion assays for antimicrobials, irrespective of their ability to diffuse (bacteriocin, enterocin, do not exist. The ability of different zymography components to generate non-specific activities have rarely been explored in the literature. The purpose of the present work was to evaluate the impact of two major factors (diffusion and no diffusion in a solid substrate bioassay, and to document the adverse effects of sodium dodecyl sulfate in zymograms used to estimate the approximate molecular weight of bacteriocins.

  3. Study of antimicrobial property of some hypoglycemic drugs

    Directory of Open Access Journals (Sweden)

    Arun Kumar Dash

    2011-01-01

    Full Text Available In the present work, a comparative antimicrobial study of different hypoglycemic drugs (Metformin, Phenformin, and Rosiglitazone was carried out. The main objective was to ascertain the antimicrobial activity by using "non-antibiotics" as the test substances. The antimicrobial activity was carried out against different bacteria and fungi namely Bacillus liceniformis, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Shigella flexneri, Bacillus subtilis, Staphylococcus aureus subspp., and Staphylococcus epidermidis by using disc diffusion method and agar dilution method. Ciprofloxacin was taken as the standard antibiotic. The entire procedure was carried out in an aseptic area under the laminar flow by inoculating the bacterial strain to the agar media in which the drug solution was added. Different concentrations (300 and 400 μg/ml of the standard antibiotic and selected drugs were subjected for minimum inhibitory concentration, and zone of inhibition tests and the antimicrobial activity of the selected drugs were determined.

  4. Antimicrobial stewardship activities: a survey of Queensland hospitals.

    Science.gov (United States)

    Avent, Minyon L; Hall, Lisa; Davis, Louise; Allen, Michelle; Roberts, Jason A; Unwin, Sean; McIntosh, Kylie A; Thursky, Karin; Buising, Kirsty; Paterson, David L

    2014-11-01

    In 2011, the Australian Commission on Safety and Quality in Health Care (ACSQHC) recommended that all hospitals in Australia must have an Antimicrobial Stewardship (AMS) program by 2013. Nevertheless, little is known about current AMS activities. This study aimed to determine the AMS activities currently undertaken, and to identify gaps, barriers to implementation and opportunities for improvement in Queensland hospitals. The AMS activities of 26 facilities from 15 hospital and health services in Queensland were surveyed during June 2012 to address strategies for effective AMS: implementing clinical guidelines, formulary restriction, reviewing antimicrobial prescribing, auditing antimicrobial use and selective reporting of susceptibility results. The response rate was 62%. Nineteen percent had an AMS team (a dedicated multidisciplinary team consisting of a medically trained staff member and a pharmacist). All facilities had access to an electronic version of Therapeutic Guidelines: Antibiotic, with a further 50% developing local guidelines for antimicrobials. One-third of facilities had additional restrictions. Eighty-eight percent had advice for restricted antimicrobials from in-house infectious disease physicians or clinical microbiologists. Antimicrobials were monitored with feedback given to prescribers at point of care by 76% of facilities. Deficiencies reported as barriers to establishing AMS programs included: pharmacy resources, financial support by hospital management, and training and education in antimicrobial use. Several areas for improvement were identified: reviewing antimicrobial prescribing with feedback to the prescriber, auditing, and training and education in antimicrobial use. There also appears to be a lack of resources to support AMS programs in some facilities. WHAT IS KNOWN ABOUT THE TOPIC?: The ACSQHC has recommended that all hospitals implement an AMS program by 2013 as a requirement of Standard 3 (Preventing and Controlling Healthcare

  5. Assessment of in vitro antitumoral and antimicrobial activities of ...

    African Journals Online (AJOL)

    ONOS

    2010-07-05

    Jul 5, 2010 ... cell line, and it showed less than 10% cell viability after treatment. Antimicrobial ... marine macro algae have also been studied extensively. Antimicrobial ... Algae samples were washed twice with distilled water and air-dried.

  6. Antimicrobial activity of jasmine oil against oral microorganisms

    Science.gov (United States)

    Thaweboon, S.; Thaweboon, B.; Kaypetch, R.

    2018-02-01

    Jasmine sambac is a species of jasmine indigenous to the tropical and warm temperature regions in particular West and Southeast Asia. Essential oil extracted from the flowers of J. sambac has been shown to have anti-oxidant activity. However, very little information regarding antimicrobial activity especially oral microorganisms exists. Objective: To investigate antimicrobial effect of essential oil extracted from flowers of J. sambac against various oral microorganisms. Materials and Methods: Oral microbial strains used in the study were Streptococcus mutans KPSK2, Staphylococcus aureus ATCC 5638, Lactobacillus casei ATCC 6363, Klebsiella pneumoniae (clinical isolate), Escherichia coli ATCC 25922, Candida albicans ATCC 10231, Candida krusei ATCC 6258, Candida parapsilosis ATCC 22019, Candida tropicalis (clinical isolate), Candida glabrata ATCC 90030, Candida pseudotropicalis (clinical isolate) and Candida stellatoidia (clinical isolate). The potential of microbial growth inhibition of the oil was firstly screened by Kirby-Bauer disk diffusion method and then the minimum inhibitory concentration (MIC) was determined by agar dilution method. Results: Jasmine oil showed antimicrobial activities against S. mutans, L. casei, E. coli and all strains of Candida species with the zones of inhibition ranging from 9 to 26 mm and MIC values of 0.19-1.56 %v/v. Conclusion: Results from the present study are scientific evidence to demonstrate that jasmine oil could be employed as a natural antimicrobial agent against oral microorganisms.

  7. Phytochemical screening and study of antioxidant, antimicrobial, antidiabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh.

    Science.gov (United States)

    Pant, Dipak Raj; Pant, Narayan Dutt; Saru, Dil Bahadur; Yadav, Uday Narayan; Khanal, Dharma Prasad

    2017-01-01

    The main aims of the study were to evaluate the phytochemical constituents and to study the antioxidant, antimicrobial, antidiabetic, anti-inflammatory, and analgesic activities of extracts from stem wood of Pterocarpus marsupium . Ethanol, acetone and isopropyl alcohol (IPA) (1:1) extracts of stem wood of P. marsupium were subjected to phytochemical screening and analysis of biological activities from August 2015 to January 2016. The antioxidant assay was carried out using 2, 2-diphenyl-1-picrylhydrazyl scavenging method, antimicrobial activity testing by cup diffusion method, antidiabetic test evaluation by oral glucose tolerance test in mice, anti-inflammatory effect was evaluated by hind paw edema method in mice and analgesic test evaluation by a chemical writhing method in mice. The results of the study revealed that P. marsupium is a source of various phytoconstituents such as alkaloids, glycosides, saponins, tannins, proteins, carbohydrates, cardiac glycosides, flavonoids, and terpenoids. Both the acetone and IPA extract as well as the ethanol extract of stem wood of P. marsupium exhibited a dose-dependent antioxidant activity. Acetone and IPA extract showed antibacterial activity against Gram-positive bacteria, while the ethanolic extract was found to possess antidiabetic activity. The antidiabetic activity of the extract was found to be time and dose-dependent. Similarly, the acetone and IPA extract was found to have anti-inflammatory activity, which was also time and dose-dependent. Furthermore, the ethanolic extract showed analgesic activity, which was dose-dependent. The ethanolic extract was found to be nontoxic. Thus, this study laid sufficient background for the further research on extracts from stem wood of P. marsupium for identification, subsequent purification and isolation of compounds having antibacterial, antidiabetic, anti-inflammatory, and analgesic activities.

  8. Antioxidant, Antigenotoxic, Antimicrobial Activities and Phytochemical Analysis of Dianthus carmelitarum

    Directory of Open Access Journals (Sweden)

    Rezzan Aliyazicioglu

    2017-05-01

    Full Text Available In this study, we investigated the phytochemical composition, antioxidant, antimicrobial, and antigenotoxic properties of the aqueous extract of Dianthus carmelitarum for the first time. The phenolic and volatile compounds, antioxidant, antimicrobial and antigenotoxic activities of the extract were determined by HPLC and SPME-GC-FID/MS, spectrophotometric, agar well diffusion methods and comet assay, respectively. The polyphenolic content and ferric reducing power values of the extract were found 12.6 ± 0.27 mg gallic acid and 238 ± 2.89 μM trolox equivalents per g sample, respectively. Syringaldehyde and chlorogenic acid were detected as major phenolic compounds, while terpenes were determined as major volatile compound. Dianthus carmelitarum extract especially exhibited moderate antimicrobial activity against Mycobacterium smegmatis. Extract reduced H 2O 2-induced DNA damage in a concentration dependent manner in fibroblast cells compared to positive control (only 20 μM H 2O 2 treatment. Dianthus carmelitarum can be considered in the food, cosmetic, and drug industries due to its antioxidant, antimicrobial, and antigenotoxic activities.

  9. SCREENING OF PLANT EXTRACTS FOR ANTIMICROBIAL ACTIVITY AGAINST BACTERIA

    Directory of Open Access Journals (Sweden)

    Alexander Vatľák

    2014-02-01

    Full Text Available The aim of this study was antimicrobial action of the methanolic extracts of Equisetum arvense L. and Urtica dioica L. against gramnegative and grampositive bacteria. The antimicrobial activities of the extracts against gramnegative bacteria: Escherichia coli CCM 3988, Listeria ivanovii CCM 5884, Listeria innocua CCM 4030, Pseudomonas aeruginosa CCM 1960, Serratia rubidaea CCM 4684 and grampositive bacteria: Brochothrix thermosphacta CCM 4769, Enterococcus raffinosus CCM 4216, Lactobacillus rhamnosus CCM 1828, Paenobacillus larvae CCM 4483 and Staphylococcus epidermis CCM 4418 were determined by the disc diffusion method and the microbroth dilution method according to CLSI. Probit analysis was used in this experiment. Of the 2 plant extracts tested, all extracts showed antimicrobial activity against one or more species of microorganisms. The most antimicrobial activity showed methanolic plant extract of E. arvense against S. epidermis with disc diffusion method and with microbroth dilution method against S. rubidaea and plant extract Urtica dioica with disc diffusion method against P. aeruginosa and with microbroth dilution method against S. rubidaea and E. coli.

  10. Antimicrobial activity of some potential active compounds against ...

    African Journals Online (AJOL)

    Antimicrobial activities of six potential active compounds (acetic acid, chitosan, catechin, gallic acid, lysozyme, and nisin) at the concentration of 500 g/ml against the growth of Escherichia coli, Staphylococcus aureus, Listeria innocua, and Saccharomyces cerevisiae were determined. Lysozyme showed the highest ...

  11. Synthesis, Molecular Docking Studies, In Vitro Antimicrobial and Antifungal Activities of Novel Dipeptide Derivatives Based on N-(2-(2-Hydrazinyl-2-oxoethylamino-2-oxoethyl-Nicotinamide

    Directory of Open Access Journals (Sweden)

    Gaber Moustafa

    2018-03-01

    Full Text Available A series of linear dipeptide derivatives (4–10 were prepared and evaluated as antimicrobial agents via the synthesis of N-(2-(2-hydrazinyl-2-oxoethylamino-2-oxoethyl nicotinamide (4. Compound 4 was reacted with 4-chlorobenzaldehyde or 4-hydroxybenzaldehyde, to give the hydrazones 5 and 6, respectively. On the other hand, Compound 4 was coupled with phenylisocyanate or methylisothiocyanate to give Compounds 7 and 8, respectively. The latter compounds (7 and 8 were coupled with chloroacetic acid to give oxazolidine (9 and thiazolidine (10, respectively. The newly synthesized dipeptide compounds were confirmed by means of their spectral data. The antimicrobial activity of the newly synthesized compounds 4–10 was evaluated by agar well diffusion, and they showed good activity. Compounds 4, 5, and 9 gave the most promising activity in this study. Most of the tested compounds possessed MIC values ranging from 50 to 500 µg/mL. Furthermore, docking studies were carried out on enoyl reductase from E. coli and cytochrome P450 14 α-sterol demethylase (Cyp51 from Candida albicans active sites. The MolDock scores of the seven tested compounds ranged between −117 and −171 and between −107 and −179, respectively.

  12. Two investigational glycylcyclines, DMG-DMDOT and DMG-MINO. Antimicrobial activity studies against gram-positive species.

    Science.gov (United States)

    Johnson, D M; Jones, R N

    1996-01-01

    DMG-DMDOT (CL-331,002 OR CL-331,928) and DMG-MINO (CL-329,998 or CL-344,677) are two new semisynthetic tetracyclines called glycylcyclines, with a broad spectrum of activity and includes Enterobacteriaceae, Gram-positive cocci, JK diphtheroids, and Bacillus cereus. Potent activity was demonstrated against all Streptococcus spp. strains [minimum inhibitory concentrations] (MIC90S) 0.06-0.25 micrograms/ml) and staphylococci (oxacillin susceptible ans resistant; MIC90S 0.12-2 micrograms/ml). Both glycylcyclines (MIC90, 0.06 micrograms/ml) were more potent than minocycline (MIC90 8 micrograms/ml) against Enterococcus faecium, many of which were vancomycin resistant (116 strains). Organisms with minocycline MICs at > or = 8 micrograms/ml (Staphylococcus aureus, enterococci, beta-hemolytic streptococci, and pneumococci) had glycylcycline MIC results ranging from 0.06 to 0.5 micrograms/ml (e.g., apparent use against existing tetracycline-resistance phenotypes). Drugs in this class appear promising for therapy of infections caused by Gram-positive species now testing resistant to contemporary antimicrobial agents, and further development of compounds in this class is encouraged.

  13. Antimicrobial activity of Iranian propolis and its chemical composition

    Directory of Open Access Journals (Sweden)

    Yaghoubi M.J.

    2007-04-01

    Full Text Available The objective of this study was to investigate the antimicrobial activity of ethanol extract of Iranian propolis on some microorganisms using disc diffusion method. The chemical composition of the propolis was also investigated using thin layer chromatography and spectrophotometric methods. Ethanol extract of propolis showed activity only against Gram-positives and fungi, whereas no activity was observed against Gram-negatives. Thin layer chromatography screening revealed the presence of pinocembrine, caffeic acid, kaempferol, phenethyl caffeate, chrysin, and galangin in Iranian propolis. The total flavonoid and phenolic contents were 7.3% and 36%, respectively, which suggests that the strong antimicrobial activity of Iranian propolis may be due to high levels of phenolic and flavonoid compounds.

  14. A novel chimeric peptide with antimicrobial activity.

    Science.gov (United States)

    Alaybeyoglu, Begum; Akbulut, Berna Sariyar; Ozkirimli, Elif

    2015-04-01

    Beta-lactamase-mediated bacterial drug resistance exacerbates the prognosis of infectious diseases, which are sometimes treated with co-administration of beta-lactam type antibiotics and beta-lactamase inhibitors. Antimicrobial peptides are promising broad-spectrum alternatives to conventional antibiotics in this era of evolving bacterial resistance. Peptides based on the Ala46-Tyr51 beta-hairpin loop of beta-lactamase inhibitory protein (BLIP) have been previously shown to inhibit beta-lactamase. Here, our goal was to modify this peptide for improved beta-lactamase inhibition and cellular uptake. Motivated by the cell-penetrating pVEC sequence, which includes a hydrophobic stretch at its N-terminus, our approach involved the addition of LLIIL residues to the inhibitory peptide N-terminus to facilitate uptake. Activity measurements of the peptide based on the 45-53 loop of BLIP for enhanced inhibition verified that the peptide was a competitive beta-lactamase inhibitor with a K(i) value of 58 μM. Incubation of beta-lactam-resistant cells with peptide decreased the number of viable cells, while it had no effect on beta-lactamase-free cells, indicating that this peptide had antimicrobial activity via beta-lactamase inhibition. To elucidate the molecular mechanism by which this peptide moves across the membrane, steered molecular dynamics simulations were carried out. We propose that addition of hydrophobic residues to the N-terminus of the peptide affords a promising strategy in the design of novel antimicrobial peptides not only against beta-lactamase but also for other intracellular targets. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  15. Improved antimicrobial activity of Pediococcus acidilactici against Salmonella Gallinarum by UV mutagenesis and genome shuffling.

    Science.gov (United States)

    Han, Geon Goo; Song, Ahn Ah; Kim, Eun Bae; Yoon, Seong-Hyun; Bok, Jin-Duck; Cho, Chong-Su; Kil, Dong Yong; Kang, Sang-Kee; Choi, Yun-Jaie

    2017-07-01

    Pediococcus acidilactici is a widely used probiotic, and Salmonella enterica serovar Gallinarum (SG) is a significant pathogen in the poultry industry. In this study, we improved the antimicrobial activity of P. acidilactici against SG using UV mutation and genome shuffling (GS). To improve antimicrobial activity against SG, UV mutagenesis was performed against wild-type P. acidilactici (WT), and five mutants showed improved antimicrobial activity. To further improve antimicrobial activity, GS was performed on five UV mutants. Following GS, four mutants showed improved antimicrobial activity compared with the UV mutants and WT. The antimicrobial activity of GS1 was highest among the mutants; however, the activity was reduced when the culture supernatant was treated with proteinase K, suggesting that the improved antimicrobial activity is due to a proteinous substance such as bacteriocin. To validate the activity of GS1 in vivo, we designed multi-species probiotics and performed broiler feeding experiments. Groups consisted of no treatment (NC), avilamycin-treated (PC), probiotic group 1 containing WT (T1), and probiotic group 2 containing GS1 (T2). In broiler feeding experiments, coliform bacteria were significantly reduced in T2 compared with NC, PC, and T1. The cecal microbiota was modulated and pathogenic bacteria were reduced by GS1 oral administration. In this study, GS1 showed improved antimicrobial activity against SG in vitro and reduced pathogenic bacteria in a broiler feeding experiment. These results suggest that GS1 can serve as an efficient probiotic, as an alternative to antibiotics in the poultry industry.

  16. Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis

    Directory of Open Access Journals (Sweden)

    da Cunha Marcos Guilherme

    2013-01-01

    Full Text Available Abstract Background Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. Methods The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography–mass spectrometry. Results EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p Conclusions The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties.

  17. Antimicrobial and antioxidant activity of citharexylum spinosum

    International Nuclear Information System (INIS)

    Ajaib, M.; Mehk, T.; Shah, S.; Fareed, S.

    2017-01-01

    The antimicrobial and antioxidant potential of different parts of Citharexylum spinosum L. was evaluated. The antimicrobial activity was estimated by agar well diffusion method. The maximum antibacterial activity (44.5 +- 0.5 mm) was observed by methanolic bark extract against Staphylococcus aureus while the minimum activity (10.5 +- 0.5 mm) was exhibited by the chloroform leaves extract against Staphylococcus aureus. The highest antifungal activity (41.83 +- 0.76 mm) reported by distilled water extract of leaves against A. niger while petroleum ether extract of bark showed minimum activity (11.16 +- 0.28 mm) against A. oryzae. The most resistant value of MIC was observed at concentration of 0.3125 mg/mL of methanol leaves extract against B. subtilis and P. aeruginosa. The antioxidant potential was analyzed by using five techniques included total phenolic content (TPC), total flavanoids content (TFC), ABTS, metal chelating activity, and DPPH free radical scavenging activity. The results displayed that petroleum ether bark extract showed maximum TPC value (60.24 +- 0.03 mu g/mL). Petroleum ether extract of bark exhibited maximum TFC value (1350.07 +- 0.01 mu g/mL). ABTS results showed that distilled water extract of bark exhibited maximum TEAC value (7.92 +- 0.06 mm). Metal chelating results showed that maximum % inhibition (64.2 +- 0.05 %) was observed by distilled water extract of bark. The highest scavenging effects (82.59 +- 0.66 %) was observed by chloroform extract of leaves. The phytochemical analysis of Citharexylum spinosum L showed the presence of alkaloids, tannin, terpenoids, saponins, reducing sugar, anthraquinones, cardiac glycosides and flavonoids. (author)

  18. Antimicrobial activity of lysozyme with special relevance to milk ...

    African Journals Online (AJOL)

    This review discusses the antimicrobial activity of lysozyme with special emphasis on milk's lysozyme, and attempts to shed some light on the recent advances elucidating the mechanism of its antimicrobial activity against sensitive microorganisms as well as the means used by some bacteria to resist such an activity.

  19. 5-Nitroimidazole Derivatives and their Antimicrobial Activity

    International Nuclear Information System (INIS)

    Khan, K.M.; Salar, U.; Yousuf, S.; Naz, F.

    2016-01-01

    5-Nitroimidazole derivatives 2-8 were synthesized from secnidazole. The syntheses were accomplished in two steps which start from the oxidation of secnidazole to the secnidazolone 1. Secnidazolone 1 was converted into its hydrazone derivative 2-8 by treating with different substituted acid hydrazide. Compounds 2-8 were evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria, compounds 3 and 4 showed the significant activity against Staphylococcus epidermidis, however, compound 2 showed good inhibitions against Corynebacterium diphtheria when compared with the standard. Compound 3 showed good inhibitory potential against tested Gram-negative bacterial strains i.e. Enterobacter aerogene, Escherichia coli, Salmonella typhi, Salmonella paratyphi A, Shigella flexeneri and Vibrio choleriae. All synthetic derivatives were also tested against eight fungal stains, however, they were weekly active against Aspergillus flavus and Candida albican. The synthesized compounds were characterized by different spectroscopy techniques. (author)

  20. Peptides with Dual Antimicrobial and Anticancer Activities

    Science.gov (United States)

    Felício, Mário R.; Silva, Osmar N.; Gonçalves, Sônia; Santos, Nuno C.; Franco, Octávio L.

    2017-02-01

    In recent years, the number of people suffering from cancer and multi-resistant infections has increased, such that both diseases are already seen as current and future major causes of death. Moreover, chronic infections are one of the main causes of cancer, due to the instability in the immune system that allows cancer cells to proliferate. Likewise, the physical debility associated with cancer or with anticancer therapy itself often paves the way for opportunistic infections. It is urgent to develop new therapeutic methods, with higher efficiency and lower side effects. Antimicrobial peptides (AMPs) are found in the innate immune system of a wide range of organisms. Identified as the most promising alternative to conventional molecules used nowadays against infections, some of them have been shown to have dual activity, both as antimicrobial and anticancer peptides (ACPs). Highly cationic and amphipathic, they have demonstrated efficacy against both conditions, with the number of nature-driven or synthetically designed peptides increasing year by year. With similar properties, AMPs that can also act as ACPs are viewed as future chemotherapeutic drugs, with the advantage of low propensity to resistance, which started this paradigm in the pharmaceutical market. These peptides have already been described as molecules presenting killing mechanisms at the membrane level, but also acting towards intracellular targets, which increases their success comparatively to specific one-target drugs. This review will approach the desirable characteristics of small peptides that demonstrated dual activity against microbial infections and cancer, as well as the peptides engaged in clinical trials.

  1. Phytochemical investigation GC-MS analysis and in vitro antimicrobial activity of Coleus forskohlii

    Directory of Open Access Journals (Sweden)

    Krishnamoorthy Rajkumar

    2015-12-01

    Full Text Available The aim of this study was to investigate the phytochemical constituents, gas chromatography-mass spectrometry (GC-MS analysis and antimicrobial activity of Coleus forskohlii. The different solvents such as ethanol, chloroform, acetone and aqueous extracts were identified pharmacologically as important bioactive compounds and their antimicrobial properties were studied. In the phytochemical investigation almost all the ethanol extract of leaf, stem and root having secondary metabolites like alkaloids, flavonoids, tannins, saponins, terpenoids, and steroids. The active constituents of the ethanol extract of C. forskohlii root was studied by GC-MS analysis. According to the antimicrobial results ethanol extract of C. froshkolii root showed highest antibacterial activity compared with stem and leaf. The highest antimicrobial activity was observed against Klebsiella pneumonia (19 mm and Candida albicans (16 mm in ethanol extract of root. Among the above extracts of leaf, stem and root, ethanol extract of root having antimicrobial activities due to the presence of phytoconstituents.

  2. Canna edulis Leaf Extract-Mediated Preparation of Stabilized Silver Nanoparticles: Characterization, Antimicrobial Activity, and Toxicity Studies.

    Science.gov (United States)

    Otari, S V; Pawar, S H; Patel, Sanjay K S; Singh, Raushan K; Kim, Sang-Yong; Lee, Jai Hyo; Zhang, Liaoyuan; Lee, Jung-Kul

    2017-04-28

    A novel approach to synthesize silver nanoparticles (AgNPs) using leaf extract of Canna edulis Ker-Gawl. (CELE) under ambient conditions is reported here. The as-prepared AgNPs were analyzed by UV-visible spectroscopy, transmission emission microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, energy-dispersive analysis of X-ray spectroscopy, zeta potential, and dynamic light scattering. The AgNPs showed excellent antimicrobial activity against various pathogens, including bacteria and various fungi. The biocompatibility of the AgNPs was analyzed in the L929 cell line using NRU and MTT assays. Acridine orange/ethidium bromide staining was used to determine whether the AgNPs had necrotic or apoptotic effects on L929 cells. The concentration of AgNPs required for 50% inhibition of growth of mammalian cells is far more than that required for inhibition of pathogenic microorganisms. Thus, CELE is a candidate for the eco-friendly, clean, cost-effective, and nontoxic synthesis of AgNPs.

  3. [Antimicrobial activity of stable silver nanoparticles of a certain size].

    Science.gov (United States)

    Mukha, Iu P; Eremenko, A M; Smirnova, N P; Mikhienkova, A I; Korchak, G I; Gorchev, V F; Chunikhin, A Iu

    2013-01-01

    Conditions for obtaining stable silver nanoparticles smaller than 10 nm were developed using a binary stabilizer polyvinylpyrrolidone/sodium dodecylsulphate in optimal ratio. Optical spectra, morphology and dependence of size of the nanoparticles on the amount of reducing agent were studied. Colloidal solutions of nanosilver showed a high bactericidal activity against strains of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, and fungicidal activity against Candida albicans. The mechanism of action of nanosized silver on microbial cell was examined by laser scanning confocal microscope using fluorescent label. First step of antimicrobial effect on microorganisms was membrane damage and penetration of silver nanoparticles into the cell. Prolonged stability of nanoparticles and their antimicrobial activity over the past two years were showed.

  4. Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36.

    Directory of Open Access Journals (Sweden)

    Yinfeng Lv

    Full Text Available Antimicrobial peptides (AMPs, which present in the non-specific immune system of organism, are amongst the most promising candidates for the development of novel antimicrobials. The modification of naturally occurring AMPs based on their residue composition and distribution is a simple and effective strategy for optimization of known AMPs. In this study, a series of truncated and residue-substituted derivatives of antimicrobial peptide PMAP-36 were designed and synthesized. The 24-residue truncated peptide, GI24, displayed antimicrobial activity comparable to the mother peptide PMAP-36 with MICs ranging from 1 to 4 µM, which is lower than the MICs of bee venom melittin. Although GI24 displayed high antimicrobial activity, its hemolytic activity was much lower than melittin, suggesting that GI24 have optimal cell selectivity. In addition, the crucial site of GI24 was identified through single site-mutation. An amino acid with high hydrophobicity at position 23 played an important role in guaranteeing the high antimicrobial activity of GI24. Then, lipid vesicles and whole bacteria were employed to investigate the membrane-active mechanisms. Membrane-simulating experiments showed that GI24 interacted strongly with negatively charged phospholipids and weakly with zwitterionic phospholipids, which corresponded well with the data of its biological activities. Membrane permeabilization and flow cytometry provide the evidence that GI24 killed microbial cells by permeabilizing the cell membrane and damaging membrane integrity. GI24 resulted in greater cell morphological changes and visible pores on cell membrane as determined using scanning electron microscopy (SEM and transmission electron microscope (TEM. Taken together, the peptide GI24 may provide a promising antimicrobial agent for therapeutic applications against the frequently-encountered bacteria.

  5. Phytochemical screening and antimicrobial activity of apiary honey ...

    African Journals Online (AJOL)

    Honey produced by honeybee (Apis mellifera) which is used in herbal medicine was examined for its chemical constituents and antimicrobial activity. The phytochemical analysis of honey showed the presence of alkaloids, flavonoids, saponins, steroids, reducing sugar and glycosides. Antimicrobial activity of honey on fresh ...

  6. Antimicrobial activity of Caesalpinia pulcherrima, Euphorbia hirta and Asystasia gangeticum.

    Science.gov (United States)

    Sudhakar, M; Rao, Ch V; Rao, P M; Raju, D B; Venkateswarlu, Y

    2006-07-01

    The ethanolic extracts of the dry fruits of Caesalpinia pulcherrima, aerial parts of Euphorbia hirta and flowers of Asystasia gangeticum were tested for antimicrobial activity. The three plants exhibited a broad spectrum of antimicrobial activity, particularly against Escherichia coli (enteropathogen), Proteus vulgaris, Pseudomonas aeruginosa and Staphylococcus aureus.

  7. Evaluation of antimicrobial activity of the stem bark of Cylicodiscus ...

    African Journals Online (AJOL)

    The greater and remarkable antimicrobial activity of the (EA) extract of CG was recorded with Staphylococcus aureus, Proteus vulgaris and Bacillus cereus T. These results provide a rationalization for the traditional use of this plant for the treatment of infections diseases. Keywords: Antimicrobial activity; Cylicodiscus ...

  8. Antimicrobial activity of extracts of leaves of Pseudocedrela kotschyi ...

    African Journals Online (AJOL)

    The aim of the experiment was to investigate the phytochemical composition and antimicrobial activity of extracts of Pseudocedrela kotschyi (Schweinf.) Harms used in folklore medicine in order to authenticate some of its therapeutic claims. The antimicrobial activity of petroleum ether, ethyl acetate and methanol extracts of ...

  9. Antimicrobial activities and toxicity of crude extract of the ...

    African Journals Online (AJOL)

    The extract of the Psophocarpus tetragonolobus pods has been tested for antimicrobial activity in a disk diffusion assay on eight human pathogenic bacteria and two human pathogenic yeasts. The extracts of P. tetragonolobus possessed antimicrobial activity against all tested strains. The ethanolic extract of P.

  10. Evaluation of anti-microbial activity of spore powder of Ganoderma lucidum on clinical isolates of Prevotella intermedia: A pilot study

    Directory of Open Access Journals (Sweden)

    Ranganath N Nayak

    2015-01-01

    Full Text Available Aim: This study aimed at evaluating the anti-microbial activity of spore powder of Ganoderma lucidum on Prevotella intermedia isolated from subgingival plaque from chronic periodontitis patients. Settings and Design: Written informed consent was obtained from each subject enrolled in the study. The Institutional Ethics Committee granted the ethical clearance for the study. Materials and Methods: This study included 20 patients diagnosed with chronic periodontitis. Pooled subgingival plaque samples were collected using sterile curettes from the deepest sites of periodontal pockets. The collected samples were then transported in 1 mL of reduced transport fluid. The organisms were cultured and confirmed. These organisms were then used for minimum inhibitory concentration (MIC procedure. Statistical Analysis: Mean of the MIC value obtained was calculated. Results: Thirteen out of the 20 clinical samples were tested that showed sensitivity at various concentrations. Five samples showed sensitivity at all concentrations. Twelve samples showed sensitivity at 8 mcg/ml. Eleven samples showed sensitivity at 4 mcg/ml, 8 samples showed sensitivity at 2 mcg/ml, and 5 samples showed sensitivity even at 1 mcg/ml. Mean MIC value of G. lucidum spore powder for P. intermedia obtained was 3.62 mcg/ml. Conclusion: G. lucidum with its multipotential bioactivity could be used as an anti-microbial, in conjunction with conventional therapy in periodontal disease.

  11. Antimicrobial activity of some medicinal barks used in Peruvian Amazon.

    Science.gov (United States)

    Kloucek, P; Svobodova, B; Polesny, Z; Langrova, I; Smrcek, S; Kokoska, L

    2007-05-04

    The aim of this study was to evaluate the antimicrobial activity of six barks traditionally used in Callería District (Ucayali Department, Peru) for treating conditions likely to be associated with microorganisms. Ethanol extracts of stem barks of Abuta grandifolia (Menispermaceae), Dipteryx micrantha (Leguminosae), Cordia alliodora (Boraginaceae), Naucleopsis glabra (Moraceae), Pterocarpus rohrii (Leguminosae), and root bark of Maytenus macrocarpa (Celastraceae) were tested against nine bacteria and one yeast using the broth microdilution method. All plants possessed significant antimicrobial effect, however, the extract of Naucleopsis glabra exhibited the strongest activity against Gram-positive bacteria (MICs ranging from 62.5 to 125 microg/ml), while the broadest spectrum of action was shown by the extract of Maytenus macrocarpa, which inhibited all the strains tested with MICs ranging from 125 to 250 microg/ml.

  12. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    OpenAIRE

    Puji Astuti; Sudarsono Sudarsono; Khoirun Nisak; Giri Wisnu Nugroho

    2014-01-01

    Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatograp...

  13. Physicochemical properties and antimicrobial activity of Roselle (Hibiscus sabdariffa L.).

    Science.gov (United States)

    Jung, EunKyung; Kim, YoungJun; Joo, Nami

    2013-12-01

    The therapeutic action of a plant depends on its chemical constituents. In this study, experiments were carried out in order to evaluate the effect of extraction conditions on the antioxidative and antimicrobial activities of Roselle (Hibiscus sabdariffa L.). Roselle was found to be rich in malic acid, anthocyanins, ascorbic acid and minerals, especially Ca and Fe, but low in glucose. More than 18 volatile compounds were identified by gas chromatography and gas chromatography-mass spectrometry. This herb, which is rich in phenolic compounds and displays DPPH radical scavenging activity, could be a good source of natural antioxidants. The antimicrobial activity of the Roselle water and ethanol extracts was tested with Bacillus subtilis (ATCC6633), Staphylococcus aureus (ATCC6538) and Escherichia coli (ATCC 8739). The inhibition of the Roselle ethanol extract against B. subtilis and S. aureus was slightly higher than that of water extract but this difference was not significant. However, E. coli was strongly inhibited by the Roselle water extract at concentrations of 25 and 50 mg mL(-1) as determined by a paper disc method. The obtained results indicated that antioxidant and antimicrobial activity was related to different methods of extraction and Roselle extracts could be a source of therapeutically useful products. © 2013 Society of Chemical Industry.

  14. Antityrosinase and antimicrobial activities from Thai medicinal plants.

    Science.gov (United States)

    Dej-Adisai, Sukanya; Meechai, Imron; Puripattanavong, Jindaporn; Kummee, Sopa

    2014-04-01

    Various dermatological disorders and microbial skin infection can cause hyperpigmentation. Therefore, screenings for whitening and antimicrobial agents from Thai medicinal plants have been of research interest. Seventy-seven ethanol plant extracts were investigated for antityrosinase activity, eleven samples showed the tyrosinase inhibition more than 50 % were further preliminary screening for antimicrobial activity by agar disc diffusion and broth micro-dilution methods. Artocarpus integer (Thunb.) Merr. (Moraceae) root extract, which showed the potential of tyrosinase inhibition with 90.57 ± 2.93 % and antimicrobial activity against Staphylococcus aureus, S. epidermidis, Propionibacterium acnes and Trichophyton mentagophytes with inhibition zone as 9.10 ± 0.00, 10.67 ± 0.09, 15.25 ± 0.05 and 6.60 ± 0.17 mm, respectively was selected for phytochemical investigation. Three pure compounds were isolated as artocarpin, cudraflavone C and artocarpanone. And artocarpanone exhibited anti-tyrosinase effect; artocarpin and cudraflavone C also showed the potential of antibacterial activity against S. aureus, S. epidermidis and P. acnes with MIC at 2, 4 and 2 μg/ml, respectively and MBC at 32 μg/ml for these bacteria. So, these pure compounds are interesting for further study in order to provide possibilities of new whitening and antibacterial development. This will be the first report of phytochemical investigation of A. integer root.

  15. Antimicrobial and Cytotoxic Activities of Extracts from Laurus nobilis Leaves

    KAUST Repository

    Felemban, Shaza

    2011-05-01

    The cytotoxic activity and antimicrobial properties of crude extracts from Laurus nobilis were investigated. With the use of the organic solvents, methanol and ethanol, crude extracts were obtained. To determine the availability of active bio‐compounds, an analysis using liquid chromatography was conducted. The crude extract was also tested for antimicrobial activity. The disc diffusion method was used against the bacterium Escherichia coli. The results showed a weak antimicrobial activity against E. coli. For cytotoxicity testing, the crude extract was studied on four cell-­lines: human breast adenocarcinoma, human embryonic kidney, HeLa (human cervical adenocarcinoma), and human lung fibroblast. From the alamarBlue® assay results, the extracts most potently affected the cell-­lines of human breast adenocarcinoma and human embryonic kidney. Using the lactate dehydrogenase (LDH) assay, an effect on human embryonic kidney was most prominent. With these findings, a suggestion that the crude extract of Laurus nobilis may have antiproliferative properties is put forth, with the possibility of this mechanism being induction of apoptosis with the involvement of Nuclear Factor Kappa κB (NF κB).

  16. Antioxidant and antimicrobial activities of Bauhinia racemosa L. stem bark

    Directory of Open Access Journals (Sweden)

    Kumar R.S.

    2005-01-01

    Full Text Available The present study was carried out to evaluate the antioxidant and antimicrobial activities of a methanol extract of Bauhinia racemosa (MEBR (Caesalpiniaceae stem bark in various systems. 1,1-Diphenyl-2-picryl-hydrazyl (DPPH radical, superoxide anion radical, nitric oxide radical, and hydroxyl radical scavenging assays were carried out to evaluate the antioxidant potential of the extract. The antioxidant activity of the methanol extract increased in a concentration-dependent manner. About 50, 100, 250, and 500 µg MEBR inhibited the peroxidation of a linoleic acid emulsion by 62.43, 67.21, 71.04, and 76.83%, respectively. Similarly, the effect of MEBR on reducing power increased in a concentration-dependent manner. In DPPH radical scavenging assays the IC50 value of the extract was 152.29 µg/ml. MEBR inhibited the nitric oxide radicals generated from sodium nitroprusside with an IC50 of 78.34 µg/ml, as opposed to 20.4 µg/ml for curcumin. Moreover, MEBR scavenged the superoxide generated by the PMS/NADH-NBT system. MEBR also inhibited the hydroxyl radical generated by Fenton's reaction, with an IC50 value of more than 1000 µg/ml, as compared to 5 µg/ml for catechin. The amounts of total phenolic compounds were also determined and 64.7 µg pyrocatechol phenol equivalents were detected in MEBR (1 mg. The antimicrobial activities of MEBR were determined by disc diffusion with five Gram-positive, four Gram-negative and four fungal species. MEBR showed broad-spectrum antimicrobial activity against all tested microorganisms. The results obtained in the present study indicate that MEBR can be a potential source of natural antioxidant and antimicrobial agents.

  17. Biologically Active and Antimicrobial Peptides from Plants

    Science.gov (United States)

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  18. Biologically Active and Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    Carlos E. Salas

    2015-01-01

    Full Text Available Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  19. Screening antimicrobial activity of various extracts of Urtica dioica.

    Science.gov (United States)

    Modarresi-Chahardehi, Amir; Ibrahim, Darah; Fariza-Sulaiman, Shaida; Mousavi, Leila

    2012-12-01

    Urtica dioica or stinging nettle is traditionally used as an herbal medicine in Western Asia. The current study represents the investigation of antimicrobial activity of U. dioica from nine crude extracts that were prepared using different organic solvents, obtained from two extraction methods: the Soxhlet extractor (Method I), which included the use of four solvents with ethyl acetate and hexane, or the sequential partitions (Method II) with a five solvent system (butanol). The antibacterial and antifungal activities of crude extracts were tested against 28 bacteria, three yeast strains and seven fungal isolates by the disc diffusion and broth dilution methods. Amoxicillin was used as positive control for bacteria strains, vancomycin for Streptococcus sp., miconazole nitrate (30 microg/mL) as positive control for fungi and yeast, and pure methanol (v/v) as negative control. The disc diffusion assay was used to determine the sensitivity of the samples, whilst the broth dilution method was used for the determination of the minimal inhibition concentration (MIC). The ethyl acetate and hexane extract from extraction method I (EA I and HE I) exhibited highest inhibition against some pathogenic bacteria such as Bacillus cereus, MRSA and Vibrio parahaemolyticus. A selection of extracts that showed some activity was further tested for the MIC and minimal bactericidal concentrations (MBC). MIC values of Bacillus subtilis and Methicillin-resistant Staphylococcus aureus (MRSA) using butanol extract of extraction method II (BE II) were 8.33 and 16.33mg/mL, respectively; while the MIC value using ethyl acetate extract of extraction method II (EAE II) for Vibrio parahaemolyticus was 0.13mg/mL. Our study showed that 47.06% of extracts inhibited Gram-negative (8 out of 17), and 63.63% of extracts also inhibited Gram-positive bacteria (7 out of 11); besides, statistically the frequency of antimicrobial activity was 13.45% (35 out of 342) which in this among 21.71% belongs to

  20. Screening antimicrobial activity of various extracts of Urtica dioica

    Directory of Open Access Journals (Sweden)

    Amir Modarresi-Chahardehi

    2012-12-01

    Full Text Available Urtica dioica or stinging nettle is traditionally used as an herbal medicine in Western Asia. The current study represents the investigation of antimicrobial activity of U. dioica from nine crude extracts that were prepared using different organic solvents, obtained from two extraction methods: the Soxhlet extractor (Method I, which included the use of four solvents with ethyl acetate and hexane, or the sequential partitions (Method II with a five solvent system (butanol. The antibacterial and antifungal activities of crude extracts were tested against 28 bacteria, three yeast strains and seven fungal isolates by the disc diffusion and broth dilution methods. Amoxicillin was used as positive control for bacteria strains, vancomycin for Streptococcus sp., miconazole nitrate (30µg/mL as positive control for fungi and yeast, and pure methanol (v/v as negative control. The disc diffusion assay was used to determine the sensitivity of the samples, whilst the broth dilution method was used for the determination of the minimal inhibition concentration (MIC. The ethyl acetate and hexane extract from extraction method I (EA I and HE I exhibited highest inhibition against some pathogenic bacteria such as Bacillus cereus, MRSA and Vibrio parahaemolyticus. A selection of extracts that showed some activity was further tested for the MIC and minimal bactericidal concentrations (MBC. MIC values of Bacillus subtilis and Methicillin-resistant Staphylococcus aureus (MRSA using butanol extract of extraction method II (BE II were 8.33 and 16.33mg/mL, respectively; while the MIC value using ethyl acetate extract of extraction method II (EAE II for Vibrio parahaemolyticus was 0.13mg/mL. Our study showed that 47.06% of extracts inhibited Gram-negative (8 out of 17, and 63.63% of extracts also inhibited Gram-positive bacteria (7 out of 11; besides, statistically the frequency of antimicrobial activity was 13.45% (35 out of 342 which in this among 21.71% belongs to

  1. Structure-activity study of macropin, a novel antimicrobial peptide from the venom of solitary bee Macropis fulvipes (Hymenoptera: Melittidae)

    Czech Academy of Sciences Publication Activity Database

    Monincová, Lenka; Veverka, Václav; Slaninová, Jiřina; Buděšínský, Miloš; Fučík, Vladimír; Bednárová, Lucie; Straka, J.; Čeřovský, Václav

    2014-01-01

    Roč. 20, č. 6 (2014), s. 375-384 ISSN 1075-2617 R&D Projects: GA ČR GA203/08/0536 Institutional support: RVO:61388963 Keywords : antimicrobial peptide * analog * wild bee venom * NMR spectroscopy * CD spectroscopy Subject RIV: CE - Biochemistry Impact factor: 1.546, year: 2014

  2. Multicenter Study in Taiwan of the In Vitro Activities of Nemonoxacin, Tigecycline, Doripenem, and Other Antimicrobial Agents against Clinical Isolates of Various Nocardia Species▿

    Science.gov (United States)

    Lai, Chih-Cheng; Liu, Wei-Lun; Ko, Wen-Chien; Chen, Yen-Hsu; Tan, Hon-Ren; Huang, Yu-Tsung; Hsueh, Po-Ren

    2011-01-01

    The aim of this study was to assess the in vitro activities of nemonoxacin (a novel nonfluorinated quinolone), doripenem, tigecycline, and 16 other antimicrobial agents against Nocardia species. The MICs of the 19 agents against 151 clinical isolates of Nocardia species were determined by the broth microdilution method. The isolates were identified to the species level using 16S rRNA gene sequencing analysis. The results showed that N. brasiliensis (n = 60; 40%) was the most common species, followed by N. cyriacigeorgica (n = 24; 16%), N. farcinica (n = 12; 8%), N. beijingensis (n = 9), N. otitidiscaviarum (n = 8), N. nova (n = 8), N. asiatica (n = 7), N. puris (n = 6), N. flavorosea (n = 5), N. abscessus (n = 3), N. carnea (2), and one each of N. alba, N. asteroides complex, N. rhamnosiphila, N. elegans, N. jinanensis, N. takedensis, and N. transvalensis. The MIC90s of the tested quinolones against the N. brasiliensis isolates were in the order nemonoxacin = gemifloxacin Nocardia isolates. Among the four tested carbapenems, imipenem had the lowest MIC90s. All of the clinical isolates of N. beijingensis, N. otitidiscaviarum, N. nova, and N. puris and more than half of the N. brasiliensis and N. cyriacigeorgica isolates were resistant to at least one antimicrobial agent. The results of this in vitro study suggest that nemonoxacin, linezolid, and tigecycline are promising treatment options for nocardiosis. Further investigation of their clinical role is warranted. PMID:21343461

  3. Multicenter study in Taiwan of the in vitro activities of nemonoxacin, tigecycline, doripenem, and other antimicrobial agents against clinical isolates of various Nocardia species.

    Science.gov (United States)

    Lai, Chih-Cheng; Liu, Wei-Lun; Ko, Wen-Chien; Chen, Yen-Hsu; Tan, Hon-Ren; Huang, Yu-Tsung; Hsueh, Po-Ren

    2011-05-01

    The aim of this study was to assess the in vitro activities of nemonoxacin (a novel nonfluorinated quinolone), doripenem, tigecycline, and 16 other antimicrobial agents against Nocardia species. The MICs of the 19 agents against 151 clinical isolates of Nocardia species were determined by the broth microdilution method. The isolates were identified to the species level using 16S rRNA gene sequencing analysis. The results showed that N. brasiliensis (n=60; 40%) was the most common species, followed by N. cyriacigeorgica (n=24; 16%), N. farcinica (n=12; 8%), N. beijingensis (n=9), N. otitidiscaviarum (n=8), N. nova (n=8), N. asiatica (n=7), N. puris (n=6), N. flavorosea (n=5), N. abscessus (n=3), N. carnea (2), and one each of N. alba, N. asteroides complex, N. rhamnosiphila, N. elegans, N. jinanensis, N. takedensis, and N. transvalensis. The MIC90s of the tested quinolones against the N. brasiliensis isolates were in the order nemonoxacin=gemifloxacinNocardia isolates. Among the four tested carbapenems, imipenem had the lowest MIC90s. All of the clinical isolates of N. beijingensis, N. otitidiscaviarum, N. nova, and N. puris and more than half of the N. brasiliensis and N. cyriacigeorgica isolates were resistant to at least one antimicrobial agent. The results of this in vitro study suggest that nemonoxacin, linezolid, and tigecycline are promising treatment options for nocardiosis. Further investigation of their clinical role is warranted.

  4. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil

    Science.gov (United States)

    Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef

    2015-01-01

    Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity. PMID:26000025

  5. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil.

    Science.gov (United States)

    Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef; Kokoska, Ladislav

    2015-01-01

    Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity.

  6. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil

    Directory of Open Access Journals (Sweden)

    Pavel Novy

    2015-01-01

    Full Text Available Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae, is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47% as the main constituent followed by thymol (7.97%, myristic acid (4.71%, linalool (4.65%, and anethole (4.09%. The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity.

  7. Comparative evaluation of antimicrobial activity of hydroalcoholic extract of Aloe vera, garlic, and 5% sodium hypochlorite as root canal irrigants against Enterococcus faecalis: An in vitro study.

    Science.gov (United States)

    Karkare, Swati Ramesh; Ahire, Nivedita Pramod; Khedkar, Smita Uday

    2015-01-01

    Enterococcus faecalis are the most resistant and predominant microorganisms recovered from root canals of teeth where previous treatment has failed. Over the past decade, interest in drugs derived from medicinal plants has markedly increased. In dentistry, phytomedicines has been used as an anti-inflammatory, antibiotic, analgesic, sedative, and also as an endodontic irrigant. In endodontics, because of the cytotoxic reactions of most of the commercial intracanal medicaments and their inability to eliminate bacteria completely from dentinal tubules, the trend is shifting toward use of biologic medication extracted from natural plants. To compare the antimicrobial efficacy of newer irrigating agents which would probably be as effective or more and at the same time less irritating to the tissues than sodium hypochlorite (NaOCl). The objective of this study was to compare the antimicrobial activity of saturated and diluted (1:1) hydroalcoholic extract of Aloe vera, garlic, and 5% NaOCl against E. faecalis using the commonly used agar diffusion method. Saturated hydroalcoholic extract of A. vera showed the highest zone of inhibition against E. faecalis. NaOCl, which is considered as gold standard, also showed higher zones of inhibition.

  8. Surface-engineered core-shell nano-size ferrites and their antimicrobial activity

    International Nuclear Information System (INIS)

    Baraliya, Jagdish D.; Joshi, Hiren H.

    2014-01-01

    We report the results of biological study on core-shell structured MFe 2 O 4 (where M = Co, Mn, Ni) nanoparticles and influence of silica- DEG dual coating on their antimicrobial activity. Spherical MFe 2 O 4 nanoparticles were prepared via a Co-precipitation method. The microstructures and morphologies of these nanoparticles were studied by x-ray diffraction and FTIR. The antimicrobial activity study carried out in nutrient agar medium with addition of antimicrobial synthesis compound which is tested for its activity against different types of bacteria

  9. Development of antimicrobial active packaging materials based on gluten proteins.

    Science.gov (United States)

    Gómez-Heincke, Diana; Martínez, Inmaculada; Partal, Pedro; Guerrero, Antonio; Gallegos, Críspulo

    2016-08-01

    The incorporation of natural biocide agents into protein-based bioplastics, a source of biodegradable polymeric materials, manufactured by a thermo-mechanical method is a way to contribute to a sustainable food packaging industry. This study assesses the antimicrobial activity of 10 different biocides incorporated into wheat gluten-based bioplastics. The effect that formulation, processing, and further thermal treatments exert on the thermo-mechanical properties, water absorption characteristics and rheological behaviour of these materials is also studied. Bioplastics containing six of the 10 examined bioactive agents have demonstrated suitable antimicrobial activity at 37 °C after their incorporation into the bioplastic. Moreover, the essential oils are able to create an antimicrobial atmosphere within a Petri dish. Depending on the selected biocide, its addition may alter the bioplastics protein network in a different extent, which leads to materials exhibiting less water uptake and different rheological and thermo-mechanical behaviours. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Antimicrobial activity of Monodora myristica seed oil | Odoh | Journal ...

    African Journals Online (AJOL)

    The essential oil is colourless, bitter with nice smell and the density is 0.789 g/ml. The oil had antimicrobial activity of the oil against Bacillus subtilis, Candida albicans and Staphylococcus aureus among the tested organism and can be incorporated into cream as antimicrobial agent and as a perfume. Key words: Monodora ...

  11. Antimicrobial and anticancer activities of extracts from Urginea ...

    African Journals Online (AJOL)

    Background: Increasing antibiotic resistance among human pathogenic microorganisms and the failure of conventional cancer therapies attracting great attention among scientists in the field of herbal medicine to develop natural antimicrobial and anticancer drugs. Thus, the antimicrobial and anticancer activities from fruits ...

  12. Antimicrobial activity of camwood (Baphia nitida) dyes on common ...

    African Journals Online (AJOL)

    enoh

    2012-03-29

    Mar 29, 2012 ... on common human pathogens. O. K. Agwa*, C. I. ... and have antimicrobial properties (Egharevba and. Ikhatua, 2008). ... properties. Antibiotic susceptibility is used to determine the efficacy of these plants for use as antibiotics. The most basic laboratory measurement of the activity of an antimicrobial agent ...

  13. Comparative antimicrobial activities of aloe vera gel and leaf ...

    African Journals Online (AJOL)

    The comparative antimicrobial activities of the gel and leaf of Aloe vera were tested against Staphylococcus aureus, Pseudomonas aeruginosa, Trichophyton mentagraphytes, T. schoeleinii, Microsporium canis and Candida albicans. Ethanol was used for the extraction of the leaf after obtaining the gel from it. Antimicrobial ...

  14. Isolation of Corynebacterium Xerosis from Jordanian Soil and a Study on its Antimicrobial Activity against a Range of Bacteria and Fungi

    International Nuclear Information System (INIS)

    El-Banna, Nasser

    2004-01-01

    A bacterial strain which has been identified as Corneybacterium Xerosis NB-2 was isolated from a soil sample from Jerash Private University, Jerash, Jordan. This isolate was found to produce an antimicrobial substance active only against filamentous fungi and yeasts (Aspergillus niger SQ 40, Fusarium oxysporium SQ11, Verticillium dahliae SQ 42, Saccharomyces SQ 46 and Candida albicans SQ 47). However, all tested gram-positive bacteria and gram negative bacteria (Bacillus megaterium SQ5, Bacillus cereus SQ6, Staphylococcus aureus SQ9, Streptococcus pyogens SQ10, Eschericshia coli SQ 22, Klepsiella spp SQ33 and SQ33 and Pseudonomas mallei SQ 34) were found to be resistant. In batch culture, the isolated NB-2 produced the antimicrobial substance late in the growth phase and antimicrobial activity of Corynebacterium Xerosis against filamentous fungi and yeasts which was not previously described. (author)

  15. Antimicrobial activity of alcohols from Musca domestica.

    Science.gov (United States)

    Gołębiowski, Marek; Dawgul, Małgorzata; Kamysz, Wojciech; Boguś, Mieczysława I; Wieloch, Wioletta; Włóka, Emilia; Paszkiewicz, Monika; Przybysz, Elżbieta; Stepnowski, Piotr

    2012-10-01

    Information on the stimulatory and inhibitory effects of cuticular alcohols on growth and virulence of insecticidal fungi is unavailable. Therefore, we set out to describe the content of cuticular and internal alcohols in the body of housefly larvae, pupae, males and females. The total cuticular alcohols in larvae, males and females of Musca domestica were detected in comparable amounts (4.59, 3.95 and 4.03 μg g(-1) insect body, respectively), but occurred in smaller quantities in pupae (2.16 μg g(-1)). The major free alcohol in M. domestica larvae was C(12:0) (70.4%). Internal alcohols of M. domestica larvae were not found. Among cuticular pupae alcohols, C(12:0) (31.0%) was the most abundant. In the internal lipids of pupae, only five alcohols were identified in trace amounts. The most abundant alcohol in males was C(24:0) (57.5%). The percentage content of cuticular C(24:0) in males and females (57.5 and 36.5%, respectively) was significantly higher than that of cuticular lipids in larvae and pupae (0.9 and 5.6%, respectively). Only two alcohols were present in the internal lipids of males in trace amounts (C(18:0) and C(20:0)). The most abundant cuticular alcohols in females were C(24:0) (36.5%) and C(12:0) (26.8%); only two alcohols (C(18:0) and C(20:0)) were detected in comparable amounts in internal lipids (3.61±0.32 and 5.01±0.42 μg g(-1), respectively). For isolated alcohols, antimicrobial activity against 10 reference strains of bacteria and fungi was determined. Individual alcohols showed approximately equal activity against fungal strains. C(14:0) was effective against gram-positive bacteria, whereas gram-negative bacteria were resistant to all tested alcohols. Mixtures of alcohols found in cuticular lipids of larvae, pupae, males and females of M. domestica generally presented higher antimicrobial activity than individual alcohols. In contrast, crude extracts containing both cuticular and internal lipids showed no antifungal activity against the

  16. Studies on the syntheses, structural characterization, antimicrobial-, and DPPH radical scavenging activity of the cocrystals caffeine:cinnamic acid and caffeine:eosin dihydrate

    Science.gov (United States)

    Suresh Kumar, G. S.; Seethalakshmi, P. G.; Bhuvanesh, N.; Kumaresan, S.

    2013-10-01

    Two organic cocrystals namely, caffeine:cinnamic acid [(caf)(ca)] (1) and caffeine:eosin dihydrate [(caf)(eos)]·2H2O (2) were synthesized and studied by FT-IR, TGA/DTA, and single crystal XRD. The crystal system of cocrystal 1 is triclinic with space group P-1 and Z = 2 and that of cocrystal 2 is monoclinic with space group P21/C and Z = 4. An imidazole-carboxylic acid synthon is observed in the cocrystal 1. The intermolecular hydrogen bond, O-H⋯N and π-π interactions play a major role in stabilizing 1 whereas the intermolecular hydrogen bonds, O-H⋯O, O-H⋯N, and intramolecular hydrogen bond, O-H⋯Br; along with π-π interactions together play a vital role in stabilizing the structure of 2. The antimicrobial- and DPPH radical scavenging activities of both the cocrystals were studied.

  17. Testing methods for antimicrobial activity of TiO2 photocatalyst

    Directory of Open Access Journals (Sweden)

    Markov Siniša L.

    2014-01-01

    Full Text Available In recent years, a lot of commercial TiO2 photocatalyst products have been developed and extensively studied for prospective and safe antimicrobial application in daily life, medicine, laboratories, food and pharmaceutical industry, waste water treatments and in development of new self-cleaning and antimicrobial materials, surfaces and paints. This paper reviews the studies published worldwide on killing microorganisms, methods for testing the antimicrobial activity, light sources and intensities, as well as calculation methods usually used when evaluating the antimicrobial properties of the TiO2-based products. Additionally, some strengths and weaknesses of the available methods for testing the antimicrobial activity of TiO2 photocatalyst products have been pointed out.[Projekat Ministarstva nauke Republike Srbije, br. III45008

  18. Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis.

    Science.gov (United States)

    da Cunha, Marcos Guilherme; Franchin, Marcelo; de Carvalho Galvão, Lívia Câmara; de Ruiz, Ana Lúcia Tasca Góis; de Carvalho, João Ernesto; Ikegaki, Masarahu; de Alencar, Severino Matias; Koo, Hyun; Rosalen, Pedro Luiz

    2013-01-28

    Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI) was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography-mass spectrometry. EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF) presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p < 0.05) and showed selectivity against human cancer cell lines, although only HF demonstrated selectivity at low concentrations. The chemical analyses performed suggest the absence of flavonoids and the presence of benzophenones as geopropolis major compounds. The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties.

  19. Antioxidant and antimicrobial activities of squid ink powder

    OpenAIRE

    Fatimah Zaharah, M.Y.; Rabeta, M.S.

    2017-01-01

    Economic development in Malaysia has led to increasing quantity and complexity of generated waste or by-product. The main objective of this study is to investigate the antioxidant and antimicrobial activities of squid ink powder. The squid ink was collected from fresh squid and dried using freeze dryer before it was ground into powder. The yield of squid ink was 22.82% after freeze-drying which was 69.37g in amount. Proximate composition analysis as well as two total antioxidant activity assa...

  20. Preliminary Studies on Antimicrobial Activity of Extracts from Aloe Vera Leaf, Citrus Hystrix Leaf, Zingiber Officinale and Sabah Snake Grass Against Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    Uda M.N.A.

    2018-01-01

    Full Text Available Herbal plants have several potential antimicrobial activities either as antifungal or antibacterial to fight against the disease and pathogen that attack the plants. The extractions of the Aloe vera leaf, Citrus hystrix leaf, Zingiber officinale rhizome and Sabah snake grass were selected in this study to fight against Bacillus subtilis. B. subtilis is a Gram-positive bacterium, rodshaped and catalase-positive that lives on decayed organic material. It is known as Gram-positive bacteria because of its thick peptidoglycan and would appear purple when subjected to Gram test. This species is commonly found in the upper layers of the soil, in meat or vegetables, in pastry, cooked meat, in bread or poultry products. The extracts of Sabah Snake Grass found to be most effective than A.vera leaf, Z. officinale, and C. hystrix against the B. subtilis.

  1. Study on gamma-irradiation degradation of chitosan swollen in H2O2 solution and its antimicrobial activity for E. coli

    International Nuclear Information System (INIS)

    Dang Xuan Du; Bui Phuoc Phuc; Tran Thi Thuy; Le Anh Quoc; Dang Van Phu; Nguyen Quoc Hien

    2014-01-01

    Degradation of chitosan in swollen state with hydrogen peroxide solution (5% w/v) by γ-irradiation was investigated. Molecular weight (M w ) of irradiated chitosan was determined by gel permeation chromatography (GPC). Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-vis) spectra were analyzed to study the structure changes of degraded chitosan. The results showed that the chitosan of low M w (30-45 kDa) was efficiently prepared by γ-irradiation of chitosan swollen in hydrogen peroxide solution at low dose less than 20 kGy. The main structure as well as the degree of deacetylation of the degraded chitosan was almost no significant change. Furthermore, the radiation degradation yield (G s ) was remarkably enhanced by the presence of H 2 O 2 . The obtained low M w chitosan revealed high antimicrobial activity for E. coli that can be used for food preservation and other purposes as well. (author)

  2. Antimicrobial activity of a new preservative for multiuse ophthalmic solutions.

    Science.gov (United States)

    Ghelardi, Emilia; Celandroni, Francesco; Gueye, Sokhna A; Salvetti, Sara; Campa, Mario; Senesi, Sonia

    2013-01-01

    The aim of this study was to examine the antimicrobial activity and the preservative efficacy of a novel preservative solution containing sodium hydroxymethyl glycinate (SHMG) and edetate disodium (EDTA), which is used for preservation of some commercial ophthalmic formulations. In vitro susceptibility assays were performed against several gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus cereus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria representative of the microbial flora of epithelial surfaces or colonizing the conjunctiva, as well as against Candida albicans and Aspergillus niger. Using different concentrations of SHMG alone or in combination with EDTA, the minimal inhibitory and microbicidal concentrations against these organisms were assessed. In addition, 8 brands of multidose eye drops containing 0.002% SHMG and 0.1% EDTA as preservative were tested for antimicrobial activity using the antimicrobial effectiveness test recommended by the international pharmacopoeias. The minimal inhibitory and bactericidal/fungicidal concentration values of SHMG ranged from 0.0025% to 0.0125% for bacteria and from 0.125% to 0.50% for mold and yeast. Susceptibility testing demonstrated that the addition of EDTA substantially increased the SHMG activity against all bacterial and fungal strains. The preservative effectiveness test was applied to commercial eye drops. All the drop solutions met the criteria reported by the U.S. Pharmacopeia for parenteral and ophthalmic preparations. All products also satisfied the major acceptance criteria of the European Pharmacopeia with respect to the antifungal activity. With regard to the antibacterial activity, the less-stringent criteria of the European Pharmacopeia were fulfilled. The present study demonstrates the efficacy of a novel preservative for ophthalmic solutions (SHMG/EDTA) and its activity in protecting selected commercial artificial tears against microbial

  3. Spectroscopic study, antimicrobial activity and crystal structures of N-(2-hydroxy-5-nitrobenzalidene)4-aminomorpholine and N-(2-hydroxy-1-naphthylidene)4-aminomorpholine

    Science.gov (United States)

    Yıldız, Mustafa; Ünver, Hüseyin; Dülger, Başaran; Erdener, Diğdem; Ocak, Nazan; Erdönmez, Ahmet; Durlu, Tahsin Nuri

    2005-03-01

    Schiff bases N-(2-hydroxy-3-nitrobenzalidene)4-aminomorpholine ( 1) and N-(2-hydroxy-1-naphthylidene)4-aminomorpholine ( 2) were synthesized from the reaction of 4-aminomorpholine with 2-hydroxy-5-nitrobenzaldehyde and 2-hydroxy-1-naphthaldehyde. Compounds 1 and 2 were characterized by elemental analysis, IR, 1H NMR, 13C NMR and UV-Visible techniques. The UV-Visible spectra of the Schiff bases with OH group in ortho position to the imino group were studied in polar and nonpolar solvents in acidic and basic media. The structures of compounds 1 and 2 have been examined cyrstallographically, for two compounds exist as dominant form of enol-imines in both the solutions and solid state. The title compounds 1 and 2 crystallize in the monoclinic space group P2 1/ c and P2 1/ n with unit cell parameters: a=8.410(1) and 11.911(3), b=6.350(9) and 4.860(9), c=21.728(3) and 22.381(6) Å, β=90.190(1) and 95.6(2)°, V=1160.6(3) and 1289.5(5) Å 3, Dx=1.438 and 1.320 g cm -3, respectively. The crystal structures were solved by direct methods and refined by full-matrix least squares. The antimicrobial activities of compounds 1 and 2 have also been studied. The antimicrobial activities of the ligands have been screened in vitro against the organisms Escherichia coli ATCC 11230, Staphylococcus aureus ATCC 6538, Klebsiella pneumoniae UC57, Micrococcus luteus La 2971, Proteus vulgaris ATCC 8427, Pseudomonas aeruginosa ATCC 27853, Mycobacterium smegmatis CCM 2067, Bacillus cereus ATCC 7064, Listeria monocytogenes ATCC 15313, Candida albicans ATCC 10231, Kluyveromyces fragilis NRRL 2415, Rhodotorula rubra DSM 70403, Debaryomyces hansenii DSM 70238 and Hanseniaspora guilliermondii DSM 3432.

  4. Synthesis, structural characterization, in vitro antimicrobial and anticancer activity studies of ternary metal complexes containing glycine amino acid and the anti-inflammatory drug lornoxicam

    Science.gov (United States)

    Mahmoud, Walaa H.; Mohamed, Gehad G.; El-Dessouky, Maher M. I.

    2015-02-01

    Mixed ligand complexes were synthesized using lornoxicam (LOR) as the primary ligand and glycine amino acid (HGly) as the secondary ligand. They were characterized by FT-IR, UV-Vis, mass, 1H NMR, ESR spectral studies, TG-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesized complexes, general formulae of [M(LOR)2(Gly)]·Xn·yH2O where M = Cr(III) (X = Cl, n = 2, y = 3), Mn(II) (X = Cl, n = 1, y = 1), Co(II) (X = BF4, n = 1, y = 0), Ni(II) (X = Cl, n = 1, y = 0), Cu(II) (X = BF4, n = 1, y = 2) and Zn(II) (X = BF4, n = 1, y = 2) and (M = Fe(II) (X = BF4, n = 1, y = 1) and Fe(III) (X = Cl, n = 2, y = 1) with an octahedral structure were proposed. Thermal analyses show that the complexes lose water molecules of hydration initially and subsequently expel anionic parts and organic ligands in continuous steps. The kinetic parameters namely E, ΔH∗, ΔS∗ and ΔG∗ illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficiency of the LOR and HGly ligands and the ternary complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to possess efficient antimicrobial properties compared to lornoxicam and most of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. Also, the two ligands, in comparison to ternary metal complexes are screened for their anticancer activity against breastic cancer cell line. The results showed that the metal complexes be more active than the parent LOR and glycine free ligands except Cr(III) ternary complex which was found to be inactive.

  5. Synthetic analogs of anoplin show improved antimicrobial activities

    DEFF Research Database (Denmark)

    Munk, Jens; Uggerhøj, Lars Erik; Poulsen, Tanja Juul

    2013-01-01

    We present the antimicrobial and hemolytic activities of the decapeptide anoplin and 19 analogs thereof tested against methicillin-resistant Staphylococcus aureus ATCC 33591 (MRSA), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), vancomycin-resistant Enterococcus faecium (ATCC...... that increasing the charge and/or hydrophobicity improves antimicrobial activity and increases hemolytic activity. For each strain tested, we identify at least six anoplin analogs with an improved therapeutic index compared with anoplin, the only exception being Enterococcus faecium, against which only few...

  6. Structure-activity relationships of the antimicrobial peptide arasin 1 - and mode of action studies of the N-terminal, proline-rich region.

    Directory of Open Access Journals (Sweden)

    Victoria S Paulsen

    Full Text Available Arasin 1 is a 37 amino acid long proline-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. In this work the active region of arasin 1 was identified through structure-activity studies using different peptide fragments derived from the arasin 1 sequence. The pharmacophore was found to be located in the proline/arginine-rich NH(2 terminus of the peptide and the fragment arasin 1(1-23 was almost equally active to the full length peptide. Arasin 1 and its active fragment arasin 1(1-23 were shown to be non-toxic to human red blood cells and arasin 1(1-23 was able to bind chitin, a component of fungal cell walls and the crustacean shell. The mode of action of the fully active N-terminal arasin 1(1-23 was explored through killing kinetic and membrane permeabilization studies. At the minimal inhibitory concentration (MIC, arasin 1(1-23 was not bactericidal and had no membrane disruptive effect. In contrast, at concentrations of 5×MIC and above it was bactericidal and interfered with membrane integrity. We conclude that arasin 1(1-23 has a different mode of action than lytic peptides, like cecropin P1. Thus, we suggest a dual mode of action for arasin 1(1-23 involving membrane disruption at peptide concentrations above MIC, and an alternative mechanism of action, possibly involving intracellular targets, at MIC.

  7. Comparative study of the chemical profiling, antioxidant and antimicrobial activities of essential oils of different parts of Thymus willdenowii Boiss & Reut.

    Science.gov (United States)

    Ouknin, Mohamed; Romane, Abderrahmane; Costa, Jean; Majidi, Lhou

    2018-02-27

    The analysis of Thymus willdenowii Boiss & Reut essential oils (TW EOs) shows 33 components accounting for (96.3-97.7%) of all identified. The main constituents of TW EOs were thymol (35.5-47.3%), p-cymene (13.9-23.8%), γ-terpinene (8.9-20.3%). The antioxidant assays revealed that all TW EOs tested showed strong activities, the antimicrobial effect of TW EOs has been tested against isolated clinical strains of Proteus mirabilis (ATCC 35659), Escherichia coli (ATCC 25922), Candida albicans (ATCC 10231), Bacillus cereus (ATCC 10876), and Aspergillus brasilliensis (ATCC 16404). The antimicrobial test indicates that TW EOs show an inhibition effect against all the tested bacteria with a MIC of 6.9 to 27.6 μg/mL -1 . These results proving that the essential oils extracted from Thymus willdenowii Boiss & Reut may be a new potential source of natural antimicrobial applied in pharmaceutical and food industries.

  8. Antimicrobial Activity of Methanolic Extracts of Sambucus ebulus ...

    African Journals Online (AJOL)

    Background: Increase in the emergence of drug - resistant pathogens led to the development of natural antimicrobials. In this study the antimicrobial effect of methanolic extracts of Sambucus ebulus and Urtica dioica on 16 skin and wound infections isolates of methicillin resistant. S. aureus have been studied. Material and ...

  9. Activity of Antimicrobial Silver Polystyrene Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Palomba

    2012-01-01

    Full Text Available A simple technique based on doping polymers with in situ generated silver nanoparticles (Ag/PS films has been developed. In particular, an antiseptic material has been prepared by dissolving silver 1,5-cyclooctadiene-hexafluoroacetylacetonate in amorphous polystyrene, and the obtained solid solution has been heated for ca. 10 s at a convenient temperature (180°C. Under such conditions the metal precursor decomposes producing silver atoms that diffuse into the polymer and clusterize. The antimicrobial characteristics of the resulting polystyrene-based material have been accurately evaluated toward Escherichia coli (E. coli comparing the cytotoxicity effect of 10 wt.% and 30 wt.% (drastic and mild annealing silver-doped polystyrene to the corresponding pure micrometric silver powder. Two different bacterial viability assays were performed in order to demonstrate the cytotoxic effect of Ag/PS films on cultured E. coli: (1 turbidimetric determination of optical density; (2 BacLight fluorescence-based test. Both methods have shown that silver-doped polystyrene (30 wt.% provides higher antibacterial activity than pure Ag powder, under similar concentration and incubation conditions.

  10. Comparative analysis of selected methods for the assessment of antimicrobial and membrane-permeabilizing activity: a case study for lactoferricin derived peptides

    Directory of Open Access Journals (Sweden)

    Lohner Karl

    2008-11-01

    Full Text Available Abstract Background Growing concerns about bacterial resistance to antibiotics have prompted the development of alternative therapies like those based on cationic antimicrobial peptides (APs. These compounds not only are bactericidal by themselves but also enhance the activity of antibiotics. Studies focused on the systematic characterization of APs are hampered by the lack of standard guidelines for testing these compounds. We investigated whether the information provided by methods commonly used for the biological characterization of APs is comparable, as it is often assumed. For this purpose, we determined the bacteriostatic, bactericidal, and permeability-increasing activity of synthetic peptides (n = 57; 9–13 amino acid residues in length analogous to the lipopolysaccharide-binding region of human lactoferricin by a number of the most frequently used methods and carried out a comparative analysis. Results While the minimum inhibitory concentration determined by an automated turbidimetry-based system (Bioscreen or by conventional broth microdilution methods did not differ significantly, bactericidal activity measured under static conditions in a low-ionic strength solvent resulted in a vast overestimation of antimicrobial activity. Under these conditions the degree of antagonism between the peptides and the divalent cations differed greatly depending on the bacterial strain tested. In contrast, the bioactivity of peptides was not affected by the type of plasticware (polypropylene vs. polystyrene. Susceptibility testing of APs using cation adjusted Mueller-Hinton was the most stringent screening method, although it may overlook potentially interesting peptides. Permeability assays based on sensitization to hydrophobic antibiotics provided overall information analogous – though not quantitatively comparable- to that of tests based on the uptake of hydrophobic fluorescent probes. Conclusion We demonstrate that subtle changes in methods for

  11. Assessment of in vitro antitumoral and antimicrobial activities of ...

    African Journals Online (AJOL)

    Assessment of in vitro antitumoral and antimicrobial activities of marine algae harvested from the eastern Mediterranean sea. ... African Journal of Biotechnology ... algal extracts obtained from the marine algae Scytosiphon lomentaria, Padina pavonica, Cystoseira mediterranea (Phaeophyceae), Hypnea musciformis and ...

  12. Microwave-assisted green synthesis and antimicrobial activity of ...

    African Journals Online (AJOL)

    Microwave-assisted green synthesis and antimicrobial activity of silver nanoparticles derived from a ... Journal Home > Vol 16, No 12 (2017) > ... has been prepared by a simple, eco-friendly, cost-effective, rapid green chemistry methodology.

  13. Reconfirmation of antimicrobial activity in the coelomic fluid of the ...

    Indian Academy of Sciences (India)

    Unknown

    723. Keywords. Antimicrobial activity; column chromatography; earthworm; Eisenia fetida andrei; Tetrazolium salt ... fair resistance against E. coli, P. aeruginosa and Arthrobacter sp., respectively. [Pan W, Liu X, Ge F ... 2.2 Test bacteria species.

  14. Antimicrobial activity of some actinomycetes from Western Ghats of ...

    African Journals Online (AJOL)

    Antimicrobial activity of some actinomycetes from Western Ghats of Tamil Nadu, India. ... Alexandria Journal of Medicine ... Introduction: Microbial diseases are increasing year by year and they are becoming a big threat to public health.

  15. Antimicrobial activity of essential oils of Ocimum gratissimum l. from ...

    African Journals Online (AJOL)

    ) of 13 populations of different silvicultural zones were evaluated for antimicrobial activity against Gram positive (Staphylococcus aereus, Bacillus spp.) and Gram negative (Escherichia coli, Pseudomonas aeruginosa, Samonella typhi, ...

  16. Antioxidant and Antimicrobial Activities of Ethanol Extracts of Cynara ...

    African Journals Online (AJOL)

    Erah

    yielding nutritional supplements with antioxidant and antimicrobial activities. Keywords: Artichoke ... and a tall stem of up to 1.50 m. The leaves ..... of Cynara scolymus L. extract on cell physiology of ... food and medicinal plants. Int J Food Sci.

  17. 61-68 Antimicrobial Activity and Bioactive Constit

    African Journals Online (AJOL)

    user

    3Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya. Alectra sessiliflora ... yellow dye for colouring wood probably to reduce termite attack [5,7]. ... phytochemical and the potential antimicrobial activity of A.

  18. Evaluation of the antimicrobial activity of crude extracts and ...

    African Journals Online (AJOL)

    aghomotsegin

    2015-03-25

    Mar 25, 2015 ... (6.25, 12.5 25, 50 and 100 mg/ ml) against S. aureus PHM 002 strain from the skin. ... Key words: Adenanthera pavonina, antimicrobial activity, chromatographic fractions, methanolic extract. ..... Glossary of Indian medicinal.

  19. In vitro antimicrobial and antioxidant activities of bark extracts of ...

    African Journals Online (AJOL)

    Jane

    2011-07-01

    Jul 1, 2011 ... Key words: Bauhinia purpurea, phytochemical analysis, antimicrobial activity, antioxidant property. INTRODUCTION. The use of ..... Supplement to glossary of ... Turkish flora Bektas Tepe and Atalay Sokmen, (2): 22-25. Cao G ...

  20. An Investigation on the antimicrobial activity of some endemic plant ...

    African Journals Online (AJOL)

    SERVER

    2008-01-04

    Jan 4, 2008 ... Key words: Antimicrobial activity, endemic plants, plant extract. INTRODUCTION ..... The essential oil of A. balsamea was found to be inactive against E. ... Origanum solymicum and Origanum bilgeri from Turkey. Afr. J. Trad.

  1. Antimicrobial and free radical scavenging activities of five ...

    African Journals Online (AJOL)

    Extracts from five indigenous Palestinian medicinal plants including Rosmarinus officinalis, Pisidium guajava, Punica granatum peel, grape seeds and Teucrium polium were investigated for antimicrobial and free radical scavenging activities against eight microorganisms, using well diffusion method. The microorganisms ...

  2. Synthesis, characterization, x-ray structure and antimicrobial activity ...

    African Journals Online (AJOL)

    Methods: Pyridine-based thiosemicarbazide was synthesized, characterized and evaluated for antimicrobial activity. ... homogeneity of the compounds was checked by. TLC performed ..... properties of novel N-methyl-1,3,4-thiadiazol-2- amine.

  3. Short Communication: An investigation on antimicrobial activity of ...

    African Journals Online (AJOL)

    Antimicrobial activity was determined Escherichia coli ATCC 11230, Stapylococcus aureus ATCC 6538P, Klebsiella pneumoniae UC57, Pseudomonas aeruginosa ATCC 27853, Proteus vulgaris ATCC 8427, Bacillus cereus ATCC 7064, Mycobacterium smegmatis CCM 2067, Listeria monocytogenes ATCC 15313, ...

  4. Antioxidant, antimicrobial and synergistic activities of tea polyphenols

    African Journals Online (AJOL)

    Microbial resistance to antibiotics has become an increasing global problem and there is a need to find out novel potent antimicrobial agents with alternative modes of action as accessories to antibiotic therapy. This study investigated the antioxidant, antimicrobial and synergistic properties of tea polyphenols. The tea ...

  5. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity.

    Science.gov (United States)

    Astuti, Puji; Sudarsono, Sudarsono; Nisak, Khoirun; Nugroho, Giri Wisnu

    2014-12-01

    Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC) - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents.

  6. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Puji Astuti

    2014-12-01

    Full Text Available Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Results: Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. Conclusion: These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents.

  7. 77 FR 2302 - Agency Information Collection Activities; Proposed Collection; Comment Request; Antimicrobial...

    Science.gov (United States)

    2012-01-17

    ...] Agency Information Collection Activities; Proposed Collection; Comment Request; Antimicrobial Animal Drug... distribution reports for antimicrobials in food producing animals. DATES: Submit either electronic or written... techniques, when appropriate, and other forms of information technology. Antimicrobial Animal Drug...

  8. Antimicrobial Activity and Toxicity of Zhumeria Majdae Essential Oil and its Capsulated Form

    Directory of Open Access Journals (Sweden)

    Rahil Emami

    2015-03-01

    Conclusion: It was found that in some cases, encapsulation could lead to better antimicrobial property and less toxicity. Because of high antimicrobial activity, both EO and EFEO of Zhumeria majdae may be used as powerfully antimicrobial agents.

  9. Antimicrobial activity of four plants from Peruvian north-east

    OpenAIRE

    Ruiz Q., Julio R.; Roque A., Mirtha

    2014-01-01

    The present work investigated the in vitro antimicrobial activities of ethanolic, methonolic and hydroalcoholic extracts corresponding to four plants of north easter of Peru; Cassia reticulata (whole plant), Ilex guayusa Loes (leaves), Piper lineatum (leaves), y Terminalia catappa (leaves). The plants were collected in the department of Cajamarca, except Terminalia catappa (Amazonas). The antimicrobial activity was determinated by the method of agar diffusion. The used microorganisms were the...

  10. Antimicrobial activity of Davilla elliptica St. Hill (Dilleniaceae

    Directory of Open Access Journals (Sweden)

    D.C. Michelin

    Full Text Available Davilla elliptica St. Hill ("lixinha", family Dilleniaceae, is commonly used in the Brazilian folk medicine as purgative and stimulant. This work evaluated the antimicrobial activity of the methanol and chloroform extracts of the leaves and barks of D. elliptica using the disc-diffusion method. The results obtained showed that the methanolic extracts of the leaves and barks presented antimicrobial activity against the tested microorganisms.

  11. Antimicrobial activities of three species of family mimosaceae.

    Science.gov (United States)

    Mahmood, Adeel; Mahmood, Aqeel; Qureshi, Rizwana Aleem

    2012-01-01

    The antimicrobial activities of crude methanolic extract of leaves of Acacia nilotica L., Albizia lebbeck L. and Mimosa himalayana Gamble belonging to family mimosaceae were investigated in this research work. Antibacterial activity was studied by agar well diffusion method against one gram-positive Bacillus subtilis and three gram-negative Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumonia. Crude extract of all plants showed best activity against gram-negative bacterial strains while minor inhibition zones were found against gram positive bacterial strains. Antifungal activity of crude plant extract was screened by agar tube dilution method against Aspergillus nigar and Aspergillus flavus. These results showed that these plants extracts have potential against bacterias, while against fungi their activity is not much effective.

  12. Ohmyungsamycins promote antimicrobial responses through autophagy activation via AMP-activated protein kinase pathway.

    Science.gov (United States)

    Kim, Tae Sung; Shin, Yern-Hyerk; Lee, Hye-Mi; Kim, Jin Kyung; Choe, Jin Ho; Jang, Ji-Chan; Um, Soohyun; Jin, Hyo Sun; Komatsu, Masaaki; Cha, Guang-Ho; Chae, Han-Jung; Oh, Dong-Chan; Jo, Eun-Kyeong

    2017-06-13

    The induction of host cell autophagy by various autophagy inducers contributes to the antimicrobial host defense against Mycobacterium tuberculosis (Mtb), a major pathogenic strain that causes human tuberculosis. In this study, we present a role for the newly identified cyclic peptides ohmyungsamycins (OMS) A and B in the antimicrobial responses against Mtb infections by activating autophagy in murine bone marrow-derived macrophages (BMDMs). OMS robustly activated autophagy, which was essentially required for the colocalization of LC3 autophagosomes with bacterial phagosomes and antimicrobial responses against Mtb in BMDMs. Using a Drosophila melanogaster-Mycobacterium marinum infection model, we showed that OMS-A-induced autophagy contributed to the increased survival of infected flies and the limitation of bacterial load. We further showed that OMS triggered AMP-activated protein kinase (AMPK) activation, which was required for OMS-mediated phagosome maturation and antimicrobial responses against Mtb. Moreover, treating BMDMs with OMS led to dose-dependent inhibition of macrophage inflammatory responses, which was also dependent on AMPK activation. Collectively, these data show that OMS is a promising candidate for new anti-mycobacterial therapeutics by activating antibacterial autophagy via AMPK-dependent signaling and suppressing excessive inflammation during Mtb infections.

  13. Antimicrobial activity and phyto constituents of Some medicinal plants from Kordofan province in Sudan

    International Nuclear Information System (INIS)

    Sulieman, M. H. A.; Ayoub, S. M. H.

    2008-01-01

    Twenty four extracts from different morphological parts of eleven medicinal plants belonging to ten families growing in the study area Wad Albaga, Kordofan province, have been screened photochemically and assessed for their antimicrobial activity. Selection of plants was based primarily on their ethnobotanical and ethno pharmacological uses as antimicrobial plants for treatment of infections and wounds. Flavonoids, tannins, and terpenoids were detected in all screened extracts, about 66% of the extract contained alkaloids and 66% contained saponins with different concentrations. The extracts exhibited variable antimicrobial activity against two Gram-positive and three Gram-negative standard bacteria and two fungi. (Author)

  14. In vitro antimicrobial activity of Pistacia lentiscus L. edible oil and phenolic extract.

    Science.gov (United States)

    Mezni, F; Aouadhi, C; Khouja, M L; Khaldi, A; Maaroufi, A

    2015-01-01

    Pistacia lentiscus L. is known in some Tunisian forest area by its fixed oil used in traditional medicine as an antiseptic product. This investigation is the first to study the antimicrobial activity of P.lentiscus edible oil and its phenolic extract. Oil was extracted from fruits harvested from six provenances located in Tunisia. The antimicrobial activity was tested using disc diffusion assay and the broth dilution method. Kbouch and Sidi Zid oils were most efficient (p oil and extract.

  15. The antimicrobial activity of the Cnicus benedictus L. extracts

    Directory of Open Access Journals (Sweden)

    Annamaria PALLAG

    2009-05-01

    Full Text Available Our goal was to test the antimicrobial effect of the aqueous solutions obtained from the soft extract of Cnicus benedictus L. (Asteraceae family flowers. The test was performed on Mueller - Hinton and blood-agar culture medium, on 8 standardized bacterial strains and microbiological strains obtained from infected secretions, using the diffusimetric method.The antimicrobial action of the plant extracts was confirmed by all bacterial tested strains, which presented inhibition zones, of approximately same values, at solutions with different concentrations. The values we obtained reveal significant differences of the intensity of the antimicrobial activity of the mature and immature flowers extract.

  16. Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Atikya Farjana

    2014-09-01

    Full Text Available Objective: To determine antibacterial activity of water, oil and methanol extracts of guava (Psidium guajava, green tea (Camellia sinensis, neem (Azadirachta indica and marigold (Calendula officinalis against different species of bacteria, Pseudomonas spp., Vibrio cholerae, Vibrio parahaemolyticus (V. parahaemolyticus, Klebsiella spp., Escherichia coli, Salmonella spp. and Staphylococcus aureus (S. aureus. Methods: Antibacterial activity of plant extracts was measured by agar well diffusion method. Results: Boiled water extracts of guava leaf showed the largest zone of inhibition (22 mm against V. parahaemolyticus. Water extracts of green tea leaf at boiling and room temperature showed 17.5 mm and 19 mm zone of inhibitions against V. parahaemolyticus and S. aureus, respectively. Boiled water extract of neem leaf showed moderate zone of inhibition against Escherichia coli (10 mm and Klebsiella spp. (11 mm. Water and oil extracts of marigold leaf at both boiling and room temperature did not show any zone of inhibition against any of the tested microorganisms. Methanol extracts of both guava and green tea leaves showed same zone of inhibition against Pseudomonus spp. (18 mm. Methanol extract of neem leaf showed antibacterial acitivity against Klebsiella spp. (16 mm and Vibrio cholerae (14 mm and that of marigold leaf showed antimicrobial activity against S. aureus (18 mm and Klebsiella spp. (12 mm. Conclusions: The results from the study suggest that the leaves of guava, green tea, neem and marigold show anibacterial activity against different bacterial species. They could be used as alternatives to common antimicrobial agents for treatment of bacterial infections.

  17. Prediction of antibacterial activity from physicochemical properties of antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Manuel N Melo

    Full Text Available Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM, which conciliates the two types of observations.

  18. Benzofuranyl Esters: Synthesis, Crystal Structure Determination, Antimicrobial and Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    C. S. Chidan Kumar

    2015-09-01

    Full Text Available A series of five new 2‐(1‐benzofuran‐2‐yl‐2‐oxoethyl 4-(un/substitutedbenzoates 4(a–e, with the general formula of C8H5O(C=OCH2O(C=OC6H4X, X = H, Cl, CH3, OCH3 or NO2, was synthesized in high purity and good yield under mild conditions. The synthesized products 4(a–e were characterized by FTIR, 1H-, 13C- and 1H-13C HMQC NMR spectroscopic analysis and their 3D structures were confirmed by single-crystal X-ray diffraction studies. These compounds were screened for their antimicrobial and antioxidant activities. The tested compounds showed antimicrobial ability in the order of 4b < 4a < 4c < 4d < 4e and the highest potency with minimum inhibition concentration (MIC value of 125 µg/mL was observed for 4e. The results of antioxidant activities revealed the highest activity for compound 4e (32.62% ± 1.34% in diphenyl-2-picrylhydrazyl (DPPH radical scavenging, 4d (31.01% ± 4.35% in ferric reducing antioxidant power (FRAP assay and 4a (27.11% ± 1.06% in metal chelating (MC activity.

  19. Essential oil from Artemisia phaeolepis: chemical composition and antimicrobial activities.

    Science.gov (United States)

    Ben Hsouna, Anis; Ben Halima, Nihed; Abdelkafi, Slim; Hamdi, Naceur

    2013-01-01

    Artemisia phaeolepis, a perennial herb with a strong volatile odor, grows on the grasslands of Mediterranean region. Essential oil obtained from Artemisia phaeolepis was analyzed by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. A total of 79 components representing 98.19% of the total oil were identified, and the main compounds in the oil were found to be eucalyptol (11.30%), camphor (8.21%), terpine-4-ol (7.32%), germacrene D (6.39), caryophyllene oxide (6.34%), and caryophyllene (5.37%). The essential oil showed definite inhibitory activity against 10 strains of test microorganisms. Eucalyptol, camphor, terpine-4-ol, caryophyllene, germacrene D and caryophyllene oxide were also examined as the major components of the oil. Camphor showed the strongest antimicrobial activity; terpine-4-ol, eucalyptol, caryophyllene and germacrene D were moderately active and caryophyllene oxide was weakly active. The study revealed that the antimicrobial properties of the essential oil can be attributed to the synergistic effects of its diverse major and minor components.

  20. Antimicrobial and antioxidant activity of lemon balm Kombucha

    Directory of Open Access Journals (Sweden)

    Velićanski Aleksandra S.

    2007-01-01

    Full Text Available Kombucha is a beverage traditionally produced by metabolic activity of yeasts and acetic acid bacteria. The antimicrobial activity of lemon balm kombucha as well as of particular control samples was determined by agar-well diffusion method. Antioxidant activity on stable 1,1-diphenyl-2-picrylhydrazyl radicals of lemon balm kombucha and lemon balm tea was determined by electron spin resonance spectroscopy. Acetic acid, Kombucha samples and heat-denaturated kombucha showed significant antimicrobial activity against bacteria. However, there was no activity against yeasts and moulds. Kombucha showed higher antioxidant activity than tea sample for all applied sample volumes.

  1. Effect of Encapsulation on Antimicrobial Activity of Herbal Extracts with Lysozyme

    Directory of Open Access Journals (Sweden)

    Petra Matouskova

    2016-01-01

    Full Text Available Resistance of microorganisms to antibiotics has increased. The use of natural components with antimicrobial properties can be of great significance to reduce this problem. The presented work is focused on the study of the effect of encapsulation of selected plant and animal antimicrobial substances (herbs, spices, lysozyme and nisin on their activity and stability. Antimicrobial components were packaged into liposomes and polysaccharide particles (alginate, chitosan and starch. Antimicrobial activity was tested against two Gram-positive (Bacillus subtilis and Micrococcus luteus and two Gram-negative (Escherichia coli and Serratia marcescens bacteria. Encapsulation was successful in all types of polysaccharide particles and liposomes. The prepared particles exhibited very good long-term stability, especially in aqueous conditions. Antimicrobial activity was retained in all types of particles. Liposomes with encapsulated herb and spice extracts exhibited very good inhibitory effect against all tested bacterial strains. Most of herbal extracts had very good antimicrobial effect against the tested Gram-negative bacterial strains, while Gram-positive bacteria were more sensitive to lysozyme particles. Thus, particles with co-encapsulated herbs and lysozyme are more active against different types of bacteria, and more stable and more effective during long-term storage. Particles with encapsulated mixture of selected plant extracts and lysozyme could be used as complex antimicrobial preparation with controlled release in the production of food and food supplements, pharmaceutical and cosmetic industries.

  2. Antimicrobial Activity of Bacteriophage Endolysin Produced in Nicotiana benthamiana Plants.

    Science.gov (United States)

    Kovalskaya, Natalia; Foster-Frey, Juli; Donovan, David M; Bauchan, Gary; Hammond, Rosemarie W

    2016-01-01

    The increasing spread of antibiotic-resistant pathogens has raised the interest in alternative antimicrobial treatments. In our study, the functionally active gram-negative bacterium bacteriophage CP933 endolysin was produced in Nicotiana benthamiana plants by a combination of transient expression and vacuole targeting strategies, and its antimicrobial activity was investigated. Expression of the cp933 gene in E. coli led to growth inhibition and lysis of the host cells or production of trace amounts of CP933. Cytoplasmic expression of the cp933 gene in plants using Potato virus X-based transient expression vectors (pP2C2S and pGR107) resulted in death of the apical portion of experimental plants. To protect plants against the toxic effects of the CP933 protein, the cp933 coding region was fused at its Nterminus to an N-terminal signal peptide from the potato proteinase inhibitor I to direct CP933 to the delta-type vacuoles. Plants producing the CP933 fusion protein did not exhibit the severe toxic effects seen with the unfused protein and the level of expression was 0.16 mg/g of plant tissue. Antimicrobial assays revealed that, in contrast to gram-negative bacterium E. coli (BL21(DE3)), the gram-positive plant pathogenic bacterium Clavibacter michiganensis was more susceptible to the plant-produced CP933, showing 18% growth inhibition. The results of our experiments demonstrate that the combination of transient expression and protein targeting to the delta vacuoles is a promising approach to produce functionally active proteins that exhibit toxicity when expressed in plant cells.

  3. Antimicrobial Activity of Kedawung Extract (Parkia Roxburghii G. Don on Food Borne Pathogens

    Directory of Open Access Journals (Sweden)

    Ervizal A. M Zuhud, Winiati Pudji Rahayu, C. Hanny Wijaya, Pipi Puspita Sari

    2001-04-01

    Full Text Available Kedawung is a Leguminosae/Fabaceae which. It is commonly used as traditional medicine for infection and stomach disoders, caused by bacteria.The aim of this study is to examine the potential antimicrobial activity of seed, bark, root and kedawung leaf. It is expected that the result will give information on characteristics and concentration of kedawung part which have the highest antimicrobial activity.The result showed that the bark has the highest antimicrobial activity on Escherichia coli, Vibrio cholerae, Staphylococcus aureus and Bacillus cereus. Extract made from kedawung plant and water (ratio 1:2,b/v was better than those made with ratios of 1 : 1 or 1 : 3 (b/v. Heat did not decrease its antimicrobial activity. Extract concentration of 10% (21.40 mg/ml with contact time of 24 hour decreased bacterial growth but did not inactivate them.

  4. Screening of antimicrobial activity of macroalgae extracts from the Moroccan Atlantic coast.

    Science.gov (United States)

    El Wahidi, M; El Amraoui, B; El Amraoui, M; Bamhaoud, T

    2015-05-01

    The aim of this work is the screening of the antimicrobial activity of seaweed extracts against pathogenic bacteria and yeasts. The antimicrobial activity of the dichloromethane and ethanol extracts of ten marine macroalgae collected from the Moroccan's Atlantic coast (El-Jadida) was tested against two Gram+ (Bacillus subtilis and Staphylococcus aureus) and two Gram- (Escherichia coli and Pseudomonas aeruginosa) human pathogenic bacteria, and against two pathogenic yeasts (Candida albicans and Cryptococcus neoformans) using the agar disk-diffusion method. Seven algae (70%) of ten seaweeds are active against at least one pathogenic microorganisms studied. Five (50%) are active against the two studied yeast with an inhibition diameter greater than 15 mm for Cystoseira brachycarpa. Six (60%) seaweeds are active against at least one studied bacteria with five (50%) algae exhibiting antibacterial inhibition diameter greater than 15 mm. Cystoseira brachycarpa, Cystoseira compressa, Fucus vesiculosus, and Gelidium sesquipedale have a better antimicrobial activity with a broad spectrum antimicrobial and are a potential source of antimicrobial compounds and can be subject of isolation of the natural antimicrobials. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. PHYTOCHEMICAL STUDY AND EVALUATION OF THE ANTIMICROBIAL AND ANTIOXIDANT ACTIVITY OF ESSENTIAL OILS AND PHENOLIC COMPOUNDS OF PISTACIA LENTISCUS L

    Directory of Open Access Journals (Sweden)

    K. Arab

    2014-06-01

    Full Text Available This work aims for the phytochemical study and evaluation of the antioxidant activity of phenolic compounds and essential oils of medicinal plant Pistacia lentiscus L. quantitatively and qualitatively. Through the results obtained, it appears that the leaves and fruits are rich in substances with a high antioxidant power. The yield of the phenolic compounds obtained from 10g to powder of plant is for leaves 116.49 % and 61.34 % for fruit . For essential oils, it is 0.253 ± 0.131 % for 100 g of plant material. The chromatographic profile of the essential oil of Pistacia lentiscus L. shows that monoterpenes are the major compound (9.675 % of identified molecules. The strong antioxidant activity of extracts obtained only confirms the traditional use of this plant by the local population.

  6. Structural Basis for Antimicrobial Activity of Lasiocepsin

    Czech Academy of Sciences Publication Activity Database

    Monincová, Lenka; Buděšínský, Miloš; Čujová, Sabína; Čeřovský, Václav; Veverka, Václav

    2014-01-01

    Roč. 15, č. 2 (2014), s. 301-308 ISSN 1439-4227 R&D Projects: GA ČR GA203/08/0536; GA MŠk(CZ) LK11205 Institutional support: RVO:61388963 Keywords : antimicrobial peptides * Lasioglossum laticeps * membranes * NMR spectroscopy * ShK family Subject RIV: CE - Biochemistry Impact factor: 3.088, year: 2014

  7. Nanocomposite of polystyrene foil grafted with metallaboranes for antimicrobial activity

    Science.gov (United States)

    Benkocká, Monika; Kolářová, Kateřina; Matoušek, Jindřich; Semerádtová, Alena; Šícha, Václav; Kolská, Zdeňka

    2018-05-01

    The surface of polystyrene foil (PS) was chemically modified. Firstly, the surface was pre-treated with Piranha solution. The activated surface was grafted by selected amino-compounds (cysteamine, ethylenediamine or chitosan) and/or subsequently grafted with five members of inorganic metallaboranes. Selected surface properties were studied by using various methods in order to indicate significant changes before and after individual modification steps of polymer foil. Elemental composition of surface was conducted by using X-ray photoelectron spectroscopy, chemistry and polarity by infrared spectroscopy and by electrokinetic analysis, wettability by goniometry, surface morphology by atomic force microscopy. Antimicrobial tests were performed on individual samples in order to confirm antimicrobial impact. Our results show slight antibacterial activity of PS modified with SK5 for Escherichia coli in comparison with the rest of the tested borane. On the other hand molecules of all tested metallaboranes could easier pierce through bacterial cell of Staphylococcus epidermidis due to absence of outer membrane (phospholipid bilayer). Some borane grafted on PS surface embodies the strong activity for Staphylococcus epidermidis and also for Desmodesmus quadricauda growth inhibition.

  8. Synthesis, crystal structure, antimicrobial activity and electrochemistry study of chromium(III) and copper(II) complexes based on semicarbazone Schiff base and azide ligands

    Czech Academy of Sciences Publication Activity Database

    Shaabani, B.; Khandar, A.A.; Dušek, Michal; Pojarová, Michaela; Mahmoudi, F.

    2013-01-01

    Roč. 394, JAN (2013), s. 563-568 ISSN 0020-1693 Grant - others:AV ČR(CZ) AP0701 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 Keywords : antimicrobial activity * azide ligand * metal complex * Schiff base ligand * X-ray structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.041, year: 2013

  9. Antioxidant and antimicrobial activities of squid ink powder

    Directory of Open Access Journals (Sweden)

    Fatimah Zaharah, M.Y.

    2017-10-01

    Full Text Available Economic development in Malaysia has led to increasing quantity and complexity of generated waste or by-product. The main objective of this study is to investigate the antioxidant and antimicrobial activities of squid ink powder. The squid ink was collected from fresh squid and dried using freeze dryer before it was ground into powder. The yield of squid ink was 22.82% after freeze-drying which was 69.37g in amount. Proximate composition analysis as well as two total antioxidant activity assays named 2,2-diphenyl-1-picrylhydrazyl (DPPH assay and Ferric Reducing Antioxidant Power (FRAP assay, and antimicrobial analysis were done on the powdered squid ink. The proximate results of squid ink powder were 4.43 ± 0.29% moisture, 62.46 ± 0.62% protein, 3.96 ± 0.08% fat, and 9.29 ± 0.05% ash. Results of DPPH assay showed that water extraction of squid ink powder has the highest 94.87 ± 4.87%, followed by ethanol 67.57 ± 7.55%, and hexane extract 2.10 ± 1.18%. FRAP assay result presented the same trend with water extraction had the highest value of 929.67 ± 2.31 μmol Fe (II / g of sample extract, followed by ethanol extract 201.00 ± 26.29 μmol Fe (II per gram sample and hexane 79.67 ± 12.66 μmol Fe (II / g of sample extract. Both water and ethanol extract showed antimicrobial properties with inhibition range of 7 to 15 mm, respectively. Fresh squid ink had 1.254 × 103 colony forming unit per gram of sample of microbial content. Squid ink powder had protein as major compound and microbial content was below from standard value of fisheries products as stated in Food Act 1983 and Regulation 1985.

  10. Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens.

    Science.gov (United States)

    Hu, Fengjiao; Wu, Qiaoxing; Song, Shuang; She, Ruiping; Zhao, Yue; Yang, Yifei; Zhang, Meikun; Du, Fang; Soomro, Majid Hussain; Shi, Ruihan

    2016-12-05

    Hemoglobin is a rich source of biological peptides. As a byproduct and even wastewater of poultry-slaughtering facilities, chicken blood is one of the most abundant source of hemoglobin. In this study, the chicken hemoglobin antimicrobial peptides (CHAP) were isolated and the antimicrobial and bactericidal activities were tested by the agarose diffusion assay, minimum inhibitory concentration (MIC) analysis, minimal bactericidal concentration (MBC) analysis, and time-dependent inhibitory and bactericidal assays. The results demonstrated that CHAP had potent and rapid antimicrobial activity against 19 bacterial strains, including 9 multidrug-resistant bacterial strains. Bacterial biofilm and NaCl permeability assays, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were further performed to detect the mechanism of its antimicrobial effect. Additionally, CHAP showed low hemolytic activity, embryo toxicity, and high stability in different temperatures and animal plasma. CHAP may have great potential for expanding production and development value in animal medication, the breeding industry and environment protection.

  11. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Juan David Guzman

    2014-11-01

    Full Text Available Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  12. Antimicrobial activity of traditional medicinal plants from Ankober District, North Shewa Zone, Amhara Region, Ethiopia.

    Science.gov (United States)

    Lulekal, E; Rondevaldova, J; Bernaskova, E; Cepkova, J; Asfaw, Z; Kelbessa, E; Kokoska, L; Van Damme, P

    2014-05-01

    Traditional medicinal plants have long been used in Ethiopia to treat human and livestock ailments. Despite a well-documented rich tradition of medicinal plant use in the country, their direct antimicrobial effects are still poorly known. To investigate the antimicrobial activity of 19 medicinal plant species that were selected based on the ethnobotanical information on their traditional use to treat infectious diseases in Ankober District. About 23 different ethanol extracts of plants obtained by maceration of various parts of 19 medicinal plant species were studied for potential antimicrobial activity using a broth microdilution method against Bacillus cereus, Bacteroides fragilis, Candida albicans, Clostridium perfringens, Enterococcus faecalis, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella enteritidis, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus pyogenes. Plant extracts from Embelia schimperi Vatke (Myrsinaceae) showed the strongest antibacterial activity with a minimum inhibitory concentration (MIC) value of 64 µg/ml against B. cereus, L. monocytogenes, and S. pyogenes. Growth inhibitory activities were also observed for extracts of Ocimum lamiifolium Hochst. (Lamiaceae) against S. pyogenes, and those of Rubus steudneri Schweinf. (Rosaceae) against S. epidermidis at an MIC value of 128 µg/ml. Generally, 74% of ethanol extracts (17 extracts) showed antimicrobial activity against one or more of the microbial strains tested at an MIC value of 512 µg/ml or below. Results confirm the antimicrobial role of traditional medicinal plants of Ankober and warrant further investigations on promising medicinal plant species so as to isolate and characterise chemicals responsible for the observed strong antimicrobial activities.

  13. Antimicrobial activity of different tissues of snakehead fish Channa striatus (Bloch

    Directory of Open Access Journals (Sweden)

    Pravin Kumar N

    2012-05-01

    Full Text Available Objective: The aim of this study was to identify the presence of antimicrobial activity in different organs/tissues (gills, blood, skin, liver, intestine, kidney, tissue and ovary extract of snakehead fish Channa striatus. Methods: A total of 48 fractions from the organs and tissue extracts were obtained by solid-phase extraction and the fractions were assayed for antimicrobial activity. The screening of antimicrobial activity for all the fractions were tested against 8 human pathogens including Gram positive (Methicillin-resistant Staphylococcus aureus (MRSA, Staphylococcus aureus, Bacillus cereus and Gram negative bacteria (Salmonella enteritidis, Shigella flexneri, Acinetobacter baumanni, Escherichia coli, Klebsiella pneumoniae using the British Society for Antimicrobial Chemotherapy (BSAC standardized disc susceptibility test method. The activity was measured in terms of zone of inhibition in mm. Results: The results indicated that, among the 8 organs/tissues tested only blood and gills extract fractions (40 and 60 % ACN fraction showed inhibition against Escherichia coli and 60 % ACN fraction of gill extract showed inhibition against Salmonella enteritidis. Protein profile analysis by SDS-PAGE showed that antimicrobial activity of the partially purified blood and gill tissue extracts might be due to low molecular weight peptides. Conclusions: The present study showed that, gill and blood extracts of Channa striatus can be a potential source of an antimicrobial protein for specific human pathogens.

  14. Chemical Composition and Antimicrobial Activity of Echinophora spinosa L. (Apiaceae Essential Oil

    Directory of Open Access Journals (Sweden)

    Jasmina M. Glamočlija

    2011-01-01

    Full Text Available The present study was undertaken to investigate the chemical composition and effectiveness of the essential oil isolated from Echinophora spinosa on different bacterial and fungal species. Chemical analysis (GC/MS showed that δ³-carene (60,86 %, α-phellandrene (7,12%, p-cymene (6,22 %, myrcene (4,82 % and β-phellandrene (2,73 % were dominant components in this oil. Essential oil tested showed good antimicrobial activity. Antimicrobial potential of this oil was higher than potential of commercial antimicrobial drugs tested, streptomycin, bifonozole and ketoconazole.

  15. ANTIMICROBIAL ACTIVITY OF ROSA CANINA FLOWERS AGAINST SELECTED MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Katarína Rovná

    2015-02-01

    Full Text Available Rosa canina flowers were screened against various plant pathogenic microbial strains to study the antimicrobial properties of the plant. Ethanolic and methanolic extracts of flowers were screened applying agar well diffusion method against two Gram-negative bacteria including Escherichia coli CCM 3988 and Pseudomonas aeruginosa CCM 1960 and three microscopic filamentous fungi strains Aspergillus niger, Fusarium culmorum and Alternaria alternata, respectively. The best antimicrobial effect of ethanolic extract of Rosa canina flowers was found against Pseudomonas aeruginosa and the best antimicrobial effect of methanolic extract of Rosa canina flowers was found against Escherichia coli.

  16. DETERMINATION OF ANTIMICROBIAL ACTIVITY OF EXTRACTS OF CALENDULA OFFICINALIS FLOWERS

    Directory of Open Access Journals (Sweden)

    P. V. Afanasyeva

    2016-01-01

    Full Text Available Pot marigold (Calendula officinalis L. is one of the most popular medicinal plants in the Russian Federation and abroad. The wide range of pharmacological activity of this medicinal plant is determined by carotenoids, flavonoids, saponins. These biologically active substances give total therapeutic effect of flowers of Calendula officinalis and medicines on base of pot marigold. This paper discusses the results of comparative investigations for a determination of antimicrobial activity of aqueous and aqueous- alcoholic extracts from pot marigold flowers. Detection of the minimum inhibitory concentration (MIC was carried out by using the method of double serial dilutions in broth. The following microorganisms were used as test cultures: Bacillus cereus, Candida albicans, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The study showed that the widest spectrum of antibacterial activity has water extract of pot marigold flowers. As for Pseudomonas aeruginosa the most active medicine is tincture (1:10 with 70% alcohol. As for Escherichia coli the only phytopharmaceutical – water extract of marigold flowers, reveals antimicrobial activity. Against Bacillus cereus the most effective properties was indicated for tincture (1:5 with 70% ethanol and the liquid extract (1:2 with 70% alcohol. In case of Candida albicans, tincture (1:10 with 70% alcohol exhibited the highest activity.

  17. Antimicrobial activity of silver and gold in toothpastes: A comparative analysis.

    Science.gov (United States)

    Junevičius, Jonas; Žilinskas, Juozas; Česaitis, Kęstutis; Česaitienė, Gabrielė; Gleiznys, Darius; Maželienė, Žaneta

    2015-01-01

    In this study, we compared the antimicrobial activity of identical toothpastes differing only in silver or gold nanoparticles against the activity of one of the common toothpastes containing a chemical active ingredient. We also compared the active concentrations of the toothpastes. For this study, we selected "Royal Denta" toothpastes containing silver and gold particles, and the "Blend-A-Med Complete" toothpaste containing zinc citrate as the active ingredient. We used 8 standard microorganism cultures on the basis of their individual mechanisms of protection. The antimicrobial activity of each studied preparation was evaluated at 9 concentrations. Most effective against gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) was the "Silver Technology" – MIC was 0.004-0.0015 g/mL. Neither "Silver Technology" nor "Orange and Gold Technology" had any effect on Escherichia coli or Proteus mirabilis. Antimicrobial activity against the motile bacterium Proteus mirabilis was observed in "Silver Technology", "Orange and Gold Technology", and "Blend-A-Med Complete" – the MIC was 0.015 g/mL or lower. No antimicrobial activity against Candida albicans fungus at the studied concentrations was observed in the "Orange and Gold Technology". The toothpaste "Blend-A-Med" demonstrated the most effective antimicrobial activity - the MIC of 0.0015 g/mL and 0.015 g/mL inhibited Staphylococcus aureus and Enterococcus faecalis, respectively, and the MIC of 0.15 g/mL inhibited the growth of the bacteria Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, and fungus Candida albicans. Silver in toothpaste has a greater antimicrobial effect than gold, but its effect is still inferior to that of a chemical antimicrobial agent.

  18. Analysis of essential oils from Voacanga africana seeds at different hydrodistillation extraction stages: chemical composition, antioxidant activity and antimicrobial activity.

    Science.gov (United States)

    Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na

    2015-01-01

    In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities.

  19. Evaluation of the antimicrobial activities of chlorhexidine gluconate, sodium hypochlorite and octenidine hydrochloride in vitro.

    Science.gov (United States)

    Tirali, Resmiye E; Bodur, Haluk; Sipahi, Bilge; Sungurtekin, Elif

    2013-04-01

    The objective of this study was to compare the antimicrobial activity of sodium hypochlorite (NaOCl), chlorhexidine gluconate (CHX) and octenidine hydrochloride (OCT) in different concentrations against endodontic pathogens in vitro. Agar diffusion procedure was used to determine the antimicrobial activity of the tested materials. Enterococcus faecalis, Candida albicans and the mixture of these were used for this study. In the agar diffusion test, 5.25% NaOCl exhibited better antimicrobial effect than the other concentrations of NaOCl for all strains. All concentrations of OCT were effective against C. albicans and E. faecalis. Some 0.2% CHX was ineffective on all microorganisms. Antibacterial effectiveness of all experimental solutions decreased on the mixture of all strains. Decreasing concentrations of NaOCl resulted in significantly reduced antimicrobial effect. © 2010 The Authors. Australian Endodontic Journal © 2010 Australian Society of Endodontology.

  20. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles

    Science.gov (United States)

    Janaki, A. Chinnammal; Sailatha, E.; Gunasekaran, S.

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  1. Biosynthesis of silver nanoparticles using bark extracts of Butea monosperma (Lam.) Taub. and study of their antimicrobial activity

    Science.gov (United States)

    Das, Manoja; Smita, Soumya Shuvra

    2018-03-01

    antimicrobial properties against human pathogens.

  2. [Antimicrobial activity of Laetiporus sulphureus strains grown in submerged culture].

    Science.gov (United States)

    Ershova, E Iu; Tikhonova, O V; Lur'e, L M; Efremenkova, O V; Kamzolkina, O V; Dudnik, Iu V

    2003-01-01

    Cultural conditions for growth and fruit body formation were elaborated to four strains of Laetiporus sulphureus isolated from nature. All strains demonstrated antimicrobial activity against a wide spectrum of gram-positive and gram-negative bacteria during agar and submerged cultivation including methicillin-resistant strain of Staphylococcus aureus (MRSA) and glycopeptide-resistant strain of Leuconostoc mesenteroides. Antifungal activity was not found. The level of antimicrobial activity during submerged cultivation reached maximum after seven days of growth on specific medium with soybean meal and corn liquid; the next four weeks its increasing was not so manifested. Antimicrobial activity correlated with orange pigment secretion and cultural liquid acidification to pH 2.0-2.8 that indicates on acid nature of synthesized products.

  3. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    International Nuclear Information System (INIS)

    Perez Espitia, Paula Judith; Ferreira Soares, Nilda de Fátima; Teófilo, Reinaldo F.; Vitor, Débora M.; Reis Coimbra, Jane Sélia dos; Andrade, Nélio José de; Sousa, Frederico B. de; Sinisterra, Rubén D.; Medeiros, Eber Antonio Alves

    2013-01-01

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na 4 P 2 O 7 ), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  4. In vitro antimicrobial activity of irreversible hydrocolloid impressions against 12 oral microorganisms

    OpenAIRE

    Casemiro,Luciana Assirati; Pires-de-Souza,Fernanda de Carvalho Panzeri; Panzeri,Heitor; Martins,Carlos Henrique Gomes; Ito,Isabel Yoko

    2007-01-01

    This study evaluated in vitro the antimicrobial activity of irreversible hydrocolloids (one containing an antimicrobial agent) prepared with water or with a 0.2% chlorhexidine digluconate solution against 12 strains of the oral microbiota. Twenty specimens (0.5 x 1.0 cm) for each group (1. Jeltrate mixed with water; 2. Jeltrate mixed with 0.2% chlorhexidine digluconate solution; 3. Greengel mixed with water; 4. Greengel mixed with 0.2% chlorhexidine digluconate solution) were prepared under s...

  5. Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity

    OpenAIRE

    Arumugham Suresh; Ramasamy Praveenkumar; Ramasamy Thangaraj; Felix Lewis Oscar; Edachery Baldev; Dharumadurai Dhanasekaran; Nooruddin Thajuddin

    2014-01-01

    Objective: To evaluate fatty acid composition and the antimicrobial activity of the major fraction of fatty acid methyl ester (FAME) extracts from three microalgae collected from freshwater lakes in Theni District, Tamil Nadu, India. Methods: Antimicrobial study was carried out by well diffusion method against bacterial as well as fungal pathogens such as Escherichia coli, Staphylococcus aureus, Enterobacter sp., Klebsiella sp., Salmonella typhi, Fusarium sp., Cryptococcus sp.,...

  6. Antimicrobial activity and mechanisms of Salvia sclarea essential oil.

    Science.gov (United States)

    Cui, Haiying; Zhang, Xuejing; Zhou, Hui; Zhao, Chengting; Lin, Lin

    2015-12-01

    Nowadays, essential oils are recognized as safe substances and can be used as antibacterial additives. Salvia sclarea is one of the most important aromatic plants cultivated world-wide as a source of essential oils. In addition to being flavoring foods, Salvia sclarea essential oil can also act as antimicrobials and preservatives against food spoilage. Understanding more about the antibacterial performance and possible mechanism of Salvia sclarea essential oil will be helpful for its application in the future. But so far few related researches have been reported. In our study, Salvia sclarea oil showed obvious antibacterial activity against all tested bacterial strains. Minimum inhibitory concentration (MIC) and minimum bactericide concentration (MBC) of seven pathogens were 0.05 and 0.1 % respectively. In addition, Salvia sclarea oil also exhibited a significant inhibitory effect on the growth of Escherichia coli (E. coli) in phosphate buffer saline (PBS) and meats. After treated with Salvia sclarea oil, Scanning Electron Microscope (SEM) images can clearly see the damage of cell membrane; the intracellular ATP concentrations of E. coli and S. aureus reduced 98.27 and 69.61 % respectively, compared to the control groups; the nuclear DNA content of E. coli and S. aureus was significantly reduced to 48.32 and 50.77 % respectively. In addition, there was massive leakage of cellular material when E. coli and S. aureus were exposed to Salvia sclarea oil. Salvia sclarea essential oil damaged the cell membrane and changed the cell membrane permeability, leading to the release of some cytoplasm such as macromolecular substances, ATP and DNA. In general, the antimicrobial action of Salvia sclarea essential oil is not only attributable to a unique pathway, but also involves a series of events both on the cell surface and within the cytoplasm. Therefore, more experiments need to be done to fully understand the antimicrobial mechanism of Salvia sclarea essential oil.

  7. Antimicrobial and healing activity of kefir and kefiran extract.

    Science.gov (United States)

    Rodrigues, Kamila Leite; Caputo, Lucélia Rita Gaudino; Carvalho, Jose Carlos Tavares; Evangelista, João; Schneedorf, Jose Maurício

    2005-05-01

    Kefir and its insoluble polysaccharide, kefiran, were both tested for antimicrobial and cicatrizing activities against several bacterial species and Candida albicans using an agar diffusion method. Comparator antimicrobials were also tested. Cicatrizing experiments were carried out on Wistar rats with induced skin lesions and Staphylococcus aureus inoculation, using a topical application of a 70% kefir gel. Both kefir and kefiran showed some activity against all organisms tested; the highest activity was against Streptococcus pyogenes. Cicatrizing experiments using 70% kefir gel had a protective effect on skin connective tissue and 7 days treatment enhanced wound healing compared with 5 mg/kg of neomycin-clostebol emulsion.

  8. Synthesis and antimicrobial activity of 1-benzhydryl-sulfonyl-4-(3-(piperidin-4-yl) propyl)piperidine derivatives against pathogens of Lycopersicon esculentum: a structure-activity evaluation study.

    Science.gov (United States)

    Vinaya, K; Kavitha, R; Ananda Kumar, C S; Benaka Prasad, S B; Chandrappa, S; Deepak, S A; Nanjunda Swamy, S; Umesha, S; Rangappa, K S

    2009-01-01

    Several 1-benzhydryl-sulfonyl-4-(3-(piperidin-4-yl)propyl)piperidine derivatives 8(a-j) were prepared by the treatment of substituted benzhydryl chlorides with 4-(3-(piperidin-4-yl)propyl)piperidine followed by N-sulfonation with sulfonyl chlorides in the presence of dry methylene dichloride and triethyl amine. The synthesized compounds were characterized by (1)H-NMR, IR, and elemental analysis. All the synthesized compounds were evaluated in vitro for their efficacy as antimicrobial agents by artificial inoculation technique against standard strains of two important bacterial viz., Xanthomonas axonopodis pv. vesicatoria and Ralstonia solanacearum as well as and two fungal pathogens namely Alternaria solani and Fusarium solani of tomato plants. We have briefly investigated the structure-activity relation studies and reveal that the nature of substitutions on benzhydryl ring and sulfonamide ring influences the antibacterial activity. Among the synthesized new compounds 8b, 8d, 8g, 8h, 8i, and 8j were showed significant potent antimicrobial activities compared to the standard drugs chloramphenicol, mancozeb.

  9. The antimicrobial activity of as-prepared silver-loaded phosphate glasses and zirconium phosphate

    International Nuclear Information System (INIS)

    Jing, Wang; Jiang, Ji Zhi; Yang, Yang; Yan, Zhao Chun; Yan, Wang Xiao; He, Shui Zhong

    2016-01-01

    The antimicrobial activities of silver-loaded zirconium phosphate (JDG) and silver-loaded phosphate glasses (ZZB) against Escherichia coli were studied. Although the silver content in JDG was higher than that in ZZB, ZZB suspensions showed better antimicrobial property than JDG suspensions, especially at low concentrations. The antimicrobial activity was analyzed using minimum inhibitory concentrations, bacterial inhibition ring tests, and detection of silver ions in the suspensions. Furthermore, the amounts of silver ions in suspensions with/without bacterial cells were analyzed. Results revealed that only a portion of released silver ions could be adsorbed by E. coli cells, which are critical to cell death. The damaged microstructures of E. coli cells observed by transmission electron microscopy may further prove that the adsorbed silver ions play an important role in the antimicrobial process.

  10. Fungi treated with small chemicals exhibit increased antimicrobial activity against facultative bacterial and yeast pathogens.

    Science.gov (United States)

    Zutz, Christoph; Bandian, Dragana; Neumayer, Bernhard; Speringer, Franz; Gorfer, Markus; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2014-01-01

    For decades, fungi have been the main source for the discovery of novel antimicrobial drugs. Recent sequencing efforts revealed a still high number of so far unknown "cryptic" secondary metabolites. The production of these metabolites is presumably epigenetically silenced under standard laboratory conditions. In this study, we investigated the effect of six small mass chemicals, of which some are known to act as epigenetic modulators, on the production of antimicrobial compounds in 54 spore forming fungi. The antimicrobial effect of fungal samples was tested against clinically facultative pathogens and multiresistant clinical isolates. In total, 30 samples of treated fungi belonging to six different genera reduced significantly growth of different test organisms compared to the untreated fungal sample (growth log reduction 0.3-4.3). For instance, the pellet of Penicillium restrictum grown in the presence of butyrate revealed significant higher antimicrobial activity against Staphylococcus (S.) aureus and multiresistant S. aureus strains and displayed no cytotoxicity against human cells, thus making it an ideal candidate for antimicrobial compound discovery. Our study shows that every presumable fungus, even well described fungi, has the potential to produce novel antimicrobial compounds and that our approach is capable of rapidly filling the pipeline for yet undiscovered antimicrobial substances.

  11. Antimicrobial Activity of Bee Venom and Melittin against Borrelia burgdorferi

    OpenAIRE

    Kayla M. Socarras; Priyanka A. S. Theophilus; Jason P. Torres; Khusali Gupta; Eva Sapi

    2017-01-01

    Lyme disease is a tick-borne, multi-systemic disease, caused by the bacterium Borrelia burgdorferi. Though antibiotics are used as a primary treatment, relapse often occurs after the discontinuation of antimicrobial agents. The reason for relapse remains unknown, however previous studies suggest the possible presence of antibiotic resistant Borrelia round bodies, persisters and attached biofilm forms. Thus, there is an urgent need to find antimicrobial agents suitable to eliminate all known f...

  12. Comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain and aloe vera (all in gel formulation), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis: An in vitro study.

    Science.gov (United States)

    Bhardwaj, Anuj; Ballal, Suma; Velmurugan, Natanasabapathy

    2012-07-01

    A comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain, and aloe vera (all in gel formulations), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis-an in vitro study. The antimicrobial efficacy was assessed in vitro using dentin shavings collected at 2 depths of 200 and 400 μm. The total colony forming units at the end of 1, 3, and 5 days were assessed. The overall percentage inhibition of bacterial growth (200 and 400 μm depth) was 100% with chlorhexidine gel. This was followed by M. citrifolia gel (86.02%), which showed better antimicrobial efficacy as compared with aloe vera gel (78.9%), papain gel (67.3%), and calcium hydroxide (64.3%). There was no statistical difference between data at 200 and 400 μm depth. Chlorhexidine gel showed the maximum antimicrobial activity against E. faecalis, whereas calcium hydroxide showed the least. Among the natural intracanal medicaments, M. citrifolia gel consistently exhibited good inhibition up to the 5(th) day followed by aloe vera gel and papain gel.

  13. Bioprospecting saline gradient of a Wildlife Sanctuary for bacterial diversity and antimicrobial activities.

    Science.gov (United States)

    DeLuca, Mara; King, Riley; Morsy, Mustafa

    2017-08-11

    Antibiotic-resistant bacteria are becoming a global crisis, causing death of thousands of people and significant economic impact. The discovery of novel antibiotics is crucial to saving lives and reducing healthcare costs. To address the antibiotic-resistant crisis, in collaboration the Small World Initiative, which aims to crowdsource novel antibiotic discovery, this study aimed to identify antimicrobial producing bacteria and bacterial diversity in the soil of the Stimpson Wildlife Sanctuary, an inland area with a soil salt gradient. Approximately 4500 bacterial colonies were screened for antimicrobial activity and roughly 100 bacteria were identified as antimicrobial producers, which belong to Entrococcaceae (74%), Yersiniaceae (19%), and unidentified families (7%). Several bacterial isolates showed production of broad spectrum inhibitory compounds, while others were more specific to certain pathogens. The data obtained from the current study provide a resource for further characterization of the soil bacteria with antimicrobial activity, with an aim to discover novel ones. The study showed no correlation between soil salt level and the presence of bacteria with antimicrobial activities. However, most of the identified antimicrobial producing bacteria do not belong to actinomycetes, the most common phyla of antibiotic producing bacteria and this could potentially lead to the discovery of novel antibiotics.

  14. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation

    Directory of Open Access Journals (Sweden)

    D. Jesus

    2015-01-01

    Full Text Available This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7. To determine the minimum inhibitory concentration (MIC, microdilution in broth (CLSI M27-S4 protocol was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n=10 with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n=10. After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h, the values of colony forming units per milliliter (CFU/mL were converted to log10 and analyzed (ANOVA and Tukey test, 5%. The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P<0.001 of the biofilm at concentrations of 50 (0.580±0.209 log10, 100 (0.998±0.508 log10, and 200 mg/mL (1.093±0.462 log10 was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%.

  15. Antimicrobial activity of thin metallic silver flakes, waste products of a manufacturing process.

    Science.gov (United States)

    Anzano, Manuela; Tosti, Alessandra; Lasagni, Marina; Campiglio, Alfredo; Pitea, Demetrio; Collina, Elena

    2011-01-01

    The aim of the research was to develop new products and processes from a manufacturing waste from an Italian metallurgic company. The company produced thin silver metallic films and the production scraps were silver flakes. The possibility to use the silver flakes in water disinfection processes was studied. The antimicrobial activity of the flakes was investigated in batch using Escherichia coli as Gram-negative microorganism model. The flakes did not show any antimicrobial activity, so they were activated with two different processes: thermal activation in reducing atmosphere and chemical activation, obtaining, respectively, reduced flakes (RF) and chemical flakes (CF). The flakes, activated with either treatment, showed antimicrobial activity against E. coli. The kill rate was dependent on the type of activated flakes. The chemical flakes were more efficient than reduced flakes. The kill rate determined for 1 g of CF, 1.0 +/- 0.2 min(-1), was greater than the kill rate determined for 1 g of RF, 0.069 +/- 0.004 min(-1). This was confirmed also by the minimum inhibitory concentration values. It was demonstrated that the antimicrobial capability was dependent on flakes amount and on the type of aqueous medium. Furthermore, the flakes maintained their properties also when used a second time. Finally, the antimicrobial activities of flakes were tested in an effluent of a wastewater treatment plant where a variety of heterotrophic bacteria were present.

  16. Antimicrobial Activity of Various Plant Extracts on Pseudomonas Species Associated with Spoilage of Chilled Fish

    Directory of Open Access Journals (Sweden)

    Osan Bahurmiz

    2016-11-01

    Full Text Available The antimicrobial activity of various plant extracts on Pseudomonas bacteria isolated from spoiled chilled tilapia (Oreochromis sp. was evaluated in this study. In the first stage of this study, red tilapia was subjected to chilled storage (4°C for 3 weeks, and spoilage bacteria were isolated and identified from the spoiled fish. Pseudomonas was the dominant bacteria isolated from the spoiled fish and further identification revealed that P. putida, P. fluorescens and Pseudomonas spp. were the main species of this group. In the second stage, methanolic extracts of 15 selected plant species were screened for their antimicrobial activity, by agar disc diffusion method, against the Pseudomonas isolates. Results indicated that most of the extracts had different degrees of activity against the bacterial isolates. The strongest activity was exhibited by bottlebrush flower (Callistemon viminalis extract. This was followed by extracts from guava bark (Psidium guajava and henna leaf (Lawsonia inermis. Moderate antimicrobial activities were observed in extracts of clove (Syzygium aromaticum, leaf and peel of tamarind (Tamarindus indica, cinnamon bark (Cinnamomum zeylanicum, wild betel leaf (Piper sarmentosum and fresh thyme (Thymus spp.. Weak or no antimicrobial activity was observed from the remaining extracts. The potential antimicrobial activity shown by some plant extracts in this study could significantly contribute to the fish preservation.

  17. An endogenous ribonuclease inhibitor regulates the antimicrobial activity of ribonuclease 7 in the human urinary tract

    Science.gov (United States)

    Spencer, John David; Schwaderer, Andrew L.; Eichler, Tad; Wang, Huanyu; Kline, Jennifer; Justice, Sheryl S.; Cohen, Daniel M.; Hains, David S.

    2013-01-01

    Recent studies stress the importance of antimicrobial peptides in protecting the urinary tract from infection. Previously, we have shown that ribonuclease 7 (RNase 7) is a potent antimicrobial peptide that has broad-spectrum antimicrobial activity against uropathogenic bacteria. The urothelium of the lower urinary tract and intercalated cells of the kidney produce RNase 7 but regulation of its antimicrobial activity has not been well defined. Here we characterize the expression of an endogenous inhibitor, ribonuclease inhibitor (RI), in the urinary tract and evaluate its effect on RNase 7’s antimicrobial activity. Using RNA isolated from non-infected human bladder and kidney tissue, quantitative real-time PCR showed that RNH1, the gene encoding RI, is constitutively expressed throughout the urinary tract. With pyelonephritis, RNH1 expression and RI peptide production significantly decrease. Immunostaining localized RI production to the umbrella cells of the bladder and intercalated cells of the renal collecting tubule. In vitro assays showed that RI bound to RNase 7 and suppressed its antimicrobial activity by blocking its ability to bind the cell wall of uropathogenic bacteria. Thus, these results demonstrate a new immunomodulatory role for RI and identified a unique regulatory pathway that may affect how RNase 7 maintains urinary tract sterility. PMID:24107847

  18. Synthesis and Antimicrobial Activities of Some New Pyrazoles ...

    African Journals Online (AJOL)

    NICO

    29 antimalarial,30 antimicrobial,31,32 antiviral,33,34 hypoglycaemic,35 anti-HIV activity,36 insecticidal,37 and anti- fungal38 activities. In view of these reports and in continuation of our previous work39 we describe here a facile synthesis of.

  19. Phenolic Content, and Antioxidant and Antimicrobial Activities of ...

    African Journals Online (AJOL)

    Erah

    Methods: The content of total phenols, flavonoids and anthocyanins of the alcohol, hydroalcohol and aqueous extracts of ... Keywords: Crataegus oxyacantha L.; Natural phenolic compounds; Antioxidant and antimicrobial activity, Southeast Serbia. ..... Antioxidant activities of Sechium edule (Jacq.) Swart extracts, Food ...

  20. Synthesis, characterisation and antimicrobial studies of mixed nickel ...

    African Journals Online (AJOL)

    Conductance values indicated a 1:1 electrolyte for the complexes. The antimicrobial activities of the ligands and their mixed ligand complexes were screened using Agar diffusion method. It was found that the mixed metal complexes have higher antimicrobial activity than the free ligands. Keywords: Benzylhydrazone ...

  1. Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin

    Science.gov (United States)

    Lv, Guocheng; Pearce, Cody W.; Gleason, Andrea; Liao, Libing; MacWilliams, Maria P.; Li, Zhaohui

    2013-11-01

    Antibiotics are used not only to fight infections and inhibit bacterial growth, but also as growth promotants in farm livestock. Farm runoff and other farm-linked waste have led to increased antibiotic levels present in the environment, the impact of which is not completely understood. Soil, more specifically clays, that the antibiotic contacts may alter its effectiveness against bacteria. In this study a swelling clay mineral montmorillonite was preloaded with antibiotics tetracycline and ciprofloxacin at varying concentrations and bioassays were conducted to examine whether the antibiotics still inhibited bacterial growth in the presence of montmorillonite. Escherichia coli was incubated with montmorillonite or antibiotic-adsorbed montmorillonite, and then the number of viable bacteria per mL was determined. The antimicrobial activity of tetracycline was affected in the presence of montmorillonite, as the growth of non-resistant bacteria was still found even when extremely high TC doses were used. Conversely, in the presence of montmorillonite, ciprofloxacin did inhibit E. coli bacterial growth at high concentrations. These results suggest that the effectiveness of antimicrobial agents in clayey soils depends on the amount of antibiotic substance present, and on the interactions between the antibiotic and the clays in the soil, as well.

  2. Chemical Composition and Antimicrobial Activity of Royal Jelly - Review

    Directory of Open Access Journals (Sweden)

    Lavinia Ioana Bărnuţiu

    2011-10-01

    Full Text Available The present paper presents the literature data regarding the chemical composition and antimicrobial activity of RoyalJelly. Royal Jelly is a secretion from the hypofaringeal glands of worker bees which serves as a food for queen beeand to the growing up larvae. Having biological properties already proven, Royal Jelly has considerable commercialappeal and is today used in many sectors (pharmaceutical, food industries and cosmetic products. Thephysicochemical composition of pure royal jelly are analyzed by determining moisture, ash, lipids, proteins,vitamins,aminoacids, carbohydrates, 10-HDA; RJ is the key substance in the antimicrobial function of the system Apismellifera. The intact Royal Jelly exhibited the highest antibacterial activity.

  3. Comparison of antimicrobial activities of naphthoquinones from Impatiens balsamina.

    Science.gov (United States)

    Sakunphueak, Athip; Panichayupakaranant, Pharkphoom

    2012-01-01

    Lawsone (1), lawsone methyl ether (2), and methylene-3,3'-bilawsone (3) are the main naphthoquinones in the leaf extracts of Impatiens balsamina L. (Balsaminaceae). Antimicrobial activities of these three naphthoquinones against dermatophyte fungi, yeast, aerobic bacteria and facultative anaerobic and anaerobic bacteria were evaluated by determination of minimal inhibitory concentrations (MICs) and minimal bactericidal or fungicidal concentrations (MBCs or MFCs) using a modified agar dilution method. Compound 2 showed the highest antimicrobial activity. It showed antifungal activity against dermatophyte fungi and Candida albicans with the MICs and MFCs in the ranges of 3.9-23.4 and 7.8-23.4 µg mL(-1), respectively, and also had some antibacterial activity against aerobic, facultative anaerobic and anaerobic bacteria with MICs in the range of 23.4-93.8, 31.2-62.5 and 125 µg mL(-1), respectively. Compound 1 showed only moderate antimicrobial activity against dermatophytes (MICs and MFCs in the ranges of 62.5-250 and 125-250 µg mL(-1), respectively), but had low potency against aerobic bacteria, and was not active against C. albicans and facultative anaerobic bacteria. In contrast, 3 showed significant antimicrobial activity only against Staphylococus epidermidis and Bacillus subtilis (MIC and MBC of 46.9 and 93.8 µg mL(-1), respectively).

  4. Characterization and Antimicrobial Studies of Five Substituted Bis-Thioureas

    International Nuclear Information System (INIS)

    Nurulain Kamalulazmy; Sahilah Abd Mutalib; Fatin Ilyani Nasir; Nurul Izzaty Hassan

    2016-01-01

    Thioureas play an important role in medicinal chemistry and agricultures due to their biological activity such as antibacterial, antifungal, antiviral, herbicides, rodenticides, phenoloxidase enzymatic inhibitors, anti-HIV and anti-tumor agents. In this study, five substituted bis-thioureas have been synthesized. The isophthaloyl chloride and 2,6- pyridine dicarbonyl dichloride were easily converted to bis-isothiocyanate compound via the reaction with ammonium thiocyanate by solid-liquid phase transfer catalysis of polyethylene glycol-400 (PEG-400). Bis-isothiocyanate compound was reacted with aniline derivatives to produce substituted bis-thioureas in good yield at room temperature. All the novel compounds were obtained as yellow solid after recrystallization using DMF/EtOH/H_2O. Their chemical structures were confirmed by Infrared spectroscopy (IR), Nuclear Magnetic Resonance (NMR) "1H and "1"3C and mass spectrometry. The five synthesized compounds were screened for antimicrobial activities using disc diffusion method for antimicrobial activity against Gram-positive bacteria (Bacillus Subtilis and Staphylococcus Aureus), Gram-negative bacteria (Escherichia Coli and Salmonella Typhi) and a mold (Aspergillus Niger). All tested compounds showed low antimicrobial activity since the diameter of inhibition zone (IZ) measure was less than positive control inhibition zone. (author)

  5. Phytochemical and antimicrobial activities of Himalayan Cordyceps sinensis (Berk.) Sacc.

    Science.gov (United States)

    Mamta; Mehrotra, Shubhi; Amitabh; Kirar, Vandana; Vats, Praveen; Nandi, Shoma Paul; Negi, P S; Misra, Kshipra

    2015-01-01

    This study evaluated the phytochemical and antimicrobial activities and also quantified bioactive nucleoside using high performance thin layer chromatography (HPTLC) of five extracts of Indian Himalayan Cordyceps sinensis prepared with different solvents employing accelerated solvent extraction (ASE) technique. The phytochemical potential of these extracts was quantified in terms of total phenolic and total flavonoid content while antioxidant activities were determined by 1,1-diphenyl-2-pycryl-hydrazyl (DPPH) and 2,2 -azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and ferric-reducing antioxidant power (FRAP) assays. Total reducing power (TRP) was determined by converting iron (III) into iron (II) reduction assay. CS(50%Alc) (15.1 ± 0.67mg/g of dry extract) and CS(100%Alc) (19.3 ± 0.33 mg/g of dry extract) showed highest phenolic and flavonoid content, respectively while CS(Aq) extract showed maximum antioxidant activity and the highest concentration of the three nucleosides (adenine 12.8 ± 0.49 mg/g, adenosine 0.36 ± 0.28 mg/g and uracil 0.14 ± 0.36 mg/g of dry extract) determined by HPTLC. The evaluation of extracts for antimicrobial activity against gram-negative and gram-positive bacterial strains showed CS(25%Alc), CS(75%Alc) and CS(100%Alc) extract to be more effective against E. coli, P. aerugenosa and B. subtilis giving 9, 7 and 6.5 mm of zone of inhibition (ZOI) in 93.75, 93.75 and 45 μg concentration, respectively, whereas CS(Aq) extract showed minimal inhibition against these.

  6. Antimicrobial activity of Ulva reticulata and its endophytes

    Science.gov (United States)

    Dhanya, K. I.; Swati, V. I.; Vanka, Kanth Swaroop; Osborne, W. J.

    2016-04-01

    Seaweeds are known to exhibit various antimicrobial properties, since it harbours an enormous range of indigenous bioactive compounds. The emergence of drug resistant strains has directed to the identification of prospective metabolites from seaweed and its endophytes, thereby exploiting the properties in resisting bacterial diseases. The current study was aimed to assess the antimicrobial activity of extracts obtained from Ulva reticulate, for which metabolites of Ulva reticulata and its endophytes were extracted and assessed against human pathogens like Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Bacillus subtilis. It was observed that the hexane extract of isolate VITDSJ2 was effective against all the tested pathogens but a significant inhibition was observed for Staphylococcus aureus and Escherichia coli. Further, Gas chromatography coupled with Mass spectroscopy (GC-MS) revealed the existence of phenol, 3, 5-bis (1, 1-dimethylethyl) in the crude hexane extract which is well-known to possess antibacterial activity. The effective isolate VITDSJ2 was identified to be the closest neighbour of Pseudomonas stutzeri by phenotypic and genotypic methods. The crude extracts of the seaweed Ulva reticulata was also screened for antibacterial activity and the hexane extract was effective in showing inhibition against all the tested pathogens. The compound in the crude extract of Ulva reticulata was identified as hentriacontane using GC-MS. The extracts obtained from dichloromethane did not show significant activity in comparison with the hexane extracts. Hence the metabolites of Ulva reticulata and the bacterial secondary metabolites of the endophytes could be used in the treatment of bacterial infections.

  7. Nanoparticles for antimicrobial purposes in Endodontics: A systematic review of in vitro studies

    Energy Technology Data Exchange (ETDEWEB)

    Samiei, Mohammad [Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); School of Advanced Medicine, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Farjami, Afsaneh; Dizaj, Solmaz Maleki [Hematology & Oncology Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Lotfipour, Farzaneh, E-mail: lotfipoor@tbzmed.ac.ir [School of Advanced Medicine, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Hematology & Oncology Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of)

    2016-01-01

    Introduction: Antimicrobial nanoparticles with enhanced physiochemical properties have attracted attention as modern antimicrobials, especially in the complicated oral cavity environment. The goal of the present article is to review the current state of nanoparticles used for antimicrobial purposes in root canal infections. Methods: A review was conducted in electronic databases using MeSH keywords to identify relevant published literature in English. The analysis and eligibility criteria were documented according to the Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA-guidelines). No restrictions on publication date were imposed. Data regarding root canal disinfections, general antimicrobial mechanisms of nanoparticles, type of nanoparticles as antimicrobial agent and antimicrobial effect of nanoparticles in endodontics were collected and subjected to descriptive data analysis. Results: The literature search in electronic databases according to the inclusion criteria provided 83 titles and abstracts. Among them 15 papers were related to antimicrobial effect of nanoparticles in Endodontics. Silver nanoparticles with sustainable activity were the most studied agent for its antimicrobial behavior in root canal infection. Aided polymeric nanoparticles with photo or ultrasound, glass bioactive nanoparticles as well as Calcium derivative based nanoparticles, with improved activity in comparison with the non-nano counterparts, are of importance in infection control of dental root canal. Bioactive Non-organic nanoparticles with structural capabilities present enhanced antimicrobial activity in root canal infections. Discussion: All included studies showed an enhanced or at least equal effect of nanoparticulate systems to combat dental root canal infections compared to conventional antimicrobial procedures. However, it is crucial to understand their shortcomings and their probable cellular effects and toxicity as well as environmental effects

  8. Antimicrobial activity of aroylhydrazone-based oxido vanadium(v) complexes: in vitro and in silico studies

    Czech Academy of Sciences Publication Activity Database

    Ebrahimipour, S.Y.; Sheikhshoaie, I.; Simpson, J.; Ebrahimnejad, H.; Dušek, Michal; Kharazmi, N.; Eigner, Václav

    2016-01-01

    Roč. 40, č. 3 (2016), s. 2401-2412 ISSN 1144-0546 R&D Projects: GA ČR GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : Schiff bases * oxido-vanadium complexes * antimictobial activity * crystal structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.269, year: 2016

  9. Comparative studies on the antimicrobial and cytotoxic activities of Tanacetum vulgare L. essential oil and methanol extracts

    OpenAIRE

    Devrnja, Nina; Anđelković, Boban; Aranđelović, Sandra; Radulović, Siniša; Soković, Marina; Krstić Milošević, Dijana; Ristić, Mihailo; Ćalić, Dušica

    2017-01-01

    Chemical composition of essential oil (EO) and methanol extracts (MEs) from different parts of Tanacetum vulgare L. plant was analyzed and investigated for potential biological activities and correlated with the main constituents detected in EO and MEs. The EO was characterized by a high content of oxygenated monoterpenes with trans-chrysanthenyl acetate as major compound. All MEs were characterized by neochlorogenic, 3,5-O-dicaffeoylquinic and caffeoylquinic acids. High phenolic content in M...

  10. Antioxidant and antimicrobial activities of selected medicinal plants from Algeria

    Institute of Scientific and Technical Information of China (English)

    Krimat Soumia; Dob Tahar; Lamari Lynda; Boumeridja Saida; Chelghoum Chabane; Metidji Hafidha

    2014-01-01

    Objective:To evaluate the antioxidant and antimicrobial activity of methanolic extract extracts of selected Algerian medicinal plants. Methods:Antioxidant activity of extracts was evaluated in terms of radical scavenging potential (2,2-diphenyl-1-picrylhydrazyl) and β-carotene bleaching assay. Total phenolic contents and flavonoid contents were also measured. Antimicrobial activity of these plants was examined against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. Results:The values of IC50 ranged from 4.30 μg/mL to 486.6 μg/mL for the DPPH method, while total antioxidant activity using β-carotene/linoleic acid bleaching assay ranged from 17.03%to 86.13%. It was found that Pistacia lentiscus showed the highest antioxidant capacities using DPPH assay (IC50=4.30 μg/mL), while Populus trimula, Origanum glandulosum, Centaurea calcitrapa, Sysimbrium officinalis and Rhamnus alaternus showed the highest percent of total antioxidant activity inβ-carotene/linoleic acid bleaching assay. Total phenolic and flavonoid contents ranged from 3.96 to 259.65 mg GAE/g extract and from 1.13 to 26.84 mg QE/g extract, respectively. The most interesting antimicrobial activity was obtained from Sysimbrium officinalis, Rhamnus alaternus, Origanum glandulosum, Cupressus sempervirens, Pinus halipensis and Centaurea calcitrapa. Conclusions:The results indicated that the plants tested may be potential sources for isolation of natural antioxidant and antimicrobial compounds.

  11. Antimicrobial activity of Ulopterol isolated from Toddalia asiatica (L.) Lam.: a traditional medicinal plant.

    Science.gov (United States)

    Karunai Raj, M; Balachandran, C; Duraipandiyan, V; Agastian, P; Ignacimuthu, S

    2012-03-06

    The leaves of Toddalia asiatica (L.) Lam. (Rutaceae) are widely used in folk medicine in India to treat various ailments like cough, malaria, indigestion, influenza lung diseases and rheumatism, fever, stomach ailments, cholera and diarrhea. In our earlier communication we have reported the antimicrobial study on the various extracts of the leaves and the isolation and identification of Flindersine, a quinolone alkaloid as the major active principle. In the present study, we report the antibacterial and antifungal activities of Ulopterol, a coumarin isolated as another major active antimicrobial principle. The leaves were successively extracted with hexane, chloroform, ethyl acetate, methanol and water. The extracts were studied for their antimicrobial activity against selected bacteria and fungi by using disc-diffusion method. The ethyl acetate extract which was found to possess highest antimicrobial activity was subjected to activity guided fractionation by column chromatography over silica gel. This resulted in the isolation of the coumarin, Ulopetrol, an active principle besides Flindersine which was reported by us earlier. The structure of the compound was elucidated using physical and spectroscopic data. Flindersine and Ulopterol were quantified by HPLC. Ulopterol showed activity against the bacteria viz. Staphylococcus epidermidis, Enterobacter aerogenes, Shigella flexneri, Klebsiella pneumoniae (ESBL-3967), Escherichia coli (ESBL-3984) and fungi viz. Aspergillus flavus, Candida krusei and Botrytis cinerea. Quantification by HPLC showed the content of Flindersine and Ulopterol to be 0.361% and 0.266% respectively on dry weight basis of the leaves. Ethyl acetate extract (successive extraction) contained Ulopterol, a coumarin, besides Flindersine, a quinolone alkaloid, as a major active principle in the antimicrobial studies. This is the first report of the antimicrobial activity of Ulopterol and also its first report from the plant. Copyright © 2012

  12. Studies on Synthesis of Some Novel Heterocyclic Chalcone, Pyrazoline, Pyrimidine - 2 - One, Pyrimidine - 2 - Thione, para-Acetanilide Sulphonyl and Benzoyl Derivatives and their Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Rakesh N. Mistry

    2005-01-01

    Full Text Available 1, 2 - Dichloro benzene on chlorosulphonation by chlorosulphonic acid gives 1, 2 - [dichloro] - benzene sulphonyl chloride which on condensation with p –amino acetophenone gives 1-[acetyl] - 1’ , 2’ - [dichloro] - dibenz sulphonamide derivative. This derivative undergo condensation with 2,4- dichloro benzaldehyde gives 1- [3” - (sub. phenyl - 2” - propene - 1” - one] - 1’ , 2’ - [dichloro] - dibenz sulphonamide derivative which on reaction with 99% hydrazine hydrate and glacial acetic acid gives 1-[acetyl]-3- [1’ , 2’ - (dichloro - dibenz sulphonamide] -5 - [2” , 4” - dichloro phenyl] - 2 - pyrazoline derivative. This derivative reacts with various substituted aldehydes to give corresponding substituted chalcone derivatives [1(a-j]. Now, these chalcone derivatives [1(a-j] on condensation with urea gives corresponding substituted pyrimidine - 2 - one derivatives [2(a-j] and on condensation with thio-urea gives corresponding substituted pyrimidine- 2 -thione derivatives [3(a-j]. Further, these chalcone derivatives [1(a-j] on reaction with 99% hydrazine hydrate gives 1 - [1’ - (H - 5’ - (sub. phenyl - 2’ - pyrazoline]- 3 - [1” , 2” - (dichloro - dibenz sulphonamide] - 5 - [2’’’ , 4’’’ - dichloro phenyl]-2- pyrazoline derivatives [4(a-j] as an intermediate compounds, which on condensation with p-acetanilide sulphonyl chloride gives corresponding substituted p - acetanilide sulphonyl derivatives [5(a-j] and on condensation with benzoyl chloride gives corresponding substituted benzoyl derivatives [6(a-j]. Structure elucidation of synthesised compounds has been made on the basis of elemental analysis, I.R. spectral studies and 1H N.M.R. spectral studies. The antimicrobial activity of the synthesised compounds has been studied against the cultures “Staphylococcus aureus”, “Escherichia coli” and “Candela albicans”.

  13. New perspective of dendrobium crumenatum orchid for antimicrobial activity against selected pathogenic bacteria

    International Nuclear Information System (INIS)

    Sandrasagaran, U.M.; Murugaiyah, V.

    2014-01-01

    The present study was undertaken to investigate the potential anti-microbial activity from different parts of Dendrobium crumenatum (leaf, stem, root and pseudo-bulb) against 8 pathogenic bacteria. The antimicrobial activities were determined by using disc diffusion assay, microdilution test for determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The methanolic extracts of stem, root and pseudo-bulb displayed antimicrobial activity comparable to that of the standard antibiotics. Stem extract of D. crumenatum had the most potent antimicrobial activity against Staphylococcus aureus, Klebsiella pneumoniae and Enterobacter aerogenes with MIC values of 0.39, 0.195 and 0.195 mg/mL, respectively. Root and stem extracts were found to be active against Streptococcus pneumoniae, Shigella dysentriae and Saccharomyces cerevisiae with MIC values of 0.78 mg/ml compared to 0.00312 mg/mL, 0.025 mg/mL and 0.0125 mg/mL of standard antibiotics of amoxcillin, chloramphenicol and kanamycin. Stem and root extracts yield MBC values in the range of 0.78 mg/mL to 6.25 mg/mL against Staphylococcus aureus, Enterobacter aerogenes, Klebsiella pneumoniae and Saccharomyces cerevisiae. The present study showed that D. crumenatum exhibited potential antimicrobial activity which could be due to the presence of alkaloid and flavonoid compounds and this is a first report on South East Asia region's wild orchid. (author)

  14. Antimicrobial, antioxidant and anticancer activities of Strychnos ...

    African Journals Online (AJOL)

    Background: Strychnos lucida R. Br. (Loganiaceae), a well-known indigenous medicine in Timor Leste, has been used for the treatment of ailments such as malaria, diarrhoea, fever, hypertension, cancer, diabetes mellitus and skin infections. Its pharmacological activity has never been reported. The aim of this study was to ...

  15. ANTIMICROBIAL ACTIVITY OF EXTRACTS OF IRIS HUNGARICA AND IRIS SIBIRICA

    Directory of Open Access Journals (Sweden)

    Kovalev V. M.

    2017-06-01

    Full Text Available Introduction. Referring to the latest data, infectious diseases command a large part of among the total number of pathologies in the world and are an important problem in medicine. The leading role in prevention and treatment of diseases of microbial origin belongs to antibacterial chemotherapeutic agents. Advantages of antibiotics of synthetic origin are the high activity compared to phytogenic drugs. But it is known that microorganisms can release the resistance to synthetic antibiotics, so the use of drugs based on the plant materials is appropriate: phytogenic drugs more rarely induce the formation of resistance of the strains of microorganisms, they have a gentle action, can be used for a long-term, have the low cost. Therefore, it is appropriate to examine the drug plants with the aim of determination their antibacterial activity.Iris hungarica Waldst et Kit. and Iris sibirica L. are the representatives of the family Iridaceae, genus Iris and they have a wide spectrum of the pharmacological activity. Biologically active substances that were recovered from plants of the genus Iris (tectoridin, iristectorigenin B, nigracin, kaempferol, quercetin, etc. exhibited an antitumor, antimicrobial, estrogenic, insecticidal, antiplasmatic, anticholinesterase action, they were the inhibitors of enzymes and exhibited the immunomodulatory properties, which made these plants perspective for the research study. Raw materials Irises are constituent components of more than 9 medicines. Materials and Methods. The objects of the study were the leaves and rhizomes of Iris hungarica and Iris sibirica that were prepared during the growing season in 2014 in the M.M. Gryshko National botanical garden (Kiev, Ukraine. The dry and lipophilic extracts from the leaves and rhizomes of Irises were used to establish the antimicrobial activity. For the study of extracts antimicrobial activity was used agar well diffusion method. According to the WHO recommendations the

  16. Comparative evaluation of the antimicrobial activity of 19 essential oils.

    Science.gov (United States)

    Chaftar, Naouel; Girardot, Marion; Labanowski, Jérôme; Ghrairi, Tawfik; Hani, Khaled; Frère, Jacques; Imbert, Christine

    2016-01-01

    In our research on natural compounds efficient against human pathogen or opportunist microorganisms contracted by food or water, the antimicrobial activity of 19 essential oils (EOs) was investigated against 11 bacterial species (6 Gram positive, 5 Gram negative) and 7 fungal species (2 dermatophytes, 1 mould, 4 yeasts) using microdilution assays. Five essential oils were obtained from Tunisian plants (EOtun): Artemisia herba-alba Asso, Juniperus phoenicea L., Rosmarinus officinalis L., Ruta graveolens L. and Thymus vulgaris L., whereas others were commercial products (EOcom). Overall, T. vulgaris EOtun was the most efficient EO against both bacteria (Gram negative: MIC ≤ 0.34 mg/mL; Gram positive: MIC ≤ 0.70 mg/mL) and fungi (yeasts: MIC ≤ 0.55 mg/mL; mould: MIC = 0.30 mg/mL; dermatophytes: MIC ≤ 0.07 mg/mL). Two EOcom displayed both acceptable antibacterial and antifungal potency, although weaker than T. vulgaris EOtun activity: Origanum vulgare EOcom (bacteria: MIC ≤ 1.13 mg/mL, fungi: MIC ≤ 1.80 mg/mL), and Cymbopogon martinii var. motia EOcom (bacteria: MIC ≤ 1.00 mg/mL, fungi: MIC ≤ 0.80 mg/mL). Bacillus megaterium, Legionella pneumophila, Listeria monocytogenes and Trichophyton spp. were the most sensitive species to both EOcom and EOtun. This study demonstrated the noteworthy antimicrobial activity of two commercial EOs and points out the remarkable efficiency of T. vulgaris EOtun on all tested bacterial and fungal species, certainly associated with its high content in carvacrol (85 %). These three oils could thus represent promising candidates for applications in water and food protections.

  17. Spectrum and activity of novel antimicrobial peptidomimetics

    DEFF Research Database (Denmark)

    Hein-Kristensen, Line

    of leaked ATP and subsequent loss of viability. A series of three peptides differing only in length all caused ATP leakage but only the longest of the three caused complete depletion of intracellular ATP, which correlated with a substantial loss in the number of viable cells. In a continuous selection...... is becoming increasingly limited. In the search for alternatives therapies, antimicrobial peptides (AMPs) have received considerable attention since they target the bacterial Achilles’ heel i.e. their distinct membrane structure. These host defence molecules are ubiquitous in nature by forming part......D protein. This protein functions in the reorganization of the peptidoglycan layer, and we consider it likely that a change in this protein is the cause of resistance, since the SNP was found exclusively in isolates with high levels of resistance. Conversely, these resistant isolates displayed increased...

  18. Antimicrobial activity and second harmonic studies on organic non-centrosymmetric pure and doped ninhydrin single crystals

    Science.gov (United States)

    Prasanyaa, T.; Jayaramakrishnan, V.; Haris, M.

    2013-03-01

    In this paper, we report the successful growth of pure, Cu2+ ions and Cd2+ ions doped on ninhydrin single crystals by slow solvent evaporation technique. The presence of Cu2+ and Cd2+ ions in the specimen of ninhydrin single crystal has been determined by atomic absorption spectroscopy. The powder X-ray diffraction analysis was done to calculate the lattice parameters of the pure and doped crystals. The percentage of transmittance of the crystal was recorded using the UV-Vis Spectrophotometer. Thermal behaviors of the grown crystals have been examined by the thermal gravimetric/differential thermal analysis. The hardness of the grown crystals was assessed and the results show the minor variation in the hardness value for the pure and doped ninhydrin samples. The value of the work hardening coefficient n was found to be 2.0, 1.0 and 1.06 for pure, copper and cadmium doped ninhydrin crystals respectively. The second harmonic generation efficiency of Cd2+ and Cu2+ doped ninhydrin is 8.3 and 6.3 times greater than well known nonlinear crystal of potassium dihydrogen phosphate respectively. The antibacterial and antifungal activities of the title compound were performed by disk diffusion method against the standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillis niger and Aspergillus flavus.

  19. Rhanterium epapposum Oliv. essential oil: Chemical composition and antimicrobial,insect-repellent and anticholinesterase activities

    Science.gov (United States)

    Essential oils from Rhanterium epapposum Oliv. (Asteraceae) was investigated for its repellent, antimicrobial and acetyl- and butyrylcholine esterase inhibitory activities. The oil showed good repellent activity while oils demonstrated weak in antimicrobial and cholinesterase inhibitions. Terpenoids...

  20. Biochemical characterization and immunolocalization studies of a Capsicum chinense Jacq. protein fraction containing DING proteins and anti-microbial activity.

    Science.gov (United States)

    Brito-Argáez, Ligia; Tamayo-Sansores, José A; Madera-Piña, Dianeli; García-Villalobos, Francisco J; Moo-Puc, Rosa E; Kú-González, Ángela; Villanueva, Marco A; Islas-Flores, Ignacio

    2016-12-01

    The DING protein family consists of proteins of great biological importance due to their ability to inhibit carcinogenic cell growth. A DING peptide with Mr ∼7.57 kDa and pI ∼5.06 was detected in G10P1.7.57, a protein fraction from Capsicum chinense Jacq. seeds. Amino acid sequencing of the peptide produced three smaller peptides showing identity to the DING protein family. G10P1.7.57 displayed a phosphatase activity capable of dephosphorylating different phosphorylated substrates and inhibited the growth of Saccharomyces cerevisiae cells. Western immunoblotting with a custom-made polyclonal antibody raised against a sequence (ITYMSPDYAAPTLAGLDDATK), derived from the ∼7.57 kDa polypeptide, immunodetected an ∼ 39 kDa polypeptide in G10P1.7.57. Purification by electroelution followed by amino acid sequencing of the ∼39 kDa polypeptide yielded seven new peptide sequences and an additional one identical to that of the initially identified peptide. Western immunoblotting of soluble proteins from C. chinense seeds and leaves revealed the presence of the ∼39 kDa polypeptide at all developmental stages, with increased accumulation when the organs reached maturity. Immunolocalization using Dabsyl chloride- or Alexa fluor 488-conjugated antibodies revealed a specific fluorescent signal in the cell cytoplasm at all developmental stages, giving support to the idea that the ∼39 kDa polypeptide is a soluble DING protein. Thus, we have identified and characterized a protein fraction with a DING protein from C. chinense. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Antimicrobial activity of Algerian propolis in foodborne pathogens and its quantitative chemical composition

    Directory of Open Access Journals (Sweden)

    Neila Nedji

    2014-12-01

    Full Text Available Objective: To evaluate the antimicrobial activity of propolis samples collected from different regions of Algeria and their chemical composition. Methods: The antibacterial activity of ethanolic extract of Algerian propolis against Bacillus cereus (IPA, Staphylococcus aureus (ATCC25923R, Escherichia coli (ATCC25922 and Pseudomonas aeruginosa (ATCC27893R was evaluated by the disc diffusion method and determined as an equivalent of the inhibition zones diameters after incubation of the cultures at 37 °C for 24 h. The investigation of the polyphenol and flavonoid contents was done spectrophotometrically. Results: The ethanolic extract of Algerian propolis samples inhibited the growth of all examined microorganisms with the highest antimicrobial activity against the Gram-positive bacteria. Polyphenol and flavonoids contents were variable, depending on the propolis samples and a positive correlation between antimicrobial activity and chemical composition was observed. Conclusions: Antimicrobial activity, polyphenol and flavonoid contents were variable, depending on the propolis sample. The strong antimicrobial activity of Algerian propolis may be due to high total phenolic and flavonoid contents and this study suggests potential use of propolis in foods.

  2. Isolation and Antimicrobial Activity of Flavonoid Compounds from Mahagony Seeds (Swietenia macrophylla, King)

    Science.gov (United States)

    Mursiti, S.; Supartono

    2017-02-01

    Flavonoid is one of the secondary metabolites compounds in mahogany seeds. Mahogany seeds can be used as an antimicrobial. This study aims to determine the antimicrobial activity of flavonoid compounds from mahogany seeds against Escherichia coli (E.coli) and Bacillus cereus (B.cereus). Isolation of flavonoid compounds done step by step. First, the maceration using n-hexane, then with methanol. The methanol extract was dissolved in ethyl acetate and aquadest, then separated. Ethyl acetate extract evaporated Flavonoid compounds were. The testing of antimicrobial activity of flavonoid compounds using the absorption method. The results showed that the antimicrobial activity of flavonoid compounds from mahogany seeds shows the inhibitory activity and provide clear zone against bacteria E.coli with value Inhibitory Regional Diameter 18.50 mm respectively, and 14.50 mm to the bacteria. Based on the results of the study, it can be concluded that flavonoid compounds from mahogany seeds have antimicrobial activity against E.coli and B.cereus.

  3. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review

    Science.gov (United States)

    Shalavi, S; Yazdizadeh, M

    2012-01-01

    The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5-12.8) and is classified chemically as a strong base. The lethal effects of calcium hydroxide on bacterial cells are probably due to protein denaturation and damage to DNA and cytoplasmic membranes. Calcium hydroxide has a wide range of antimicrobial activity against common endodontic pathogens but is less effective against Enterococcus faecalis and Candida albicans. Calcium hydroxide is also a valuable anti-endotoxin agent. However, its effect on microbial biofilms is controversial. PMID:23323217

  4. Antimicrobial activity of kombucha made from Rtanj tea

    Directory of Open Access Journals (Sweden)

    Cvetković Dragoljub D.

    2005-01-01

    Full Text Available Kombucha is a beverage with special therapeutic properties produced by the metabolic activity of yeasts and acetic acid bacteria in sweetened black tea (traditional cultivation medium. The antimicrobial activity of kombucha (for consumption made from black tea and Rtanj tea, as well as particular control samples, was examined by the modified disc diffusion method. Salmonella enteritidis, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa Staphylococcus aureus, Bacillus sp., Sarcina lutea, Penicillium aurantiogriseum, Aspergilus niger, Aspergilus flavus, Rhodotorula sp. Candida pseudotropi-calis and Saccharomyces cerevisae have been used as test organisms. Acetic acid and kombucha samples show significant antimicrobial activity against all bacteria except Sarcina lutea. The other control samples (neutralized kombucha, tea and a "model sistem" show less bacteriostatic activity. Kombucha and acetic acid solution show borderline inhibitory activity against some moulds, while was no activity against yeasts.

  5. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species

    Directory of Open Access Journals (Sweden)

    Snežana Marković

    2011-08-01

    Full Text Available The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+ bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells.

  6. Antimicrobial Activity of Sabulun Salo a Local Traditional Medicated ...

    African Journals Online (AJOL)

    The antimicrobial activity of Sabulun salo; a local traditional medicated soap widely used by different tribes in Nigeria such as Hausa, Yoruba and Nupe against skin infections was examined against some clinical isolates of pathogenic microorganisms (Staphylococcus aureus, Escherichia coli and Candida albicans) using ...

  7. Antimicrobial and antioxidant activities of two endemic plants from ...

    African Journals Online (AJOL)

    In addition to the antioxidant activity of these plants, the total phenolic compounds and flavonoids were also measured in the extracts. ... that the extracts of A. scabriflorum and A. tchihatschewii possess antimicrobial and antioxidant properties, and therefore, they can be used as a natural preservative ingredient in food

  8. Antimicrobial activities of methanol and aqueous extracts of the stem ...

    African Journals Online (AJOL)

    Phytochemical analysis showed the presence of alkaloids, glycosides, proteins, carbohydrates, saponins, steroids, tannins and terpenoids in both the methanol and aqueous extracts. The antimicrobial activity result showed that the methanol extract significantly (P < 0.01) demonstrated antibacterial action against B. subtilis ...

  9. Investigation of antimicrobial activity of some Turkish pleurocarpic ...

    African Journals Online (AJOL)

    ... viticulosus showed the highest antifungal effect against the fungus Saccharomyces cerevisiae ATCC. All the results were compared with standard antibiotic discs: ketoconazole (50 μg), amphicillin (10 μg), eritromycin (15 μg), penicillin (10 μg) and vancomycin (30 μg). Key words: Moss, pleurocarpic, antimicrobial activity.

  10. The Preliminary Assessment of Anti-Microbial Activity of Hplc ...

    African Journals Online (AJOL)

    The clear aqueous extracts that were obtained after a 0.45 μm membrane filtration (Millipore Millex-HV Hydrophillic PVDF filter), were then injected into a preparative high performance liquid chromatography instrument in which pure components, as shown by peaks, were collected and evaluated for anti-microbial activity ...

  11. Antimicrobial activity of peptidomimetics against multidrug-resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Frimodt-Møller, Niels; Franzyk, Henrik

    2012-01-01

    Novel remedies in the battle against multidrug-resistant bacterial strains are urgently needed, and one obvious approach involves antimicrobial peptides and mimics hereof. The impact of a- and ß-peptoid as well as ß(3)-amino acid modifications on the activity profile against ß-lactamase-producing...

  12. Antimicrobial and Antioxidant Activities of the Essential Oils of Some ...

    African Journals Online (AJOL)

    Purpose: To determine the antimicrobial and antioxidant activities of Pulicaria inuloides and Ocimum forskolei essential oils. Methods: Steam distillation of the aerial parts of P. inuloides and O. forskolei was performed using a Clevenger apparatus. Essential oils were analyzed by gas chromatography–mass spectrometry.

  13. Antimicrobial activity of Diospyros melanoxylon bark from Similipal ...

    African Journals Online (AJOL)

    The antimicrobial activity of five extracts of Diospyros melanoxylon Roxb. bark collected from Similipal Biosphere Reserve, Orissa was evaluated against human pathogenic bacteria and fungi. The extracts including both polar and non polar solvents; petroleum ether, chloroform, ethanol, methanol and aqueous were ...

  14. Antimicrobial activities of medicinal plants used in folklore remedies ...

    African Journals Online (AJOL)

    In south-western part of Nigeria Psidium guajava and Mangifera indica are commonly used for herbal preparations in the treatment of toothache, gastrointestinal disorders, dynsentery, diarrhoea, sore gums and sore throats. This has, therefore, led to the investigation of the antimicrobial activities of methanolic extracts of P.

  15. Antimicrobial activities of grape ( Vitis vinifera L.) pomace ...

    African Journals Online (AJOL)

    Grape pomace is a potential source of winery by-products having useful bioactive components. Antimicrobial activities of enzyme-assisted grape pomace polyphenols (GPP) were assessed against Escherichia coli IFO 3301 and Staphylococcus aureus IFO 12732 using plate count and spectrophotometry assays. GPP have ...

  16. Evaluation of antimicrobial activity of the fruitrind of Picralima nitida ...

    African Journals Online (AJOL)

    ... Proteus mirabilis for the (M) extract of PN. These results provide a rationalization for the traditional use of both plants for the treatment of infections diseases. Keywords: Antimicrobial activity, Cylicodiscus gabunensis, Picralima nitida. West African Journal of Pharmacology and Drug Research Vol. 21 (1&2) 2005: pp. 6-12 ...

  17. chemical composition and antimicrobial activity of the essential oil

    African Journals Online (AJOL)

    Hydro-distilled essential oil from Satureja biflora (Lamiaceae) growing in Kenya was analysed by gas chromatography mass spectrometry (GC-MS) and also evaluated for antimicrobial activity. Twenty two compounds which constitute 99.29 % of the total oil were identified. The oil was dominated by monoterpenes, which ...

  18. Nematicidal, Larvicidal and Antimicrobial Activities of Some New ...

    African Journals Online (AJOL)

    Methods: Compounds 1a-g and 2a-g were prepared using a Mannich condensation method. The chemical structures of ... Keywords: Imidazole, Thiosemicarbazide, Semicarbazide, Condensation, Antimicrobial, Nematicidal,. Larvicidal, Structure-activity ... capillary tubes and are uncorrected. IR spectra were recorded in KBr ...

  19. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species

    Science.gov (United States)

    Mitrović, Tatjana; Stamenković, Slaviša; Cvetković, Vladimir; Tošić, Svetlana; Stanković, Milan; Radojević, Ivana; Stefanović, Olgica; Čomić, Ljiljana; Đačić, Dragana; Ćurčić, Milena; Marković, Snežana

    2011-01-01

    The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA)/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru)/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+) bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells. PMID:21954369

  20. Nanocomposite of polystyrene foil grafted with metallaboranes for antimicrobial activity

    Czech Academy of Sciences Publication Activity Database

    Benkocká, M.; Kolářová, K.; Matoušek, J.; Semerádtová, A.; Šícha, Václav; Kolská, Z.

    2018-01-01

    Roč. 441, MAY (2018), s. 120-129 ISSN 0169-4332 R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Antimicrobial activity * Chemical grafting * Metallaboranes * Piranha solution * Polystyrene * Surface properties Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 3.387, year: 2016

  1. Antioxidant and Antimicrobial Activity of Polyphenol Extracts from ...

    African Journals Online (AJOL)

    Purpose: To assess the antioxidant and antimicrobial activities of polyphenolic extracts of three wild red wild berry fruit species from Southeast Serbia, viz, European cornel (Cornus mas), blackthorn (Prunus spinosa L.) and wild blackberry (Rubus fruticosus). Methods: Polyphenol content was determined using ...

  2. Antimicrobial activities of some Euphorbia species | Kirbag | African ...

    African Journals Online (AJOL)

    The antimicrobial activities of these extracts were examined on test microorganisms as follows: Staphylococcus aureus COWAN 1, Bacillus megaterium DSM 32, Proteus vulgaris FMC 1, Klebsiella pneumonia FMC 5, Escherichia coli ATCC 25922, Pseudomonas aeruginosa DSM 50071, Candida albicans FMC 17, Candida ...

  3. Antimicrobial and antioxidant activities of Momordica charantia from ...

    African Journals Online (AJOL)

    ufo

    2013-03-27

    Mar 27, 2013 ... herbal medicines in fish disease management (Abutbul et ... Plant materials and extraction procedure ... Determination of extraction yield ..... Because of the health risks associated with the use of ... extracted plant part, and external environmental factors ..... Antimicrobial Activities of selected Mangrove.

  4. Antimicrobial activity of lysozyme with special relevance to milk

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... Lysozyme is among the minor milk proteins that has attracted increased .... while there is a general agreement that surface attachment polymers and ..... and form aggregates as a result of electrostatic and hydrophobic ...... conformational changes and antimicrobial activity of lysozyme upon reduction of its ...

  5. Chitosan-based nanosystems and their exploited antimicrobial activity.

    Science.gov (United States)

    Perinelli, Diego Romano; Fagioli, Laura; Campana, Raffaella; Lam, Jenny K W; Baffone, Wally; Palmieri, Giovanni Filippo; Casettari, Luca; Bonacucina, Giulia

    2018-05-30

    Chitosan is a biodegradable and biocompatible natural polysaccharide that has a wide range of applications in the field of pharmaceutics, biomedical, chemical, cosmetics, textile and food industry. One of the most interesting characteristics of chitosan is its antibacterial and antifungal activity, and together with its excellent safety profile in human, it has attracted considerable attention in various research disciplines. The antimicrobial activity of chitosan is dependent on a number of factors, including its molecular weight, degree of deacetylation, degree of substitution, physical form, as well as structural properties of the cell wall of the target microorganisms. While the sole use of chitosan may not be sufficient to produce an adequate antimicrobial effect to fulfil different purposes, the incorporation of this biopolymer with other active substances such as drugs, metals and natural compounds in nanosystems is a commonly employed strategy to enhance its antimicrobial potential. In this review, we aim to provide an overview on the different approaches that exploit the antimicrobial activity of chitosan-based nanosystems and their applications, and highlight the latest advances in this field. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Synthesis and evaluation of antioxidant and antimicrobial activities ...

    African Journals Online (AJOL)

    Purpose: To synthesize and evaluate Schiff base Tin (II) complexes for antioxidant and antimicrobial activities. Methods: The complexes of Tin (II) chloride with various Schiff base derivative of 2-Hydroxy-1- naphthaldehyde (HN) were synthesized and characterized by various physiochemical techniques, including elemental ...

  7. Free-radical scavenging capacity and antimicrobial activity of wild ...

    African Journals Online (AJOL)

    ... Escherichia coli, Morganella morganii and Proteus vulgaris. The antimicrobial activity profile of R. flava against tested strains indicated that Micrococcus flavus, Micrococcus luteus and Yersinia enterocolitica was the most susceptible bacteria of all the test strains. R. flava was found to be inactive against Candida albicans.

  8. In-vitro antimicrobial activity of crude extracts of Diospyros ...

    African Journals Online (AJOL)

    Diospyros species in folklore medicine are used as anti-inflammatory, antibacterial, antioxidant, anticancer and antiviral agents. The in vitro antimicrobial activity of crude extracts of the leaves of Diospyros monbuttensis were evaluated against three bacterial species (Staphylococcus aureus, Escherichia coli and ...

  9. In Vitro Antimicrobial Activity Of Crude Extracts From Plants ...

    African Journals Online (AJOL)

    Extracts from the leaves of Bryophyllum pinnatum and Kalanchoe crenata were screened for their antimicrobial activities. Solvents used included water, methanol, and local solvents such as palmwine, local gin (Seaman's Schnapps 40% alcoholic drink,) and “omi ekan-ogi” (Sour water from 3 days fermented milled maize).

  10. Screening of some Siberian medicinal plants for antimicrobial activity

    Czech Academy of Sciences Publication Activity Database

    Kokoška, L.; Polesný, Z.; Rada, V.; Nepovím, Aleš; Vaněk, Tomáš

    2002-01-01

    Roč. 82, - (2002), s. 51-53 ISSN 0378-8741 R&D Projects: GA ČR GA525/02/0257 Institutional research plan: CEZ:AV0Z4055905 Keywords : antimicrobial activity * medicinal plants Subject RIV: CE - Biochemistry Impact factor: 1.188, year: 2002

  11. Antimicrobial impact of the components of essential oil of Litsea cubeba from Taiwan and antimicrobial activity of the oil in food systems.

    Science.gov (United States)

    Liu, Tai-Ti; Yang, Tsung-Shi

    2012-05-01

    Using natural additives to preserve foods has become popular due to consumer demands for nature and safety. Antimicrobial activity is one of the most important properties in many plant essential oils (EOs). The antimicrobial activity of the essential oil of Litsea cubeba (LC-EO) from Taiwan and the antimicrobial impact of individual volatile components in the oil on pathogens or spoilage microorganisms: Vibrio parahaemolyticus, Listeria monocytogenes, Lactobacillus plantarum, and Hansenula anomala in vitro, and the antimicrobial activity of the LC-EO against these organisms in food systems were studied. The "antimicrobial impact" (AI) is a new term that combines the effects of minimal microbicidal concentration (MMC) and quantity of an antimicrobial substance. The AI can quantitatively reflect the relative importance of individual components of the EO on the entire antimicrobial activity of the EO. The MMCs of the LC-EO against V. parahaemolyticus, L. monocytogenes, L. plantarum, and H. anomala were determined as 750, 750, 1500, and 375 μg/g, respectively in vitro. The MMCs of the LC-EO were 3000, 6000, and 12,000 μg/g for L. monocytogenes in tofu stored at 4 °C, 25 °C, and 37 °C, respectively. The temperature affected the bacterial growth which consequently influenced the MMCs of the LC-EO. The MMCs of the LC-EO were 3000, 6000, and 375 μg/g for Vibrio spp. in oysters, L. plantarum in orange-milk beverage, and H. anomala in soy sauce, respectively. Except for soy sauce, the food systems exhibited marked matrix effects on diminishing the antimicrobial activity of the LC-EO. Averagely, citral accounted for ca 70% of the total AI value for all the tested organisms, and the rest of the AI value of the LC-EO was determined by all the tested compounds (ca 4%) and the unidentified compounds (ca 26%). Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Skin compatibility and antimicrobial studies on biofunctionalized polypropylene fabric

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Sadiya [Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016 (India); Gupta, Amlan; Sharma, Deepika [Department of Pathology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102 (India); Dalal, Prashansa [Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016 (India); Gupta, Bhuvanesh, E-mail: bgupta@textile.iitd.ernet.in [Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016 (India)

    2016-12-01

    The aim of this study was the development of antimicrobial fabric which can be used as skin contacting material. The nanosilver loaded bioactive nanogels of polyacrylamide were prepared by gamma irradiation process and the particle size was observed to be in the range of 10–50 nm. In this study, we used polyethylene glycol as carrier for the combination of functional nanogel and essential oils together. Plasma functionalized polypropylene fabric was used as the base material for the bio-immobilization. Bioactive emulsion was coated on the fabric which exhibited excellent antimicrobial activity against Staphylococcus aureus and Escherichia coli. Skin irritation studies were carried out over a period of 3 d on Swiss albino mice. Histopathology studies of the fabric did not show adverse inflammatory response in contact with the skin. The biofunctionalized fabric offers appear to be promising material for skin contacting applications. - Highlights: • Antimicrobial processing of PP fabric for skin contacting material • Polyethylene glycol is used for the carrier of bioactive nanogels. • Synergistic effect of functional nanosilver and essential oil has been investigated. • Skin compatibility and histopathological studies of material have been observed.

  13. Effect of mixed antimicrobial agents and flavors in active packaging films.

    Science.gov (United States)

    Gutiérrez, Laura; Escudero, Ana; Batlle, Ramón; Nerín, Cristina

    2009-09-23

    Active packaging is an emerging food technology to improve the quality and safety of food products. Many works have been developed to study the antimicrobial activity of essential oils. Essential oils have been traditionally used as flavorings in food, so they have an important odor impact but they have as well antimicrobial properties that could be used to protect the food. Recent developments in antimicrobial active packaging showed the efficiency of essential oils versus bread and bakery products among other applications. However, one of the main problems to face is the odor and taste they could provide to the packaged food. Using some aromas to mask the odor could be a good approach. That is why the main objective of this paper is to develop an antimicrobial packaging material based on the combination of the most active compounds of essential oils (hydrocinnamaldehyde, oregano essential oil, cinnamaldehyde, thymol, and carvacrol) together with some aromas commonly used in the food industry. A study of the concentration required to get the antimicrobial properties, the organoleptic compatibility with typical aroma present in many food systems (vanilla, banana, and strawberry), and the right combination of both systems has been carried out. Antimicrobial tests of both the mentioned aromas, the main components of some essential oils, and the combination of both groups were carried out against bacteria (Enterococcus faecalis, Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Salmonella choleraesuis, Yersinia enterocolitica, Escherichia coli), yeasts (Candida albicans, Debaryomyces hansenii, Zygosaccharomyces rouxii), and molds (Botrytis cinerae, Aspergillus flavus, Penicillium roqueforti, Eurotium repens, Penicillium islandicum, Penicillium commune, Penicillium nalgiovensis). The sensory properties of the combinations were evaluated with a triangular test and classification was by an order test; the odor threshold of the aroma compounds was also

  14. Antimicrobial and antioxidant activity of lemon balm Kombucha

    OpenAIRE

    Velićanski Aleksandra S.; Cvetković Dragoljub D.; Markov Siniša L.; Tumbas Vesna T.; Savatović Slađana M.

    2007-01-01

    Kombucha is a beverage traditionally produced by metabolic activity of yeasts and acetic acid bacteria. The antimicrobial activity of lemon balm kombucha as well as of particular control samples was determined by agar-well diffusion method. Antioxidant activity on stable 1,1-diphenyl-2-picrylhydrazyl radicals of lemon balm kombucha and lemon balm tea was determined by electron spin resonance spectroscopy. Acetic acid, Kombucha samples and heat-denaturated kombucha showed significant antimicro...

  15. Synthesis, characterization, crystal structure and theoretical study of a compound with benzodiazole ring: antimicrobial activity and DNA binding.

    Science.gov (United States)

    Latha, P; Kodisundaram, P; Sundararajan, M L; Jeyakumar, T

    2014-08-14

    2-(Thiophen-2-yl)-1-((thiophen-2-yl)methyl)-1H-1,3-benzodiazole (HL) is synthesized and characterized by elemental analysis, UV-Vis, FT-IR, (1)H, (13)C NMR, mass spectra, scanning electron microscope (SEM) and single crystal X-ray diffraction. The crystal structure is stabilized by intermolecular CH⋯N and CH⋯π interactions. The molecular structure is also optimized at the B3LYP/6-31G level using density functional theory (DFT). The structural parameters from the theory are nearer to those of crystal, the calculated total energy of coordination is -1522.814a.u. The energy of HOMO-LUMO and the energy gap are -0.20718, -0.04314, 0.16404a.u, respectively. All data obtained from the spectral studies support the structural properties of the compound HL. The benzimidazole ring is essentially planar. The in vitro biological screening effects of the synthesized compound is tested against four bacterial and four fungal strains by well diffusion method. Antioxidant property and DNA binding behaviour of the compound has been investigated using spectrophotometric method. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies

    Science.gov (United States)

    Murali Krishna, I.; Bhagavanth Reddy, G.; Veerabhadram, G.; Madhusudhan, A.

    2016-06-01

    An economically viable and "green" process has been developed for the synthesis of silver nanoparticles (AgNPs) with an average size of 7 nm using non-toxic and renewable salmalia malabarica gum (SMG) as reducing and capping agent without using any chemical reducing agent. The effect of various parameters such as concentration of SMG and silver nitrate and reaction time for the synthesis of AgNPs was studied. The synthesized AgNPs are systematically characterized by UV/Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and Transmission electron microscopy. The resultant SMG-capped AgNPs are highly stable and had significant antibacterial action on both Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). The catalytic action of the SMG-capped AgNPs to initiate the reduction of 4-nitrophenol (4-NP) in the presence of NaBH4 has also been reported. The kinetics of the reaction was found to be of pseudo-first-order with respect to the 4-NP.

  17. Comparison of antimicrobial activity of essential oils, plant extracts and methylparaben in cosmetic emulsions: 2 months study.

    Science.gov (United States)

    Herman, Anna

    2014-09-01

    The aim of the study was to compare the preservative effectiveness of plant extracts (Matricaria chamomilla, Aloe vera, Calendula officinalis) and essential oils (Lavandulla officinalis, Melaleuca alternifolia, Cinnamomum zeylanicum) with methylparaben in cosmetic emulsions against skin microflora during 2 months of application by volunteers. Cosmetic emulsions with extracts (2.5 %), essential oils (2.5 %), methylparaben (0.4 %) or placebo were tested by 40 volunteers during 2 months of treatment. In order to determine microbial purity of the emulsions, the samples were taken after 0, 2, 4, 6 and 8 weeks of application. Throughout the trial period it was revealed that only cinnamon oil completely inhibited the growth of bacteria, yeast and mould, as compared to all other essential oils, plant extracts and methylparaben in the tested emulsions. This result shows that cinnamon oil could successfully replace the use of methylparaben in cosmetics, at the same time ensuring microbiological purity of a cosmetic product under its in-use and storage conditions.

  18. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract

    Directory of Open Access Journals (Sweden)

    Amgad A Awad El-Gied

    2015-01-01

    Full Text Available Medicinal plants have curative properties due to the presence of various complex chemical substance of different composition, which are found as secondary plant metabolites in one or more parts of these plants. Mangifera indica Linn (MI L. is a species of mango in the Anacardiaceae family. Phytoconstituents in the seed extracts may be responsible for the antimicrobial activity of the plant. The purpose of the study was to formulate and evaluate the antimicrobial herbal ointment and cream from extracts of the seeds of mango (MI L. The formulated ointments containing oleaginous-based showed the best formulation compared to the emulsion water in oil type, the ointment and cream bases in different concentration 1%, 5% and 10%. The formulated ointment and cream of MI L. were subjected to evaluation of Uniformity of Weight, measurement of pH, viscosity, Spreadability, Acute skin irritation study, stability study and antimicrobial activity. Our study shows that MI has high potential as an antimicrobial agent when formulated as ointment and creams for topical use. Thus, the present study concludes that the formulated formulations of the MI are safe and efficient carriers, with potent antimicrobial activity.

  19. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract

    Science.gov (United States)

    Awad El-Gied, Amgad A.; Abdelkareem, Abdelkareem M.; Hamedelniel, Elnazeer I.

    2015-01-01

    Medicinal plants have curative properties due to the presence of various complex chemical substance of different composition, which are found as secondary plant metabolites in one or more parts of these plants. Mangifera indica Linn (MI L.) is a species of mango in the Anacardiaceae family. Phytoconstituents in the seed extracts may be responsible for the antimicrobial activity of the plant. The purpose of the study was to formulate and evaluate the antimicrobial herbal ointment and cream from extracts of the seeds of mango (MI L.) The formulated ointments containing oleaginous-based showed the best formulation compared to the emulsion water in oil type, the ointment and cream bases in different concentration 1%, 5% and 10%. The formulated ointment and cream of MI L. were subjected to evaluation of Uniformity of Weight, measurement of pH, viscosity, Spreadability, Acute skin irritation study, stability study and antimicrobial activity. Our study shows that MI has high potential as an antimicrobial agent when formulated as ointment and creams for topical use. Thus, the present study concludes that the formulated formulations of the MI are safe and efficient carriers, with potent antimicrobial activity. PMID:25878974

  20. Antimicrobial Activity of Two Garlic Species (Allium Sativum and A. Tuberosum) Against Staphylococci Infection. In Vivo Study in Rats.

    Science.gov (United States)

    Venâncio, Paulo César; Raimundo Figueroba, Sidney; Dias Nani, Bruno; Eduardo Nunes Ferreira, Luiz; Vilela Muniz, Bruno; de Sá Del Fiol, Fernando; Sartoratto, Adilson; Antonio Ribeiro Rosa, Edvaldo; Carlos Groppo, Francisco

    2017-04-01

    Purpose: This study observed the effect of garlic extracts and amoxicillin against an induced staphylococcal infection model. MIC and MBC were also obtained for aqueous extracts of Allium sativum (Asa) and Allium tuberosum (Atu) against Staphylococcus aureus penicillin-sensitive (PSSA - ATCC 25923) and MRSA (ATCC 33592). Methods: Granulation tissues were induced in the back of 205 rats. After 14 days, 0.5 mL of 10 8 CFU/mL of PSSA or MRSA were injected inside tissues. After 24h, animals were divided: G1 (Control) - 0.5 mL of NaCl 0.9%; G2 - Asa 100 mg/kg or 400mg/kg; G3 - Atu 100 mg/kg or 400 mg/kg; G4 - amoxicillin suspension 50 mg/kg, considering PSSA infection; and G5 (Control) - 0.5 mL of NaCl 0.9%; G6 - Asa 400mg/kg; G7 - amoxicillin 50 mg/kg; and G8 - Asa 400 mg/kg + amoxicillin 50 mg/kg for MRSA. All treatments were administered P.O. every 6h. Animals were killed at 0, 6, 12 and 24h. Samples were spread on salt-mannitol agar. Colonies were counted after 18 h at 37 °C. Atu was not able to inhibit or kill PSSA and MRSA. Considering Asa, MIC and MBC against PSSA were 2 mg/mL and 4 mg/mL, respectively; and 16 mg/mL and 64 mg/mL against MRSA. Results: No effect was observed in vivo for control, Asa 100 mg/kg and Atu 100 mg/kg, while amoxicillin, Atu 400 mg/kg and Asa 400 mg/kg decreased PSSA counts in all-time points. No effect of any group against MRSA was observed at any time. Conclusion: Thus, A. sativum and A. tuberosum were able to reduce PSSA infection, but not MRSA infection.

  1. Preparation and Characterizations of Chitosan/Citral Nanoemulsions and their Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Gehan I. Kh. Marei

    2018-03-01

    Full Text Available Background and Objective: The antimicrobial activity of essential oils has been long recognized, however, they easily evaporate and/or decompose during preparation, owing to direct exposure to heat, pressure and light. The current study deals with the formulation and characterization of bio-based oil in water nanoemulsions and their antimicrobial activity against plant pathogens.Material and Methods: Citral oil and low molecular weight chitosan were used for preparation of nanoemulsions in the presence of sodium tripolyphosphate. Nanoemulsions were prepared by adding dropwise citral at different ratios into an aqueous solution containing chitosan, sodium tripolyphosphate and surfactant with continuous stirring and then ultrasonication. The success of formulation was confirmed by dynamic light scattering and scanning electron microscopy techniques. Physical stability and viscosity were investigated in details. The antimicrobial activity was evaluated against Erwinia carotovora, Aspergillus niger and Rhizopus stolonifer. Results and Conclusion: The nanoemulsions had a polydispersity index ranged from 0.508 to 0.614 and particle size from 27 to 1283 nm. The highest antimicrobial activity was observed with F1 formulation (EC50 = 23, 278 and 221 mg L-1, against Erwinia carotovora, Aspergillus niger and Rhizopus stolonifer, respectively. Based on the antimicrobial activity, the prepared chitosan/citral nanoemulsions can be a cost-effective way to protect crops from microbial pathogens. Because such formulations contain bioactive products, the development of resistant pathogens can be delayed.Conflict of Interest: The authors declare no conflict of interest. 

  2. SCREENING OF ANTIMICROBIAL ACTIVITY AND GENES CODING POLYKETIDE SYNTHETASE AND NONRIBOSOMAL PEPTIDE SYNTHETASE OF ACTINOMYCETE ISOLATES

    Directory of Open Access Journals (Sweden)

    Silvia Kovácsová

    2013-12-01

    Full Text Available The aim of this study was to observe antimicrobial activity using agar plate diffusion method and screening genes coding polyketide synthetase (PKS-I and nonribosomal peptide synthetase (NRPS from actinomycetes. A total of 105 actinomycete strains were isolated from arable soil. Antimicrobial activity was demonstrated at 54 strains against at least 1 of total 12 indicator organisms. Antifungal properties were recorded more often than antibacterial properties. The presence of PKS-I and NRPS genes were founded at 61 of total 105 strains. The number of strains with mentioned biosynthetic enzyme gene fragments matching the anticipated length were 19 (18% and 50 (47% respectively. Overall, five actinomycete strains carried all the biosynthetical genes, yet no antimicrobial activity was found against any of tested pathogens. On the other hand, twenty-one strains showed antimicrobial activity even though we were not able to amplify any of the PKS or NRPS genes from them. Combination of the two methods showed broad-spectrum antimicrobial activity of actinomycetes isolated from arable soil, which indicate that actinomycetes are valuable reservoirs of novel bioactive compounds.

  3. Antimicrobial activity and phytochemical characterization of Carya illinoensis.

    Science.gov (United States)

    Bottari, Nathieli Bianchin; Lopes, Leonardo Quintana Soares; Pizzuti, Kauana; Filippi Dos Santos Alves, Camilla; Corrêa, Marcos Saldanha; Bolzan, Leandro Perger; Zago, Adriana; de Almeida Vaucher, Rodrigo; Boligon, Aline Augusti; Giongo, Janice Luehring; Baldissera, Matheus Dellaméa; Santos, Roberto Christ Vianna

    2017-03-01

    Carya illinoensis is a widespread species, belonging to the Juglandaceae family, commonly known as Pecan. Popularly, the leaves have been used in the treatment of smoking as a hypoglycemic, cleansing, astringent, keratolytic, antioxidant, and antimicrobial agent. The following research aimed to identify for the first time the phytochemical compounds present in the leaves of C. illinoensis and carry out the determination of antimicrobial activity of aqueous and ethanolic extracts. The antimicrobial activity was tested against 20 microorganisms by determining the minimum inhibitory concentration (MIC). Phenolic acids (gallic acid and ellagic acid), flavonoids (rutin), and tannins (catechins and epicatechins) were identified by HPLC-DAD and may be partially responsible for the antimicrobial activity against Gram-positive, Gram-negative, and yeast. The results showed MIC values between 25 mg/mL and 0.78 mg/mL. The extracts were also able to inhibit the production of germ tubes by Candida albicans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Development of elastin-like recombinamer films with antimicrobial activity

    DEFF Research Database (Denmark)

    Costa, André; Machado, Raul; Ribeiro, Artur

    2015-01-01

    In the present work we explored the ABP-CM4 peptide properties from Bombyx mori for the creation of biopolymers with broad antimicrobial activity. An antimicrobial recombinant protein-based polymer (rPBP) was designed by cloning the DNA sequence coding for ABP-CM4 in frame with the N......-terminus of the elastin-like recombinamer consisting of 200 repetitions of the pentamer VPAVG, here named A200. The new rPBP, named CM4-A200, was purified via a simplified nonchromatographic method, making use of the thermoresponsive behavior of the A200 polymer. ABP-CM4 peptide was also purified through...... the incorporation of a formic acid cleavage site between the peptide and the A200 sequence. In soluble state the antimicrobial activity of both CM4-A200 polymer and ABP-CM4 peptide was poorly effective. However, when the CM4-A200 polymer was processed into free-standing films high antimicrobial activity against...

  5. Actinomycetes with antimicrobial activity isolated from paper wasp (Hymenoptera: Vespidae: Polistinae) nests.

    Science.gov (United States)

    Madden, Anne A; Grassetti, Andrew; Soriano, Jonathan-Andrew N; Starks, Philip T

    2013-08-01

    Actinomycetes-a group of antimicrobial producing bacteria-have been successfully cultured and characterized from the nest material of diverse arthropods. Some are symbionts that produce antimicrobial chemicals found to protect nest brood and resources from pathogenic microbes. Others have no known fitness relationship with their associated insects, but have been found to produce antimicrobials in vitro. Consequently, insect nest material is being investigated as a new source of novel antimicrobial producing actinomycetes, which could be harnessed for therapeutic potential. To extend studies of actinomycete-insect associations beyond soil-substrate dwelling insects and wood boring excavators, we conducted a preliminary assessment of the actinomycetes within the nests of the paper wasp, Polistes dominulus (Christ). We found that actinomycetes were readily cultured from nest material across multiple invasive P. dominulus populations-including members of the genera Streptomyces, Micromonospora, and Actinoplanes. Thirty of these isolates were assayed for antimicrobial activity against the challenge bacteria Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Serratia marcescens, and Bacillus subtilis. Sixty percent of isolates inhibited the growth of at least one challenge strain. This study provides the first assessment of bacteria associated with nests of P. dominulus, and the first record of antimicrobial producing actinomycetes isolated from social wasps. We provide a new system to explore nest associated actinomycetes from a ubiquitous and cosmopolitan group of insects.

  6. Study of the Antimicrobial Activity of Tilapia Piscidin 3 (TP3) and TP4 and Their Effects on Immune Functions in Hybrid Tilapia (Oreochromis spp.)

    Science.gov (United States)

    Pan, Chieh-Yu; Tsai, Tsung-Yu; Su, Bor-Chyuan; Hui, Cho-Fat; Chen, Jyh-Yih

    2017-01-01

    To address the growing concern over antibiotic-resistant microbial infections in aquatic animals, we tested several promising alternative agents that have emerged as new drug candidates. Specifically, the tilapia piscidins are a group of peptides that possess antimicrobial, wound-healing, and antitumor functions. In this study, we focused on tilapia piscidin 3 (TP3) and TP4, which are peptides derived from Oreochromis niloticus, and investigated their inhibition of acute bacterial infections by infecting hybrid tilapia (Oreochromis spp.) with Vibrio vulnificus and evaluating the protective effects of pre-treating, co-treating, and post-treating fish with TP3 and TP4. In vivo experiments showed that co-treatment with V. vulnificus and TP3 (20 μg/fish) or TP4 (20 μg/fish) achieved 95.3% and 88.9% survival rates, respectively, after seven days. When we co-injected TP3 or TP4 and V. vulnificus into tilapia and then re-challenged the fish with V. vulnificus after 28 days, the tilapia exhibited survival rates of 35.6% and 42.2%, respectively. Pre-treatment with TP3 (30 μg/fish) or TP4 (20 μg/fish) for 30 minutes prior to V. vulnificus infection resulted in high survival rates of 28.9% and 37.8%, respectively, while post-treatment with TP3 (20 μg/fish or 30 μg/fish) or TP4 (20 μg/fish) 30 minutes after V. vulnificus infection yielded high survival rates of 33.3% and 48.9%. In summary, pre-treating, co-treating, and post-treating fish with TP3 or TP4 all effectively decreased the number of V. vulnificus bacteria and promoted significantly lower mortality rates in tilapia. The minimum inhibitory concentrations (MICs) of TP3 and TP4 that were effective for treating fish infected with V. vulnificus were 7.8 and 62.5 μg/ml, respectively, whereas the MICs of kanamycin and ampicillin were 31.2 and 3.91 μg/ml. The antimicrobial activity of these peptides was confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), both of which showed

  7. Chemical Composition and Antimicrobial Activities of Iranian Propolis

    Science.gov (United States)

    Afrouzan, Houshang; Tahghighi, Azar; Zakeri, Sedigheh; Es-haghi, Ali

    2018-01-01

    Background: With considering the importance of natural products for their remedial and therapeutic value, this research was aimed to analyze the chemical compositions and antimicrobial activity of four propolis samples from different areas of Iran (Chenaran, Taleghan, Morad Beyg, and Kalaleh) with various climates and flora. Methods: Ethanolic (70% EtOH) and dichlromethane (DCM) extracts of Iranian propolis were analyzed by gas chromatography-mass spectrometry (GC-MS) methods, and antimicrobial activity was evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus using disk diffusion antimicrobial method. Results: The results of GC-MS analysis showed the presence of fatty acids, flavonoids, terpenes, aromatic-aliphatic acids, and their related esters. The total flavonoids in DCM extract of Chenaran, Taleghan, Morad Beyg, and Kalaleh propolis were pinocembrin and pinostrobin chalcone. The common phenolic and terpene compounds detected in all four tested EtOH extracts were P-cumaric acid and dimethyl -1,3,5,6-tetramethyl-[1,3-(13C2)] bicycloce [5.5.0] dodeca-1,3,5,6,8,10-hexaene-9,10-dicarboxylate, respectively. The highest inhibitory diameter zone of the Iranian propolis against C. albicans, E. coli, and S. aureus was for DCM extract of Kalaleh propolis (13.33 mm), Morad Beyg propolis (12 mm), and Kalaleh (11.67 mm), respectively. Conclusion: Iranian propolis showed antimicrobial activities against C. albicans, E. coli, and S. aurous, perhaps due to the presence of flavonoids, phenolic acids, and terpenes as active components that can be used alone or in combination with the selected antibiotics to synergize antibiotic effect, as well as to prevent microbial resistance to available antimicrobial drugs. PMID:28558440

  8. Evaluation of Antimicrobial Activity of Bacillus Strains Isolated from Various Resources

    Directory of Open Access Journals (Sweden)

    Mohsen Golnari Maranni

    2017-02-01

    Full Text Available Abstract Background: Prevalence extension of antibiotic resistant bacteria has raised concerns about control of infections especially nosocomial infections. Many attempts have been done to replace antibiotics or limit their use. The use of antimicrobial agents produced by bacteria as antibiotic replacement has been promising in recent years. The goal of this study was to isolate Bacillus strains and evaluate their antimicrobial activity against some standard pathogens and clinical antibiotic resistant strains. Materials and Methods: In the present study, Bacillus strains were isolated from various resources and identified by 16S rDNA PCR method. Then, the phylogenetic tree of the isolates was constructed and antimicrobial activity of the isolates was investigated against some standard pathogens and clinical antibiotic resistant strains using spotting and well diffusion methods. Results: Eight Bacillus strains were isolated from 15 different samples. Based on the molecular identification, the isolates were identified as B.pumilus, B.coagulans, B.licheniformis, B.endophitycus and B.amiloliquefaciens. The results showed that isolates have antimicrobial activity against meticilin-resistant Staphylococcus aureus, vancomycin resistant enterococci, Klebsiella, Acinetobacter, Salmonella, Shigella, Listeria, Streptococcus and Escherichia coli. Conclusion: In this study, isolated Bacillus strains produced antimicrobial agents against pathogens and antibiotic resistant strains and inhibited their growth.

  9. Synthesis, Characterization and Antimicrobial Activity of New Thiadiazole Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Mullick, Pooja; Khan, Suroor A.; Verma, Surajpal; Alam, Ozair [Hamdard University, New Delhi (India)

    2010-08-15

    A series of thiadiazole derivatives were synthesized with differently substituted benzoic acids which were cyclized to give differently substituted thiazolidin-4-one. Elemental analysis, IR, {sup 1}H NMR, {sup 13}C NMR and mass spectral data confirmed the structure of the newly synthesized compounds. The derivatives of these moieties were evaluated for antimicrobial activity. Most of the synthesized compounds showed good antimicrobial activity at 200 and 100 μg/mL. Compounds showed most significant antibacterial activity against gram negative test organism Escherichia coli and most significant antifungal activity against test organisms Aspergillus niger and Candida albicans. It was observed that compounds with OCH{sub 3} at 3, 4 position of phenyl ring [5(a-l)] were more potent against microbes as compared to compounds having unsubstituted phenyl ring [4(a-l)].

  10. Nanoparticles for antimicrobial purposes in Endodontics: A systematic review of in vitro studies.

    Science.gov (United States)

    Samiei, Mohammad; Farjami, Afsaneh; Dizaj, Solmaz Maleki; Lotfipour, Farzaneh

    2016-01-01

    Antimicrobial nanoparticles with enhanced physiochemical properties have attracted attention as modern antimicrobials, especially in the complicated oral cavity environment. The goal of the present article is to review the current state of nanoparticles used for antimicrobial purposes in root canal infections. A review was conducted in electronic databases using MeSH keywords to identify relevant published literature in English. The analysis and eligibility criteria were documented according to the Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA-guidelines). No restrictions on publication date were imposed. Data regarding root canal disinfections, general antimicrobial mechanisms of nanoparticles, type of nanoparticles as antimicrobial agent and antimicrobial effect of nanoparticles in endodontics were collected and subjected to descriptive data analysis. The literature search in electronic databases according to the inclusion criteria provided 83 titles and abstracts. Among them 15 papers were related to antimicrobial effect of nanoparticles in Endodontics. Silver nanoparticles with sustainable activity were the most studied agent for its antimicrobial behavior in root canal infection. Aided polymeric nanoparticles with photo or ultrasound, glass bioactive nanoparticles as well as Calcium derivative based nanoparticles, with improved activity in comparison with the non-nano counterparts, are of importance in infection control of dental root canal. Bioactive Non-organic nanoparticles with structural capabilities present enhanced antimicrobial activity in root canal infections. All included studies showed an enhanced or at least equal effect of nanoparticulate systems to combat dental root canal infections compared to conventional antimicrobial procedures. However, it is crucial to understand their shortcomings and their probable cellular effects and toxicity as well as environmental effects. Copyright © 2015 Elsevier B.V. All rights

  11. Antioxidant and Antimicrobial Activities of Pogostemon cablin (Blanco Benth.

    Directory of Open Access Journals (Sweden)

    Bhanuz Dechayont

    2017-01-01

    Full Text Available Pogostemon cablin (Lamiaceae has been widely used in traditional medicine. In this study, the antioxidant and antimicrobial activities of leaves from P. cablin extracts were investigated. The water extracts had the highest total phenolic content 116.88±0.48 mg gallic acid equivalent/g of dry plant extract. Nevertheless, high levels of total flavonoid content were found in ethanolic extracts 280.12±2.04 mg quercetin equivalent/g of dry plant extract. The highest antioxidant activities were found for the ethanolic extract (IC50=18±0.90, 20±0.24 μg/mL by DPPH and ABTS scavenging assays, respectively. Both extracts showed moderate inhibition of superoxide inhibition (O2∙- and nitric oxide (NO production in concentration-dependent manner. Antibacterial activity was calculated by disk diffusion, minimum inhibitory concentration (MIC, and minimum bacterial concentration (MBC. The ethanolic extract had the greatest activity against methicillin resistant Staphylococcus aureus, methicillin sensitive S. aureus, and Streptococcus pyogenes with zone diameters of 11.67±1.53, 10.33±2.52, and 10.33±1.15 mm, respectively. The corresponding MIC and MBCs were 5, 0.625, and 0.039 mg/mL. P. cablin extracts contain antioxidant and antibacterial properties that should be exploited for possible clinical application.

  12. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates.

    Science.gov (United States)

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants' potential for developing new antimicrobials.

  13. Antioxidant and antimicrobial activities of callus culture and leaf ...

    African Journals Online (AJOL)

    The callus culture extract (CCE) gave the lowest MIC value of 0.78 mg/ mL for most of the bacteria and fungi and the lowest MBC values of 0.78 mg/ mL and 1.56 mg/ mL against bacteria and fungi, respectively. ... Keywords: Crotalaria retusa; In vitro propagation; Callus culture; Antimicrobial activity; Antioxidant activity ...

  14. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    Science.gov (United States)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  15. Review of antimicrobial and antioxidative activities of chitosans in food.

    Science.gov (United States)

    Friedman, Mendel; Juneja, Vijay K

    2010-09-01

    Interest in chitosan, a biodegradable, nontoxic, non-antigenic, and biocompatible biopolymer isolated from shellfish, arises from the fact that chitosans are reported to exhibit numerous health-related beneficial effects, including strong antimicrobial and antioxidative activities in foods. The extraordinary interest in the chemistry and application in agriculture, horticulture, environmental science, industry, microbiology, and medicine is attested by about 17,000 citations on this subject in the Scopus database. A special need exists to develop a better understanding of the role of chitosans in ameliorating foodborne illness. To contribute to this effort, this overview surveys and interprets our present knowledge of the chemistry and antimicrobial activities of chitosan in solution, as powders, and in edible films and coating against foodborne pathogens, spoilage bacteria, and pathogenic viruses and fungi in several food categories. These include produce, fruit juices, eggs and dairy, cereal, meat, and seafood products. Also covered are antimicrobial activities of chemically modified and nanochitosans, therapeutic properties, and possible mechanisms of the antimicrobial, antioxidative, and metal chelating effects. Further research is suggested in each of these categories. The widely scattered data on the multifaceted aspects of chitosan microbiology, summarized in the text and in 10 tables and 8 representative figures, suggest that low-molecular-weight chitosans at a pH below 6.0 presents optimal conditions for achieving desirable antimicrobial and antioxidative-preservative effects in liquid and solid foods. We are very hopeful that the described findings will be a valuable record and resource for further progress to improve microbial food safety and food quality.

  16. Synthesis, characterizations and antimicrobial activities of well dispersed ultra-long CdO nanowires

    Directory of Open Access Journals (Sweden)

    Sumeet Kumar

    2013-05-01

    Full Text Available We present a simple, efficient, low cost and template free method for preparation of well dispersed ultra-long (1 μm CdO nanowires. The CdO nanowires were characterized by x-ray diffraction (XRD, Transmission electron microscopy (TEM, UV-visible spectroscopy and Raman measurements. The direct and indirect band gaps were calculated to be 3.5 eV and 2.6 eV, respectively. In the Raman spectra only second order features were observed. The CdO nanowires were used to study antimicrobial activities against B.subtilis and E.coli microbes. It shows antimicrobial activity against B.subtilis and E.coli. However, the antimicrobial activities are better against B.subtilis than that of E.coli.

  17. Effect of Gamma Radiation on Chemical Composition and Antimicrobial Activity of Fennel and Geranium Volatile Oils

    International Nuclear Information System (INIS)

    Abo-Seoud, M. A.; Helal, I. M. M.; Sarhan, M. M.; Galal, A. M. M.

    2004-01-01

    Essential oils of fennel and geranium were gamma irradiated with doses of 0,10,20,30 and 40 kGy. The studied oils were tested for their antimicrobial activities against some pathogenic microorganisms (Alternaria alternata, Aspergillus niger, A. flavus, Fusarium oxysporium, Trichoderma viride and Pseudomonas citri). Both oils were used in four concentrations of 500, 1000, 2000 and 4000 ppm. The investigated oils showed different inhibition effects against the tested microorganisms. Gamma irradiated oils increased the antimicrobial activity with different magnitudes. Generally, increasing oil concentration increased antimicrobial activity of the used oils and that of 4000 ppm was the most effective one. The essential oils were analyzed by G.C. to evaluate the effect of gamma irradiation on the oil components. (authors)

  18. Antimicrobial activity of a new intact skin antisepsis formulation.

    Science.gov (United States)

    Russo, Antonello; Viotti, Pier Luigi; Vitali, Matteo; Clementi, Massimo

    2003-04-01

    Different antiseptic formulations have shown limitations when applied to disinfecting intact skin, notably short-term tolerability and/or efficacy. The purpose of this study was optimizing a new antiseptic formulation specifically targeted at intact skin disinfection and evaluating its in vitro microbicidal activity and in vivo efficacy. The biocidal properties of the antiseptic solution containing 0.5% chloramine-T diluted in 50% isopropyl alcohol (Cloral; Eurospital SpA Trieste, Italy) were measured in vitro versus gram-positive-, gram-negative-, and acid-alcohol-resistant germs and fungi with standard suspension tests in the presence of fetal bovine serum. Virus-inhibiting activity was evaluated in vitro against human cytomegalovirus, herpes simplex virus, poliovirus, hepatitis B virus, and hepatitis C virus. Tests used different methods for the different biologic and in vitro replication capacity of these human viruses. Lastly, Cloral tolerability and skin colonization retardation efficacy after disinfection were studied in vivo. The antiseptic under review showed fast and sustained antimicrobial activity. The efficacy of Cloral against clinically important bacterial and viral pathogens and fungi was highlighted under the experimental conditions described in this article. Finally, microbial regrowth lag and no side effects were documented in vivo after disinfection of 11 volunteers. A stable chloramine-T solution in isopropyl alcohol may be suggested for intact skin antisepsis.

  19. Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel

    Directory of Open Access Journals (Sweden)

    Chen M

    2011-11-01

    Full Text Available Meiwan Chen1,2,‡, Zhiwen Yang1,‡, Hongmei Wu1, Xin Pan1, Xiaobao Xie3, Chuanbin Wu11Research and Development Center of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China; 2State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; 3Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, China ‡These authors contributed equally to this workPurpose: The purpose of the present study was to elucidate the antimicrobial activity and mechanism of silver nanoparticles incorporated into thermosensitive gel (S-T-Gel on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa.Patients and methods: This study investigated the growth, permeability, and morphology of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa cells in order to observe the action of S-T-Gel on the membrane structure of these three bacteria. The cell morphology of normal and treated bacteria cells was assessed by transmission electron microscopy (TEM, and the effects of S-T-Gel on genome DNA of bacterial cells were evaluated by agarose gel electrophoresis.Results: S-T-Gel showed promising activity against Staphylococcus aureus and moderate activity against Escherichia coli and Pseudomonas aeruginosa. The observation with TEM suggested that S-T-Gel may destroy the structure of bacterial cell membranes in order to enter the bacterial cell. S-T-Gel then condensed DNA and combined and coagulated with the cytoplasm of the damaged bacteria, resulting in the leakage of the cytoplasmic component and the eventual death of these three bacteria. In addition, the analysis of agarose gel electrophoresis demonstrated that S-T-Gel could increase the decomposability of genome DNA.Conclusion: These results about promising antimicrobial activity and mechanism of S-T-Gel may be useful for further research

  20. Synthesis, antimicrobial and cytotoxicity studies of some novel modified Strobilurin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Sridhara, Ajjanna M.; Gopinath, Vadiraj S.; Bose, Prosenjit; Goud, Sanath Kumar [Advinus Therapeutics Pvt. Ltd., Bangalore (India); Reddy, Kallam R. Venugopala, E-mail: venurashmi30@rediffmail.co [Advinus Therapeutics Pvt. Ltd., Bangalore (India). Dept. of Studies in Industrial Chemistry; Keshavayya, Jathi [Advinus Therapeutics Pvt. Ltd., Bangalore (India). Dept. of Studies in Chemistry; Ambika, Dasannana Malige S. [Kuvempu University, Jnana Sahyadri, Karnataka (India). Dept. of Biochemistry; Peethambar, Sanenahalli K. [Kuvempu University, Jnana Sahyadri, Karnataka (India). Dept. of Plant Pathology

    2011-07-01

    A series of some new 3-isoxazoline substituted methyl-3-methoxy-2-(4-oxo-3,4- dihydrophthalazine-1-yl)prop-2-enoate derivatives were designed and synthesized from methyl- (4-oxo-3,4-dihydrophthalazine-1-yl)acetate, which in turn was prepared from phthalic anhydride. The structures of synthesized new compounds were characterized by spectral data and studied for their antimicrobial activities and cytotoxicity. Several of these compounds showed good antimicrobial activity (author)

  1. Synthesis and Antimicrobial Activity of Novel Ag-N-Hetero-cyclic Carbene Complexes

    Directory of Open Access Journals (Sweden)

    İlknur Özdemir

    2010-04-01

    Full Text Available A series of imidazolidinium ligand precursors are metallated with Ag2O to give silver(I N-heterocyclic carbene complexes. All compounds were fully characterized by elemental analyses, 1H-NMR, 13C-NMR and IR spectroscopy techniques. All compounds studied in this work were screened for their in vitro antimicrobial activities against the standard strains: Enterococcus faecalis (ATCC 29212, Staphylococcus aureus (ATCC 29213, Escherichia coli (ATCC 25922, Pseudomonas aeruginosa (ATCC 27853 and the fungi Candida albicans and Candida tropicalis. The new imidazolidin-2-ylidene silver complexes have been found to display effective antimicrobial activity against a series of bacteria and fungi.

  2. Antimicrobial activity of four species of Berberidaceae.

    Science.gov (United States)

    Li, Ai-Rong; Zhu, Yue; Li, Xiao-Na; Tian, Xing-Jun

    2007-07-01

    Ethanolic extracts of the stems and leaves of Nandina domestica, Mahonia fortunei, Mahonia bealei and Berberis thunbergii were tested for their antibacterial and antifungal activity. Most of the extracts have been proved to be active against Gram(+) bacteria.

  3. Genomewide Analysis of the Antimicrobial Peptides in Python bivittatus and Characterization of Cathelicidins with Potent Antimicrobial Activity and Low Cytotoxicity.

    Science.gov (United States)

    Kim, Dayeong; Soundrarajan, Nagasundarapandian; Lee, Juyeon; Cho, Hye-Sun; Choi, Minkyeung; Cha, Se-Yeoun; Ahn, Byeongyong; Jeon, Hyoim; Le, Minh Thong; Song, Hyuk; Kim, Jin-Hoi; Park, Chankyu

    2017-09-01

    In this study, we sought to identify novel antimicrobial peptides (AMPs) in Python bivittatus through bioinformatic analyses of publicly available genome information and experimental validation. In our analysis of the python genome, we identified 29 AMP-related candidate sequences. Of these, we selected five cathelicidin-like sequences and subjected them to further in silico analyses. The results showed that these sequences likely have antimicrobial activity. The sequences were named Pb-CATH1 to Pb-CATH5 according to their sequence similarity to previously reported snake cathelicidins. We predicted their molecular structure and then chemically synthesized the mature peptide for three putative cathelicidins and subjected them to biological activity tests. Interestingly, all three peptides showed potent antimicrobial effects against Gram-negative bacteria but very weak activity against Gram-positive bacteria. Remarkably, ΔPb-CATH4 showed potent activity against antibiotic-resistant clinical isolates and also was observed to possess very low hemolytic activity and cytotoxicity. ΔPb-CATH4 also showed considerable serum stability. Electron microscopic analysis indicated that ΔPb-CATH4 exerts its effects via toroidal pore preformation. Structural comparison of the cathelicidins identified in this study to previously reported ones revealed that these Pb-CATHs are representatives of a new group of reptilian cathelicidins lacking the acidic connecting domain. Furthermore, Pb-CATH4 possesses a completely different mature peptide sequence from those of previously described reptilian cathelicidins. These new AMPs may be candidates for the development of alternatives to or complements of antibiotics to control multidrug-resistant pathogens. Copyright © 2017 American Society for Microbiology.

  4. Brine shrimp cytotoxicity of Caesalpinia pulcherrima aerial parts, antimicrobial activity and characterisation of isolated active fractions.

    Science.gov (United States)

    Chanda, Sumitra; Baravalia, Yogesh

    2011-12-01

    Caesalpinia pulcherrima Swartz. is an ornamental plant, shrub or a small tree belonging to the family Caesalpiniaceae. The plant has been used for the treatment of inflammatory disorders, skin diseases and so on. In this study, the cytotoxicity of the methanol extract of the aerial parts of C. pulcherrima was tested using an Artemia salina (brine shrimp) bioassay. Further, the methanol extract was fractionated by silica gel column chromatography using a solvent gradient of hexane:ethyl acetate:methanol in different ratios and 56 fractions were collected. On the basis of thin layer chromatography profiles, 13 major fractions were obtained, which were tested for antimicrobial activity against 14 microorganisms using the agar disc diffusion method and also tested for their minimal inhibitory concentration and minimal bactericidal concentration values. In terms of cytotoxicity, the extract caused 26% mortality of brine shrimp larvae after 24 h at a concentration of 1000 µg mL(-1). Fractions 3, 9 and 10 showed significant antimicrobial activities. Phytochemical analysis of these three fractions led to the identification of 11 compounds, and their structures were established by means of gas chromatography-mass spectroscopy techniques. These findings suggest that these bioactive compounds may be useful as potential antimicrobials. Further investigation is needed to establish the mode of action of these bioactive compounds.

  5. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    Science.gov (United States)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  6. Synthesis, crystal structures, computational studies and antimicrobial activity of new designed bis((5-aryl-1,3,4-oxadiazol-2-yl)thio)alkanes

    Science.gov (United States)

    Ahmed, Muhammad Naeem; Sadiq, Beenish; Al-Masoudi, Najim A.; Yasin, Khawaja Ansar; Hameed, Shahid; Mahmood, Tariq; Ayub, Khurshid; Tahir, Muhammad Nawaz

    2018-03-01

    A new series of bis((5-aryl-1,3,4-oxadiazol-2-yl)thio)alkanes 4-14 have been synthesized via nucleophilic substitution reaction of dihaloalkanes with respective 1,3,4-oxadiazole-2-thiols 3a-f, and characterized by spectroscopic techniques. The structures of 4 and 12 were unambiguously confirmed by single-crystal X-ray diffraction analysis. Density functional theory calculations at B3LYP/6-31 + G(d) level of theory were performed for comparison of X-ray geometric parameters, molecular electrostatic potential (MEP) and frontier molecular orbital analyses of synthesized compounds. MEP analysis revealed that these compounds are nucleophilic in nature. Frontier molecular orbitals (FMOs) analysis of 4-14 was performed for evaluation of kinetic stability. All synthesized compounds were screened in vitro for antimicrobial activity against three bacterial and three fungal strains and showed promising results.

  7. Synthesis, characterization and antimicrobial studies of Cu(II) and ...

    African Journals Online (AJOL)

    chloroaniline were synthesized and characterized by solubility test, infrared spectra, conductivity measurement, magnetic susceptibility, metal-ligand ratio determination, and antimicrobial activity. The low molar conductance values range (16.

  8. Phytochemical and antimicrobial studies on essential oils of some ...

    African Journals Online (AJOL)

    USER

    2010-07-12

    Jul 12, 2010 ... chromatograph (GC) and high performance thin layer chromatography (HPTLC) analysis consisted of eugenol (56.07%), 1, 8 cineole ... Key words: Essential oils, aromatic plants, phytochemical analysis, antimicrobial activity. INTRODUCTION ... microbial agents in phytopathology, medical microbiology,.

  9. Phytochemical and antimicrobial study on the leaf extracts of ...

    African Journals Online (AJOL)

    USER

    2014-01-22

    Jan 22, 2014 ... butanol. The agar diffusion method was used to determine the antimicrobial activity against the following ... antibiotics (Okemo et al., 2003), has led to the search for ... revealed that, it is extremely toxic to livestock all over the.

  10. Quantitative studies of antimicrobial peptide-lipid membrane interactions

    DEFF Research Database (Denmark)

    Kristensen, Kasper

    antimicrobial peptides interact with phospholipid membranes. Motivated by that fact, the scope of this thesis is to study these antimicrobial peptide-lipid membrane interactions. In particular, we attempt to study these interactions with a quantitative approach. For that purpose, we consider the three...... a significant problem for quantitative studies of antimicrobial peptide-lipid membrane interactions; namely that antimicrobial peptides adsorb to surfaces of glass and plastic. Specifically, we demonstrate that under standard experimental conditions, this effect is significant for mastoparan X, melittin...... lead to inaccurate conclusions, or even completely wrong conclusions, when interpreting the FCS data. We show that, if all of the pitfalls are avoided, then FCS is a technique with a large potential for quantitative studies of antimicrobial peptide-induced leakage of fluorescent markers from large...

  11. Antimicrobial activity of the essential oil of Myrtus Communis L ...

    African Journals Online (AJOL)

    The development of microbial resistance to antibiotics is a global concern. The present study was carried out to determine the composition and the antimicrobial potential of the essential oil of Myrtus communis L. against 13 pathogenic strains responsible of many infections. The results show that levels of MIC observed ...

  12. Cytotoxicity and antimicrobial activity of Salvia officinalis L. flowers ...

    African Journals Online (AJOL)

    In this study a comparison of the Cytotoxicity and antimicrobial action of the aqueous and 70% methanol extracts from the flower of the herbal species Salvia officinalis L. (Lamiaceae), originating from Sudan was carried out. Material and Methods: Aqueous, and aquatic methanolic extracts of S. officinalis was investigated for ...

  13. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae).

    Science.gov (United States)

    Liang, Hanqiao; Xing, Yongmei; Chen, Juan; Zhang, Dawei; Guo, Shunxing; Wang, Chunlan

    2012-11-28

    Drug resistance in bacteria has become a global concern and the search for new antibacterial agents is urgent and ongoing. Endophytes provide an abundant reservoir of bioactive metabolites for medicinal exploitation, and an increasing number of novel compounds are being isolated from endophytic fungi. Ophiopogon japonicus, containing compounds with antibacterial activity, is a traditional Chinese medicinal plant used for eliminating phlegm, relieving coughs, latent heat in the lungs, and alleviating diabetes mellitus. We investigated the antimicrobial activities of 30 strains of O. japonicus. Fungal endophytes were isolated from roots and stems of O. japonicus collected from Chongqing City, southwestern China. Mycelial extracts (MC) and fermentation broth (FB) were tested for antimicrobial activity using peptide deformylase (PDF) inhibition fluorescence assays and MTT cell proliferation assays. A total of 30 endophytic strains were isolated from O. japonicus; 22 from roots and eight from stems. 53.33% of the mycelial extracts (MC) and 33.33% of the fermentation broths (FB) displayed potent inhibition of PDF. 80% of MC and 33.33% of FB significantly inhibited Staphylococcus aureus. 70% of MC and 36.67% of FB showed strong activities against Cryptococcus neoformans. None showed influence on Escherichia coli. The secondary metabolites of endophytic fungi from O. japonicus are potential antimicrobial agents.

  14. Antimicrobial activity of a 48-kDa protease (AMP48) from Artocarpus heterophyllus latex.

    Science.gov (United States)

    Siritapetawee, J; Thammasirirak, S; Samosornsuk, W

    2012-01-01

    Artocarpus heterophyllus (jackfruit) is a latex producing plant. Plant latex is produced from secretory cells and contains many intergradients. It also has been used in folk medicine. This study aimed to purify and characterize the biological activities of a protease from jackfruit latex. A protease was isolated and purified from crude latex of a jackfruit tree by acid precipitation and ion exchange chromatography. The proteolytic activities of protein were tested using gelatin- and casein-zymography. The molecular weight and isoelectric point (pl) of protein were analysed by SDS/12.5% PAGE and 2D-PAGE, respectively. Antimicrobial activity of protein was analysed by broth microdilution method. In addition, the antibacterial activity of protein against Pseudomonas aeruginosa ATCC 27853 was observed and measured using atomic force microscopy (AFM) technique. The purified protein contained protease activity by digesting gelatin- and casein-substrates. The protease was designated as antimicrobial protease-48 kDa or AMP48 due to its molecular mass on SDS-PAGE was approximately 48 kDa. The isoelectric point (pl) of AMP48 was approximately 4.2. In addition, AMP48 contained antimicrobial activities by it could inhibit the growths of Pseudomonas aeruginosa ATCC 27853 and clinical isolated Candida albicans at minimum inhibitory concentration (MIC) 2.2 mg/ml and Minimum microbicidal concentration (MMC) 8.8 mg/ml. AFM image also supported the antimicrobial activities of AMP48 by the treated bacterial morphology and size were altered from normal.

  15. In vitro antimicrobial activity and chemical composition of the essential oil of Foeniculum vulgare Mill.

    Science.gov (United States)

    Aprotosoaie, Ana Clara; Hăncianu, Monica; Poiată, Antonia; Tuchiluş, Cristina; Spac, A; Cioană, Oana; Gille, Elvira; Stănescu, Ursula

    2008-01-01

    In our study, four samples of volatile oil from Foeniculum vulgare, cultivated in different pedoclimatic conditions, were investigated for their antimicrobial activity and chemical composition. Organisms. Staphylococcus aureus ATCC 25923, Bacillus cereus, Pseudomonas aeruginosa, Escherichia coli ATCC 25922, Candida albicans were included in the report. Antimicrobial susceptibility tests. The comparative inhibitory activity of volatile oil samples with other antimicrobial agents was quantitative determined by minimum inhibitory concentration (MIC). Oil samples are the volatile oils extracted by steam distillation, from two ecological vegetative populations of Foeniculum vulgare. Gas chromatography coupled to mass spectrometry (GC-MS) was used to determine the chemical composition of the essential oils. All oil samples have a good activity against E. coli and S. aureus at low concentrations. Against B. cereus and P. aeruginosa these oil samples are less active. The oil samples were generally bactericidal at a concentration up to twofold or fourfold higher than the MIC value. Significantly synergic activity with amoxicillin or tetracycline showed all fennel samples against E. coli, Sarcina lutea and B. subtilis strains. Fennel oil samples have shown high activity against Candida albicans. No significant antimicrobial activity variations were observed for Foeniculum vulgare volatile oil samples obtained after two or three years cultivation period. The most important identified compounds in all samples of fennel volatile oils were trans-anethole, estragole, fenchone, limonene, alpha-pinene and gamma-terpinene.

  16. Antimicrobial and antioxidant activities of medicinal plant Glycyrrhiza glabra var. glandulifera from different habitats

    Directory of Open Access Journals (Sweden)

    Faruk Karahan

    2016-07-01

    Full Text Available In this study, the antimicrobial and antioxidant activities of root methanolic extracts of Glycyrrhiza glabra var. glandulifera (Waldst. & Kit. Boiss. (Fabaceae were investigated. Plant samples were collected from different habitats in the East Mediterranean part of Turkey. The plant extracts were evaluated for antimicrobial activities against nine bacterial and two yeast strains using disc-diffusion and minimum inhibitory concentration methods. The antioxidant activity was determined by using the DPPH (1,1-diphenyl-2-picrylhydrazyl method. The antimicrobial assays indicated that the plant root extracts were more effective against Gram-positive bacteria than against Gram-negative ones. In addition, the extracts had higher antimicrobial effect against Candida species than against bacteria. The extracts showed good antioxidant activity, with a median inhibitory concentration (IC50 in the range of 588 ± 0.86 µg/mL to 2190 ± 1.73 µg/mL. Results indicated that different environmental conditions in each habitat might affect the contents of chemical compounds and biological activity in the natural licorice populations of. This study also supported the traditional use of licorice and as well as suggested that it may also be its beneficial role in the treatment of other infections. The obtained results indicated that different environmental conditions in each habitat might affect the contents of chemical compounds and the biological activity in the natural licorice populations.

  17. In vitro antimicrobial activity of methanolic leaf extract of Psidium guajava L.

    Directory of Open Access Journals (Sweden)

    Anju Dhiman

    2011-01-01

    Full Text Available Aim: This study was designed to examine the chemical composition and in vitro antimicrobial potential of methanolic extract of Psidium guajava Linn (Myrtaceae. Materials and Methods: The inhibitory effect of methanolic extract of P. guajava was tested against three bacterial and two fungal strains by using the paper disc diffusion method. Results: The methanolic extract exhibited antibacterial activity against E. coli with minimum inhibitory concentration, 0.78 μg/ml, minimum bactericidal concentration of 50 μg/ml, and appreciable antifungal activity with minimum inhibitory concentration of 12.5 μg/ml. Preliminary phytochemical analysis of methanolic extract revealed the presence of antimicrobial compounds such as flavonoids, steroids, and tannins, which may contribute for the antimicrobial action of P. guajava. Conclusion: The extract was found to be bacteriostatic and fungistatic in action.

  18. In vitro antimicrobial activity of methanolic leaf extract of Psidium guajava L.

    Science.gov (United States)

    Dhiman, Anju; Nanda, Arun; Ahmad, Sayeed; Narasimhan, B.

    2011-01-01

    Aim: This study was designed to examine the chemical composition and in vitro antimicrobial potential of methanolic extract of Psidium guajava Linn (Myrtaceae). Materials and Methods: The inhibitory effect of methanolic extract of P. guajava was tested against three bacterial and two fungal strains by using the paper disc diffusion method. Results: The methanolic extract exhibited antibacterial activity against E. coli with minimum inhibitory concentration, 0.78 μg/ml, minimum bactericidal concentration of 50 μg/ml, and appreciable antifungal activity with minimum inhibitory concentration of 12.5 μg/ml. Preliminary phytochemical analysis of methanolic extract revealed the presence of antimicrobial compounds such as flavonoids, steroids, and tannins, which may contribute for the antimicrobial action of P. guajava. Conclusion: The extract was found to be bacteriostatic and fungistatic in action. PMID:21687350

  19. Synthesis, antimicrobial and antioxidative activity of some new isatin derivatives

    Directory of Open Access Journals (Sweden)

    Šekularac Gavrilo M.

    2014-01-01

    Full Text Available The isatin derivatives, Schiff bases, were synthesized by the reaction of isatin and various substituted primary amines and characterized by several spectroscopic methods. Investigation of the antimicrobial activity of the synthesized compounds was performed by the agar dilution method, against different strains of bacteria and one fungi. The antioxidative activity of the synthesized compounds was also determined. Some of the compounds have shown the significant activity against the selected strains of microorganisms and the antioxidative activity. [Projekat Ministarstva nauke Republike Srbije, br. 172013 i III 46010

  20. Antimicrobial Activity of Bee Venom and Melittin against Borrelia burgdorferi.

    Science.gov (United States)

    Socarras, Kayla M; Theophilus, Priyanka A S; Torres, Jason P; Gupta, Khusali; Sapi, Eva

    2017-11-29

    Lyme disease is a tick-borne, multi-systemic disease, caused by the bacterium Borrelia burgdorferi. Though antibiotics are used as a primary treatment, relapse often occurs after the discontinuation of antimicrobial agents. The reason for relapse remains unknown, however previous studies suggest the possible presence of antibiotic resistant Borrelia round bodies, persisters and attached biofilm forms. Thus, there is an urgent need to find antimicrobial agents suitable to eliminate all known forms of B. burgdorferi . In this study, natural antimicrobial agents such as Apis mellifera venom and a known component, melittin, were tested using SYBR Green I/PI, direct cell counting, biofilm assays combined with LIVE/DEAD and atomic force microscopy methods. The obtained results were compared to standalone and combinations of antibiotics such as Doxycycline, Cefoperazone, Daptomycin, which were recently found to be effective against Borrelia persisters. Our findings showed that both bee venom and melittin had significant effects on all the tested forms of B. burgdorferi. In contrast, the control antibiotics when used individually or even in combinations had limited effects on the attached biofilm form. These findings strongly suggest that whole bee venom or melittin could be effective antimicrobial agents for B. burgdorferi; however, further research is necessary to evaluate their effectiveness in vivo, as well as their safe and effective delivery method for their therapeutic use.

  1. Evaluation of antioxidant, free radical scavenging and antimicrobial, activity of Quercus incana Roxb.

    Directory of Open Access Journals (Sweden)

    Rizwana eSarwar

    2015-11-01

    Full Text Available Considering the indigenous utilization of Quercus incana Roxb., the present study deals with the investigation of antioxidant, free radical scavenging activity, total phenolic content and antimicrobial activity of Quercus incana Roxb. In vitro antioxidant activity of the plant fractions were determined by DPPH and NO scavenging method. Total phenolic contents were determined by gallic acid equivalent (GAE and antimicrobial activities were determined by agar well diffusion method. It was observed that Quercus incana Roxb. showed significant antibacterial activity against Gram-positive and Gram-negative bacteria. n-Butanol fraction showed maximum activity against Micrococcus leuteus with 19 mm zone of inhibition. n-Butanol fraction of Quercus incana Roxb. showed immense antifungal activity against Aspergillus niger (32 mm ± 0.55 and Aspergillus flavus (28 mm ± 0.45. Similarly n-butanol fraction showed relatively good antioxidant activity with IC50 value of 55.4 ± 0.21μg/mL. The NO scavenging activity of ethyl acetate fraction (IC50 = 23.21 ± 0.31 μg/mL was fairly good compared to other fractions. The current study of Quercus incana Roxb. suggests the presences of synergetic action of some biological active compounds that may be present in the leaves of medicinal plant. Further studies are needed to better characterize the important active constituents responsible for the antimicrobial, antioxidant and free radical scavenging activity.

  2. Synthesis and Antimicrobial Activity of SomeNovel Benzimidazolyl Chalcones

    Directory of Open Access Journals (Sweden)

    B. A. Baviskar

    2009-01-01

    Full Text Available Some novel benzimidazolyl chalcones were synthesized by condensation of N-(4-(1H-benzo[d]imidazol-2-ylphenylacetamide with aromatic aldehydes in presence of aqueous potassium hydroxide solution at room temperature. All the synthesized compounds were characterized on the basis of their IR, 1H NMR spectroscopic data and elemental analysis. All the compounds have been screened for antimicrobial activity by the cup-plate method.

  3. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Perez Espitia, Paula Judith; Ferreira Soares, Nilda de Fatima, E-mail: nfsoares1@gmail.com [Department of Food Technology, Federal University of Vicosa (Brazil); Teofilo, Reinaldo F. [Federal University of Vicosa, Department of Chemistry (Brazil); Vitor, Debora M.; Reis Coimbra, Jane Selia dos; Andrade, Nelio Jose de [Department of Food Technology, Federal University of Vicosa (Brazil); Sousa, Frederico B. de; Sinisterra, Ruben D. [Federal University of Minas Gerais, Department of Chemistry (Brazil); Medeiros, Eber Antonio Alves [Department of Food Technology, Federal University of Vicosa (Brazil)

    2013-01-15

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na{sub 4}P{sub 2}O{sub 7}), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  4. Antioxidant and antimicrobial activities of Canarium schweinfurthii ...

    African Journals Online (AJOL)

    diphenylpicrylhydrazyl (DPPH) radical scavenging assay and the -carotene bleaching test. Butylated hydroxytoluene (BHT) was employed as a positive control. The essential oil showed antioxidant and DPPH radical scavenging activities, and it displayed ...

  5. Antimicrobial and Antiradical Activity of Extracts Obtained from Leaves of Five Species of the Genus Bergenia: Identification of Antimicrobial Compounds.

    Science.gov (United States)

    Żbikowska, Beata; Franiczek, Roman; Sowa, Alina; Połukord, Grażyna; Krzyżanowska, Barbara; Sroka, Zbigniew

    2017-09-01

    An important focus of modern medicine is the search for new substances and strategies to combat infectious diseases, which present an increasing threat due to the growth of bacterial resistance to antibiotics. Another problem concerns free radicals, which in excess can cause several serious diseases. An alternative to chemical synthesis of antimicrobial and antiradical compounds is to find active substances in plant raw materials. We prepared extracts from leaves of five species of the genus Bergenia: B. purpurascens, B. cordifolia, B. ligulata, B. crassifolia, and B. ciliata. Antimicrobial and antiradical features of extracts and raw materials were assessed, and the quantities of phenolic compounds were determined. We also evaluated, using high-performance liquid chromatography, the amounts of arbutin and hydroquinone, compounds related to antimicrobial activity of these raw materials. The strongest antiradical properties were shown by leaves of B. crassifolia and B. cordifolia, the lowest by leaves of B. ciliata. The antiradical activity of extracts showed a strong positive correlation with the amount of phenols. All raw materials have significant antimicrobial properties. Among them, the ethyl acetate extracts were the most active. Antimicrobial activity very weakly correlated with the amount of arbutin, but correlated very strongly with the contents of both hydroquinone and phenolic compounds. Additional experiments using artificially prepared mixtures of phenolic compounds and hydroquinone allowed us to conclude that the most active antimicrobial substance is hydroquinone.

  6. Antimicrobial activity of Verbascum macrurum Ten. (Scrophulariaceae).

    Science.gov (United States)

    Guarino, C

    2002-01-01

    The Author presents the results regarding the antibacterial action of extracts of Verbascum macrurum Ten.. The leaves of this species, gathered on the slopes of Mt. Matese, were ground and four extracts were made as follows: with dicholoromethane, ethonol and water (70:30 v/v), water and methanol. The antibacterial activity of each of the samples was tested and it is demonstrated that the extract with the ethanol/water was the most activity one.

  7. Activities and influence of veterinary drug marketers on antimicrobial usage in livestock production in Oyo and Kaduna States, Nigeria

    OpenAIRE

    Olufemi Ernest Ojo; Olajoju Jokotola Awoyomi; Eniola Fabusoro; Morenike Atinuke Dipeolu

    2017-01-01

    Antimicrobial usage in animals contributes to the emergence of antimicrobial resistant bacterial strains. Investigations were carried out on how the characteristics, knowledge, attitude and practices of antimicrobial marketers influenced antimicrobials usage in animal production in Oyo and Kaduna States, Nigeria. Focus group discussions, in-depth interviews and structured questionnaires were used to gather information about the characteristics and activities of antimicrobial marketers. Overal...

  8. Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens.

    Science.gov (United States)

    Payne, Joanna E; Dubois, Alice V; Ingram, Rebecca J; Weldon, Sinead; Taggart, Clifford C; Elborn, J Stuart; Tunney, Michael M

    2017-09-01

    There is a clear need for new antimicrobials to improve current treatment of chronic lung infection in people with cystic fibrosis (CF). This study determined the activities of antimicrobial peptides (AMPs) and ivacaftor, a novel CF transmembrane conductance regulator potentiator, for CF treatment. Antimicrobial activities of AMPs [LL37, human β-defensins (HβD) 1-4 and SLPI] and ivacaftor against clinical respiratory isolates (Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus spp., Achromobacter spp. and Stenotrophomonas maltophilia) were determined using radial diffusion and time-kill assays, respectively. Synergy of LL37 and ivacaftor with tobramycin was determined by time-kill, with in vivo activity of ivacaftor and tobramycin compared using a murine infection model. LL37 and HβD3 were the most active AMPs tested, with MICs ranging from 3.2- ≥ 200 mg/L and 4.8- ≥ 200 mg/L, respectively, except for Achromobacter that was resistant. HβD1 and SLPI demonstrated no antimicrobial activity. LL37 demonstrated synergy with tobramycin against 4/5 S. aureus and 2/5 Streptococcus spp. isolates. Ivacaftor demonstrated bactericidal activity against Streptococcus spp. (mean log 10 decrease 3.31 CFU/mL) and bacteriostatic activity against S. aureus (mean log 10 change 0.13 CFU/mL), but no activity against other genera. Moreover, ivacaftor demonstrated synergy with tobramycin, with mean log 10 decreases of 5.72 CFU/mL and 5.53 CFU/mL at 24 h for S. aureus and Streptococcus spp., respectively. Ivacaftor demonstrated immunomodulatory but no antimicrobial activity in a P. aeruginosa in vivo murine infection model. Following further modulation to enhance activity, AMPs and ivacaftor offer real potential as therapeutics to augment antibiotic therapy of respiratory infection in CF. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  9. Salacia crassifolia (Celastraceae: CHEMICAL CONSTITUENTS AND ANTIMICROBIAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Vanessa G. Rodrigues

    2015-02-01

    Full Text Available The phytochemical study of hexane extract from leaves of Salacia crassifolia resulted in the isolation of 3β-palmitoxy-urs-12-ene, 3-oxofriedelane, 3β-hydroxyfriedelane, 3-oxo-28-hydroxyfriedelane, 3-oxo-29-hydroxyfriedelane, 28,29-dihydroxyfriedelan-3-one, 3,4-seco-friedelan-3-oic acid, 3β-hydroxy-olean-9(11:12-diene and the mixture of α-amirin and β-amirin. β-sitosterol, the polymer gutta-percha, squalene and eicosanoic acid were also isolated. The chemical structures of these constituents were established by IR, 1H and 13C NMR spectral data. Crude extracts and the triterpenes were tested against Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis and no activity was observed under the in vitro assay conditions. The hexane, chloroform, ethyl acetate and ethanol crude extracts, and the constituent 3,4-seco-friedelan-3-oic acid and 28,29-dihydroxyfriedelan-3-one showed in vitro antimicrobial activity against Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Streptococcus sanguinis and Candida albicans.

  10. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion.

    Science.gov (United States)

    Zhang, Zijie; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-05-01

    d-Limonene has been considered to be a safer alternative compared to synthetic antimicrobial food additives. However, its hydrophobic and oxidative nature has limited its application in foods. The purpose of this research was to study effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion and develop a novel antimicrobial delivery system by combining the positive effect of these two antibacterial agents at the same time. By the checkerboard method, both the synergistic and additive effects of d-limonene and nisin were found against four selected food-related microorganisms. Then, d-limonene nanoemulsion with or without nisin was prepared by catastrophic phase inversion method, which has shown good droplet size and stability. The positive effects and outstanding antimicrobial activity of d-limonene nanoemulsion with nisin were confirmed by MICs comparison, scanning electron microscopy and determination of cell constituents released. Overall, the research described in the current article would be helpful in developing a more effective antimicrobial system for the production and preservation of foods. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Antimicrobial activity of vanadium chloroperoxidase on planktonic Streptococcus mutans cells and Streptococcus mutans biofilms

    NARCIS (Netherlands)

    Hoogenkamp, M.A.; Crielaard, W.; ten Cate, J.M.; Wever, R.; Hartog, A.F.; Renirie, R.

    2009-01-01

    The aim of this study was to investigate the antimicrobial activity of vanadium chloroperoxidase (VCPO) reaction products on planktonic and biofilm cellsof Streptococcus mutans C180-2. Planktonic and biofilm cells were incubated in a buffered reaction mixture containing VCPO, halide (either chloride

  12. Comparison of antimicrobial activity of seed oil of garlic and Moringa ...

    African Journals Online (AJOL)

    This study was aimed at evaluating the phytochemical constituents and the antimicrobial activity of the seed oil of Moringa oleifera and garlic against some selected food-borne microorganisms (Staphylococcus aureus, Escherichia coli, Salmonella spp and Pseudomonas aeruginosa) using disc diffusion method. The results ...

  13. Chemical composition, in vitro antioxidant, antimicrobial and insecticidal activities of essential oil from Cladanthus arabicus

    Science.gov (United States)

    The essential oil obtained from the aerial parts of Cladanthus arabicus (L.) Cass was studied for its chemical composition, antioxidant, antimicrobial and insecticidal activities. The essential oil (EO) was analyzed by GC-MS. Sixty seven compounds representing 94.2% of the oil were identified. The m...

  14. Diverse deep-sea fungi from the South China Sea and their antimicrobial activity.

    Science.gov (United States)

    Zhang, Xiao-Yong; Zhang, Yun; Xu, Xin-Ya; Qi, Shu-Hua

    2013-11-01

    We investigated the diversity of fungal communities in nine different deep-sea sediment samples of the South China Sea by culture-dependent methods followed by analysis of fungal internal transcribed spacer (ITS) sequences. Although 14 out of 27 identified species were reported in a previous study, 13 species were isolated from sediments of deep-sea environments for the first report. Moreover, these ITS sequences of six isolates shared 84-92 % similarity with their closest matches in GenBank, which suggested that they might be novel phylotypes of genera Ajellomyces, Podosordaria, Torula, and Xylaria. The antimicrobial activities of these fungal isolates were explored using a double-layer technique. A relatively high proportion (56 %) of fungal isolates exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among four marine pathogenic microbes (Micrococcus luteus, Pseudoaltermonas piscida, Aspergerillus versicolor, and A. sydowii). Out of these antimicrobial fungi, the genera Arthrinium, Aspergillus, and Penicillium exhibited antibacterial and antifungal activities, while genus Aureobasidium displayed only antibacterial activity, and genera Acremonium, Cladosporium, Geomyces, and Phaeosphaeriopsis displayed only antifungal activity. To our knowledge, this is the first report to investigate the diversity and antimicrobial activity of culturable deep-sea-derived fungi in the South China Sea. These results suggest that diverse deep-sea fungi from the South China Sea are a potential source for antibiotics' discovery and further increase the pool of fungi available for natural bioactive product screening.

  15. Antimicrobial and Cytotoxic Activity of Three Bitter Plants-Enhydra fluctuans, Andrographis Peniculata and Clerodendrum Viscosum.

    Directory of Open Access Journals (Sweden)

    M. Ruhul Amin

    2012-08-01

    Full Text Available Purpose: In this study, three important medicinal plants (Enhydra fluctuans Lour, Clerodendrum viscosum Vent and Andrographis peniculata Wall of Bangladesh were investigated to analyze their antimicrobial and cytotoxic activities against some pathogenic microorganisms and Artemia salina (brine shrimp nauplii. Methods: The coarse powder material of leaves of each plant was extracted separately with methanol and acetone to yield methanol extracts of leaves of Enhydra fluctuans (MLE, Clerodendrum viscosum (MLC and Andrographis peniculata (MLA, and acetone extracts of leaves of Enhydra fluctuans (ALE, Clerodendrum viscosum (ALC and Andrographis peniculata (ALA. The disc diffusion method and the method described by Meyer were used to determine the antimicrobial and cytotoxic activities of each plant extract. Results: Among the test samples, MLE and ALE showed comparatively better antimicrobial activity against a number of bacteria and fungi with inhibition zones in the range of 06-15 mm and according to the intensity of activity, the efficacy against microorganisms were found in the order of Enhydra fluctuans> Andrographi speniculata> Clerodendrum viscosum. In cytotoxicity assay, all samples were found to be active against brine shrimp nauplii (Artemia salina and ALA produced lowest LC50 value (7.03 μg/ml. Conclusion: Enhydra fluctuans and Andrographi speniculata possesses significant antimicrobial and cytotoxic activities.

  16. Antioxidant and antimicrobial activities of Padina pavonica and Enteromorpha sp. from the Tunisian Mediterranean coast

    Directory of Open Access Journals (Sweden)

    Malek Besbes Hlila

    2017-08-01

    Full Text Available Objective: To examine the antioxidant and the antimicrobial activities of the marine seaweeds Padina pavonica (P. pavonica and Enteromorpha sp. from the Tunisian Mediterranean coast. Methods: The acetone and water were used for algae extraction to envisage the antimicrobial activity versus Gram-negative (Escherichia coli and Pseudomonas aeruginosa, Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis and against four Candida. The microdilution method was used to evaluate this activity. In vitro, total phenolic content and the antioxidant activity including 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging and 2,2'-azino-bis-(3-ethylbenthiazoline-6-sulfonic acid (ABTS were also studied. Results: The highest amount of phenolic compound was found in the P. pavonica acetonic extract [(90.61 ± 0.11 mg catechin equivalent/g extract]. This brown algae sample demonstrated greater DPPH and ABTS radical scavenging ability potential in comparison to other green seaweed, Enteromorpha sp. The maximum antimicrobial activity was shown by the P. pavonica acetonic extract against all the pathogenic strains tested (minimum inhibitory concentrations = minimum inhibitory bactericidal = minimum inhibitory fungicidal concentrations = 0.04 mg/mL. Those activities might be due to phenolic substances present in this fraction. Conclusions: The present results highlight the possible use of P. pavonica as source of antioxidant and antimicrobial compounds.

  17. Novel α-MSH peptide analogues with broad spectrum antimicrobial activity.

    Directory of Open Access Journals (Sweden)

    Paolo Grieco

    Full Text Available Previous investigations indicate that α-melanocyte-stimulating hormone (α-MSH and certain synthetic analogues of it exert antimicrobial effects against bacteria and yeasts. However, these molecules have weak activity in standard microbiology conditions and this hampers a realistic clinical use. The aim in the present study was to identify novel peptides with broad-spectrum antimicrobial activity in growth medium. To this purpose, the Gly10 residue in the [DNal(2'-7, Phe-12]-MSH(6-13 sequence was replaced with conventional and unconventional amino acids with different degrees of conformational rigidity. Two derivatives in which Gly10 was replaced by the residues Aic and Cha, respectively, had substantial activity against Candida strains, including C. albicans, C. glabrata, and C. krusei and against gram-positive and gram-negative bacteria. Conformational analysis indicated that the helical structure along residues 8-13 is a key factor in antimicrobial activity. Synthetic analogues of α-MSH can be valuable agents to treat infections in humans. The structural preferences associated with antimicrobial activity identified in this research can help further development of synthetic melanocortins with enhanced biological activity.

  18. Antimicrobial activity of photo-activated cow urine against certain ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... cow urine has shown 32 to 36 mm inhibition zone diameter homogeneously against all bacterial strains. It proves very high antimicrobial ... For control of microbial infections and diseases, various synthetic drugs and chemical ..... Protein and amino acid metabolism in the intestinal tract of growing bulls.

  19. Antioxidant and antimicrobial activity of lecithin free egg yolk protein preparation hydrolysates obtained with digestive enzymes

    Directory of Open Access Journals (Sweden)

    Aleksandra Zambrowicz

    2012-12-01

    Full Text Available ABSTRACT:Several biological activities have now been associated with egg protein- derived peptides, including antihypertensive, antimicrobial, immunomodulatory, anticancer and antioxidantactivities, highlighting the importance of these biopeptides in human health, and disease prevention and treatment. Special attention has been given to peptides with antioxidant and antimicrobial activities as a new source of natural preservatives in food industry. In this study, the antioxidant properties of the egg-yolk protein by-product (YP hydrolysates were evaluated based on their radical scavenging capacity (DPPH, Fe2+chelating effect and ferric reducing power (FRAP. Furthermore, antimicrobial properties of obtained hydrolysates against Bacillus species were studied. The degrees (DHs of hydrolysis for 4h hydrolysates were: 19.1%, 13.5% and 13.0%, for pepsin, chymotrypsin and trypsin, respectively. Pepsin was the most effective in producing the free amino groups (1410.3 μmolGly/g. The RP-HPLC profiles of the protein hydrolysates showed differences in the hydrophobicity of the generated peptides.Trypsin hydrolysate obtained after 4h reaction demonstrated the strongest DPPH free radical scavenging activity (0.85 µmol Troloxeq/mg. Trypsin and chymotrypsin hydrolysates obtained after 4h reaction exhibited 4 times higher ferric reducing capacity than those treated bypepsin. The hydrolysis products obtained from YP exhibited significant chelating activity. The 4h trypsin hydrolysate exhibited weak antimicrobial activity against B. subtilis B3; B. cereus B512; B. cereus B 3p and B. laterosporum B6.

  20. Lactobacillus plantarum as a Probiotic Potential from Kouzeh Cheese (Traditional Iranian Cheese) and Its Antimicrobial Activity.

    Science.gov (United States)

    Jabbari, Vahid; Khiabani, Mahmoud Sowti; Mokarram, Reza Rezaei; Hassanzadeh, Azad Mohammad; Ahmadi, Elham; Gharenaghadeh, Sasan; Karimi, Nayyer; Kafil, Hossein Samadi

    2017-06-01

    The aim of this study is to isolate and identify Lactobacillus plantarum isolates from traditional cheese, Kouzeh, and evaluate their antimicrobial activity against some food pathogens. In total, 56 lactic acid bacteria were isolated by morphological and biochemical methods, 12 of which were identified as Lactobacillus plantarum by biochemical method and 11 were confirmed by molecular method. For analyzing the antimicrobial activity of these isolates properly, diffusion method was performed. The isolates were identified by 318 bp band dedicated for L. plantarum. The isolated L. plantarum represented an inhibitory activity against four of the pathogenic bacteria and showed different inhibition halos against each other. The larger halos were observed against Staphylococcus aureus and Staphylococcus epidermidis (15 ± 0.3 and 14.8 ± 0.7 mm, respectively). The inhibition halo of Escherichia coli was smaller than that of other pathogen and some L. plantarum did not show any inhibitory activity against E. coli, which were resistant to antimicrobial compounds produced by L. plantarum. The isolated L. plantarum isolates with the antimicrobial activity in this study had strong probiotic properties. These results indicated the nutritional value of Kouzeh cheese and usage of the isolated isolates as probiotic strains.

  1. Antimicrobial activities of Vernonia tenoreana | Ogundare | African ...

    African Journals Online (AJOL)

    The bark extracts exercised antifungal activities against Candida albicans, Aspergillus niger and A. flavus, while the leaf extract was inactive against all the fungal isolates. Phytochemical constituents revealed the presence of saponins, tannins, and anthraquinones in the bark extracts, while, tannins, anthraquinones, and

  2. Antimicrobial activity of fluoride and its in vivo importance: identification of research questions.

    Science.gov (United States)

    Van Loveren, C

    2001-01-01

    This manuscript discusses the antimicrobial activity of fluoride and its in vivo importance in order to identify research questions. There is a lot of information on mechanisms by which fluoride may interfere with bacterial metabolism and dental plaque acidogenicity. The antimicrobial activity of fluoride products is enhanced when fluoride is associated with antimicrobial cations like Sn(2+) and amine. It is not clear whether the antimicrobial mechanisms of fluoride are operating in vivo or even to what extent antimicrobial activity can contribute to caries prevention. This latter question may be the most important one in research. Copyright 2001 S. Karger AG, Basel.

  3. Identification of Peptides in Flowers of Sambucus nigra with Antimicrobial Activity against Aquaculture Pathogens.

    Science.gov (United States)

    Álvarez, Claudio Andrés; Barriga, Andrés; Albericio, Fernando; Romero, María Soledad; Guzmán, Fanny

    2018-04-27

    The elder ( Sambucus spp.) tree has a number of uses in traditional medicine. Previous studies have demonstrated the antimicrobial properties of elderberry liquid extract against human pathogenic bacteria and also influenza viruses. These properties have been mainly attributed to phenolic compounds. However, other plant defense molecules, such as antimicrobial peptides (AMPs), may be present. Here, we studied peptide extracts from flowers of Sambucus nigra L. The mass spectrometry analyses determined peptides of 3 to 3.6 kDa, among them, cysteine-rich peptides were identified with antimicrobial activity against various Gram-negative bacteria, including recurrent pathogens of Chilean aquaculture. In addition, membrane blebbing on the bacterial surface after exposure to the cyclotide was visualized by SEM microscopy and SYTOX Green permeabilization assay showed the ability to disrupt the bacterial membrane. We postulate that these peptides exert their action by destroying the bacterial membrane.

  4. Antimicrobial and anti-Quorum Sensing activities of selected medicinal plants of Ethiopia: Implication for development of potent antimicrobial agents.

    Science.gov (United States)

    Bacha, Ketema; Tariku, Yinebeb; Gebreyesus, Fisseha; Zerihun, Shibru; Mohammed, Ali; Weiland-Bräuer, Nancy; Schmitz, Ruth A; Mulat, Mulugeta

    2016-07-11

    Traditional medicinal plants have been used as an alternative medicine in many parts of the world, including Ethiopia. There are many documented scientific reports on antimicrobial activities of the same. To our knowledge, however, there is no report on the anti-Quorum Sensing (Quorum Quenching, QQ) potential of traditional Ethiopian medicinal plants. As many of the opportunistic pathogenic bacteria depend on Quorum Sensing (QS) systems to coordinate their virulence expression, interference with QS could be a novel approach to control bacterial infections. Thus, the aim of this study was to evaluate selected medicinal plants from Ethiopia for their antimicrobial activities against bacterial and fungal pathogens; and to assess the interference of these plant extracts with QS of bacteria. Antimicrobial activities of plant extracts (oil, resins and crude extracts) were evaluated following standard agar diffusion technique. The minimum inhibitory concentrations (MIC) of potent extracts were determined using 96 well micro-titer plates and optical densities were measured using an ELISA Microplate reader. Interference with Quorum Sensing activities of extracts was determined using the recently established E. coli based reporter strain AI1-QQ.1 and signaling molecule N-(ß-ketocaproyl)-L-homoserine lactone (3-oxo-C6-HSL). Petroleum ether extract of seed of Nigella sativa exhibited the highest activity against both the laboratory isolated Bacillus cereus [inhibition zone (IZ), 44 ± 0.31 mm] and B. cereus ATCC 10987 (IZ, 40 ± 2.33 mm). Similarly, oil extract from mature ripe fruit husk of Aframomum corrorima and mature unripe fruit of A. corrorima revealed promising activities against Candida albicans ATCC 90028 (IZ, 35 ± 1.52 mm) and Staphylococcus aureus DSM 346 (IZ, 25 ± 1.32 mm), respectively. Antimicrobial activities of oil extract from husk of A. corrorima and petroleum ether extract of seed of N. sativa were significantly higher than that of

  5. Antioxidant and antimicrobial activities of helinus lanceolatus

    International Nuclear Information System (INIS)

    Ajaib, M.

    2015-01-01

    The extracts of petroleum ether, chloroform, methanol and aqueous of Helinus lanceolatus were tested for their antioxidant potential, antibacterial and antifungal activities. The results revealed that the methanolic extract showed the highest zone of inhibition 50 ± 1.15 mm against Escherichia coli and aqueous extract shows excellent inhibition for fungi Aspergillus niger 17 ± 2.6 mm. The water extract showed highest DPPH radical scavenging activity i.e. 91.8 - 0.0.09% at a concentration of 500 mu g/ml with IC50 value 12.29 ± 0.59 micro g/ml relative to butylated hydroxyltoluene (BHT) having IC50 value 12.52 ± 0.89 micro g/ml. Chloroform extract showed highest antioxidant activity 0.840 ± 0.13 micro g/ml relative to standard 0.891 ± 0.13 micro g/ml while the highest FRAP value i.e. 90.66 ± 4.54 TE micro g/ml was shown by petroleum ether fraction. Methanolic extract also showed good value of inhibition of lipid peroxidation, i.e. 59.11 ± 0.12%. (author)

  6. Spermicidal Activity of the Safe Natural Antimicrobial Peptide Subtilosin

    Directory of Open Access Journals (Sweden)

    Michael L. Chikindas

    2008-10-01

    Full Text Available Bacterial vaginosis (BV, a condition affecting millions of women each year, is primarily caused by the gram-variable organism Gardnerella vaginalis. A number of organisms associated with BV cases have been reported to develop multidrug resistance, leading to the need for alternative therapies. Previously, we reported the antimicrobial peptide subtilosin has proven antimicrobial activity against G. vaginalis, but not against the tested healthy vaginal microbiota of lactobacilli. After conducting tissue sensitivity assays using an ectocervical tissue model, we determined that human cells remained viable after prolonged exposures to partially-purified subtilosin, indicating the compound is safe for human use. Subtilosin was shown to eliminate the motility and forward progression of human spermatozoa in a dose-dependent manner, and can therefore be considered a general spermicidal agent. These results suggest subtilosin would be a valuable component in topical personal care products aimed at contraception and BV prophylaxis and treatment.

  7. Antimicrobial activity of grapefruit seed and pulp ethanolic extract.

    Science.gov (United States)

    Cvetnić, Zdenka; Vladimir-Knezević, Sanda

    2004-09-01

    Antibacterial and antifungal activity of ethanolic extract of grapefruit (Citrus paradisi Macf., Rutaceae) seed and pulp was examined against 20 bacterial and 10 yeast strains. The level of antimicrobial effects was established using an in vitro agar assay and standard broth dilution susceptibility test. The contents of 3.92% of total polyphenols and 0.11% of flavonoids were determined spectrometrically in crude ethanolic extract. The presence of flavanones naringin and hesperidin in the extract was confirmed by TLC analysis. Ethanolic extract exibited the strongest antimicrobial effect against Salmonella enteritidis (MIC 2.06%, m/V). Other tested bacteria and yeasts were sensitive to extract concentrations ranging from 4.13% to 16.50% (m/V).

  8. Synthesis and Antimicrobial Activity of a Silver-Hydroxyapatite Nanocomposite

    Directory of Open Access Journals (Sweden)

    Marcos Díaz

    2009-01-01

    Full Text Available A silver-hydroxyapatite nanocomposite has been obtained by a colloidal chemical route and subsequent reduction process in H2/Ar atmosphere at 350∘C. This material has been characterized by TEM, XRD, and UV-Visible spectroscopy, showing the silver nanoparticles (∼65 nm supported onto the HA particles (∼130 nm surface without a high degree of agglomeration. The bactericidal effect against common Gram-positive and Gram-negative bacteria has been also investigated. The results indicated a high antimicrobial activity for Staphylococcus aureus, Pneumococcus and Escherichia coli, so this material can be a promising antimicrobial biomaterial for implant and reconstructive surgery applications.

  9. Antimicrobial Activity of Human Prion Protein Is Mediated by Its N-Terminal Region

    OpenAIRE

    Pasupuleti, Mukesh; Roupe, Markus; Rydeng?rd, Victoria; Surewicz, Krystyna; Surewicz, Witold K.; Chalupka, Anna; Malmsten, Martin; S?rensen, Ole E.; Schmidtchen, Artur

    2009-01-01

    BACKGROUND: Cellular prion-related protein (PrP(c)) is a cell-surface protein that is ubiquitously expressed in the human body. The multifunctionality of PrP(c), and presence of an exposed cationic and heparin-binding N-terminus, a feature characterizing many antimicrobial peptides, made us hypothesize that PrP(c) could exert antimicrobial activity. METHODOLOGY AND PRINCIPAL FINDINGS: Intact recombinant PrP exerted antibacterial and antifungal effects at normal and low pH. Studies employing r...

  10. Identification of milk proteins enhancing the antimicrobial activity of lactoferrin and lactoferricin.

    Science.gov (United States)

    Murata, M; Wakabayashi, H; Yamauchi, K; Abe, F

    2013-08-01

    Lactoferrin (LF) is known as an iron-binding antimicrobial protein present in exocrine secretions such as milk and releases the potent antimicrobial peptide lactoferricin (LFcin) by hydrolysis with pepsin. The antimicrobial activity of LF and LFcin has been studied well; however, their cooperative action with other milk proteins remains to be elucidated. In this study, we identified milk proteins enhancing the antimicrobial activity of bovine LF and LFcin against gram-negative bacteria, gram-positive bacteria, and fungi. As the target fraction, we isolated a minor milk protein fraction around 15 kDa, which was identified as bovine RNase 5 (angiogenin-1), RNase 4, and angiogenin-2 by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. As these proteins are collectively known as the RNase A family, we referred to the target protein fraction as milk RNase of 15 kDa (MR15). The number of colony-forming units of Escherichia coli and other pathogenic microorganisms with the addition of MR15 to LF (MR15:LF ratio=16:1,000) was dramatically lowered than that with LF alone. On the other hand, MR15 itself did not show any reductions in the number of colony-forming units at the concentrations tested. Similarly, the antimicrobial activities of LFcin against various microorganisms were significantly enhanced by the addition of MR15. These results suggest that LF and MR15 may be concomitantly acting antimicrobial agents in milk. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. In Vitro Antimicrobial Activity of Iris pseudacorus and Urtica dioica

    Directory of Open Access Journals (Sweden)

    Maryam Ramtin

    2014-03-01

    Full Text Available Background: In this study, the effects of antibacterial activity of Urtica dioica and Iris pseudacorus essential oils, native plant northern of Iran, were investigated for some selected bacteria. Material and Methods: The influence of essential oils was tested by the using of disk diffusion and micro-broth dilution methods against standard strains of the picked out bacteria. Gas Chromatography/Mass Spectroscopy (GC/MS analysis, bioactivity determination, Minimum inhibitory concentrations (MIC and minimum bactericidal concentration (MBC of essential oils were utilized for this goal. Results: This study showed that, Inhibition zone diameter varied from 11 to 19 mm and 9 to 17 mm for Urtica dioica and Iris pseudacorus respectively. In contrast, this figure fluctuated from 19 to 28 mm and 7 to 17 mm for gentamicin and ampicillin separately. By the application of micro-broth dilution technique, MICs for 1% essential oils were 1.8-7.5 μg/ml and 3.75-15 μg/ml for, Urtica dioica and Iris pseudacorus against gram-positive and gram-negative bacteria individually. Furthermore, the MBCs of herbal essences were 1.8-15 μg/ml for, Urtica dioica and 15-30 μg/ml for Iris. Conclusion: The application of essential oils for the bio-control of diseases, as a novel emerging alternative to antimicrobial treatments, lead to safer and more environmental management for infective diseases4T.4T

  12. Combined Antimicrobial Activity of Photodynamic Inactivation and Antimicrobials–State of the Art

    Directory of Open Access Journals (Sweden)

    Agata Wozniak

    2018-05-01

    Full Text Available Antimicrobial photodynamic inactivation (aPDI is a promising tool for the eradication of life-threatening pathogens with different profiles of resistance. This study presents the state-of-the-art published studies that have been dedicated to analyzing the bactericidal effects of combining aPDI and routinely applied antibiotics in in vitro (using biofilm and planktonic cultures and in vivo experiments. Furthermore, the current paper reviews the methodology used to obtain the published data that describes the synergy between these antimicrobial approaches. The authors are convinced that even though the combined efficacy of aPDI and antimicrobials could be investigated with the wide range of methods, the use of a unified experimental methodology that is in agreement with antimicrobial susceptibility testing (AST is required to investigate possible synergistic cooperation between aPDI and antimicrobials. Conclusions concerning the possible synergistic activity between the two treatments can be drawn only when appropriate assays are employed. It must be noticed that some of the described papers were just aimed at determination if combined treatments exert enhanced antibacterial outcome, without following the standard methodology to evaluate the synergistic effect, but in most of them (18 out of 27 authors indicated the existence of synergy between described antibacterial approaches. In general, the increase in bacterial inactivation was observed when both therapies were used in combination.

  13. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities

    Science.gov (United States)

    Hahn, C.; Hans, M.; Hein, C.; Mancinelli, R. L.; Mücklich, F.; Wirth, R.; Rettberg, P.; Hellweg, C. E.; Moeller, R.

    2017-12-01

    Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of

  14. Antimicrobial and antioxidant activities of ethyl acetate and methanol extracts of Littorina littorea and Galatea paradoxa

    Directory of Open Access Journals (Sweden)

    Lawrence Sheringham Borquaye

    2016-12-01

    Full Text Available The aquatic environment is a vital resource for bioprospecting pharmacologically important natural products. Molluscs are known to harbour compounds with antimicrobial, antitumor and antioxidant activities. This study evaluated the antimicrobial and antioxidant properties of ethyl acetate and methanol tissue extracts of two molluscs, Littorina littorea (L. littorea and Galatea paradoxa (G. paradoxa. Agar diffusion and broth dilution assays were used to test for antimicrobial activity against nine microbes. The 1,1-diphenyl-2-picrylhydrazyl (DPPH method was used to determine antioxidant activity of the extracts. Extracts of both molluscs showed significant activity against all the bacteria strains tested but were inactive towards the fungus. The best antibacterial activity was recorded by methanol extract of L. littorea towards Pseudomonas aeruginosa. In comparison to ethyl acetate extracts, methanol extracts were more efficient in scavenging the DPPH radical. Methanol extracts of L. littorea had an IC50 of 0.37 mg/mL which was closer to that of the standard ascorbic acid drug (0.0048 mg/mL than any of the other extracts. The findings of this work indicate that the tissue extracts of L. littorea and G. paradoxa are promising sources of antimicrobial and antioxidant agents that can be utilized for pharmaceutical and nutraceutical purposes.

  15. Antimicrobial activity of methanolic extracts of selected marine macroalgae against some pathogenic microorganisms

    Directory of Open Access Journals (Sweden)

    Ehab Omer Abdalla

    2016-05-01

    Full Text Available Objective: To evaluate the antimicrobial activity of methanolic extracts of six marine macroalgae belonging to green algae (Chlorophyceae, brown algae (Phaeophyceae and the red algae (Rhodophyceae collected from the intertidal area of the Sudanese Red Sea coast near Port Sudan. Methods: Methanol was used for extracting the active principles of the algae and the disc diffusion method was performed to examine the activity and the minimum inhibitory concentration of the samples against four pathogenic bacteria and two fungi. Results: All tested algal extracts exhibited considerable bioactivity and inhibited the growth of all pathogenic microorganisms under investigation. The green alga Caulerpa racemosa produced the maximum inhibition zone (21 mm against Candida albicans while the red alga Laurencia papillosa showed low antimicrobial activity with the minimum inhibition zone of 10 mm against Pseudomonas aeruginosa. The tested algal extracts did not show any special antimicrobial influence on the selected microorganisms when they were considered as Grampositive and Gram-negative bacteria and fungi but the most efficient methanolic extracts in inhibiting microbial growth were those of green macroalgae followed by the brown and the red macroalgae respectively. Conclusions: The study demonstrated that the tested marine macroalgae from Sudanese Red Sea coast may represent a potential and alternative source for secondary metabolites with antimicrobial activity.

  16. Antimicrobial and antioxidant activities of the various extracts of Verbascum pinetorum Boiss. O. Kuntze (Scrophulariaceae).

    Science.gov (United States)

    Ozcan, B; Esen, M; Caliskan, M; Mothana, R A; Cihan, A C; Yolcu, H

    2011-08-01

    The present study was performed to evaluate the in vitro antimicrobial and antioxidant properties of various extracts of Verbascum (V.) pinetorum, a member of Scrophulariaceae family. While the antimicrobial activity of various extracts of V. pinetorum was determined with agar-well diffusion method, the antioxidant activity was examined with two complementary test systems, namely 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and beta-carotene/linoleic acid test systems. The hexane extract exhibits antimicrobial activity against few microorganisms. However, dichloromethane, direct methanol and methanol/chloroform extracts are effective on a broad range of microorganisms. Among the tested bacteria Haemophilus influenzae was found to be the most sensitive bacterium. The 50% (IC50) inhibition activity of the methanolic extract of V. pinetorum on the free radical DPPH was determined as 13.04 mg/ml. In the case of the linoleic acid system, oxidation of linoleic acid was inhibited by methanolic extract of V. pinetorum, which showed 89.39% inhibition that is quite close to the value of the synthetic antioxidant reagent butylhydroxytoluene (BHT), 92.46%. Iridoid glycosides, flavonoids and saponins were determined as the major natural compounds in the methanolic extracts. The total phenolic components of V. pinetorum were found as 42.45 mg/g gallic acid equivalent. The results provide evidence that the extracts of V. pinetorum contained iridoid glycosides, flavonoids, saponins and phenolic compounds which may be responsible for the substantial antimicrobial and antioxidant activities.

  17. An active principle of Nigella sativa L., thymoquinone, showing significant antimicrobial activity against anaerobic bacteria.

    Science.gov (United States)

    Randhawa, Mohammad Akram; Alenazy, Awwad Khalaf; Alrowaili, Majed Gorayan; Basha, Jamith

    2017-01-01

    Thymoquinone (TQ) is the major active principle of Nigella sativa seed (black seed) and is known to control many fungi, bacteria, and some viruses. However, the activity of TQ against anaerobic bacteria is not well demonstrated. Anaerobic bacteria can cause severe infections, including diarrhea, aspiration pneumonia, and brain abscess, particularly in immunodeficient individuals. The present study aimed to investigate the in vitro antimicrobial activity of TQ against some anaerobic pathogens in comparison to metronidazole. Standard, ATCC, strains of four anaerobic bacteria ( Clostridium difficile , Clostridium perfringens , Bacteroides fragilis , and Bacteroides thetaiotaomicron ), were initially isolated on special Brucella agar base (with hemin and vitamin K). Then, minimum inhibitory concentrations (MICs) of TQ and metronidazole were determined against these anaerobes when grown in Brucella agar, using serial agar dilution method according to the recommended guidelines for anaerobic organisms instructed by the Clinical and Laboratory Standards Institute. TQ showed a significant antimicrobial activity against anaerobic bacteria although much weaker than metronidazole. MICs of TQ and metronidazole against various anaerobic human pathogens tested were found to be between 10-160 mg/L and 0.19-6.25 mg/L, respectively. TQ controlled the anaerobic human pathogenic bacteria, which supports the use of N. sativa in the treatment of diarrhea in folk medicine. Further investigations are in need for determination of the synergistic effect of TQ in combination with metronidazole and the activity of derivatives of TQ against anaerobic infections.

  18. [Current animal feeds with antimicrobial activity].

    Science.gov (United States)

    Drumev, D

    1981-01-01

    Among the growth-promoting substances and factors contributing to fodder utilization in growing farm animals, also called nutritive, ergotropic means, the antibiotics and some synthetic chemotherapeutics have acquired special importance. To avoid the hazardous effect in humans consuming products of animal origin there should be no residual amounts of these stimulating agents in such products. That is why it has been assumed in a number of countries to use for the same purpose only nutritive means that are not applied as therapeutic agents. Such means should neither induce resistence to antibiotics and chemotherapeutics in microorganism nor should they be resorbed by the alimentary tract (or resorption should be negligible) or they are rapidly eliminated from the animal body, leaving no residual amounts. They should likewise act chiefly against gram-positive organisms, inducing no allergic reactions in the animals. Described are the following nutritive antibiotics: flavophospholipol (bambermycin, menomycin--flavomycin, producing a nutritive effect also in ruminants with a developed forestomach, and rebuilds sensitivity in antibiotic-resistant organisms belonging to Enterobacteriaceae), avoparcin (avotan--also active in ruminants with a developed forestomach), virginiamycin (staphylomycin--escalin, stafac), zincbacitracin (bacipharmin, baciferm), grisin (kormogrisin, of a road spectrum, with an antimycotic effect, raising the fertilization rate and activating phagocitosis), vitamycin-A (vitamycin--active also at retinol deficiency, lambdamycin, nosiheptide (primofax), efrotomycin. Due consideration is given to such chemotherapeutics as nitrovin (payson, paison), carbadox (mecadox, fortigro, of a broad spectrum retained for a longer period in the body of pigs), olaquindox (bio-N-celbar--of a broad spectrum, particularly with regard to gram-negative organisms, applied at present as a therapeutic and prophylactic preparation), cyadox (with a broad sprectrum). The

  19. Recent studies on the antimicrobial peptides lactoferricin and lactoferrampin.

    Science.gov (United States)

    Yin, C; Wong, J H; Ng, T B

    2014-01-01

    Lactoferricin and lactoferrampin, peptides derived from the whey protein lactoferrin, are antimicrobial agents with a promising prospect and are currently one of the research focuses. In this review, a basic introduction including location and solution structures of these two peptides is given. Their biological activities encompassing antiviral, antibacterial, antifungal and anti-inflammatory activities with possible mechanisms are mentioned. In terms of modification studies, research about identification of their active derivatives and crucial amino acid residues is also discussed. Various attempts at modification of lactoferricin and lactoferrampin such as introducing big hydrophobic side-chains; employing special amino acids for synthesis; N-acetylization, amidation, cyclization and peptide chimera are summarized. The studies on lactoferricin-lactoferrampin chimera are discussed in detail. Future prospects of lactoferricin and lactoferrampin are covered.

  20. Antimicrobial activity of Algerian honey on subclinical mastitis pathogens isolated from goat's milk

    Directory of Open Access Journals (Sweden)

    A. Bourabah

    2014-04-01

    Full Text Available Aim: The aim of the present study was to determine the susceptibility of subclinical mastitis pathogens isolated from goat's milk and to evaluate the antimicrobial activity of Algerian honey on mastitis causing bacteria. Materials and Methods: The antibacterial activity against the isolated bacteria was evaluated by determining the Minimal Inhibitory Concentration (MIC, using the agar incorporation method. Results: The results showed that both Micrococcus spp. and Klebsiella spp. were susceptible to Streptomycin and tetracycline, while Pseudomonas aeruginosa, E coli, Enterobacter spp., Bacillus spp., and Coagulase Negative Staphyloccoci (CNS were preferentially susceptible to Streptomycin. However, Streptococcus D was the most resistant to the tested antibiotics whereas Staphylococcus aureus was the most susceptible to all the studied antibiotics. As regards to the antimicrobial activity of honey, the measured values were comprised between 11 and 14%. Conclusion: The results reveal that antimicrobial drugs susceptibility tests in goat subclinical mastitis might be necessary before the treatment. Algerian honey exhibited in vitro antimicrobial activity against different isolated bacteria in goat mastitis.

  1. Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract

    Directory of Open Access Journals (Sweden)

    Umer Shemsu

    2013-01-01

    Full Text Available Abstract Background In Ethiopia, Calpurnia aurea is used for the treatment of syphilis, malaria, rabies, diabetes, hypertension, diarrhoea, leishmaniasis, trachoma, elephantiasis, fungal diseases and different swellings. However, despite its traditional usage as an antidiarrhoeal and antimicrobial agent, there is limited or no information regarding its effectiveness and mode of action in diarrhoea which may be caused by Shigella flexneri, Staphylococcus aureus, Escherichia coli and Salmonella typhi. Hence, we evaluated the 80% methanol (MeOH extract of dried and powdered leaves of C. aurea for its antidiarrhoeal and antimicrobial activities. Methods Swiss albino mice of either sex were divided into five groups (five/group: Group I served as control and received vehicle (1% Tween 80 at a dose of 10 ml/kg orally; Group II served as standard and received loperamide at the dose of 3 mg/kg orally; Groups III, IV and V served as test groups and received the 80% MeOH leaf extract of C. aurea at doses of 100, 200 and 400 mg/kg orally, respectively. Diarrhoea was induced by oral administration of 0.5 ml castor oil to each mouse, 1 h after the above treatments. During an observation period of 4 h, time of onset of diarrhea, total number of faecal output (frequency of defecation and weight of faeces excreted by the animals were recorded. Data were analyzed using one way analysis of variance followed by Tukey post test. Antimicrobial activity test was conducted using agar well diffusion assay. Clinical isolates tested were Salmonella typhi, Salmonella paratyphi, Salmonella typhimurium, Shigella species, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. Results In castor oil induced diarrhea model, the 80% methanol leaf extract of C. aurea at 100, 200 and 400 mg/kg and the standard drug loperamide (3 mg/kg significantly reduced the time of onset of diarrhea, the frequency of defecation (total number of faecal output and weight of faeces. C

  2. Antimicrobial Activity of Chitosan Film Forming Solution Enriched with Essential Oils; an in Vitro Assay.

    Science.gov (United States)

    Raphaël, Kana Jean; Meimandipour, Amir

    2017-01-01

    Background: The resistance of the bacteria and fungi to the innumerous antimicrobial agents is a major challenge in the treatment of the infections demands to the necessity for searching and finding new sources of substances with antimicrobial properties. The incorporation of the essential oils (EOs) in chitosan film forming solution may enhance antimicrobial properties. However, its use as the feeding additive in the poultry nutrition needs to clarify the product's activity against both pathogen and the useful microbes in the gastrointestinal tract. Objectives: In the present study, we carried out an in vitro investigation and evaluated the antimicrobial activity of chitosan film forming solution incorporated with essential oils (CFs+EOs) against microbial strains including Staphylococcus aureus, Escherichia coli, Enterococcus faecium, Lactobacillus rahmnosus, Aspergillus niger and Alternaria alternate . Material and Methods: In three replicates, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of different treatments including: 1- essential oils (EOs), 2- chitosan film solution (CFs), and 3-chitosan film solution enriched with EOs (CFs+EOs) were determined against above mentioned microbes. Results: The results indicated that the chitosan solution enriched with essential oils (CFs+EOs) is capable of inhibiting the bacterial and fungal growth even at the lowest concentrations. The MIC and MBC for all the antimicrobial agents against Escherichia coli and Staphylococcus aureus were very low compared to the concentrations needed to inhibit the growth of useful bacteria, Lactobacillus rahmnosu and Enterococcus faecium . The antifungal activity of chitosan was enhanced as the concentration of EOs increased in the film solution. Conclusion: Chitosan-EOs complexes are the promising candidate for novel contact antimicrobial agents that can be used in animal feeds.

  3. Antimicrobial activity and identification of potential antimicrobial compounds from aquatic pteridophyte, Azolla microphylla Kaulf.

    Science.gov (United States)

    Abraham, G; Yadav, R K; Kaushik, G K

    2015-04-01

    Azolla microphylla Kaulf. is an aquatic nitrogen fixing pteridophyte commonly found in aquatic habitats including paddy fields. Methanolic extract of the fronds of A. microphylla was subjected to partial purification by solvent partitioning with diethyl ether and ethyl acetate followed by hydrolysis, and further partitioning with ethyl acetate. The two fractions, thus obtained were tested for antibacterial activity. It was observed that the ethyl acetate fraction inhibited the growth of the pathogenic bacterium Xanthomonas oryzae. The GC-MS analysis of the ethyl acetate fraction showed several prominent peaks with retention time ranging from 8.83 to 45.54 min. A comparison of these peaks with the GC-MS libraries revealed that it could be eicosenes and heptadecanes with potential of antimicrobial activity.

  4. Assessing the Antimicrobial Activity of Polyisoprene Based Surfaces

    Directory of Open Access Journals (Sweden)

    Hope Badawy

    2015-02-01

    Full Text Available There has been an intense research effort in the last decades in the field of biofouling prevention as it concerns many aspects of everyday life and causes problems to devices, the environment, and human health. Many different antifouling and antimicrobial materials have been developed to struggle against bacteria and other micro- and macro-organism attachment to different surfaces. However the “miracle solution” has still to be found. The research presented here concerns the synthesis of bio-based polymeric materials and the biological tests that showed their antifouling and, at the same time, antibacterial activity. The raw material used for the coating synthesis was natural rubber. The polyisoprene chains were fragmented to obtain oligomers, which had reactive chemical groups at their chain ends, therefore they could be modified to insert polymerizable and biocidal groups. Films were obtained by radical photopolymerization of the natural rubber derived oligomers and their structure was altered, in order to understand the mechanism of attachment inhibition and to increase the efficiency of the anti-biofouling action. The adhesion of three species of pathogenic bacteria and six strains of marine bacteria was studied. The coatings were able to inhibit bacterial attachment by contact, as it was verified that no detectable leaching of toxic molecules occurred.

  5. Antimicrobial activity of julifloricine isolated from Prosopis juliflora.

    Science.gov (United States)

    Aqeel, A; Khursheed, A K; Viqaruddin, A; Sabiha, Q

    1989-06-01

    Antimicrobial activity of julifloricine, an alkaloid isolated from Prosopis juliflora, was studied in vitro against 40 microorganisms which included 31 bacteria, two Candida species, five dermatophytic fungi and two viruses. Significant inhibitory effect was noted against Gram positive bacteria. The minimal inhibitory concentration (MIC) for Staphylococcus aureus, S. epidermidis, S. citreus, Streptococcus pyogenes and Sarcina lutea was 1 microgram/ml and against S. faecalis, S. pneumoniae, S. lactis, Corynebacterium diphtheriae, C. hofmannii and Bacillus subtilis, 5 micrograms/ml. Its effect was compared with those of identical concentrations of benzyl penicillin, gentamicin and trimethoprim. The inhibitory effect of julifloricine on Gram negative bacteria such as the species of Salmonella, Shigella, Klebsiella, Proteus, Pseudomonas, Enterobacter, Aeromonas and Vibrio was almost insignificant. Julifloricine as compared to micoanzole was found superior against C. tropicalis and responded equally to C. albicans. As compared to econazole, it was found less effective against both C. albicans and C. tropicalis. This alkaloid was found inactive against dermatophytic fungi (up to a dose of 10 micrograms/ml) and viruses which included Herpes simplex 1 and Newcastle disease virus. Julifloricine up to a doses of 1000 micrograms/25 g of mice was found nonlethal.

  6. Enhanced antimicrobial activity and structural transitions of a nanofibrillated cellulose-nisin bio-composite suspension.

    Science.gov (United States)

    Weishaupt, Ramon; Heuberger, Lukas; Siqueira, Gilberto; Gutt, Beatrice; Zimmermann, Tanja; Maniura-Weber, Katharina; Salentinig, Stefan; Faccio, Greta

    2018-05-16

    The occurrence of resistance to antibiotics has posed a high demand for novel strategies to fight bacterial infections. Antimicrobial peptides (AMPs) are a promising alternative to con-ventional antibiotics. However, their poor solubility in water and sensitivity to degradation has limited their application. Here we report the design of a smart, pH-responsive antimicro-bial nanobiocomposite material based on the AMP nisin and oxidized nanofibrillated cellulose (TONFC). Morphological transformations of the nano-scale structure of nisin functionalized TONFC fibrils were discovered at pH values between pH 5.8 and 8.0 using small angle X-ray scattering (SAXS). Complementary zeta potential measurements indicate that electrostatic-attractions between the negatively charged TONFC surface and the positively charged nisin molecules are responsible for the integration of nisin. Contrary, shifting the pH level or in-creasing the ionic strength reduce the nisin binding capacity of TONFC. Biological evaluation studies using a bioluminescence-based reporter strain of Bacillus subtilis and a clinically rele-vant strain of Staphylococcus aureus indicated a significantly higher antimicrobial activity of the TONFC-nisin biocomposite compared to the pure nisin against both strains under physio-logical pH and ionic strength conditions. The in-depth characterization of this new class of an-timicrobial bio-composite material based on nanocellulose and nisin, may guide the rational design of sustainable antimicrobial materials.

  7. Two novel cyclic peptides are key components of the antimicrobial activity of the Greenlandic isolate Pseudomonas sp. In5

    DEFF Research Database (Denmark)

    Hennessy, Rosanna Catherine; Phippen, Christopher; Nielsen, Kristian F.

    suppressive soil, Pseudomonas sp. In5 is therefore a promising potential biocontrol agent with potent activity against plant pathogens. Studies to date have shown nunamycin and nunapeptin as key components underpinning this antimicrobial activity. Current research is focussed on unravelling the regulation...... and antimicrobial mode of action of both peptides. Functional characterisation of the LuxR-type regulatory gene nunF by targeted knock-out and complementation resulted in the loss and gain of both antimicrobial activity and peptide synthesis respectively. Located downstream of the nunamycin biosynthetic genes, nun......F shows homology to syrF from P. syringae pv. syringae involved in the regulation of the antifungal peptide syringomycin. These results show that nunF is a key component of antimicrobial activity and synthesis of nunamycin and nunapeptin....

  8. Proteolytic and antimicrobial activity of lactic acid bacteria grown in goat milk.

    Science.gov (United States)

    Atanasova, Jivka; Moncheva, Penka; Ivanova, Iskra

    2014-11-02

    We examined 62 strains and 21 trade starter cultures from the collection of LB Bulgaricum PLC for proteolytic and antimicrobial activity of lactic acid bacteria (LAB) grown in goat milk. The aim of this study was to investigate the fermentation of caseins, α-lactalbumin and β-lactoglobulin by LAB, using the o -phthaldialdehyde (OPA) spectrophotometric assay and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The proteolysis targeted mainly caseins, especially β-casein. Whey proteins were proteolyzed, essentially β-lactoglobulin. The proteolytic activity of Lactococcus lactis l598, Streptococcus thermophilus t3D1, Dt1, Lactobacillus lactis 1043 and L. delbrueckii subsp. bulgaricus b38, b122 and b24 was notably high. The proteolysis process gave rise to medium-sized peptide populations. Most of the examined strains showed antimicrobial activity against some food pathogens, such as Escherichia coli , Staphylococcus aureus , Salmonella cholere enteridis , Listeria monocytogenes , Listeria innocua and Enterobacter aerogenes . The most active producers of antimicrobial-active peptides were strains of L. delbrueckii subsp. bulgaricus and S. thermophilus , which are of practical importance. The starter cultures containing the examined species showed high proteolytic and antimicrobial activity in skimmed goat milk. The greatest antimicrobial activity of the cultures was detected against E. aerogenes . The obtained results demonstrated the significant proteolytic potential of the examined strains in goat milk and their potential for application in the production of dairy products from goat's milk. The present results could be considered as the first data on the proteolytic capacity of strains and starter cultures in goat milk for the purposes of trade interest of LB Bulgaricum PLC.

  9. Screening antimicrobial activity of various extracts of Urtica dioica

    Directory of Open Access Journals (Sweden)

    Amir Modarresi-Chahardehi

    2012-12-01

    Full Text Available Urtica dioica or stinging nettle is traditionally used as an herbal medicine in Western Asia. The current study represents the investigation of antimicrobial activity of U. dioica from nine crude extracts that were prepared using different organic solvents, obtained from two extraction methods: the Soxhlet extractor (Method I, which included the use of four solvents with ethyl acetate and hexane, or the sequential partitions (Method II with a five solvent system (butanol. The antibacterial and antifungal activities of crude extracts were tested against 28 bacteria, three yeast strains and seven fungal isolates by the disc diffusion and broth dilution methods. Amoxicillin was used as positive control for bacteria strains, vancomycin for Streptococcus sp., miconazole nitrate (30µg/mL as positive control for fungi and yeast, and pure methanol (v/v as negative control. The disc diffusion assay was used to determine the sensitivity of the samples, whilst the broth dilution method was used for the determination of the minimal inhibition concentration (MIC. The ethyl acetate and hexane extract from extraction method I (EA I and HE I exhibited highest inhibition against some pathogenic bacteria such as Bacillus cereus, MRSA and Vibrio parahaemolyticus. A selection of extracts that showed some activity was further tested for the MIC and minimal bactericidal concentrations (MBC. MIC values of Bacillus subtilis and Methicillin-resistant Staphylococcus aureus (MRSA using butanol extract of extraction method II (BE II were 8.33 and 16.33mg/mL, respectively; while the MIC value using ethyl acetate extract of extraction method II (EAE II for Vibrio parahaemolyticus was 0.13mg/mL. Our study showed that 47.06% of extracts inhibited Gram-negative (8 out of 17, and 63.63% of extracts also inhibited Gram-positive bacteria (7 out of 11; besides, statistically the frequency of antimicrobial activity was 13.45% (35 out of 342 which in this among 21.71% belongs to

  10. Synthesis, characterization and antimicrobial activity of mixed ...

    African Journals Online (AJOL)

    A new series of Mn(II), Fe(II), Co(II), Cu(II) and Zn(II) mixed ligands-metal complexes derived from salicylic acid (SA) and 1,10-phenanthroline (PHEN) have been synthesized and characterized by spectroscopic studies. The coordination of the two ligands towards central metal ions has been proposed in the light of ...

  11. Antimicrobial activities of some selected Nigerian mushrooms ...

    African Journals Online (AJOL)

    ... were either weakly inhibited or not inhibited at all. The minimum inhibitory concentration (MIC) ranged between 1.25 and 9.00mg/ml for bacteria and between 10.50 and 17.50mg/ml for fungi. These results are discussed in relation to therapeutic value of the studied mushrooms. African Journal of Biomedical Research Vol.

  12. Litsea glutinosa (Lauraceae: Evaluation of its Foliar Phytochemical Constituents for Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Mutyala Naidu LAGUDU

    2018-03-01

    Full Text Available The phytochemical investigation of the leaves of Litsea glutinosa revealed the presence of secondary metabolites like alkaloids, anthraquinones, cardiac glycosides, flavonoids, glycosides, phenols, saponins, steroids, tannins, terpenoids, volatile compounds, amino acids and carbohiydrates. The antimicrobial activity and minimum inhibition concentration values were determined for these phytochemical constituents as crude extracts using the agar well diffusion and two-fold serial dilution methods. The results indicated that Bacillus subtilis was the most susceptible bacterium with high inhibition zones for the methanol and chloroform extracts of 31 mm and 26 mm, respectively. The MIC values indicated that extracts possess good antimicrobial activity with significant MIC value against Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus pneumoniae at 31.2 µg/ml concentrations. The extracts showed marked antimicrobial activity against both bacteria and fungi. Among the bacterial strains, gram-positive bacteria were more susceptible than the gram-negative. All the 13 microorganisms tested showed dose dependent susceptibility towards the phytochemicals present in the foliar extracts. The study suggests that Litsea glutinosa leaves possess potent antimicrobial activity and can be a good source for the development of new antibiotics.

  13. Antimicrobial Films Based on Chitosan and Methylcellulose Containing Natamycin for Active Packaging Applications

    Directory of Open Access Journals (Sweden)

    Serena Santonicola

    2017-10-01

    Full Text Available Biodegradable polymers are gaining interest as antimicrobial carriers in active packaging. In the present study, two active films based on chitosan (1.5% w/v and methylcellulose (3% w/v enriched with natamycin were prepared by casting. The antimicrobial’s release behavior was evaluated by immersion of the films in 95% ethanol (v/v at different temperatures. The natamycin content in the food simulant was determined by reversed-high performance liquid chromatography with diode-array detection (HPLC-DAD. The apparent diffusion (DP and partition (KP/S coefficients were calculated using a mathematical model based on Fick’s Second Law. Results showed that the release of natamycin from chitosan based film (DP = 3.61 × 10−13 cm2/s was slower, when compared with methylcellulose film (DP = 3.20 × 10−8 cm2/s at the same temperature (p < 0.05. To evaluate the antimicrobial efficiency of active films, cheese samples were completely covered with the films, stored at 20 °C for 7 days, and then analyzed for moulds and yeasts. Microbiological analyses showed a significant reduction in yeasts and moulds (7.91 log CFU/g in samples treated with chitosan active films (p < 0.05. The good compatibility of natamycin with chitosan, the low Dp, and antimicrobial properties suggested that the film could be favorably used in antimicrobial packagings.

  14. Antioxidant and antimicrobial activity of stingless bee bread and propolis extracts

    Science.gov (United States)

    Akhir, Rabieatul Adawieah Md; Bakar, Mohd Fadzelly Abu; Sanusi, Shuaibu Babaji

    2017-10-01

    Bee bread and propolis are by-products of honey bee. The main objective of this research was to investigate the antioxidant and antimicrobial activity of stingless bee bread and propolis extracted using 70% ethanol and n-hexane. The antioxidant activity of the sample extracts were determined by spectrophotometry analysis while for the antimicrobial activity, the sample extracts were analyzed using disc diffusion and broth dilution assays. For DPPH and ABTS assays, the results showed that ethanolic extract of bee bread showed the highest free radical scavenging (%) as compared to other samples. However, FRAP values for both hexanic extracts are higher as compared to the ethanolic extracts. For disc diffusion assay, the results showed that the ethanolic extract of bee bread and propolis as well as hexanic extract of propolis were able to inhibit all tested bacteria. Meanwhile, broth dilution assay showed minimum inhibition zone (MIC) ranging from <6.67 to 33.33 µL/mL. As the conclusion, both bee bread and propolis produced by stingless bee in this study displayed antioxidant and antimicrobial effect but there are different in the degree of antioxidant and antimicrobial activity exhibited between each of the samples.

  15. The Influence of Interfering Substances on the Antimicrobial Activity of Selected Quaternary Ammonium Compounds

    Directory of Open Access Journals (Sweden)

    Paula A. Araújo

    2013-01-01

    Full Text Available Standard cleaning processes may not remove all the soiling typically found in food industry, such as carbohydrates, fats, or proteins. Contaminants have a high impact in disinfection as their presence may reduce the activity of disinfectants. The influence of alginic acid, bovine serum albumin, yeast extract, and humic acids was assessed on the antimicrobial activities of benzalkonium chloride and cetyltrimethyl ammonium bromide against Bacillus cereus vegetative cells and Pseudomonas fluorescens. The bacteria (single and consortium were exposed to surfactants (single and combined in the absence and presence of potential disinfection interfering substances. The antimicrobial effects of the surfactants were assessed based on the bacterial respiratory activity measured by oxygen uptake rate due to glucose oxidation. The tested surfactants were efficient against both bacteria (single and consortium with minimum bactericidal concentrations ranging from 3 to 35 mg·L−1. The strongest effect was caused by humic acids that severely quenched antimicrobial action, increasing the minimum bactericidal concentration of the surfactants on P. fluorescens and the consortium. The inclusion of the other interfering substances resulted in mild interferences in the antibacterial activity. This study clearly demonstrates that humic acids should be considered as an antimicrobial interfering substance in the development of disinfection strategies.

  16. Molecular mechanisms behind the antimicrobial activity of hop iso-α-acids in Lactobacillus brevis.

    Science.gov (United States)

    Schurr, Benjamin C; Hahne, Hannes; Kuster, Bernhard; Behr, Jürgen; Vogel, Rudi F

    2015-04-01

    The main bittering component in beer, hop iso-α-acids, have been characterised as weak acids, which act as ionophores impairing microbial cells' function under acidic conditions as present in beer. Besides medium pH, divalent cations play a central role regarding the efficacy of the antimicrobial effect. The iso-α-acids' non-bitter derivatives humulinic acids can be found in isomerised hop extracts and can be generated during hop storage. Therefore, they have been under investigation concerning their influence on beer sensory properties. This study sketches the molecular mechanism behind iso-α-acids' antimicrobial activity in Lactobacillus (L.) brevis regarding their ionophore activity versus the dependence of the inhibitory potential on manganese binding, and suggests humulinic acids as novel tasteless food preservatives. We designed and synthesised chemically modified iso-α-acids to enhance the basic understanding of the molecular mechanism of antimicrobial iso-α-acids. It could be observed that a manganese-binding dependent transmembrane redox reaction (oxidative stress) plays a crucial role in inhibition. Privation of an acidic hydroxyl group neither erased ionophore activity, nor did it entirely abolish antimicrobial activity. Humulinic acids proved to be highly inhibitory, even outperforming iso-α-acids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Evaluation of antimicrobial and antibiofilm activity of electron beam irradiated endodontic sealer

    International Nuclear Information System (INIS)

    Shetty, Veena; Geethashri, A.; Palaksha, K.J.; Shridhar, K.R.; Sanjeev, Ganesh

    2013-01-01

    The complete disinfection of root canal is achieved by endodontic instrumentation, irrigation and medications followed by complete filling of the canal space by appropriate sealer. However careful cleaning and shaping of the canal system do not assure the complete eradication of microorganisms from tubular or lateral canals. Therefore, to avoid the possible growth of microorganisms, the filling endodontic material should have good antimicrobial effect on the pathogens causing root canal failure or pulpo-periapical pathosis. Zinc Oxide- Eugenol (ZOE) is the most commonly used filling material in endodontics. Electron beam (e-beam) radiation is a form of ionizing radiation known to induce physiochemical and biological changes in the irradiated substances. Hence, the present study was carried out to evaluate the effect of e-beam radiation on antimicrobial property of ZOE sealer against root canal pathogens like Enterococcus faecalis, Streptococcus mutans, Staphylococcus aureus and Candida albicans. The homogenous paste of Zinc oxide and Eugenol prepared by mixing at the ratio of 3:1 was loaded into the sterile molds of 6 mm diameter. After complete drying of paste, discs were aseptically separated from the mould. The prepared discs were subjected to e-beam irradiation of 250 Gy, 500 Gy, 750 Gy and 1000 Gy at Microtron Centre, Mangalore University. Antimicrobial and antibiofilm properties of control and irradiated sealer were determined by well diffusion method and growing the biofilm according to O'Toole method, respectively. The antimicrobial effect was observed only against S.aureus and C. albicans in non-irradiated ZOE. The ZOE sealer irradiated at 1000 Gy showed the significantly increased (P<0.001) antimicrobial effect against S. aureus and C. albicans. However, the substantially increased antibiofilm activity against C.albicans was noticed in the ZOE irradiated at 250 Gy. This study showed that e-beam irradiation at 1000 Gy and 250 Gy were found to be optimum

  18. Antimicrobial Activities and Time-Kill Kinetics of Extracts of Selected Ghanaian Mushrooms

    Directory of Open Access Journals (Sweden)

    Theresa Appiah

    2017-01-01

    Full Text Available The rapid rise of antimicrobial resistance is a worldwide problem. This has necessitated the need to search for new antimicrobial agents. Mushrooms are rich sources of potential antimicrobial agents. This study investigated the antimicrobial properties of methanol extracts of Trametes gibbosa, Trametes elegans, Schizophyllum commune, and Volvariella volvacea. Agar well diffusion, broth microdilution, and time-kill kinetic assays were used to determine the antimicrobial activity of the extracts against selected test organisms. Preliminary mycochemical screening revealed the presence of tannins, flavonoids, triterpenoids, anthraquinones, and alkaloids in the extracts. Methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea showed mean zone of growth inhibition of 10.00±0.0 to 21.50±0.84, 10.00±0.0 to 22.00±1.10, 9.00±0.63 to 21.83±1.17, and 12.00±0.0 to 21.17±1.00 mm, respectively. The minimum inhibitory concentration of methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea ranged from 4.0 to 20, 6.0 to 30.0, 8.0 to 10.0, and 6.0 to 20.0 mg/mL, respectively. Time-kill kinetics studies showed that the extracts possess bacteriostatic action. Methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea exhibited antimicrobial activity and may contain bioactive compounds which may serve as potential antibacterial and antifungal agents.

  19. Electrochemical and antimicrobial activity of tellurium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Pramod K. [Department of Applied Sciences and Humanities, Jamia Millia Islamia, New Delhi 110067 (India); Special Centre for Nanosciences, Jawaharlal Nehru University, New Delhi 110067 (India); Sharma, Prem Prakash; Sharma, Anshu [Special Centre for Nanosciences, Jawaharlal Nehru University, New Delhi 110067 (India); Khan, Zishan H., E-mail: zishan_hk@yahoo.co.in [Department of Applied Sciences and Humanities, Jamia Millia Islamia, New Delhi 110067 (India); Solanki, Pratima R., E-mail: pratimarsolanki@gmail.com [Special Centre for Nanosciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2016-09-15

    Highlights: • TeO{sub 2} NPs synthesized without using any catalyst by chemical vapour deposition method. • The growth temperature was 410 °C with continuous flow of O{sub 2.} • TeO{sub 2} NPs have anti-bacterial activity against E. coli, K. pneumoniae and S. aureus while enhances the growth of S. pyogenes. • TeO{sub 2} shows maximum redox current at pH 7 for phosphate buffer solution. - Abstract: Thin film of tellurium oxide (TeO{sub 2}) has been synthesized by chemical vapour deposition method onto indium tin oxide (ITO) coated glass substrate without using any catalyst. XRD pattern of TeO{sub 2} thin film suggests that the structure of TeO{sub 2} changes from amorphous to crystalline (paratellurite) on dispersing into deionized water. Zeta potential measurement reveals a positive surface potential of 28.8 mV. TEM images shows spherical shaped TeO{sub 2} nanoparticles having average particle size of 65 nm. Electrochemical studies of TeO{sub 2}/ITO electrode exhibit improved electron transfer owing to its inherent electron transfer property at pH 7.0 of phosphate buffer. Antimicrobial activity of TeO{sub 2} has been studied for gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and gram negative (Escherichia coli and Klebsiella pneumoniae) bacterial and fungal strains (Aspergillus nizer and Candida albicans). These studies suggest that the TeO{sub 2} NPs inhibit the growth of E. coli, K. pneumoniae and S. aureus bacteria, whereas the same particles enhance the growth of S. pyogenes bacteria.

  20. Evaluation of anticonvulsant, antimicrobial and hemolytic activity of Aitchisonia rosea

    Directory of Open Access Journals (Sweden)

    Shahid Rasool

    2015-12-01

    Full Text Available The purpose of this study was to evaluate the anticonvulsant, antimicrobial and hemolytic effect of Aitchisonia rosea. The anticonvulsant effect was studied at doses 400 and 800 mg/kg against pentylenetetrazole, strychnine and picrotoxin-induced seizures in albino mice. The antimicrobial assay was conducted by disc diffusion method and minimum inhibitory concentration. Hemolytic effect was analyzed by reported method. Phenolic compounds present in the n-butanol fraction of the plant were estimated by HPLC. The plant showed maximum response against drug-induced convulsions and provided protection to animals at both doses. It also showed maximum zone of inhibition and highly significant MIC against all bacterial and fungal strains. The plant protected the RBCs from hemolysis. The highest amount of phenolics found was caffeic acid (7.5 ± 0.04.

  1. Multicenter assessment of the linezolid spectrum and activity using the disk diffusion and Etest methods: report of the Zyvox® Antimicrobial Potency Study in Latin America (LA-ZAPS

    Directory of Open Access Journals (Sweden)

    Ballow Charles H.

    2002-01-01

    Full Text Available Linezolid was the first clinically applied member of the new antimicrobial class called the "oxazolidinones". These agents have a powerful spectrum of activity focussed against Gram-positive organisms including strains with documented resistances to other antimicrobial classes. We conducted a multicenter surveillance (Zyvox Antimicrobial Potency Study; ZAPS trial of qualifying Gram-positive isolates from 24 medical centers in eight countries in Latin America. The activity and spectrum of linezolid was compared to numerous agents including glycopeptides, quinupristin/dalfopristin, b-lactams and fluoroquinolones when testing 2,640 strains by the standardized disk diffusion method or Etest (AB BIODISK, Solna, Sweden. The linezolid spectrum was complete against staphylococci (median zone diameter, 29 - 32 mm, as was the spectrum of vancomycin and quinupristin/dalfopristin. Among the enterococci, no linezolid resistance was detected, and the susceptibility rate was 93.1 - 96.4%. Only the vancomycin-susceptible Enterococcus faecium strains remained susceptible (92.8% to quinupristin/dalfopristin. Marked differences in the glycopeptide resistance patterns (van A versus van B were noted for the 22 isolates of VRE, thus requiring local susceptibility testing to direct therapy. Streptococcus pneumoniae and other species were very susceptible (100.0% to linezolid, MIC90 at 0.75 mug/ml. Penicillin non-susceptible rate was 27.7% and erythromycin resistance was at 17.4%. Other streptococci were also completely susceptible to linezolid (MIC90, 1 mug/ml. These results provide the initial benchmark of potency and spectrum for linezolid in Latin American medical centers. Future comparisons should recognize that the oxazolidinones possess essentially a complete spectrum coverage of the monitored staphylococci, enterococci and streptococcal isolates in 2000-2001. This positions linezolid as the widest spectrum empiric choice against multi-resistant Gram

  2. Multicenter assessment of the linezolid spectrum and activity using the disk diffusion and Etest methods: report of the Zyvox® Antimicrobial Potency Study in Latin America (LA-ZAPS

    Directory of Open Access Journals (Sweden)

    Charles H. Ballow

    Full Text Available Linezolid was the first clinically applied member of the new antimicrobial class called the "oxazolidinones". These agents have a powerful spectrum of activity focussed against Gram-positive organisms including strains with documented resistances to other antimicrobial classes. We conducted a multicenter surveillance (Zyvox Antimicrobial Potency Study; ZAPS trial of qualifying Gram-positive isolates from 24 medical centers in eight countries in Latin America. The activity and spectrum of linezolid was compared to numerous agents including glycopeptides, quinupristin/dalfopristin, b-lactams and fluoroquinolones when testing 2,640 strains by the standardized disk diffusion method or Etest (AB BIODISK, Solna, Sweden. The linezolid spectrum was complete against staphylococci (median zone diameter, 29 - 32 mm, as was the spectrum of vancomycin and quinupristin/dalfopristin. Among the enterococci, no linezolid resistance was detected, and the susceptibility rate was 93.1 - 96.4%. Only the vancomycin-susceptible Enterococcus faecium strains remained susceptible (92.8% to quinupristin/dalfopristin. Marked differences in the glycopeptide resistance patterns (van A versus van B were noted for the 22 isolates of VRE, thus requiring local susceptibility testing to direct therapy. Streptococcus pneumoniae and other species were very susceptible (100.0% to linezolid, MIC90 at 0.75 mug/ml. Penicillin non-susceptible rate was 27.7% and erythromycin resistance was at 17.4%. Other streptococci were also completely susceptible to linezolid (MIC90, 1 mug/ml. These results provide the initial benchmark of potency and spectrum for linezolid in Latin American medical centers. Future comparisons should recognize that the oxazolidinones possess essentially a complete spectrum coverage of the monitored staphylococci, enterococci and streptococcal isolates in 2000-2001. This positions linezolid as the widest spectrum empiric choice against multi-resistant Gram

  3. The effect of standard heat and filtration processing procedures on antimicrobial activity and hydrogen peroxide levels in honey.

    Science.gov (United States)

    Chen, Cuilan; Campbell, Leona T; Blair, Shona E; Carter, Dee A

    2012-01-01

    There is increasing interest in the antimicrobial properties of honey. In most honey types, antimicrobial activity is due to the generation of hydrogen peroxide (H(2)O(2)), but this can vary greatly among samples. Honey is a complex product and other components may modulate activity, which can be further affected by commercial processing procedures. In this study we examined honey derived from three native Australian floral sources that had previously been associated with H(2)O(2)-dependent activity. Antibacterial activity was seen in four red stringybark samples only, and ranged from 12 to 21.1% phenol equivalence against Staphylococcus aureus. Antifungal activity ranged from MIC values of 19-38.3% (w/v) against Candida albicans, and all samples were significantly more active than an osmotically equivalent sugar solution. All honey samples were provided unprocessed and following commercial processing. Processing was usually detrimental to antimicrobial activity, but occasionally the reverse was seen and activity increased. H(2)O(2) levels varied from 0 to 1017 μM, and although samples with no H(2)O(2) had little or no antimicrobial activity, some samples had relatively high H(2)O(2) levels yet no antimicrobial activity. In samples where H(2)O(2) was detected, the correlation with antibacterial activity was greater in the processed than in the unprocessed samples, suggesting other factors present in the honey influence this activity and are sensitive to heat treatment. Antifungal activity did not correlate with the level of H(2)O(2) in honey samples, and overall it appeared that H(2)O(2) alone was not sufficient to inhibit C. albicans. We conclude that floral source and H(2)O(2) levels are not reliable predictors of the antimicrobial activity of honey, which currently can only be assessed by standardized antimicrobial testing. Heat processing should be reduced where possible, and honey destined for medicinal use should be retested post-processing to ensure that

  4. Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment

    Science.gov (United States)

    Svahn, K. Stefan; Göransson, Ulf; El-Seedi, Hesham; Bohlin, Lars; Larsson, D.G. Joakim; Olsen, Björn; Chryssanthou, Erja

    2012-01-01

    Background Filamentous fungi are well known for their production of substances with antimicrobial activities, several of which have formed the basis for the development of new clinically important antimicrobial agents. Recently, environments polluted with extraordinarily high levels of antibiotics have been documented, leading to strong selection pressure on local sentinel bacterial communities. In such microbial ecosystems, where multidrug-resistant bacteria are likely to thrive, it is possible that certain fungal antibiotics have become less efficient, thus encouraging alternative strategies for fungi to compete with bacteria. Methods In this study, sediment of a highly antibiotic-contaminated Indian river was sampled in order to investigate the presence of cultivable filamentous fungi and their ability to produce substances with antimicrobial activity. Results Sixty one strains of filamentous fungi, predominantly various Aspergillus spp. were identified. The majority of the Aspergillus strains displayed antimicrobial activity against methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase-producing Escherichia coli, vancomycin-resistant Enterococcus faecalis and Candida albicans. Bioassay-guided isolation of the secondary metabolites of A. fumigatus led to the identification of gliotoxin. Conclusion This study demonstrated proof of principle of using bioassay-guided isolation for finding bioactive molecules. PMID:22957125

  5. Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment

    Directory of Open Access Journals (Sweden)

    K. Stefan Svahn

    2012-05-01

    Full Text Available Background: Filamentous fungi are well known for their production of substances with antimicrobial activities, several of which have formed the basis for the development of new clinically important antimicrobial agents. Recently, environments polluted with extraordinarily high levels of antibiotics have been documented, leading to strong selection pressure on local sentinel bacterial communities. In such microbial ecosystems, where multidrug-resistant bacteria are likely to thrive, it is possible that certain fungal antibiotics have become less efficient, thus encouraging alternative strategies for fungi to compete with bacteria. Methods: In this study, sediment of a highly antibiotic-contaminated Indian river was sampled in order to investigate the presence of cultivable filamentous fungi and their ability to produce substances with antimicrobial activity. Results: Sixty one strains of filamentous fungi, predominantly various Aspergillus spp. were identified. The majority of the Aspergillus strains displayed antimicrobial activity against methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase-producing Escherichia coli, vancomycin-resistant Enterococcus faecalis and Candida albicans. Bioassay-guided isolation of the secondary metabolites of A. fumigatus led to the identification of gliotoxin. Conclusion: This study demonstrated proof of principle of using bioassay-guided isolation for finding bioactive molecules.

  6. Hydrophilic Phage-Mimicking Membrane Active Antimicrobials Reveal Nanostructure-Dependent Activity and Selectivity.

    Science.gov (United States)

    Jiang, Yunjiang; Zheng, Wan; Kuang, Liangju; Ma, Hairong; Liang, Hongjun

    2017-09-08

    The prevalent wisdom on developing membrane active antimicrobials (MAAs) is to seek a delicate, yet unquantified, cationic-hydrophobic balance. Inspired by phages that use nanostructured protein devices to invade bacteria efficiently and selectively, we study here the antibiotic role of nanostructures by designing spherical and rod-like polymer molecular brushes (PMBs) that mimic the two basic structural motifs of bacteriophages. Three model PMBs with different well-defined geometries consisting of multiple, identical copies of densely packed poly(4-vinyl-N-methylpyridine iodide) branches are synthesized by controlled/"living" polymerization, reminiscent of the viral structural motifs comprised of multiple copies of protein subunits. We show that, while the individual linear-chain polymer branch that makes up the PMBs is hydrophilic and a weak antimicrobial, amphiphilicity is not a required antibiotic trait once nanostructures come into play. The nanostructured PMBs induce an unusual topological transition of bacterial but not mammalian membranes to form pores. The sizes and shapes of the nanostructures further help define the antibiotic activity and selectivity of the PMBs against different families of bacteria. This study highlights the importance of nanostructures in the design of MAAs with high activity, low toxicity, and target specificity.

  7. A Novel Teaching Tool Combined With Active-Learning to Teach Antimicrobial Spectrum Activity.

    Science.gov (United States)

    MacDougall, Conan

    2017-03-25

    Objective. To design instructional methods that would promote long-term retention of knowledge of antimicrobial pharmacology, particularly the spectrum of activity for antimicrobial agents, in pharmacy students. Design. An active-learning approach was used to teach selected sessions in a required antimicrobial pharmacology course. Students were expected to review key concepts from the course reader prior to the in-class sessions. During class, brief concept reviews were followed by active-learning exercises, including a novel schematic method for learning antimicrobial spectrum of activity ("flower diagrams"). Assessment. At the beginning of the next quarter (approximately 10 weeks after the in-class sessions), 360 students (three yearly cohorts) completed a low-stakes multiple-choice examination on the concepts in antimicrobial spectrum of activity. When data for students was pooled across years, the mean number of correct items was 75.3% for the items that tested content delivered with the active-learning method vs 70.4% for items that tested content delivered via traditional lecture (mean difference 4.9%). Instructor ratings on student evaluations of the active-learning approach were high (mean scores 4.5-4.8 on a 5-point scale) and student comments were positive about the active-learning approach and flower diagrams. Conclusion. An active-learning approach led to modestly higher scores in a test of long-term retention of pharmacology knowledge and was well-received by students.

  8. Synthesis, characterization and antimicrobial studies of bio silica ...

    Indian Academy of Sciences (India)

    2018-05-16

    May 16, 2018 ... Cynodon dactylon; green approach; silica nanoparticles; characterization; antimicrobial studies. 1. .... The obtained powder was well-ground with a mortar and ..... Inhalation of SiCl4 fumes irritates nose, throat and lungs.

  9. THE ANTIMICROBIAL ACTIVITY OF SOME EXTRACTS OF FERN GAMETOPHYTES

    Directory of Open Access Journals (Sweden)

    Ionica Deliu

    2013-12-01

    Full Text Available The nature freely offers us many resources for health and beauty. The ferns and their therapeutic properties are less exploit in Romania, except Lycopodium clavatum and Equisetum arvense. Some of the fern properties were demonstrated, like antioxidant, antimicrobial, antiviral, antihelmintic properties. Plants are reasonable alternative to synthetic drugs, avoid the side effect and high cost of synthetic drugs production. Also, the drug resistance bacteria can be controlled using plant derived remedies. In this study the antimicrobial effect of methanolic and ethanolic extracts from three fern species were tested. The extracts were gained from gametophytic stage of ferns obtained in vitro. The most obvious effect was observed for Asplenium trichomanes-ramosum extract. The total polyphenols and flavonoids content were established, too.

  10. Antimicrobial resistance in Danish pigs: A cross sectional study of the association between antimicrobial resistance and geography, exposure to antimicrobials, and trade

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla

    Antimicrobial resistance is a worldwide problem of paramount importance for both humans and animals. To combat the emergence of antimicrobial resistance, the problem must be targeted in all major reservoirs as it is assumed that a high level of AMR genes in environmental reservoirs can increase...... the risk of human pathogens becoming resistant. Pigs might constitute an important reservoir. Therefore, it is important to manage antimicrobial resistance in pigs. Before effectiveactions can be initiated, it is crucial to know which factors are associated with the levels of antimicrobial resistance...... the collection of information on relevant factors. The aim of this PhD project was to study the relationship between the levels of antimicrobial resistance genes and three factors in Danish pig farms: the geographical location of the farm, the exposure to antimicrobials, and the trade patterns. Data collection...

  11. Antimalarial, antimicrobial, cytotoxic, DNA interaction and SOD like activities of tetrahedral copper(II) complexes

    Science.gov (United States)

    Mehta, Jugal V.; Gajera, Sanjay B.; Patel, Mohan N.

    2015-02-01

    The mononuclear copper(II) complexes with P, O-donor ligand and different fluoroquinolones have been synthesized and characterized by elemental analysis, electronic spectra, TGA, EPR, FT-IR and LC-MS spectroscopy. An antimicrobial efficiency of the complexes has been tested against five different microorganisms in terms of minimum inhibitory concentration (MIC) and displays very good antimicrobial activity. The binding strength and binding mode of the complexes with Herring Sperm DNA (HS DNA) have been investigated by absorption titration and viscosity measurement studies. The studies suggest the classical intercalative mode of DNA binding. Gel electrophoresis assay determines the ability of the complexes to cleave the supercoiled form of pUC19 DNA. Synthesized complexes have been tested for their SOD mimic activity using nonenzymatic NBT/NADH/PMS system and found to have good antioxidant activity. All the complexes show good cytotoxic and in vitro antimalarial activities.

  12. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    International Nuclear Information System (INIS)

    Rodina, N P; Yudenko, A N; Terterov, I N; Eliseev, I E

    2013-01-01

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested

  13. Antimicrobial activity of Aegiphila sellowiana Cham., Lamiaceae, against oral pathogens

    Directory of Open Access Journals (Sweden)

    Marcele A. Ferreira

    Full Text Available The antimicrobial activity of Aegiphila sellowiana Cham., Lamiaceae, against oral pathogens is reported. The Minimal Inhibitory Concentrations (MICs for inhibiting the microorganisms growth were determined using the broth microdilution method from the CLSI M7-A7 protocol. Chlorhexidine was used as the positive control. The ethanol crude extract of the aerial parts of A. sellowiana exhibited activity against the microorganisms tested in this work; however, the activity decreased after partition with n-hexane, dichloromethane, and ethyl acetate. Among the tested fractions, the n-hexane fraction was found to be the most effective against the evaluated oral pathogens. GC-MS analysis of this latter fraction revealed that fatty acids esters, steroids, and aliphatic sesquiterpene hydrocarbons are its major constituents. These compounds may be responsible for the activity of the n-hexane fraction, but other chemical constituents of the dichloromethane, ethyl acetate, and hydroalcoholic fraction may potentialize their activities in the crude extract.

  14. Antimicrobial activities of pomelo (Citrus maxima) seed and pulp ethanolic extract

    Science.gov (United States)

    Sahlan, Muhamad; Damayanti, Vina; Tristantini, Dewi; Hermansyah, Heri; Wijanarko, Anondho; Olivia, Yuko

    2018-02-01

    Grapefruit (Citrus paradisi) seed extract is generally used as naturopathic medications, supplements, antiseptic and disinfecting agents and also as preservatives in food and cosmetics products. In vitro studies have demonstrated that grapefruit seed extract has anti bacterial properties against a range of gram-positive and gram-negative organisms. Indonesian grapefruit, known as pomelo (C. maxima), has similar characteristics, contents and is under the same genus (Citrus) as grapefruit; however it has not been completely utilized as a preservative. In this work we analyze the antimicrobial activities of ethanolic extract of Indonesian pomelo (C. maxima) seeds and pulp compared to the grapefruit (C. paradisi) seeds and pulp ethanolic extract. Ethanolic extracts of pomelo and grapefruit seeds and pulp are investigated for activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Candida albicans. The level of antimicrobial effects is established using agar diffusion method. Both of the ethanolic do not show any antimicrobial activities against C. albicans. The ethanolic extract of pomelo seeds and pulp used in this research give positive results with growth inhibition effect on B. subtilis, S. aureus and E. coli. The zones of inhibition ranges from 22 - 30 mm in diameter, which is higher to grapefruit seeds and pulp ethanolic extract (17 - 25 mm). Ethanolic extract of pomelo seeds and pulp has an antimicrobial effect, which makes it a natural preparation for use as an alternative preservative for food and cosmetic.

  15. A heterodimer comprised of two bovine lactoferrin antimicrobial peptides exhibits powerful bactericidal activity against Burkholderia pseudomallei.

    Science.gov (United States)

    Puknun, Aekkalak; Bolscher, Jan G M; Nazmi, Kamran; Veerman, Enno C I; Tungpradabkul, Sumalee; Wongratanacheewin, Surasakdi; Kanthawong, Sakawrat; Taweechaisupapong, Suwimol

    2013-07-01

    Melioidosis is a severe infectious disease that is endemic in Southeast Asia and Northern Australia. Burkholderia pseudomallei, the causative agent of this disease, has developed resistance to an increasing list of antibiotics, demanding a search for novel agents. Lactoferricin and lactoferrampin are two antimicrobial domains of lactoferrin with a broad spectrum of antimicrobial activity. A hybrid peptide (LFchimera) containing lactoferrampin (LFampin265-284) and a part of lactoferricin (LFcin17-30) has strikingly higher antimicrobial activities compared to the individual peptides. In this study, the antimicrobial activities of this chimeric construct (LFchimera1), as well as of another one containing LFcin17-30 and LFampin268-284, a shorter fragment of LFampin265-284 (LFchimera2), and the constituent peptides were tested against 7 isolates of B. pseudomallei and compared to the preferential antibiotic ceftazidime (CAZ). All isolates including B. pseudomallei 979b shown to be resistant to CAZ, at a density of 10(5) CFU/ml, could be killed by 5-10 μM of LFchimera1 within 2 h, while the other peptides as well as the antibiotic CAZ only inhibited the B. pseudomallei strains resulting in an overgrowth in 24 h. These data indicate that LFchimera1 could be considered for development of therapeutic agents against B. pseudomallei.

  16. Antimicrobial Activity of TiO2 Nanoparticle-Coated Film for Potential Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Siti Hajar Othman

    2014-01-01

    Full Text Available Recent uses of titanium dioxide (TiO2 have involved various applications which include the food industry. This study aims to develop TiO2 nanoparticle-coated film for potential food packaging applications due to the photocatalytic antimicrobial property of TiO2. The TiO2 nanoparticles with varying concentrations (0–0.11 g/ 100 mL organic solvent were coated on food packaging film, particularly low density polyethylene (LDPE film. The antimicrobial activity of the films was investigated by their capability to inactivate Escherichia coli (E. coli in an actual food packaging application test under various conditions, including types of light (fluorescent and ultraviolet (UV and the length of time the film was exposed to light (one–three days. The antimicrobial activity of the TiO2 nanoparticle-coated films exposed under both types of lighting was found to increase with an increase in the TiO2 nanoparticle concentration and the light exposure time. It was also found that the antimicrobial activity of the films exposed under UV light was higher than that under fluorescent light. The developed film has the potential to be used as a food packaging film that can extend the shelf life, maintain the quality, and assure the safety of food.

  17. Antibacterial activity of the soil-bound antimicrobials oxytetracycline and ofloxacin.

    Science.gov (United States)

    Peng, Feng-Jiao; Zhou, Li-Jun; Ying, Guang-Guo; Liu, You-Sheng; Zhao, Jian-Liang

    2014-04-01

    Soil contamination of antimicrobials has become an increasing concern because of the potential risks to the soil microbial ecosystem and human health. The present study investigated sorption and desorption behaviors of oxytetracycline (OTC) and ofloxacin (OFL) in 3 typical soils (A, B, and C), and evaluated the antibacterial activity of soil-adsorbed compounds to a pure sensitive strain Escherichia coli ATCC 25922. The results showed different sorption and desorption behaviors of OTC and OFL in the 3 soils, behaviors that were mainly influenced by soil organic matter content and cation exchange capacity (CEC) as well as pH value. In addition, complexation and cation-exchange reactions were shown to be the main sorption mechanisms. Strong adsorption was found in soil B (with a high organic matter content) and in soil C (with high CEC), whereas enhanced desorption was observed in soil A (with low organic matter content). The results also demonstrated that soil-bound antimicrobials retained antibacterial activity toward E. coli. Opposite patterns of antibacterial activity were found for the 2 antimicrobials in the 3 soils: A>B>C for OFL; and C>B>A for OTC. This finding suggests that soil-bound antimicrobials could still exert selective pressure on soil bacteria although less effectively in comparison with the dissolved forms. © 2014 SETAC.

  18. Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara).

    Science.gov (United States)

    Zeng, Wei-Cai; Zhang, Zeng; Gao, Hong; Jia, Li-Rong; He, Qiang

    2012-07-01

    The chemical composition of essential oil from pine needles (Cedrus deodara) was determined, and its antioxidant and antimicrobial activities were evaluated. Twenty-three components, representing 95.79% of the oil, were identified by gas chromatography mass spectrometry. The main components include α-terpineol (30.2%), linalool (24.47%), limonene (17.01%), anethole (14.57%), caryophyllene (3.14%), and eugenol (2.14%). Pine needle essential oil showed remarkable antioxidant activity in scavenging free radicals, in lipid peroxidation, and in reducing power assays. Moreover, the essential oil revealed strong antimicrobial activity against typical food-borne microorganisms, with minimum inhibitory concentration and minimum bactericidal concentration values of 0.2 to 1.56 and 0.39 to 6.25 μg/mL, respectively. Transmission electron microscope observation ascertained that the bactericidal mechanism of pine needle essential oil may be the induction of cytoplasmic outflow and plasmolysis. These results suggest that the essential oil from pine needles has potential to be used as a natural antioxidant and antimicrobial agent in food processing. The present study provides a theoretical basis for the potential application of essential oil from pine needles (C. deodara) to be used as a natural resource of antioxidant and antimicrobial agents in food industry. © 2012 Institute of Food Technologists®

  19. Synthesis, characterization, antimicrobial and anticancer studies of new steroidal pyrazolines

    Directory of Open Access Journals (Sweden)

    Shamsuzzaman

    2016-01-01

    Full Text Available A convenient synthesis of 2′-(2″,4″-dinitrophenyl-5α-cholestano [5,7-c d] pyrazolines 4–6 from cholest-5-en-7-one 1–3 was performed and structural assignment of the products was confirmed on the basis of IR, 1H NMR, 13C NMR, MS and analytical data. The synthesized compounds were screened for in vitro antimicrobial activity against different strains during which compound 6 showed potent antimicrobial behaviour against Corynebacterium xerosis and Staphylococcus epidermidis. The synthesized compounds were also screened for in vitro anticancer activity against human cancer cell lines during which compound 5 exhibited significant anticancer activity.

  20. Antimicrobial, antioxidant activities and chemical composition of selected Thai spices

    Directory of Open Access Journals (Sweden)

    Juraithip Wungsintaweekul

    2010-12-01

    Full Text Available Nine volatile oils and six methanol extracts from Ocimum americanum, O. basilicum, O. sanctum, Citrus hystrix,Alpinia galanga, Curcuma zedoaria, Kaempferia parviflora and Zingiber cassumunar were assessed for antimicrobial andantioxidant activities. The volatile oils and extracts were investigated against eight bacteria and three fungi. The resultsillustrated that O. americanum volatile oil exhibited broad spectrum activity against tested bacteria with the MICs ranging1.4-3.6 mg/ml and Candida spp. with the MICs ranging from 0.5-0.6 mg/ml. The O. sanctum volatile oil showed a considerableactivity against only Candida spp. with the MICs ranging from 0.8-1.4 mg/ml. Interestingly, growth of Mycobacteriumphlei was inhibited by the volatiles of O. americanum, C. hystrix peel, and C. zedoaria with MIC of 1.7, 3.5 and 1.2 mg/ml,respectively. For antioxidant activity evaluation, the methanol extracts of C. hystrix (leaf and peel and K. parviflora hadpotent antioxidant activity by the radical-scavenging DPPH method with IC50 of 24.6, 66.3 and 61.5 mg/ml, respectively.GC-MS analysis revealed the typical chemical profiles of the volatile oils. The major component showed the characteristicsof the volatile oils and was probably responsible for the antimicrobial effect.

  1. Evaluation of Antimicrobial Activity of Glucose Oxidase from Aspergillus niger EBL-A and Penicillium notatum

    OpenAIRE

    Zia, Muhammad Anjum; Riaz, Ayesha; Rasul, Samreen; Abbas, Rao Zahid

    2013-01-01

    This work aimed to study the production and purification of glucose oxidase by Aspergillus niger and Penicillium notatum using corn steep liquor as the substrate and evaluate its antimicrobial activity for use in pharmaceutical and food industries. The enzyme was purified by ammonium sulfate precipitation (60-85%), DEAE-cellulose ion exchange and Sephadex G-200 size exclusion chromatography. The crude enzyme extracts of A. niger and P. notatum showed 2.32 and 5.53 U mg-1 specific activities, ...

  2. Synthesis, antimicrobial, and antiproliferative activities of substituted phenylfuranylnicotinamidines

    Directory of Open Access Journals (Sweden)

    Youssef MM

    2016-03-01

    Full Text Available Magdy M Youssef,1,2 Reem K Arafa,3,4 Mohamed A Ismail1,21Department of Chemistry, College of Science, King Faisal University, Hofuf, Saudi Arabia; 2Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 3Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 4Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, EgyptAbstract: This research work deals with the design and synthesis of a series of substituted phenylfuranylnicotinamidines 4a–i. Facile preparation of the target compounds was achieved by Suzuki coupling-based synthesis of the nitrile precursors 3a–i, followed by their conversion to the corresponding nicotinamidines 4a–i utilizing LiN(TMS2. The antimicrobial activities of the newly synthesized nicotinamidine derivatives were evaluated against the Gram-negative bacterial strains Escherichia coli and Pseudomonas aeruginosa as well as the Gram-positive bacterial strains Staphylococcus aureus and Bacillus megaterium. The minimum inhibitory concentration values of nicotinamidines against all tested microorganisms were in the range of 10–20 µM. In specific, compounds 4a and 4b showed excellent minimum inhibitory concentration values of 10 µM against Staphylococcus aureus bacterial strain and were similar to ampicillin as an antibacterial reference. On the other hand, selected nicotinamidine derivatives were biologically screened for their cytotoxic activities against a panel of 60 cell lines representing nine types of human cancer at a single high dose at National Cancer Institute, Bethesda, MD, USA. Nicotinamidines showing promising activities were further assessed in a five-dose screening assay to determine their compound concentration causing 50% growth inhibition of tested cell (GI50, compound concentration causing 100% growth inhibition of tested cell (TGI, and compound concentration causing 50% lethality of tested

  3. Antimicrobial activity of human prion protein is mediated by its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Mukesh Pasupuleti

    Full Text Available BACKGROUND: Cellular prion-related protein (PrP(c is a cell-surface protein that is ubiquitously expressed in the human body. The multifunctionality of PrP(c, and presence of an exposed cationic and heparin-binding N-terminus, a feature characterizing many antimicrobial peptides, made us hypothesize that PrP(c could exert antimicrobial activity. METHODOLOGY AND PRINCIPAL FINDINGS: Intact recombinant PrP exerted antibacterial and antifungal effects at normal and low pH. Studies employing recombinant PrP and N- and C-terminally truncated variants, as well as overlapping peptide 20mers, demonstrated that the antimicrobial activity is mediated by the unstructured N-terminal part of the protein. Synthetic peptides of the N-terminus of PrP killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen after treatment with the "classical" human antimicrobial peptide LL-37. In contrast to LL-37, however, no marked helix induction was detected for the PrP-derived peptides in presence of negatively charged (bacteria-mimicking liposomes. PrP furthermore showed an inducible expression during wounding of human skin ex vivo and in vivo, as well as stimulation of keratinocytes with TGF-alpha in vitro. CONCLUSIONS: The demonstration of an antimicrobial activity of PrP, localisation of its activity to the N-terminal and heparin-binding region, combined with results showing an increased expression of PrP during wounding, indicate that PrPs could have a previously undisclosed role in host defense.

  4. Antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles.

    Science.gov (United States)

    Ginjupalli, Kishore; Alla, Rama Krishna; Tellapragada, Chaitanya; Gupta, Lokendra; Upadhya Perampalli, Nagaraja

    2016-06-01

    Conventional spray and the immersion disinfection of irreversible hydrocolloid impression materials may lead to dimensional changes. The purpose of this in vitro study was to investigate the antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles. The antimicrobial activity and properties of 2 commercially available irreversible hydrocolloid impression materials were evaluated after incorporating varying concentrations of silver nanoparticles. Antimicrobial activity was determined using the disk diffusion method. The gel strength, permanent deformation, flow, and gelation time were measured according to American Dental Association specification #18. Analysis of variance was used to identify the significant differences within and across the groups (α=.05). Adding silver nanoparticles to irreversible hydrocolloid impression materials resulted in superior antimicrobial activity without adversely affecting their properties. Adding silver nanoparticles to Zelgan significantly increased the gel strength compared with the control group, except at 5 wt%. However, the gel strength of Tropicalgin was unaffected except at 5 wt%. An increase in the permanent deformation was found with the incorporation of silver nanoparticles in both Zelgan and Tropicalgin. The flow of Zelgan increased with the incorporation of silver nanoparticles, whereas a decrease in the flow of Tropicalgin was observed at 1 wt% and 2 wt%. An increase in the gelation time of both Zelgan and Tropicalgin was observed with the incorporation of silver nanoparticles. Based on this in vitro study, silver nanoparticles can be incorporated into irreversible hydrocolloid impression materials as antimicrobial agents without adversely affecting their properties. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. In Vitro Activities of New Antimicrobials against Nocardia brasiliensis

    Science.gov (United States)

    Vera-Cabrera, Lucio; Gonzalez, Eva; Choi, Sung H.; Welsh, Oliverio

    2004-01-01

    The in vitro sensitivities of 30 strains of Nocardia brasiliensis to DA-7867, gatifloxacin, moxifloxacin, and BMS-284756 (garenoxacin) were determined using the broth microdilution method. All N. brasiliensis strains were sensitive to these antimicrobials. The most active drug in vitro was DA-7867, with a MIC at which 90% of the isolates tested were inhibited of 0.03 μg/ml and a MIC at which 50% of the isolates tested were inhibited of 0.06 μg/ml. PMID:14742215

  6. Antimicrobial and antifungal activities of the extracts and essential oils of Bidens tripartita.

    Directory of Open Access Journals (Sweden)

    Michał Tomczyk

    2008-12-01

    Full Text Available The aim of this study was to determine the antibacterial and antifungal properties of the extracts, subextracts and essential oils of Bidens tripartita flowers and herbs. In the study, twelve extracts and two essential oils were investigated for activity against different Gram-positive Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Gram-negative bacteria Escherichia coli, E. coli (beta-laktamase+, Klebsiella pneumoniae (ESBL+, Pseudomonas aeruginosa and some fungal organisms Candida albicans, C. parapsilosis, Aspergillus fumigatus, A. terreus using a broth microdilution and disc diffusion methods. The results obtained indicate antimicrobial activity of the tested extracts (except butanolic extracts, which however did not inhibit the growth of fungi used in this study. Bacteriostatic effect of both essential oils is insignificant, but they have strong antifungal activity. These results support the use of B. tripartita to treat a microbial infections and it is indicated as an antimicrobial and antifungal agent, which may act as pharmaceuticals and preservatives.

  7. Antimicrobial activity of traditional wines (Sopi and Moke against Salmonella sp. and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Annytha Ina Rohi Detha

    2016-09-01

    Full Text Available Objective: Sopi and Moke are two traditional wines in Indonesia. The present study aimed at investigating the antimicrobial effects of Sopi and Moke as compared to other commercial disinfectants. Materials and methods: The alcohol level and pH of the traditional wines (Sopi and Moke were determined by alcohol meter and pH meter, respectively. The susceptibility test was perfomed to determine the antimicrobial activity of Sopi against Escherichia coli which was isolated from cattle, and the activity of Moke was tested against Salmonella sp. which was a local isolate of poultry. Results: In susceptibility test, Sopi showed 17.5 mm in zone of inhibition against E. coli, while Formades and reg;, a commercial disinfectant showed 16 mm of zone of inhibition against the same bacteria. Moke showed 17.5 mm inhibition zone against Salmonella sp., whereas Antisep and reg;, a commercial disinfectant had 28 mm of inhibition zone against the same isolate. Conclusion: The results indicate that Sopi and Moke have antimicrobial effects on E. coli and Salmonella sp., respectively. The findings of this study suggest that Sopi and Moke can be used as potential antimicrobial agents. [J Adv Vet Anim Res 2016; 3(3.000: 282-285

  8. Antimicrobial activity and self-assembly behavior of antimicrobial peptide chensinin-1b with lipophilic alkyl tails.

    Science.gov (United States)

    Dong, Weibing; Liu, Ziang; Sun, Liying; Wang, Cui; Guan, Yue; Mao, Xiaoman; Shang, Dejing

    2018-04-25

    The threshold hydrophobicity and amphipathic structure of the peptidic chain are important for the biological function of antimicrobial peptides. Chensinin-1b exhibits broad-spectrum bactericidal activity with no hemolytic activity but has almost no anticancer ability against the selected cancer cell lines. In this study, the conjugation of aliphatic acid was designed with different lengths of N-terminal of chensinin-1b, the antimicrobial activity of the resulting lipo-chensinin-1b was examined, in which OA-C1b showed much stronger activity than those of cheninin-1b and the other two lipopeptides. The membrane interaction between the lipo-chensinin-1b and real/mimetic bacterial cell membrane was investigated. Electrostatic interactions between the lipo-chensinin-1b and lipopolysaccharides were detected by isothermal titration calorimetry and the binding affinities were 10.83 μM, 8.77 μM and 7.35 μM for OA-C1b, LA-C1b and PA-C1b, respectively. The antimicrobial activity and membrane interaction ability of the lipo-chensinin-1b followed this order: OA-C1b > chensinin-1b > LA-C1b > PA-C1b. In addition, the lipo-chensinin-1b also exhibited lytic activity against various cancer cells and demonstrated the ability to inhibit LPS-stimulated cytokine release from human U937 cells. The CD spectra indicated that the helical or β-strands contents were existed as the main components in TFE or LPS solution, respectively. The self-assembly behavior was trigged by the solution pH and affected by the length of carbon chain, in which chensinin-1b, OA-C1b, LA-C1b and PA-C1b formed micelles at neutral pH and the micelle size increased for chensinin-1b, OA-C1b and LA-C1b. PA-C1b formed nanofibers in an acidic environment indicated by TEM experiments, and the peptides formed aggregates in an acidic environment and re-dissociated when the pH was adjusted to neutral. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. ANTIMICROBIAL ACTIVITY OF BURSERA MORELENSIS RAMÍREZ ESSENTIAL OIL.

    Science.gov (United States)

    M, Canales-Martinez; C R, Rivera-Yañez; J, Salas-Oropeza; H R, Lopez; M, Jimenez-Estrada; R, Rosas-Lopez; D A, Duran; C, Flores; L B, Hernandez; M A, Rodriguez-Monroy

    2017-01-01

    Bursera morelensis , known as "Aceitillo", is an endemic tree of Mexico. Infusions made from the bark of this species have been used for the treatment of skin infections and for their wound healing properties. In this work, we present the results of a phytochemical and antimicrobial investigation of the essential oil of B. morelensis . The essential oil was obtained by a steam distillation method and analyzed using GC-MS. The antibacterial and antifungal activities were evaluated. GC-MS of the essential oil demonstrated the presence of 28 compounds. The principal compound of the essential oil was a-Phellandrene (32.69%). The essential oil had antibacterial activity against Gram positive and negative strains. The most sensitive strains were S. pneumoniae , V. cholerae (cc) and E. coli (MIC 0.125 mg/mL, MBC 0.25 mg/mL). The essential oil was bactericidal for V. cholera (cc). The essential oil inhibited all the filamentous fungi. F. monilifome (IC 50 = 2.27 mg/mL) was the most sensitive fungal strain. This work provides evidence that confirms the antimicrobial activity of the B. morelensis essential oil and this is a scientific support about of traditional uses of this species.

  10. Essential Oil Constituents of Tanacetum cilicicum: Antimicrobial and Phytotoxic Activities

    Directory of Open Access Journals (Sweden)

    Zeynep Ulukanli

    2017-01-01

    Full Text Available Aerial parts of Tanacetum cilicicum were hydrodistillated for 3 h using Clevenger. Essential oil (EO yield was 0.4% (v/w. According to the GC/MS analyses, EO of T. cilicicum consisted of monoterpenes [α-pinene (2.95 ± 0.19%, sabinene (2.32 ± 0.11%, and limonene (3.17 ± 0.25], oxygenated monoterpenes [eucalyptol (5.08 ± 0.32%, camphor (3.53 ± 0.27%, linalool (7.01 ± 0.32%, α-terpineol (3.13 ± 0.23%, and borneol (4.21 ± 0.17%], and sesquiterpenes [sesquisabinene hydrate (6.88 ± 0.41%, nerolidol (4.90 ± 0.33%, α-muurolol (4.57%  ± 0.35, spathulanol (2.98 ± 0.12%, juniper camphor (2.68 ± 0.19%, (--caryophyllene oxide (2.64 ± 0.19%, 8-hydroxylinalool (2.62 ± 0.15%, and Δ-cadinene (2.48 ± 0.16%]. In the antimicrobial assay, MIC/MBC values of the EO were the most significant on B. subtilis (0.39/0.78 µL/mL and B. cereus (0.78/1.56 µL/mL. The most prominent phytotoxic activities of the EO were observed on L. sativa, L. sativum, and P. oleracea. The results of the present study indicated that EO of T. cilicicum includes various medicinally and industrially crucial phytoconstituents that could be in use for industrial applications. The finding of this study is the first report on this species from the East Mediterranean region.

  11. In vitro antimicrobial activity of five essential oils on multi-drug resistant Gram-negative clinical isolates

    OpenAIRE

    Hercules Sakkas; Panagiota Gousia; Vangelis Economou; Vassilios Sakkas; Stefanos Petsios; Chrissanthy Papadopoulou

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneum...

  12. Antimicrobial Activity of Nisin and Natamycin Incorporated Sodium Caseinate Extrusion-Blown Films: A Comparative Study with Heat-Pressed/Solution Cast Films.

    Science.gov (United States)

    Colak, Basak Yilin; Peynichou, Pierre; Galland, Sophie; Oulahal, Nadia; Prochazka, Frédéric; Degraeve, Pascal

    2016-05-01

    Antimicrobial edible films based on sodium caseinate, glycerol, and 2 food preservatives (nisin or natamycin) were prepared by classical thermomechanical processes. Food preservatives were compounded (at 65 °C for 2.5 min) with sodium caseinate in a twin-screw extruder. Anti-Listeria activity assays revealed a partial inactivation of nisin following compounding. Thermoplastic pellets containing food preservatives were then used to manufacture films either by blown-film extrusion process or by heat-press. After 24 h of incubation on agar plates, the diameters of K. rhizophila growth inhibition zones around nisin-incorporated films prepared by solution casting (control), extrusion blowing or heat pressing at 80 °C for 7 min of nisin-containing pellets were 15.5 ± 0.9, 9.8 ± 0.2, and 8.6 ± 1.0 mm, respectively. Since heat-pressing for 7 min at 80 °C of nisin-incorporated pellets did not further inactivate nisin, this indicates that nisin inactivation during extrusion-blowing was limited. Moreover, the lower diameter of the K. rhizophila growth inhibition zone around films prepared with nisin-containing pellets compared to that observed around films directly prepared by solution casting confirms that nisin inactivation mainly occurred during the compounding step. Natamycin-containing thermoplastic films inhibited Aspergillus niger growth; however, by contrast with nisin-containing films, heat-pressed films had higher inhibition zone diameters than blown films, therefore suggesting a partial inactivation of natamycin during extrusion-blowing. © 2016 Institute of Food Technologists®

  13. Daucus aristidis Coss. essential oil: Volatile constituents and antimicrobial activity in pre-flowering stage

    Directory of Open Access Journals (Sweden)

    Mebarka Lamamra

    2016-11-01

    Full Text Available Objective: To evaluate the essential oil composition and antimicrobial activity of an Algerian endemic plant, Daucus aristidis Coss. (Apiaceae (D. aristidis (synonym Ammiopsis aristidis Batt. collected in pre-flowering stage in East of Algeria. Methods: The aerial parts of D. aristidis Coss were collected. Essential oil (in pre-flowering stage obtained by hydrodistillation was investigated for the first time by gas chromatograph and gas chromatograph-mass spectrometer and evaluated for their in vitro antimicrobial activity by the disc diffusion method at various dilutions of the oil. Results: The main components of D. aristidis oil in pre-flowering stage were α-pinene (20.13%, cedrol (20.11% and E-asarone (18.53%. D. aristidis oil exhibited an antibacterial activity against almost all the strains tested except for Klebsiella pneumoniae ATCC 700603 K6 and Enterococcus faecalis ATCC 49452 which exhibited a resistance against the oil with all dilutions. Also, the oil of D. aristidis had no activity against all fungi tested. Conclusions: This is the first report on the volatile constituents and antimicrobial activity of D. aristidis in pre-flowering stage. The studied essential oil possesses moderate antibacterial activity against almost all strains tested but no antifungal activity.

  14. Polyphenolic Content, Antioxidant and Antimicrobial Activities of Lycium barbarum L. and Lycium chinense Mill. Leaves

    Directory of Open Access Journals (Sweden)

    Andrei Mocan

    2014-07-01

    Full Text Available This study was performed to evaluate the in vitro antioxidant and antimicrobial activities and the polyphenolic content of Lycium barbarum L. and L. chinense Mill. leaves. The different leave extracts contain important amounts of flavonoids (43.73 ± 1.43 and 61.65 ± 0.95 mg/g, respectively and showed relevant antioxidant activity, as witnessed by the quoted methods. Qualitative and quantitative analyses of target phenolic compounds were achieved using a HPLC-UV-MS method. Rutin was the dominant flavonoid in both analysed species, the highest amount being registered for L. chinense. An important amount of chlorogenic acid was determined in L. chinense and L. barbarum extracts, being more than twice as high in L. chinense than in L. barbarum. Gentisic and caffeic acids were identified only in L. barbarum, whereas kaempferol was only detected in L. chinense. The antioxidant activity was evaluated by DPPH, TEAC, hemoglobin ascorbate peroxidase activity inhibition (HAPX and inhibition of lipid peroxidation catalyzed by cytochrome c assays revealing a better antioxidant activity for the L. chinense extract. Results obtained in the antimicrobial tests revealed that L. chinense extract was more active than L. barbarum against both Gram-positive and Gram-negative bacterial strains. The results suggest that these species are valuable sources of flavonoids with relevant antioxidant and antimicrobial activities.

  15. Influence of radiopacifying agents on the solubility, pH and antimicrobial activity of portland cement.

    Science.gov (United States)

    Weckwerth, Paulo Henrique; Machado, Adriano Cosme de Oliveira; Kuga, Milton Carlos; Vivan, Rodrigo Ricci; Polleto, Raquel da Silva; Duarte, Marco Antonio Hungaro

    2012-01-01

    The aim of this study was to evaluate the interference of the radiopacifiers bismuth oxide (BO), bismuth carbonate (BC), bismuth subnitrate (BS), and zirconiun oxide (ZO) on the solubility, alkalinity and antimicrobial properties of white Portland cement (WPC). The substances were incorporated to PC, at a ratio of 1:4 (v/v) and subjected to a solubility test. To evaluate the pH, the cements were inserted into retrograde cavities prepared in simulated acrylic teeth and immediately immersed in deionized water. The pH of the solution was measured at 3, 24, 72 and 168 h. The antimicrobial activity was evaluated by a radial diffusion method against the microorganisms S. aureus (ATCC 25923), P. aeruginosa (ATCC 27853), E. faecalis (ATCC 29212) and C. albicans (ATCC 10231). The zone of microbial growth inhibition was measured after 24 h. The addition of BS and BC increased the solubility of the cement. The pH values demonstrated that all materials produced alkaline levels. At 3 h, BS showed lower pH than WPC (p0.05). The materials did not present antimicrobial activity for S. aureus, P. aeruginosas and E. faecalis (p>0.05). With regards to C. albicans, all materials formed an inhibition zone, mainly the mixture of WPC with ZO (p<0.05). The type of radiopacifier incorporated into WPC interfered with its physical and antimicrobial properties. ZO was found to be a viable radiopacifier that can be used with WPC.

  16. Preparation, characterization and in vitro antimicrobial activity of liposomal ceftazidime and cefepime against Pseudomonas aeruginosa strains

    Science.gov (United States)

    Torres, Ieda Maria Sapateiro; Bento, Etiene Barbosa; Almeida, Larissa da Cunha; de Sá, Luisa Zaiden Carvalho Martins; Lima, Eliana Martins

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic microorganism with the ability to respond to a wide variety of environmental changes, exhibiting a high intrinsic resistance to a number of antimicrobial agents. This low susceptibility to antimicrobial substances is primarily due to the low permeability of its outer membrane, efflux mechanisms and the synthesis of enzymes that promote the degradation of these drugs. Cephalosporins, particularty ceftazidime and cefepime are effective against P. aeruginosa, however, its increasing resistance has limited the usage of these antibiotics. Encapsulating antimicrobial drugs into unilamellar liposomes is an approach that has been investigated in order to overcome microorganism resistance. In this study, antimicrobial activity of liposomal ceftazidime and cefepime against P. aeruginosa ATCC 27853 and P. aeruginosa SPM-1 was compared to that of the free drugs. Liposomal characterization included diameter, encapsulation efficiency and stability. Minimum Inhibitory Concentration (MIC) was determined for free and liposomal forms of both drugs. Minimum Bactericidal Concentration (MBC) was determined at concentrations 1, 2 and 4 times MIC. Average diameter of liposomes was 131.88 nm and encapsulation efficiency for cefepime and ceftazidime were 2.29% end 5.77%, respectively. Improved stability was obtained when liposome formulations were prepared with a 50% molar ratio for cholesterol in relation to the phospholipid. MIC for liposomal antibiotics for both drugs were 50% lower than that of the free drug, demonstrating that liposomal drug delivery systems may contribute to increase the antibacterial activity of these drugs. PMID:24031917

  17. In vitro antimicrobial activity of pistachio (Pistacia vera L.) polyphenols.

    Science.gov (United States)

    Bisignano, Carlo; Filocamo, Angela; Faulks, Richard M; Mandalari, Giuseppina

    2013-04-01

    We investigated the antimicrobial properties of polyphenol-rich fractions derived from raw shelled and roasted salted pistachios. American Type Culture Collection (ATCC), food and clinical isolates, of Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Pseudomonas mirabilis), Gram-positive bacteria (Listeria monocytogenes, Enterococcus hirae, Enterococcus faecium, Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus aureus), the yeasts Candida albicans and Candida parapsilosis and the fungus Aspergillus niger were used. Pistachio extracts were active against Gram-positive bacteria with a bactericidal effect observed against L. monocytogenes (ATCC strains and food isolates), S. aureus and MRSA clinical isolates. Extracts from raw shelled pistachios were more active than those from roasted salted pistachios. The bactericidal activity of pistachio extracts could be used to help control the growth of some microorganisms in foods to improve safety and may find application as a topical treatment for S. aureus. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Antimicrobial activity of some Ganoderma species from Nigeria.

    Science.gov (United States)

    Ofodile, L N; Uma, N U; Kokubun, T; Grayer, R J; Ogundipe, O T; Simmonds, M S J

    2005-04-01

    The crude n-hexane:diethyl ether, chloroform:acetone and methanol extracts of four species of Ganoderma (Ganoderma colossum (Fr.) C. F. Baker, G. resinaceum Boud., G. lucidum (cf.) (Curtis) P. Karst. and G. boninense (cf.) Pat.), from Nigeria, were tested for antimicrobial activity. The three solvent extracts of all the species of Ganoderma were active against Pseudomonas syringae and Bacillus subtilis, whereas none of the extracts were active against Cladosporium herbarum. Preliminary thin layer chromatography chemical tests on these extracts of Ganoderma showed that they contained compounds that stained blue-violet and blue or green when sprayed with anisaldehyde-sulphuric acid or Dragendorff, respectively. The profile of compounds in the extracts showed some variation among the four species. (c) 2005 John Wiley & Sons, Ltd.

  19. Antimicrobial Activity and Modulatory Effect of Essential Oil from the Leaf of Rhaphiodon echinus (Nees & Mart) Schauer on Some Antimicrobial Drugs.

    Science.gov (United States)

    Duarte, Antonia Eliene; de Menezes, Irwin Rose Alencar; Bezerra Morais Braga, Maria Flaviana; Leite, Nadghia Figueiredo; Barros, Luiz Marivando; Waczuk, Emily Pansera; Pessoa da Silva, Maria Arlene; Boligon, Aline; Teixeira Rocha, João Batista; Souza, Diogo Onofre; Kamdem, Jean Paul; Melo Coutinho, Henrique Douglas; Escobar Burger, Marilise

    2016-06-08

    Rhaphiodon echinus is a weed plant used in the Brazilian folk medicinal for the treatment of infectious diseases. In this study, the essential oil of R. echinus leaf was investigated for its antimicrobial properties. The chemical constituents of the essential oil were characterized by GC-MS. The antimicrobial properties were determined by studying by the microdilution method the effect of the oil alone, and in combination with antifungal or antibiotic drugs against the fungi Candida albicans, Candida krusei and Candida tropicalis and the microbes Escherichia coli, Staphylococcus aureus and Pseudomonas. In addition, the iron (II) chelation potential of the oil was determined. The results showed the presence of β-caryophyllene and bicyclogermacrene in major compounds, and revealed a low antifungal and antibacterial activity of the essential oil, but a strong modulatory effect on antimicrobial drugs when associated with the oil. The essential oil showed iron (II) chelation activity. The GC-MS characterization revealed the presence of monoterpenes and sesquiterpenes in the essential oil and metal chelation potential, which may be responsible in part for the modulatory effect of the oil. These findings suggest that essential oil of R. echinus is a natural product capable of enhancing the antibacterial and antifungal activity of antimicrobial drugs.

  20. Anti-BACE1 and Antimicrobial Activities of Steroidal Compounds Isolated from Marine Urechis unicinctus

    OpenAIRE

    Yong-Zhe Zhu; Jing-Wen Liu; Xue Wang; In-Hong Jeong; Young-Joon Ahn; Chuan-Jie Zhang

    2018-01-01

    The human β-site amyloid cleaving enzyme (BACE1) has been considered as an effective drug target for treatment of Alzheimer’s disease (AD). In this study, Urechis unicinctus (U. unicinctus), which is a Far East specialty food known as innkeeper worm, ethanol extract was studied by bioassay-directed fractionation and isolation to examine its potential β-site amyloid cleaving enzyme inhibitory and antimicrobial activity. The following compounds were characterized: hecogenin, cholest-4-en-3-one,...