WorldWideScience

Sample records for antimatter driven p-b11

  1. Antimatter Driven P-B11 Fusion Propulsion System

    Science.gov (United States)

    Kammash, Terry; Martin, James; Godfroy, Thomas

    2002-01-01

    One of the major advantages of using P-B11 fusion fuel is that the reaction produces only charged particles in the form of three alpha particles and no neutrons. A fusion concept that lends itself to this fuel cycle is the Magnetically Insulated Inertial Confinement Fusion (MICF) reactor whose distinct advantage lies in the very strong magnetic field that is created when an incident particle (or laser) beam strikes the inner wall of the target pellet. This field serves to thermally insulate the hot plasma from the metal wall thereby allowing thc plasma to burn for a long time and produce a large energy magnification. If used as a propulsion device, we propose using antiprotons to drive the system which we show to be capable of producing very large specific impulse and thrust. By way of validating the confinement propenies of MICF we will address a proposed experiment in which pellets coated with P-B11 fuel at the appropriate ratio will be zapped by a beam of antiprotons that enter the target through a hole. Calculations showing the density and temperature of the generated plasma along with the strength of the magnetic field and other properties of the system will be presented and discussed.

  2. Antimatter driven P-B11 fusion propulsion system

    International Nuclear Information System (INIS)

    One of the major advantages of using P-B11 fusion fuel is that the reaction produces only charged particles in the form of three alpha particles and no neutrons. A fusion concept that lends itself to this fuel cycle is the Magnetically Insulated Inertial Confinement Fusion (MICF) reactor whose distinct advantage lies in the very strong magnetic field that is created when an incident particle (or laser) beam strikes the inner wall of the target pellet. This field serves to thermally insulate the hot plasma from the metal wall thereby allowing the plasma to burn for a long time and produce a large energy magnification. If used as a propulsion device, we propose using antiprotons to drive the system, which we show to be capable of producing very large specific impulse and thrust. By way of validating the confinement properties of MICF we will address a proposed experiment in which pellets coated with P-B11 fuel at the appropriate ratio will be zapped by a beam of antiprotons that enters the target through a hole. Calculations showing the density and temperature of the generated plasma along with the strength of the magnetic field and other properties of the system will be presented and discussed

  3. Antimatter Driven P-B11 Fusion Propulsion System

    Science.gov (United States)

    Kammash, Terry; Martin, James; Godfroy, Thomas

    2003-01-01

    One of the major advantages of using P-B11 fusion fuel is that the reaction produces only charged particles in the form of three alpha particles and no neutrons. A fusion concept that lends itself to this fuel cycle is the Magnetically Insulated Inertial Confinement Fusion (MICF) reactor whose distinct advantage lies in the very strong magnetic field that is created when an incident particle (or laser) beam strikes the inner wall of the target pellet. This field serves to thermally insulate the hot plasma from the metal wall thereby allowing the plasma to burn for a long time and produce a large energy magnification. If used as a propulsion device, we propose using antiprotons to drive the system, which we show to be capable of producing very large specific impulse and thrust. By way of validating the confinement properties of MICF we will address a proposed experiment in which pellets coated with P-B11 fuel at the appropriate ratio will be zapped by a beam of antiprotons that enters the target through a hole. Calculations showing the density and temperature of the generated plasma along with the strength of the magnetic field and other properties of the system will be presented and discussed.

  4. Nuclei Separation Issue for p-B11 Burning Plasmas

    Science.gov (United States)

    Merriman, L.; Coppi, B.

    2014-10-01

    Proton-Boron11 fusing plasmas have the appealing characteristics of not producing neutrons but only charged particles and of involving easily available fuel nuclei. This feature has attracted the interest of distinguished scientists. On the other hand, as is well known, p-B11 cannot ignite. In addition, there is an unexplored issue related to a transport process due to the relatively large ratio of the masses of the two fuel nuclei. Since for equal temperatures of the two species, the difference between the squares of their thermal velocities is wide, a mode with a phase velocity between the two thermal velocities has been found. This has the effect of transporting the two species in different directions radially and of enhancing the nuclei thermal energy transport. The obtained results, although not as critical as the lack of an ignition condition, should be taken into account in the burn simulations of p-B11 plasmas that have to be carried out. Sponsored in part by the U.S. DOE.

  5. Puzzling antimatter

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    For many years, the absence of antimatter in the Universe has tantalised particle physicists and cosmologists: while the Big Bang should have created equal amounts of matter and antimatter, we do not observe any primordial antimatter today. Where has it gone? The LHC experiments have the potential to unveil natural processes that could hold the key to solving this paradox.   Every time that matter is created from pure energy, equal amounts of particles and antiparticles are generated. Conversely, when matter and antimatter meet, they annihilate and produce light. Antimatter is produced routinely when cosmic rays hit the Earth's atmosphere, and the annihilations of matter and antimatter are observed during physics experiments in particle accelerators. If the Universe contained antimatter regions, we would be able to observe intense fluxes of photons at the boundaries of the matter/antimatter regions. “Experiments measuring the diffuse gamma-ray background in the Universe would be able...

  6. Block Ignition Inertial Confinement Fusion (ICF) with Condensed Matter Cluster Type Targets for p-B11 Powered Space Propulsion

    Science.gov (United States)

    Miley, George H.; Hora, H.; Badziak, J.; Wolowski, J.; Sheng, Zheng-Ming; Zhang, Jie; Osman, F.; Zhang, Weiyan; tu He, Xia

    2009-03-01

    The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either "direct "or "in-direct x-ray driven" type target irradiation. Important new directions have opened for laser ICF in recent years following the development of "chirped" lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of "fast ignition (FI)" to achieve higher energy gains from target implosions. In a recent publication the authors showed that use of a modified type of FI, termed "block ignition" (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter "clusters" of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B11 with proton clusters imbedded. This then makes p-B11 fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B11 power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants using p-B

  7. Block Ignition Inertial Confinement Fusion (ICF) with Condensed Matter Cluster Type Targets for p-B11 Powered Space Propulsion

    International Nuclear Information System (INIS)

    The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either 'direct' or 'in-direct x-ray driven' type target irradiation. Important new directions have opened for laser ICF in recent years following the development of 'chirped' lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of 'fast ignition (FI)' to achieve higher energy gains from target implosions. In a recent publication the authors showed that use of a modified type of FI, termed 'block ignition' (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter 'clusters' of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B11 with proton clusters imbedded. This then makes p-B11 fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B11 power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants using p-B

  8. Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus

    Science.gov (United States)

    Lerner, Eric J.; Krupakar Murali, S.; Haboub, A.

    2011-10-01

    Lawrenceville Plasma Physics Inc. has initiated a 2-year-long experimental project to test the scientific feasibility of achieving controlled fusion using the dense plasma focus (DPF) device with hydrogen-boron (p-B11) fuel. The goals of the experiment are: first, to confirm the achievement of high ion and electron energies observed in previous experiments from 2001; second, to greatly increase the efficiency of energy transfer into the plasmoid where the fusion reactions take place; third, to achieve the high magnetic fields (>1 GG) needed for the quantum magnetic field effect, which will reduce cooling of the plasma by X-ray emission; and finally, to use p-B11 fuel to demonstrate net energy gain. The experiments are being conducted with a newly constructed dense plasma focus in Middlesex, NJ which is expected to generate peak currents in excess of 2 MA. Some preliminary results are reported.

  9. Antimatter Matters

    CERN Multimedia

    CERN

    2016-01-01

    This video is a teaser-introduction to the Antimatter Matters exhibtion at the Royal Society's Summer Science exhibition July 4-10 2016. The exhibition is jointly organised and hosted by UK members of the ALPHA and LHCb collaborations.

  10. Antimatter Experiments

    CERN Multimedia

    2004-01-01

    Antimatter should behave in identical fashion to matter if a form of spacetime symmetry called CPT invariance holds. Two experiments at CERN near Geneva are testing this hypothesis using antihydrogen atoms

  11. The mechanism of the reaction B10 (d,p) B11 at low deuteron energies

    International Nuclear Information System (INIS)

    Excitation functions and angular distributions were measured for the four most energetic proton groups from the reaction B10 (d,p) B11 in the deuteron energy range Ed = 0.8 to 2.4 MeV. The excitation functions for all the measured groups showed no noticeable resonance structure. Spectroscopic factors for the states at 0.00 and 4.46 MeV of B11 were extracted from a DWBA analysis of the angular distributions. The average values of the spectroscopic factors were compared with those predicted theoretically. (orig.)

  12. Baryogenesis and cosmological antimatter

    CERN Document Server

    Dolgov, A D

    2009-01-01

    Possible mechanisms of baryogenesis are reviewed. Special attention is payed to those which allow for creation of astronomically significant domains or objects consisting of antimatter. Observational manifestations of cosmological antimatter are discussed.

  13. Antimatter brochure (English version)

    CERN Multimedia

    Marcastel, Fabienne

    2014-01-01

    Antimatter is the twin to matter, with an opposite electric charge. When they meet, they annihilate each other. In the first moments of the Universe there was a balance between antimatter and matter, but a second after the Big Bang, all the antimatter disappeared along with almost all of the matter, leaving a minute amount of matter that forms everything around us. Scientists are now trying to unravel the mystery of what happened to the antimatter.

  14. Antimatter brochure (German version)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    Antimatter is the twin to matter, with an opposite electric charge. When they meet, they annihilate each other. In the first moments of the Universe there was a balance between antimatter and matter, but a second after the Big Bang, all the antimatter disappeared along with almost all of the matter, leaving a minute amount of matter that forms everything around us. Scientists are now trying to unravel the mystery of what happened to the antimatter.

  15. Antimatter brochure (English)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    Antimatter is the twin to matter, with an opposite electric charge. When they meet, they annihilate each other. In the first moments of the Universe there was a balance between antimatter and matter, but a second after the Big Bang, all the antimatter disappeared along with almost all of the matter, leaving a minute amount of matter that forms everything around us. Scientists are now trying to unravel the mystery of what happened to the antimatter.

  16. Antimatter brochure (French)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    Antimatter is the twin to matter, with an opposite electric charge. When they meet, they annihilate each other. In the first moments of the Universe there was a balance between antimatter and matter, but a second after the Big Bang, all the antimatter disappeared along with almost all of the matter, leaving a tiny amount of matter that forms everything around us. Scientists are now trying to unravel the mystery of what happened to the antimatter.

  17. The antimatter gravitational field

    CERN Document Server

    Chiarelli, Piero

    2015-01-01

    In this work the author derives the Galilean limit of the gravitational field of antimatter by using the hydrodynamic quantum gravity equations that comprehend the antiparticle impulse-energy tensor. The result shows that, even the antimatter mass is a positive valued quantity, its presence gives a negative 4-d space curvature respect to that one of the matter as a consequence of the backward propagation in time of the antimatter wave function. The result leads to the consequence that the null space curvature of photons undergoing to electron-positron couples generation (or annihilation) does not change during the process. A laboratory experiment to validate the theory output is also proposed .

  18. Matter, Antimatter, and Unmatter

    CERN Document Server

    Smarandache, F

    1980-01-01

    Besides matter and antimatter there must exist unmatter (as a new form of matter) in accordance with the neutrosophy theory that between an entity and its opposite there exist intermediate entities . Unmatter is neither matter nor antimatter, but something in between. An atom of unmatter is formed either by (1): electrons, protons, and antineutrons, or by (2): antielectrons, antiprotons, and neutrons. At CERN it will be possible to test the production of unmatter. The existence of unmatter in the universe has a similar chance to that of the antimatter, and its production also difficult for present technologies.

  19. Searching for Primordial Antimatter

    Science.gov (United States)

    2008-10-01

    Scientists are on the hunt for evidence of antimatter - matter's arch nemesis - leftover from the very early Universe. New results using data from NASA's Chandra X-ray Observatory and Compton Gamma Ray Observatory suggest the search may have just become even more difficult. Antimatter is made up of elementary particles, each of which has the same mass as their corresponding matter counterparts --protons, neutrons and electrons -- but the opposite charges and magnetic properties. When matter and antimatter particles collide, they annihilate each other and produce energy according to Einstein's famous equation, E=mc2. According to the Big Bang model, the Universe was awash in particles of both matter and antimatter shortly after the Big Bang. Most of this material annihilated, but because there was slightly more matter than antimatter - less than one part per billion - only matter was left behind, at least in the local Universe. Trace amounts of antimatter are believed to be produced by powerful phenomena such as relativistic jets powered by black holes and pulsars, but no evidence has yet been found for antimatter remaining from the infant Universe. How could any primordial antimatter have survived? Just after the Big Bang there was believed to be an extraordinary period, called inflation, when the Universe expanded exponentially in just a fraction of a second. "If clumps of matter and antimatter existed next to each other before inflation, they may now be separated by more than the scale of the observable Universe, so we would never see them meet," said Gary Steigman of The Ohio State University, who conducted the study. "But, they might be separated on smaller scales, such as those of superclusters or clusters, which is a much more interesting possibility." X-rayChandra X-ray Image In that case, collisions between two galaxy clusters, the largest gravitationally-bound structures in the Universe, might show evidence for antimatter. X-ray emission shows how much hot

  20. Antimatter in the classroom

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    A brand new teaching resource has just been made available on the CERN Education website. The Antimatter Teaching Module contains eight lesson plans, together with background materials and extension topics, which are part of a wide educational project whose aim is to stimulate interest in science by introducing themes in modern physics to students aged 14-15 years, that is, earlier than is the practice in most national curricula. Terrence Baine (left) and Rolf Landua (right) with an antimatter trap from the film 'Angels & Demons'. In his capacity as CERN’s first Teacher in Residence, Terrence Baine’s primary project was to develop teaching modules to help high school teachers around the world incorporate modern particle physics into their curricula. “Back in October, it was decided that the first module should be on antimatter”, explains Terrence, who worked on it in collaboration with Rolf Landua, head of the Education Group and antimatter expert. “...

  1. Seeable matter; unseeable antimatter

    CERN Document Server

    Dixon, Geoffrey

    2014-01-01

    The universe we see gives every sign of being composed of matter. This is considered a major unsolved problem in theoretical physics. Using the mathematical modeling based on the algebra ${\\bf{T}} := {\\bf{C}}\\otimes{\\bf{H}}\\otimes{\\bf{O}}$, an interpretation is developed that suggests that this seeable universe is not the whole universe; there is an unseeable part of the universe composed of antimatter galaxies and stuff, and an extra 6 dimensions of space (also unseeable) linking the matter side to the antimatter - at the very least.

  2. Matter-antimatter asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The Conference is devoted to a multidisciplinary study of matter-antimatter asymmetry and, in particular, from the point of view of particle physics, astrophysics and cosmology. A number of topics, such as the practical applications of antimatter in medical imaging, of particular interest to non-specialists, will also be briefly covered. More than thirty years after the discovery of CP violation in the kaon system, precision experiments with kaons at CERN and Fermilab have demonstrated the existence of direct CP violation, opening a window on a hitherto poorly explored part of particle physics. On the one hand, two experiments devoted mainly to CP violation in B mesons, BABAR and Belle, are beginning to test CP violation in the Standard Model in a decisive way. On the other hand, balloon experiments and the space-based AMS project are circumscribing precise limits on the cosmological abundance of antimatter. Finally, the fundamental problem of cosmological matter-antimatter asymmetry at a Grand Unification scale or at the Electroweak phase transition has been the object of intense theoretical activity in recent years. This document gathers most of the slides that have been presented in the plenary and parallel sessions.

  3. Antimatter cancer treatment

    CERN Multimedia

    Van Noorden, Richard

    2006-01-01

    "The idea that antimatter beams could treat cancer might seem ridiculous. But researchers working at Cerns particle accelerator laboratory in Geneva don't think so. They have just reported a successful first experiment into the biological effects of antiprotons radiation on living cells."

  4. Antimatter gravity with muonium

    OpenAIRE

    kaplan, Daniel M.; Fischbach, Ephraim; Kirch, Klaus; Mancini, Derrick C.; Phillips, James D.; Phillips, Thomas J.; Reasenberg, Robert D; Roberts, Thomas J.; Terry, Jeff

    2016-01-01

    The gravitational acceleration of antimatter, $\\bar{g}$, has never been directly measured and could bear importantly on our understanding of gravity, the possible existence of a fifth force, and the nature and early history of the universe. Three avenues appear feasible for such a measurement: antihydrogen, positronium, and muonium. The muonium measurement requires a novel monoenergetic, low-velocity, horizontal muonium beam directed at an atom interferometer. The precision three-grating inte...

  5. Antimatter in different baryogenesis scenarios

    CERN Document Server

    Dolgov, A D

    1996-01-01

    Possible mechanisms of abundant creation of antimatter in the universe are reviewed. The necessary conditions for that are: baryonic charge nonconservation, spontaneous breaking of charge symmetry or nonequilibrium initial state, and the formation of appropriate initial conditions during inflation. In this case the universe may be populated with domains, cells, or even stellar size objects consisting of antimatter.

  6. Classical isodual theory of antimatter

    CERN Document Server

    Santilli, R M

    1997-01-01

    An inspection of the contemporary physics literature reveals that, while matter is treated at all levels of study, from Newtonian mechanics to quantum field theory, antimatter is solely treated at the level of second quantization. For the purpose of initiating the restoration of full equivalence in the treatments of matter and antimatter in due time, in this paper we present a classical representation of antimatter which begins at the primitive Newtonian level with expected images at all subsequent levels. By recalling that charge conjugation of particles into antiparticles is anti-automorphic, the proposed theory of antimatter is based on a new map, called isoduality, which is also anti-automorphic, yet it is applicable beginning at the classical level and then persists at the quantum level. As part of our study, we present novel anti-isomorphic isodual images of the Galilean, special and general relativities and show the compatibility of their representation of antimatter with all available classical experi...

  7. Antimatter gravity with muonium

    CERN Document Server

    Kaplan, Daniel M; Kirch, Klaus; Mancini, Derrick; Phillips, James D; Phillips, Thomas J; Reasenberg, Robert D; Roberts, Thomas J; Terry, Jeff

    2016-01-01

    The gravitational acceleration of antimatter, $\\bar{g}$, has never been directly measured and could bear importantly on our understanding of gravity, the possible existence of a fifth force, and the nature and early history of the universe. Three avenues appear feasible for such a measurement: antihydrogen, positronium, and muonium. The muonium measurement requires a novel monoenergetic, low-velocity, horizontal muonium beam directed at an atom interferometer. The precision three-grating interferometer can be produced in silicon nitride or ultrananocrystalline diamond using state-of-the-art nanofabrication. The required precision alignment and calibration at the picometer level also appear to be feasible. With 100 nm grating pitch, a 10% measurement of $\\bar{g}$ can be made using some months of surface-muon beam time, and a 1% or better measurement with a correspondingly larger exposure. This could constitute the first gravitational measurement of leptonic matter, of 2nd-generation matter and, possibly, the f...

  8. Antimatter performs optical gymnastics

    Energy Technology Data Exchange (ETDEWEB)

    Eades, John [University of Tokyo (Japan); CERN, Geneva (Switzerland)

    2005-03-01

    Lasers have been used for the first time to create antihydrogen, which could allow precise spectroscopic measurements of anti-atoms. The philosopher William James once said that 'if you wish to upset the law that all crows are black, you must not seek to show that none of them are - it is enough to produce a single white crow'. Likewise, if you wish to test the so-called CPT theorem, according to which a world constructed of antimatter behaves exactly the same as one constructed of matter, you do not need to create an entire 'antiworld'. It would be quite sufficient to show that the frequency of just one transition in a simple anti-atom differs from the value of the same transition in the corresponding ordinary atom. The question is, by how much? Any gross violations of the CPT theorem - which, more formally, states that a system remains unchanged under the combined operations of charge conjugation, parity reversal and time reversal - have already been ruled out experimentally. As a result, nobody expects any difference between matter and antimatter to be anything other than minute, if, indeed, there is a difference at all. The laser-spectroscopy tools that have made it possible to measure transition frequencies in ordinary hydrogen to extraordinarily high precision should also be applicable to antihydrogen. This makes hydrogen anti-atoms excellent candidates to test the CPT theorem. Now, researchers in the ATRAP collaboration at CERN have taken an important step along the obstacle-strewn path towards this goal by using lasers to control the production of antihydrogen atoms. (U.K.)

  9. Antimatter performs optical gymnastics

    International Nuclear Information System (INIS)

    Lasers have been used for the first time to create antihydrogen, which could allow precise spectroscopic measurements of anti-atoms. The philosopher William James once said that 'if you wish to upset the law that all crows are black, you must not seek to show that none of them are - it is enough to produce a single white crow'. Likewise, if you wish to test the so-called CPT theorem, according to which a world constructed of antimatter behaves exactly the same as one constructed of matter, you do not need to create an entire 'antiworld'. It would be quite sufficient to show that the frequency of just one transition in a simple anti-atom differs from the value of the same transition in the corresponding ordinary atom. The question is, by how much? Any gross violations of the CPT theorem - which, more formally, states that a system remains unchanged under the combined operations of charge conjugation, parity reversal and time reversal - have already been ruled out experimentally. As a result, nobody expects any difference between matter and antimatter to be anything other than minute, if, indeed, there is a difference at all. The laser-spectroscopy tools that have made it possible to measure transition frequencies in ordinary hydrogen to extraordinarily high precision should also be applicable to antihydrogen. This makes hydrogen anti-atoms excellent candidates to test the CPT theorem. Now, researchers in the ATRAP collaboration at CERN have taken an important step along the obstacle-strewn path towards this goal by using lasers to control the production of antihydrogen atoms. (U.K.)

  10. Matter and antimatter

    International Nuclear Information System (INIS)

    For many years the physicist Herwig Schopper has been contributing in leading positions - either as director of DESY in Hamburg or as general director of CERN in Geneva - to the development of a fascinating field of modern physics. His book is the first comprehensive presentation of experimental particle physics for non-physicists. The search for the smallest constituents of matter, i.e. the exploration of the microcosmos, apart from the advance of the man into space belongs to the most exciting scientific-technical adventures of our century. Contrarily to the stars, atoms, atomic nuclei, and quarks cannot be seen. How objects are studied which are by thousands smaller than the smallest atomic nucleus? Can matter be decomposed in ever smaller constituents, or does there exist a limit? What is matter, and what is of consequence for the mysterious antimatter. Do the laws of the infinitely small also determine the development of the universe since its origin? Such and other questions - expressions of human curiosity - Schopper wants to answer with his generally understandable book. Thereby the 'machines' and the experiments of high-energy physics play a decicive role in the presentation. The author describes the development of the accelerators - in Europe, as well as in the Soviet Union, Japan, or in the USA -, and he shows, why for the investigation of the smallest immense experimental facilities - the 1989 finished LEP storage ring at CERN has a circumference of 27 kilometers - are necessary. Schopper explains how the 'machines' work and how the single experiments run. His book satisfies the curiosity of all those, who want to know more about the world of the quarks. (orig.) With 96 figs

  11. Gravitational Repulsion and Dirac Antimatter

    Science.gov (United States)

    Kowitt, Mark E.

    1996-03-01

    Based on an analogy with electron and hole dynamics in semiconductors, Dirac's relativistic electron equation is generalized to include a gravitational interaction using an electromagnetic-type approximation of the gravitational potential. With gravitational and inertial masses decoupled, the equation serves to extend Dirac's deduction of antimatter parameters to include the possibility of gravitational repulsion between matter and antimatter. Consequences for general relativity and related “antigravity” issues are considered, including the nature and gravitational behavior of virtual photons, virtual pairs, and negative-energy particles. Basic cosmological implications of antigravity are explored—in particular, potential contributions to inflation, expansion, and the general absence of detectable antimatter. Experimental and observational tests are noted, and new ones suggested.

  12. The gravitational properties of antimatter

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, T.; Hughes, R.J.; Nieto, M.M.

    1986-09-01

    It is argued that a determination of the gravitational acceleration of antimatter towards the earth is capable of imposing powerful constraints on modern quantum gravity theories. Theoretical reasons to expect non-Newtonian non-Einsteinian effects of gravitational strength and experimental suggestions of such effects are reviewed. 41 refs. (LEW)

  13. The gravitational properties of antimatter

    International Nuclear Information System (INIS)

    It is argued that a determination of the gravitational acceleration of antimatter towards the earth is capable of imposing powerful constraints on modern quantum gravity theories. Theoretical reasons to expect non-Newtonian non-Einsteinian effects of gravitational strength and experimental suggestions of such effects are reviewed. 41 refs

  14. Antimatter, the SME, and gravity

    International Nuclear Information System (INIS)

    A general field-theoretic framework for the analysis of CPT and Lorentz violation is provided by the Standard-Model Extension (SME). This work discusses a number SME-based proposals for tests of CPT and Lorentz symmetry, including antihydrogen spectroscopy and antimatter gravity tests.

  15. An antimatter spectrometer in space

    International Nuclear Information System (INIS)

    We discuss a simple magnetic spectrometer to be installed on a satellite or space station. The purpose of this spectrometer is to search for primordial antimatter to the level of antimatter/matter ∼10-9, improving the existing limits obtained with balloon flights by a factor of 104 to 105. The design of the spectrometer is based on an iron-free, Nd-Fe-B permanent magnet, scintillation counters, drift tubes, and silicon or time projection chambers. Different design options are discussed. Typically, the spectrometer has a weight of about 2 tons and an acceptance of about 1.0 m2 sr. The availability of the new Nd-Fe-B material makes it possible for the first time to put a magnet into space economically and reliably. ((orig.))

  16. Measuring Antimatter Gravity with Muonium

    OpenAIRE

    Kaplan Daniel M.; Kirch Klaus; Mancini Derrick; Phillips James D.; Phillips Thomas J.; Roberts Thomas J.; Terry Jeff

    2013-01-01

    The gravitational acceleration of antimatter, $\\bar{g}$, has never been directly measured and could bear importantly on our understanding of gravity, the possible existence of a fifth force, and the nature and early history of the universe. Only two avenues for such a measurement appear to be feasible: antihydrogen and muonium. The muonium measurement requires a novel, monoenergetic, low-velocity, horizontal muonium beam directed at an atom interferometer. The precision three-grating interfer...

  17. On the matter-antimatter asymmetry

    Science.gov (United States)

    Perkins, W. A.

    2015-08-01

    Although the big bang should have produced equal amounts of matter and antimatter, there is evidence that the universe does not contain significant amounts of antimatter. The usual explanations for this matter-antimatter asymmetry involve finding causes for Sakharov’s three conditions to be satisfied. However, if the composite photon theory is correct, antimatter galaxies should appear to us as dark matter, neither emitting light (that we can detect) or reflecting ordinary light. Thus the presence of antimatter galaxies may be harder to detect than previously thought. The large clumps of dark matter that have been observed by weak gravitation lensing could be clusters of antimatter galaxies. “Dark photons,” that are hypothesized to cause self-interactions between dark matter particles, are identified as antiphotons in the composite photon theory. The possibility of a patchwork universe, that had been previously excluded, is also re-examined.

  18. Antimatter: Its history and its properties

    International Nuclear Information System (INIS)

    We review the conceptual developments of quantum theory and special relativity which culminated in the discovery of and understanding of antimatter. In particular, we emphasize how quantum theory and special relativity together imply that antimatter must exist. Our modern understanding of antimatter is summarized in the CPT theorem of relativistic quantum field theory. The implications of this theorem have never been contradicted by any experiment ever done. 38 refs

  19. Antimatter: (Latest citations from the INSPEC Database)

    Science.gov (United States)

    1997-04-01

    The bibliography contains citations concerning physical theory, testing, and practical applications of antimatter. Related nuclear phenomena, matter-antimatter interactions, relativity, antigravity, formation of the universe, and space-time configurations are described. The roles of cosmic rays, black holes, antiprotons, and positrons are discussed. Antimatter propulsion spacecraft are briefly cited. (Contains 50-250 citations and includes a subject term index and title list.)

  20. Antimatter. (Latest citations from the INSPEC Database)

    Science.gov (United States)

    1996-01-01

    The bibliography contains citations concerning physical theory, testing, and practical applications of antimatter. Related nuclear phenomena, matter-antimatter interactions, relativity, antigravity, formation of the universe, and space-time configurations are described. The roles of cosmic rays, black holes, antiprotons, and positrons are discussed. Antimatter propulsion spacecraft are briefly cited. (Contains 50-250 citations and includes a subject term index and title list.)

  1. Scientists hope to crack missing antimatter

    CERN Multimedia

    2000-01-01

    CERN announced that it would be able to study antimatter in depth using the world's first 'antimatter factory'. The AD has a circumference of 188 meters and will slow down particles and antiparticles to one tenth of the speed of light and then deliver them to experiments for study (1 page).

  2. Why antihydrogen and antimatter are different

    CERN Document Server

    Zichichi, Antonino

    2009-01-01

    As Paul Dirac realized, the existence of antihydrogen does not in itself prove the existence of antimatter. A look through the history of the subject, and in particular the role played by the CPT theorem, shows that ultimately it came down to experiment to prove the existence of antimatter through the discovery of the antideuteron at CERN in 1965.

  3. Golden Jubilee photos: Gathering Antimatter

    CERN Multimedia

    2004-01-01

    One day, antimatter might take people where no one has gone before, but it isn't science fiction. Protons are easily obtainable by stripping electrons from hydrogen atoms, but their antimatter counterparts, the antiprotons, have to be created artificially at accelerators. Roughly one antiproton can be produced from around a million protons bombarding a target at 26 GeV. In 1978, when CERN decided to take the unprecedented step of turning the SPS accelerator into a proton-antiproton collider, it had to deal with the scarcity, and had to concentrate the beam until it was intense enough for the experiment. Antiprotons are produced with a wide range of angles and energy, so before they can be used in an accelerator they have to be captured and 'cooled', reducing the beam dimensions by many orders of magnitude. This was the job of the Antiproton Accumulator (AA), completed in 1980 and shown here before it disappeared from view under concrete shielding. It followed the pioneering Initial Cooling Experiment (ICE) i...

  4. Measuring antimatter gravity with muonium

    Directory of Open Access Journals (Sweden)

    Kaplan Daniel M.

    2015-01-01

    Full Text Available The gravitational acceleration of antimatter, ḡ, has never been directly measured and could bear importantly on our understanding of gravity, the possible existence of a fifth force, and the nature and early history of the universe. Only two avenues for such a measurement appear to be feasible: antihydrogen and muonium. The muonium measurement requires a novel, monoenergetic, low-velocity, horizontal muonium beam directed at an atom interferometer. The precision three-grating interferometer can be produced in silicon nitride or ultrananocrystalline diamond using state-of-the-art nanofabrication. The required precision alignment and calibration at the picometer level also appear to be feasible. With 100 nm grating pitch, a 10% measurement of ḡ can be made using some months of surface-muon beam time, and a 1% or better measurement with a correspondingly larger exposure. This could constitute the first gravitational measurement of leptonic matter, of 2nd-generation matter and, possibly, the first measurement of the gravitational acceleration of antimatter.

  5. Plasmas as the Drivers for Science with Antimatter

    Science.gov (United States)

    Surko, Clifford M.

    2010-11-01

    Progress and future challenges in physics and technology with antimatter (positrons and antiprotons) will be described illustrating the important role played by plasma science [1]. Topics include the creation and study of antihydrogen (stable, neutral antimatter) [2,3] and the positronium molecule (e^+e^-e^+e^-) [4]; plans to study electron-positron plasmas [5]; the quest for a BEC gas of positronium atoms; positron binding to atoms and molecules [6]; the development of new types of positron beams for materials studies; and prospects for commercial positron traps and beams. Much of this progress has been driven by the development of new plasma techniques. Efficient positron accumulation is obtained using specially designed Penning-Malmberg traps with trapping and cooling provided by molecular gases. Plasmas are compressed radially using rotating electric fields. Long-term storage and cooling to cryogenic temperatures are obtained using traps in UHV environments in several-tesla magnetic fields [2,3]. A method to increase trap capacity by orders of magnitude will be described [7]. Prospects for portable antimatter traps and other exceedingly challenging projects such as a Ps-atom interferometer and an annihilation gamma ray laser will be discussed. Efforts to understand the behavior of antimatter in astrophysical settings will also be discussed. A sampling of references (by 1st author): [1] C. M. Surko, Phys. Pl. 11, 2333 ('04); [2] G. Gabrielse, Physics Today, Mar. ('10), 68; [3] G. B. Andresen, Phys. Rev. Lett. 105, 013003 ('10); [4] D. B. Cassidy, Nature 449, 195 ('07); [5] T. S. Pedersen, Fus. Sci. Tech., 50, 372 ('06); [6] G. F. Gribakin, Rev. Mod. Phys., in press ('10); [7] J. R. Danielson, AIP Conf. Proc. 1114 ('09), 199.

  6. A DWBA analysis of the reaction B10(d,p) B11 and B10(t,d) B11 at incident energies between 2.5 and 21.0 MeV

    International Nuclear Information System (INIS)

    The angular distributions and the polarizations of protons from the reaction B10(d,p) B11 measured at the deuteron energies between 2.5 and 21.0 MeV and the angular distributions of deuterons from the reaction B10(t,d) B11 at E1 = 5.5 MeV were analyzed in terms of the DWBA theory. Zero range DWBA was used with and without radial cut-off, and approximate finite range calculations were also performed. Spectroscopic factors were obtained and compared with other experimental spectroscopic factors and with shell model predictions. (orig.) 891 WL/orig. 892 MB

  7. Matter-antimatter puzzle: LHCb improves resolution

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    In 2010, Fermilab’s DØ experiment reported a one percent difference in the properties of matter and antimatter in decays of B mesons (that is, particles containing beauty quarks) to muons. Saturday, at the ICHEP Conference in Melbourne, the LHCb experiment at CERN presents new results, which do not confirm this anomaly and are consistent with the Standard Model predictions. The same experiment has also presented the first evidence of asymmetry arising in other decays of the same family of mesons. The image becomes clearer but the puzzle has not yet been solved.   Inside the LHCb detector. The matter-antimatter imbalance in the Universe is a very hot topic in physics. The conundrum arises from the fact that, although objects made of antimatter are not observed in the Universe, theory predicts that matter and antimatter be created equally in particle interactions and in the Big Bang. Only small deviations from this very symmetric behaviour are incorporated in the theory. E...

  8. Will NASA annihilate station antimatter experiment?

    CERN Multimedia

    Lawler, A

    2004-01-01

    "NASA is reconsidering its support for an innovative experiment designed to capture direct evidence of elusive antimatter. [...] A full review of the project, called the Alpha Magnetic Spectrometer (AMS), could begin this summer" (1 page)

  9. Does antimatter emit a new light ?

    OpenAIRE

    Santilli, R. M.

    1997-01-01

    We identify a number of problematic aspects of current classical and quantum theories of antimatter; we introduce a new mathematical formalism which is an antiautomorphic image of that of matter equivalent to charge conjugation at the operator level, but applicable from Newton's equations to quantum mechanics; we show that the emerging new theory of antimatter recovers known experimental data on electroweak interactions; we finally identity the following predictions of the theory: 1) reversal...

  10. Black Holes and Gravitational Properties of Antimatter

    OpenAIRE

    Hajdukovic, Dragan Slavkov

    2006-01-01

    The gravitational properties of antimatter are still a secret of nature. One outstanding possibility is that there is a gravitational repulsion between matter and antimatter (in short we call it antigravity). We argue that in the case of antigravity the collapse of a black hole doesn't end with singularity and that deep inside the horizon, the gravitational field may be sufficiently strong to create (from the vacuum) neutrino-antineutrino pairs of all flavours. The created antineutrinos (neut...

  11. Gravitational mass of relativistic matter and antimatter

    OpenAIRE

    Tigran Kalaydzhyan

    2015-01-01

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, $m$, and gravitational, $m_g$, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no proof for the matter and antimatter at high energies. For the antimatter the situation is even less clear -...

  12. Studying antimatter with laser precision

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    The next generation of antihydrogen trapping devices, ALPHA-2, is moving into CERN’s Antiproton Decelerator (AD) hall. This brand-new experiment will allow the ALPHA collaboration to conduct studies of antimatter with greater precision. ALPHA spokesperson Jeffrey Hangst was recently awarded a grant by the Carlsberg Foundation, which will be used to purchase equipment for the new experiment.   A 3-D view of the new magnet (in blue) and cryostat. The red lines show the paths of laser beams. LHC-type current leads for the superconducting magnets are visible on the top-right of the image. The ALPHA collaboration has been working to trap and study antihydrogen since 2006. Using antiprotons provided by CERN’s Antiproton Decelerator (AD), ALPHA was the first experiment to trap antihydrogen and to hold it long enough to study its properties. “The new ALPHA-2 experiment will use integrated lasers to probe the trapped antihydrogen,” explains Jeffrey Hangst, ALP...

  13. Antimatter annihilation detection with AEgIS

    CERN Document Server

    Gligorova, Angela

    2015-01-01

    AE ̄ gIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an antimatter exper- iment based at CERN, whose primary goal is to carry out the first direct measurement of the Earth’s gravitational acceleration on antimatter. A precise measurement of antimatter gravity would be the first precision test of the Weak Equivalence Principle for antimatter. The principle of the experiment is based on the formation of antihydrogen through a charge exchange reaction between laser excited (Rydberg) positronium and ultra-cold antiprotons. The antihydrogen atoms will be accelerated by an inhomogeneous electric field (Stark acceleration) to form a pulsed cold beam. The free fall of the antihydrogen due to Earth’s gravity will be measured using a moiré de- flectometer and a hybrid position detector. This detector is foreseen to consist of an active silicon part, where the annihilation of antihydrogen takes place, followed by an emulsion part coupled to a fiber time-of-flight detector. This overview prese...

  14. The Mystery of the Missing Antimatter

    CERN Document Server

    Quinn, Helen R

    2008-01-01

    In the first fractions of a second after the Big Bang lingers a question at the heart of our very existence: why does the universe contain matter but almost no antimatter? The laws of physics tell us that equal amounts of matter and antimatter were produced in the early universe--but then, something odd happened. Matter won out over antimatter; had it not, the universe today would be dark and barren. But how and when did this occur? Helen Quinn and Yossi Nir guide readers into the very heart of this mystery--and along the way offer an exhilarating grand tour of cutting-edge physics. They explain both the history of antimatter and recent advances in particle physics and cosmology. And they discuss the enormous, high-precision experiments that particle physicists are undertaking to test the laws of physics at their most fundamental levels--and how their results reveal tantalizing new possibilities for solving this puzzle at the heart of the cosmos. The Mystery of the Missing Antimatter is at once a history of i...

  15. CPT symmetry and antimatter gravity in general relativity

    OpenAIRE

    Villata, M.

    2011-01-01

    The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the...

  16. The antimatter goes back in the time

    International Nuclear Information System (INIS)

    This paper presents general aspects of the antimatter that offers new possibilities in cosmology and astrophysics but also promotes in medicine the medical imagery for the cancer diagnostic (the antiproton therapy). Different aspects of the antimatter are considered. It deals first with the instrumentation: the AD (Antiproton Decelerator) of the CERN, braking ring that produces 10 millions of antiproton per hours. Ten question-answer about the subject are abstracted to better understand this theory. It presents the AMS (Alpha Magnetic Spectrometer), that analysed ten millions particles (anti-electrons and antiprotons) during its fly with Discovery. Antimatter, as the matter mirror, don't respect the symmetry laws. The authors explain these symmetry violations. (A.L.B.)

  17. What's the matter with Antimatter? Exhibition Science Bringing Nations Together

    CERN Multimedia

    2000-01-01

    Antimatter may be the stuff of science fiction, but to physicists it poses a serious question. Why is there not more of it around? At the Big Bang, matter and antimatter should have been created in equal amounts, yet today we seem to live in a Universe entirely made of matter. So where has all the antimatter gone?

  18. Antimatter and 20th Century Science

    Science.gov (United States)

    Williams, Gary

    2005-01-01

    This article gives an outline of the history of antimatter from the concept first introduced in 1898 up to the present day and is intended to complement the article "Antihydrogen on Tap" on page 229 [of this issue of "Physics Education"]. It is hoped that it will provide enough historical background material along with interesting snippets of…

  19. Development of high-capacity antimatter storage

    International Nuclear Information System (INIS)

    Space is vast. Over the next few decades, humanity will strive to send probes farther and farther into space to establish long baselines for interferometry, to visit the Kuiper Belt, to identify the heliopause, or to map the Oort cloud. In order to solve many of the mysteries of the universe or to explore the solar system and beyond, one single technology must be developed--high performance propulsion. In essence, future missions to deep space will require specific impulses between 50,000 and 200,000 seconds and energy densities greater than 1014 j/kg in order to accomplish the mission within the career lifetime of an individual, 40 years. Only two technologies available to mankind offer such performance--fusion and antimatter. Currently envisioned fusion systems are too massive. Alternatively, because of the high energy density, antimatter powered systems may be relatively compact. The single key technology that is required to enable the revolutionary concept of antimatter propulsion is safe, reliable, high-density storage. Under a grant from the NASA Institute of Advanced Concepts, we have identified two potential mechanisms that may enable high capacity antimatter storage systems to be built. We will describe planned experiments to verify the concepts. Development of a system capable of storing megajoules per gram will allow highly instrumented platforms to make fast missions to great distances. Such a development will open the universe to humanity

  20. Antimatter persuaded to react with matter

    CERN Multimedia

    Van Noorden, Richard

    2006-01-01

    "Matter and antimatter usually destroy each other in a flash of energy and a spray of exotic particles when they meet. Yet the two have been coaxed into a chemical reaction by the international research group Athena." (2/3 page)

  1. Does antimatter emit a new light?

    International Nuclear Information System (INIS)

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particles and antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus bypassing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of 'the new physics of antimatter' are pointed out

  2. Does antimatter emit a new light?

    Energy Technology Data Exchange (ETDEWEB)

    Santilli, Ruggero Maria [Instituto per la Ricerca di Base (Italy)

    1997-08-15

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particles and antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus bypassing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of 'the new physics of antimatter' are pointed out.

  3. Does antimatter emit a new light?

    International Nuclear Information System (INIS)

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particle sand antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus by passing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of 'the new physics of antimatter' are pointed out. 16 refs

  4. A moiré deflectometer for antimatter

    CERN Document Server

    Aghion, S; Amsler, C; Ariga, A; Ariga, T; Belov, A S; Berggren, K; Bonomi, G; Braunig, P; Bremer, J; Brusa, R S; Cabaret, L; Canali, C; Caravita, R; Castelli, F; Cerchiari, G; Cialdi, S; Comparat, D; Consolati, G; Derking, H; Di Domizio, S; Di Noto, L; Doser, M; Dudarev, A; Ereditato, A; Ferragut, R; Fontana, A; Genova, P; Giammarchi, M; Gligorova, A; Gninenko, S N; Haider, S; Huse, T; Jordan, E; Jørgensen, L V; Kaltenbacher, T; Kawada, J; Kellerbauer, A; Kimura, M; Knecht, A; Krasnicky, D; Lagomarsino, V; Lehner, S; Magnani, A; Malbrunot, C; Mariazzi, S; Matveev, V A; Moia, F; Nebbia, G; Nedelec, P; Oberthaler, M K; Pacifico, N; Petracek, V; Pistillo, C; Prelz, F; Prevedelli, M; Regenfus, C; Riccardi, C; Røhne, O; Rotondi, A; Sandaker, H; Scampoli, P; Storey, J; Subieta Vasquez, M A; Spacek, M; Testera, G; Vaccarone, R; Widmann, E; Zavatarelli, S; Zmeskal, J

    2014-01-01

    The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational inter- action is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics—the moire ́ deflectometer—for a measurement of the acceleration of slow antiprotons. The setup con- sists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleratio...

  5. Does antimatter emit a new light ?

    CERN Document Server

    Santilli, R M

    1997-01-01

    We identify a number of problematic aspects of current classical and quantum theories of antimatter; we introduce a new mathematical formalism which is an antiautomorphic image of that of matter equivalent to charge conjugation at the operator level, but applicable from Newton's equations to quantum mechanics; we show that the emerging new theory of antimatter recovers known experimental data on electroweak interactions; we finally identity the following predictions of the theory: 1) reversal in the field of matter of the gravitational curvature (antigravity) for stable antiparticles and their bound states, such as the anti-hydrogen atom; 2) conventional (attractive) gravity for a bound state of an elementary particle and its antiparticle, such as the positronium; and 3) prediction that the anti- hydrogen atom emits a new photon which coincides with the conventional photon for all electroweak interactions but experiences repulsion in the gravitational field of matter.

  6. Measuring gravitational effects on antimatter in space

    Science.gov (United States)

    Piacentino, G. M.; Palladino, A.; Venanzoni, G.

    2016-09-01

    We propose an experimental test of the gravitational interaction with antimatter by measuring the branching fraction of the CP violating decay KL →π+π- in space. We show that at the altitude of the International Space Station, gravitational effects may change the level of CP violation such that a 5 σ discrimination may be obtained by collecting the KL produced by the cosmic proton flux within a few years.

  7. Measuring gravitational effects on antimatter in space

    CERN Document Server

    Piacentino, Giovanni Maria; Venanzoni, Graziano

    2016-01-01

    We propose an experimental test of the gravitational interaction with antimatter by measuring the branching fraction of the CP~violating decay $K_\\mathrm{L} \\to \\pi^{+} \\pi^{-}$ in space. We show that at the altitude of the International Space Station, gravitational effects may change the level of CP~violation such that a 5$\\sigma$ discrimination may be obtained by collecting the $K_\\mathrm{L}$ produced by the cosmic proton flux within a few years.

  8. Antimatter: What is and where did it go?

    International Nuclear Information System (INIS)

    In this public lecture we will explore the mystery of antimatter: Where did it go? Why is the universe made up of only matter, with no observable antimatter? And why does the universe have any matter left in it anyway? The SLAC 'B'-Factory was built to answer these questions. Over the last decade, almost a billion 'B'-mesons were created and studied at the B-Factory to search for subtle differences between matter and antimatter, differences that lie at the heart of the antimatter mystery. We will explain the matter-antimatter discoveries made at the B-Factory, and their connection to this year's Nobel prize in physics. It does not matter if you have no prior knowledge of Antimatter; just bring your curiosity.

  9. CPT symmetry and antimatter gravity in general relativity

    CERN Document Server

    Villata, M

    2011-01-01

    The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the latter, we find that the gravitational interaction between matter and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity when CPT is applied. This result supports cosmological models attempting to explain the Universe accelerated expansion in terms of a matter-antimatter repulsive interaction.

  10. CPT symmetry and antimatter gravity in general relativity

    Science.gov (United States)

    Villata, M.

    2011-04-01

    The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the latter, we find that the gravitational interaction between matter and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity when CPT is applied. This result supports cosmological models attempting to explain the Universe accelerated expansion in terms of a matter-antimatter repulsive interaction.

  11. Gravitational mass of relativistic matter and antimatter

    Directory of Open Access Journals (Sweden)

    Tigran Kalaydzhyan

    2015-12-01

    Full Text Available The universality of free fall, the weak equivalence principle (WEP, is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear – current direct observations of trapped antihydrogen suggest the limits −65antimatter by Earth. Here we demonstrate an indirect bound 0.96

  12. Gravitational mass of relativistic matter and antimatter

    Science.gov (United States)

    Kalaydzhyan, Tigran

    2015-12-01

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65 antigravity phenomenon, i.e. repulsion of the antimatter by Earth. Here we demonstrate an indirect bound 0.96 antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 - 4 ×10-7

  13. Does antimatter emit a new light?

    Science.gov (United States)

    Santilli, Ruggero Maria

    1997-08-01

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particles and antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus bypassing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of “the new physics of antimatter” are pointed out.

  14. Gravitational mass of relativistic matter and antimatter

    CERN Document Server

    Kalaydzhyan, Tigran

    2015-01-01

    The universality of free fall, the so-called weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial and gravitational masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no proof for the matter and antimatter at high energies. %coming from ground-based experiments. For the antimatter the situation is even less clear -- current direct observations of trapped antihydrogen suggest the limits -65 < m_g / m < 110 not ruling out antigravity, i.e. repulsion of the antimatter by Earth. Here we demonstrate a bound 1 - 4x10^{-7} < m_g/m < 1 + 2x10^{-7} on the gravitational mass of relativistic electrons and positrons in the potential of the Local Supercluster (LS) coming from the Large Electron-Positron Collider (LEP) and Tevatron accelerator experiments. By considering annual variations of the sol...

  15. Antimatter. (Latest citations from the INSPEC database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The bibliography contains citations concerning physical theory, testing, and practical applications of antimatter. Related nuclear phenomena, matter-antimatter interactions, relativity, antigravity, formation of the universe, and space-time configurations are described. The roles of cosmic rays, black holes, antiprotons, and positrons are discussed. Antimatter propulsion spacecraft are briefly cited. (Contains a minimum of 182 citations and includes a subject term index and title list.)

  16. Antimatter. (Latest citations from the INSPEC database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The bibliography contains citations concerning physical theory, testing, and practical applications of antimatter. Related nuclear phenomena, matter-antimatter interactions, relativity, antigravity, formation of the universe, and space-time configurations are described. The roles of cosmic rays, black holes, antiprotons, and positrons are discussed. Antimatter propulsion spacecraft are briefly cited. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Hangout With CERN: Antimatter (S01E05)

    CERN Multimedia

    Kahle, Kate

    2012-01-01

    In this hangout we delve into the world of antimatter. How is it different from matter? What antimatter research is going on at CERN? Why? What have we learned so far and what will this research lead to? ATLAS physicist Steven Goldfarb is joined by CERN theorist Alex Arbey, Seth Zenz from the CMS experiment, and Michael Doser, Makoto Fujiwara and Masaki Hori from the antimatter experiments at CERN.Recorded live on 29th November 2012.

  18. Hints of Greater Matter - Antimatter Asymmetry Challenge Theorists

    CERN Multimedia

    Cho, Adrian

    2010-01-01

    "The universe is chock-full of matter and devoid of antimatter, and physicists can't say why. They think that matter piled up after the big bang thanks to a slight asymmetry, called charge-parity (CP) violation, in the way matter and antimatter behave, but the effects seen so far are too small to do the job" (1 page)

  19. Experiments with low-energy antimatter

    Directory of Open Access Journals (Sweden)

    Consolati G.

    2015-01-01

    Full Text Available Investigations on antimatter allow us to shed light on fundamental issues of contemporary physics. The only antiatom presently available, antihydrogen, is produced making use of the Antiproton Decelerator (AD facility at CERN. International collaborations currently on the floor (ALPHA, ASACUSA and ATRAP have succeeded in producing antihydrogen and are now involved in its confinement and manipulation. The AEGIS experiment is currently completing the commissioning of the apparatus which will generate and manipulate antiatoms. The present paper, after a report on the main results achieved with antihydrogen physics, gives an overview of the AEGIS experiment, describes its current status and discusses its first target.

  20. Problems of matter-antimatter boundary layers

    International Nuclear Information System (INIS)

    This paper outlines the problems of the quasi-steady matter-antimatter boundary layers discussed in Klein-Alfven's cosmological theory, and a crude model of the corresponding ambiplasma balance is presented: (i) at interstellar particle densities, no well-defined boundary layer can exist in presence of neutral gas, nor can such a layer be sustained in an unmagnetized fully ionized ambiplasma. (ii) Within the limits of applicability of the present model, sharply defined boundary layers are under certain conditions found to exist in a magnetized ambiplasma. Thus, at beta values less than unity, a steep pressure drop of the low-energy components of matter and antimatter can be balanced by a magnetic field and the electric currents in the ambiplasma. (iii) The boundary layer thickness is of the order of 2x0 approximately 10/BT0sup(1/4) meters, where B is the magnetic field strength in MKS units and T0 the characteristic temperature of the low-energy components in the layer. (Auth.)

  1. Atom optical tools for antimatter experiments

    Energy Technology Data Exchange (ETDEWEB)

    Braeunig, Philippe H.M.

    2014-12-17

    The direct measurement of the gravitational acceleration of antimatter in the earth's field, which represents a test of the weak equivalence principle, is in the focus of several ongoing experimental attempts. This thesis investigates tools and techniques known from the field of atom optics that can be utilised for such a measurement with antihydrogen atoms as envisioned by the AEgIS collaboration. A first experimental step is presented, in which a detection due to an electromagnetic force acting on antiprotons is measured with a Moire deflectometer. This device, which can be described with classical particle trajectories, consists of two gratings and a spatially resolving detector. Key elements of this measurement are the use of an emulsion detector with high spatial resolution and an absolute reference technique based on an interferometric fringe pattern of light, which is not deflected by forces. For future realisations, a new detection and evaluation scheme to measure gravity based on a three-grating system enclosed by a vertex-reconstructing detector is discussed. This allows the use of a grating periodicity that is smaller than the resolution of the detector while making efficient use of the particle flux. Smaller periodicities are favourable to increase the inertial sensitivity of the measurement apparatus but require to take effects of diffraction into account. To explore this near-field regime with antimatter, a Talbot-Lau interferometer for antiprotons is proposed and its possible experimental implementation is discussed.

  2. Feasibility for EGRET detection of antimatter concentrations in the universe

    Science.gov (United States)

    Hartman, R. C.

    1990-01-01

    Although the Grand Unified Theories of elementary particle dynamics have to some extent reduced the aesthetic attraction of matter-antimatter symmetry in the Universe, the idea is still not ruled out. Although first introduced by Alfven (1965), most of the theoretical development related to gamma-ray astronomy was carried out by Stecker, who has proposed (Stecker, Morgan, and Bredekamp, 1971) matter-antimatter annihilation extending back to large redshifts as a possible explanation of the apparently extragalactic diffuse gamma radiation. Other candidate explanations were also proposed, such as superposition of extragalactic discrete sources. Clearly, the existence of significant amounts of antimatter in the universe would be of great cosmological importance; its detection, however, is not simple. Since the photon is its own antiparticle, it carries no signature identifying whether it originated in a matter or an antimatter process; even aggregates of photons (spectra) are expected to be identical from matter and antimatter processes. The only likely indicator of the presence of concentrations of antimatter is evidence of its annihilation with normal matter, assuming there is some region of contact or overlap. The EGRET (Energetic Gamma-Ray Experimental Telescope) on the Gamma Ray Observatory, with a substantial increase in sensitivity compared with earlier high energy gamma ray telescopes, may be able to address this issue. The feasibility of using EGRET in such a search for antimatter annihilation in the Universe is considered.

  3. Detection of low energy antimatter with emulsions

    CERN Document Server

    Aghion, S; Ariga, T; Bollani, M; Cas, E Dei; Ereditato, A; Evans, C; Ferragut, R; Giammarchi, M; Pistillo, C; Romé, M; Sala, S; Scampoli, P

    2016-01-01

    Emulsion detectors feature a very high position resolution and consequently represent an ideal device when particle detection is required at the micrometric scale. This is the case of quantum interferometry studies with antimatter, where micrometric fringes have to be measured. In this framework, we designed and realized a new emulsion based detector characterized by a gel enriched in terms of silver bromide crystal contents poured on a glass plate. We tested the sensitivity of such a detector to low energy positrons in the range 10-20 keV. The obtained results prove that nuclear emulsions are highly efficient at detecting positrons at these energies. This achievement paves the way to perform matter-wave interferometry with positrons using this technology.

  4. Cosmological matter-antimatter asymmetry as a quantum fluctuation

    CERN Document Server

    Kobakhidze, Archil

    2015-01-01

    We entertain a new paradigm according to which the observed matter-antimatter asymmetry is generated as a large-scale quantum fluctuation over the baryon-symmetric state that occurred during the cosmic inflation.

  5. Where has all the antimatter gone? VELO seeks the answer

    CERN Multimedia

    Ormrod, Gill

    2007-01-01

    "Scientists from the Universities of Liverpool and Glasgow have completed work on the inner heart of an experiment which seeks to find out what has happened to all the antimatter created at the start of the Universe." (2 pages)

  6. The matter-antimatter interpretation of Kerr spacetime

    CERN Document Server

    Villata, M

    2014-01-01

    Repulsive gravity is not very popular in physics. However, one comes across it in at least two main occurrences in general relativity: in the negative-$r$ region of Kerr spacetime, and as the result of the gravitational interaction between matter and antimatter, when the latter is assumed to be CPT-transformed matter. Here we show how these two independent developments of general relativity are perfectly consistent in predicting gravitational repulsion and how the above Kerr negative-$r$ region can be interpreted as the habitat of antimatter. As a consequence, matter particles traveling along vortical geodesics can pass through the throat of a rotating black hole and emerge as antimatter particles (and vice versa). An experimental definitive answer on the gravitational behavior of antimatter is awaited in the next few years.

  7. How did matter gain the upper hand over antimatter?

    International Nuclear Information System (INIS)

    Antimatter exists. We routinely make it in laboratories. For every familiar particle type we find a matching antiparticle with opposite charge, but exactly the same mass. For example, a positron with positive charge has the same mass as an electron; an antiproton with negative charge has the same mass as a proton. Antimatter occurs naturally all over the universe wherever high-energy particles collide. The laws of physics for antimatter are very, very similar to those for antimatter--so far we know only one tiny difference in them, a detail of the weak interactions of quarks that earned Makoto Kobayashi and Toshihide Maskawa a share of the 2008 Nobel Prize for Physics. Our understanding of the early Universe also tells us that after inflation ended equal amounts of matter and antimatter were produced. Today there's a lot of matter in the universe, but very little antimatter. This leaves a big question for cosmology. How did matter gain the upper hand over antimatter? It's a question at the root of our existence. Without this excess, there would be no stars, no Earth, and no us. When a particle meets its antiparticle, they annihilate each other in a flash of radiation. This process removed all the antimatter and most of the matter as the universe expanded and cooled. All that's left today is the excess amount of matter when destruction began to dominate over production. To get from equality to inequality for matter and antimatter requires a difference in the laws of physics between them and some special situation where it affects the balance between them. But, when we try to use the tiny difference we know about between quark and antiquark weak interactions to generate the imbalance, it doesn't work. We find a way that it can indeed give a small excess of matter over antimatter, but not nearly enough to give us all the matter we see in our universe. We can patch up the theory by adding unknown particles to it to make a scenario that works. Indeed we can do that in

  8. 2nd International Workshop on Antimatter and Gravity

    CERN Document Server

    Scampoli, P

    2013-01-01

    The purpose of this meeting is to review the experimental and theoretical aspects of the interaction of antimatter with gravity. Tests of the weak equivalence principle with e.g. positronium, muonium and antihydrogen with be discussed. Progress reports on the experiments at the CERN Antiproton Decelerator and on the available future facilities will be presented. A session on the relevance of antimatter with respect to Dark Energy and Dark Matter in the Universe (theory and experiments) is also foreseen.

  9. Academic Training - Studying Anti-Matter

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 24, 25, 26 April from 11:00 to 12:00 - Main Auditorium, bldg. 500 Main Auditorium, bldg. 500 on 14, 15 March, Council Room on 13, 16 March Studying Anti-Matter R. LANDUA / DSU Antiparticles are a crucial ingredient of particle physics and cosmology. Almost 80 years after Dirac's bold prediction and the subsequent discovery of the positron in 1932, antiparticles are still in the spotlight of modern physics. This lecture for non-specialists will start with a theoretical and historical introduction. Why are antiparticles needed? When and how were they discovered? Why is the (CPT) symmetry between particles and antiparticles so fundamental? What is their role in cosmology? The second part will give an overview about the many aspects of antiparticles in experimental physics: their production, their use in colliders; as a probe inside atoms or nuclei; or as an object to study fundamental symmetries. In the third part, the lecture will focus on results and challenges of the '...

  10. Gravitationally Coupled Dirac Equation for Antimatter

    CERN Document Server

    Jentschura, U D

    2013-01-01

    The coupling of antimatter to gravity is of general interest because of conceivable cosmological consequences ("surprises") related to dark energy and the cosmological constant. Here, we revisit the derivation of the gravitationally coupled Dirac equation and find that the prefactor of a result given previously in [D.R. Brill and J.A. Wheeler, Rev. Mod. Phys., vol. 29, p. 465 (1957)] for the affine connection matrix is in need of a correction. We also discuss the conversion the curved-space Dirac equation from East-Coast to West-Coast conventions, in order to bring the gravitationally coupled Dirac equation to a form where it can easily be unified with the electromagnetic coupling as it is commonly used in modern particle physics calculations. The Dirac equation describes anti-particles as negative-energy states. We find a symmetry of the gravitationally coupled Dirac equation, which connects particle and antiparticle solutions for a general space-time metric of the Schwarzschild type and implies that particl...

  11. Direct observation limits on antimatter gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Fischler, Mark; Lykken, Joe; Roberts, Tom; /Fermilab

    2008-06-01

    The proposed Antihydrogen Gravity experiment at Fermilab (P981) will directly measure the gravitational attraction g between antihydrogen and the Earth, with an accuracy of 1% or better. The following key question has been asked by the PAC: Is a possible 1% difference between g and g already ruled out by other evidence? This memo presents the key points of existing evidence, to answer whether such a difference is ruled out (a) on the basis of direct observational evidence; and/or (b) on the basis of indirect evidence, combined with reasoning based on strongly held theoretical assumptions. The bottom line is that there are no direct observations or measurements of gravitational asymmetry which address the antimatter sector. There is evidence which by indirect reasoning can be taken to rule out such a difference, but the analysis needed to draw that conclusion rests on models and assumptions which are in question for other reasons and are thus worth testing. There is no compelling evidence or theoretical reason to rule out such a difference at the 1% level.

  12. The antimatter factory is ready for another successful year

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    CERN’s contribution to antimatter research is interspersed with important breakthroughs: from the creation of the very first anti-atoms in 1995 to the production of large quantities in 2002 and the invention in 2010 of the technique that freezes them down to allow precise studies of their properties. This week, antimatter experiments are on the starting blocks for a new run that promises to be just as exciting.   The Antiproton Decelerator (AD). CERN’s Antimatter Decelerator (AD) is a unique antimatter factory that produces low-energy anti-protons for creating anti-atoms. The AD delivers its precious ingredients to several experiments that use them to study antimatter properties from many different angles. The 2011 run is about to start, and the experiments are ready to enter a new data-taking period. Their scientific goals for this year include applying spectroscopy techniques for the first time to probe the inner workings of antihydrogen atoms; evaluating the biological effe...

  13. Proposed antimatter gravity measurement with an antihydrogen beam

    CERN Document Server

    Kellerbauer, A G

    2008-01-01

    The principle of the equivalence of gravitational and inertial mass is one of the cornerstones of general relativity. Considerable efforts have been made and are still being made to verify its validity. A quantum-mechanical formulation of gravity allows for non-Newtonian contributions to the force which might lead to a difference in the gravitational force on matter and antimatter. While it is widely expected that the gravitational interaction of matter and of antimatter should be identical, this assertion has never been tested experimentally. With the production of large amounts of cold antihydrogen at the CERN Antiproton Decelerator, such a test with neutral antimatter atoms has now become feasible. For this purpose, we have proposed to set up the AEGIS experiment at CERN/AD, whose primary goal will be the direct measurement of the Earth’s gravitational acceleration on antihydrogen with a classical Moiré deflectometer.

  14. Experimental constraints on the free fall acceleration of antimatter

    CERN Document Server

    Alves, Daniele S M; Saraswat, Prashant

    2009-01-01

    In light of recent experimental proposals to measure the free fall acceleration of antihydrogen in the earth's gravitational field, we investigate the bounds that existing experiments place on any asymmetry between the free fall of matter and antimatter. We conclude that existing experiments constrain any such asymmetry to be less than about 10^-7. First we consider contributions to the inertial masses of atoms that encode the presence of antimatter and use precision Eotvos experiments to establish the level at which they satisfy the equivalence principle. In particular we focus on vacuum polarization effects and the antiquark content of nucleons. Second we consider a class of theories that contain long range scalar and vector forces that cancel with one another to some high precision. By construction such theories would be able to evade detection in Eotvos experiments that utilize matter while still allowing for a signal in antimatter experiments. Even taking such cancellation for granted, however, we show t...

  15. On the random geometry of a symmetric matter antimatter universe

    International Nuclear Information System (INIS)

    A statistical analysis is made of the randon geometry of an early symmetric matter-antimatter universe model. Such a model is shown to determine the total number of the largest agglomerations in the universe, as well as of some special configurations. Constraints on the time development of the protoagglomerations are also obtained

  16. The Role of Antimatter in Big-Bang Cosmology

    Science.gov (United States)

    Stecker, Floyd W.

    1974-01-01

    Discusses theories underlying man's conceptions of the universe, including Omnes' repulsive separation mechanism, the turbulence theory of galaxy formation, and the author's idea about gamma ray spectra in cosmological matter-antimatter annihilation. Indicates that the Apollo data provide encouraging evidence by fitting well with his theoretical…

  17. Our Lopsided Universe: The Matter with Anti-Matter

    International Nuclear Information System (INIS)

    Half of our universe appears to be missing, and scientists at SLAC and all over the world are trying to understand why. Don't miss this talk in which Steve Sekula will explain the core issues surrounding matter and anti-matter.

  18. ELENA prepares a bright future for antimatter research

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    At its recent session in June, the CERN Council approved the construction of the Extra Low ENergy Antiproton ring (ELENA) – an upgrade of the existing Antiproton Decelerator. ELENA will allow the further deceleration of antiprotons, resulting in an increased number of particles trapped downstream in the experimental set-ups. This will give an important boost to antimatter research in the years to come.   Layout of the AD experimental hall: the Antiproton Decelerator ring (purple); the ALPHA, ASACUSA, and ATRAP experiments (green); the ACE experiment (not pictured); and the new ELENA ring (blue). The Antiproton Decelerator (AD) is CERN’s widely recognized facility for the study of antimatter properties. The recent successes of the AD experiments are just the latest in a long list of important scientific results that started with LEAR (Low Energy Antiproton Ring). The scientific demand for low-energy antiprotons at the AD continues to grow. There are now four experiments runnin...

  19. Search for Antimatter with the AMS Cosmic Ray Detector

    International Nuclear Information System (INIS)

    Antimatter search results of the Alpha Magnetic Spectrometer (AMS) detector are presented. About 108 triggers were collected in the 1998 precursor flight onboard space shuttle Discovery. This ten day mission exposed the detector on a 51.7o orbit at an altitude around 350km. Identification of charged cosmic rays is achieved by multiple energy loss and time-of-flight measurements. Bending inside the 0.15T magnetic volume yields a measurement of the absolute value of the particle's rigidity. The supplemental knowledge of the sense of traversal identifies the sign of the charge. In the rigidity range 1 6 helium and 1.65 x 105 heavy nuclei were precisely measured. Hence, upper limits on the flux ratio (bar Z)/Z are given. Different prior assumptions on the antimatter spectrum are considered and corresponding limits are given

  20. Antimatter Assisted Inertial Confinement Fusion Propulsion Systems for Interstellar Missions

    Science.gov (United States)

    Halyard, R. J.

    Current developments such as the Ion Compressed Antimatter Nuclear (ICAN-II) propulsion system proposed by the Pennsylvania State University Center for Space Propulsion Engineering open the way to the possible use of available supplies of antiprotons to power antimatter assisted inertial confinement fusion (AAICF) propulsion systems for interstellar missions. Analysis indicates that light weight AAICF propulsion systems with specific impulses in excess of seven hundred thousand seconds may be feasible within the next 30 years. AAICF should prove to be the optimum propulsion system since it possesses high thrust, low weight and high exhaust velocity. The purpose of this paper is to evaluate the potential of AAICF propulsion for interstellar missions such as NASA Administrator Dan Goldin's Alpha Centauri Flyby and a Barnard's Star Orbital Mission, and to compare these projections with previous performance estimates for ICF Laser Beam propulsion systems.

  1. The creation of high energy densities with antimatter beams

    International Nuclear Information System (INIS)

    The use of antiprotons (and antideuterons) for the study of the behavior of nuclear matter at high energy density is considered. It is shown that high temperatures and high energy densities can be achieved for small volumes. Also investigated is the strangeness production in antimatter annihilation. It is found that the high rate of Lambda production seen in a recent experiment is easily understood. The Lambda and K-short rapidity distributions are also reproduced by the model considered. 11 refs., 6 figs

  2. The creation of high energy densities with antimatter beams

    International Nuclear Information System (INIS)

    The use of antiprotons (and antideuterons) for the study of the behavior of nuclear matter at high energy density is considered. It is shown that high temperatures and high energy densities can be achieved for small volumes. Also investigated is the strangeness production in antimatter annihilation. It is found that the high rate of Λ-production seen in a recent experiment is easily understood. The Λ and Ks rapidity distributions are also reproduced by the model considered. (orig.)

  3. The physics of antimatter induced fusion and thermonuclear explosions

    OpenAIRE

    Gsponer, Andre; Hurni, Jean-Pierre

    2005-01-01

    The possibility of using antihydrogen for igniting inertial confinement fusion pellets or triggering large-scale thermonuclear explosions is investigated. The number of antiproton annihilations required to start a thermonuclear burn wave in either DT or Li_2DT is found to be about 10^{21}/k^2, where k is the compression factor of the fuel to be ignited. We conclude that the financial and energy investments needed to produce such amounts of antiprotons would confine applications of antimatter ...

  4. Beta limitation of matter-antimatter boundary layers

    International Nuclear Information System (INIS)

    A model has earlier been proposed for a boundary layer which separates a cloud of matter from one of antimatter in a magnetized ambiplasma. In this model steady pressure equilibrium ceases to exist when a certain beta limit is exceeded. The latter is defined as the ratio between the ambiplasma and magnetic field pressures which balance each other in the boundary layer. Thus, at an increasing density, the high-energy particles created by annihilation within the layer are 'pumped up' to a pressure which cannot be balanced by a given magnetic field. The boundary layer then 'disrupts'. The critical beta limit thus obtained falls within the observed parameter ranges of galaxies and other large cosmical objects. Provided that the considered matter-antimatter balance holds true, this limit is thus expected to impose certain existence conditions on matter-antimatter boundary layers. Such a limitation may apply to certain cosmical objects and cosmological models. The maximum time scale for the corresponding disruption development has been estimated to be in the range from about 10-4 to 102 seconds for boundary layers at ambiplasma particle densities in the range from 104 to 10-2 m-3, respectively. (author)

  5. ALICE’s wonderland reveals the heaviest antimatter ever observed

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Producing and observing antiparticles is part of everyday life for many physics laboratories around the world, including CERN. However, recreating and observing the anti-nuclei of complex atoms is a much more difficult task. Analysing data collected in a run of just one month, ALICE has recently found evidence of the formation of four anti-nuclei of Helium 4, the heaviest antimatter ever created in a laboratory.   The STAR experiment at RHIC came first and published the result in March: they presented evidence of 18 anti-nuclei of Helium 4 collected over several years of data taking. “ALICE came second but it's amazing to see how fast the results came,” exclaims Paolo Giubellino, the experiment’s spokesperson. “We were able to confirm the observation of 4He anti-nuclei with data collected in November 2010.” Scientists agree on the fact that antimatter was created in the Big Bang together with matter. However, today we do not observe antimatter outsid...

  6. Antimatter search with AMS (Alpha Magnetic Spectrometer) during STS-91 precursor flight

    International Nuclear Information System (INIS)

    The Alpha Magnetic Spectrometer (AMS) is designed to study the antimatter, matter and dark matter in space. AMS successfully flown on space shuttle Discovery during precursor flight STS-91 in a 51.7 degree sign orbit at altitudes between 320 and 390 km. No antimatter nuclei with Z ≥ 2 were detected. In this report we present the AMS performances during shuttle flight and we give new limits on antimatter/matter flux ratio

  7. The generation model of particle physics and the cosmological matter-antimatter asymmetry problem

    CERN Document Server

    Robson, B A

    2016-01-01

    The matter-antimatter asymmetry problem, corresponding to the virtual nonexistence of antimatter in the universe, is one of the greatest mysteries of cosmology. Within the framework of the Generation Model (GM) of particle physics, it is demonstrated that the matter-antimatter asymmetry problem may be understood in terms of the composite leptons and quarks of the GM. It is concluded that there is essentially no matter-antimatter asymmetry in the present universe and that the observed hydrogen-antihydrogen asymmetry may be understood in terms of statistical fluctuations associated with the complex many-body processes involved in the formation of either a hydrogen atom or an antihydrogen atom.

  8. The physics of antimatter induced fusion and thermonuclear explosions

    CERN Document Server

    Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

    1987-01-01

    The possibility of using antihydrogen for igniting inertial confinement fusion pellets or triggering large scale thermonuclear explosions is investigated. The number of antiproton annihilations required to start a thermonuclear burn wave in either D or Li_2DT is found to be about 10^{21}/k^2, where k is the compression factor of the fuel to be ignited. We conclude that the financial and energy investments needed to produce such amounts of antiprotons would confine applications of antimatter triggered thermonuclear devices to the military domain.

  9. Hangout with CERN and the Google Science Fair: Why does antimatter matter? (S03E01)

    CERN Multimedia

    Kahle, Kate

    2013-01-01

    What is antimatter? Why does antimatter matter? Series 3 of Hangout with CERN starts with a bang! A special hangout with CERN and the Google Science Fair that takes us into the weird and wonderful world of antimatter.CERN physicists Tara Shears and Niels Madsen speak to host Shree Bose, Google Science Fair 2011 grand prize winner and to Samantha Lee, Google Student Ambassador, about this mysterious part of our universe. What antimatter research is going on at CERN and what are the implications? CERN's Rolf Landua also shows us the Hollywood-side of antimatter!Google Science Fair is an online science competition open to students aged 13-18 from around the globe. Students can register at googlesciencefair.com, the closing date is 30 April 2013. Find out more about CERN's involvement in Google Science Fair at http://goo.gl/N9f3GRecorded live on 18th April 2013.

  10. Matter-antimatter asymmetry and dark matter from torsion

    Science.gov (United States)

    Popławski, Nikodem J.

    2011-04-01

    We propose a simple scenario which explains the observed matter-antimatter imbalance and the origin of dark matter in the Universe. We use the Einstein-Cartan-Sciama-Kibble theory of gravity which naturally extends general relativity to include the intrinsic spin of matter. Spacetime torsion produced by spin generates, in the classical Dirac equation, the Hehl-Datta term which is cubic in spinor fields. We show that under a charge-conjugation transformation this term changes sign relative to the mass term. A classical Dirac spinor and its charge conjugate therefore satisfy different field equations. Fermions in the presence of torsion have higher energy levels than antifermions, which leads to their decay asymmetry. Such a difference is significant only at extremely high densities that existed in the very early Universe. We propose that this difference caused a mechanism, according to which heavy fermions existing in such a Universe and carrying the baryon number decayed mostly to normal matter, whereas their antiparticles decayed mostly to hidden antimatter which forms dark matter. The conserved total baryon number of the Universe remained zero.

  11. A new “culprit” for matter-antimatter asymmetry

    CERN Multimedia

    Antonella Del Rosso

    2013-01-01

    In our matter-dominated Universe, the observation of new processes showing matter-antimatter asymmetry allows scientists to test their theories and, possibly, to explore new territories. The LHCb collaboration has recently observed matter-antimatter asymmetries in the decays of the B0s meson, which thus becomes the fourth particle known to present such behaviour.   The VELO detector: a crucial element for particle identifiation in LHCb. Almost all physics processes known to scientists show perfect symmetry if a particle is interchanged with its antiparticle (C symmetry), and then if left and right are swapped (P symmetry). So it becomes very hard to explain why the Universe itself does not conform to this symmetry and, instead, shows a huge preference for matter. Processes that violate this symmetry are rare and of great interest to scientists. Violation of the CP symmetry in neutral kaons was first observed by Nobel Prize Laureates James Cronin and Val Fitch in the 1960s. About 40 years la...

  12. The Symmetry, or Lack of it, Between Matter and Antimatter

    International Nuclear Information System (INIS)

    The subject of antimatter and its relationship to matter began with Dirac, with the publication of his famous equation in 1928.[1] Today it remains an active area of particle physics. The dominant issue for a number of major experimental programs is to decipher the nature of the difference in the laws of physics for matter and for antimatter. This has been a central issue of my work in the past few years, and a recurring theme in earlier work. Hence when I was asked to review a subject of my choice for this conference, this was the obvious choice for me; a very different focus from any other talk here. (Also, it allows me along the way make reference to both pieces of work for which I was cited in my Dirac award, though neither is central to this story.) Given this opportunity, I decided to start with the early history of the subject, both in honor of Dirac and his essential role in it, and because it is fascinating to look back and see how understanding evolves

  13. Do we live in the universe successively dominated by matter and antimatter?

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2011-01-01

    We wonder if a cyclic universe may be dominated alternatively by matter and antimatter. Such a scenario demands a mechanism for transformation of matter to antimatter (or antimatter to matter) during the final stage of a big crunch. By giving an example, we have shown that in principle such a mechanism is possible. Our mechanism is based on a hypothetical repulsion between matter and antimatter, existing at least deep inside the horizon of a black hole. When universe is reduced to a supermassive black hole of a small size, a very strong field of the conjectured force might create (through a Schwinger type mechanism) particle-antiparticle pairs from the quantum vacuum. The amount of antimatter created from the vacuum is equal to the decrease of mass of the black hole and violently repelled from it. When the size of the black hole is sufficiently small, the creation of antimatter may become so fast, that matter of our Universe might be transformed to antimatter in a fraction of second. Such a fast conversion of...

  14. From d-Bars to Antimatter- and Hyperclusters

    Science.gov (United States)

    Steinheimer, J.; Xu, Zhangbu; Rau, P.; Sturm, C.; Stöcker, H.

    The Facility for Antiproton and Ion Research (FAIR) is going to be constructed within the next six years adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt/Germany, expanding the research goals and technical possibilities substantially. Providing a broad spectrum of unprecedented fore-front research at worldwide unique accelerator and experimental facilities, FAIR will open the way for a large variety of experiments in hadron, nuclear, atomic and plasma physics as well as applied sciences which will be briefly described in this article. As an example the article presents research efforts on strangeness at FAIR using heavy ion collisions, exotic nuclei from fragmentation and antiprotons to tackle various topics in this area. In particular the creation of hypernuclei as well as metastable exotic multi-hypernuclear objects (MEMOs) and anti-matter will be investigated.

  15. Babar on the trail of anti-matter

    International Nuclear Information System (INIS)

    Since the discovery of anti-matter obviousness in Dirac's equations in 1928, the physicists have tried to explain the reasons of its rarity in the universe. The new Babar detector of the Stanford Linear Accelerator Center (SLAC) was built to test the standard model and to explore the CP violation. This digest paper gives a broad presentation of the standard model and of the fundamental interactions. It recalls the successive experiments carried out to detect some signatures of the CP violation and presents the SLAC installations and the Babar experiment started in 1993 for the study of Bd0 and B-bard0 meson disintegrations. Another experiment for the study of the CP violation, called Belle, started at the same time at the High Energy Accelerator Research Organisation (KEK) at Tsukuba (Japan). Both experiments should reach their goal until the end of the year 2000. (J.S.)

  16. Star Trek meets the Big Bang curiosity is leading scientists on a mission to explain antimatter

    CERN Multimedia

    Cookson, C

    1998-01-01

    Next year, scientists at CERN will inaugurate the world's first 'antimatter factory'. The 'Antiproton Decelerator' will make more than 2000 atoms of anti-hydrogen an hour and contain them in a magnetic trap within a vacuum (1 page).

  17. Isodual theory of antimatter applications to antigravity, grand unification and cosmology

    CERN Document Server

    Santilli, Ruggero Maria

    2006-01-01

    Antimatter, already conjectured by A. Schuster in 1898, was actually predicted by P.A.M. Dirac in the late 19-twenties in the negative-energy solutions of the Dirac equation. Its existence was subsequently confirmed via the Wilson chamber and became an established part of theoretical physics. Dirac soon discovered that particles with negative energy do not behave in a physically conventional manner, and he therefore developed his "hole theory". This restricted the study of antimatter to the sole level of second quantization. As a result antimatter created a scientific imbalance, because matter was treated at all levels of study, while antimatter was treated only at the level of second quantization. In search of a new mathematics for the resolution of this imbalance the author conceived what we know today as Santilli’s isodual mathematics, which permitted the construction of isodual classical mechanics, isodual quantization and isodual quantum mechanics. The scope of this monograph is to show that our classi...

  18. Matter-antimatter and matter-matter interactions at intermediate energies

    International Nuclear Information System (INIS)

    This article presents some of the recent experimental advances on the study on antimatter-matter and matter-matter interactions, and some of the subtle differences stimulated a great theoretical efforts for explanation of the results experimentally observed

  19. Santilli’s detection of antimatter galaxies: An introduction and experimental confirmation

    Energy Technology Data Exchange (ETDEWEB)

    Bhujbal, P. M. [Department of Physics, Nutan Adarsh Arts, Commerce and Smt. Maniben Harilal Wegad Science College, Umrer-441203, India. Email: prashantmbhujbal@yahoo.com (India)

    2015-03-10

    Studies accompanied over the past few decades on the generalization of quantum mechanics known as hadronic mechanics, initiated in 1978 by the Italian-American physicist Ruggero Maria Santilli and its application for detection of light from antimatter galaxy is reported in this paper. The isodual (antimatter) light has negative energy E{sup d} =-E with negative unit, experiences a negative curvature tensor R{sup d}=-R (gravitational repulsion) when in a matter gravitational field, and possesses a negative index of refraction n{sup d}=-n when propagating within a transparent matter medium. Detection of antimatter galaxies is possible by the refractive telescope with concave lenses constructed by Santilli which follow the concept of negative energy and negative index of refraction for antimatter.

  20. Matter-antimatter asymmetry and dark matter from torsion

    CERN Document Server

    Poplawski, Nikodem J

    2011-01-01

    We propose a simple scenario which explains the observed matter-antimatter imbalance and the origin of dark matter in the Universe. We use the Einstein-Cartan-Sciama-Kibble theory of gravity which naturally extends general relativity to include the intrinsic spin of matter. The torsion of spacetime generates in the Dirac equation the Hehl-Datta term which is cubic in spinor fields. We show that under the charge-conjugation transformation this term changes sign relative to the mass term. A Dirac spinor and its charge-conjugate therefore satisfy different field equations. Fermions in the presence of torsion have higher energy levels than antifermions, which leads to their decay asymmetry. Such a difference is significant only at extremely high densities that existed in the very early Universe. We propose that this difference caused a mechanism, according to which heavy fermions existing in such a Universe and carrying the baryon number decayed mostly to normal matter, whereas their antiparticles decayed mostly ...

  1. New experiment to gain unparalleled insight into antimatter

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    At last week’s Research Board meeting, the Baryon Antibaryon Symmetry Experiment (BASE) was approved for installation at CERN. The experiment will be diving into the search for matter-antimatter asymmetry, as it aims to take ultra-high precision measurements of the antiproton magnetic moment.   CERN's AD Hall: the new home of the BASE double Penning trap set-up. The BASE collaboration will be setting up shop in the AD Hall this September with its first CERN-based experimental set-up. Using the novel double-Penning trap set-up developed at the University of Mainz, GSI Darmstadt and the Max Plank Institute for Nuclear Physics (Germany), the BASE team will be able to measure the antiproton magnetic moment with hitherto unreachable part-per-billion precision. “We constructed the first double-Penning trap at our companion facility in Germany, and made the first ever direct observations of single spin flips of a single proton,” explains Stefan Ulmer from RIKE...

  2. LS1 Report: antimatter research on the starting blocks

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    The consolidation work at the Antiproton Decelerator (AD) has been very intensive and the operators now have a basically new machine to “drive”. Thanks to the accurate preparation work still ongoing, the machine will soon deliver its first beam of antiprotons to the experiments. The renewed efficiency of the whole complex will ensure the best performance of the whole of CERN’s antimatter research programme in the long term.   The test bench for the new Magnetic Horn stripline. On the left, high voltage cables are connected to the stripline, which then feeds a 6 kV 400 kA pulse to the Horn. The Horn itself (the cylindrical object on the right) can be seen mounted on its chariot. The consolidation programme at the AD planned during LS1 has involved some of the most vital parts of the decelerator such as the target area, the ring magnets, the stochastic cooling system, vacuum system, control system and various aspects of the instrumentation. In addit...

  3. A trip to Rome—thanks to antimatter

    CERN Multimedia

    Alizée Dauvergne

    2010-01-01

    The Angels and Demons exhibition created by the PH Department’s Education Group came to an end last summer. The exhibition was accompanied by a competition, with a first prize of a flight to Rome. Now we know the winner’s name. An exhibit of the Angels&Demons - the science behind the story exhibition She is Sarah Manton, and she is from Scotland. In September Sarah will fly to Rome with her husband to retrace the Angels and Demons street itinerary. “We are looking forward to visiting the usual tourist sights, including all the places that feature in Angels and Demons such as the Pantheon,” she said in answer to a question from the exhibition organisers. The couple was touring CERN when, intrigued by the Globe and the name of the exhibition, they decided to do a visit and participate in the competition. Five correct answers on antimatter later—and several months on—Sarah got a pleasant surprise: “I decided to have a go at the quiz an...

  4. Mean-field effects on matter and antimatter elliptic flow

    International Nuclear Information System (INIS)

    We report our recent work on mean-field potential effects on the elliptic flows of matters and antimatters in heavy ion collisions leading to the production of a baryon-rich matter. Within the framework of a multiphase transport (AMPT) model that includes both initial partonic and final hadronic interactions, we have found that including mean-field potentials in the hadronic phase leads to a splitting of the elliptic flows of particles and their antiparticles, providing thus a plausible explanation of the different elliptic flows between p and anti-p, K+ and K-, and π+ and π- observed by the STAR Collaboration in the Beam Energy Scan (BES) program at the Relativistic Heavy Ion Collider (RHIC). Using a partonic transport model based on the Nambu-Jona-Lasinio (NJL) model, we have also studied the effect of scalar and vector mean fields on the elliptic flows of quarks and antiquarks in these collisions. Converting quarks and antiquarks at hadronization to hadrons via the quark coalescence model, we have found that the elliptic flow differences between particles and antiparticles also depend on the strength of the quark vector coupling in baryon-rich quark-gluon plasma, providing thus the possibility of extracting information on the latter's properties from the BES program at RHIC. (authors)

  5. a Classical Isodual Theory of Antimatter and its Prediction of Antigravity

    Science.gov (United States)

    Santilli, Ruggero Maria

    An inspection of the contemporary physics literature reveals that, while matter is treated at all levels of study, from Newtonian mechanics to quantum field theory, antimatter is solely treated at the level of second quantization. For the purpose of initiating the restoration of full equivalence in the treatment of matter and antimatter in due time, and as the classical foundations of an axiomatically consistent inclusion of gravitation in unified gauge theories recently appeared elsewhere, in this paper we present a classical representation of antimatter which begins at the primitive Newtonian level with corresponding formulations at all subsequent levels. By recalling that charge conjugation of particles into antiparticles is antiautomorphic, the proposed theory of antimatter is based on a new map, called isoduality, which is also antiautomorphic (and more generally, antiisomorphic), yet it is applicable beginning at the classical level and then persists at the quantum level where it becomes equivalent to charge conjugation. We therefore present, apparently for the first time, the classical isodual theory of antimatter, we identify the physical foundations of the theory as being the novel isodual Galilean, special and general relativities, and we show the compatibility of the theory with all available classical experimental data on antimatter. We identify the classical foundations of the prediction of antigravity for antimatter in the field of matter (or vice-versa) without any claim on its validity, and defer its resolution to specifically identified experiments. We identify the novel, classical, isodual electromagnetic waves which are predicted to be emitted by antimatter, the so-called space-time machine based on a novel non-Newtonian geometric propulsion, and other implications of the theory. We also introduce, apparently for the first time, the isodual space and time inversions and show that they are nontrivially different than the conventional ones, thus

  6. Beautiful asymmetry[The difference between matter and antimatter

    Energy Technology Data Exchange (ETDEWEB)

    Forty, R. [CERN (Switzerland)]. E-mail: roger.forty@cern.ch

    2006-10-15

    The LHCb experiment at CERN will allow researchers to study the difference between matter and antimatter with unprecedented accuracy, explains Roger Forty. Our current understanding of matter and forces at the subatomic scale, as embodied in the Standard Model of particle physics, is widely considered incomplete. Its most famous missing ingredient is the Higgs Boson, thought to endow all particles with mass, but there are strong indications that other pieces of the theoretical jigsaw puzzle are missing too. One of these concerns 'dark matter', the mysterious substance thought to make up more than a fifth of the universe. Postulated to account for gravitational effects that cannot be explained by the amount of visible matter alone, dark matter could be made up of exotic new particles that are not described by the Standard Model. Fortunately, there is a good chance that such particles - and the Higgs - will be created in the high-energy collisions between protons at the Large Hadron Collider (LHC). There are two approaches to discovering such new physics. The first is to try and observe the new particles directly by detecting their decay products, which will be the goal of the two giant 'general-purpose' LHC experiments ATLAS and CMS. The alternative approach is to make precision measurements of parameters that are predicted within the Standard Model and to look for deviations that could be due to as-yet-undetected particles. This is the goal of the LHCb (LHC beauty) experiment, which is dedicated to the precision study of particles that contain the bottom or beauty quark. (U.K.)

  7. A position sensitive silicon detector for AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy)

    CERN Multimedia

    Gligorova, A

    2014-01-01

    The AEḡIS experiment (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is located at the Antiproton Decelerator (AD) at CERN and studies antimatter. The main goal of the AEḡIS experiment is to carry out the first measurement of the gravitational acceleration for antimatter in Earth’s gravitational field to a 1% relative precision. Such a measurement would test the Weak Equivalence Principle (WEP) of Einstein’s General Relativity. The gravitational acceleration for antihydrogen will be determined using a set of gravity measurement gratings (Moiré deflectometer) and a position sensitive detector. The vertical shift due to gravity of the falling antihydrogen atoms will be detected with a silicon strip detector, where the annihilation of antihydrogen will take place. This poster presents part of the development process of this detector.

  8. On possible problems of physics, chemistry and technology of antimatter for projects of spaceships

    International Nuclear Information System (INIS)

    Full text:Great interest is paid on possibility of obtaining intensive beams of positrons (probably also other antiparticles) at reorganization of physical vacuum in strong fields (for example, in an electric field of modern super-power laser beams (http://infox.ru/science/lab/2008/11/18/antimatter.phtml) and on accelerators. It can possibly be related with creation of space solar factories on the Moon or asteroids, etc. with use of the transformed energy of radiation of the Sun to electric energy and also space for manufacture and storages of positrons. The essence of the method should consist in generation by means of the transformed energy of the Sun on accelerators or any other methods of beams of fast positrons with their subsequent delay up to temperatures of the order 0,5 K in some closed area of a space. Thus, very significant stocks of positrons could be created. Gathering of such positrons in magnetic traps in conditions of a space can become rather effective method of accumulation of antimatter by means transformations of energy of the sun (http://www.portalus.ru/modules/science/data/files/prokopiev/Project-Prokop-Paper.pdf). At the modern level of development of technologies it is not necessary to obtained much antimatter. Besides this process is very expensive. Therefore probably really to speak only about tens or hundreds nanograms of generated antimatter. This quantity of antimatter, apparently, would suffice for creation of space vehicles (SV) with the sizes in nano-or a micron range (http://www.portalus.ru/modules/science/data/files/prokopiev/Antimatter-Positronics-_ProektEngRus.doc). This fantastic assumption is not deprived sense in a context of modern development of nanotechnologies in the World. All the sizes long devices and details such SV should not exceed the sizes of nano- and micron ranges. (author)

  9. Undergraduate Laboratory Experiment: Measuring Matter Antimatter Asymmetries at the Large Hadron Collider

    CERN Document Server

    Parkes, Chris; Gutierrez, J

    2015-01-01

    This document is the student manual for a third year undergraduate laboratory experiment at the University of Manchester. This project aims to measure a fundamental difference between the behaviour of matter and antimatter through the analysis of data collected by the LHCb experiment at the Large Hadron Collider. The three-body dmecays $B^\\pm \\rightarrow h^\\pm h^+ h^-$, where $h^\\pm$ is a $\\pi^\\pm$ or $K^\\pm$ are studied. The inclusive matter antimatter asymmetry is calculated, and larger asymmetries are searched for in localized regions of the phase-space.

  10. Primordial space-time foam as an origin of cosmological matter-antimatter asymmetry

    CERN Document Server

    Ahluwalia, D V

    2001-01-01

    The possibility is raised that the observed cosmological matter-antimatter asymmetry may reside in asymmetric space-time fluctuations and their interplay with the St\\"ckelberg-Feynman interpretation of antimatter. The presented thesis also suggests that the effect of space-time fluctuations is to diminish the fine structure constant in the past. Recent studies of the QSO absorption lines provide a 4.1 standard deviation support for this prediction. Our considerations suggest that in the presence of space-time fluctuations, the principle of local gauge invariance, and the related notion of parallel transport, must undergo fundamental changes.

  11. Unified picture for Dirac neutrinos, dark matter, dark energy and matter-antimatter asymmetry

    OpenAIRE

    Gu, Pei-Hong

    2007-01-01

    We propose a unified scenario to generate the masses of Dirac neutrinos and cold dark matter at the TeV scale, understand the origin of dark energy and explain the matter-antimatter asymmetry of the universe. This model can lead to significant impact on the Higgs searches at LHC.

  12. York University atomic scientist contributes to new breakthrough in the production of antimatter

    CERN Multimedia

    2002-01-01

    Physicists working in Europe, including Canada Research Chair in Atomic Physics at York University, Prof. Eric Hessels, have succeeded in capturing the first glimpse of the structure of antimatter. The ATRAP group of scientists at CERN have managed to examine the internal states of anti-hydrogen atoms (1/2 page).

  13. Euro-led research team creates first ever reaction between matter and antimatter

    CERN Multimedia

    2006-01-01

    "An EU-funded team of international researchers has produced the first ever reaction between matter and antimatter, creating protonium. Protonium is a unique type of atom that consists of a proton and an antiproton orbiting around each other." (1 page)

  14. Chemical reaction between matter and antimatter realized for the first time: it brings about the formation of protonium

    CERN Multimedia

    2006-01-01

    "Matter and antimatter particles run into each other and they annihilate into a small flash of energy: it happened at the first light of the Universe and it happens every day in the particles accelerators throughout the world." (1 page)

  15. How to build an antimatter rocket for interstellar missions - systems level considerations in designing advanced propulsion technology vehicles

    Science.gov (United States)

    Frisbee, Robert H.

    2003-01-01

    This paper discusses the general mission requirements and system technologies that would be required to implement an antimatter propulsion system where a magnetic nozzle is used to direct charged particles to produce thrust.

  16. Experimental constraints on anti-gravity and antimatter, in the context of dark energy

    CERN Document Server

    Ting, Yuan-Sen

    2013-01-01

    In a paper by Villata (2011), the possibility of a repulsive gravitational interaction between antimatter and ordinary matter was discussed. The author argued that this anti-gravity can be regarded as a prediction of general relativity, under the assumption of CPT symmetry. Stringent experimental constraints have been established against such a suggestion. The measurement of free-fall accelerations of various nuclei by the Eot-Wash group and searches for equivalence principle violation through the gravitational splitting in kaon physics consistently establish null results on any difference between the gravitational behaviour of antimatter and ordinary matter. The original arguments against antigravity were questioned by Nieto & Goldman (1991). In the light of new experiments as well as theoretical developments in the past 20 years, some of Nieto & Goldman's concerns have been addressed. While a precise measurement of the free-fall acceleration of antihydrogen will eventually lay this issue to rest, th...

  17. Can the new Neutrino Telescopes and LHC reveal the gravitational proprieties of antimatter?

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2011-01-01

    What are the gravitational proprieties of antimatter is still not known. One possibility is the gravitational repulsion between matter and antimatter (in short we call it antigravity). We point out two possible signatures of the assumed existence of antigravity. First, the supermassive black hole in the center of our Galaxy (Southern Sky)and in the center of the Andromeda Galaxy (Northern Sky)may produce a flux of antineutrinos measurable with the new generation of the neutrino telescopes; like the IceCube Neutrino Detector under construction at the South Pole, and the future one cubic kilometer telescope in Mediterranean Sea. Second, if microscopic black holes are successfully produced at the Large Hadron Collider (LHC) at CERN, their thermal (Hawking's) radiation should be dominated by a non-thermal radiation caused by antigravity.

  18. Flight performance of EXAM - a balloon-borne detector to search for extragalactic antimatter

    International Nuclear Information System (INIS)

    We describe the performance of the EXAM detector during its five hour balloon flight in 1988. EXAM is an experiment designed to search for cosmic rays of extragalactic origin which are made of antimatter. The EXAM technique to identify antinuclei is unique, being based on higher order corrections to electronic stopping power of charged particles, and on the response characteristics of CR-39 track-etch detectors, plastic scintillators, and Cherenkov radiators. Included in the present paper are the completed analysis of the electronic detectors, and preliminary results of the analysis of the track-etch detectors, including a demonstration of our ability to match particles identified with the drift tube tracking elements during the flight with their tracks found in the passive CR-39 detectors. When the CR-39 analysis is complete, we will have approximately 10 000 events for which antimatter analysis can be made. ((orig.))

  19. Experimental constraints on anti-gravity and antimatter, in the context of dark energy

    OpenAIRE

    Ting, Yuan-Sen

    2013-01-01

    In a paper by Villata (2011), the possibility of a repulsive gravitational interaction between antimatter and ordinary matter was discussed. The author argued that this anti-gravity can be regarded as a prediction of general relativity, under the assumption of CPT symmetry. Stringent experimental constraints have been established against such a suggestion. The measurement of free-fall accelerations of various nuclei by the Eot-Wash group and searches for equivalence principle violation throug...

  20. The alpha magnetic spectrometer (AMS): search for antimatter and dark matter on the international space station

    Energy Technology Data Exchange (ETDEWEB)

    Battiston, R. [Perugia Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Perugia (Italy)

    1998-06-01

    The alpha magnetic spectrometer (AMS) is a state of the art detector for the extraterrestrial study of anti-matter, matter and missing matter. After a precursor flight on STS91 in may 1998, AMS will be installed on the International Space Station where it will operate for three years. In this paper the AMS experiment is described and its physics potential reviewed. (orig.). 18 refs.

  1. Frontiers in propulsion research: Laser, matter-antimatter, excited helium, energy exchange thermonuclear fusion

    Science.gov (United States)

    Papailiou, D. D. (Editor)

    1975-01-01

    Concepts are described that presently appear to have the potential for propulsion applications in the post-1990 era of space technology. The studies are still in progress, and only the current status of investigation is presented. The topics for possible propulsion application are lasers, nuclear fusion, matter-antimatter annihilation, electronically excited helium, energy exchange through the interaction of various fields, laser propagation, and thermonuclear fusion technology.

  2. Limits on Cosmic Matter--Antimatter Domains from Big Bang Nucleosynthesis

    OpenAIRE

    Rehm, Jan B.; Jedamzik, Karsten

    2000-01-01

    We present detailed numerical calculations of the light element abundances synthesized in a Universe consisting of matter- and antimatter- domains, as predicted to arise in some electroweak baryogenesis scenarios. In our simulations all relevant physical effects, such as baryon-antibaryon annihilations, production of secondary particles during annihilations, baryon diffusion, and hydrodynamic processes are coupled to the nuclear reaction network. We identify two dominant effects, according to...

  3. Prospects for Studies of the Free Fall and Gravitational Quantum States of Antimatter

    Directory of Open Access Journals (Sweden)

    G. Dufour

    2015-01-01

    Full Text Available Different experiments are ongoing to measure the effect of gravity on cold neutral antimatter atoms such as positronium, muonium, and antihydrogen. Among those, the project GBAR at CERN aims to measure precisely the gravitational fall of ultracold antihydrogen atoms. In the ultracold regime, the interaction of antihydrogen atoms with a surface is governed by the phenomenon of quantum reflection which results in bouncing of antihydrogen atoms on matter surfaces. This allows the application of a filtering scheme to increase the precision of the free fall measurement. In the ultimate limit of smallest vertical velocities, antihydrogen atoms are settled in gravitational quantum states in close analogy to ultracold neutrons (UCNs. Positronium is another neutral system involving antimatter for which free fall under gravity is currently being investigated at UCL. Building on the experimental techniques under development for the free fall measurement, gravitational quantum states could also be observed in positronium. In this contribution, we report on the status of the ongoing experiments and discuss the prospects of observing gravitational quantum states of antimatter and their implications.

  4. Prospects for Studies of the Free Fall and Gravitational Quantum States of Antimatter

    International Nuclear Information System (INIS)

    Different experiments are ongoing to measure the effect of gravity on cold neutral antimatter atoms such as positronium, muonium, and antihydrogen. Among those, the project GBAR at CERN aims to measure precisely the gravitational fall of ultracold antihydrogen atoms. In the ultracold regime, the interaction of antihydrogen atoms with a surface is governed by the phenomenon of quantum reflection which results in bouncing of antihydrogen atoms on matter surfaces. This allows the application of a filtering scheme to increase the precision of the free fall measurement. In the ultimate limit of smallest vertical velocities, antihydrogen atoms are settled in gravitational quantum states in close analogy to ultracold neutrons (UCNs). Positronium is another neutral system involving antimatter for which free fall under gravity is currently being investigated at UCL. Building on the experimental techniques under development for the free fall measurement, gravitational quantum states could also be observed in positronium. In this contribution, we report on the status of the ongoing experiments and discuss the prospects of observing gravitational quantum states of antimatter and their implications

  5. About a problem of reception of antimatter: possibility of research f properties, synthesis and applications

    International Nuclear Information System (INIS)

    Full text: It is of special interest to study a possibility of reception of intensive streams of positrons (probably and other antiparticles) at reorganization of physical vacuum in strong fields (for example, in an electric field of modern super-power laser beams) and on accelerators. This topic can be possible related to creation of space solar factories on the Moon or asteroids, etc. with use of the solar radiation energy transformed into electric energy, and use of space for manufacturing and storages of positrons [1-7]. The essence of the method should consist of fast positron streams reception by means of the transformed solar energy on accelerators, or any other methods, with their subsequent delay up to temperatures of the order 0.5 K in some closed area of space. Thus, very significant stocks of positrons could be created. Gathering of such positrons in magnetic traps in space conditions can become rather effective method of accumulation of antimatter. Present level of technologies does not allow accumulation of received antimatter in large amounts. Besides, this reception process of is very expensive. Therefore, probably, only about ten or hundred nanograms of antimatter is yet received. This quantity of antimatter would be apparently sufficient for creation of space vehicles (SV) with the sizes in nano-or a micron range. These are not some crazy fantastic assumption in a context of modern development of nanotechnologies in the World. All the units and details of such SV should not exceed nano- and micron ranges. The situation can change, if the black holes both natural and created by the human can become 'factories' of antimatter http://www.rian.ru/rian/intro.cfm (A.D.Dolgov (ITEP) et al). Gravitation in vicinities of a black hole so is great, that there is no object, even radiation that can leave. Indeed, gravitation of a black hole acts on protons more strongly, than on electrons as their mass is larger. As a result, the black hole gets a positive

  6. The development and performance of the EXAM detector to search for extragalactic antimatter

    International Nuclear Information System (INIS)

    The design and development of a practical balloon borne instrument capable of detecting heavy (Z approximately equal to -26) antimatter in the cosmic rays are described. Emphasis is placed on describing the essential physics of the EXAM (extragalactic antimatter) instrument's individual detectors that make such a detection possible. In particular, it is shown that the responses from a plastic scintillator, a Cerenkov radiation detector, dielectric track detectors, and proportional drift tube arrays can be used to uniquely determine the speed, charge magnitude, and charge sign of a cosmic ray nucleus. This novel nonmagnetic detection scheme permits the construction of a relatively light weight (approximately 2,000 kg) detector with a large collecting power (approximately 10 sq m sr). The profound cosmological and elementary particle physics implications of the detection of just a single heavy antimatter nucleus are discussed in chapter one, along with arguments that imply that such a detected antinucleus must necessarily be extragalactic in origin. Chapters two through six describe the response of EXAM's individual detectors to the passage of heavily ionizing charged particles. Chapter seven is an overview of the mechanical construction of the entire instrument. Details of the measurement of the light collection efficiency of EXAM's Cerenkov detector and primary scintillator using sea-level muons and how this will be used to assist in the flight data analysis are contained in chapter eight. This chapter also includes a description of the instrument's electronic configuration and its data acquisition system. Finally, there are two appendices summarizing some important mechanical stress calculations that were required to actually build the instrument

  7. Development and data analysis of a position detector for AE$\\bar{g}$IS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy)

    CERN Document Server

    Gligorova, Angela; Doser, Michael; Pacifico, Nicola

    2015-03-13

    AE$\\mathrm{\\bar{g}}$IS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an antimatter experiment based at CERN, the European Organization for Nuclear Research, whose goal is to carry out the first direct measurement of the Earth’s gravitational acceleration on antimatter. The outcome of such measurement would be the first precision test of the Weak Equivalence Principle in a completely new area. According to WEP, all bodies fall with the same acceleration regardless of their mass and composition. AE$\\mathrm{\\bar{g}}$IS will attempt to achieve its aim by measuring the gravitational acceleration ($\\bar{g}$) for antihydrogen with 1$\\%$ relative precision. The first step towards the final goal is the formation of a pulsed, cold antihydrogen beam, which will be performed by a charge exchange reaction between laser excited (Rydberg) positronium and cold (100 mK) antiprotons. The antihydrogen atoms will be accelerated by an inhomogeneous electric field (Stark acceleration) to form a beam whose fr...

  8. Soft CP violation and the global matter-antimatter symmetry of the universe

    Science.gov (United States)

    Senjanovic, G.; Stecker, F. W.

    1980-01-01

    Scenarios for baryon production are considered within the context of SU(5) and SO(10) grand unified theories where CP violation arises spontaneously. The spontaneous CP symmetry breaking then results in a matter-antimatter domain structure in the universe. Two possible, distinct types of theories of soft CP violation are defined. In the first type the CP nonconservation originates only from the breaking of SU(2) sub L X U(1) symmetry, and in the second type, even at the unification temperature scale, CP violation can emerge as a result of symmetry breaking by the vacuum expectation values of the superheavy Higgs sector scalars.

  9. Coherent combs of anti-matter from nonlinear electron-positron pair creation

    CERN Document Server

    Krajewska, K

    2014-01-01

    Electron-positron pair creation in collisions of a modulated laser pulse with a high-energy photon (nonlinear Breit-Wheeler process) is studied by means of strong-field quantum electrodynamics. It is shown that the driving pulse modulations lead to appearance of comb structures in the energy spectra of produced positrons (electrons). It is demonstrated that these combs result from a coherent enhancement of probability amplitudes of pair creation from different modulations of the laser pulse. Thus, resembling the Young-double slit experiment for anti-matter (matter) waves.

  10. Coherent combs of antimatter from nonlinear electron-positron-pair creation

    Science.gov (United States)

    Krajewska, K.; Kamiński, J. Z.

    2014-11-01

    Electron-positron-pair creation in collisions of a modulated laser pulse with a high-energy photon (nonlinear Breit-Wheeler process) is studied by means of strong-field quantum electrodynamics. It is shown that the driving pulse modulations lead to the appearance of comb structures in the energy spectra of produced positrons (electrons). It is demonstrated that these combs result from a coherent enhancement of probability amplitudes of pair creation from different modulations of the laser pulse, thus resembling the Young-type double-slit experiment for antimatter (matter) waves.

  11. Experimental considerations for testing antimatter antigravity using positronium 1S-2S spectroscopy

    Science.gov (United States)

    Crivelli, P.; Cooke, D. A.; Friedreich, S.

    2014-05-01

    In this contribution to the WAG 2013 workshop we report on the status of our measurement of the 1S-2S transition frequency of positronium. The aim of this experiment is to reach a precision of 0.5 ppb in order to cross check the QED calculations. After reviewing the current available sources of Ps, we consider laser cooling as a route to push the precision in the measurement down to 0.1 ppb. If such an uncertainty could be achieved, this would be sensitive to the gravitational redshift and therefore be able to assess the sign of gravity for antimatter.

  12. Dissecting the Science of 'Angels and Demons' or Antimatter and Other Matters (Vernon W. Hughes Memorial Lecture)

    International Nuclear Information System (INIS)

    Howard Gordon, a physicist from the U.S. Department of Energy's Brookhaven National Laboratory, and local educators will separate the science facts from the science fiction of 'Angels and Demons,' a major motion picture based on Dan Brown's best-selling novel. The film, which opens nationally in theaters today, focuses on a plot to destroy the Vatican using antimatter stolen from the Large Hadron Collider (LHC) at the European particle physics laboratory CERN. Speakers will explain the real science of the LHC, including antimatter - oppositely charged cousins of ordinary matter with intriguing properties.

  13. Mathematical Descriptions of Axially Varying Penning Traps for the Antimatter Experiment: gravity, Interferometry, and Spectroscopy

    CERN Document Server

    Stephanie, Brown

    2015-01-01

    Antimatter, though proposed in 1933, is still not well understood. AEgIS aims to study the interaction of antihydrogen with the earth's gravitational field. This information will add to our understanding of the matter-antimatter asymmetry present in our universe. This paper discusses a Penning-Malmberg with a magnetic mirror that will hold $C_{2}^{-}$ that will be used for sympathetic cooling of antiprotons before the antihydrogen is created. The trap, which is critical to the cooling process of the antihydrogen, can be characterized by the separatrix between trapped and untrapped particles. This paper applies analytical processes used to define the separatrix of pure electron plasmas to a molecular plasma. Our work is based on the desire conditions (density, particle number, field strength, trap size) of the high field region. The initial application of a semi-analytical method applied to our trap defines the trap potential difference at \\~ 0.6V. The separatrix is defined in both the high and low fiel...

  14. Limits on Cosmic Matter--Antimatter Domains from Big Bang Nucleosynthesis

    CERN Document Server

    Rehm, J B; Rehm, Jan B.; Jedamzik, Karsten

    2001-01-01

    We present detailed numerical calculations of the light element abundances synthesized in a Universe consisting of matter- and antimatter- domains, as predicted to arise in some electroweak baryogenesis scenarios. In our simulations all relevant physical effects, such as baryon-antibaryon annihilations, production of secondary particles during annihilations, baryon diffusion, and hydrodynamic processes are coupled to the nuclear reaction network. We identify two dominant effects, according to the typical spatial dimensions of the domains. Small antimatter domains are dissipated via neutron diffusion prior to He4 synthesis at T_He4 \\approx 80 keV, leading to a suppression of the primordial He4 mass fraction. Larger domains are dissipated below T_He4 via a combination of proton diffusion and hydrodynamic expansion. In this case the strongest effects on the elemental abundances are due to anti-p He4 annihilations, leading to an overproduction of He3 relative to H2 and to overproduction of Li6 via non-thermal nuc...

  15. CP violation and the matter-antimatter asymmetry of the Universe

    Science.gov (United States)

    Hambye, Thomas

    2012-03-01

    In our everyday environment one observes only matter. That's quite a fortunate situation! Any sizeable presence of antimatter on Earth, from the enormous energy it would release through annihilation with matter, would prevent us talking about it! For the physicist this fact, at first sight obvious, is nevertheless a kind of surprise: antimatter, which is observed in cosmic rays, in radioactive decays of nuclei, which has been copiously produced and extensively studied in accelerators and which is nowadays currently used in hospitals, turns out to have pretty much the same properties as matter. Moreover, the fact that matter dominates appears to be a general property of our Universe: no evidence of large quantities of antimatter has been observed at any distance from us. Why would matter have taken the advantage on antimatter? In this short review we explain how, through a limited number of basic elements, one can find answers to this question. Matter and antimatter have, in fact, not exactly the same properties: from laboratory experiments CP conservation is known not to be a fundamental law of nature. Dans notre vie de tous les jours nous n'appréhendons que de la matière et rien ne nous indique à première vue qu'il puisse exister de l'antimatière. Bienheureux sommes nous ! La présence d'une quelconque quantité macroscopique d'antimatière autour de nous, par l'énergie qu'elle dégagerait en s'annihilant avec la matière, nous empêcherait d'être là pour en parler ! Cet état de chose est cependant une surprise pour le physicien : l'antimatière qui est aujourd'hui bien connue — étant observée et utilisée tous les jours dans les rayons cosmiques, les processus radioactifs, les accélérateurs de particules et les hôpitaux — a des propriétés très similaires à celles de la matière. De plus le fait que la matière domine apparaît être une caractéristique générale de notre univers : aucune trace d'une grande quantité d'antimatière n'a

  16. The electrosphere of macroscopc ""nuclei"": diffuse emissions in the MeV band from dark antimatter

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Michael Mcneil [Los Alamos National Laboratory; Lawson, Kyle [CANADA; Zhitnitsky, Ariel R [CANADA

    2009-01-01

    Using a Thomas-Fermi model, we calculate the structure of the electrosphere of the quark antimatter nuggets postulated to comprise much of the dark matter. This provides a single self-consistent density profile from ultra-rel ativistic densities to the non-relativistic Boltzmann regime. We use this to present a microscopically justified calculation of several properties of the nuggets, including their net charge, and the ratio of MeV to 511 keV emissions from electron annihilation. We find that the calculated parameters agree with previous phenomenological estimates based on the observational supposition that the nuggets are a source of several unexplained diffuse emissions from the galaxy. This provides another nontrivial verification of the dark matter proposal. The structure of the electrosphere is quite general and will also be valid at the surface of strange-quark stars, should they exist.

  17. Neutrinos in the Early Universe, Kalb-Ramond Torsion and Matter-Antimatter Asymmetry

    Directory of Open Access Journals (Sweden)

    Mavromatos Nick E.

    2014-04-01

    Full Text Available The generation of a matter-antimatter asymmetry in the universe may be induced by the propagation of fermions in non-trivial, spherically asymmetric (and hence Lorentz violating gravitational backgrounds. Such backgrounds may characterise the epoch of the early universe. The key point in these models is that the background induces di_erent dispersion relations, hence populations, between fermions and antifermions, and thus CPT Violation (CPTV appears in thermal equilibrium. Species populations may freeze out leading to leptogenesis and baryogenesis. We consider here a string-inspired scenario, in which the CPTV is associated with a cosmological background with torsion provided by the Kalb-Ramond (KR antisymemtric tensor field of the string gravitational multiplet. In a four-dimensional space time this field is dual to a pseudoscalar “axionlike” field. The mixing of the KR field with an ordinary axion field can lead to the generation of a Majorana neutrino mass.

  18. Matter-antimatter and matter-matter interactions at intermediate energies; Interacao materia-antimateria e materia-materia a energias intermediarias

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Antonio Carlos Fontes dos [Missouri Univ., Rolla, MO (United States). Dept. of Physics]. E-mail: antoniocfs@hotmail.com

    2002-07-01

    This article presents some of the recent experimental advances on the study on antimatter-matter and matter-matter interactions, and some of the subtle differences stimulated a great theoretical efforts for explanation of the results experimentally observed.

  19. Search for antimatter in 1012 eV cosmic rays using Artemis method and interpretation of the cosmic rays spectrum

    International Nuclear Information System (INIS)

    This thesis is divided into three parts. The first part is a review of the present knowledge of the antimatter and of the cosmic rays. Theoretical and experimental aspects are presented. It is demonstrated that a measurement of the antimatter abundance in TeV cosmic rays is of fundamental interest, and would establish the symmetric or asymmetric nature of the Universe. The second part is dedicated to the method of antimatter research through the Earth Moon ion spectrometer (ARTEMIS). The account is given of the winter 1996-97 41-nights observation campaign undertaken at the Whipple Observatory in Arizona (USA). A 109 photomultiplier camera is operated on the 40 meter telescope to detect by Cherenkov imaging the cosmic ray initiated showers. We describe the performance of an optical filter used to reduce the noise. The development and the utilization of a simulation program are described. The main work is the analysis of the data: data characterization, understanding of the apparatus, understanding of the noise and its influence, calibration, search for signals by different methods. Subtle systematic effects are uncovered. The simulations establish that the amount of data is insufficient to reveal a shadow effect in the cosmic ray flux. The conclusion of this work is that the experimental setup was not suitable, and we propose important improvements of the method based on a bigger focal plane that would allow to reach a one percent sensitivity on the antimatter content of the cosmic rays. In the third part of the thesis, an interpretation of the total cosmic ray spectrum is proposed and discussed. (author)

  20. AEgIS experiment: Towards anti-hydrogen beam production for antimatter gravity measurements

    International Nuclear Information System (INIS)

    AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an experiment that aims to perform the first direct measurement of the gravitational acceleration g of anti-hydrogen in the Earth's field. A cold anti-hydrogen beam will be produced by charge exchange reaction between cold antiprotons and positronium excited in Rydberg states. Rydberg positronium (with quantum number n between 20 and 30) will be produced by a two steps laser excitation. The anti-hydrogen beam, after being accelerated by Stark effect, will fly through the gratings of a 'moire' deflectometer. The deflection of the horizontal beam due to its free fall will be measured by a position sensitive detector. It is estimated that the detection of about 103 anti-hydrogen atoms is required to determine the gravitational acceleration with a precision of 1%. In this report an overview of the AEgIS experiment is presented and its current status is described. Details on the production of slow positronium and its excitation with lasers are discussed. (authors)

  1. AEgIS experiment: Towards antihydrogen beam production for antimatter gravity measurements

    CERN Document Server

    Mariazzi, Sebastiano; Amsler, Claude; Ariga, Akitaka; Ariga, Tomoko; Belov, Alexandre S; Bonomi, Germano; Bräunig, Philippe; Brusa, Roberto S; Bremer, Johan; Cabaret, Louis; Canali, Carlo; Caravita, Ruggero; Castelli, Fabrizio; Cerchiari, Giovanni; Cialdi, Simone; Comparat, Daniel; Consolati, Giovanni; Dassa, Luca; Derking, Jan Hendrik; Di Domizio, Sergio; Di Noto, Lea; Doser, Michael; Dudarev, Alexey; Ereditato, Antonio; Ferragut, Rafael; Fontana, Andrea; Genova, Pablo; Giammarchi, Marco; Gligorova, Angela; Gninenko, Sergei N; Hogan, Stephen D; Haider, Stefan; Jordan, Elena; Jørgensen, Lars V; Kaltenbacher, Thomas; Kawada, Jiro; Kellerbauer, Alban; Kimura, Mitsuhiro; Knecht, Andreas; Krasnický, Daniel; Lagomarsino, Vittorio; Lehner, Sebastian; Malbrunot, Chloe; Matveev, Viktor A; Merkt, Frederic; Moia, Fabio; Nebbia, Giancarlo; Nédélec, Patrick; Oberthaler, Markus K; Pacifico, Nicola; Petráček, Vojtech; Pistillo, Ciro; Prelz, Francesco; Prevedelli, Marco; Regenfus, Christian; Riccardi, Cristina; Røhne, Ole; Rotondi, Alberto; Sandaker, Heidi; Scampoli, Paola; Storey, James; Subieta Vasquez, Martin A.; Spaček, Michal; Czech Technical U. in Prague - FNSPE - B\\oehova 7 - 11519 - Praha 1 - Czech Aff25 Testera, Gemma; Vaccarone, Renzo; Villa, Fabio; Widmann, Eberhard; Zavatarelli, Sandra; Zmeskal, Johann

    2014-01-01

    AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an experiment that aims to perform the first direct measurement of the gravitational acceleration g of antihydrogen in the Earth’s field. A cold antihydrogen beam will be produced by charge exchange reaction between cold antiprotons and positronium excited in Rydberg states. Rydberg positronium (with quantum number n between 20 and 30) will be produced by a two steps laser excitation. The antihydrogen beam, after being accelerated by Stark effect, will fly through the gratings of a moir ́ e deflectometer. The deflection of the horizontal beam due to its free fall will be measured by a position sensitive detector. It is estimated that the detection of about 10 3 antihydrogen atoms is required to determine the gravitational acceleration with a precision of 1%. In this report an overview of the AEgIS experiment is presented and its current status is described. Details on the production of slow positronium and its excitation with lasers ar...

  2. New dimensions of the periodic system: superheavy, superneutronic, superstrange, antimatter nuclei

    Science.gov (United States)

    Greiner, Walter

    2010-12-01

    The possibilities for the extension of the periodic system into the islands of superheavy (SH) elements, to and beyond the neutron drip line and to the sectors of strangeness and antimatter are discussed. The multi-nucleon transfer processes in low-energy damped collisions of heavy actinide nuclei may help us to fill the gap between the nuclei produced in the "hot" fusion reactions and the continent of known nuclei. In these reactions we may also investigate the "island of stability". In many such collisions the lifetime of the composite giant system consisting of two touching nuclei turns out to be rather long (≥10-20 s); sufficient for observing line structure in spontaneous positron emission from super-strong electric fields (vacuum decay), a fundamental QED process not observed yet experimentally. At the neutron-rich sector near the drip line islands and extended ridges of quasistable nuclei are predicted by HF calculations. Such nuclei, as well as very long living superheavy nuclei may be provided in double atomic bomb explosions. A tremendously rich scenario of new nuclear structure emerges with new magic numbers in the strangeness domain. Various production mechanisms are discussed for these objects and for antinuclei in high energy heavy-ion collisions.

  3. QED-driven laser absorption

    CERN Document Server

    Levy, M C; Ratan, N; Sadler, J; Ridgers, C P; Kasim, M; Ceurvorst, L; Holloway, J; Baring, M G; Bell, A R; Glenzer, S H; Gregori, G; Ilderton, A; Marklund, M; Tabak, M; Wilks, S C; Norreys, P A

    2016-01-01

    Absorption covers the physical processes which convert intense photon flux into energetic particles when a high-power laser illuminates optically-thick matter. It underpins important petawatt-scale applications today, e.g., medical-quality proton beam production. However, development of ultra-high-field applications has been hindered since no study so far has described absorption throughout the entire transition from the classical to the quantum electrodynamical (QED) regime of plasma physics. Here we present a model of absorption that holds over an unprecedented six orders-of-magnitude in optical intensity and lays the groundwork for QED applications of laser-driven particle beams. We demonstrate 58% efficient \\gamma-ray production at $1.8\\times 10^{25}~\\mathrm{W~ cm^{-2}}$ and the creation of an anti-matter source achieving $4\\times 10^{24}\\ \\mathrm{positrons}\\ \\mathrm{cm^{-3}}$, $10^{6}~\\times$ denser than of any known photonic scheme. These results will find applications in scaled laboratory probes of bla...

  4. Antimatter and Dark Matter Search in Space: BESS-Polar Results

    Science.gov (United States)

    Mitchell, John W.; Yamamoto, Akira

    2009-01-01

    The apex of the Balloon-borne Experiment with a Superconducting Spectrometer program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier anti-nuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of anti-deuterons and anti-helium, The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.

  5. The Discovery of Anti-Matter The Autobiography of Carl David Anderson, the Youngest Man to Win the Nobel Prize

    CERN Document Server

    1999-01-01

    In 1936, at age 31, Carl David Anderson became the second youngest Nobel laureate for his discovery of antimatter when he observed positrons in a cloud chamber.He is responsible for developing rocket power weapons that were used in World War II.He was born in New York City in 1905 and was educated in Los Angeles. He served for many years as a physics professor at California Institute of Technology. Prior to Oppenheimer, Anderson was offered the job of heading the Los Alamos atomic bomb program but could not assume the role because of family obligations.He was a pioneer in studying cosmic rays

  6. Problems of antimatter after Big Bang, dark energy and dark matter. Solutions in the frame of non-local physics

    CERN Document Server

    Alexeev, Boris V

    2010-01-01

    Quantum solitons are discovered with the help of generalized quantum hydrodynamics. The solitons have the character of the stable quantum objects in the self consistent electric field. The delivered theory demonstrates the great possibilities of the generalized quantum hydrodynamics in investigation of the quantum solitons. The theory leads to solitons as typical formations in the generalized quantum hydrodynamics. The principle of universal antigravitation is considered from positions of the Newtonian theory of gravitation and non-local kinetic theory. It is found that explanation of Hubble effect in the Universe and peculiar features of the rotational speeds of galaxies need not in introduction of new essence like dark matter and dark energy. Problems of antimatter after Big Bang are considered from positions of non-local physics. The origin of difficulties consists in total Oversimplification following from principles of local physics and reflects the general shortenings of the local kinetic transport theo...

  7. Elementary process theory: a formal axiomatic system with a potential application as a foundational framework for physics supporting gravitational repulsion of matter and antimatter

    International Nuclear Information System (INIS)

    Theories of modern physics predict that antimatter having rest mass will be attracted by the earth's gravitational field, but the actual coupling of antimatter with gravitation has not been established experimentally. The purpose of the present research was to identify laws of physics that would govern the universe if antimatter having rest mass would be repulsed by the earth's gravitational field. As a result, a formalized axiomatic system was developed together with interpretation rules for the terms of the language: the intention is that every theorem of the system yields a true statement about physical reality. Seven non-logical axioms of this axiomatic system form the elementary process theory (EPT): this is then a scheme of elementary principles describing the dynamics of individual processes taking place at supersmall scale. It is demonstrated how gravitational repulsion functions in the universe of the EPT, and some observed particles and processes have been formalized in the framework of the EPT. Incompatibility of quantum mechanics (QM) and General Relativity (GR) with the EPT is proven mathematically; to demonstrate applicability to real world problems to which neither QM nor GR applies, the EPT has been applied to a theory of the Planck era of the universe. The main conclusions are that a completely formalized framework for physics has been developed supporting the existence of gravitational repulsion and that the present results give rise to a potentially progressive research program. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. Antimatter H4Λ hypernucleus production and the H3Λ /3He puzzle in relativistic heavy-ion collisions

    Science.gov (United States)

    Sun, Kai-Jia; Chen, Lie-Wen

    2016-06-01

    We show that the measured yield ratio H3Λ /3He(H¯3¯Λ /¯3He ) in Au +Au collisions at √{sN N}=200 GeV and in Pb +Pb collisions at √{sN N}=2.76 TeV can be understood within a covariant coalescence model if (anti-)Λ particles freeze out earlier than (anti-)nucleons but their relative freeze-out time is closer at √{sN N}=2.76 TeV than at √{sN N}=200 GeV. The earlier (anti-)Λ freeze-out can significantly enhance the yield of (anti)hypernucleus H4Λ (H¯4¯Λ ), leading to that H¯4¯Λ has a comparable abundance with ¯4He and thus provides an easily measured antimatter candidate heavier than ¯4He. The future measurement on H4Λ (H¯4¯Λ ) would be very useful to understand the (anti-)Λ freeze-out dynamics and the production mechanism of (anti)hypernuclei in relativistic heavy-ion collisions.

  9. The BALLOON-borne and PAMELA experiments for the study of the antimatter component in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Spillantini, Piero E-mail: piero.spillantini@fi.infn.it

    2004-01-01

    The PAMELA experiment is based on a satellite-borne equipment actually in the final integration phase. It will be installed on board of the Russian satellite Resurs DK1 and launched in a quasi-polar orbit from the Baikonur cosmodrom at the beginning of next year. PAMELA will measure the antiproton and positron fluxes in cosmic rays with high statistics and in a large energy range (80 MeV-190 GeV for antiprotons and 50 MeV-270 GeV for positrons), extending to never investigated energies the measurements of several balloon borne experiments performed by the same PAMELA collaboration in last decade. This will make achievable sensitive tests of cosmic ray propagation models in the Galaxy and the search, in an energy range never investigated before, of possible structures in the fluxes. These structures, related to the presence of primary antiparticle sources, could be signals of 'new physics', connected with open problems like dark matter existence and matter/antimatter symmetry in the Universe. The detector consists of a very precise magnetic spectrometer, several scintillation counter hodoscopes to measure the energy losses and times of flight, and a high granularity and deep Si-W calorimeter, augmented by a very compact transition radiation detector and a He3 neutron detector hodoscope, and protected around and on the top by an anticoincidence system.

  10. Particle tracking at 4 K: The Fast Annihilation Cryogenic Tracking (FACT) detector for the AEgIS antimatter gravity experiment

    Energy Technology Data Exchange (ETDEWEB)

    Storey, J., E-mail: james.storey@cern.ch [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern, 3012 Bern (Switzerland); Canali, C. [University of Zurich, Physics Institute, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Aghion, S. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Milano, Via Celoria 16, 20133 Milano (Italy); Ahlén, O. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Amsler, C.; Ariga, A.; Ariga, T. [Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern, 3012 Bern (Switzerland); Belov, A.S. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312 (Russian Federation); Bonomi, G. [University of Brescia, Department of Mechanical and Industrial Engineering, Via Branze 38, 25133 Brescia (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, Via Agostino Bassi 6, 27100 Pavia (Italy); Bräunig, P. [University of Heidelberg, Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, 69120 Heidelberg (Germany); Bremer, J. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Brusa, R.S. [Dipartimento di Fisica, Università di Trento and INFN, Gruppo Collegato di Trento, Via Sommarive 14, 38050 Povo, Trento (Italy); Burghart, G. [European Organisation for Nuclear Research, Physics Department, 1211 Geneva 23 (Switzerland); Cabaret, L. [Laboratoire Aimé Cotton, CNRS, Université Paris Sud, ENS Cachan, Bâtiment 505, Campus d' Orsay, 91405 Orsay Cedex (France); Carante, M. [Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, Via Agostino Bassi 6, 27100 Pavia (Italy); Caravita, R. [University of Milano, Department of Physics, Via Celoria 16, 20133 Milano (Italy); and others

    2013-12-21

    The AEgIS experiment is an international collaboration with the main goal of performing the first direct measurement of the Earth's gravitational acceleration on antimatter. Critical to the success of AEgIS is the production of cold antihydrogen (H{sup ¯}) atoms. The FACT detector is used to measure the production and temperature of the H{sup ¯} atoms and for establishing the formation of a H{sup ¯} beam. The operating requirements for this detector are very challenging: it must be able to identify each of the thousand or so annihilations in the 1 ms period of pulsed H{sup ¯} production, operate at 4 K inside a 1 T solenoidal field and not produce more than 10 W of heat. The FACT detector consists of two concentric cylindrical layers of 400 scintillator fibres with a 1 mm diameter and a 0.6 mm pitch. The scintillating fibres are coupled to clear fibres which transport the scintillation light to 800 silicon photomultipliers. Each silicon photomultiplier signal is connected to a linear amplifier and a fast discriminator, the outputs of which are sampled continuously by Field Programmable Gate Arrays (FPGAs). In the course of the developments for the FACT detector we have established the performance of scintillating fibres at 4 K by means of a cosmic-ray tracker operating in a liquid helium cryostat. The FACT detector was installed in the AEgIS apparatus in December 2012 and will be used to study the H{sup ¯} formation when the low energy antiproton physics programs resume at CERN in the Summer of 2014. This paper presents the design requirements and construction methods of the FACT detector and provides the first results of the detector commissioning.

  11. Antimatter in full view

    CERN Multimedia

    2004-01-01

    "Antiprotons confined in a magnetic trap have been imaged in 3D for the first time by researchers working on the ATHENA experiment at CERN. The new technique could have important implications for the production and detection of antihydrogen" (1 paragraph)

  12. A smattering of antimatter.

    CERN Multimedia

    Yam, P

    1996-01-01

    Physicists at CERN have succeeded in developing antihydrogen by directing a beam of antiprotons through a jet of xenon atoms. The antihydrogen results from the interaction of one antiproton with a xenon atom. However, it lasts for only 40 seconds.

  13. First antimatter chemistry

    CERN Multimedia

    2006-01-01

    "The Athena collaboration, an experimental group working at the CERN laboratory in Geneva, has measured chemical reactions involving antiprotonic hydrogen, a bound object consisting of a negatively charged antiproton paired with a positively charged proton." (1 page)

  14. ANTIMATTER - THE ULTIMATE MIRROR

    CERN Multimedia

    Gordon FRASER - ETT

    2000-01-01

    This new 200-page popular science book by CERN Courier Editor Gordon Fraser, published by Cambridge University Press, focuses on the 1995 synthesis of antihydrogen atoms at CERN and the implications of this physics. It is now available from the Reception Shop, Building 33, price SFr 30,and from the User Support Bookshop in Bldg 513 1-022, http://consult.cern.ch/service/bookshop/, for purchase via tid, edh or cash.

  15. Antimatter could fight cancer

    CERN Multimedia

    2006-01-01

    A pioneering experiment at CERN with potential future applications in cancer therapy has produced its first results. Researchers found that antiprotons are four times more effective than protons for cell irradiation.

  16. Proof Driven Development

    OpenAIRE

    Goodspeed, Ben

    2015-01-01

    A new workflow for software development (proof-driven development) is presented. An extension of test-driven development, the new workflow utilizes the paradigm of dependently typed programming. The differences in design, complexity and provability of software are discussed, based on the technique used to create the system. Furthermore, the difference in what properties can be expressed in a proof-driven development workflow versus a traditional test-driven development workflow or using test-...

  17. Robotically Driven Architectural Production

    OpenAIRE

    Bier, H.H.

    2014-01-01

    Robotically driven architectural production advances seamless, computer-numerically controlled (CNC) and robotically supported design to production and operation processes enabling im-plementation of robotically driven buildings from conceptualisation to use. It enables production of free-formed, heterogeneous, optimized structures in order to address specific requirements in terms of properties (density, consistency, rigidity, etc.) and behaviours (re-configurability, responsiveness, etc.) i...

  18. An SO(10) × SO(10)' model for common origin of neutrino masses, ordinary and dark matter-antimatter asymmetries

    International Nuclear Information System (INIS)

    We propose an SO(10) × SO(10)' model to simultaneously realize a seesaw for Dirac neutrino masses and a leptogenesis for ordinary and dark matter-antimatter asymmetries. A (16 × 1-bar 6-bar ')H scalar crossing the SO(10) and SO(10)' sectors plays an essential role in this seesaw-leptogenesis scenario. As a result of lepton number conservation, the lightest dark nucleon as the dark matter particle should have a determined mass around 15 GeV to explain the comparable fractions of ordinary and dark matter in the present universe. The (16 × 1-bar 6-bar ')H scalar also mediates a U(1)em × U(1)'em kinetic mixing after the ordinary and dark left-right symmetry breaking so that we can expect a dark nucleon scattering in direct detection experiments and/or a dark nucleon decay in indirect detection experiments. Furthermore, we can impose a softly broken mirror symmetry to simplify the parameter choice

  19. Developer Driven and User Driven Usability Evaluations

    DEFF Research Database (Denmark)

    Bruun, Anders

    2013-01-01

    Usability evaluation provide software development teams with insights on the degree to which a software application enables a user to achieve his/her goals, how fast these goals can be achieved, how easy it is to learn and how satisfactory it is in use Although usability evaluations are crucial in...... explores two of these: 1) The first approach is to support SWPs by training them to drive usability evaluations. 2) The second approach to support SWPs involves minimalist training of end users to drive usability evaluations. In related work, a set of five quality criteria for usability evaluations is...... usability evaluations, and how do they perform with respect to the quality criteria? I studied the developer driven and user driven approaches by firstly conducting literature surveys related to each of these topics followed by artificial settings research and finally by conducting research in natural...

  20. Model Driven Engineering

    Science.gov (United States)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.

  1. Discovery Driven Growth

    DEFF Research Database (Denmark)

    Bukh, Per Nikolaj

    2009-01-01

    Anmeldelse af Discovery Driven Growh : A breakthrough process to reduce risk and seize opportunity, af Rita G. McGrath & Ian C. MacMillan, Boston: Harvard Business Press. Udgivelsesdato: 14 august......Anmeldelse af Discovery Driven Growh : A breakthrough process to reduce risk and seize opportunity, af Rita G. McGrath & Ian C. MacMillan, Boston: Harvard Business Press. Udgivelsesdato: 14 august...

  2. Production of antimatter 5,6Li nuclei in central Au+Au collisions at sNN=200 GeV

    Directory of Open Access Journals (Sweden)

    Kai-Jia Sun

    2015-12-01

    Full Text Available Combining the covariant coalescence model and a blast-wave-like analytical parametrization for (anti-nucleon phase–space freezeout configuration, we explore light (anti-nucleus production in central Au+Au collisions at sNN=200 GeV. Using the nucleon freezeout configuration (denoted by FO1 determined from the measured spectra of protons (p, deutrons (d and 3He, we find the predicted yield of 4He is significantly smaller than the experimental data. We show this disagreement can be removed by using a nucleon freezeout configuration (denoted by FO2 in which the nucleons are assumed to freeze out earlier than those in FO1 to effectively consider the effect of large binding energy value of 4He. Assuming the binding energy effect also exists for the production of 5Li, Li‾5, 6Li and Li‾6 due to their similar binding energy values as 4He, we find the yields of these heavier (anti-nuclei can be enhanced by a factor of about one order, implying that although the stable (anti-6Li nucleus is unlikely to be observed, the unstable (anti-5Li nucleus could be produced in observable abundance in Au+Au collisions at sNN=200 GeV where it may be identified through the p–4He (p‾–He‾4 invariant mass spectrum. The future experimental measurement on (anti-5Li would be very useful to understand the production mechanism of heavier antimatter.

  3. The Spin-Charge-Family theory offers the explanation for all the assumptions of the Standard model, for the Dark matter, for the Matter-antimatter asymmetry, making several predictions

    OpenAIRE

    Borštnik, Norma Susana Mankoč

    2016-01-01

    The spin-charge-family theory, which is a kind of the Kaluza-Klein theories but with fermions carrying two kinds of spins (no charges), offers the explanation for all the assumptions of the standard model, with the origin of families, the higgs and the Yukawa couplings included. It offers the explanation also for other phenomena, like the origin of the dark matter and of the matter/antimatter asymmetry in the universe. It predicts the existence of the fourth family to the observed three, as w...

  4. Driven Markovian Quantum Criticality.

    Science.gov (United States)

    Marino, Jamir; Diehl, Sebastian

    2016-02-19

    We identify a new universality class in one-dimensional driven open quantum systems with a dark state. Salient features are the persistence of both the microscopic nonequilibrium conditions as well as the quantum coherence of dynamics close to criticality. This provides a nonequilibrium analogue of quantum criticality, and is sharply distinct from more generic driven systems, where both effective thermalization as well as asymptotic decoherence ensue, paralleling classical dynamical criticality. We quantify universality by computing the full set of independent critical exponents within a functional renormalization group approach. PMID:26943517

  5. The driven spinning top

    Science.gov (United States)

    Grosu, Ioan; Featonby, David

    2016-05-01

    This driven top is quite a novelty and can, with some trials, be made using the principles outlined here. This new top has many applications in developing both understanding and skills and these are detailed in the article. Depending on reader’s available time and motivation they may feel an urge to make one themselves, or simply invest a few pounds in the one that has been designed, tested and manufactured to a high standard. Either way the unique design of the driven top can provide several hours of interesting experimentation. Our aim here is simply to inform and inspire readers to further investigation and experimentation.

  6. Solution driven versus problem driven design: strategies and outcomes

    OpenAIRE

    Kruger, Corinne; Cross, Nigel

    2006-01-01

    Data from protocol studies of nine experienced industrial designers, performing the same task, were analysed to develop an expertise model of the product design process. The protocol data and the expertise model were used to identify four different cognitive strategies employed by the designers: problem driven, solution driven, information driven, and knowledge driven design strategies. These strategies were then related to task outcomes such as solution quality and creativity, and to process...

  7. Trace anomaly driven inflation

    CERN Document Server

    Hawking, Stephen William; Reall, H S

    2001-01-01

    This paper investigates Starobinsky's model of inflation driven by the trace anomaly of conformally coupled matter fields. This model does not suffer from the problem of contrived initial conditions that occurs in inflation driven by a scalar field. The universe is nucleated semi-classically by a cosmological instanton that is much larger than the Planck scale provided there are sufficiently many matter fields. There are two cosmological instantons: the four sphere and a new ``double bubble'' solution. This paper considers a universe nucleated by the four sphere. The AdS/CFT correspondence is used to calculate the correlation function for scalar and tensor metric perturbations during the ensuing de Sitter phase. The analytic structure of the scalar and tensor propagators is discussed in detail. Observational constraints on the model are discussed. Quantum loops of matter fields are shown to strongly suppress short scale metric perturbations, which implies that short distance modifications of gravity would pro...

  8. Transport in driven plasmas

    International Nuclear Information System (INIS)

    A plasma in contact with an external source of power, especially a source that interacts specifically with high-velocity electrons, exhibits transport properties, such as conductivity, different from those of an isolated plasma near thermal equilibrium. This is true even when the bulk of the particles in the driven plasma is near thermal equilibrium. To describe the driven plasma, we derive an adjoint equation to the inhomogeneous, linearized, dynamic Boltzmann equation. The Green's functions for a variety of plasma responses can then be generated. It is possible to modify the Chapman--Enskog [Mathematical Theory of Nonuniform Gases, 3rd ed., (Cambridge U.P., Cambridge, MA, 1970)] expansion in order to incorporate the response functions derived here

  9. Test-driven programming

    Science.gov (United States)

    Georgiev, Bozhidar; Georgieva, Adriana

    2013-12-01

    In this paper, are presented some possibilities concerning the implementation of a test-driven development as a programming method. Here is offered a different point of view for creation of advanced programming techniques (build tests before programming source with all necessary software tools and modules respectively). Therefore, this nontraditional approach for easier programmer's work through building tests at first is preferable way of software development. This approach allows comparatively simple programming (applied with different object-oriented programming languages as for example JAVA, XML, PYTHON etc.). It is predictable way to develop software tools and to provide help about creating better software that is also easier to maintain. Test-driven programming is able to replace more complicated casual paradigms, used by many programmers.

  10. Confidence driven TGV fusion

    OpenAIRE

    Ntouskos, Valsamis; Pirri, Fiora

    2016-01-01

    We introduce a novel model for spatially varying variational data fusion, driven by point-wise confidence values. The proposed model allows for the joint estimation of the data and the confidence values based on the spatial coherence of the data. We discuss the main properties of the introduced model as well as suitable algorithms for estimating the solution of the corresponding biconvex minimization problem and their convergence. The performance of the proposed model is evaluated considering...

  11. Affinity driven social networks

    Science.gov (United States)

    Ruyú, B.; Kuperman, M. N.

    2007-04-01

    In this work we present a model for evolving networks, where the driven force is related to the social affinity between individuals of a population. In the model, a set of individuals initially arranged on a regular ordered network and thus linked with their closest neighbors are allowed to rearrange their connections according to a dynamics closely related to that of the stable marriage problem. We show that the behavior of some topological properties of the resulting networks follows a non trivial pattern.

  12. Driven Boson Sampling

    OpenAIRE

    Barkhofen, Sonja; Bartley, Tim J.; Sansoni, Linda; Kruse, Regina; Hamilton, Craig S.; Jex, Igor; Silberhorn, Christine

    2016-01-01

    Sampling the distribution of bosons that have undergone a random unitary evolution is strongly believed to be a computationally hard problem. Key to outperforming classical simulations of this task is to increase both the number of input photons and the size of the network. We propose driven boson sampling, in which photons are input within the network itself, as a means to approach this goal. When using heralded single-photon sources based on parametric down-conversion, this approach offers ...

  13. Casimir force driven ratchets

    OpenAIRE

    Emig, Thorsten

    2007-01-01

    We explore the non-linear dynamics of two parallel periodically patterned metal surfaces that are coupled by the zero-point fluctuations of the electromagnetic field between them. The resulting Casimir force generates for asymmetric patterns with a time-periodically driven surface-to-surface distance a ratchet effect, allowing for directed lateral motion of the surfaces in sizeable parameter ranges. It is crucial to take into account inertia effects and hence chaotic dynamics which are descri...

  14. Trace anomaly driven inflation

    Science.gov (United States)

    Hawking, S. W.; Hertog, T.; Reall, H. S.

    2001-04-01

    This paper investigates Starobinsky's model of inflation driven by the trace anomaly of conformally coupled matter fields. This model does not suffer from the problem of contrived initial conditions that occurs in most models of inflation driven by a scalar field. The universe can be nucleated semiclassically by a cosmological instanton that is much larger than the Planck scale provided there are sufficiently many matter fields. There are two cosmological instantons: the four sphere and a new ``double bubble'' solution. This paper considers a universe nucleated by the four sphere. The AdS/CFT correspondence is used to calculate the correlation function for scalar and tensor metric perturbations during the ensuing de Sitter phase. The analytic structure of the scalar and tensor propagators is discussed in detail. Observational constraints on the model are discussed. Quantum loops of matter fields are shown to strongly suppress short scale metric perturbations, which implies that short distance modifications of gravity would probably not be observable in the cosmic microwave background. This is probably true for any model of inflation provided there are sufficiently many matter fields. This point is illustrated by a comparison of anomaly driven inflation in four dimensions and in a Randall-Sundrum brane-world model.

  15. News Conference: Brecon hosts 10th teacher's conference Summer school: Science summer school heads to Crete Award: The Corti Science Prize Radioactivity: Scottish beach is no beta off Workshop: Heureka project promotes teaching Experiments: Spanish project proves that learning science can be exciting Lecture: IOP schools lecture journeys from x-rays to antimatter Correction to the news item 'Delegates experience universality' Forthcoming events

    Science.gov (United States)

    2012-01-01

    Conference: Brecon hosts 10th teacher's conference Summer school: Science summer school heads to Crete Award: The Corti Science Prize Radioactivity: Scottish beach is no beta off Workshop: Heureka project promotes teaching Experiments: Spanish project proves that learning science can be exciting Lecture: IOP schools lecture journeys from x-rays to antimatter Correction to the news item 'Delegates experience universality' Forthcoming events

  16. The GBAR antimatter gravity experiment

    International Nuclear Information System (INIS)

    The GBAR project (Gravitational Behaviour of Anti hydrogen at Rest) at CERN, aims to measure the free fall acceleration of ultracold neutral anti hydrogen atoms in the terrestrial gravitational field. The experiment consists preparing anti hydrogen ions (one antiproton and two positrons) and sympathetically cooling them with Be+ ions to less than 10 μK. The ultracold ions will then be photo-ionized just above threshold, and the free fall time over a known distance measured. We will describe the project, the accuracy that can be reached by standard techniques, and discuss a possible improvement to reduce the vertical velocity spread

  17. Search for Antimatter in Space

    CERN Multimedia

    2002-01-01

    PAMELA is a cosmic ray space experiment that will be installed on board of the Russian satellite Resurs-DK1 whose launch is scheduled at the end of 2002. The duration of the mission will be at least three years in a high latitude orbit at an altitude ranging between 350 and 600 Km. \\\\ The observational objectives of the PAMELA experiment are the measurement of the spectra of antiprotons, positrons, particles and nuclei in a wide range of energies, the search for antinuclei and the study of the cosmic ray fluxes during a portion of a solar cycle. The main scientific objectives can be schematically summarized as follows: \\\\ \\\\ a) measurement of the antiproton spectrum in the energy range 80 MeV-190 GeV;\\\\ b) measurement of the positron spectrum in the energy range 50 MeV-270 GeV;\\\\ c) search for antinuclei with a sensitivity of the order $10^{-8}$ in the $\\overline{He}/He$ ratio;\\\\ d) measurement of the nuclei spectra (from H to C) in the energy range 100 MeV/n - 200 GeV/n;\\\\ e) energy spectrum of the electroni...

  18. Observation of an Antimatter Hypernucleus

    Energy Technology Data Exchange (ETDEWEB)

    STAR Collaboration; Abelev, Betty

    2010-07-05

    Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons - composed of an antiproton, antineutron, and antilambda hyperon - produced by colliding gold nuclei at high energy. Our analysis yields 70 {+-} 17 antihypertritons ({sub {bar {Lambda}}}{sup 3}{bar H}) and 157 {+-} 30 hypertritons ({sub {Lambda}}{sup 3}H). The measured yields of {sub {Lambda}}{sup 3}H ({sub {bar {Lambda}}}{sup 3}{bar H}) and {sup 3}He ({sup 3}{ovr He}) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and nuclei containing strange quarks, have implications spanning nuclear/particle physics, astrophysics, and cosmology.

  19. Observation of an Antimatter Hypernucleus

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Anderson, B.D.; Arkhipkin, D.; Averichev, G. S.; Badyal, S. K.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bnzarov, I.; Bombara, M.; Bonner, B.E.; Bouchet, J.; Braidot, E.; Brandin, A.V.; Bruna, E.; Bueltmann, S.; Burton, T.P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Calderon, M.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Chen, J.Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Cosentino, M.R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dogra, S.M.; Dong, X.; Drachenberg, J.L.; Draper, J. E.; Dunlop, J.C.; Mazumdar, M.R.D.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L. (ed.); Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangaharan, D.R.; Ganti, M.S.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Huo, L.; Igo, G..; Lordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Konzer, J.; Kopytine, M.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, C.; Li, N.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H.S.; Matulenko, Yu.A.; McDonald, D.; McShane, T.S.; Meschanin, A.; Millner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mohanty, B.; Mondal, M.M.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Pile, P.; Planinic, M.; Ploskon, M.A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Pujahari, P.R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarini, L.H.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tlustý, David; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; van Nieuwenhuizen, G.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.M.S.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, K.-Y.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zhu, X.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.

    2010-01-01

    Roč. 328, č. 5974 (2010), s. 58-62. ISSN 0036-8075 R&D Projects: GA ČR GA202/07/0079; GA MŠk LA09013 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : QUARK-GLUON-PLASMA * LIGHT HYPERNUCLEI * STRANGENESS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 31.364, year: 2010

  20. The GBAR antimatter gravity experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, P., E-mail: patrice.perez@cea.fr [Institut de Recherches sur les lois Fondamentales de l’Univers (France); Banerjee, D. [Institute for Particle Physics, ETH Zürich (Switzerland); Biraben, F. [UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Laboratoire Kastler Brossel, Collège de France (France); Brook-Roberge, D. [Institut de Recherches sur les lois Fondamentales de l’Univers (France); Charlton, M. [Swansea University, Department of Physics (United Kingdom); Cladé, P. [UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Laboratoire Kastler Brossel, Collège de France (France); Comini, P. [Institut de Recherches sur les lois Fondamentales de l’Univers (France); Crivelli, P. [Institute for Particle Physics, ETH Zürich (Switzerland); Dalkarov, O. [P. N. Lebedev Physical Institute (Russian Federation); Debu, P. [Institut de Recherches sur les lois Fondamentales de l’Univers (France); Douillet, A. [Université d’Evry Val d’Essonne, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Laboratoire Kastler Brossel, Collége de France (France); Dufour, G. [UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Laboratoire Kastler Brossel, Collège de France (France); and others

    2015-08-15

    The GBAR project (Gravitational Behaviour of Anti hydrogen at Rest) at CERN, aims to measure the free fall acceleration of ultracold neutral anti hydrogen atoms in the terrestrial gravitational field. The experiment consists preparing anti hydrogen ions (one antiproton and two positrons) and sympathetically cooling them with Be{sup +} ions to less than 10 μK. The ultracold ions will then be photo-ionized just above threshold, and the free fall time over a known distance measured. We will describe the project, the accuracy that can be reached by standard techniques, and discuss a possible improvement to reduce the vertical velocity spread.

  1. Information-Driven Inspections

    International Nuclear Information System (INIS)

    New uranium enrichment capacity is being built worldwide in response to perceived shortfalls in future supply. To meet increasing safeguards responsibilities with limited resources, the nonproliferation community is exploring next-generation concepts to increase the effectiveness and efficiency of safeguards, such as advanced technologies to enable unattended monitoring of nuclear material. These include attribute measurement technologies, data authentication tools, and transmission and security methods. However, there are several conceptual issues with how such data would be used to improve the ability of a safeguards inspectorate such as the International Atomic Energy Agency (IAEA) to reach better safeguards conclusions regarding the activities of a State. The IAEA is pursuing the implementation of information-driven safeguards, whereby all available sources of information are used to make the application of safeguards more effective and efficient. Data from continuous, unattended monitoring systems can be used to optimize on-site inspection scheduling and activities at declared facilities, resulting in fewer, better inspections. Such information-driven inspections are the logical evolution of inspection planning - making use of all available information to enhance scheduled and randomized inspections. Data collection and analysis approaches for unattended monitoring systems can be designed to protect sensitive information while enabling information-driven inspections. A number of such inspections within a predetermined range could reduce inspection frequency while providing an equal or greater level of deterrence against illicit activity, all while meeting operator and technology holder requirements and reducing inspector and operator burden. Three options for using unattended monitoring data to determine an information-driven inspection schedule are to (1) send all unattended monitoring data off-site, which will require advances in data analysis techniques to

  2. Vacuum-driven Metamorphosis

    CERN Document Server

    Parker, L; Parker, Leonard; Raval, Alpan

    1999-01-01

    We show that nonperturbative vacuum effects can produce a vacuum-driven transition from a matter-dominated universe to one in which the effective equation of state is that of radiation plus cosmological constant. The actual material content of the universe after the transition remains that of non-relativistic matter. This metamorphosis of the equation of state can be traced to nonperturbative vacuum effects that cause the scalar curvature to remain nearly constant at a well-defined value after the transition, and is responsible for the observed acceleration of the recent expansion of the universe.

  3. Information-Driven Inspections

    Energy Technology Data Exchange (ETDEWEB)

    Laughter, Mark D [ORNL; Whitaker, J Michael [ORNL; Lockwood, Dunbar [U.S. Department of Energy, NNSA

    2010-01-01

    New uranium enrichment capacity is being built worldwide in response to perceived shortfalls in future supply. To meet increasing safeguards responsibilities with limited resources, the nonproliferation community is exploring next-generation concepts to increase the effectiveness and efficiency of safeguards, such as advanced technologies to enable unattended monitoring of nuclear material. These include attribute measurement technologies, data authentication tools, and transmission and security methods. However, there are several conceptual issues with how such data would be used to improve the ability of a safeguards inspectorate such as the International Atomic Energy Agency (IAEA) to reach better safeguards conclusions regarding the activities of a State. The IAEA is pursuing the implementation of information-driven safeguards, whereby all available sources of information are used to make the application of safeguards more effective and efficient. Data from continuous, unattended monitoring systems can be used to optimize on-site inspection scheduling and activities at declared facilities, resulting in fewer, better inspections. Such information-driven inspections are the logical evolution of inspection planning - making use of all available information to enhance scheduled and randomized inspections. Data collection and analysis approaches for unattended monitoring systems can be designed to protect sensitive information while enabling information-driven inspections. A number of such inspections within a predetermined range could reduce inspection frequency while providing an equal or greater level of deterrence against illicit activity, all while meeting operator and technology holder requirements and reducing inspector and operator burden. Three options for using unattended monitoring data to determine an information-driven inspection schedule are to (1) send all unattended monitoring data off-site, which will require advances in data analysis techniques to

  4. Constellations-driven innovation

    DEFF Research Database (Denmark)

    Hansbøl, Mikala

    2013-01-01

    The paper presents a science and technology studies and actor-network-theory inspired approach to understanding the development and ongoing re-didactication and re-design of a Danish developed presentation tool called the Theme Board (Tematavlen.dk). It is argued that this approach provides a par...... a particularly useful point of departure for engaging in researching innovation and didactic design of digital teaching and learning instruments such as the Theme Board that are programmed and serviced 'in the sky'. I call this approach: constellation-driven innovations....

  5. Plasma-driven liners

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, H.; Linhart, J.G.; Bortolotti, A. [Ferrara Univ. (Italy). Dipt. di Fisica; Bilbao, L. [Buenos Aires Univ. (Argentina); Nardi, V. [Stevens Inst. of Tech., Hoboken, NJ (United States)

    1992-12-31

    The deposition of thermal energy by laser or ion beams in an ablator is capable of producing a very large acceleration of the adjacent pusher - for power densities of 100 Terrawatts/cm{sup 2}, ablator pressure in the range of 10 Mbar is attainable. In the case of a plasma drive such driving pressures and accelerations are not directly possible. When a snowplough (SP) is used to accelerate a thin liner, the driving pressure is that of the magnetic piston pushing the SP, i.e. at most 0.1 Mbar. However, the initial radius r{sub 0} of the liner can be a few centimeters, instead of 1 (mm) as in the case in direct pellet implosions. In order to compete with the performance of the beam-driven liners, the plasma drive must demonstrate that (a) thin liner retains a high density during the implosion (lasting a fraction of a {mu}sec); (b) radial compression ratio r{sub 0}/r{sub min} of the order of 100 can be attained. It is also attractive to consider the staging of two or more liners in order to get sharpening and amplifications of the pressure and/or radiation pulse. If (a) and (b) are verified then the final pressures produced will be comparable with those of the beam-driven implosions. (author) 5 refs., 3 figs.

  6. Plasma-driven liners

    International Nuclear Information System (INIS)

    The deposition of thermal energy by laser or ion beams in an ablator is capable of producing a very large acceleration of the adjacent pusher - for power densities of 100 Terrawatts/cm2, ablator pressure in the range of 10 Mbar is attainable. In the case of a plasma drive such driving pressures and accelerations are not directly possible. When a snowplough (SP) is used to accelerate a thin liner, the driving pressure is that of the magnetic piston pushing the SP, i.e. at most 0.1 Mbar. However, the initial radius r0 of the liner can be a few centimeters, instead of 1 (mm) as in the case in direct pellet implosions. In order to compete with the performance of the beam-driven liners, the plasma drive must demonstrate that a) thin liner retains a high density during the implosion (lasting a fraction of a μsec); b) radial compression ratio r0/rmin of the order of 100 can be attained. It is also attractive to consider the staging of two or more liners in order to get sharpening and amplifications of the pressure and/or radiation pulse. If a) and b) are verified then the final pressures produced will be comparable with those of the beam-driven implosions. (author) 5 refs., 3 figs

  7. Libration driven multipolar instabilities

    CERN Document Server

    Cébron, David; Herreman, Wietze

    2014-01-01

    We consider rotating flows in non-axisymmetric enclosures that are driven by libration, i.e. by a small periodic modulation of the rotation rate. Thanks to its simplicity, this model is relevant to various contexts, from industrial containers (with small oscillations of the rotation rate) to fluid layers of terrestial planets (with length-of-day variations). Assuming a multipolar $n$-fold boundary deformation, we first obtain the two-dimensional basic flow. We then perform a short-wavelength local stability analysis of the basic flow, showing that an instability may occur in three dimensions. We christen it the Libration Driven Multipolar Instability (LDMI). The growth rates of the LDMI are computed by a Floquet analysis in a systematic way, and compared to analytical expressions obtained by perturbation methods. We then focus on the simplest geometry allowing the LDMI, a librating deformed cylinder. To take into account viscous and confinement effects, we perform a global stability analysis, which shows that...

  8. Soliton driven angiogenesis

    Science.gov (United States)

    Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.

    2016-08-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.

  9. Multilane driven diffusive systems

    International Nuclear Information System (INIS)

    We consider networks made of parallel lanes along which particles hop according to driven diffusive dynamics. The particles also hop transversely from lane to lane, hence indirectly coupling their longitudinal dynamics. We present a general method for constructing the phase diagram of these systems which reveals that in many cases their physics reduce to that of single-lane systems. The reduction to an effective single-lane description legitimizes, for instance, the use of a single TASEP to model the hopping of molecular motors along the many tracks of a single microtubule. Then, we show how, in quasi-2D settings, new phenomena emerge due to the presence of non-zero transverse currents, leading, for instance, to strong ‘shear localization’ along the network. (paper)

  10. Driven Holographic CFTs

    CERN Document Server

    Rangamani, Mukund; Wong, Anson

    2015-01-01

    We study the dynamical evolution of strongly coupled field theories, initially in thermal equilibrium, under the influence of an external driving force. We model the field theory holographically using classical gravitational dynamics in an asymptotically AdS spacetime. The system is driven by a source for a (composite) scalar operator. We focus on a scenario where the external source is periodic in time and chart out the response of several observables. We find an interesting phase structure in the response as a function of the amplitude of the source and driving frequency. Specifically the system transitions from a dissipation dominated phase, via a dynamical crossover to a highly resonant amplification phase. The diagnostics of these phases include the response of the operator in question, entropy production, energy fluctuations, and the temporal change of entanglement entropy for small subsystems. We comment on evidence for a potential phase transition in the energy fluctuations of the system.

  11. Multilane driven diffusive systems

    Science.gov (United States)

    Curatolo, A. I.; Evans, M. R.; Kafri, Y.; Tailleur, J.

    2016-03-01

    We consider networks made of parallel lanes along which particles hop according to driven diffusive dynamics. The particles also hop transversely from lane to lane, hence indirectly coupling their longitudinal dynamics. We present a general method for constructing the phase diagram of these systems which reveals that in many cases their physics reduce to that of single-lane systems. The reduction to an effective single-lane description legitimizes, for instance, the use of a single TASEP to model the hopping of molecular motors along the many tracks of a single microtubule. Then, we show how, in quasi-2D settings, new phenomena emerge due to the presence of non-zero transverse currents, leading, for instance, to strong ‘shear localization’ along the network.

  12. Employee-driven innovation

    DEFF Research Database (Denmark)

    Kesting, Peter; Ulhøi, John Parm

    2015-01-01

    Purpose – The purpose of this paper is to outline the “grand structure” of the phenomenon in order to identify both the underlying processes and core drivers of employee-driven innovation (EDI). Design/methodology/approach – This is a conceptual paper. It particularly applies the insights...... of contemporary research on routine and organizational decision making to the specific case of EDI. Findings – The main result of the paper is that, from a theoretical point of view, it makes perfect sense to involve ordinary employees in innovation decisions. However, it is also outlined that naıve or ungoverned...... participation is counterproductive, and that it is quite difficult to realize the hidden potential in a supportive way. Research limitations/implications – The main implication is that basic mechanisms for employee participation also apply to innovation decisions, although often in a different way. However...

  13. Muscle-driven nanogenerators

    Science.gov (United States)

    Wang, Zhong L.; Yang, Rusen

    2011-03-01

    In a method of generating electricity, a plurality of living cells are grown on an array of piezoelectric nanowires so that the cells engage the piezoelectric nanowires. Induced static potentials are extracted from at least one of the piezoelectric nanowires when at least one of the cells deforms the at least one of the piezoelectric nanowires. A cell-driven electrical generator that includes a substrate and a plurality of spaced-apart piezoelectric nanowires disposed on the substrate. A plurality of spaced-apart conductive electrodes interact with the plurality of piezoelectric nanowires. A biological buffer layer that is configured to promote growth of cells is disposed on the substrate so that cells placed on the substrate will grow and engage the piezoelectric nanowires.

  14. Consistent model driven architecture

    Science.gov (United States)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  15. Digitally-Driven Architecture

    Directory of Open Access Journals (Sweden)

    Henriette Bier

    2010-06-01

    Full Text Available The shift from mechanical to digital forces architects to reposition themselves: Architects generate digital information, which can be used not only in designing and fabricating building components but also in embedding behaviours into buildings. This implies that, similar to the way that industrial design and fabrication with its concepts of standardisation and serial production influenced modernist architecture, digital design and fabrication influences contemporary architecture. While standardisa­tion focused on processes of rationalisation of form, mass-customisation as a new paradigm that replaces mass-production, addresses non-standard, complex, and flexible designs. Furthermore, knowledge about the designed object can be encoded in digital data pertaining not just to the geometry of a design but also to its physical or other behaviours within an environment. Digitally-driven architecture implies, therefore, not only digitally-designed and fabricated architecture, it also implies architecture – built form – that can be controlled, actuated, and animated by digital means. In this context, this sixth Footprint issue examines the influence of digital means as prag­matic and conceptual instruments for actuating architecture. The focus is not so much on computer-based systems for the development of architectural designs, but on architecture incorporating digital control, sens­ing, actuating, or other mechanisms that enable buildings to inter­act with their users and surroundings in real time in the real world through physical or sensory change and variation.

  16. Digitally-Driven Architecture

    Directory of Open Access Journals (Sweden)

    Henriette Bier

    2014-07-01

    Full Text Available The shift from mechanical to digital forces architects to reposition themselves: Architects generate digital information, which can be used not only in designing and fabricating building components but also in embedding behaviours into buildings. This implies that, similar to the way that industrial design and fabrication with its concepts of standardisation and serial production influenced modernist architecture, digital design and fabrication influences contemporary architecture. While standardisation focused on processes of rationalisation of form, mass-customisation as a new paradigm that replaces mass-production, addresses non-standard, complex, and flexible designs. Furthermore, knowledge about the designed object can be encoded in digital data pertaining not just to the geometry of a design but also to its physical or other behaviours within an environment. Digitally-driven architecture implies, therefore, not only digitally-designed and fabricated architecture, it also implies architecture – built form – that can be controlled, actuated, and animated by digital means.In this context, this sixth Footprint issue examines the influence of digital means as pragmatic and conceptual instruments for actuating architecture. The focus is not so much on computer-based systems for the development of architectural designs, but on architecture incorporating digital control, sens­ing, actuating, or other mechanisms that enable buildings to inter­act with their users and surroundings in real time in the real world through physical or sensory change and variation.

  17. Fluid driven reciprocating apparatus

    Science.gov (United States)

    Whitehead, J.C.

    1997-04-01

    An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.

  18. Cosmic ray driven outflows

    CERN Document Server

    Hanasz, Michal; Naab, Thorsten; Gawryszczak, Artur; Kowalik, Kacper; Wóltański, Dominik

    2013-01-01

    We present simulations of the magnetized interstellar medium (ISM) in models of massive star forming (40 Msun / yr) disk galaxies with high gas surface densities (~100 Msun / pc^2) similar to observed star forming high-redshift disks. We assume that type II supernovae deposit 10 per cent of their energy into the ISM as cosmic rays and neglect the additional deposition of thermal energy or momentum. With a typical Galactic diffusion coefficient for CRs (3e28 cm^2 / s) we demonstrate that this process alone can trigger the local formation of a strong low density galactic wind maintaining vertically open field lines. Driven by the additional pressure gradient of the relativistic fluid the wind speed can exceed 1000 km/s, much higher than the escape velocity of the galaxy. The global mass loading, i.e. the ratio of the gas mass leaving the galactic disk in a wind to the star formation rate becomes of order unity once the system has settled into an equilibrium. We conclude that relativistic particles accelerated i...

  19. Invention-driven marketing

    Science.gov (United States)

    Carlson, William E.

    1994-01-01

    Suppose you have just created a revolutionary bicycle suspension which allows a bike to be ridden over rough terrain at 60 miles per hour. In addition, suppose that you are deeply concerned about the plight of hungry children. Which should you do: be sure all hungry children have bicycles; transfer the technology for your new suspension to bicycle manufacturers worldwide; or start a company to supply premium sports bicycle based on your patented technology, and donate the profits to a charity which feeds hungry children? Woven through this somewhat trivial example is the paradox of technology transfer - the supplier (owner) may want to transfer technology; but to succeed, he or she must reformulate the problem as a user need for which there is a new and better solution. Successful technology transfer is little more than good marketing applied to an existing invention, process, or capability. You must identify who needs the technology, why they need it, why the new technology is better than alternatives, how much the customers are willing and able to pay for these benefits, and how to distribute products based on the technology tc the target customers. In market-driven development, the term 'technology transfer' is rarely used. The developers focus on studying user needs and designing solution They may have technology needs, but they don't have technology in search of a use.

  20. Gravity driven inflation

    CERN Document Server

    Levin, J J

    1995-01-01

    The union of high-energy particle theories and gravitation often gives rise to an evolving strength of gravity. The standard picture of the earliest universe would certainly deserve revision if the Planck mass, which defines the strength of gravity, varied. A notable consequence is a gravity-driven, kinetic inflation. Unlike standard inflation, there is no potential nor cosmological constant. The unique elasticity in the kinetic energy of the Planck mass provides a negative pressure able to drive inflation. As the kinetic energy grows, the spacetime expands more quickly. The phenomenon of kinetic inflation has been uncovered in both string theory and Kaluza-Klein theories. The difficulty in exiting inflation in these cases is reviewed. General forms of the Planck field coupling are shown to avoid the severity of the graceful exit problem found in string and Kaluza-Klein theories. The completion of the model is foreshadowed with a suggestion for a heating mechanism to generate the hot soup of the big bang.

  1. Customer-driven competition

    International Nuclear Information System (INIS)

    Ontario Hydro's customer-driven strategy, recently approved by Hydro's Executive Board, was described. The strategy is founded on the following components: (1) the dissolution of the Ontario power pool, i.e., the loss of Hydro's franchise monopoly on generation, leaving only power transmission in the hands of the Corporation, (2) divestment of Ontario Hydro's system operations and market operations functions to a new, independent Crown corporation called the Central Market Operator, (3) functional and organizational unbundling of Ontario Hydro into three signature businesses, Genco, Transco, and Retailco, and in the latter two, the functional unbundling of wires from sales and services, (4) a fully commercial Ontario Hydro with normal corporate powers, and (5) a corporate strategy for Ontario Hydro to grow in businesses in an open, symmetrical North American energy market. According to Ontario Hydro management this will allow competition and choice to all customers, have a disciplining effect on prices, and give rise to a retail market of new products and services, while at the same time preserve and enhance the value of public investment in the Corporation

  2. Salinity driven oceanographic upwelling

    Science.gov (United States)

    Johnson, David H.

    1986-01-01

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.

  3. Concept-Driven Revolutions and Tool-Driven Revolutions

    OpenAIRE

    González Quirós, José Luis; González Villa, Manuel

    2008-01-01

    Freeman J. Dyson has introduced the notion of tool-driven revolution that stands in contrast to the concept-driven revolutions analysed by Thomas Kuhn in The Structure of Scientific Revolutions. We study Dyson's thesis, pay special attention in the interesting Dyson's idea of scientific tool and compare Dyson's point of view with Peter Galison's conception, as developed in Image and Logic. It seems that the differences between them are slightly stronger than Dyson suggests. Dyson's ideas yiel...

  4. Economics-driven software architecture

    CERN Document Server

    Mistrik, Ivan; Kazman, Rick; Zhang, Yuanyuan

    2014-01-01

    Economics-driven Software Architecture presents a guide for engineers and architects who need to understand the economic impact of architecture design decisions: the long term and strategic viability, cost-effectiveness, and sustainability of applications and systems. Economics-driven software development can increase quality, productivity, and profitability, but comprehensive knowledge is needed to understand the architectural challenges involved in dealing with the development of large, architecturally challenging systems in an economic way. This book covers how to apply economic consider

  5. Magnetically driven quantum heat engine

    OpenAIRE

    Muñoz, Enrique; Peña, Francisco J.

    2014-01-01

    We studied the efficiency of two different schemes for a magnetically driven quantum heat engine, by considering as the working substance a single nonrelativistic particle trapped in a cylindrical potential well, in the presence of an external magnetic field. The first scheme is a cycle, composed of two adiabatic and two isoenergetic reversible trajectories in configuration space. The trajectories are driven by a quasistatic modulation of the external magnetic-field intensity. The second sche...

  6. The Spin-Charge-Family theory offers the explanation for all the assumptions of the Standard model, for the Dark matter, for the Matter-antimatter asymmetry, making several predictions

    CERN Document Server

    Borštnik, Norma Susana Mankoč

    2016-01-01

    The spin-charge-family theory, which is a kind of the Kaluza-Klein theories but with fermions carrying two kinds of spins (no charges), offers the explanation for all the assumptions of the standard model, with the origin of families, the higgs and the Yukawa couplings included. It offers the explanation also for other phenomena, like the origin of the dark matter and of the matter/antimatter asymmetry in the universe. It predicts the existence of the fourth family to the observed three, as well as several scalar fields with the weak and the hyper charge of the standard model higgs ($\\pm \\frac{1}{2}, \\mp \\frac{1}{2}$, respectively), which determine the mass matrices of family members, offering an explanation, why the fourth family with the masses above $1$ TeV contributes weakly to the gluon-fusion production of the observed higgs and to its decay into two photons, and predicting that the two photons events, observed at the LHC at $\\approx 750$ GeV, might be an indication for the existence of one of several s...

  7. Data-driven batch schuduling

    Energy Technology Data Exchange (ETDEWEB)

    Bent, John [Los Alamos National Laboratory; Denehy, Tim [GOOGLE; Arpaci - Dusseau, Remzi [UNIV OF WISCONSIN; Livny, Miron [UNIV OF WISCONSIN; Arpaci - Dusseau, Andrea C [NON LANL

    2009-01-01

    In this paper, we develop data-driven strategies for batch computing schedulers. Current CPU-centric batch schedulers ignore the data needs within workloads and execute them by linking them transparently and directly to their needed data. When scheduled on remote computational resources, this elegant solution of direct data access can incur an order of magnitude performance penalty for data-intensive workloads. Adding data-awareness to batch schedulers allows a careful coordination of data and CPU allocation thereby reducing the cost of remote execution. We offer here new techniques by which batch schedulers can become data-driven. Such systems can use our analytical predictive models to select one of the four data-driven scheduling policies that we have created. Through simulation, we demonstrate the accuracy of our predictive models and show how they can reduce time to completion for some workloads by as much as 80%.

  8. JAERI accelerator driven system project

    International Nuclear Information System (INIS)

    In Japan a national program called OMEGA was started in 1988 for research and development of new technologies for partitioning and transmutation of nuclear waste. Under this program JAERI is carrying out research and development for proton accelerator-driven transmutation, together with transmutation with fast burner reactor and advanced partitioning technology. Two types of accelerator driven transmutation systems are proposed: a solid system and a molten-salt system. An outline of the OMEGA program and the partitioning and transmutation studies at JAERI are presented in this report

  9. Surface tension driven convection experiment

    Science.gov (United States)

    Ostrach, Simon; Kamotani, Yasuhiro

    1988-01-01

    Thermocapillary flow is driven by a thermally induced surface tension variation along a liquid free surface. In the Earth-gravity environment such flows are usually overshadowed by buoyancy driven flows, but at reduced gravity conditions their influence could be significant. A comprehensive theoretical and experimental research program was stated 12 years ago and is still being continued. Past work done at Case Western Reserve University as well as work done by others is reviewed. The justification for low-gravity experiments is presented.

  10. Driven shielding capacitive proximity sensor

    Science.gov (United States)

    Vranish, John M. (Inventor); McConnell, Robert L. (Inventor)

    2000-01-01

    A capacitive proximity sensing element, backed by a reflector driven at the same voltage as and in phase with the sensor, is used to reflect the field lines away from a grounded robot arm towards an intruding object, thus dramatically increasing the sensor's range and sensitivity.

  11. Investigation of Current Driven Loudspeakers

    DEFF Research Database (Denmark)

    Schneider, Henrik; Agerkvist, Finn T.; Knott, Arnold;

    2015-01-01

    Current driven loudspeakers have previously been investigated but the literature is limited and the advantages and disadvantages are yet to be fully identified. This paper makes use of a non-linear loudspeaker model to analyse loudspeakers with distinct non-linear characteristics under voltage and...

  12. Improved data driven control charts

    NARCIS (Netherlands)

    Albers, W.; Kallenberg, W.C.M.

    2007-01-01

    Classical control charts for monitoring the mean are based on the assumption of normality. When normality fails, these control charts are no longer valid and serious errors often arise. Data driven control charts, which choose between the normal chart, a parametric one and a nonparametric chart, hav

  13. Effects-Driven IT Development

    DEFF Research Database (Denmark)

    Hertzum, Morten; Simonsen, Jesper

    2011-01-01

    For customers information technology (IT) is a means to an end. This tight association between IT systems and their use is, however, often absent during their development and implementation, resulting in systems that may fail to produce desired ends. Effects-driven IT development aims to avoid...

  14. Track guided self-driven container wagon

    NARCIS (Netherlands)

    Hansen, I.A.

    1999-01-01

    The linear motor consists of a series of stator coils (2) located along the Track guided self-driven container wagon Track guided self-driven container wagon track and a reaction rail (3) fitted under the wagon chassis (4).

  15. Schematic driven silicon photonics design

    Science.gov (United States)

    Chrostowski, Lukas; Lu, Zeqin; Flückiger, Jonas; Pond, James; Klein, Jackson; Wang, Xu; Li, Sarah; Tai, Wei; Hsu, En Yao; Kim, Chan; Ferguson, John; Cone, Chris

    2016-03-01

    Electronic circuit designers commonly start their design process with a schematic, namely an abstract representation of the physical circuit. In integrated photonics on the other hand, it is very common for the design to begin at the physical component level. In order to build large integrated photonic systems, it is crucial to design using a schematic-driven approach. This includes simulations based on schematics, schematic-driven layout, layout versus schematic verification, and post-layout simulations. This paper describes such a design framework implemented using Mentor Graphics and Lumerical Solutions design tools. In addition, we describe challenges in silicon photonics related to manufacturing, and how these can be taken into account in simulations and how these impact circuit performance.

  16. Effects-Driven IT Development

    DEFF Research Database (Denmark)

    Hertzum, Morten; Simonsen, Jesper

    2010-01-01

    We present effects-driven IT development as an instrument for pursuing and reinforcing Participatory Design (PD) when it is applied in commercial information technology (IT) projects. Effects-driven IT development supports the management of a sustained PD process throughout design and...... organizational implementation. The focus is on the effects to be achieved by users through their adoption and use of a system. The overall idea is to (a) specify the purpose of a system as effects that are both measurable and meaningful to the users, and (b) evaluate the absence or presence of these effects...... during real use of the system. Effects are formulated in a user-oriented terminology, and they can be evaluated and revised with users in an iterative and incremental systems-development process that involves pilot implementations. In this paper we investigate the design, pilot implementation, and...

  17. Electrically-driven optical antennas

    CERN Document Server

    Kern, Johannes; Prangsma, Jord C; Emmerling, Monika; Kamp, Martin; Hecht, Bert

    2015-01-01

    Unlike radiowave antennas, optical nanoantennas so far cannot be fed by electrical generators. Instead, they are driven by light or via optically active materials in their proximity. Here, we demonstrate direct electrical driving of an optical nanoantenna featuring an atomic-scale feed gap. Upon applying a voltage, quantum tunneling of electrons across the feed gap creates broadband quantum shot noise. Its optical frequency components are efficiently converted into photons by the antenna. We demonstrate that the properties of the emitted photons are fully controlled by the antenna architecture, and that the antenna improves the quantum efficiency by up to two orders of magnitude with respect to a non-resonant reference system. Our work represents a new paradigm for interfacing electrons and photons at the nanometer scale, e.g. for on-chip wireless data communication, electrically driven single- and multiphoton sources, as well as for background-free linear and nonlinear spectroscopy and sensing with nanometer...

  18. Kaehler-driven tribrid inflation

    International Nuclear Information System (INIS)

    We discuss a new class of tribrid inflation models in supergravity, where the shape of the inflaton potential is dominated by effects from the Kaehler potential. Tribrid inflation is a variant of hybrid inflation which is particularly suited for connecting inflation with particle physics, since the inflaton can be a D-flat combination of charged fields from the matter sector. In models of tribrid inflation studied so far, the inflaton potential was dominated by either loop corrections or by mixing effects with the waterfall field (as in 'pseudosmooth' tribrid inflation). Here we investigate the third possibility, namely that tribrid inflation is dominantly driven by effects from higher-dimensional operators of the Kaehler potential. We specify for which superpotential parameters the new regime is realized and show how it can be experimentally distinguished from the other two (loop-driven and pseudosmooth) regimes

  19. Pulsed power driven fusion energy

    International Nuclear Information System (INIS)

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach

  20. Pulsed Power Driven Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    SLUTZ,STEPHEN A.

    1999-11-22

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

  1. Protostellar outflow-driven turbulence

    CERN Document Server

    Matzner, C D

    2007-01-01

    Protostellar outflows crisscross the regions of star cluster formation, stirring turbulence and altering the evolution of the forming cluster. We model the stirring of turbulent motions by protostellar outflows, building on an observation that the scaling law of supersonic turbulence implies a momentum cascade analogous to the energy cascade in Kolmogorov turbulence. We then generalize this model to account for a diversity of outflow strengths, and for outflow collimation, both of which enhance turbulence. For a single value of its coupling coefficient the model is consistent with turbulence simulations by Li & Nakamura and, plausibly, with observations of the NGC 1333 cluster-forming region. Outflow-driven turbulence is strong enough to stall collapse in cluster-forming regions for several crossing times, relieving the mismatch between star formation and turbulent decay rates. The predicted line-width-size scaling implies radial density indices between -1 and -2 for regions supported by outflow-driven tu...

  2. Magnetically driven quantum heat engine.

    Science.gov (United States)

    Muñoz, Enrique; Peña, Francisco J

    2014-05-01

    We studied the efficiency of two different schemes for a magnetically driven quantum heat engine, by considering as the "working substance" a single nonrelativistic particle trapped in a cylindrical potential well, in the presence of an external magnetic field. The first scheme is a cycle, composed of two adiabatic and two isoenergetic reversible trajectories in configuration space. The trajectories are driven by a quasistatic modulation of the external magnetic-field intensity. The second scheme is a variant of the former, where the isoenergetic trajectories are replaced by isothermal ones, along which the system is in contact with macroscopic thermostats. This second scheme constitutes a quantum analog of the classical Carnot cycle. PMID:25353739

  3. Policy-driven tobacco control

    OpenAIRE

    Francis, John A; Abramsohn, Erin M; Park, Hye-Youn

    2010-01-01

    Background Since the passage of Proposition 99, California's comprehensive tobacco control programme has benefited from a localised policy adoption process that allows for the innovation and diffusion of strong local tobacco control policies throughout the state. Methods The policy adoption continuum is described in the context of California's smoke-free workplace movement, and the influence of policy-driven tobacco control initiatives on social norms, behaviour and the public's health was ex...

  4. Security and policy driven computing

    CERN Document Server

    Liu, Lei

    2010-01-01

    Security and Policy Driven Computing covers recent advances in security, storage, parallelization, and computing as well as applications. The author incorporates a wealth of analysis, including studies on intrusion detection and key management, computer storage policy, and transactional management.The book first describes multiple variables and index structure derivation for high dimensional data distribution and applies numeric methods to proposed search methods. It also focuses on discovering relations, logic, and knowledge for policy management. To manage performance, the text discusses con

  5. Consumption-Driven Market Emergence

    OpenAIRE

    Diane M. Martin; Schouten, John W

    2014-01-01

    New market development is well theorized from a firm-centered perspective, but research has paid scant attention to the emergence of markets from consumption activity. The exceptions conceptualize market emergence as a product of consumer struggle against prevailing market logics. This study develops a model of consumption-driven market emergence in harmony with existing market offerings. Using ethnographic methods and actor-network theory the authors chronicle the emergence of a new market w...

  6. Model Driven ArchitectureTM

    CERN Document Server

    Frankel, David S

    2003-01-01

    Model Driven Architecture MDA)is a new methodologyf rom OMG that uses modeling languages like UML along with programming languages like Java to build software architectures. PriceWatersCoopers' prestigious Technology Center just predicted that MDA will be one of the most important methodologies in the next two years Written by the lead architect of the specification who provides inside information on how MDA has worked in the real world

  7. Community-driven online service

    OpenAIRE

    Tuunanen, Jarkko

    2014-01-01

    The purpose of this thesis was to implement a community-driven online service for a fashion magazine. The aim was to create the number one fashion and beauty related online service in Finland. The online service consists of two platforms. The core of the service is built on top of Drupal content management system. Wordpress was selected as the platform for the blogs. The user interfaces for both were designed and implemented to be responsive. Layout management in Drupal is challenging...

  8. Noise-driven quantum criticality

    OpenAIRE

    J. Eisert; Prosen, T.

    2010-01-01

    We discuss a notion of quantum critical exponents in open quantum many-body systems driven by quantum noise. We show that in translationally invariant quantum lattice models undergoing quasi-local Markovian dissipative processes, mixed states emerge as stationary points that show scaling laws for the divergence of correlation lengths giving rise to well-defined critical exponents. The main new technical tool developed here is a complete description of steady states of free bosonic or fermioni...

  9. Edge-driven microplate kinematics

    Science.gov (United States)

    Schouten, Hans; Klitgord, Kim D.; Gallo, David G.

    1993-01-01

    It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.

  10. Active and driven hydrodynamic crystals.

    Science.gov (United States)

    Desreumaux, N; Florent, N; Lauga, E; Bartolo, D

    2012-08-01

    Motivated by the experimental ability to produce monodisperse particles in microfluidic devices, we study theoretically the hydrodynamic stability of driven and active crystals. We first recall the theoretical tools allowing to quantify the dynamics of elongated particles in a confined fluid. In this regime hydrodynamic interactions between particles arise from a superposition of potential dipolar singularities. We exploit this feature to derive the equations of motion for the particle positions and orientations. After showing that all five planar Bravais lattices are stationary solutions of the equations of motion, we consider separately the case where the particles are passively driven by an external force, and the situation where they are self-propelling. We first demonstrate that phonon modes propagate in driven crystals, which are always marginally stable. The spatial structures of the eigenmodes depend solely on the symmetries of the lattices, and on the orientation of the driving force. For active crystals, the stability of the particle positions and orientations depends not only on the symmetry of the crystals but also on the perturbation wavelengths and on the crystal density. Unlike unconfined fluids, the stability of active crystals is independent of the nature of the propulsion mechanism at the single-particle level. The square and rectangular lattices are found to be linearly unstable at short wavelengths provided the volume fraction of the crystals is high enough. Differently, hexagonal, oblique, and face-centered crystals are always unstable. Our work provides a theoretical basis for future experimental work on flowing microfluidic crystals. PMID:22864543

  11. Capacitive Proximity Sensors With Additional Driven Shields

    Science.gov (United States)

    Mcconnell, Robert L.

    1993-01-01

    Improved capacitive proximity sensors constructed by incorporating one or more additional driven shield(s). Sensitivity and range of sensor altered by adjusting driving signal(s) applied to shield(s). Includes sensing electrode and driven isolating shield that correspond to sensing electrode and driven shield.

  12. Is "Market-Driven" Good Enough?

    Science.gov (United States)

    Kaufman, Roger

    1995-01-01

    Discusses marketing and management strategies and evaluates the path most traveled; going beyond market-driven; proactive and reactive organizational positioning; ways to manage human and physical resources to make both market-driven and market-making contributions; and values necessary for an organization to move from market-driven to…

  13. Ontology-Driven Information Integration

    Science.gov (United States)

    Tissot, Florence; Menzel, Chris

    2005-01-01

    Ontology-driven information integration (ODII) is a method of computerized, automated sharing of information among specialists who have expertise in different domains and who are members of subdivisions of a large, complex enterprise (e.g., an engineering project, a government agency, or a business). In ODII, one uses rigorous mathematical techniques to develop computational models of engineering and/or business information and processes. These models are then used to develop software tools that support the reliable processing and exchange of information among the subdivisions of this enterprise or between this enterprise and other enterprises.

  14. Data driven marketing for dummies

    CERN Document Server

    Semmelroth, David

    2013-01-01

    Embrace data and use it to sell and market your products Data is everywhere and it keeps growing and accumulating. Companies need to embrace big data and make it work harder to help them sell and market their products. Successful data analysis can help marketing professionals spot sales trends, develop smarter marketing campaigns, and accurately predict customer loyalty. Data Driven Marketing For Dummies helps companies use all the data at their disposal to make current customers more satisfied, reach new customers, and sell to their most important customer segments more efficiently. Identifyi

  15. Casimir-force-driven ratchets.

    Science.gov (United States)

    Emig, T

    2007-04-20

    We explore the nonlinear dynamics of two parallel periodically patterned metal surfaces that are coupled by the zero-point fluctuations of the electromagnetic field between them. The resulting Casimir force generates for asymmetric patterns with a time periodically driven surface-to-surface distance a ratchet effect, allowing for directed lateral motion of the surfaces in sizable parameter ranges. It is crucial to take into account inertia effects and hence chaotic dynamics which are described by Langevin dynamics. Multiple velocity reversals occur as a function of driving, mean surface distance, and effective damping. These transport properties are shown to be stable against weak ambient noise. PMID:17501407

  16. Employee-Driven Innovation (EDI)

    DEFF Research Database (Denmark)

    Kesting, Peter; Ulhøi, John Parm

      The responsibility to be innovative and think of useful ideas and the privilege of making decisions in processes of innovation are typically restricted to specifically assigned R&D functions and/or upper echelon managers. Given the importance of innovation to most organizations, it may seem...... illogical to reserve such a 'license' to so few individuals. This paper argues that some parts of that license should indeed be extended to include 'ordinary' employees, as they are potential drivers of innovation. Research on Employee Driven Innovation (EDI) is still at its beginnings. In the paper we...... contribute with their creative potential and their familiarity with operative processes....

  17. Photocell System Driven by Mechanoluminescence

    Science.gov (United States)

    Terasaki, Nao; Xu, Chao-Nan; Imai, Yusuke; Yamada, Hiroshi

    2007-04-01

    A mechanoluminescence driven photocell system consisting of a mechanoluminescent (ML) material and a photocell was prepared. The ML material developed in our laboratory is the world’s first material developed for a practical use in the elastic deformation region. In this system, the ML composite (an epoxy pellet including europium-doped strontium aluminate (SAO:E), one of the most efficient ML materials) was used as a light source, and a silicon solar cell was used as the photoelectric converter. With the application of compressive stress to the ML composite pellet in the system, the photocurrent corresponding to the mechanoluminescence was successfully observed.

  18. Cosmic ray driven Galactic winds

    OpenAIRE

    Recchia, S.; P. Blasi(INAF Arcetri); Morlino, G.

    2016-01-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the...

  19. On Rank Driven Dynamical Systems

    Science.gov (United States)

    Veerman, J. J. P.; Prieto, F. J.

    2014-08-01

    We investigate a class of models related to the Bak-Sneppen (BS) model, initially proposed to study evolution. The BS model is extremely simple and yet captures some forms of "complex behavior" such as self-organized criticality that is often observed in physical and biological systems. In this model, random fitnesses in are associated to agents located at the vertices of a graph . Their fitnesses are ranked from worst (0) to best (1). At every time-step the agent with the worst fitness and some others with a priori given rank probabilities are replaced by new agents with random fitnesses. We consider two cases: The exogenous case where the new fitnesses are taken from an a priori fixed distribution, and the endogenous case where the new fitnesses are taken from the current distribution as it evolves. We approximate the dynamics by making a simplifying independence assumption. We use Order Statistics and Dynamical Systems to define a rank-driven dynamical system that approximates the evolution of the distribution of the fitnesses in these rank-driven models, as well as in the BS model. For this simplified model we can find the limiting marginal distribution as a function of the initial conditions. Agreement with experimental results of the BS model is excellent.

  20. Investigating Reaction-Driven Cracking

    Science.gov (United States)

    Kelemen, P. B.; Hirth, G.; Savage, H. M.

    2013-12-01

    Many metamorphic reactions lead to large volume changes, and potentially to reaction-driven cracking [1,2]. Large-scale hydration of mantle peridotite to produce serpentine or talc is invoked to explain the rheology of plate boundaries, the nature of earthquakes, and the seismic properties of slow-spread ocean crust and the 'mantle wedge' above subduction zones. Carbonation of peridotite may be an important sink in the global carbon cycle. Zones of 100% magnesite + quartz replacing peridotite, up to 200 m thick, formed where oceanic mantle was thrust over carbonate-bearing metasediments in Oman. Talc + carbonate is an important component of the matrix in subduction mélanges at Santa Catalina Island , California, and the Sanbagawa metamorphic belt, Japan. Engineered systems to emulate natural mineral carbonation could provide relatively inexpensive CO2 capture and storage [3]. More generally, engineered reaction-driven cracking could supplement or replace hydraulic fracture in geothermal systems, solution mining, and extraction of tight oil and gas. The controls on reaction-driven cracking are poorly understood. Hydration and carbonation reactions can be self-limiting, since they potentially reduce permeability and armor reactive surfaces [4]. Also, in some cases, hydration or carbonation may take place at constant volume. Small changes in volume due to precipitation of solid products increases stress, destabilizing solid reactants, until precipitation and dissolution rates become equal at a steady state stress [5]. In a third case, volume change due to precipitation of solid products causes brittle failure. This has been invoked on qualitative grounds to explain, e.g., complete serpentinization of mantle peridotite [6]. Below ~ 300°C, the available potential energy for hydration and carbonation of olivine could produce stresses of 100's of MPa [2], sufficient to fracture rocks to 10 km depth or more, causing brittle failure below the steady state stress required

  1. Test driven software development with Java EE

    OpenAIRE

    Balantič, Matija

    2013-01-01

    Test driven development (TDD) is a technique with the main idea of writing a failing test first, which is then made to pass by implementing a particular snippet of code. Development is done in short iterations which consist of three basic steps, namely test-code-refactor. The thesis shows the development of Java EE web applications FerApp using test driven development and continuous integration. The application development was driven with unit tests and complemented with integration and f...

  2. Disentangling Competition Among Platform Driven Strategic Groups

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric

    2015-01-01

    competition within platform-driven markets, we opted for the UK mobile payment market as our empirical setting. By embracing the theoretical lens of strategic groups and digital platforms, this study supplements prior research by deriving a taxonomy of platform-driven strategic groups that is grounded on......In platform-driven markets, competitive advantage is derived from superior platform design and configurations. For this reason, platform owners strive to create unique and inimitable platform configurals to maintain and extend their competitiveness within network economies. To disentangle firm...... competitive attributes of platform- driven markets; namely interfirm modularity and strategic linkages....

  3. Design Driven Testing Test Smarter, Not Harder

    CERN Document Server

    Stephens, M

    2010-01-01

    The groundbreaking book Design Driven Testing brings sanity back to the software development process by flipping around the concept of Test Driven Development (TDD) - restoring the concept of using testing to verify a design instead of pretending that unit tests are a replacement for design. Anyone who feels that TDD is "Too Damn Difficult" will appreciate this book. Design Driven Testing shows that, by combining a forward-thinking development process with cutting-edge automation, testing can be a finely targeted, business-driven, rewarding effort. In other words, you'll learn how to test

  4. Impulse-driven Micromechanism Capsule

    Science.gov (United States)

    Ito, Takahiro; Ishimori, Shohei; Hayashi, Teru

    We have developed a traveling small capsule, which has a smooth outer surface and is driven by inertia force and friction force. Measuring only 7 mm in diameter and 12 mm in length, it is sufficiently small to be placed in the human gullet or intestines. The capsule contains a small magnet and a coil, and an electric pulse drives the magnet to move the capsule. We performed an experimental investigation on making our capsule travel on a plastic material, which has similar elasticity characteristics to the living body. We also showed that it can travel on the surface of a pig's intestine. Our capsule may be useful for medical treatments such as inspection, drug delivery and operation.

  5. Coevolutionary success-driven multigames

    CERN Document Server

    Szolnoki, Attila

    2014-01-01

    Wealthy individuals may be less tempted to defect than those with comparatively low payoffs. To take this into consideration, we introduce coevolutionary success-driven multigames in structured populations. While the core game is always the weak prisoner's dilemma, players whose payoffs from the previous round exceed a threshold adopt only a minimally low temptation to defect in the next round. Along with the strategies, the perceived strength of the social dilemma thus coevolves with the success of each individual player. We show that the lower the threshold for using the small temptation to defect, the more the evolution of cooperation is promoted. Importantly, the promotion of cooperation is not simply due to a lower average temptation to defect, but rather due to a dynamically reversed direction of invasion along the interfaces that separate cooperators and defectors on regular networks. Conversely, on irregular networks, in the absence of clear invasion fronts, the promotion of cooperation is due to inte...

  6. Wonder-driven Entrepreneurship Teaching

    DEFF Research Database (Denmark)

    Hansen, Finn Thorbjørn; Herholdt-Lomholdt, Sine Maria

    Contemporary research on creativity, innovation and entrepreneurship have now for a decade or more been focusing on social constructive, pragmatic, socio-cultural and socio-material dimensions of creative and innovative processes and entrepreneurship (Bager et al. 2010, Brinkmann & Tangaard 2010......- and entrepreneurship processes. In this paper we want to continue in line with this new framework of meaning- and wonder-driven innovation by focusing on the possible educational consequences of such an approach. Our empirical departure is our three-year phenomenological action research project called ‘Wonder......-based Entrepreneurship Teaching in Professional bachelor Education’. Ten senior lecturers in nursing and pedagogy participated. The purpose was to investigate whether and how Socratic and philosophical dialogues and different forms of phenomenological and existential reflections upon one´s own professional assumptions...

  7. Wonder-driven Entrepreneurship Teaching

    DEFF Research Database (Denmark)

    Hansen, Finn Thorbjørn; Herholdt-Lomholdt, Sine Maria

    2015-01-01

    Contemporary research on creativity, innovation and entrepreneurship have now for a decade or more been focusing on social constructive, pragmatic, socio-cultural and socio-material dimensions of creative and innovative processes and entrepreneurship (Bager et al. 2010, Brinkmann & Tangaard 2010......- and entrepreneurship processes. In this paper we want to continue in line with this new framework of meaning- and wonder-driven innovation by focusing on the possible educational consequences of such an approach. Our empirical departure is our three-year phenomenological action research project called ‘Wonder......-based Entrepreneurship Teaching in Professional bachelor Education’. Ten senior lecturers in nursing and pedagogy participated. The purpose was to investigate whether and how Socratic and philosophical dialogues and different forms of phenomenological and existential reflections upon one´s own professional assumptions...

  8. Customer-driven Product Development

    DEFF Research Database (Denmark)

    Sommer, Anita Friis

    2011-01-01

    Demand chain management is a research area of increasing attention. It is the undertaking of reacting to customer requirements through a responsive chain going from customers through a focal company towards raw material distributors. With faster growing markets and increasing competition, companies...... look for new ways to gain competitive advantage. In competitive markets there is a tendency of shorter product life cycles, and thus a competitive factor is to keep at pace with the market or even driving the market by developing new products. This research study seeks to investigate Customer......-driven Product Development (CDPD) from a demand chain management perspective. CDPD is the counterpart to typical research and development processes, which has no direct customer involvement. The proposition is that letting customers initiate and participate in the product development process will be a...

  9. Proton-driven plasma acceleration at CERN

    International Nuclear Information System (INIS)

    Plasma-based acceleration methods have seen important progress over the last years. Recently, it has been proposed to experimentally study plasma acceleration driven by proton beams, in addition to the established research directions of electron and laser-driven plasmas. This talk presents the planned experiment and the research efforts carried out at CERN.

  10. Industry-driven sector roadmaps 2020

    DEFF Research Database (Denmark)

    Ricard, Lykke Margot

    Industri-driven sector roadmaps 2020: European Technology Platforms in wind and CCS. A new corporate trend on innovation in Europe, supported by The European Commission.......Industri-driven sector roadmaps 2020: European Technology Platforms in wind and CCS. A new corporate trend on innovation in Europe, supported by The European Commission....

  11. Motor-Driven Giant Magnetostrictive Actuator

    DEFF Research Database (Denmark)

    Zhang, Lihui; Xia, Yongming; Lu, Kaiyuan;

    2015-01-01

    to produce the desired magnetic field when an output strain should be maintained. The GMA does not produce any mechanical power in this condition, but constant power is being consumed by the excitation coil. This paper presents a new type of motor-driven GMA (MDGMA), which works in a coil-free driven...

  12. Understand antimatter better #13TeV

    CERN Multimedia

    2015-01-01

    Follow Italian @LHCbexperiment physicist Barbara Storaci from the University of Zürich, Switzerland, as she shares her thoughts about the new physics frontiers opening up now that the LHC has collisions at the higher energy of #13TeV. Each week a new video will be uploaded to https://www.youtube.com/playlist?list... allowing you to follow physicists from @ATLASexperiment @ALICEexperiment @CMSexperiment or @LHCbExperiment as they search the new frontiers in physics. Read more about these new frontiers in physics: http://cern.ch/go/x8VH

  13. Facts about real antimatter collide with fiction

    CERN Multimedia

    Siegfried, Tom

    2004-01-01

    When science collides with fiction, sometimes a best seller emerges from the debris. Take Dan Brown's Angels & Demons, for instance, a murder mystery based on science at CERN, the European nuclear research laboratory outside Geneva

  14. Atomic processes in matter-antimatter interactions

    International Nuclear Information System (INIS)

    Atomic processes dominate antiproton stopping in matter at nearly all energies of interest. They significantly influence or determine the antiproton annihilation rate at all energies around or below several MeV. This article reviews what is known about these atomic processes. For stopping above about 10 eV the processes are antiproton-electron collisions, effective at medium keV through high MeV energies, and elastic collisions with atoms and adiabatic ionization of atoms, effective from medium eV through low keB energies. For annihilation above about 10 eV is the enhancement of the antiproton annihilation rate due to the antiproton-nucleus coulomb attraction, effective around and below a few tens of MeV. At about 10 eV and below, the atomic rearrangement/annihilation process determines both the stopping and annihilation rates. Although a fair amount of theoretical and some experimental work relevant to these processes exist, there are a number of energy ranges and material types for which experimental data does not exist and for which the theoretical information is not as well grounded or as accurate as desired. Additional experimental and theoretical work is required for accurate prediction of antiproton stopping and annihilation for energies and material relevant to antiproton experimentation and application

  15. Observation of the antimatter helium-4 nucleus

    Czech Academy of Sciences Publication Activity Database

    Agakishiev, C.; Aggarwal, M. M.; Ahammed, Z.; Bielčík, J.; Bielčíková, Jana; Chaloupka, Petr; Chung, P.; Kapitán, Jan; Kouchpil, V.; Rusnak, J.; Šumbera, Michal; Tlustý, David

    2011-01-01

    Roč. 473, č. 7347 (2011), s. 353-356. ISSN 0028-0836 R&D Projects: GA MŠk LA09035 Institutional research plan: CEZ:AV0Z10480505 Keywords : QUARK-GLUON PLASMA * ANTIPROTONS * COLLISIONS * ELECTRON Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 36.280, year: 2011

  16. Antimatter induced fusion and thermonuclear explosions

    OpenAIRE

    Gsponer, Andre; Hurni, Jean-Pierre

    2005-01-01

    The feasibility of using antihydrogen for igniting inertial confinement fusion pellets or triggering large scale thermonuclear explosions is investigated. The number of antiproton annihilations required to start a thermonuclear burn wave in either DT or Li_2DT is found to be about 10^{21}/k^2, where k is the compression factor of the fuel to be ignited. In the second part, the technologies for producing antiprotons with high energy accelerator systems and the means for manipulating and storin...

  17. Antimatter induced fusion and thermonuclear explosions

    CERN Document Server

    Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

    1987-01-01

    The feasibility of using antihydrogen for igniting inertial confinement fusion pellets or triggering large scale thermonuclear explosions is investigated. The number of antiproton annihilations required to start a thermonuclear burn wave in either DT or Li_2DT is found to be about 10^{21}/k^2, where k is the compression factor of the fuel to be ignited. In the second part, the technologies for producing antiprotons with high energy accelerator systems and the means for manipulating and storing microgram amounts of antihydrogen are examined. While there seems to be no theoretical obstacles to the production of 10^{18} antiprotons per day (the amount required for triggering one thermonuclear bomb), the construction of such a plant involves several techniques which are between 3 and 4 orders of magnitude away from present day technology.

  18. Matter-antimatter: balancing the scales

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Using its innovative experimental set-up, the Japanese-European ASACUSA collaboration recently succeeded in measuring the mass of the antiprotons with an unprecedented accuracy. This has been made possible by applying extremely high-precision laser techniques.   ASACUSA physicist, Masaki Hori, adjusts the optical system of laser beams. The antiproton is not something you could weigh by putting it on a pair of scales. Besides, it is not its “weight” (i.e. the Earth’s gravitational force on it) that scientists aim to measure but rather its “mass”. In addition, the yardstick against which the antiproton mass was measured is not the familiar kilogram, but the electron’s mass. Technically speaking, this is no easy task, especially when an unprecedented precision is requested. In the ASACUSA experiment, two counter-propagating ultra-sharp laser beams simultaneously hit an antiprotonic helium atom, where an antiproton orbits around the nuc...

  19. NASA declares no room for antimatter experiment

    CERN Multimedia

    Law??, Andrew

    2007-01-01

    "The Alpha Magnetic Spectrometer (AMS) is a model of international cooperation, led by a dynamic Nobel Prize winner, and promises to do impressive science in space. But it may never get a chance to do its thing." (1 page)

  20. Antimatter signatures of gravitino dark matter decay

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, A.; Tran, D.

    2008-04-15

    The scenario of gravitino dark matter with broken R-parity naturally reconciles three paradigms that, albeit very well motivated separately, seem to be in mutual conflict: supersymmetric dark matter, thermal leptogenesis and standard Big Bang nucleosynthesis. Interestingly enough, the products of the gravitino decay could be observed, opening the possibility of indirect detection of gravitino dark matter. In this paper, we compute the positron and the antiproton fluxes from gravitino decay. We find that a gravitino with a mass of m{sub 3/2}{proportional_to}150 GeV and a lifetime of {tau}{sub 3/2}{proportional_to}10{sup 26} s could simultaneously explain the EGRET anomaly in the extragalactic diffuse gamma ray background and the HEAT excess in the positron fraction. However, the predicted antiproton flux tends to be too large, although the prediction suffers from large uncertainties and might be compatible with present observations for certain choices of propagation parameters. (orig.)

  1. Antimatter signatures of gravitino dark matter decay

    International Nuclear Information System (INIS)

    The scenario of gravitino dark matter with broken R-parity naturally reconciles three paradigms that, albeit very well motivated separately, seem to be in mutual conflict: supersymmetric dark matter, thermal leptogenesis and standard big bang nucleosynthesis. Interestingly, the products of the gravitino decay could be observed, opening the possibility of indirect detection of gravitino dark matter. In this paper, we compute the positron and the antiproton fluxes from gravitino decay. We find that a gravitino with a mass of m3/2∼150 GeV and a lifetime of τ3/2∼1026 s could simultaneously explain the EGRET anomaly in the extragalactic diffuse gamma ray background and the HEAT excess in the positron fraction. However, the predicted antiproton flux tends to be too large, although the prediction suffers from large uncertainties and might be compatible with present observations for certain choices of propagation parameters

  2. Antimatter signatures of gravitino dark matter decay

    International Nuclear Information System (INIS)

    The scenario of gravitino dark matter with broken R-parity naturally reconciles three paradigms that, albeit very well motivated separately, seem to be in mutual conflict: supersymmetric dark matter, thermal leptogenesis and standard Big Bang nucleosynthesis. Interestingly enough, the products of the gravitino decay could be observed, opening the possibility of indirect detection of gravitino dark matter. In this paper, we compute the positron and the antiproton fluxes from gravitino decay. We find that a gravitino with a mass of m3/2∝150 GeV and a lifetime of τ3/2∝1026 s could simultaneously explain the EGRET anomaly in the extragalactic diffuse gamma ray background and the HEAT excess in the positron fraction. However, the predicted antiproton flux tends to be too large, although the prediction suffers from large uncertainties and might be compatible with present observations for certain choices of propagation parameters. (orig.)

  3. Gravity-Driven Hydraulic Fractures

    Science.gov (United States)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2014-12-01

    This study is motived by a new method for disposing of nuclear waste by injecting it as a dense slurry into a hydraulic fracture that grows downward to great enough depth to permanently isolate the waste. Disposing of nuclear waste using gravity-driven hydraulic fractures is mechanically similar to the upward growth of dikes filled with low density magma. A fundamental question in both applications is how the injected fluid controls the propagation dynamics and fracture geometry (depth and breadth) in three dimensions. Analog experiments in gelatin [e.g., Heimpel and Olson, 1994; Taisne and Tait, 2009] show that fracture breadth (the short horizontal dimension) remains nearly stationary when the process in the fracture "head" (where breadth is controlled) is dominated by solid toughness, whereas viscous fluid dissipation is dominant in the fracture tail. We model propagation of the resulting gravity-driven (buoyant or sinking), finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to a unit crack extension with the rock fracture toughness. It allows us to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, where breadth is known a priori, the final breadth of a finger-like fracture is a result of processes in the fracture head. Because the head is much more open than the tail, viscous pressure drop in the head can be neglected leading to a 3D analog of Weertman's hydrostatic pulse. This requires relaxing the local elasticity assumption of the PKN model in the fracture head. As a result, we resolve the breadth, and then match the viscosity-dominated tail with the 3-D, toughness

  4. Potential-driven Galileon inflation

    International Nuclear Information System (INIS)

    For the models of inflation driven by the potential energy of an inflaton field φ, the covariant Galileon Lagrangian (∂φ)2□φ generally works to slow down the evolution of the field. On the other hand, if the Galileon self-interaction is dominant relative to the standard kinetic term, we show that there is no oscillatory regime of inflaton after the end of inflation. This is typically accompanied by the appearance of the negative propagation speed squared cs2 of a scalar mode, which leads to the instability of small-scale perturbations. For chaotic inflation and natural inflation we clarify the parameter space in which inflaton oscillates coherently during reheating. Using the WMAP constraints of the scalar spectral index and the tensor-to-scalar ratio as well, we find that the self coupling λ of the potential V(φ) = λφ4/4 is constrained to be very much smaller than 1 and that the symmetry breaking scale f of natural inflation cannot be less than the reduced Planck mass Mpl. We also show that, in the presence of other covariant Galileon Lagrangians, there are some cases in which inflaton oscillates coherently even for the self coupling λ of the order of 0.1, but still the instability associated with negative cs2 is generally present

  5. Cosmic ray driven Galactic winds

    CERN Document Server

    Recchia, S; Morlino, G

    2016-01-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfven waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the impli...

  6. Rank-driven Markov processes

    CERN Document Server

    Grinfeld, Michael; Wade, Andrew R

    2011-01-01

    We study a class of Markovian systems of $N$ elements taking values in $[0,1]$ that evolve in discrete time $t$ via randomized replacement rules based on the ranks of the elements. These rank-driven processes are inspired by variants of the Bak--Sneppen model of evolution, in which the system represents an evolutionary 'fitness landscape' and which is famous as a simple model displaying self-organized criticality. Our main results are concerned with long-time large-$N$ asymptotics for the general model in which, at each time step, $K$ randomly chosen elements are discarded and replaced by independent $U[0,1]$ variables, where the ranks of the elements to be replaced are chosen, independently at each time step, according to a distribution $\\kappa_N$ on $\\{1,2,...,N\\}^K$. Our main results are that, under appropriate conditions on $\\kappa_N$, the system exhibits threshold behaviour at $s^* \\in [0,1]$, where $s^*$ is a function of $\\kappa_N$, and the marginal distribution of a randomly selected element converges ...

  7. Rank-Driven Markov Processes

    Science.gov (United States)

    Grinfeld, Michael; Knight, Philip A.; Wade, Andrew R.

    2012-01-01

    We study a class of Markovian systems of N elements taking values in [0,1] that evolve in discrete time t via randomized replacement rules based on the ranks of the elements. These rank-driven processes are inspired by variants of the Bak-Sneppen model of evolution, in which the system represents an evolutionary `fitness landscape' and which is famous as a simple model displaying self-organized criticality. Our main results are concerned with long-time large- N asymptotics for the general model in which, at each time step, K randomly chosen elements are discarded and replaced by independent U[0,1] variables, where the ranks of the elements to be replaced are chosen, independently at each time step, according to a distribution κ N on {1,2,…, N} K . Our main results are that, under appropriate conditions on κ N , the system exhibits threshold behavior at s ∗∈[0,1], where s ∗ is a function of κ N , and the marginal distribution of a randomly selected element converges to U[ s ∗,1] as t→∞ and N→∞. Of this class of models, results in the literature have previously been given for special cases only, namely the `mean-field' or `random neighbor' Bak-Sneppen model. Our proofs avoid the heuristic arguments of some of the previous work and use Foster-Lyapunov ideas. Our results extend existing results and establish their natural, more general context. We derive some more specialized results for the particular case where K=2. One of our technical tools is a result on convergence of stationary distributions for families of uniformly ergodic Markov chains on increasing state-spaces, which may be of independent interest.

  8. Accelerator-driven transmutation technologies

    International Nuclear Information System (INIS)

    The basic principles of accelerator-driven transmutation technologies (ADTT) are outlined and their assets highlighted. Current designs of ADTT facilities pursue 3 basic objectives: (i) Systems designed to generate power and convert nuclear wastes produced by conventional nuclear reactors into long-lived radioisotopes by transmutation. Such isotopes will be separated from molten salts by centrifugal separation. A single subcritical assembly will 'burn' wastes produced by several conventional NPPs. (ii) Systems for power generation using thorium fuel. Such systems are not designed for transmutation of nuclear wastes. The amount of transuranium elements produced by the thorium cycle is minimal, whereby the problem of storage of very long lived isotopes is virtually eliminated. (iii) Systems for transmutation of plutonium reclaimed from nuclear weapons. As to the future of ADTT in comparison with nuclear fusion, an asset of the former is that there remain no unsolved principal physical problems that would preclude its implementation. What has to be solved is materials and technological problems and, in particular, the financial problem. Implementation of ADTT is impossible in any way other than on the basis of a wide international cooperation. There exists a group of people dealing with ADTT in the Czech Republic, joining academic and industrial experts; this group is fostering contacts with the Los Alamos National Laboratory, U.S.A. The Institute of Nuclear Physics, Academy of Sciences of the Czech Republic, has set up an ADTT Documentation Center, which is accessible to any person interested in this promising field of science and technology. (P.A.). 3 figs

  9. Optimal protocols for slowly driven quantum systems.

    Science.gov (United States)

    Zulkowski, Patrick R; DeWeese, Michael R

    2015-09-01

    The design of efficient quantum information processing will rely on optimal nonequilibrium transitions of driven quantum systems. Building on a recently developed geometric framework for computing optimal protocols for classical systems driven in finite time, we construct a general framework for optimizing the average information entropy for driven quantum systems. Geodesics on the parameter manifold endowed with a positive semidefinite metric correspond to protocols that minimize the average information entropy production in finite time. We use this framework to explicitly compute the optimal entropy production for a simple two-state quantum system coupled to a heat bath of bosonic oscillators, which has applications to quantum annealing. PMID:26465432

  10. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  11. Test-driven development with Django

    CERN Document Server

    Harvey, Kevin

    2015-01-01

    This book is for Django developers with little or no knowledge of test-driven development or testing in general. Familiarity with the command line, setting up a Python virtual environment, and starting a Django project are assumed.

  12. Distributed simulation a model driven engineering approach

    CERN Document Server

    Topçu, Okan; Oğuztüzün, Halit; Yilmaz, Levent

    2016-01-01

    Backed by substantive case studies, the novel approach to software engineering for distributed simulation outlined in this text demonstrates the potent synergies between model-driven techniques, simulation, intelligent agents, and computer systems development.

  13. Nonlinear absorption in wave driven plasmas

    International Nuclear Information System (INIS)

    We study the saturation of the wave absorption in a radio frequency driven plasma. A critical energy above which it is useless to work is introduced. The influence of an electric field and practical consequences are then considered

  14. Current-driven turbulence in plasmas

    International Nuclear Information System (INIS)

    Research on plasma heating in linear and toroidal systems using current-driven turbulence is reviewed. The motivation for this research is presented. Relations between parameters describing the turbulent plasma state and macroscopic observables are given. Several linear and toroidal devices used in current-driven turbulence studies are described, followed by a discussion of special diagnostic methods used. Experimental results on the measurement of electron and ion heating, anomalous plasma conductivity and associated turbulent fluctuation spectra are reviewed. Theories on current-driven turbulence are discussed and compared with experiments. It is demonstrated from the experimental results that current-driven turbulence occurs not only for extreme values of the electric field but also for an experimentally much more accessible and wide range of parameters. This forms a basis for a discussion on possible future applications in fusion-oriented plasma research

  15. Creating a performance-driven system

    OpenAIRE

    Rudy Crew

    1998-01-01

    The New York City public school system is in the process of creating the nation's first performance-driven system. Such a system promotes competition, maintains quality, and emphasizes a consistently high level of achievement. The goal of a performance-driven system is to set clear standards and to align resources, policies, and practices with the support that students need to hit the target. The following management principles are used at all levels of the organization: define clear standard...

  16. Graphical querying of model-driven spreadsheets

    OpenAIRE

    Cunha, Jácome Miguel Costa; Fernandes, João Paulo de Sousa Ferreira; Pereira, Rui Alexandre Afonso; Saraiva, João Alexandre

    2014-01-01

    This paper presents a graphical interface to query modeldriven spreadsheets, based on experience with previous work and empirical studies in querying systems, to simplify query construction for typical end-users with little to no knowledge of SQL. We briefly show our previous text based model-driven querying system. Afterwards, we detail our graphical model-driven querying interface, explaining each part of the interface and showing an example. To validate our work, we executed an empirica...

  17. A science model driven retrieval prototype

    OpenAIRE

    Mayr, Philipp; Schaer, Philipp; Mutschke, Peter

    2010-01-01

    This paper is about a better understanding on the structure and dynamics of science and the usage of these insights for compensating the typical problems that arises in metadata-driven Digital Libraries. Three science model driven retrieval services are presented: co-word analysis based query expansion, re-ranking via Bradfordizing and author centrality. The services are evaluated with relevance assessments from which two important implications emerge: (1) precision values of the retrieval se...

  18. Language-Driven Software Development (Invited talk)

    OpenAIRE

    Sierra, José-Luis

    2014-01-01

    Language-driven software development consists in applying computer language design and implementation techniques to build conventional software. The keynote reviews two different language- driven development approaches: domain-specific languages (DLSs), and language-oriented architectures (LOAs). The DSL approach focuses on the provision of languages specialized in different application aspects, which are used by developers, and even by domain experts, during application construction and main...

  19. Property-driven software engineering approach

    OpenAIRE

    Di Marco, Antinisca; Lonetti, Francesca; Angelis, Guglielmo De

    2012-01-01

    We present a research roadmap that defines an enhanced model-driven software engineering approach focused on non-functional properties models. Currently, we have implemented two sub-processes of this roadmap: Property Modeling and Monitoring. We provide a property-driven approach to runtime monitoring based on a comprehensive Property Meta-Model (PMM) and on a generic configurable event-based monitoring infrastructure.

  20. A Micropump Driven by Marangoni Effect

    Science.gov (United States)

    Sugimoto, Kenji; Iwamoto, Kaoru; Kawamura, Hiroshi

    A micropump driven by the thermocapillary convection is proposed. The purpose of this study is to examine the flow structure in liquid region and the effect of the geometry on the performance of the present micropump. There are two significant advantages in the thermocapillary-driven system. First, the surface forces become more dominant than the volume forces with decreasing scale. The present micropump driven by the surface forces shows an advantage in the micro scale over a diaphragm pump driven by the volume forces. Secondary, the thermocapillary driven system contains no movable parts; thus, it allows a very simple structure compared to the diaphragm one. In the present micropump system, a number of ribs are distributed along the flow circuit between a heater and a cooler. Since heat transfer from these ribs to the working liquid imposes temperature gradients along the gas-liquid interfaces, the flow from the hot to the cold side is induced by the Marangoni effect. Fundamental characteristics of the present micropump are studied on the basis of three-dimensional simulation conducted taking the gas, liquid and ribs into account. In this study, the flow structure corresponding to the temperature field was observed. The present calculation has revealed that the flow field exhibits a transition from steady flow to oscillatory flow when the Marangoni number exceeds a critical value of about 2,000-2,500. An experiment was also performed. The liquid flow driven by the present micropump system was confirmed through the experiment.

  1. Automated Testing of Event-Driven Applications

    DEFF Research Database (Denmark)

    Jensen, Casper Svenning

    process of automated testing of web applications that depend on client-server communication, and we present a learning algorithm for inferring such server interface descriptions from concrete observations. We implement tools for web applications and Android mobile applications using the above algorithms...... conducting automated testing of event-driven applications, and we present novel techniques for solving these challenges. First, we present an algorithm for stateless model-checking of event-driven applications with partial-order reduction, and we show how this algorithm may be used to systematically test web......may be tested by selecting an interesting input (i.e. a sequence of events), and deciding if a failure occurs when the selected input is applied to the event-driven application under test. Automated testing promises to reduce the workload for developers by automatically selecting interesting inputs...

  2. Magnetically driven medical devices: a review.

    Science.gov (United States)

    Sliker, Levin; Ciuti, Gastone; Rentschler, Mark; Menciassi, Arianna

    2015-01-01

    A widely accepted definition of a medical device is an instrument or apparatus that is used to diagnose, prevent or treat disease. Medical devices take a broad range of forms and utilize various methods to operate, such as physical, mechanical or thermal. Of particular interest in this paper are the medical devices that utilize magnetic field sources to operate. The exploitation of magnetic fields to operate or drive medical devices has become increasingly popular due to interesting characteristics of magnetic fields that are not offered by other phenomena, such as mechanical contact, hydrodynamics and thermodynamics. Today, there is a wide range of magnetically driven medical devices purposed for different anatomical regions of the body. A review of these devices is presented and organized into two groups: permanent magnetically driven devices and electromagnetically driven devices. Within each category, the discussion will be further segregated into anatomical regions (e.g., gastrointestinal, ocular, abdominal, thoracic, etc.). PMID:26295303

  3. Terahertz-driven linear electron acceleration

    CERN Document Server

    Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2014-01-01

    The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

  4. Light-field driven currents in graphene

    CERN Document Server

    Higuchi, Takuya; Ullmann, Konrad; Weber, Heiko B; Hommelhoff, Peter

    2016-01-01

    Ultrafast electron dynamics in solids under strong optical fields has recently found particular attention. In dielectrics and semiconductors, various light-field-driven effects have been explored, such as high-harmonic generation, sub-optical-cycle interband population transfer and nonperturbative increase of transient polarizability. In contrast, much less is known about field-driven electron dynamics in metals because charge carriers screen an external electric field in ordinary metals. Here we show that atomically thin monolayer Graphene offers unique opportunities to study light-field-driven processes in a metal. With a comparably modest field strength of up to 0.3 V/{\\AA}, we drive combined interband and intraband electron dynamics, leading to a light-field-waveform controlled residual conduction current after the laser pulse is gone. We identify the underlying pivotal physical mechanism as electron quantum-path interference taking place on the 1-femtosecond ($10^{-15}$ second) timescale. The process can...

  5. Test-driven modeling of embedded systems

    DEFF Research Database (Denmark)

    Munck, Allan; Madsen, Jan

    2015-01-01

    To benefit maximally from model-based systems engineering (MBSE) trustworthy high quality models are required. From the software disciplines it is known that test-driven development (TDD) can significantly increase the quality of the products. Using a test-driven approach with MBSE may have a...... similar positive effect on the quality of the system models and the resulting products and may therefore be desirable. To define a test-driven model-based systems engineering (TD-MBSE) approach, we must define this approach for numerous sub disciplines such as modeling of requirements, use cases......, scenarios, behavior, architecture, etc. In this paper we present a method that utilizes the formalism of timed automatons with formal and statistical model checking techniques to apply TD-MBSE to the modeling of system architecture and behavior. The results obtained from applying it to an industrial case...

  6. Three levels of data-driven science

    Science.gov (United States)

    Igarashi, Yasuhiko; Nagata, Kenji; Kuwatani, Tatsu; Omori, Toshiaki; Nakanishi-Ohno, Yoshinori; Okada, Masato

    2016-03-01

    A research project, called “the Initiative for High-dimensional Data-Driven Science through Deepening of Sparse Modeling” is introduced. A concept, called the three levels of data-driven science, is proposed to untie the complicated relation between many fields and many methods. This concept claims that any problem of data analysis should be discussed at different three levels: computational theory, modeling, and representation/algorithm. Based on the concept, how to choose a suitable method among several candidates is discussed through our study on spectral deconvolution. In addition, how to find a universal problem across the disciplines is presented by explaining our proposed ES-SVM method. Moreover, it is illustrated that the hierarchical structure of data analysis should be visualized and shared. From these discussions, we believe that data-driven science is mother of science, namely, a scientific framework that drives many fields of science.

  7. Collisionless driven reconnection in an open system

    International Nuclear Information System (INIS)

    Particle simulation studies of collisionless driven reconnection in an open system are presented. Collisionless reconnection evolves in two steps in accordance with the formation of two current layers, i.e., an ion current layer in the early ion phase and an electron current layer in the late electron phase. After the electron current layer is formed inside the ion current layer, the system relaxes gradually to a steady state when convergent plasma flow is driven by an external electric field with a narrow input window. On the other hand, when the convergent plasma flow is driven from the wide input window, magnetic reconnection takes place in an intermittent manner, due to the frequent formation of magnetic islands in the vicinity of neutral sheet. (author)

  8. Test and Behaviour Driven Development with Python

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Experience has taught us that bugs are impossible to avoid when programming. Specially on continuous delivery processes where there are new versions that refactor or incorporate new modules to the project. Although, there are different tools which help us to ensure code quality by enabling developers to catch bugs while still in the development stage. In this talk, I will talk about Test-driven development(TDD) and Behaviour-Driven development (BDD) methodologies focused on web development. Also, I will present an overview of unit testing tools as Selenium or Behave, which help us to produce working software, with fewer bugs, quickly and consistently.

  9. Test-driven development with Mockito

    CERN Document Server

    Acharya, Sujoy

    2013-01-01

    This book is a hands-on guide, full of practical examples to illustrate the concepts of Test Driven Development.If you are a developer who wants to develop software following Test Driven Development using Mockito and leveraging various Mockito features, this book is ideal for you. You don't need prior knowledge of TDD, Mockito, or JUnit.It is ideal for developers, who have some experience in Java application development as well as a basic knowledge of unit testing, but it covers the basic fundamentals of TDD and JUnit testing to get you acquainted with these concepts before delving into them.

  10. Domain Driven Data Mining - Application to Business

    Directory of Open Access Journals (Sweden)

    Adeyemi Adejuwon

    2010-07-01

    Full Text Available Conventional data mining applications face serious difficulties in solving complex real-life business decision making problems when practically deployed. This work in order to improve the operations in a collection of business domains aims to suggest solutions by reviewing and studying the latest methodological, technical, practical progresses and some cases studies of data mining via domain driven data mining (DDDM. The presented paper tries to answer this question: "what can domain driven data mining do for real-life business applications?" Moreover this work attempts to provide information and abilities to fill the existing gap between academic researches and real-world business problems.

  11. The Driven Pendulum at Any Drive Angle

    CERN Document Server

    VanDalen, G J

    2002-01-01

    The driven inverted pendulum undergoes stable oscillations if the drive amplitude and frequency are large enough. This classroom demonstration is best used in junior or graduate level Classical Mechanics courses. This paper reintroduces the equation of motion of the driven pendulum, generalizing to arbitrary driving angle. The pendulum will oscillate about a stable angle, other than straight down, if the drive amplitude and frequency are large enough for a given drive angle. We will explore what is meant by ``large enough.'' Emphasis is given to parameters associated with a simply made demonstration apparatus.

  12. WIND DRIVEN MOBILE CHARGING OF AUTOMOBILE BATTERY

    OpenAIRE

    SUDHIR KUMAR SINHA; SUMIT KUMAR JHA,; DR S.N. SINGH,

    2011-01-01

    This paper deals with implementation of mobile wind driven generator technology to produce electricity in charging of two wheeler (12V) automobile battery. The use of PWM methodology with pulse charging method at a constant rate has been adopted for this purpose. The low speed PMSG driven by wind at speed of 15/40 km/hour has been used to eliminate gear box to achieve high efficiency. The output of three phase bridge rectifier is fed to boost converter which provides pulses of constant curren...

  13. Investigation toward laser driven IFE power plant

    International Nuclear Information System (INIS)

    Inertial fusion energy (IFE) is becoming feasible due to the increasing understanding of implosion physics. Reactor technology issues have begun to be developed. Based on the conceptual design of Laser Driven IFE Power Plant, the technical and physical issues have been examined. R and D on key issues that affect the feasibility of power plant have been proceeded taking into account the collaboration in the field of laser driver, fuel pellet, reaction chamber and system design. It is concluded that the technical feasibility of IFE power plant seems to be reasonably high. Coordination and collaboration scheme of reactor technology experts in Japan on Laser Driven IFE Power Plant is being proceeded. (author)

  14. Dynamical Behavior of the Driven Morse Oscillator

    Institute of Scientific and Technical Information of China (English)

    郭荣伟; 黄德斌; 张立震

    2003-01-01

    The dynamics of the driven Morse oscillator describing the photo dissociation of Molecules in theoretical chemistry was qualitatively studied. Firstly the suhharmonic Melnikov method was used to prove the existence of periodic orbits in this model. Further it was rigorously proved that this model has chaotic dynamics in the sense of Smale horseshoes by introducing the famous McGehee transformation and applying the homoclinic Melnikov method. The obtained results give an analytic demonstration of the previous numerical results, that is, the driven Morse oscillator admits stochastic excitation and dissociation associated with the onset of chaos.

  15. WIND DRIVEN MOBILE CHARGING OF AUTOMOBILE BATTERY

    Directory of Open Access Journals (Sweden)

    SUDHIR KUMAR SINHA

    2011-01-01

    Full Text Available This paper deals with implementation of mobile wind driven generator technology to produce electricity in charging of two wheeler (12V automobile battery. The use of PWM methodology with pulse charging method at a constant rate has been adopted for this purpose. The low speed PMSG driven by wind at speed of 15/40 km/hour has been used to eliminate gear box to achieve high efficiency. The output of three phase bridge rectifier is fed to boost converter which provides pulses of constant current to the battery.

  16. Developments in laser-driven plasma accelerators

    CERN Document Server

    Hooker, Simon Martin

    2014-01-01

    Laser-driven plasma accelerators provide acceleration gradients three orders of magnitude greater than conventional machines, offering the potential to shrink the length of accelerators by the same factor. To date, laser-acceleration of electron beams to particle energies comparable to those offered by synchrotron light sources has been demonstrated with plasma acceleration stages only a few centimetres long. This article describes the principles of operation of laser-driven plasma accelerators, and reviews their development from their proposal in 1979 to recent demonstrations. The potential applications of plasma accelerators are described and the challenges which must be overcome before they can become a practical tool are discussed.

  17. Semantic Web and Model-Driven Engineering

    CERN Document Server

    Parreiras, Fernando S

    2012-01-01

    The next enterprise computing era will rely on the synergy between both technologies: semantic web and model-driven software development (MDSD). The semantic web organizes system knowledge in conceptual domains according to its meaning. It addresses various enterprise computing needs by identifying, abstracting and rationalizing commonalities, and checking for inconsistencies across system specifications. On the other side, model-driven software development is closing the gap among business requirements, designs and executables by using domain-specific languages with custom-built syntax and se

  18. User Driven Innovation in the Building Process

    DEFF Research Database (Denmark)

    Christiansson, Per; Sørensen, Kristian Birch; Rødtness, Mette;

    2008-01-01

    Innovation in Construction (VIC) project. One important driving force for change is the opportunity for users to develop and articulate real needs concerning for example different functionalities of a building and its parts, but also on artifacts supporting the actual needs capture and requirements...... to introduction of advanced information and communication technology (ICT). The paper focuses on creative changes of the building process powered by user driven innovation activities. An overview of existing user driven innovation methodologies is given as well experiences from the ongoing Virtual...... formulation during building design. A general methodological framework and meta ontology for Virtual Innovation in Construction is presented as well as findings from implementation of the method....

  19. Failure-probability driven dose painting

    OpenAIRE

    Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K; Aznar, Marianne C.; Berthelsen, Anne K.; Kristensen, Claus A.; Rasmussen, Jacob; Specht, Lena; Bentzen, Søren M.

    2013-01-01

    Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed.

  20. Terahertz-driven linear electron acceleration

    Science.gov (United States)

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30-50 MeV m-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  1. Failure-probability driven dose painting

    DEFF Research Database (Denmark)

    Vogelius, Ivan R; Håkansson, Katrin; Due, Anne K;

    2013-01-01

    To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning stu...

  2. Chemically driven Rayleigh-Bénard convection

    Czech Academy of Sciences Publication Activity Database

    Šebestíková, Lenka

    Athens : ISAST, 2014 - (Skiadas, C.). s. 94 ISBN 978-618-81257-3-5. [CHAOS 2014. 07.06.2014-10.06.2014, Lisbon] Institutional support: RVO:67985874 Keywords : Rayleigh-Bénard convection * chemical fronts * iodate-arsenous acid reactions * density driven instabilities Subject RIV: BK - Fluid Dynamics

  3. Neutron importance in source-driven systems

    International Nuclear Information System (INIS)

    A study of integral indicators of the neutron source importance in source-driven systems is carried out and their dependence on the phase-space characteristics of the neutron source is investigated in the first part of the paper. The second part is devoted to the analysis of the solution of the source-driven adjoint model, introducing different detectors as far as the spatial location and the energy is concerned. Spatial, angular and spectral effects are evidenced, solving the transport equation for a 2-dimensional x-y configuration in the multigroup SN approximation. Various definitions of the adjoint problem may be used in the interpretation of local flux measurements in source-driven subcritical systems and in the weighting procedures for the development of computational methods for transient analyses. The definition of the appropriate problem-dependent detector is still an open question and an object of discussion within the accelerator-driven system community. Some results showing the effects of different choices of the adjoint source on the effective mean neutron lifetime are illustrated. (authors)

  4. Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Heiselberg, Per; Li, Zhigang

    2009-01-01

    An experimental study of the phenomenon of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. The measurements were made for opening ratios L/D ranging from 0.027 to 4.455, where L and D are the length of the opening and...

  5. Event-Driven Business Process Management

    OpenAIRE

    von Ammon, Rainer; Emmersberger, Christoph; Greiner, Torsten; Springer, Florian; Wolff, Christian

    2008-01-01

    «Event-Driven Business Process Management» (EDBPM) is a combination of actually two different disciplines: Business Process Management (BPM) and Complex Event Processing (CEP). In this paper we present a general framework for EDBPM as well as first use cases in the context of logistics and financial services.

  6. Light-driven robotics for nanoscopy

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    2013-01-01

    The science fiction inspired shrinking of macro-scale robotic manipulation and handling down to the micro- and nanoscale regime opens new doors for exploiting the forces and torques of light for micro- and nanoscopic probing, actuation and control. Advancing light-driven micro-robotics requires the...... and matter for robotically probing at the smallest biological length scales....

  7. Topology optimization of inertia driven dosing units

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe

    2016-01-01

    This paper presents a methodology for optimizing inertia driven dosing units, sometimes referred to as eductors, for use in small scale flow applications. The unit is assumed to operate at low to moderate Reynolds numbers and under steady state conditions. By applying topology optimization to the...

  8. Model Driven Development of Distributed Business Applications

    OpenAIRE

    Goerigk, Wolfgang

    2011-01-01

    The present paper presents a model driven generative approach to the design and implementation of destributed business applications, which consequently and systematically implements many years of MDSD experience for the software engineering of large application development projects in an industrial context.

  9. Light-driven robotics for nanoscopy

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    2013-01-01

    The science fiction inspired shrinking of macro-scale robotic manipulation and handling down to the micro- and nanoscale regime opens new doors for exploiting the forces and torques of light for micro- and nanoscopic probing, actuation and control. Advancing light-driven micro-robotics requires...... and matter for robotically probing at the smallest biological length scales....

  10. Quantitative system validation in model driven design

    DEFF Research Database (Denmark)

    Hermanns, Hilger; Larsen, Kim Guldstrand; Raskin, Jean-Francois;

    2010-01-01

    The European STREP project Quasimodo1 develops theory, techniques and tool components for handling quantitative constraints in model-driven development of real-time embedded systems, covering in particular real-time, hybrid and stochastic aspects. This tutorial highlights the advances made, focus...

  11. Quasiperiodically driven ratchets for cold atoms

    OpenAIRE

    Gommers, R.; Denisov, S.(State Research Center Institute for High Energy Physics, Protvino, Russia); Renzoni, F.

    2006-01-01

    We investigate experimentally the route to quasiperiodicity in a driven ratchet for cold atoms, and examine the relationship between symmetries and transport while approaching the quasiperiodic limit. Depending on the specific form of driving, quasiperiodicity results in the complete suppression of transport, or into the restoration of the symmetries which hold for a periodic driving.

  12. Respondent-Driven Sampling in Participatory Research Contexts: Participant-Driven Recruitment

    OpenAIRE

    Tiffany, Jennifer S.

    2006-01-01

    This article reports on the use of respondent-driven sampling (RDS) in participatory and community-based research. Participant-driven recruitment (PDR) retains all of the analytic capabilities of RDS while enhancing the role of respondents in framing research questions, instrument development, data interpretation, and other aspects of the research process. Merging the capabilities of RDS with participatory research methods, PDR creates new opportunities for engaging community members in resea...

  13. Suppression of magnetic islands by rf-driven currents

    International Nuclear Information System (INIS)

    The quasilinear theory for the saturation of nonlinear tearing modes is modified to include rf driven currents. It is shown that the presence of lower hybrid driven currents can strongly suppress the growth of magnetic islands

  14. IAEA activities on accelerator-driven systems

    International Nuclear Information System (INIS)

    A brief account is given of the following IAEA programmes and events: Special Scientific Programme on 'Use of High Energy Accelerators for Transmutation of Actinides and Power Production'; Status report on actinide and fission product transmutation studies; Accelerator-driven systems: energy generation and transmutation of nuclear waste (status report); Coordinated Research Programme on the Use of Thorium-based Fuel Cycle in Accelerator Driven Systems to Incinerate Plutonium and to Reduce Long-term Waste Toxicities; Technical Committee Meeting on 'Feasibility and Motivation for Hybrid Concepts for Nuclear Energy Generation and Transmutation'; Data-base on experimental facilities and computer codes for ADS related research and development; Co-ordinated Research Project (CRP) on Safety, Environmental and Non-Proliferation Aspects of Partitioning and Transmutation of Actinides and Long-lived Fission Products. (P.A.)

  15. Nova-driven winds in globular clusters

    International Nuclear Information System (INIS)

    Recent sensitive searches for Hα emission from ionized intracluster gas in globular clusters have set upper limits that conflict with theoretical predictions. We suggest that nova outbursts heat the gas, producing winds that resolve this discrepancy. The incidence of novae in globular clusters, the conversion of kinetic energy of the nova shell to thermal energy of the intracluster gas, and the characteristics of the resultant winds are discussed. Calculated emission from the nova-driven models does not conflict with any observations to date. Some suggestions are made concerning the most promising approaches for future detection of intracluster gas on the basis of these models. The possible relationship of nova-driven winds of globular cluster X-ray sources is also considered

  16. User driven innovation in mobile technologies?

    DEFF Research Database (Denmark)

    Larsen, Casper Schultz; Koch, Christian

    2007-01-01

    site practises, and headquarters - inspired by specific user needs for optimizing work processes. The most important mechanisms evoked for creating the mediating found in the paper are ‘hybrids’ where professionals from AEC establishes a software house, developing ICT-products for specific on......Developing dedicated mobile technology systems for AEC demands the introduction of user driven innovation. A Danish research project collected international examples and user-experiences of mobile and handheld ICT in the building industry i.a. by reading off the functionality of the mobile...... by systems already in function. Stories of prior business successes can be an important tool to ensure further innovative investments since lack of enterprise strategies is often an obstacle for innovation, especially user driven. Both small and large software houses develops dedicated software for coupling...

  17. Stable transport in proton driven Fast Ignition

    CERN Document Server

    Bret, A

    2009-01-01

    Proton beam transport in the context of proton driven Fast Ignition is usually assumed to be stable due to protons high inertia, but an analytical analysis of the process is still lacking. The stability of a charge and current neutralized proton beam passing through a plasma is therefore conducted here, for typical proton driven Fast Ignition parameters. In the cold regime, two fast growing Buneman-like modes are found, with an inverse growth-rate much smaller than the beam time-of-flight to the target core. The stability issue is thus not so obvious, and Kinetic effects are investigated. One unstable mode is found stabilized by the background plasma protons and electrons temperatures. The second mode is also damped, providing the proton beam thermal spread is larger than $\\sim$ 10 keV. In Fusion conditions, the beam propagation should therefore be stable.

  18. Strongly driven spin rotations in diamond

    International Nuclear Information System (INIS)

    We present in this talk theoretical background, numerical simulations and experimental evidences of strongly driven single spin rotations through the application of optimal control methods. The spin, an electron spin of the nitrogen-vacancy colour centre in diamond, is strongly driven by a numerically optimised microwave (MW) control. To obtain such control we employ a quantum optimal control method, namely chopped random basis (CRAB) algorithm. We show that arbitrary spin rotations are possible by demonstrating pi and half-pi spin rotations without resorting to the common rotating-wave-approximation (RWA). Furthermore, the rotations are performed faster than that of the RWA-Rabi oscillation at the same MW amplitude, and they are more robust to magnetic field noise than those based on bang-bang control. These results are promising to increase the number of operations in quantum computer before decoherence take place and can improve the performance of diamond-based quantum technologies. (author)

  19. Gravity-driven fingering in unsaturated fractures

    International Nuclear Information System (INIS)

    Gravity-driven wetting-front instability is known to occur in both porous media and Hele-Shaw cells. A systematic investigative procedure for studying gravity-driven fingering in unsaturated, rough-walled fractures is described. As a first step toward understanding this system, experiments were performed in an analogue fracture consisting of two roughened glass plates held in close contact. Results from preliminary experiments in both initially dry and wet analogue fractures are presented, including measurements taken from individual fingers within a fully unstable flow field. For initially dry fractures, increasing the volume of fluid contained in the front leads to increases in both finger width and velocity. Finger velocity also was observed to increase with gravitational gradient. Once a finger structure develops in an initially dry fracture, the structure persists in subsequent infiltration events. In uniformly wet fractures, fingers are found to be more numerous and thinner and to have higher velocity than fingers formed in initially dry fractures

  20. Novelty-driven Particle Swarm Optimization

    DEFF Research Database (Denmark)

    Galvao, Diana; Lehman, Joel Anthony; Urbano, Paulo

    2015-01-01

    Particle Swarm Optimization (PSO) is a well-known population-based optimization algorithm. Most often it is applied to optimize objective-based fitness functions that reward progress towards a desired objective or behavior. As a result, search increasingly focuses on higher-fitness areas. However......, in problems with many local optima, such focus often leads to premature convergence that precludes reaching the intended objective. To remedy this problem in certain types of domains, this paper introduces Novelty-driven Particle Swarm Optimization (NdPSO), which is motivated by the novelty search algorithm...... in genetic programming, this paper implements NdPSO as an extension of the grammatical swarm method, which combines PSO with genetic programming. The resulting NdPSO implementation is tested in three different domains representative of those in which it might provide advantage over objective-driven PSO...

  1. Spectrum of resistivity gradient driven turbulence

    International Nuclear Information System (INIS)

    The resistivity fluctuation correlation function and electrostatic potential spectrum of resistivity gradient driven turbulence are calculated analytically and compared to the results of three dimensional numerical calculations. Resistivity gradient driven turbulence is characterized by effective Reynolds' numbers of order unity. Steady-state solution of the renormalized spectrum equations yields an electrostatic potential spectrum (circumflex phi2)/sub ktheta/ approx. k/sub theta//sup -3.25/. Agreement of the analytically calculated potential spectrum and mean-square radial velocity with the results of multiple helicity numerical calculations is excellent. This comparison constitutes a quantitative test of the analytical turbulence theory used. The spectrum of magnetic fluctuations is also calculated, and agrees well with that obtained from the numerical computations. 13 refs., 8 figs

  2. Diagnostics for laser-driven plasma accelerators

    International Nuclear Information System (INIS)

    When generating relativistic plasmas with high power laser systems small-scale particle accelerators can be realized producing particle pulses which exhibit parameters complementary to conventional accelerators. To be able to resolve the physical processes underlying the acceleration mechanisms diagnostics well-suited for this plasma environment need to be designed and realized. In this presentation, several techniques are introduced, and recent results are discussed. They have lead to the first time-resolved visualization of the plasma wave necessary for laser-driven electron acceleration, its non-linear evolution and the actual breaking of the plasma wave. Furthermore, diagnostic techniques relevant for laser-driven ion acceleration based on optical and particle probing are presented.

  3. Hydrodynamic synchronisation of optically driven rotors

    Science.gov (United States)

    Debono, Luke J.; Box, Stuart; Phillips, David B.; Simpson, Stephen H.; Hanna, Simon

    2015-08-01

    Hydrodynamic coupling is thought to play a role in the coordinated beating of cilia and flagella, and may inform the future design of artificial swimmers and pumps. In this study, optical tweezers are used to investigate the hydrodynamic coupling between a pair of driven oscillators. The theoretical model of Lenz and Ryskin [P. Lenz and A. Ryskin, Phys. Biol. 3, 285{294 (2006)] is experimentally recreated, in which each oscillator consists of a sphere driven in a circular trajectory. The optical trap position is maintained ahead of the sphere to provide a tangential driving force. The trap is also moved radially to harmonically constrain the sphere to the circular trajectory. Analytically, it has been shown that two oscillators of this type are able to synchronise or phase-lock under certain conditions. We explore the interplay between synchronisation mechanisms and find good agreement between experiment, theory and Brownian dynamics simulations.

  4. Electrically Driven Spin Dynamics of Paramagnetic Impurities

    Science.gov (United States)

    Saha, D.; Siddiqui, L.; Bhattacharya, P.; Datta, S.; Basu, D.; Holub, M.

    2008-05-01

    The spin dynamics of dilute paramagnetic impurities embedded in a semiconductor GaAs channel of a conventional lateral spin valve has been investigated. It is observed that the electron spin of paramagnetic Mn atoms can be polarized electrically when driven by a spin valve in the antiparallel configuration. The transient current through the MnAs/GaAs/MnAs spin valve bears the signature of the underlying spin dynamics driven by the exchange interaction between the conduction band electrons in GaAs and the localized Mn electron spins. The time constant for this interaction is observed to be dependent on temperature and is estimated to be 80 ns at 15 K.

  5. A Science Model Driven Retrieval Prototype

    CERN Document Server

    Mayr, Philipp; Mutschke, Peter

    2011-01-01

    This paper is about a better understanding on the structure and dynamics of science and the usage of these insights for compensating the typical problems that arises in metadata-driven Digital Libraries. Three science model driven retrieval services are presented: co-word analysis based query expansion, re-ranking via Bradfordizing and author centrality. The services are evaluated with relevance assessments from which two important implications emerge: (1) precision values of the retrieval service are the same or better than the tf-idf retrieval baseline and (2) each service retrieved a disjoint set of documents. The different services each favor quite other - but still relevant - documents than pure term-frequency based rankings. The proposed models and derived retrieval services therefore open up new viewpoints on the scientific knowledge space and provide an alternative framework to structure scholarly information systems.

  6. A Model-Driven Probabilistic Parser Generator

    CERN Document Server

    Quesada, Luis; Cortijo, Francisco J

    2012-01-01

    Existing probabilistic scanners and parsers impose hard constraints on the way lexical and syntactic ambiguities can be resolved. Furthermore, traditional grammar-based parsing tools are limited in the mechanisms they allow for taking context into account. In this paper, we propose a model-driven tool that allows for statistical language models with arbitrary probability estimators. Our work on model-driven probabilistic parsing is built on top of ModelCC, a model-based parser generator, and enables the probabilistic interpretation and resolution of anaphoric, cataphoric, and recursive references in the disambiguation of abstract syntax graphs. In order to prove the expression power of ModelCC, we describe the design of a general-purpose natural language parser.

  7. A charge-driven molecular water pump.

    Science.gov (United States)

    Gong, Xiaojing; Li, Jingyuan; Lu, Hangjun; Wan, Rongzheng; Li, Jichen; Hu, Jun; Fang, Haiping

    2007-11-01

    Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications, including the desalination of seawater. Nanopumps driven by electric or magnetic fields can transport ions and magnetic quanta, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient. PMID:18654410

  8. Quality of Data Driven Simulation Workflows

    Directory of Open Access Journals (Sweden)

    Michael Reiter

    2014-01-01

    Full Text Available Simulations are long-running computations driven by non-trivial data dependencies. Workflow technology helps to automate these simulations and enable using Quality of Data (QoD frameworks to determine the goodness of simulation data. However, existing frameworks are specific to scientific domains, individual applications, or proprietary workflow engine extensions. In this paper, we propose a generic approach to use QoD as a uniform means to steer complex interdisciplinary simulations implemented as workflows. The approach enables scientists to specify abstract QoD requirements that are considered to steer the workflow for ensuring a precise final result. To realize these Quality of Data-driven workflows, we present a middleware architecture and a WS-Policy-based language to describe QoD requirements and capabilities. To prove technical feasibility, we present a prototype for controlling and steering simulation workflows and a real world simulation scenario.

  9. Noise-driven phenomena in hysteretic systems

    CERN Document Server

    Dimian, Mihai

    2014-01-01

    Noise-Driven Phenomena in Hysteretic Systems provides a general approach to nonlinear systems with hysteresis driven by noisy inputs, which leads to a unitary framework for the analysis of various stochastic aspects of hysteresis. This book includes integral, differential and algebraic models that are used to describe scalar and vector hysteretic nonlinearities originating from various areas of science and engineering. The universality of the authors approach is also reflected by the diversity of the models used to portray the input noise, from the classical Gaussian white noise to its impulsive forms, often encountered in economics and biological systems, and pink noise, ubiquitous in multi-stable electronic systems. The book is accompanied by HysterSoft© - a robust simulation environment designed to perform complex hysteresis modeling – that can be used by the reader to reproduce many of the results presented in the book as well as to research both disruptive and constructive effects of noise in hysteret...

  10. Building Test Cases through Model Driven Engineering

    Science.gov (United States)

    Sousa, Helaine; Lopes, Denivaldo; Abdelouahab, Zair; Hammoudi, Slimane; Claro, Daniela Barreiro

    Recently, Model Driven Engineering (MDE) has been proposed to face the complexity in the development, maintenance and evolution of large and distributed software systems. Model Driven Architecture (MDA) is an example of MDE. In this context, model transformations enable a large reuse of software systems through the transformation of a Platform Independent Model into a Platform Specific Model. Although source code can be generated from models, defects can be injected during the modeling or transformation process. In order to delivery software systems without defects that cause errors and fails, the source code must be submitted to test. In this paper, we present an approach that takes care of test in the whole software life cycle, i.e. it starts in the modeling level and finishes in the test of source code of software systems. We provide an example to illustrate our approach.

  11. Shape-Driven Nested Markov Tessellations

    CERN Document Server

    Schreiber, Tomasz

    2011-01-01

    A new and rather broad class of stationary (i.e. stochastically translation invariant) random tessellations of the $d$-dimensional Euclidean space is introduced, which are called shape-driven nested Markov tessellations. Locally, these tessellations are constructed by means of a spatio-temporal random recursive split dynamics governed by a family of Markovian split kernel, generalizing thereby the -- by now classical -- construction of iteration stable random tessellations. By providing an explicit global construction of the tessellations, it is shown that under suitable assumptions on the split kernels (shape-driven), there exists a unique time-consistent whole-space tessellation-valued Markov process of stationary random tessellations compatible with the given split kernels. Beside the existence and uniqueness result, the typical cell and some aspects of the first-order geometry of these tessellations are in the focus of our discussion.

  12. Update on Proton Driven Plasma Wakefield Acceleration

    CERN Document Server

    Xia, G; Lotov, K; Pukhov, A; Kumar, N; An, W; Lu, W; Mori, W B; Joshi, C; Huang, C; Muggli, P; Assmann, R; Zimmermann, F

    2010-01-01

    In this paper, the update of proton driven plasma wakefield acceleration (PDPWA) is given. After a brief introduction to the scheme of PDPWA, a future demonstration experiment is discussed. The particle-in-cell simulation results based on the realistic proton beams from the CERN Super Proton Synchrotron (SPS) are presented, followed by a simulation study of proton bunch compression. Presented at AAC’10, 13-19 June 2010, Annapolis, MD, USA

  13. Weapon plutonium in accelerator driven power system

    International Nuclear Information System (INIS)

    Accelerator Driven Systems are planned to be developed for the use (or destruction) of dozens of tons of weapon-grade Plutonium (W-Pu) resulted from the reducing of nuclear weapons. In the paper are compared the parameters of various types of accelerators, the physical properties of various types of targets and blankets, and the results of fuel cycle simulation. Some economical aspects are also discussed

  14. Data-driven learning: the perpetual enigma.

    OpenAIRE

    Boulton, Alex

    2011-01-01

    Many uses have been found for corpora in language teaching and learning, most radically perhaps where learners explore the data themselves. Such procedures are especially associated with Tim Johns, who proposed what he called 'data-driven learning' over 20 years ago. While he described his techniques in detail in a number of papers, researchers and practitioners over the years have adapted Johns' procedures and invented new ones of their own, with the result that it can be difficult to pin do...

  15. Mastering Technologies in Design-Driven Innovation

    DEFF Research Database (Denmark)

    Dell'era, Claudio; Marchesi, Alessio; Verganti, Roberto

    2010-01-01

    semantic dimensions of a product. Case studies of two leading Italian companies in the furniture industry--Kartell and Luceplan--illustrate two principal interpretations of the role of technology in radical design-driven innovation: technology as an enabler of new product meanings for the customer, and the...... importance of supply networks that allow manufacturers to change product technologies quickly and experiment with new technologies....

  16. An Assembler Driven Verification Methodology (ADVM)

    OpenAIRE

    Macbeth, John S.; Heinz, Dietmar; Gray, Ken

    2005-01-01

    Submitted on behalf of EDAA (http://www.edaa.com/) International audience This paper presents an overview of an assembler driven verification methodology (ADVM) that was created and implemented for a chip card project at Infineon Technologies AG. The primary advantage of this methodology is that it enables rapid porting of directed tests to new targets and derivatives, with only a minimum amount of code refactoring. As a consequence, considerable verification development time and effort...

  17. An Assembler Driven Verification Methodology (ADVM)

    CERN Document Server

    Macbeth, John S; Gray, Ken

    2011-01-01

    This paper presents an overview of an assembler driven verification methodology (ADVM) that was created and implemented for a chip card project at Infineon Technologies AG. The primary advantage of this methodology is that it enables rapid porting of directed tests to new targets and derivatives, with only a minimum amount of code refactoring. As a consequence, considerable verification development time and effort was saved.

  18. Solar driven membrane pervaporation for desalination processes

    OpenAIRE

    Zwijnenberg, H.J.; Koops, G.H.; Wessling, M.

    2005-01-01

    We describe details of a solar driven pervaporation process for the production of desalinated water from highly contaminated waters. The membrane material is a polyetheramide-based polymer film of 40 ¿m thickness. This Solar Dew® membrane is used in a tubular configuration in a direct solar membrane pervaporation process. The feed waters used in this study are untreated seawater and waste water that is simultaneously produced with the mineral oil extraction. In all cases retention of typical ...

  19. Software engineering architecture-driven software development

    CERN Document Server

    Schmidt, Richard F

    2013-01-01

    Software Engineering: Architecture-driven Software Development is the first comprehensive guide to the underlying skills embodied in the IEEE's Software Engineering Body of Knowledge (SWEBOK) standard. Standards expert Richard Schmidt explains the traditional software engineering practices recognized for developing projects for government or corporate systems. Software engineering education often lacks standardization, with many institutions focusing on implementation rather than design as it impacts product architecture. Many graduates join the workforce with incomplete skil

  20. A Constraints Driven Product Lifecycle Management Framework

    OpenAIRE

    LE DUIGOU, Julien; Bernard, Alain; Perry, Nicolas; Delplace, Jean-Charles

    2009-01-01

    The management of the product information during its lifecycle is a strategic issue for the industry. In this paper, a constraints driven framework is proposed to create and manage the product information. The method proposes to each actor that intervenes on the product life cycle to act on the quote, the development or the industrialisation of the product. From each phase of the product lifecycle, the extraction, capitalisation and reuse of fundamental knowledge is coordinated by...

  1. Functional resilience against climate-driven extinctions

    OpenAIRE

    Liebergesell, Mario; Reu, Björn; Stahl, Ulrike; Freiberg, Martin; Welk, Erik; Kattge, Jens; Cornelissen, J. Hans C.; Peñuelas, Josep

    2016-01-01

    Future global change scenarios predict a dramatic loss of biodiversity for many regions in the world, potentially reducing the resistance and resilience of ecosystem functions. Once before, during Plio-Pleistocene glaciations, harsher climatic conditions in Europe as compared to North America led to a more depauperate tree flora. Here we hypothesize that this climate driven species loss has also reduced functional diversity in Europe as compared to North America. We used variation in 26 trait...

  2. Data driven models of legged locomotion

    Science.gov (United States)

    Revzen, Shai; Kvalheim, Matthew

    2015-05-01

    Legged locomotion is a challenging regime both for experimental analysis and for robot design. From biology, we know that legged animals can perform spectacular feats which our machines can only surpass on some specially controlled surfaces such as roads. We present a concise review of the theoretical underpinnings of Data Driven Floquet Analysis (DDFA), an approach for empirical modeling of rhythmic dynamical systems. We provide a review of recent and classical results which justify its use in the analysis of legged systems.

  3. Electrically Driven Technologies for Radioactive Aerosol Abatement

    Energy Technology Data Exchange (ETDEWEB)

    David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

    2003-01-28

    The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

  4. Data Driven Tuning of Inventory Controllers

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Santacoloma, Paloma Andrade; Poulsen, Niels Kjølstad;

    2007-01-01

    A systematic method for criterion based tuning of inventory controllers based on data-driven iterative feedback tuning is presented. This tuning method circumvent problems with modeling bias. The process model used for the design of the inventory control is utilized in the tuning as an...... approximation to reduce time required on experiments. The method is illustrated in an application with a multivariable inventory control implementation on a four tank system....

  5. An ontology driven data mining process

    OpenAIRE

    BRISSON, Laurent; Collard, Martine

    2008-01-01

    This paper deals with knowledge integration in a data mining process. We suggest to model domain knowledge during business understanding and data understanding steps in order to build an ontology driven information system (ODIS). We present the KEOPS Methodology based on this approach. In KEOPS, the ODIS is dedicated to data mining tasks. It allows using expert knowledge for efficient data selection, data preparation and model interpretation. In this paper, we detail each of these ontology dr...

  6. A User Driven Dynamic Circuit Network Implementation

    OpenAIRE

    Guok, Chin

    2009-01-01

    The requirements for network predictability are becoming increasingly critical to the DoE science community where resources are widely distributed and collaborations are world-wide. To accommodate these emerging requirements, the Energy Sciences Network has established a Science Data Network to provide user driven guaranteed bandwidth allocations. In this paper we outline the design, implementation, and secure coordinated use of such a network, as well as some lessons learned.

  7. Dynamic signatures of driven vortex motion

    International Nuclear Information System (INIS)

    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients. (orig.)

  8. A User Driven Dynamic Circuit Network Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Guok, Chin; Robertson, David; Chaniotakis, Evangelos; Thompson, Mary; Johnston, William; Tierney, Brian

    2008-10-01

    The requirements for network predictability are becoming increasingly critical to the DoE science community where resources are widely distributed and collaborations are world-wide. To accommodate these emerging requirements, the Energy Sciences Network has established a Science Data Network to provide user driven guaranteed bandwidth allocations. In this paper we outline the design, implementation, and secure coordinated use of such a network, as well as some lessons learned.

  9. Simulation Model Driven Engineering for Manufacturing Cell

    OpenAIRE

    Hibino, Hironori; Inukai, Toshihiro; Yoshida, Yukishige

    2010-01-01

    In our research, the simulation model driven engineering for manufacturing cell (SMDE-MC) is proposed. The purposes of SMDE-MC are to support the manufacturing engineering processes based on the simulation model and to extend the range of control applications and simulation applications using the PC based control. SMDE-MC provides the simulation model which controls and monitors the manufacturing cell directly using PC based control in the manufacturing system execution phase. Then when the s...

  10. Model-driven Engineering for Requirements Analysis

    OpenAIRE

    Baudry, Benoit; Nebut, Clementine; Le Traon,Yves

    2007-01-01

    Requirements engineering (RE) encompasses a set of activities for eliciting, modelling, agreeing, communicating and validating requirements that precisely define the problem domain for a software system. Several tools and methods exist to perform each of these activities, but they mainly remain separate, making it difficult to capture the global consistency of large requirement documents. In this paper we introduce model-driven engineering (MDE) as a possible technical solution to integrate the...

  11. Dynamic Transitions of Surface Tension Driven Convection

    OpenAIRE

    Dijkstra, Henk,; Sengul, Taylan; Wang, Shouhong

    2011-01-01

    We study the well-posedness and dynamic transitions of the surface tension driven convection in a three-dimensional (3D) rectangular box with non-deformable upper surface and with free-slip boundary conditions. It is shown that as the Marangoni number crosses the critical threshold, the system always undergoes a dynamic transition. In particular, two different scenarios are studied. In the first scenario, a single mode losing its stability at the critical parameter gives rise to either a Type...

  12. Employee-driven Innovation in Welfare Services

    OpenAIRE

    Wihlman, Thomas; Hoppe, Magnus; Wihlman, Ulla; Sandmark, Helene

    2014-01-01

    There is a growing interest in both employee-driven innovation (EDI) and innovation in welfare services, but a lack of empirical studies addressing innovation from the employee perspective. Accordingly, this study was designed to contribute with well-grounded empirical knowledge, aiming to explore the barriers to and opportunities for participation in innovation experienced by employees of the Swedish welfare services. In order to reach the aim, a qualitative thematic analysis of 27 semi-stru...

  13. Patient safety and technology-driven medication

    DEFF Research Database (Denmark)

    Orbæk, Janne; Gaard, Mette; Keinicke Fabricius, Pia;

    2015-01-01

    ways of educating nursing students in today's medication administration. AIM: To explore nursing students' experiences and competences with the technology-driven medication administration process. METHODS: 16 pre-graduate nursing students were included in two focus group interviews which were recorded...... confidence in using technology, but were fearful of committing serious medication errors. From the nursing students' perspective, experienced nurses deviate from existing guidelines, leaving them feeling isolated in practical learning situations. CONCLUSION: Having an unclear nursing role model for the...

  14. Data driven analysis of faces from images

    OpenAIRE

    Scherbaum, Kristina

    2013-01-01

    This thesis proposes three new data-driven approaches to detect, analyze, or modify faces in images. All presented contributions are inspired by the use of prior knowledge and they derive information about facial appearances from pre-collected databases of images or 3D face models. First, we contribute an approach that extends a widely-used monocular face detector by an additional classifier that evaluates disparity maps of a passive stereo camera. The algorithm runs in real-time and signific...

  15. Impulsive nature in collisional driven reconnection

    International Nuclear Information System (INIS)

    Compressible magnetohydrodynamic simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. In the impulsive phase, the reconnection rate is remarkably enhanced up to more than ten times of the driving rate on the boundary. (author)

  16. Scaling the electromagnetically driven explosive shock simulator

    Science.gov (United States)

    Persh, Robert I.

    1987-01-01

    A heavy payload electromagnetically driven explosive shock simulator, referred to as EDESS-3, has been assembled and characterized at the Navel research Weapons Center. EDESS-3 is the logical outgrowth of the earlier EDESS 1 and 2 simulator work which explored the use of electrical pulse power technology for the generation of explosive like shocks. The features of the EDESS-3 are presented, and designs for the next generation of EDESS machines are introduced.

  17. Database driven scheduling for batch systems

    International Nuclear Information System (INIS)

    Experiments at the Jefferson Laboratory will soon be generating data at the rate of 1 TB/day. In this paper, the authors present a database driven scheme that they are currently implementing in order to ensure the safe archival and subsequent reconstruction of this data. They use a client-server architecture implemented in Java to serve data between the experiments, the mass storage, and the processor farm

  18. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1995-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  19. Model-driven architecture for cancer research

    OpenAIRE

    Calinescu, R.; Harris, S.; Gibbons, J.; Toujilov, I.; Nagl, S

    2007-01-01

    Abstract It is a common phenomenon for research projects to collect and analyse valuable data using ad-hoc information systems. These costly-to-build systems are often composed of incompatible variants of the same modules, and record data in ways that prevent any meaningful result analysis across similar projects. We present a framework that uses a combination of formal methods, model-driven development and service-oriented architecture (SOA) technologies to automate the generation of data ma...

  20. Parametrically Driven Nonlinear Oscillators with an Impurity

    Institute of Scientific and Technical Information of China (English)

    张卓; 唐翌

    2002-01-01

    By virtue of the method of multiple scales, we study a chain of parametrically driven nonlinear oscillators with a mass impurity. An equation is presented to describe the nonlinear wave of small amplitude in the chain.In our derivation, the equation is applicable to any eigenmode of coupled pendulum. Our result shows that a nonpropagation soliton emerges as the lowest or highest eigenmode of coupled pendulum is excited, and the impurity tends to pin the nonpropagation soliton excitation.

  1. Is Earthquake Triggering Driven by Small Earthquakes?

    OpenAIRE

    Helmstetter, Agnes

    2002-01-01

    Using a catalog of seismicity for Southern California, we measure how the number of triggered earthquakes increases with the earthquake magnitude. The trade-off between this relation and the distribution of earthquake magnitudes controls the relative role of small compared to large earthquakes. We show that seismicity triggering is driven by the smallest earthquakes, which trigger fewer events than larger earthquakes, but which are much more numerous. We propose that the non-trivial scaling o...

  2. Propeller-driven Outflows and Disk Oscillations

    OpenAIRE

    Romanova, M. M.; Ustyugova, G. V.; Koldoba, A. V.; Lovelace, R. V. E.

    2005-01-01

    We report the discovery of propeller-driven outflows in axisymmetric magnetohydrodynamic simulations of disk accretion to rapidly rotating magnetized stars. Matter outflows in a wide cone and is centrifugally ejected from the inner regions of the disk. Closer to the axis there is a strong, collimated, magnetically dominated outflow of energy and angular momentum carried by the open magnetic field lines from the star. The ``efficiency'' of the propeller may be very high in the respect that mos...

  3. Tuned, driven, and active soft matter

    OpenAIRE

    Menzel, Andreas M.

    2015-01-01

    One characteristic feature of soft matter systems is their strong response to external stimuli. As a consequence they are comparatively easily driven out of their ground state and out of equilibrium, which leads to many of their fascinating properties. Here, we review illustrative examples. This review is structured by an increasing distance from the equilibrium ground state. On each level, examples of increasing degree of complexity are considered. In detail, we first consider systems that a...

  4. Tuned, driven, and active soft matter

    Science.gov (United States)

    Menzel, Andreas M.

    2015-02-01

    One characteristic feature of soft matter systems is their strong response to external stimuli. As a consequence they are comparatively easily driven out of their ground state and out of equilibrium, which leads to many of their fascinating properties. Here, we review illustrative examples. This review is structured by an increasing distance from the equilibrium ground state. On each level, examples of increasing degree of complexity are considered. In detail, we first consider systems that are quasi-statically tuned or switched to a new state by applying external fields. These are common liquid crystals, liquid crystalline elastomers, or ferrogels and magnetic elastomers. Next, we concentrate on systems steadily driven from outside e.g. by an imposed flow field. In our case, we review the reaction of nematic liquid crystals, of bulk-filling periodically modulated structures such as block copolymers, and of localized vesicular objects to an imposed shear flow. Finally, we focus on systems that are "active" and "self-driven". Here our range spans from idealized self-propelled point particles, via sterically interacting particles like granular hoppers, via microswimmers such as self-phoretically driven artificial Janus particles or biological microorganisms, via deformable self-propelled particles like droplets, up to the collective behavior of insects, fish, and birds. As we emphasize, similarities emerge in the features and behavior of systems that at first glance may not necessarily appear related. We thus hope that our overview will further stimulate the search for basic unifying principles underlying the physics of these soft materials out of their equilibrium ground state.

  5. Two phase picture in driven polymer translocation

    OpenAIRE

    Saito, Takuya; Sakaue, Takahiro

    2012-01-01

    Two phase picture is a simple and effective methodology to capture the nonequilibrium dynamics of polymer associated with tension propagation. When applying it to the driven translocation process, there is a point to be noted, as briefly discussed in our recent article [Phys. Rev. E 85, 061803 (2012)]. In this article, we address this issue in detail and modify our previous prediction [Euro. Phys. J. E 34, 135 (2011)] by adopting an alternative steady-state ansatz. The modified scaling predic...

  6. A gasdynamic gun driven by gaseous detonation.

    Science.gov (United States)

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels. PMID:26827358

  7. Ontology Based Feature Driven Development Life Cycle

    Directory of Open Access Journals (Sweden)

    Farheen Siddiqui

    2012-01-01

    Full Text Available The upcoming technology support for semantic web promises fresh directions for Software Engineering community. Also semantic web has its roots in knowledge engineering that provoke software engineers to look for application of ontology applications throughout the Software Engineering lifecycle. The internal components of a semantic web are "light weight", and may be of less quality standards than the externally visible modules. In fact the internal components are generated from external (ontological component. That's the reason agile development approaches such as feature driven development are suitable for applications internal component development. As yet there is no particular procedure that describes the role of ontology in FDD processes. Therefore we propose an ontology based feature driven development for semantic web application that can be used form application model development to feature design and implementation. Features are precisely defined in the OWL-based domain model. Transition from OWL based domain model to feature list is directly defined in transformation rules. On the other hand the ontology based overall model can be easily validated through automated tools. Advantages of ontology-based feature Driven development are also discussed.

  8. Exploring Titan with Autonomous, Buoyancy Driven Gliders

    Science.gov (United States)

    Morrow, M. T.; Woolsey, C. A.; Hagerman, G. M.

    Buoyancy driven underwater gliders are highly efficient winged underwater vehicles which locomote by modifying their internal shape. The concept, which is already well-proven in Earth's oceans, is also an appealing technology for remote terrain exploration and environmental sampling on worlds with dense atmospheres. Because of their high efficiency and their gentle, vertical take-off and landing capability, buoyancy driven gliders might perform long duration, global mapping tasks as well as light-duty, local sampling tasks. Moreover, a sufficiently strong gradient in the planetary boundary layer may enable the vehicles to perform dynamic soaring, achieving even greater locomotive efficiency. Shape Change Actuated, Low Altitude Robotic Soarers (SCALARS) are an appealing alternative to more conventional vehicle technology for exploring planets with dense atmospheres. SCALARS are buoyancy driven atmospheric gliders with a twin-hulled, inboard wing configuration. The inboard wing generates lift, which propels the vehicle forward. Symmetric changes in mass distribution induce gravitational pitch moments that provide longitudinal control. Asymmetric changes in mass distribution induce twist in the inboard wing that provides directional control. The vehicle is actuated solely by internal shape change; there are no external seals and no exposed moving parts, save for the inflatable buoyancy ballonets. Preliminary sizing analysis and dynamic modeling indicate the viability of using SCALARS to map the surface of Titan and to investigate features of interest.

  9. Analysis of directly driven ICF targets

    International Nuclear Information System (INIS)

    The current capabilities at DENIM for the analysis of directly driven targets are presented. These include theoretical, computational and applied physical studies and developments of detailed simulation models for the most relevant processes in ICF. The simulation of directly driven ICF targets is carried out with the one-dimensional NORCLA code developed at DENIM. This code contains two main segments: NORMA and CLARA, able to work fully coupled and in an iterative manner. NORMA solves the hydrodynamic equations in a lagrangian mesh. It has modular programs couple to it to treat the laser or particle beam interaction with matter. Equations of state, opacities and conductivities are taken from a DENIM atomic data library, generated externally with other codes that will also be explained in this work. CLARA solves the transport equation for neutrons, as well as for charged particles, and suprathermal electrons using discrete ordinates and finite element methods in the computational procedure. Parametric calculations of multilayered single-shell targets driven by heavy ion beams are also analyzed. Finally, conclusions are focused on the ongoing developments in the areas of interest such as: radiation transport, atomic physics, particle in cell method, charged particle transport, two-dimensional calculations and instabilities. (author)

  10. A gasdynamic gun driven by gaseous detonation

    Science.gov (United States)

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels.

  11. Current-Driven Filament Instabilities in Relativistic Plasmas. Final report

    International Nuclear Information System (INIS)

    This grant has supported a study of some fundamental problems in current- and flow-driven instabilities in plasmas and their applications in inertial confinement fusion (ICF) and astrophysics. It addressed current-driven instabilities and their roles in fast ignition, and flow-driven instabilities and their applications in astrophysics

  12. Current-Driven Filament Instabilities in Relativistic Plasmas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Chuang

    2013-02-13

    This grant has supported a study of some fundamental problems in current- and flow-driven instabilities in plasmas and their applications in inertial confinement fusion (ICF) and astrophysics. It addressed current-driven instabilities and their roles in fast ignition, and flow-driven instabilities and their applications in astrophysics.

  13. What we learn from surveillance testing of standby turbine driven and motor driven pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christie, B.

    1996-12-01

    This paper describes a comparison of the performance information collected by the author and the respective system engineers from five standby turbine driven pumps at four commercial nuclear electric generating units in the United States and from two standby motor driven pumps at two of these generating units. Information was collected from surveillance testing and from Non-Test actuations. Most of the performance information (97%) came from surveillance testing. {open_quotes}Conditional Probabilities{close_quotes} of the pumps ability to respond to a random demand were calculated for each of the seven standby pumps and compared to the historical record of the Non-Test actuations. It appears that the Conditional Probabilities are comparable to the rate of success for Non-Test actuations. The Conditional Probabilities of the standby motor driven pumps (approximately 99%) are better than the Conditional Probabilities of the standby turbine driven pumps (82%-96% range). Recommendations were made to improve the Conditional Probabilities of the standby turbine driven pumps.

  14. Hysteresis in pressure-driven DNA denaturation.

    Directory of Open Access Journals (Sweden)

    Enrique Hernández-Lemus

    Full Text Available In the past, a great deal of attention has been drawn to thermal driven denaturation processes. In recent years, however, the discovery of stress-induced denaturation, observed at the one-molecule level, has revealed new insights into the complex phenomena involved in the thermo-mechanics of DNA function. Understanding the effect of local pressure variations in DNA stability is thus an appealing topic. Such processes as cellular stress, dehydration, and changes in the ionic strength of the medium could explain local pressure changes that will affect the molecular mechanics of DNA and hence its stability. In this work, a theory that accounts for hysteresis in pressure-driven DNA denaturation is proposed. We here combine an irreversible thermodynamic approach with an equation of state based on the Poisson-Boltzmann cell model. The latter one provides a good description of the osmotic pressure over a wide range of DNA concentrations. The resulting theoretical framework predicts, in general, the process of denaturation and, in particular, hysteresis curves for a DNA sequence in terms of system parameters such as salt concentration, density of DNA molecules and temperature in addition to structural and configurational states of DNA. Furthermore, this formalism can be naturally extended to more complex situations, for example, in cases where the host medium is made up of asymmetric salts or in the description of the (helical-like charge distribution along the DNA molecule. Moreover, since this study incorporates the effect of pressure through a thermodynamic analysis, much of what is known from temperature-driven experiments will shed light on the pressure-induced melting issue.

  15. Combustion-Driven Oscillation in Process Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Seebold, J.G. [Chevron Corporation (Retired), 198 James Avenue, Atherton, CA 94027 (United States)

    2005-10-15

    At this moment in thousands of process heaters all over the world there are, to borrow a phrase from the late Carl Sagan, 'billions and billions' of Btu/hr beneficially being released entirely free of pulsation. On those few occasions, perhaps a dozen and a half in my career, when I would get the inevitable 'Why me?' call, I have generally responsed with something like, 'Consider yourself lucky, you have a rare scientific curiosity on your hands'. Reflecting on the solutions ultimately found, I'm reminded that many years ago my friend Abbott Putnam shared with me an early AGA (American Gas Association) field-service bulletin that included a prescription for eliminating combustion-driven oscillations in home heating units; viz., 'Drill a hole; if that doesn't work, drill another hole' or words to that effect. Many times have I wished that I still had a copy of that bulletin and in this paper we will have occasion, once again, to reflect upon the value of that advice. In this paper we will discuss an instance that arose in a pioneering installation of a breakthrough development of 'extremely', to distinguish it from 'ultra', low-NOx lean premix burner technology. We will illustrate how, when and under what circumstances combustion-driven oscillation can arise; we will touch on the many alternatives for its elimination that were considered and investigated; and we will discuss three practical alternatives for eliminating combustion-driven oscillations.

  16. Image driven fluoroscopy for interventional radiology

    International Nuclear Information System (INIS)

    X-ray fluoroscopy systems that are invariably utilised in modern interventional radiological procedures are responsible for delivering radiation doses that are of measurable detriment to both patients and clinical staff. The central tenet of the research detailed in this thesis is that a significant degree of spatial and temporal x-ray photon redundancy exists in the x-ray fluoroscopy systems used to guide interventional radiological procedures. If this redundancy were reduced, significant reductions in the radiation dose delivered during interventional radiological procedures would be possible, without compromising the integrity of the image data that modern x-ray fluoroscopy systems produce. An image driven system control paradigm is proposed whereby photon redundancy can be reduced by dynamically configuring a fluoroscopy system's x-ray tube and collimation unit, based upon information extracted from the image data that the system produces. This thesis details the design of a demonstrator system that is capable of routinely simulating the image data that would be produced if image driven system control techniques were integrated into existing fluoroscopy system designs. A sixth order autoregressive time series prediction algorithm uses therapeutic device positional data extracted from images derived from interventional neuroradiological procedures, to predict the future behaviour of therapeutic devices in the image plane. This prediction data is used by high level system control algorithms to configure the fluoroscopy system on a frame-by-frame basis, according to the criterion of reducing photon redundancy. Image sequences generated by the simulation system have been submitted to a practising interventional neuroradiologist for subjective assessment, to determine the reduction in procedural dose that can be achieved without compromising the integrity of the clinically relevant data that they contain. The results of these assessments indicate that procedural

  17. Light-driven robotics for nanoscopy

    Science.gov (United States)

    Glückstad, Jesper; Palima, Darwin

    2013-03-01

    The science fiction inspired shrinking of macro-scale robotic manipulation and handling down to the micro- and nanoscale regime opens new doors for exploiting the forces and torques of light for micro- and nanoscopic probing, actuation and control. Advancing light-driven micro-robotics requires the optimization of optical forces and torques that, in turn, requires optimization of the underlying light-matter interaction. This report is two-fold desribing the new use of proprietary strongholds we currently are harnessing in the Programmable Phase Optics in Denmark on new means of sculpting of both light and matter for robotically probing at the smallest biological length scales.

  18. Light wave driven electron dynamics in clusters

    International Nuclear Information System (INIS)

    The dynamics of solid-density nanoplasmas driven by intense lasers takes place in the strongly-coupled plasma regime, where collisions play an important role. The microscopic particle-in-cell method has enabled the complete classical electromagnetic description of these processes. The theoretical foundation of the approach and its relation to existing methods are reviewed. Selected applications to laser cluster processes are presented that have been inaccessible to numerical simulation so far. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Proton-driven plasma-wakefield acceleration

    CERN Document Server

    Caldwell, Allen; Pukhov, Alexander; Simon, Frank

    2013-01-01

    Plasmas excited by laser beams or bunches of relativistic electrons have been used to produce electric fields of 10–100 GV m$^{-1}$. This has opened up the possibility of building compact particle accelerators at the gigaelectronvolt scale. However, it is not obvious how to scale these approaches to the energy frontier of particle physics—the teraelectronvolt regime. Here, we introduce the possibility of proton-bunch-driven plasma-wakefield acceleration, and demonstrate through numerical simulations that this energy regime could be reached in a single accelerating stage.

  20. Optical bistability in electrically driven polariton condensates

    OpenAIRE

    Amthor, M.; Liew, T. C. H.; Metzger, C; Brodbeck, S.; Worschech, L.; Kamp, M; Shelykh, I.A.; Kavokin, A. V.; Schneider, C; Höfling, S.

    2015-01-01

    The authors would like to thank the State of Bavaria for financial support. I.A.S. acknowledges the support of FP7 IRSES project POLAPHEN. S.H. gratefully acknowledges support by the Royal Society and the Wolfson Foundation. A.V.K. acknowledges financial support from the Ministry of Education and Science of the Russian Federation (Contract No. 11.G34.31.0067 with SPbSU), and EU projects POLAPHEN, SPANGL4Q, and LIMACONA. We observe a bistability in an electrically driven polariton condensat...

  1. Data Driven Constraints for the SVM

    DEFF Research Database (Denmark)

    Darkner, Sune; Clemmensen, Line Katrine Harder

    2012-01-01

    We propose a generalized data driven constraint for support vector machines exemplified by classification of paired observations in general and specifically on the human ear canal. This is particularly interesting in dynamic cases such as tissue movement or pathologies developing over time. Assum...... classifier solution, compared to the SVM i.e. reduces variance and improves classification rates. We present a quantitative measure of the information level contained in the pairing and test the method on simulated as well as a high-dimensional paired data set of ear-canal surfaces....

  2. Entropic Stochastic Resonance Driven by Colored Noise

    International Nuclear Information System (INIS)

    The phenomenon of entropic stochastic resonance (ESR) in a two-dimensional confined system driven by a transverse periodic force is investigated when the colored fluctuation is included in the system. Applying the method of unified colored noise approximation, the approximate Fokker–Planck equation can be derived in the absence of the periodic force. Through the escaping rate of the Brownian particle from one well to the other, the power spectral amplification can be obtained. It is found that increasing the values of the noise correlation time and the signal frequency can suppress the ESR of the system

  3. A refinement driven component-based design

    DEFF Research Database (Denmark)

    Chen, Zhenbang; Liu, Zhiming; Ravn, Anders Peter;

    2007-01-01

    Modern software development has to deal with many different aspects and different views of applications. Thus it needs different modelling notations and tools to support more and more phases of the entire development process. To ensure the correctness of the models produced, the tools need to...... work on the Common Component Modelling Example (CoCoME). This gives evidence that the formal techniques developed in rCOS can be integrated into a model-driven development process and shows where it may be integrated in computer-aided software engineering (CASE) tools for adding formally supported...

  4. Four-level refrigerator driven by photons.

    Science.gov (United States)

    Wang, Jianhui; Lai, Yiming; Ye, Zhuolin; He, Jizhou; Ma, Yongli; Liao, Qinghong

    2015-05-01

    We propose a quantum absorption refrigerator driven by photons. The model uses a four-level system as its working substance and couples simultaneously to hot, cold, and solar heat reservoirs. Explicit expressions for the cooling power Q̇(c) and coefficient of performance (COP) η(COP) are derived, with the purpose of revealing and optimizing the performance of the device. Our model runs most efficiently under the tight coupling condition, and it is consistent with the third law of thermodynamics in the limit T→0. PMID:26066099

  5. Magnon-driven quantum dot refrigerators

    Science.gov (United States)

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan

    2015-12-01

    A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  6. Dimensional crossover driven by an electric field.

    Science.gov (United States)

    Aron, Camille; Kotliar, Gabriel; Weber, Cedric

    2012-02-24

    We study the steady-state dynamics of the Hubbard model driven out of equilibrium by a constant electric field and coupled to a dissipative heat bath. For a very strong field, we find a dimensional reduction: the system behaves as an equilibrium Hubbard model in lower dimensions. We derive steady-state equations for the dynamical mean-field theory in the presence of dissipation. We discuss how the electric field induced dimensional crossover affects the momentum resolved and integrated spectral functions, the energy distribution function, as well as the steady current in the nonlinear regime. PMID:22463546

  7. Radiation Driven Implosion and Triggered Star Formation

    CERN Document Server

    Bisbas, T G; Wünsch, R; Hubber, D A; Walch, S

    2010-01-01

    We present simulations of initially stable isothermal clouds exposed to ionizing radiation from a discrete external source, and identify the conditions that lead to radiatively driven implosion and star formation. We use the Smoothed Particle Hydrodynamics code SEREN (Hubber et al. 2010) and the HEALPix-based photoionization algorithm described in Bisbas et al. (2009). We find that the incident ionizing flux is the critical parameter determining the evolution: high fluxes simply disperse the cloud, whereas low fluxes trigger star formation. We find a clear connection between the intensity of the incident flux and the parameters of star formation.

  8. Four-level refrigerator driven by photons

    Science.gov (United States)

    Wang, Jianhui; Lai, Yiming; Ye, Zhuolin; He, Jizhou; Ma, Yongli; Liao, Qinghong

    2015-05-01

    We propose a quantum absorption refrigerator driven by photons. The model uses a four-level system as its working substance and couples simultaneously to hot, cold, and solar heat reservoirs. Explicit expressions for the cooling power Q˙c and coefficient of performance (COP) ηCOP are derived, with the purpose of revealing and optimizing the performance of the device. Our model runs most efficiently under the tight coupling condition, and it is consistent with the third law of thermodynamics in the limit T →0 .

  9. Plasma-driven ultrashort bunch diagnostics

    Science.gov (United States)

    Dornmair, I.; Schroeder, C. B.; Floettmann, K.; Marchetti, B.; Maier, A. R.

    2016-06-01

    Ultrashort electron bunches are crucial for an increasing number of applications, however, diagnosing their longitudinal phase space remains a challenge. We propose a new method that harnesses the strong electric fields present in a laser driven plasma wakefield. By transversely displacing driver laser and witness bunch, a streaking field is applied to the bunch. This field maps the time information to a transverse momentum change and, consequently, to a change of transverse position. We illustrate our method with simulations where we achieve a time resolution in the attosecond range.

  10. High Intensity Secondary Beams Driven by Protons

    CERN Document Server

    Galambos, John; Nagaitsev, Sergei

    2013-01-01

    As part of the Intensity Frontier effort within the 2013 Community Summer Study, a workshop on the proton machine capabilities was held (High Intensity Secondary Beams Driven by Proton Beams) April 17-20, 2013 at Brookhaven National Laboratory in Upton, NY. Primary aims of the workshop were to understand: 1) the beam requirements for proposed high intensity proton beam based measurements; 2) the capabilities of existing world-wide high power proton machines; 3) proton facility upgrade plans and proposals for new facilities; 4) and to document the R&D needs for proton accelerators and target systems needed to support proposed intensity frontier measurements. These questions are addressed in this summary.

  11. Soil stress field around driven piles

    OpenAIRE

    Allard, Marie-Agnes

    1989-01-01

    The description, equipment, and results of a series of pile-driving experiments conducted in a centrifuge using a model pile driven in dry sand are presented. The work was conceived on the basis of the modelling of a soil-structure system under an artificially generated gravitational field, and motivated by the need for experimental data for a better understanding of the complex phenomena involved in the pile-soil interaction during driving. The behavior of the pile itself has been the fo...

  12. Mobile dashboard for event driven architectures

    OpenAIRE

    Janković, Marko

    2012-01-01

    The use of EDA is nowadays present in various fields like smart houses and cities, health care, traffic control, Internet of things etc. The main objective is to enable the monitoring of system activity in real time, which enables faster and more efficient decision-making and helps taking appropriate measures. The latter was also the main motivation and reason for the development of the mobile control panel for the event-driven Occapi platform, the purpose of which is to enable users to mo...

  13. Current-driven phenomena in nanoelectronics

    CERN Document Server

    Seideman, Tamar

    2010-01-01

    Consisting of ten chapters written by some of the world's leaders in the field, this book combines experimental, theoretical and numerical studies of current-driven phenomena in the nanoscale. The topics covered range from single-molecule, site-specific nanochemistry induced by a scanning tunneling microscope, through inelastic tunneling spectroscopy and current-induced heating, to current-triggered molecular machines. The various chapters focus on experimental and numerical method development, the description of specific systems, and new ideas and novel phenomena.

  14. Research on Virtual Vehicle Driven with Vision

    Directory of Open Access Journals (Sweden)

    Youquan Liu

    2011-08-01

    Full Text Available This paper presents a traffic-oriented modeling and simulation framework. With this tool, users can create a traffic scene quickly and easily, and then drive the vehicle in the created scene with physics simulated. Especially, the vehicle could be driven with vision technology, which is equipped with a webcam and a paper printed with controlling markers. And the paper is used as the virtual wheel to control the motion of the vehicle. At such low cost, many people can enjoy the driving fun; it also provides an easy and interesting way for driving video games with promising business values.

  15. Data-Driven Control of Refrigeration System

    DEFF Research Database (Denmark)

    Vinther, Kasper

    facilities without using a pressure sensor. A single-sensor solution is thus provided, which either reduces the variable costs or increases the robustness of the system by not relying on pressure measurements. MSS is an example of data-driven control and can be applied to a broad class of nonlinear control...... problems. The method utilizes the qualitative nonlinearity in the system and harmonic analysis of a perturbation signal to reach an unknown, but suitable, operating point. Another important control task in refrigeration systems is to maintain the temperature of the refrigerated space or foodstuff within...

  16. Plasma-driven ultrashort bunch diagnostic

    CERN Document Server

    Dornmair, I; Floettmann, K; Marchetti, B; Maier, A R

    2016-01-01

    Ultrashort electron bunches are crucial for an increasing number of applications, however, diagnosing their longitudinal phase space remains a challenge. We propose a new method that harnesses the strong electric fields present in a laser driven plasma wakefield. By transversely displacing driver laser and witness bunch, a streaking field is applied to the bunch. This field maps the time information to a transverse momentum change and, consequently, to a change of transverse position. We illustrate our method with simulations where we achieve a time resolution in the attosecond range.

  17. Light Sailboats: Laser driven autonomous microrobots

    CERN Document Server

    Búzás, Anrdás; Mathesz, Anna; Oroszi, László; Vizsnyiczai, Gaszton; Vicsek, Tamás; Ormos, Pál; 10.1063/1.4737646

    2012-01-01

    We introduce a system of light driven microscopic autonomous moving particles that move on a flat surface. The design is simple, yet effective: Micrometer sized objects with wedge shape are produced by photopolymerization, they are covered with a reflective surface. When the area of motion is illuminated perpendicularly from above, the light is deflected to the side by the wedge shaped objects, in the direction determined by the position and orientation of the particles. The momentum change during reflection provides the driving force for an effectively autonomous motion. The system is an efficient tool to study self propelled microscopic robots.

  18. Functionality-driven fractionation of lupin seeds

    OpenAIRE

    Berghout, J.A.M.

    2015-01-01

    Functionality-driven fractionation of lupin seeds The growth in the world population requires an increase in the production of protein-rich foods from plant-based materials. Lupin seeds have potential to become a novel plant protein source for food products because they are rich in protein (about 37 wt%) and they can be grown in moderate temperature climates as in north-western Europe. Besides a high protein content, lupin seeds are rich in dietary fibres (soluble and insoluble), contain abou...

  19. Dust-driven wind from disk galaxies

    OpenAIRE

    Sharma, Mahavir; Nath, Biman B.; Shchekinov, Yuri

    2011-01-01

    We study gaseous outflows from disc galaxies driven by radiation pressure on dust grains. We include the effect of bulge and dark matter halo and show that the existence of such an outflow implies a maximum value of disc mass-to-light ratio. We show that the terminal wind speed is proportional to the disc rotation speed in the limit of a cold gaseous outflow, and that in general there is a contribution from the gas sound speed. Using the mean opacity of dust grains and the evolution of the lu...

  20. Surface Tension Driven Convection Experiment Completed

    Science.gov (United States)

    Jacobson, Thomas P.; Sedlak, Deborah A.

    1997-01-01

    The Surface Tension Driven Convection Experiment (STDCE) was designed to study basic fluid mechanics and heat transfer on thermocapillary flows generated by temperature variations along the free surfaces of liquids in microgravity. STDCE first flew on the USML-1 mission in July 1992 and was rebuilt for the USML-2 mission that was launched in October 1995. This was a collaborative project with principal investigators from Case Western Reserve University (CWRU), Professors Simon Ostrach and Yasuhiro Kamotani, along with a team from the NASA Lewis Research Center composed of civil servants and contractors from Aerospace Design & Fabrication, Inc. (ADF), Analex, and NYMA, Inc.

  1. Model-driven software migration a methodology

    CERN Document Server

    Wagner, Christian

    2014-01-01

    Today, reliable software systems are the basis of any business or company. The continuous further development of those systems is the central component in software evolution. It requires a huge amount of time- man power- as well as financial resources. The challenges are size, seniority and heterogeneity of those software systems. Christian Wagner addresses software evolution: the inherent problems and uncertainties in the process. He presents a model-driven method which leads to a synchronization between source code and design. As a result the model layer will be the central part in further e

  2. Current and noise in driven heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Franz

    2009-02-18

    In this thesis we consider the electron transport in nanoscale systems driven by an external energy source. We introduce a tight-binding Hamiltonian containing an interaction term that describes a very strong Coulomb repulsion between electrons in the system. Since we deal with time-dependent situations, we employ a Floquet theory to take into account the time periodicity induced by different external oscillating fields. For the two-level system, we even provide an analytical solution for the eigenenergies with arbitrary phase shift between the levels for a cosine-shaped driving. To describe time-dependent driven transport, we derive a master equation by tracing out the influence of the surrounding leads in order to obtain the reduced density operator of the system. We generalise the common master equation for the reduced density operator to perform an analysis of the noise characteristics. The concept of Full Counting Statistics in electron transport gained much attention in recent years proven its value as a powerful theoretical technique. Combining its advantages with the master equation approach, we find a hierarchy in the moments of the electron number in one lead that allows us to calculate the first two cumulants. The first cumulant can be identified as the current passing through the system, while the noise of this transmission process is reflected by the second cumulant. Moreover, in combination with our Floquet approach, the formalism is not limited to static situations, which we prove by calculating the current and noise characteristics for the non-adiabatic electron pump. We study the influence of a static energy disorder on the maximal possible current for different realisations. Further, we explore the possibility of non-adiabatically pumping electrons in an initially symmetric system if random fluctuations break this symmetry. Motivated by recent and upcoming experiments, we use our extended Floquet model to properly describe systems driven by

  3. Optimality of contraction-driven crawling

    CERN Document Server

    Recho, P; Truskinovsky, L

    2014-01-01

    We study a model of cell motility where the condition of optimal trade-off between performance and metabolic cost can be made precise. In this model a steadily crawling fragment is represented by a layer of active gel placed on a frictional surface and driven by contraction only. We find analytically the distribution of contractile elements (pullers) ensuring that the efficiency of self-propulsion is maximal. We then show that natural assumptions about advection and diffusion of pullers produce a distribution that is remarkably close to the optimal one and is qualitatively similar to the one observed in experiments on fish keratocytes.

  4. Laser driven proton acceleration and beam shaping

    OpenAIRE

    Sinigardi, Stefano

    2014-01-01

    In the race to obtain protons with higher energies, using more compact systems at the same time, laser-driven plasma accelerators are becoming an interesting possibility. But for now, only beams with extremely broad energy spectra and high divergence have been produced. The driving line of this PhD thesis was the study and design of a compact system to extract a high quality beam out of the initial bunch of protons produced by the interaction of a laser pulse with a thin solid target, usi...

  5. Light-driven cytochrome P450 hydroxylations

    DEFF Research Database (Denmark)

    Jensen, Kenneth; Jensen, Poul Erik; Møller, Birger Lindberg

    2011-01-01

    Plants are light-driven "green" factories able to synthesize more than 200,000 different bioactive natural products, many of which are high-value products used as drugs (e.g., artemisinin, taxol, and thapsigargin). In the formation of natural products, cytochrome P450 (P450) monooxygenases play a...... key role in catalyzing regio- and stereospecific hydroxylations that are often difficult to achieve using the approaches of chemical synthesis. P450-catalyzed monooxygenations are dependent on electron donation typically from NADPH catalyzed by NADPH-cytochrome P450 oxidoreductase (CPR). The...

  6. Towards a precession driven dynamo experiment

    CERN Document Server

    Stefani, F; Gerbeth, G; Giesecke, A; Gundrum, T; Herault, J; Nore, C; Steglich, C

    2014-01-01

    The most ambitious project within the DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) is the set-up of a precession-driven dynamo experiment. After discussing the scientific background and some results of water pre-experiments and numerical predictions, we focus on the numerous structural and design problems of the machine. We also outline the progress of the building's construction, and the status of some other experiments that are planned in the framework of DRESDYN.

  7. Accelerating Science Driven System Design With RAMP

    Energy Technology Data Exchange (ETDEWEB)

    Wawrzynek, John [Univ. of California, Berkeley, CA (United States)

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  8. Vortex matter driven through mesoscopic channels

    International Nuclear Information System (INIS)

    The dynamics of vortex matter confined to mesoscopic channels has been investigated by means of mode locking experiments. When vortices are coherently driven through the potential provided by static vortices pinned in the channel edges, interference between the washboard frequency of the moving vortex lattice and the frequency of the superimposed rf-drive causes (Shapiro-like) steps in the dc-I-V curves. The position of the voltage steps uniquely determines the number of moving rows in each channel. It also shows how the frustration between row spacing and channel width behaves as a function of magnetic field. Maxima in flow stress (∼Ic) occur at mismatch conditions. They are related to the traffic-jam-like flow impedance caused by the disorder in the edges. At higher fields, near the 2D-melting line Bm(T), the mode-locking interference characteristic for crystalline motion, strongly depends on the velocity, i.e. the applied frequency at which the vortex motion is probed. The minimum velocity at which coherent motion could be observed, diverges when the melting line is approached from below. Above the melting line interference is absent for any frequency. These observations give the first direct evidence for a dynamic phase transition of vortex matter driven through a disorder potential as predicted by Koshelev and Vinokur

  9. Vortex matter driven through mesoscopic channels

    Energy Technology Data Exchange (ETDEWEB)

    Kes, P.H.; Kokubo, N.; Besseling, R

    2004-08-01

    The dynamics of vortex matter confined to mesoscopic channels has been investigated by means of mode locking experiments. When vortices are coherently driven through the potential provided by static vortices pinned in the channel edges, interference between the washboard frequency of the moving vortex lattice and the frequency of the superimposed rf-drive causes (Shapiro-like) steps in the dc-I-V curves. The position of the voltage steps uniquely determines the number of moving rows in each channel. It also shows how the frustration between row spacing and channel width behaves as a function of magnetic field. Maxima in flow stress ({approx}I{sub c}) occur at mismatch conditions. They are related to the traffic-jam-like flow impedance caused by the disorder in the edges. At higher fields, near the 2D-melting line B{sub m}(T), the mode-locking interference characteristic for crystalline motion, strongly depends on the velocity, i.e. the applied frequency at which the vortex motion is probed. The minimum velocity at which coherent motion could be observed, diverges when the melting line is approached from below. Above the melting line interference is absent for any frequency. These observations give the first direct evidence for a dynamic phase transition of vortex matter driven through a disorder potential as predicted by Koshelev and Vinokur.

  10. Axially Loaded Behavior of Driven PC Piles

    Science.gov (United States)

    Hsu, Shih-Tsung

    2010-05-01

    To obtain a fair load-settlement curve of a driven pile, and to evaluate the ultimate pile capacity more accurately, a numerical model was created to simulate the ground movements during a pile being driven. After the procedure, the axially loaded behaviors of the piles in silty sand were analyzed. The numerical results are compared with those results by full scale pile load tests. It was found, although the loads added on the tested piles are different from those by the numerical analyses which applied displacement increments on piles, the load-settlement behaviors of piles calculated from the numerical model were close to those measured from field tests before the piles stressed to peak. Total load, shaft friction, and point bearing do not reach peak values at the same pile settlement; furthermore, the point bearing slowly increases all the while, with no peak. However, the point bearing only contributes 10˜20% of ultimate pile capacity. No matter which relative density of silty sand, pile diameter, and pile length increased, ultimate pile capacity increased as well.

  11. Power spectra of outflow-driven turbulence

    CERN Document Server

    Moraghan, Anthony; Yoon, Suk-Jin

    2015-01-01

    We investigate the power spectra of outflow-driven turbulence through high-resolution three-dimensional isothermal numerical simulations where the turbulence is driven locally in real-space by a simple spherical outflow model. The resulting turbulent flow saturates at an average Mach number of ~2.5 and is analysed through density and velocity power spectra, including an investigation of the evolution of the solenoidal and compressional components. We obtain a shallow density power spectrum with a slope of ~-1.2 attributed to the presence of a network of localised dense filamentary structures formed by strong shock interactions. The total velocity power spectrum slope is found to be ~-2.0, representative of Burgers shock dominated turbulence model. The density weighted velocity power spectrum slope is measured as ~-1.6, slightly less than the expected Kolmogorov scaling value (slope of -5/3) found in previous works. The discrepancy may be caused by the nature of our real space driving model and we suggest ther...

  12. Progress of Laser-Driven Plasma Accelerators

    International Nuclear Information System (INIS)

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators

  13. User Driven Innovation in the Building Process

    Institute of Scientific and Technical Information of China (English)

    Per Christiansson; Kistian Birch Sorensen; Mette Rodtness; Mette Abrahamsen; Lars Ostenfeld Riemnann; Morten Alsdorf

    2008-01-01

    During the late years there has been an ever-increasing focus on the possibilities to change the building process to raise quality on the final building products as well as the activities of actors involved in the building process. One reason for this interest is the new opportunities evolving due to introduction of ad-vanced information and communication technology (ICT). The paper focuses on creative changes of the building process powered by user driven innovation activities. An overview of existing user driven innovation methodologies is given as well experiences from the ongoing Virtual Innovation in Construction (VIC) project.One important driving force for change is the opportunity for users to develop and articulate real needs con-cerning for example different functionalities of a building and its parts, but also on artifacts supporting the ac-tual needs capture and requirements formulation during building design. A general methodological frame-work and meta ontology for Virtual Innovation in Construction is presented as well as findings from imple-mentation of the method.

  14. Valveless micropump driven by acoustic streaming

    International Nuclear Information System (INIS)

    This paper describes two valveless micropumps built on a 260 µm thick PZT with 20 µm thick parylene acoustic Fresnel lenses with air cavities. The micropumps produce in-plane body force through acoustic streaming effect of high-intensity acoustic beam that is generated by acoustic wave interference. The fabricated micropumps were shown to move microspheres, which have a diameter of 70–90 µm and a density of 0.99 g cm−3, on the water surface to form U-shape streams of microspheres with a drift velocity of 7.3 cm s−1 when the micropumps were located 4 mm below the water surface and driven by 160 Vpeak-to-peak pulsed sinusoidal waves. The driven microspheres formed U-shape streaming even without any fluidic channel according to the serial connection of the pie-shaped lenses and top electrodes. A micropump with a straight-lined fluidic channel was also fabricated and tested to show a 9.2 cm s−1 microspheres' drift velocity and a 9.5 mL min−1 volume pumping rate when combined with the acrylic acoustic wave reflector. Both the Fresnel lens and top electrode were patterned in a pie-shape with its apex angle of 90° to form asymmetric acoustic pressure distribution at the focal plane of the acoustic Fresnel lenses in order to push water in one direction. (paper)

  15. Heat driven refrigeration cycle at low temperatures

    Institute of Scientific and Technical Information of China (English)

    HE Yijian; HONG Ronghua; CHEN Guangming

    2005-01-01

    Absorption refrigeration cycle can be driven by low-grade thermal energy, such as solar energy, geothermal energy and waste heat. It is beneficial to save energy and protect environment. However, the applications of traditional absorption refrigeration cycle are greatly restricted because they cannot achieve low refrigeration temperature. A new absorption refrigeration cycle is investigated in this paper, which is driven by low-grade energy and can get deep low refrigeration temperature. The mixture refrigerant R23+R134a and an absorbent DMF are used as its working fluid. The theoretical results indicate that the new cycle can achieve -62℃ refrigeration temperature when the generation temperature is only 160℃. This refrigeration temperature is much lower than that obtained by traditional absorption refrigeration cycle. Refrigeration temperature of -47.3℃ has been successfully achieved by experiment for this new cycle at the generation temperature of 157℃, which is the lowest temperature obtained by absorption refrigeration system reported in the literature up to now. The theoretical and experimental results prove that new cycle can achieve rather low refrigeration temperature.

  16. Stable chaos in fluctuation driven neural circuits

    International Nuclear Information System (INIS)

    Highlights: • Nonlinear instabilities in fluctuation driven (balanced) neural circuits are studied. • Balanced networks display chaos and stable phases at different post-synaptic widths. • Linear instabilities coexists with nonlinear ones in the chaotic regime. • Erratic motion appears also in linearly stable phase due to stable chaos. - Abstract: We study the dynamical stability of pulse coupled networks of leaky integrate-and-fire neurons against infinitesimal and finite perturbations. In particular, we compare mean versus fluctuations driven networks, the former (latter) is realized by considering purely excitatory (inhibitory) sparse neural circuits. In the excitatory case the instabilities of the system can be completely captured by an usual linear stability (Lyapunov) analysis, whereas the inhibitory networks can display the coexistence of linear and nonlinear instabilities. The nonlinear effects are associated to finite amplitude instabilities, which have been characterized in terms of suitable indicators. For inhibitory coupling one observes a transition from chaotic to non chaotic dynamics by decreasing the pulse-width. For sufficiently fast synapses the system, despite showing an erratic evolution, is linearly stable, thus representing a prototypical example of stable chaos

  17. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  18. Influence of driven current on resistive tearing mode in Tokamaks

    Science.gov (United States)

    Wang, S.; Ma, Z. W.; Zhang, W.

    2016-05-01

    The influence of driven current on the m /n =2 /1 resistive tearing mode is studied systematically using a three-dimensional toroidal magnetohydrodynamic code. A uniform driven current with Gaussian distribution in the radial direction is imposed around the unperturbed rational surface. It is found that the driven current can locally modify the profiles of the current and safety factor, such that the tearing mode becomes linearly stable. The stabilizing effect increases with the increase of the driven current Icd or the decrease of its width δcd , unless an excessively large driven current reverses the magnetic shear near the rational surface and drives other instabilities such as double or triple tearing modes. The stabilizing effect can be negligible or becomes reversed if the maximum driven current density is not at the unperturbed rational surface.

  19. The mechanics of gravity-driven faulting

    Directory of Open Access Journals (Sweden)

    L. Barrows

    2010-04-01

    Full Text Available Faulting can result from either of two different mechanisms. These involve fundamentally different energetics. In elastic rebound, locked-in elastic strain energy is transformed into the earthquake (seismic waves plus work done in the fault zone. In force-driven faulting, the forces that create the stress on the fault supply work or energy to the faulting process. Half of this energy is transformed into the earthquake and half goes into an increase in locked-in elastic strain. In elastic rebound the locked-in elastic strain drives slip on the fault. In force-driven faulting it stops slip on the fault.

    Tectonic stress is reasonably attributed to gravity acting on topography and the Earth's lateral density variations. This includes the thermal convection that ultimately drives plate tectonics. Mechanical analysis has shown the intensity of the gravitational tectonic stress that is associated with the regional topography and lateral density variations that actually exist is comparable with the stress drops that are commonly associated with tectonic earthquakes; both are in the range of tens of bar to several hundred bar.

    The gravity collapse seismic mechanism assumes the fault fails and slips in direct response to the gravitational tectonic stress. Gravity collapse is an example of force-driven faulting. In the simplest case, energy that is released from the gravitational potential of the stress-causing topography and lateral density variations is equally split between the earthquake and the increase in locked-in elastic strain.

    The release of gravitational potential energy requires a change in the Earth's density distribution. Gravitational body forces are solely dependent on density so a change in the density distribution requires a change in the body forces. This implies the existence of volumetric body-force displacements. The volumetric body-force displacements are in addition to displacements generated by slip on

  20. Laser Driven Neutron Sources: Characteristics, Applications and Prospects

    OpenAIRE

    Alvarez Ruiz, Jesus; Fernández-Tobias, J.; Mima, K.; Nakai, S; S. Kar; Kato, Y.; Perlado Martin, Jose Manuel

    2012-01-01

    The basics of laser driven neutron sources, properties and possible applications are discussed. We describe the laser driven nuclear processes which trigger neutron generation, namely, nuclear reactions induced by laser driven ion beam (ion n), thermonuclear fusion by implosion and photo-induced nuclear (gamma n) reactions. Based on their main properties, i.e. point source (< 100 μm) and short durations (< ns), different applications are described, such as radiography, time-resolved spe...

  1. Just-in-time Database-Driven Web Applications

    OpenAIRE

    Ong, Kenneth R

    2003-01-01

    "Just-in-time" database-driven Web applications are inexpensive, quickly-developed software that can be put to many uses within a health care organization. Database-driven Web applications garnered 73873 hits on our system-wide intranet in 2002. They enabled collaboration and communication via user-friendly Web browser-based interfaces for both mission-critical and patient-care-critical functions. Nineteen database-driven Web applications were developed. The application categories that compri...

  2. Model-driven Architecture of a Maritime Surveillance System Simulator

    OpenAIRE

    Monperrus, Martin; Long, Benoit; Champeau, Joël; Hoeltzener, Brigitte; Marchalot, Gabriel; Jézéquel, Jean-Marc

    2010-01-01

    This article reports on an experiment to apply a model-driven approach for systems engineering in an industrial context. This experiment consisted of setting up a model-driven simulation environment for a maritime surveillance system. The simulation is fully based on three models, each conforming to a specic metamodel. We discuss the main advances given by model-driven orientated simulation for systems engineering.

  3. Photon scattering from strongly driven atomic ensembles

    CERN Document Server

    Jin, Lu-ling; Macovei, Mihai

    2011-01-01

    The second order correlation function for light emitted from a strongly and near-resonantly driven dilute cloud of atoms is discussed. Because of the strong driving, the fluorescence spectrum separates into distinct peaks, for which the spectral properties can be defined individually. It is shown that the second-order correlations for various combinations of photons from different spectral lines exhibit bunching together with super- or sub-Poissonian photon statistics, tunable by the choice of the detector positions. Additionally, a Cauchy-Schwarz inequality is violated for photons emitted from particular spectral bands. The emitted light intensity is proportional to the square of the number of particles, and thus can potentially be intense. Three different averaging procedures to model ensemble disorder are compared.

  4. OMOGENIA: A Semantically Driven Collaborative Environment

    Science.gov (United States)

    Liapis, Aggelos

    Ontology creation can be thought of as a social procedure. Indeed the concepts involved in general need to be elicited from communities of domain experts and end-users by teams of knowledge engineers. Many problems in ontology creation appear to resemble certain problems in software design, particularly with respect to the setup of collaborative systems. For instance, the resolution of conceptual conflicts between formalized ontologies is a major engineering problem as ontologies move into widespread use on the semantic web. Such conflict resolution often requires human collaboration and cannot be achieved by automated methods with the exception of simple cases. In this chapter we discuss research in the field of computer-supported cooperative work (CSCW) that focuses on classification and which throws light on ontology building. Furthermore, we present a semantically driven collaborative environment called OMOGENIA as a natural way to display and examine the structure of an evolving ontology in a collaborative setting.

  5. Test Driven Development of Scientific Models

    Science.gov (United States)

    Clune, Thomas L.

    2014-01-01

    Test-Driven Development (TDD), a software development process that promises many advantages for developer productivity and software reliability, has become widely accepted among professional software engineers. As the name suggests, TDD practitioners alternate between writing short automated tests and producing code that passes those tests. Although this overly simplified description will undoubtedly sound prohibitively burdensome to many uninitiated developers, the advent of powerful unit-testing frameworks greatly reduces the effort required to produce and routinely execute suites of tests. By testimony, many developers find TDD to be addicting after only a few days of exposure, and find it unthinkable to return to previous practices.After a brief overview of the TDD process and my experience in applying the methodology for development activities at Goddard, I will delve more deeply into some of the challenges that are posed by numerical and scientific software as well as tools and implementation approaches that should address those challenges.

  6. Cosmic acceleration driven by mirage inhomogeneities

    International Nuclear Information System (INIS)

    A cosmological model based on an inhomogeneous D3-brane moving in an AdS5 x S5 bulk is introduced. Although there are no special points in the bulk, the brane universe has a centre and is isotropic around it. The model has an accelerating expansion and its effective cosmological constant is inversely proportional to the distance from the centre, giving a possible geometrical origin for the smallness of a present-day cosmological constant. Besides, if our model is considered as an alternative of early-time acceleration, it is shown that the early stage accelerating phase ends in a dust-dominated FRW homogeneous universe. Mirage-driven acceleration thus provides a dark matter component for the brane universe final state. We finally show that the model fulfils the current constraints on inhomogeneities

  7. Nuclear-driven solid-state lasers

    International Nuclear Information System (INIS)

    A total system efficiency of 3% is calculated for very high average power active mirror solid-state laser amplifiers of co-doped material, such as Nd:Cr: GSGG, pumped by visible nuclear-driven alkali metal excimer fluorescence. The fluorescence is transported around a radiation shield, separating the fluorescer and the laser, by a large diameter-to-length ratio hollow lightpipe. Parameters for a system with peak power of 6 MW for 1 ms pulses at 1 Hz for an average power output of 6 kW are presented. This type of system would require the development of a small 200 kW thermal nuclear reactor (similar in size to small university research reactors). A much larger system can be developed as well

  8. Combining engineering and data-driven approaches

    DEFF Research Database (Denmark)

    Fischer, Katharina; De Sanctis, Gianluca; Kohler, Jochen;

    2015-01-01

    assumptions that may result in a biased risk assessment. In two related papers we show how engineering and data-driven modelling can be combined by developing generic risk models that are calibrated to statistical data on observed fire events. The focus of the present paper is on the calibration procedure. A......Two general approaches may be followed for the development of a fire risk model: statistical models based on observed fire losses can support simple cost-benefit studies but are usually not detailed enough for engineering decision-making. Engineering models, on the other hand, require many...... framework is developed that is able to deal with data collection in non-homogeneous portfolios of buildings. Also incomplete data sets containing only little information on each fire event can be used for model calibration. To illustrate the capabilities of the proposed framework, it is applied to the...

  9. Instability in electromagnetically driven flows Part II

    CERN Document Server

    Imazio, Paola Rodriguez

    2016-01-01

    In a previous paper, we have reported numerical simulations of the MHD flow driven by a travelling magnetic field (TMF) in an annular channel, at low Reynolds number. It was shown that the stalling of such induction pump is strongly related to magnetic flux expulsion. In the present article, we show that for larger hydrodynamic Reynolds number, and with more realistic boundary conditions, this instability takes the form of a large axisymmetric vortex flow in the (r,z)-plane, in which the fluid is locally pumped in the direction opposite to the one of the magnetic field. Close to the marginal stability of this vortex flow, a low-frequency pulsation is generated. Finally, these results are compared to theoretical predictions and are discussed within the framework of experimental annular linear induction electromagnetic pumps.

  10. Wave energy driven resonant sea water pump

    Energy Technology Data Exchange (ETDEWEB)

    Czitrom, S.P.R. [UNAM, Mexico City (Mexico). Inst. de Ciencias del Mar y Limnologia

    1996-12-31

    A wave driven sea-water pump which operates by resonance is described. Oscillations in the resonant and exhaust ducts perform similar to two mass-spring systems coupled by a third spring acting for the compression chamber. Performance of the pump is optimized by means of a variable volume air compression chamber (patents pending) which tunes the system to the incoming wave frequency. Wave tank experiments with an instrumented, 1:20 scale model of the pump are described. Performance was studied under various wave and tuning conditions and compared to a numerical model which was found to describe the system accurately. Successful sea trials at an energetic coastline provide evidence of the system`s viability under demanding conditions.

  11. Statistical mechanics of driven diffusive systems

    CERN Document Server

    Schmittmann, B

    1995-01-01

    Far-from-equilibrium phenomena, while abundant in nature, are not nearly as well understood as their equilibrium counterparts. On the theoretical side, progress is slowed by the lack of a simple framework, such as the Boltzmann-Gbbs paradigm in the case of equilibrium thermodynamics. On the experimental side, the enormous structural complexity of real systems poses serious obstacles to comprehension. Similar difficulties have been overcome in equilibrium statistical mechanics by focusing on model systems. Even if they seem too simplistic for known physical systems, models give us considerable insight, provided they capture the essential physics. They serve as important theoretical testing grounds where the relationship between the generic physical behavior and the key ingredients of a successful theory can be identified and understood in detail. Within the vast realm of non-equilibrium physics, driven diffusive systems form a subset with particularly interesting properties. As a prototype model for these syst...

  12. Instability in electromagnetically driven flows. II

    Science.gov (United States)

    Rodriguez Imazio, Paola; Gissinger, Christophe

    2016-03-01

    In a previous paper, we have reported numerical simulations of the magnetohydrodynamic flow driven by a travelling magnetic field in an annular channel, at low Reynolds number. It was shown that the stalling of such induction pump is strongly related to magnetic flux expulsion. In the present article, we show that for larger hydrodynamic Reynolds number, and with more realistic boundary conditions, this instability takes the form of a large axisymmetric vortex flow in the (r, z)-plane, in which the fluid is locally pumped in the direction opposite to the one of the magnetic field. Close to the marginal stability of this vortex flow, a low-frequency pulsation is generated. Finally, these results are compared to theoretical predictions and are discussed within the framework of experimental annular linear induction electromagnetic pumps.

  13. Turbulence driven particle transport in Texas Helimak

    International Nuclear Information System (INIS)

    We analyze the turbulence driven particle transport in Texas Helimak [K. W. Gentle and H. He, Plasma Sci. Technol. 10, 284 (2008)], a toroidal plasma device with a one-dimensional equilibrium with magnetic curvature and shear. Alterations on the radial electric field, through an external voltage bias, change the spectral plasma characteristics inducing a dominant frequency for negative bias values and a broad band frequency spectrum for positive bias values. When applying a negative bias, the transport is high where the waves propagate with phase velocities near the plasma flow velocity, an indication that the transport is strongly affected by a wave particle resonant interaction. On the other hand, for positive bias values, the plasma has a reversed shear flow, and we observe that the transport is almost zero in the shearless radial region, an evidence of a transport barrier in this region.

  14. Cyclic game dynamics driven by iterated reasoning

    CERN Document Server

    Frey, Seth

    2012-01-01

    Recent theories from complexity science argue that complex dynamics are ubiquitous in social and economic systems. These claims emerge from the analysis of individually simple agents whose collective behavior is surprisingly complicated. However, game theorists have argued that iterated reasoning-our ability to think through what you think I think you think-will prevent complex dynamics and facilitate convergence to classic equilibria. We report stable and efficient periodic behavior in human groups playing the Mod Game, a multi-player game similar to Rock-Paper-Scissors. The game rewards subjects for thinking exactly one step ahead of others in their group. Groups that play this game exhibit cycles that are inconsistent with any fixed-point equilibrium concept. These cycles are driven by a "hopping" behavior that can only be explained by iterated reasoning. If iterated reasoning can be complicit in complex dynamics, then game cycles and chaos may realistically be driving fluctuations in real-world social and...

  15. Target-driven merging of Taxonomies

    CERN Document Server

    Raunich, Salvatore

    2010-01-01

    The proliferation of ontologies and taxonomies in many domains increasingly demands the integration of multiple such ontologies. The goal of ontology integration is to merge two or more given ontologies in order to provide a unified view on the input ontologies while maintaining all information coming from them. We propose a new taxonomy merging algorithm that, given as input two taxonomies and an equivalence matching between them, can generate an integrated taxonomy in a fully automatic manner. The approach is target-driven, i.e. we merge a source taxonomy into the target taxonomy and preserve the structure of the target ontology as much as possible. We also discuss how to extend the merge algorithm providing auxiliary information, like additional relationships between source and target concepts, in order to semantically improve the final result. The algorithm was implemented in a working prototype and evaluated using synthetic and real-world scenarios.

  16. Bistability in a Driven-Dissipative Superfluid

    Science.gov (United States)

    Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Ott, Herwig

    2016-06-01

    We experimentally study a driven-dissipative Josephson junction array, realized with a weakly interacting Bose-Einstein condensate residing in a one-dimensional optical lattice. Engineered losses on one site act as a local dissipative process, while tunneling from the neighboring sites constitutes the driving force. We characterize the emerging steady states of this atomtronic device. With increasing dissipation strength γ the system crosses from a superfluid state, characterized by a coherent Josephson current into the lossy site, to a resistive state, characterized by an incoherent hopping transport. For intermediate values of γ , the system exhibits bistability, where a superfluid and an incoherent branch coexist. We also study the relaxation dynamics towards the steady state, where we find a critical slowing down, indicating the presence of a nonequilibrium phase transition.

  17. Temperature gradient driven lasing and stimulated cooling

    CERN Document Server

    Sandner, K

    2012-01-01

    A laser can be understood as thermodynamic engine converting heat to a coherent single mode field close to Carnot efficiency. From this perspective spectral shaping of the excitation light generates a higher effective temperature on the pump than on the gain transition. Here, using a toy model of a quantum well structure with two suitably designed tunnel-coupled wells kept at different temperature, we study a laser operated on an actual spatial temperature gradient between pump and gain region. We predict gain and narrow band laser emission for a sufficient temperature gradient and resonator quality. Lasing appears concurrent with amplified heat flow and points to a new form of stimulated solid state cooling. Such a mechanism could raise the operating temperature limit of quantum cascade lasers by substituting phonon emission driven injection, which generates intrinsic heat, by an extended model with phonon absorption steps.

  18. Laser-Driven Mini-Thrusters

    International Nuclear Information System (INIS)

    Laser-driven mini-thrusters were studied using Delrin registered and PVC (Delrin registered is a registered trademark of DuPont) as propellants. TEA CO2 laser (λ = 10.6 μm) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse

  19. Static Checking of Interrupt-driven Software

    DEFF Research Database (Denmark)

    Brylow, Dennis; Damgaard, Niels; Palsberg, Jens

    2001-01-01

    Resource-constrained devices are becoming ubiquitous. Examples include cell phones, palm pilots, and digital thermostats. It can be difficult to fit required functionality into such a device without sacrificing the simplicity and clarity of the software. Increasingly complex embedded systems...... require extensive brute-force testing, making development and maintenance costly. This is particularly true for system components that are written in assembly language. Static checking has the potential of alleviating these problems, but until now there has been little tool support for programming at the...... assembly level. In this paper we present the design and implementation of a static checker for interrupt-driven Z86-based software with hard real-time requirements. For six commercial microcontrollers, our checker has produced upper bounds on interrupt latencies and stack sizes, as well as verified...

  20. 92 K thermoacoustically driven pulse tube refrigerator

    Institute of Scientific and Technical Information of China (English)

    TANG Ke; CHEN Guobang; JIN Tao; KONG Bo; BAO Rui; QIU Limin; GAN Zhihua

    2004-01-01

    @@ A thermoacoustic prime mover, instead of a mechanical compressor, was firstly proposed in 1990 by Radebaugh and Swift et al. to drive a pulse tube refrigerator [1]. The so-called thermoacoustically driven pulse tube refrigerator (TADPTR) has a number of advantages. First,it is characterized by its long-term stable operation for it has no moving components. Besides, solar energy and waste fuel gas can be adopted as its driving source. Utilization of low-grade energy not only improves its overall thermal efficiency, but also is most attractively applicable to the case which is short of electricity but abundant in heat energy. The potential applications, such as thermoacoustic natural gas liquefier, are under development[2].It burns part of natural gas to drive a pulse tube refrigerator whose cooling capacity is then used to liquefy the rest natural gas.

  1. Buoyancy driven turbulence and distributed chaos

    CERN Document Server

    Bershadskii, A

    2016-01-01

    It is shown, using results of recent direct numerical simulations, laboratory experiments and atmospheric measurements, that buoyancy driven turbulence exhibits a broad diversity of the types of distributed chaos with its stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$. The distributed chaos with $\\beta = 1/3$ (determined by the helicity correlation integral) is the most common feature of the stably stratified turbulence (due to the strong helical waves presence). These waves mostly dominate spectral properties of the vertical component of velocity field, while the horizontal component is dominated by the diffusive processes both for the weak and strong stable stratification ($\\beta =2/3$). For the last case influence of the low boundary can overcome the wave effects and result in $\\beta =1/2$ for the vertical component of the velocity field (the spontaneous breaking of the space translational symmetry - homogeneity). For the unstably stratified turbulence in the Rayleigh-Taylor mixing zone the di...

  2. Instability in electromagnetically driven flows Part I

    CERN Document Server

    Gissinger, Christophe; Fauve, Stephan

    2016-01-01

    The MHD flow driven by a travelling magnetic field (TMF) in an annular channel is investigated numerically. For sufficiently large magnetic Reynolds number Rm, or if a large enough pressure gradient is externally applied, the system undergoes an instability in which the flow rate in the channel dramatically drops from synchronism with the wave to much smaller velocities. This transition takes the form of a saddle-node bifurcation for the time-averaged quantities. In this first paper, we characterize the bifurcation, and study the stability of the flow as a function of several parameters. We show that the bifurcation of the flow involves a bistability between Poiseuille-like and Hartman-like regimes, and relies on magnetic flux expulsion. Based on this observation, new predictions are made for the occurrence of this stalling instability.

  3. Externally driven one-dimensional Ising model

    International Nuclear Information System (INIS)

    A one-dimensional kinetic Ising model at a finite temperature on a semi-infinite lattice with time varying boundary spins is considered. Exact expressions for the expectation values of the spin at each site are obtained, in terms of the time dependent boundary condition and the initial conditions. The solution consists of a transient part which is due to the initial conditions, and a part driven by the boundary. The latter is an evanescent wave when the boundary spin is oscillating harmonically. Low- and high-frequency limits are investigated in greater detail. The total magnetization of the lattice is also obtained. It is seen that for any arbitrary rapidly varying boundary conditions, this total magnetization is equal to the boundary spin itself, plus essentially the time integral of the boundary spin. A nonuniform model is also investigated

  4. Model Driven Development of Data Sensitive Systems

    DEFF Research Database (Denmark)

    Olsen, Petur

    2014-01-01

    storage systems, where the actual values of the data is not relevant for the behavior of the system. For many systems the values are important. For instance the control flow of the system can be dependent on the input values. We call this type of system data sensitive, as the execution is sensitive to the...... values of variables. This theses strives to improve model-driven development of such data-sensitive systems. This is done by addressing three research questions. In the first we combine state-based modeling and abstract interpretation, in order to ease modeling of data-sensitive systems, while allowing...... efficient model-checking and model-based testing. In the second we develop automatic abstraction learning used together with model learning, in order to allow fully automatic learning of data-sensitive systems to allow learning of larger systems. In the third we develop an approach for modeling and model-based...

  5. Neutrino oscillations in magnetically driven supernova explosions

    CERN Document Server

    Kawagoe, Shio; Kotake, Kei

    2009-01-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarcy with a relatively large theta_(13), we show that survival probabilities of electron type neutrinos and antineutrinos seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of electron type antineutrinos observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which lea...

  6. Model Driven Software Development for Agricultural Robotics

    DEFF Research Database (Denmark)

    Larsen, Morten

    2016-01-01

    The design and development of agricultural robots, consists of both mechan- ical, electrical and software components. All these components must be de- signed and combined such that the overall goal of the robot is fulfilled. The design and development of these systems require collaboration between...... processing, control engineering, etc. This thesis proposes a Model-Driven Software Develop- ment based approach to model, analyse and partially generate the software implementation of a agricultural robot. Furthermore, Guidelines for mod- elling the architecture of an agricultural robots are provided......, assisting with bridging the different engineering disciplines. Timing play an important role in agricultural robotic applications, synchronisation of robot movement and implement actions is important in order to achieve precision spraying, me- chanical weeding, individual feeding, etc. Discovering...

  7. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  8. Employee Driven Innovation in Team (EDIT)

    DEFF Research Database (Denmark)

    Kristiansen, Marianne; Bloch-Poulsen, Jørgen

    2010-01-01

    The article deals with employee driven innovation in regular teams from a critical, pragmatic action research perspective, referring to theories on innovation, dialogue, workplace learning, and organizational communication. It is based on an action research project "Innovation and involvement...... Dialogic Helicopter Team Meetings (DHTM) with a dissensus approach. During the action research process, it became important to organize a special kind of DHTMs as a supplement to ordinary team action meetings close to day-to-day operations, but separated in time and space. They focus on how to improve....... This can be done by using, e.g., pro and con groups or a bystander. This demands, too, that team members, managers, and action researchers develop dissensus sensibility to open up for more voices, for indirect criticism, and for more democracy in the decision process trying to balance dialogues...

  9. Seeded inert gas driven disk generator

    International Nuclear Information System (INIS)

    This report outlines the present status of work being carried out in closed cycle MHD and disk generators. It gives the basic principles and discusses a proposal for setting up an experimental facility to study nonequilibrium plasmas using an inert gas driven disk generator. Disk geometry is a near ideal geometry for plasma studies since it has single or few pair electrodes combined with near perfect insulating walls. The proposed outlay of facility with components and subsystem is given. The facility may also be used to study the concept of fully ionized seed and to develop advanced diagnostic techniques. The absic equation describing the working parameters of such a system is also given in the Appendix. (author). 57 refs

  10. Quasiclassical dynamics of resonantly driven Rydberg states

    Energy Technology Data Exchange (ETDEWEB)

    Buchleitner, A. [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Sacha, K.; Zakrzewski, J. [Instytut Fizyki Imienia Mariana Smoluchowskiego, Uniwersytet Jagiellonski, Cracow (Poland); Delande, D. [Laboratoire Kastler-Brossel, Paris (France)

    1999-02-01

    We present a semiclassical analysis of the dynamics of Rydberg states of atomic hydrogen driven by a resonant microwave field of linear polarization. The semiclassical quasienergies of the atom in the field are found to be in very good agreement with the exact quantum solutions. The ionization rates of individual eigenstates of the atom dressed by the field reflect their quasiclassical dynamics along classical periodic orbits in the near integrable regime, but exhibit a transition to nonspecific rates when global chaos takes over in phase space. We concentrate both on the principal resonance where the unperturbed Kepler frequency {omega}{sub K}is equal to the driving field frequency {omega} and on the higher primary resonance {omega}=2{omega}{sub K}. The latter case allows for the construction of nondispersive wave packets which propagate along Kepler ellipses of intermediate eccentricity. (orig.) 37 refs.

  11. Selfconsistent RF driven and bootstrap currents

    International Nuclear Information System (INIS)

    In order to achieve steady-state high performance regimes in tokamaks, it is important to sustain and control the pressure and magnetic shear profiles in high bootstrap current plasmas. RF waves can be used to achieve such a goal. Then the bootstrap current fraction must be calculated selfconsistently with RF induced currents, taking into account possible synergistic effects resulting from the distortion of the electron velocity-space distribution. Results obtained with a new 3-D code that solves the electron drift kinetic equation to study the synergistic effects are presented. While synergism between bootstrap and LH-driven currents remains modest, it may reach up to 30-40% for the case of EC current drive provided the plasma parameters are properly chosen. (author)

  12. Driven synchronization in random networks of oscillators

    CERN Document Server

    Hindes, Jason

    2015-01-01

    Synchronization is a universal phenomenon found in many non-equilibrium systems. Much recent interest in this area has overlapped with the study of complex networks, where a major focus is determining how a system's connectivity patterns affect the types of behavior that it can produce. Thus far, modeling efforts have focused on the tendency of networks of oscillators to mutually synchronize themselves, with less emphasis on the effects of external driving. In this work we discuss the interplay between mutual and driven synchronization in networks of phase oscillators of the Kuramoto type, and resolve how the structure and emergence of such states depends on the underlying network topology for simple random networks with a given degree distribution. We provide a partial bifurcation analysis, centering on the appearance of a Takens-Bogdanov-Cusp singularity, which broadly separates homogeneous and heterogeneous network behavior in a weak coupling limit, and from which the number, stability and appearance of dr...

  13. Query driven visualization of astronomical catalogs

    Science.gov (United States)

    Buddelmeijer, Hugo; Valentijn, Edwin A.

    2013-01-01

    Interactive visualization of astronomical catalogs requires novel techniques due to the huge volumes and complex structure of the data produced by existing and upcoming astronomical surveys. The creation as well as the disclosure of the catalogs can be handled by data pulling mechanisms (Buddelmeijer et al. 2011). These prevent unnecessary processing and facilitate data sharing by having users request the desired end products. In this work we present query driven visualization as a logical continuation of data pulling. Scientists can request catalogs in a declarative way and set process parameters directly from within the visualization. This results in profound interoperation between software with a high level of abstraction. New messages for the Simple Application Messaging Protocol are proposed to achieve this abstraction. Support for these messages are implemented in the Astro-WISE information system and in a set of demonstrational applications.

  14. Query Driven Visualization of Astronomical Catalogs

    CERN Document Server

    Buddelmeijer, Hugo

    2011-01-01

    Interactive visualization of astronomical catalogs requires novel techniques due to the huge volumes and complex structure of the data produced by existing and upcoming astronomical surveys. The creation as well as the disclosure of the catalogs can be handled by data pulling mechanisms. These prevent unnecessary processing and facilitate data sharing by having users request the desired end products. In this work we present query driven visualization as a logical continuation of data pulling. Scientists can request catalogs in a declarative way and set process parameters directly from within the visualization. This results in profound interoperation between software with a high level of abstraction. New messages for the Simple Application Messaging Protocol are proposed to achieve this abstraction. Support for these messages are implemented in the Astro-WISE information system and in a set of demonstrational applications.

  15. Datasheet Driven Silicon Carbide Power MOSFET Model

    Energy Technology Data Exchange (ETDEWEB)

    Mudholkar, M; Ahmed, S; Ericson, MN; Frank, SS; Britton, CL; Mantooth, HA

    2014-05-01

    A compact model for SiC Power MOSFETs is presented. The model features a physical description of the channel current and internal capacitances and has been validated for dc, CV, and switching characteristics with measured data from a 1200-V, 20-A SiC power MOSFET in a temperature range of 25 degrees C to 225 degrees C. The peculiar variation of on-state resistance with temperature for SiC power MOSFETs has also been demonstrated through measurements and accounted for in the developed model. In order to improve the user experience with the model, a new datasheet driven parameter extraction strategy has been presented which requires only data available in device datasheets, to enable quick parameter extraction for off-the-shelf devices. Excellent agreement is shown between measurement and simulation using the presented model over the entire temperature range.

  16. Datasheet driven silicon carbide power MOSFET model

    Energy Technology Data Exchange (ETDEWEB)

    Mudholkar, Mihir [Standard Products Group, Pheonix, AZ (United States); Ahmed, Shamin [Univ. of Arkansas, Fayetteville, AR (United States); Ericson, Milton Nance [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Frank, Steven Shane [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Britton Jr., Charles L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mantooth, H. Alan [Univ. of Arkansas, Fayetteville, AR (United States)

    2014-01-10

    A compact model for SiC Power MOSFETs is presented. The model features a physical description of the channel current and internal capacitances and has been validated for dc, CV, and switching characteristics with measured data from a 1200-V, 20-A SiC power MOSFET in a temperature range of 25 degrees C to 225 degrees C. The peculiar variation of on-state resistance with temperature for SiC power MOSFETs has also been demonstrated through measurements and accounted for in the developed model. In order to improve the user experience with the model, a new datasheet driven parameter extraction strategy has been presented which requires only data available in device datasheets, to enable quick parameter extraction for off-the-shelf devices. Excellent agreement is shown between measurement and simulation using the presented model over the entire temperature range.

  17. Failure-probability driven dose painting

    Science.gov (United States)

    Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K.; Aznar, Marianne C.; Berthelsen, Anne K.; Kristensen, Claus A.; Rasmussen, Jacob; Specht, Lena; Bentzen, Søren M.

    2013-01-01

    Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed. Methods: Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). The total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose–response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy. Results: The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%–91%) as compared to the observed TCP of 70%. Conclusions: The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity

  18. Neutral Beam Driven Neoclassical Transport in NSTX

    Science.gov (United States)

    Houlberg, W. A.; Shaing, K. C.; Callen, J. D.

    2002-11-01

    We re-examine the particle and heat flows driven by neutral beam injection in tokamak plasmas. These appear as inward pinches for co-injection and outward for counter injection. We derive the parallel friction and heat friction forces exerted on the thermal species by the energetic beam ions by extending the early analysis of Callen, et al. [1], which are then used as external forces in the moments formulation of neoclassical transport in NCLASS [2]. NCLASS is based on the multiple species treatment of Hirshman and Sigmar [3]. Of particular interest is the ion energy flux driven by the heat friction term. It scales as the beam energy, while the particle and electron heat terms scale as the thermal plasma temperature. In NSTX the high beam energy to plasma temperature ratio may lead to a net negative ion heat flux with strong co-injection. Limtations to the theory, such as the large fast ion orbit size relative to the radius of the flux surface, are discussed. Comparisons are made with earlier works by Hinton and Kim [4] and Stacey [5], who evaluated only the beam-thermal friction. [1] J.D. Callen, et al, 5th IAEA, Tokyo (1974), Vol 1, 645 [2] W.A. Houlberg, K.C. Shaing, S.P. Hirshman, M.C. Zarnstorff, Phys. Plasmas 4 (1997) 3230 [3] S.P. Hirshman, D.J. Sigmar, Nucl. Fusion 21 (1981) 1079 [4] F.L. Hinton, Y.-B. Kim, Phys. Fluids B 5 (1993) 3012 [5] W.M. Stacey, Phys. Fluids B 5 (1993) 4505

  19. Failure-probability driven dose painting

    Energy Technology Data Exchange (ETDEWEB)

    Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K.; Aznar, Marianne C.; Kristensen, Claus A.; Rasmussen, Jacob; Specht, Lena [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100 (Denmark); Berthelsen, Anne K. [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen 2100 (Denmark); Bentzen, Søren M. [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark and Departments of Human Oncology and Medical Physics, University of Wisconsin, Madison, Wisconsin 53792 (United States)

    2013-08-15

    Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed.Methods: Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). The total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose–response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy.Results: The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%–91%) as compared to the observed TCP of 70%.Conclusions: The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity.

  20. Integrated Nucleosynthesis in Neutrino Driven Winds

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, L F; Woosley, S E; Hoffman, R D

    2010-03-26

    Although they are but a small fraction of the mass ejected in core-collapse supernovae, neutrino-driven winds (NDWs) from nascent proto-neutron stars (PNSs) have the potential to contribute significantly to supernova nucleosynthesis. In previous works, the NDW has been implicated as a possible source of r-process and light p-process isotopes. In this paper we present time-dependent hydrodynamic calculations of nucleosynthesis in the NDW which include accurate weak interaction physics coupled to a full nuclear reaction network. Using two published models of PNS neutrino luminosities, we predict the contribution of the NDW to the integrated nucleosynthetic yield of the entire supernova. For the neutrino luminosity histories considered, no true r-process occurs in the most basic scenario. The wind driven from an older 1.4M{sub {circle_dot}} model for a PNS is moderately neutron-rich at late times however, and produces {sup 87}Rb, {sup 88}Sr, {sup 89}Y, and {sup 90}Zr in near solar proportions relative to oxygen. The wind from a more recently studied 1.27M{sub {circle_dot}} PNS is proton-rich throughout its entire evolution and does not contribute significantly to the abundance of any element. It thus seems very unlikely that the simplest model of the NDW can produce the r-process. At most, it contributes to the production of the N = 50 closed shell elements and some light p-nuclei. In doing so, it may have left a distinctive signature on the abundances in metal poor stars, but the results are sensitive to both uncertain models for the explosion and the masses of the neutron stars involved.

  1. Indirectly driven targets for inertial confinement fusion

    International Nuclear Information System (INIS)

    The physics of indirectly driven targets for inertial confinement fusion - so called hohlraum targets - is investigated. Scaling relations for radiation heat waves in high-Z and low-Z materials are derived from one-dimensional multigroup simulation. A two-temperature model is developed for radiation cavities including fusion capsules. The efficiency of X-ray transfer to the capsule by multiple absorption and re-emission inside the cavity is obtained as a function of cavity areas and materials. Using gold for the cavity wall and carbon for the capsule ablator, transfer efficiencies between 50% and 33% are obtained for area ratios between 5 and 10, respectively. Also, the hydrodynamic efficiency of X-ray driven capsule implosion and the dependence of the implosion velocity on the hohlraum temperature are given analytically, derived from the rocket model. With carbon ablators, hydroefficiencies of up to 20% can be achieved. Under optimal conditions, an implosion velocity of 3 x 107 cm/s is reached with a temperature of about 210 eV of the capsule ablator and about 250 eV of the cavity wall. Assuming 70-90% conversion efficiency of beam energy into X-rays (not analysed in this paper), overall coupling efficiencies in the range of 5-10% seem to be possible. One-dimensional simulations of full reactor size targets (10MJ driver pulses) are presented. The model results compare well with the simulations. Limit in scaling down to smaller systems are discussed; the scaling relation for the required enhancement of implosion velocity and hohlraum temperature is derived. (author). 21 refs, 14 figs, 1 tab

  2. Automated Gesturing for Virtual Characters: Speech-driven and Text-driven Approaches

    Directory of Open Access Journals (Sweden)

    Goranka Zoric

    2006-04-01

    Full Text Available We present two methods for automatic facial gesturing of graphically embodied animated agents. In one case, conversational agent is driven by speech in automatic Lip Sync process. By analyzing speech input, lip movements are determined from the speech signal. Another method provides virtual speaker capable of reading plain English text and rendering it in a form of speech accompanied by the appropriate facial gestures. Proposed statistical model for generating virtual speaker’s facial gestures can be also applied as addition to lip synchronization process in order to obtain speech driven facial gesturing. In this case statistical model will be triggered with the input speech prosody instead of lexical analysis of the input text.

  3. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators

    Science.gov (United States)

    Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; Delay, Michael; Driks, Adam; Sahin, Ozgur

    2015-06-01

    Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air-water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.

  4. Differentiating between marketing-driven and technology-driven vendors of medical information systems.

    Science.gov (United States)

    Friedman, B A; Mitchell, W; Singh, K

    1994-08-01

    Buyers of medical information systems such as laboratory information systems need to recognize that the vendors of such systems may pursue corporate strategies emphasizing expenditures on marketing and client services, expenditures on technology and research and development (R&D), or a more balanced approach. The strategic goals and objectives of a vendor of an information system should align closely with those of a potential hospital client. A restless hospital client seeking cutting-edge technology will probably be dissatisfied with a system vendor who emphasizes slow ongoing incremental system development. Objective criteria for distinguishing between a marketing-driven vendor and a technology-driven vendor of medical information systems, and their variants, are presented based on the ratio of marketing expenditures to sales revenue compared with the ratio of research and development expenditures to sales revenue of the company. More subjective narrative criteria are also offered for making such distinctions. PMID:8060224

  5. When staff handle staph : user-driven versus expert-driven communication of infection control guidelines

    OpenAIRE

    Verhoeven, Fenne

    2009-01-01

    Health care-associated infections cause thousands of preventable deaths each year. Therefore, it is crucial that health care workers (HCWs) adhere to infection control guidelines. Although most HCWs are aware of the rationale for guidelines, adherence is generally poor, which might be caused by the guidelines’ expert-driven character. Whereas traditional, paper-based guidelines have a strong focus on scientific validation, regulation, and legislation, HCWs’ information need is rather action-o...

  6. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators

    OpenAIRE

    Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; DeLay, Michael; Driks, Adam; Sahin, Ozgur

    2015-01-01

    Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston...

  7. A comparison of wake measurements in motor-driven and flow-driven turbine experiments

    Science.gov (United States)

    Araya, Daniel B.; Dabiri, John O.

    2015-07-01

    We present experimental data to compare and contrast the wake characteristics of a turbine whose rotation is either driven by the oncoming flow or prescribed by a motor. Velocity measurements are collected using two-dimensional particle image velocimetry in the near-wake region of a lift-based, vertical-axis turbine. The wake of this turbine is characterized by a spanwise asymmetric velocity profile which is found to be strongly dependent on the turbine tip speed ratio (TSR), while only weakly dependent on Reynolds number ( Re). For a given Re, the TSR is controlled either passively by a mechanical brake or actively by a DC motor. We find that there exists a finite region in TSR versus Re space where the wakes of the motor-driven turbine and flow-driven turbine are indistinguishable to within experimental precision. Outside of this region, the sign of the net circulation in the wake changes as TSR is increased by the motor. Shaft torque measurements show a corresponding sign change above this TSR threshold set by circulation, indicating a transition from net torque due to lift to net torque due to drag produced by the turbine blades, the latter of which can give wake measurements that are inconsistent with a flow-driven turbine. The results support the claim that the turbine kinematics and aerodynamic properties are the sole factors that govern the dynamics of its wake, irrespective of the means to move the turbine blades. This has significance for both experimental and computational studies where it may be necessary, or perhaps more economical, to prescribe the turbine kinematics in order to analyze its aerodynamic characteristics.

  8. Fokker-Planck/Transport model for neutral beam driven tokamaks

    International Nuclear Information System (INIS)

    The application of nonlinear Fokker-Planck models to the study of beam-driven plasmas is briefly reviewed. This evolution of models has led to a Fokker-Planck/Transport (FPT) model for neutral-beam-driven Tokamaks, which is described in detail. The FPT code has been applied to the PLT, PDX, and TFTR Tokamaks, and some representative results are presented

  9. Process-driven architecture: design techniques and methods

    NARCIS (Netherlands)

    Jaskiewicz, T.

    2007-01-01

    This paper explores the notion of process-driven architecture and, as a consequence, application of complex systems in the newly defined area of digital process-driven architectural design in order to formulate a suitable design method. Protospace software environment and SwarmCAD software applicati

  10. Numerical simulation of the gas driven fracture propagation

    International Nuclear Information System (INIS)

    The process of the gas driven fracture propagation has been studied. The mathematical model of this physical process has been proposed. The numerical algorithm has been developed and the mathematical simulation of the process of the gas driven fracture propagation has been performed

  11. Overview of nonlinear theory of kinetically driven instabilities

    International Nuclear Information System (INIS)

    An overview is presented of the theory for the nonlinear behavior of instabilities driven by the resonant wave particle interaction. The approach should be applicable to a wide variety of kinetic systems in magnetic fusion devices and accelerators. Here the authors emphasize application to Alfven were driven instability, and the principles of the theory are used to interpret experimental data

  12. Using Database-Driven Web Pages for Your Courses.

    Science.gov (United States)

    Sullivan, Peter

    1999-01-01

    Describes database-driven Web pages that dynamically display different information each time the page is accessed in response to the user's needs. Highlights include information management; online assignments; grade tracking; updating Web pages; creating database-driven Web pages; and examples of how they have been used for a high school physics…

  13. Traceability for Model Driven, Software Product Line Engineering

    OpenAIRE

    Anquetil, N.; Grammel, B.; Galvao Lourenco da Silva, I.; Noppen, J.A.R.; Shakil Khan, S.; Arboleda, H; Rashid, A; Garcia, A.

    2008-01-01

    Traceability is an important challenge for software organizations. This is true for traditional software development and even more so in new approaches that introduce more variety of artefacts such as Model Driven development or Software Product Lines. In this paper we look at some aspect of the interaction of Traceability, Model Driven development and Software Product Line.

  14. User-driven innovation of an outpatient department

    DEFF Research Database (Denmark)

    Broberg, Ole; Edwards, Kasper

    2012-01-01

    This paper presents experiences from a user-driven innovation process of an outpatient department in a hospital. The mixing of methods from user-driven innovation and participatory design contributed to develop an innovative concept of the spatial and organizational design of an outpatient depart...

  15. Into the Surge of Network-driven Innovation

    DEFF Research Database (Denmark)

    Østergaard, Claus Møller; Rosenstand, Claus Andreas Foss; Gertsen, Frank;

    2013-01-01

    is examined from the 1880’s up until today. The contribution of the paper is a societal perspective on innovation, where the difference between industrial society and knowledge society leads into the surge of network-driven innovation. Network-driven innovation is unfolded on top of the known cost...

  16. Impact Forces from Tsunami-Driven Debris

    Science.gov (United States)

    Ko, H.; Cox, D. T.; Riggs, H.; Naito, C. J.; Kobayashi, M. H.; Piran Aghl, P.

    2012-12-01

    Debris driven by tsunami inundation flow has been known to be a significant threat to structures, yet we lack the constitutive equations necessary to predict debris impact force. The objective of this research project is to improve our understanding of, and predictive capabilities for, tsunami-driven debris impact forces on structures. Of special interest are shipping containers, which are virtually everywhere and which will float even when fully loaded. The forces from such debris hitting structures, for example evacuation shelters and critical port facilities such as fuel storage tanks, are currently not known. This research project focuses on the impact by flexible shipping containers on rigid columns and investigated using large-scale laboratory testing. Full-scale in-air collision experiments were conducted at Lehigh University with 20 ft shipping containers to experimentally quantify the nonlinear behavior of full scale shipping containers as they collide into structural elements. The results from the full scale experiments were used to calibrate computer models and used to design a series of simpler, 1:5 scale wave flume experiments at Oregon State University. Scaled in-air collision tests were conducted using 1:5 scale idealized containers to mimic the container behavior observed in the full scale tests and to provide a direct comparison to the hydraulic model tests. Two specimens were constructed using different materials (aluminum, acrylic) to vary the stiffness. The collision tests showed that at higher speeds, the collision became inelastic as the slope of maximum impact force/velocity decreased with increasing velocity. Hydraulic model tests were conducted using the 1:5 scaled shipping containers to measure the impact load by the containers on a rigid column. The column was instrumented with a load cell to measure impact forces, strain gages to measure the column deflection, and a video camera was used to provide the debris orientation and speed. The

  17. Accelerator-driven Transmutation of Waste

    Science.gov (United States)

    Venneri, Francesco

    1998-04-01

    Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, reprocessing and non-proliferation. The current United States policy is to store unprocessed spent reactor fuel in a geologic repository. Other countries are opting for treatment of nuclear waste, including partial utilization of the fissile material contained in the spent fuel, prior to geologic storage. Long-term uncertainties are hampering the acceptability and eventual licensing of a geologic repository for nuclear spent fuel in the US, and driving up its cost. The greatest concerns are with the potential for radiation release and exposure from the spent fuel for tens of thousands of years and the possible diversion and use of the actinides contained in the waste for weapons construction. Taking advantage of the recent breakthroughs in accelerator technology and of the natural flexibility of subcritical systems, the Accelerator-driven Transmutation of Waste (ATW) concept offers the United States and other countries the possibility to greatly reduce plutonium, higher actinides and environmentally hazardous fission products from the waste stream destined for permanent storage. ATW does not eliminate the need for, but instead enhances the viability of permanent waste repositories. Far from being limited to waste destruction, the ATW concept also brings to the table new technologies that could be relevant for next-generation power producing reactors. In the ATW concept, spent fuel would be shipped to the ATW site where the plutonium, transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their first and only pass through the

  18. Gravity-driven intrusions in stratified fluids

    Science.gov (United States)

    Maurer, Benjamin Dudley

    All natural fluids stratify. Stable stratifications, in which isobars and isopycnals are parallel, are capable of supporting internal wave motion. Unstable stratification, in which density and pressure gradients are not aligned, results in gravity-driven flow. Gravity currents are a subset of these flows in which horizontal density gradients sharpen and propagate horizontally, transporting mass, momentum, and energy. If the density of the gravity current is within the density extrema of the stably stratified ambient fluid, it propagates as an intrusion at an intermediate height. Through laboratory experiments and numerical simulations, this dissertation explores the influence of stratification on the dynamics of gravity-driven intrusions. Intrusions require stable stratification in the ambient fluid, which is capable of transporting momentum and energy away from the current in the form of internal waves. We investigate the constant velocity propagation of well-mixed intrusions propagating into a linearly stratified ambient fluid. Varying the level of neutral buoyancy, we quantify the corresponding variation in structure, momentum, and energy of the upstream wave field. Adjacent stable stratifications of differing vertical density structure necessarily entail horizontal density gradients. These gradients determine the hydrostatic pressure differences driving the ensuing gravity current. We examine the mid-depth, constant velocity propagation of one linearly stratified fluid into another more strongly linearly stratified fluid. Working from the available potential energy of the system and measurements of the intrusion thickness, we develop an energy model to describe the speed of the intrusion in terms of the ratio of the two buoyancy frequencies. Distinct from adjacent linear stratifications, adjacent discrete stratifications may create flow consisting of interleaving intrusions. Single intrusions into a two-layer ambient fluid are well understood. Limiting our

  19. The Exploration of Design Driven Innovation as a Dynamic Capability

    Directory of Open Access Journals (Sweden)

    Philips Kembaren

    2012-01-01

    Full Text Available Innovation enables companies to attain consistent organic growth that brings benefits to stakeholders. Designthinking approach in innovation has been emergent to be an alternative to technological development path inorder to generate competitive and successful product or service in the market place. Design driven innovationcombines functional and semantic dimensions of products or services in the marketplace. Previous researchhas recently revealed practices of design driven innovation in various industries. However, little is known tothe extent that companies in Indonesia practicing design driven innovation. A theoretical framework withperspective from dynamic capability theoretical lens and guided by Dubin’s theory building methodology isproposed to explain the constructs and role of design in the process of innovation. The research is expected tocontribute a new construct to the existing framework, namely construct that related to how we could assessthe value of the design-driven innovation output, perceived by the costumers.Keywords: design driven innovation, dynamic capabilities, theory building

  20. Performance Modeling and Evaluation for Information-Driven Networks

    CERN Document Server

    Wu, Kui; Hu, Guoqiang

    2008-01-01

    Information-driven networks include a large category of networking systems, where network nodes are aware of information delivered and thus can not only forward data packets but may also perform information processing. In many situations, the quality of service (QoS) in information-driven networks is provisioned with the redundancy in information. Traditional performance models generally adopt evaluation measures suitable for packet-oriented service guarantee, such as packet delay, throughput, and packet loss rate. These performance measures, however, do not align well with the actual need of information-driven networks. New performance measures and models for information-driven networks, despite their importance, have been mainly blank, largely because information processing is clearly application dependent and cannot be easily captured within a generic framework. To fill the vacancy, we present a new performance evaluation framework particularly tailored for information-driven networks, based on the recent ...