How to test entanglement for meson-antimeson systems
International Nuclear Information System (INIS)
Bertlmann, R.A.; Durstberger, K.; Hiesmayr, B.C.
2004-01-01
Also in particle physics basic questions of quantum mechanics can be raised and the peculiar behavior of entanglement can be investigated, which is the basic ingredient for the future technologies such as quantum information and quantum communication. A Bell inequality - analogous to the entangled photon system - can be derived, however, the inequality is not violated because of the 'unfortunate' constants in these systems. However, these entangled meson-antimeson systems offer other properties - not analogous to other known spin-1/2 systems - which open new insights, e.g. that the violation of the CP symmetry is related to entanglement. Another approach to study entanglement is via decoherence models. New data from the B-meson factory of the KEKB collider in Japan (BELLE detector) or the new data from the K-meson factory of the DAPHNE machine in Italy can be used to get upper bounds on decoherence and to test/exclude different decoherence models. Surprisingly, it turns out that the parameter extracted from the experiments is in simple connections to mathematical and theoretical concepts which in this way are directly confronted with experimental data. (author)
On unitarity relations and their application to meson–antimeson mixing
Indian Academy of Sciences (India)
Abstract. In view of the recent observation of nonexponential decay features for a certain quantum- mechanical system, we revisit our earlier study of the small-time behaviour of the meson–antimeson complex wherein the commonly employed Weisskopf–Wigner approximation could be tested, in principle. We find that the ...
Voloshin, M. B.
2018-02-01
The production of heavy meson-antimeson pairs of the type S V and P A in e+e- annihilation is considered, with P and V being the ground-state JP=0- and JP=1- (anti)mesons from the (1 /2 )-doublet and S and A standing for the excited JP=0+ and JP=1+ (anti)mesons from the (1 /2 )+doublet. It is argued that the production amplitudes in these two channels should be equal up to a higher (than one) order in the heavy quark mass (ΛQCD/MQ ) expansion, A (e +e-→S V ¯ )=A (e+e-→A P ¯ ) , including both the S -wave and the D -wave amplitudes. Given that the S V and P A thresholds are extremely close, the production cross section in both channels should be the same to a high degree of accuracy. In practice, this behavior can be studied for the processes e+e-→Ds 0(2317 )D¯s *+c .c . and e+e-→Ds 1(2460 )D¯ s+c .c . in the charm sector and e+e-→Bs 0B¯s *+c .c . and e+e-→Bs 1B¯ s+c .c . in the B sector.
Tests of CPT invariance for neutral flavored meson-antimeson mixing
Dass, G V
2002-01-01
We focus on two aspects of CPT invariance in neutral meson-antimeson (M sup 0 anti M sup 0) mixing: (1) tests of CPT invariance, using only the property of ''lack of vacuum regeneration'', which occurs as a part of the well-known Lee-Oehme-Yang (LOY) theory; (2) methods for extracting the CPT-violating mixing parameter theta through explicit calculations by fully using the LOY-type theory. In the latter context, we demonstrate the importance of the C-even vertical stroke M sup 0 anti M sup 0 right angle state. In particular, by measuring the time dependence of opposite-sign dilepton events arising from decays of the C-even and C-odd vertical stroke M sup 0 anti M sup 0 right angle states, theta may be disentangled from the parameters lambda sub + and anti lambda sub - characterizing violations of the DELTA F = DELTA Q rule. Furthermore, these two parameters may also be determined. The same is true if one uses like-sign dilepton events arising from only the C-even vertical stroke M sup 0 anti M sup 0 right ang...
2001-01-01
The PEP accelerator at SLAC was relaunched as a B-Factory in May 1999. It has just published its first results which do show the predicted asymmetry in the behaviour of B-mesons and anti-mesons. This is not enough however to account for all the matter in the universe (1 page).
Heavy quark spin symmetry and SU(3)-flavour partners of the X(3872)
Energy Technology Data Exchange (ETDEWEB)
Hidalgo-Duque, C., E-mail: carloshd@ific.uv.es [Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Aptd. 22085, E-46071 Valencia (Spain); Nieves, J. [Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Aptd. 22085, E-46071 Valencia (Spain); Pavón Valderrama, M. [Institut de Physique Nucléaire, Université Paris-Sud, IN2P3/CNRS, F-91406 Orsay Cedex (France)
2013-09-20
In this work, an Effective Field Theory (EFT) incorporating light SU(3)-flavour and heavy quark spin symmetries is used to describe charmed meson–antimeson bound states. At Lowest Order (LO), this means that only contact range interactions among the heavy meson and antimeson fields are involved. Besides, the isospin violating decays of the X(3872) will be used to constrain the interaction between the D and a D{sup ¯⁎} mesons in the isovector channel. Finally, assuming that the X(3915) and Y(4140) resonances are D{sup ⁎}D{sup ¯⁎} and D{sub s}{sup ⁎}D{sup ¯}{sub s}{sup ⁎} molecular states, we can determine the four Low Energy Constants (LECs) of the EFT that appear at LO and, therefore, the full spectrum of molecular states with isospin I=0, 1/2 and 1.
Non-locality versus entanglement in the neutral kaon system
International Nuclear Information System (INIS)
Ableitinger, A.; Bertlmann, R.A.; Durstberger, K.; Hiesmayr, B.C.; Krammer, P.
2006-01-01
Full text: Particle physics has become an interesting testing ground for fundamental questions of quantum mechanics (QM). The entangled massive meson-antimeson systems are specially suitable as they offer a unique laboratory to test various aspects of particle physics (CP violation, CPT violation, . . . ) as well to test foundations of QM (local realistic theories versus QM, Bell inequalities, decoherence effects, quantum marking and erasure concepts, . . . ). For the neutral kaon system we show that nonlocality detected by the violation of a Bell inequality and entanglement are indeed different concepts. (author)
Revealing Bell's nonlocality for unstable systems in high energy physics
Energy Technology Data Exchange (ETDEWEB)
Hiesmayr, Beatrix C.; Gabriel, Andreas; Huber, Marcus [University of Vienna, Faculty of Physics, Vienna (Austria); Di Domenico, Antonio [Sapienza Universita di Roma (Italy); INFN Sezione di Roma, Rome (Italy); Curceanu, Catalina [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Larsson, Jan-Aake [Linkoepings Universitet, Institionen foer Systemteknik, Linkoeping (Sweden); Moskal, Pawel [Jagiellonian University, Institute of Physics, Cracow (Poland)
2012-01-15
Entanglement and its consequences - in particular the violation of Bell inequalities, which defies our concepts of realism and locality - have been proven to play key roles in Nature by many experiments for various quantum systems. Entanglement can also be found in systems not consisting of ordinary matter and light, i.e. in massive meson-antimeson systems. Bell inequalities have been discussed for these systems, but up to date no direct experimental test to conclusively exclude local realism was found. This mainly stems from the fact that one only has access to a restricted class of observables and that these systems are also decaying. In this Letter we put forward a Bell inequality for unstable systems which can be tested at accelerator facilities with current technology. Herewith, the long awaited proof that such systems at different energy scales can reveal the sophisticated ''dynamical'' nonlocal feature of Nature in a direct experiment gets feasible. Moreover, the role of entanglement and CP violation, an asymmetry between matter and antimatter, is explored, a special feature offered only by these meson-antimeson systems. (orig.)
Revealing Bell's nonlocality for unstable systems in high energy physics
International Nuclear Information System (INIS)
Hiesmayr, Beatrix C.; Gabriel, Andreas; Huber, Marcus; Di Domenico, Antonio; Curceanu, Catalina; Larsson, Jan-Aake; Moskal, Pawel
2012-01-01
Entanglement and its consequences - in particular the violation of Bell inequalities, which defies our concepts of realism and locality - have been proven to play key roles in Nature by many experiments for various quantum systems. Entanglement can also be found in systems not consisting of ordinary matter and light, i.e. in massive meson-antimeson systems. Bell inequalities have been discussed for these systems, but up to date no direct experimental test to conclusively exclude local realism was found. This mainly stems from the fact that one only has access to a restricted class of observables and that these systems are also decaying. In this Letter we put forward a Bell inequality for unstable systems which can be tested at accelerator facilities with current technology. Herewith, the long awaited proof that such systems at different energy scales can reveal the sophisticated ''dynamical'' nonlocal feature of Nature in a direct experiment gets feasible. Moreover, the role of entanglement and CP violation, an asymmetry between matter and antimatter, is explored, a special feature offered only by these meson-antimeson systems. (orig.)
A lattice QCD determination of potentials between pairs of static-light mesons
Energy Technology Data Exchange (ETDEWEB)
Hetzenegger, Martin
2011-07-04
Potentials between pairs of static-light mesons are interesting in a sense that they give insights in the nature of strong interactions from first principles for multiquark systems. For large heavy quark masses, e.g., the spectra of heavy-light mesons are determined by excitations of the light quark and gluonic degrees of freedom. In particular, the vector-pseudoscalar splitting vanishes and a static-light meson can be interpreted as either a B, a B{sup *}, a D or a D{sup *} heavy-light meson. Calculating potentials between two static-light mesons also enables investigations of possible bound tetraquark states or for particles that are close to the meson-antimeson threshold, such as the X(3872) or the Z{sup +}(4430).
International Nuclear Information System (INIS)
Matsuda, Y.; Kato, K.; Yabusaki, N.; Hirano, M.; Nakanishi, R.; Sakai, M.
1997-01-01
Open-channel effects on charmonium (S- and D-waves) and bottomonium (S-wave) J P = 1 - spectra are investigated within a one-open-channel approximation. Mass shifts and decay widths of these states just above the threshold are obtained by taking into account a coupling between confined quarkonium states and decaying states of the open channel. The final-state interaction (FSI) between the decaying meson and antimeson plays a very important role in producing a reasonable magnitude of coupling; the FSI provides the open-channel poles (R 1 , R 2 ) at the appropriate positions on the complex energy plane. The result is found to be independent of the detailed form of the transition potential and the final-state interaction. (author)
International Nuclear Information System (INIS)
Hiesmayr, Beatrix C
2015-01-01
About 50 years ago John St. Bell published his famous Bell theorem that initiated a new field in physics. This contribution discusses how discrete symmetries relate to the big open questions of quantum mechanics, in particular:(i) how correlations stronger than those predicted by theories sharing randomness (Bell's theorem) relate to the violation of the CP symmetry and the P symmetry; and its relation to the security of quantum cryptography,(ii) how the measurement problem (“why do we observe no tables in superposition?”) can be polled in weakly decaying systems,(iii) how strongly and weakly interacting quantum systems are affected by Newton's self gravitation.These presented preliminary results show that the meson-antimeson systems and the hyperon- antihyperon systems are a unique laboratory to tackle deep fundamental questions and to contribute to the understand what impact the violation of discrete symmetries has. (paper)
Hiesmayr, Beatrix C.
2015-07-01
About 50 years ago John St. Bell published his famous Bell theorem that initiated a new field in physics. This contribution discusses how discrete symmetries relate to the big open questions of quantum mechanics, in particular: (i) how correlations stronger than those predicted by theories sharing randomness (Bell's theorem) relate to the violation of the CP symmetry and the P symmetry; and its relation to the security of quantum cryptography, (ii) how the measurement problem (“why do we observe no tables in superposition?”) can be polled in weakly decaying systems, (iii) how strongly and weakly interacting quantum systems are affected by Newton's self gravitation. These presented preliminary results show that the meson-antimeson systems and the hyperon- antihyperon systems are a unique laboratory to tackle deep fundamental questions and to contribute to the understand what impact the violation of discrete symmetries has.
Energy Technology Data Exchange (ETDEWEB)
Ren Bo [INPAC, Department of Physics, Shanghai Jiao Tong University, Shanghai (China); He Xiaogang, E-mail: hexg@phys.ntu.edu.t [INPAC, Department of Physics, Shanghai Jiao Tong University, Shanghai (China); Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei, Taiwan (China); Xie Peichu [INPAC, Department of Physics, Shanghai Jiao Tong University, Shanghai (China)
2011-04-11
Exchange of unparticle stuff of dimension d{sub U} with FCNC interaction can induce M{sup 12,u} and {Gamma}{sup 12,u} causing meson and antimeson mixing with the relation {Gamma}{sup 12,u}/M{sup 12,u}=2tan({pi}d{sub U}). We show that this type of unparticle contribution can provide the much needed large {Gamma}{sub s}{sup 12} to explain the recently observed anomalously large dimuon asymmetry in B{sub s}-B-bar{sub s} system reported by D0 Collaboration. The same interaction can also accommodate large mixing induced CP violation in B{sub s{yields}}J/{psi}{phi} indicated by CDF and D0 data. Experimental data can provide constraints on the unparticle dimension and scale.
Thermodynamic instabilities in hot and dense nuclear matter
Directory of Open Access Journals (Sweden)
Lavagno A.
2016-01-01
Full Text Available We study the presence of thermodynamic instabilities in a hot and dense nuclear medium where a nuclear phase transition can take place. Similarly to the low density nuclear liquid-gas phase transition, we show that such a phase transition is characterized by pure hadronic matter with both mechanical instability (fluctuations on the baryon density that by chemical-diffusive instability (fluctuations on the strangeness concentration. The analysis is performed by requiring the global conservation of baryon number and zero net strangeness in the framework of an effective relativistic mean field theory with the inclusion of the Δ(1232-isobars, hyperons and the lightest pseudoscalar and vector meson degrees of freedom. It turns out that in this situation hadronic phases with different values of strangeness content may coexist, altering significantly meson-antimeson ratios.
Semialigned two Higgs doublet model
Haba, Naoyuki; Umeeda, Hiroyuki; Yamada, Toshifumi
2018-02-01
In the left-right symmetric model based on S U (2 )L×S U (2 )R×U (1 )B -L gauge symmetry, there appear heavy neutral scalar particles mediating quark flavor changing neutral currents (FCNCs) at tree level. We consider a situation where such FCNCs give the only sign of the left-right model while WR gauge boson is decoupled, and name it "semialigned two Higgs doublet model" because the model resembles a two Higgs doublet model with mildly aligned Yukawa couplings to quarks. We predict a correlation among processes induced by quark FCNCs in the model, and argue that future precise calculation of meson-antimeson mixings and C P violation therein may hint at the semialigned two Higgs doublet model and the left-right model behind it.
A lattice QCD determination of potentials between pairs of static-light mesons
International Nuclear Information System (INIS)
Hetzenegger, Martin
2011-01-01
Potentials between pairs of static-light mesons are interesting in a sense that they give insights in the nature of strong interactions from first principles for multiquark systems. For large heavy quark masses, e.g., the spectra of heavy-light mesons are determined by excitations of the light quark and gluonic degrees of freedom. In particular, the vector-pseudoscalar splitting vanishes and a static-light meson can be interpreted as either a B, a B * , a D or a D * heavy-light meson. Calculating potentials between two static-light mesons also enables investigations of possible bound tetraquark states or for particles that are close to the meson-antimeson threshold, such as the X(3872) or the Z + (4430).
Energy Technology Data Exchange (ETDEWEB)
Lippitsch, M [Institut fuer Experimentalphysik, Universitaet Graz, Universitaetsplatz 5, Graz (Austria)
2004-07-01
The papers presented were organized under the following sessions: main session (from attoseconds to RGB to telecom, density functional calculations, magnetic anisotropy of nanostructures, quantum cascade laser, bose-einstein condensates, DNA molecular force sensor); Fritz-Kohlrausch-price 2004 (nanoscale building blocks), Max-Auwaerter-price 2004 (electron emission and nano defects, magnetic rings), AT + S price 2004 (conducting atomic-force microscopy for nanoscale studies), Viktor-Hess-price 2004 (entanglement for meson-antimeson systems), Roman-Ulrich-Sexl-price 2004 (teaching physics ); acoustics; atomic-, molecular- and plasma physics (kinetic electron emission, accelerated-mass spectrometry of molecules, dissociative electron attachment, voc measurements); solid physics (spin relaxation, nano clean room reactor, proton transport through nanotubes); nuclear and particle physics (color reconnection, supersymmetry at Large Hadron Collider, pionic hydrogen, kaonic hydrogen, quantum chaos, quantum dwell time, trigger system simulation, ATLAS initial detector layout, QCD); medical-, bio-and environmental physics (PTR-MS, validation Monte Carlo FLUKA codes, Gamma camera- positron emission tomography); neutrons and synchrotron radiation physics (3D synchrotron micro on human bones); surface and thin film analysis; quantum electronics, electrodynamics and optics (teleportation, optic induced changes in interaction in BEC, electronic feed back cooling single ions) and poster sessions with topics dealing with the subjects above mentioned. This book of abstracts contains their summaries and those contributions which are in the INIS subject scope are indexed individually. (nevyjel)
54. Annual symposium of the Austrian Physical Society
International Nuclear Information System (INIS)
Lippitsch, M.
2004-01-01
The papers presented were organized under the following sessions: main session (from attoseconds to RGB to telecom, density functional calculations, magnetic anisotropy of nanostructures, quantum cascade laser, bose-einstein condensates, DNA molecular force sensor); Fritz-Kohlrausch-price 2004 (nanoscale building blocks), Max-Auwaerter-price 2004 (electron emission and nano defects, magnetic rings), AT + S price 2004 (conducting atomic-force microscopy for nanoscale studies), Viktor-Hess-price 2004 (entanglement for meson-antimeson systems), Roman-Ulrich-Sexl-price 2004 (teaching physics ); acoustics; atomic-, molecular- and plasma physics (kinetic electron emission, accelerated-mass spectrometry of molecules, dissociative electron attachment, voc measurements); solid physics (spin relaxation, nano clean room reactor, proton transport through nanotubes); nuclear and particle physics (color reconnection, supersymmetry at Large Hadron Collider, pionic hydrogen, kaonic hydrogen, quantum chaos, quantum dwell time, trigger system simulation, ATLAS initial detector layout, QCD); medical-, bio-and environmental physics (PTR-MS, validation Monte Carlo FLUKA codes, Gamma camera- positron emission tomography); neutrons and synchrotron radiation physics (3D synchrotron micro on human bones); surface and thin film analysis; quantum electronics, electrodynamics and optics (teleportation, optic induced changes in interaction in BEC, electronic feed back cooling single ions) and poster sessions with topics dealing with the subjects above mentioned. This book of abstracts contains their summaries and those contributions which are in the INIS subject scope are indexed individually. (nevyjel)
Observation of charm mixing at LHCb
CERN. Geneva
2012-01-01
Meson-antimeson mixing has been observed in the K0−K0bar, B0−B0bar and B0s−B0sbar systems. Evidence of mixing in the charm system has been reported by three experiments using different D0 decay channels, but only the combination of these results provides confirmation of D0−D0bar mixing with more than 5σ significance. We report a measurement of charm mixing using the time-dependent ratio of D0 → K+π− to D0 → K−π+ decay rates in D∗+-tagged events reconstructed in 1.0 fb−1 of integrated luminosity recorded by the LHCb experiment in 2011. We measure the mixing parameters x'2 = (−0.9 ± 1.3) × 10−4, y' = (7.2 ± 2.4) × 10−3 and the ratio of doubly-Cabibbo-suppressed to Cabibbo-favored decay rates RD = (3.52 ± 0.15) × 10−3. The result excludes the no-mixing hypothesis with a probability corresponding to 9.1σ and represents the first observation of D0−D0bar oscillations from a single measurement.
The custodially protected Randall-Sundrum model. Theoretical aspects and flavour phenomenology
International Nuclear Information System (INIS)
Blanke, Monika
2009-01-01
Models with a warped extra dimension, so-called Randall-Sundrum models, provide an appealing solution to the gauge and flavour hierarchy problems of the Standard Model. After introducing the theoretical basics of such models, we concentrate on a specific model whose symmetry structure is extended to protect the T parameter and the Zb L anti b L coupling from large corrections. We introduce the basic action and discuss in detail effects of electroweak symmetry breaking and the flavour structure of the model. Then we analyse meson-antimeson mixing and rare decays that are affected by new tree level contributions from the Kaluza-Klein modes of the gauge bosons and from the Z boson in an important manner. After deriving analytic expressions for the most important K and B physics observables, we perform a global numerical analysis of the new effects in the model in question. We confirm the recent findings that a stringent constraint on the model is placed by CP-violation in K 0 - anti K 0 mixing. However, even for Kaluza-Klein particles in the reach of the LHC an agreement with all available data can be obtained without significant fine-tuning. We find possible large effects in either CP-violating effects in the B s - anti B s system or in the rare K decays, but not simultaneously. In any case the deviations from the Standard Model predictions in the rare B decays are small and difficult to measure. The specific pattern of new flavour effects allows to distinguish this model from other New Physics frameworks, which we demonstrate explicitly for the case of models with Minimal Flavour Violation and for the Littlest Higgs model with T-parity. (orig.)
The custodially protected Randall-Sundrum model. Theoretical aspects and flavour phenomenology
Energy Technology Data Exchange (ETDEWEB)
Blanke, Monika
2009-07-24
Models with a warped extra dimension, so-called Randall-Sundrum models, provide an appealing solution to the gauge and flavour hierarchy problems of the Standard Model. After introducing the theoretical basics of such models, we concentrate on a specific model whose symmetry structure is extended to protect the T parameter and the Zb{sub L} anti b{sub L} coupling from large corrections. We introduce the basic action and discuss in detail effects of electroweak symmetry breaking and the flavour structure of the model. Then we analyse meson-antimeson mixing and rare decays that are affected by new tree level contributions from the Kaluza-Klein modes of the gauge bosons and from the Z boson in an important manner. After deriving analytic expressions for the most important K and B physics observables, we perform a global numerical analysis of the new effects in the model in question. We confirm the recent findings that a stringent constraint on the model is placed by CP-violation in K{sup 0} - anti K{sup 0} mixing. However, even for Kaluza-Klein particles in the reach of the LHC an agreement with all available data can be obtained without significant fine-tuning. We find possible large effects in either CP-violating effects in the B{sub s} - anti B{sub s} system or in the rare K decays, but not simultaneously. In any case the deviations from the Standard Model predictions in the rare B decays are small and difficult to measure. The specific pattern of new flavour effects allows to distinguish this model from other New Physics frameworks, which we demonstrate explicitly for the case of models with Minimal Flavour Violation and for the Littlest Higgs model with T-parity. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Albrecht, Michaela E.
2010-08-16
out the flavour and electroweak (EW) sector, including a derivation of Feynman rules. Moreover, we determine the contributions to the effective Hamiltonian for meson-antimeson mixing due to KK gluon and KK photon exchange. (orig.)
International Nuclear Information System (INIS)
Albrecht, Michaela E.
2010-01-01
out the flavour and electroweak (EW) sector, including a derivation of Feynman rules. Moreover, we determine the contributions to the effective Hamiltonian for meson-antimeson mixing due to KK gluon and KK photon exchange. (orig.)