WorldWideScience

Sample records for antimalarial quinolones synthesis

  1. Antiplasmodial and antimalarial activities of quinolone derivatives: An overview.

    Science.gov (United States)

    Fan, Yi-Lei; Cheng, Xiang-Wei; Wu, Jian-Bing; Liu, Min; Zhang, Feng-Zhi; Xu, Zhi; Feng, Lian-Shun

    2018-02-25

    Malaria remains one of the most deadly infectious diseases globally. Considering the growing spread of resistance, development of new and effective antimalarials remains an urgent priority. Quinolones, which are emerged as one of the most important class of antibiotics in the treatment of various bacterial infections, showed potential in vitro antiplasmodial and in vivo antimalarial activities, making them promising candidates for the chemoprophylaxis and treatment of malaria. This review presents the current progresses and applications of quinolone-based derivatives as potential antimalarials to pave the way for the development of new antimalarials. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Lead optimization of 3-carboxyl-4(1H)-quinolones to deliver orally bioavailable antimalarials.

    Science.gov (United States)

    Zhang, Yiqun; Clark, Julie A; Connelly, Michele C; Zhu, Fangyi; Min, Jaeki; Guiguemde, W Armand; Pradhan, Anupam; Iyer, Lalitha; Furimsky, Anna; Gow, Jason; Parman, Toufan; El Mazouni, Farah; Phillips, Margaret A; Kyle, Dennis E; Mirsalis, Jon; Guy, R Kiplin

    2012-05-10

    Malaria is a protozoal parasitic disease that is widespread in tropical and subtropical regions of Africa, Asia, and the Americas and causes more than 800,000 deaths per year. The continuing emergence of multidrug-resistant Plasmodium falciparum drives the ongoing need for the development of new and effective antimalarial drugs. Our previous work has explored the preliminary structural optimization of 4(1H)-quinolone ester derivatives, a new series of antimalarials related to the endochins. Herein, we report the lead optimization of 4(1H)-quinolones with a focus on improving both antimalarial potency and bioavailability. These studies led to the development of orally efficacious antimalarials including quinolone analogue 20g, a promising candidate for further optimization.

  3. 4(1H)-Pyridone and 4(1H)-Quinolone Derivatives as Antimalarials with Erythrocytic, Exoerythrocytic, and Transmission Blocking Activities

    Science.gov (United States)

    Monastyrskyi, Andrii; Kyle, Dennis E.; Manetsch, Roman

    2015-01-01

    Infectious diseases are the second leading cause of deaths in the world with malaria being responsible for approximately the same amount of deaths as cancer in 2012. Despite the success in malaria prevention and control measures decreasing the disease mortality rate by 45% since 2000, the development of single-dose therapeutics with radical cure potential is required to completely eradicate this deadly condition. Targeting multiple stages of the malaria parasite is becoming a primary requirement for new candidates in antimalarial drug discovery and development. Recently, 4(1H)-pyridone, 4(1H)-quinolone, 1,2,3,4-tetrahydroacridone, and phenoxyethoxy-4(1H)-quinolone chemotypes have been shown to be antimalarials with blood stage activity, liver stage activity, and transmission blocking activity. Advancements in structure-activity relationship and structure-property relationship studies, biological evaluation in vitro and in vivo, as well as pharmacokinetics of the 4(1H)-pyridone and 4(1H)-quinolone chemotypes will be discussed. PMID:25116582

  4. ICI 56,780 Optimization: Structure-Activity Relationship Studies of 7-(2-Phenoxyethoxy)-4(1H)-quinolones with Antimalarial Activity.

    Science.gov (United States)

    Maignan, Jordany R; Lichorowic, Cynthia L; Giarrusso, James; Blake, Lynn D; Casandra, Debora; Mutka, Tina S; LaCrue, Alexis N; Burrows, Jeremy N; Willis, Paul A; Kyle, Dennis E; Manetsch, Roman

    2016-07-28

    Though malaria mortality rates are down 48% globally since 2000, reported occurrences of resistance against current therapeutics threaten to reverse that progress. Recently, antimalarials that were once considered unsuitable therapeutic agents have been revisited to improve physicochemical properties and efficacy required for selection as a drug candidate. One such compound is 4(1H)-quinolone ICI 56,780, which is known to be a causal prophylactic that also displays blood schizonticidal activity against P. berghei. Rapid induction of parasite resistance, however, stalled its further development. We have completed a full structure-activity relationship study on 4(1H)-quinolones, focusing on the reduction of cross-resistance with atovaquone for activity against the clinical isolates W2 and TM90-C2B, as well as the improvement of microsomal stability. These studies revealed several frontrunner compounds with superb in vivo antimalarial activity. The best compounds were found to be curative with all mice surviving a Plasmodium berghei infection after 30 days.

  5. An Efficient Synthesis of 1-Alkyl-2-phenyl-4-quinolones from 2-Halobenzoic Acids

    International Nuclear Information System (INIS)

    Song, Yoon Ju; Choi, Jin Sun; Lee, Jae In

    2013-01-01

    The present method offers an efficient synthesis of 1-alkyl-2-phenyl-4-quinolones from 2-haloben-zoic acids. It has the advantages with respect to (i) synthesis of 2 equiv of alkynones 5 from 1 equiv of 4,6-pyrimidyl di(2-halobenzoates) 3, (ii) synthesis of versatile 1-alkyl-2-phenyl-4-quinolones in high overall yields, and (iii) use of readily available and cheap starting materials. Therefore, this method could be utilized as a practical synthesis of 1-alkyl-2-phenyl-4-quinolones. Several methods have been developed to synthesize 1-alkyl-2-phenyl-4-quinolones from 2'-substituted acetophenones, anilines, and 2-halobenzoyl chlorides as starting materials. The reaction of N-methylisatoic anhydride with the lithium enolate of an 4'-methoxyacetophenone afforded the 1-methyl-2-phenyl-4-quinolone in a short sequence, but the yield was low. N-(2-Acetylphenyl)benzamides, prepared by Friedel-Crafts acylation of N-phenyl benzamides with acetyl chloride or benzoylation of 2'-aminoacetophenones with benzoyl chlorides,8 were cyclized with potassium t-butoxide to yield 2-aryl-4-quinolones, which were further alkylated with alkyl iodides to give 1-alkyl-2-aryl-4-quinolones

  6. An Efficient Synthesis of 1-Alkyl-2-phenyl-4-quinolones from 2-Halobenzoic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yoon Ju; Choi, Jin Sun; Lee, Jae In [Duksung Women' s Univ., Seoul (Korea, Republic of)

    2013-10-15

    The present method offers an efficient synthesis of 1-alkyl-2-phenyl-4-quinolones from 2-haloben-zoic acids. It has the advantages with respect to (i) synthesis of 2 equiv of alkynones 5 from 1 equiv of 4,6-pyrimidyl di(2-halobenzoates) 3, (ii) synthesis of versatile 1-alkyl-2-phenyl-4-quinolones in high overall yields, and (iii) use of readily available and cheap starting materials. Therefore, this method could be utilized as a practical synthesis of 1-alkyl-2-phenyl-4-quinolones. Several methods have been developed to synthesize 1-alkyl-2-phenyl-4-quinolones from 2'-substituted acetophenones, anilines, and 2-halobenzoyl chlorides as starting materials. The reaction of N-methylisatoic anhydride with the lithium enolate of an 4'-methoxyacetophenone afforded the 1-methyl-2-phenyl-4-quinolone in a short sequence, but the yield was low. N-(2-Acetylphenyl)benzamides, prepared by Friedel-Crafts acylation of N-phenyl benzamides with acetyl chloride or benzoylation of 2'-aminoacetophenones with benzoyl chlorides,8 were cyclized with potassium t-butoxide to yield 2-aryl-4-quinolones, which were further alkylated with alkyl iodides to give 1-alkyl-2-aryl-4-quinolones.

  7. Short synthesis and antimalarial activity of fagaronine

    OpenAIRE

    Rivaud, M.; Mendoza, A.; Sauvain, Michel; Valentin, A.; Jullian, Valérie

    2012-01-01

    Herein, we report a new synthesis of fagaronine 1, inspired by the synthesis reported by Luo for nornitidine. The in vitro biological activity of fagaronine against malaria on several chloroquine-sensitive and resistant Plasmodium falciparum strains was confirmed, and the selectivity index compared to mammalian cells was calculated. Fagaronine was found to have very good antimalarial activity in vivo, comparable to the activity of the reference compound chloroquine. Therefore, fagaronine appe...

  8. Mechanochemical Synthesis, In vivo Anti-malarial and Safety Evaluation of Amodiaquine-zinc Complex

    Directory of Open Access Journals (Sweden)

    Arise Rotimi Olusanya

    2017-09-01

    Full Text Available So far, some prospective metal-based anti-malarial drugs have been developed. The mechanochemical synthesis and characterization of Zn (II complex with amodiaquine and its anti-malarial efficacy on Plasmodium berghei-infected mice and safety evaluation were described in this study.

  9. Synthesis, photochemical synthesis and antitumor evaluation of novel derivatives of thieno[3',2':4,5]thieno[2,3-c]quinolones.

    Science.gov (United States)

    DoganKoruznjak, Jasna; Slade, Neda; Zamola, Branimir; Pavelić, Kresimir; Karminski-Zamola, Grace

    2002-05-01

    The novel derivatives of thieno[3',2':4,5]thieno[2,3-c]quinolones 6a, 6b, 7, 10a and 10b were synthesized in multistep synthesis starting from thiophene-3-carboxaldehyde and malonic acid reacting in aldol condensation or from 3-bromothiophenes or methyl 4-bromothiophene-2-carboxylate reacting in Heck reaction. They resulted in corresponding substituted thienylacrylic acids 3a-c, which were cyclized into thieno[2,3-c]thiophene-2-carbonyl chlorides 4a-c and converted into thieno[2,3-c]thiophene-2-carboxamides 5a-d. Prepared carboxamides were photochemically dehydrohalogenated into corresponding substituted thieno[3',2':4,5]thieno[2,3-c]quinolones 6a-d. Compound 7 was prepared from 6d by alkylation with N-[3-(dimethylamino)propyl]chloride hydrochloride in the presence of NaH. Compounds 10a and 10b were prepared from 6c in the multistep synthesis over acid 8 and acid chloride 9. Compounds 6a, 6b, 7, 10a and 10b were found to exert cytostatic activities against malignant cell lines: pancreatic carcinoma (MiaPaCa2), breast carcinoma (MCF7), cervical carcinoma (HeLa), laryngeal carcinoma (Hep2), colon carcinoma (CaCo-2), melanoma (HBL), and human fibroblast cell lines (WI-38). The compound 6b, which bears the 3-dimethylaminopropyl substituent on quinolone nitrogen and methoxycarbonyl substituent on position 9, exhibited marked antitumor activity. On the contrary, compound 7, which also bears the 3-dimethylaminopropyl substituent on the quinolone nitrogen but anilido substituent on position 9, exhibited less antitumor activity than the others.

  10. Synthesis and evaluation of antimalarial properties of novel 4-aminoquinoline hybrid compounds.

    Science.gov (United States)

    Fisher, Gillian M; Tanpure, Rajendra P; Douchez, Antoine; Andrews, Katherine T; Poulsen, Sally-Ann

    2014-10-01

    Pharmacophore hybridization has recently been employed in the search for antimalarial lead compounds. This approach chemically links two pharmacophores, each with their own antimalarial activity and ideally with different modes of action, into a single hybrid molecule with the goal to improve therapeutic properties. In this paper, we report the synthesis of novel 7-chloro-4-aminoquinoline/primary sulfonamide hybrid compounds. The chlorinated 4-aminoquinoline scaffold is the core structure of chloroquine, an established antimalarial drug, while the primary sulfonamide functional group has a proven track record of efficacy and safety in many clinically used drugs and was recently shown to exhibit some antimalarial activity. The activity of the hybrid compounds was determined against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum strains. While the hybrid compounds had lower antimalarial activity when compared to chloroquine, they demonstrated a number of interesting structure-activity relationship (SAR) trends including the potential to overcome the resistance profile of chloroquine. © 2014 John Wiley & Sons A/S.

  11. Effect of Antimalarial Drugs on Plasmodia Cell-Free Protein Synthesis

    Directory of Open Access Journals (Sweden)

    Ana Ferreras

    2002-04-01

    Full Text Available A cell-free system from Plasmodium falciparum able to translate endogenous mRNA was used to determine the effect of artemisinin, chloroquine and primaquine on the protein synthesis mechanism of the parasite. The antimalarial drugs did not inhibit the incorporation of [³H] methionine into parasite proteins even at concentrations higher than the ones found to strongly inhibit the parasite growth. Results clearly indicate that these compounds do not have a direct effect on protein synthesis activity of P. falciparum coded by endogenous mRNA.

  12. Synthesis and antimalarial evaluation of prodrugs of novel fosmidomycin analogues.

    Science.gov (United States)

    Faísca Phillips, Ana Maria; Nogueira, Fátima; Murtinheira, Fernanda; Barros, Maria Teresa

    2015-01-01

    The continuous development of drug resistance by Plasmodium falciparum, the agent responsible for the most severe forms of malaria, creates the need for the development of novel drugs to fight this disease. Fosmidomycin is an effective antimalarial and potent antibiotic, known to act by inhibiting the enzyme 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), essential for the synthesis of isoprenoids in eubacteria and plasmodia, but not in humans. In this study, novel constrained cyclic prodrug analogues of fosmidomycin were synthesized. One, in which the hydroxamate function is incorporated into a six-membered ring, was found have higher antimalarial activity than fosmidomycin against the chloroquine and mefloquine resistant P. falciparum Dd2 strain. In addition, it showed very low cytotoxicity against cultured human cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Diversity-oriented synthesis-facilitated medicinal chemistry: toward the development of novel antimalarial agents.

    Science.gov (United States)

    Comer, Eamon; Beaudoin, Jennifer A; Kato, Nobutaka; Fitzgerald, Mark E; Heidebrecht, Richard W; Lee, Maurice duPont; Masi, Daniela; Mercier, Marion; Mulrooney, Carol; Muncipinto, Giovanni; Rowley, Ann; Crespo-Llado, Keila; Serrano, Adelfa E; Lukens, Amanda K; Wiegand, Roger C; Wirth, Dyann F; Palmer, Michelle A; Foley, Michael A; Munoz, Benito; Scherer, Christina A; Duvall, Jeremy R; Schreiber, Stuart L

    2014-10-23

    Here, we describe medicinal chemistry that was accelerated by a diversity-oriented synthesis (DOS) pathway, and in vivo studies of our previously reported macrocyclic antimalarial agent that derived from the synthetic pathway. Structure-activity relationships that focused on both appendage and skeletal features yielded a nanomolar inhibitor of P. falciparum asexual blood-stage growth with improved solubility and microsomal stability and reduced hERG binding. The build/couple/pair (B/C/P) synthetic strategy, used in the preparation of the original screening library, facilitated medicinal chemistry optimization of the antimalarial lead.

  14. Synthesis and antimalarial activity of new chloroquine analogues carrying a multifunctional linear side chain

    OpenAIRE

    Iwaniuk, Daniel P.; Whetmore, Eric D.; Rosa, Nicholas; Ekoue-Kovi, Kekeli; Alumasa, John; de Dios, Angel C.; Roepe, Paul D.; Wolf, Christian

    2009-01-01

    We report the synthesis and in vitro antimalarial activity of several new 4-amino-and 4-alkoxy-7-chloroquinolines carrying a linear dibasic side chain. Many of these chloroquine analogues have submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strain of P. falciparum) and low resistance indices were obtained in most cases. Importantly, compounds 11–15 and 24 proved to be more potent against Dd2 than chloroquine. Branching of the side chain st...

  15. Synthesis and antimalarial activity of new chloroquine analogues carrying a multifunctional linear side chain.

    Science.gov (United States)

    Iwaniuk, Daniel P; Whetmore, Eric D; Rosa, Nicholas; Ekoue-Kovi, Kekeli; Alumasa, John; de Dios, Angel C; Roepe, Paul D; Wolf, Christian

    2009-09-15

    We report the synthesis and in vitro antimalarial activity of several new 4-amino- and 4-alkoxy-7-chloroquinolines carrying a linear dibasic side chain. Many of these chloroquine analogues have submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strain of Plasmodium falciparum) and low resistance indices were obtained in most cases. Importantly, compounds 11-15 and 24 proved to be more potent against Dd2 than chloroquine. Branching of the side chain structure proved detrimental to the activity against the CQR strain.

  16. Synthesis and evaluation of 1-amino-6-halo-β-carbolines as antimalarial and antiprion agents.

    Science.gov (United States)

    Thompson, Mark J; Louth, Jennifer C; Little, Susan M; Jackson, Matthew P; Boursereau, Yohan; Chen, Beining; Coldham, Iain

    2012-04-01

    Malaria is one of the world's most devastating parasitic diseases, causing almost one million deaths each year. Growing resistance to classical antimalarial drugs, such as chloroquine, necessitates the discovery of new therapeutic agents for successful control of this global disease. Here, we report the synthesis of some 6-halo-β-carbolines as analogues of the potent antimalarial natural product, manzamine A, retaining its heteroaromatic core whilst providing compounds with much improved synthetic accessibility. Two compounds displayed superior activity to chloroquine itself against a resistant Plasmodium falciparum strain, identifying them as promising leads for future development. Furthermore, in line with previous reports of similarities in antimalarial and antiprion effects of aminoaryl-based antimalarial agents, the 1-amino-β-carboline libraries were also found to possess significant bioactivity against a prion-infected cell line. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity.

    Science.gov (United States)

    Naeem, Abdul; Badshah, Syed Lal; Muska, Mairman; Ahmad, Nasir; Khan, Khalid

    2016-03-28

    Quinolones are broad-spectrum synthetic antibacterial drugs first obtained during the synthesis of chloroquine. Nalidixic acid, the prototype of quinolones, first became available for clinical consumption in 1962 and was used mainly for urinary tract infections caused by Escherichia coli and other pathogenic Gram-negative bacteria. Recently, significant work has been carried out to synthesize novel quinolone analogues with enhanced activity and potential usage for the treatment of different bacterial diseases. These novel analogues are made by substitution at different sites--the variation at the C-6 and C-8 positions gives more effective drugs. Substitution of a fluorine atom at the C-6 position produces fluroquinolones, which account for a large proportion of the quinolones in clinical use. Among others, substitution of piperazine or methylpiperazine, pyrrolidinyl and piperidinyl rings also yields effective analogues. A total of twenty six analogues are reported in this review. The targets of quinolones are two bacterial enzymes of the class II topoisomerase family, namely gyrase and topoisomerase IV. Quinolones increase the concentration of drug-enzyme-DNA cleavage complexes and convert them into cellular toxins; as a result they are bactericidal. High bioavailability, relative low toxicity and favorable pharmacokinetics have resulted in the clinical success of fluoroquinolones and quinolones. Due to these superior properties, quinolones have been extensively utilized and this increased usage has resulted in some quinolone-resistant bacterial strains. Bacteria become resistant to quinolones by three mechanisms: (1) mutation in the target site (gyrase and/or topoisomerase IV) of quinolones; (2) plasmid-mediated resistance; and (3) chromosome-mediated quinolone resistance. In plasmid-mediated resistance, the efflux of quinolones is increased along with a decrease in the interaction of the drug with gyrase (topoisomerase IV). In the case of chromosome

  18. The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Abdul Naeem

    2016-03-01

    Full Text Available Quinolones are broad-spectrum synthetic antibacterial drugs first obtained during the synthesis of chloroquine. Nalidixic acid, the prototype of quinolones, first became available for clinical consumption in 1962 and was used mainly for urinary tract infections caused by Escherichia coli and other pathogenic Gram-negative bacteria. Recently, significant work has been carried out to synthesize novel quinolone analogues with enhanced activity and potential usage for the treatment of different bacterial diseases. These novel analogues are made by substitution at different sites—the variation at the C-6 and C-8 positions gives more effective drugs. Substitution of a fluorine atom at the C-6 position produces fluroquinolones, which account for a large proportion of the quinolones in clinical use. Among others, substitution of piperazine or methylpiperazine, pyrrolidinyl and piperidinyl rings also yields effective analogues. A total of twenty six analogues are reported in this review. The targets of quinolones are two bacterial enzymes of the class II topoisomerase family, namely gyrase and topoisomerase IV. Quinolones increase the concentration of drug-enzyme-DNA cleavage complexes and convert them into cellular toxins; as a result they are bactericidal. High bioavailability, relative low toxicity and favorable pharmacokinetics have resulted in the clinical success of fluoroquinolones and quinolones. Due to these superior properties, quinolones have been extensively utilized and this increased usage has resulted in some quinolone-resistant bacterial strains. Bacteria become resistant to quinolones by three mechanisms: (1 mutation in the target site (gyrase and/or topoisomerase IV of quinolones; (2 plasmid-mediated resistance; and (3 chromosome-mediated quinolone resistance. In plasmid-mediated resistance, the efflux of quinolones is increased along with a decrease in the interaction of the drug with gyrase (topoisomerase IV. In the case of

  19. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    Science.gov (United States)

    Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C. S.; Norcross, Neil R.; Grimaldi, Raffaella; Otto, Thomas D.; Proto, William R.; Blagborough, Andrew M.; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M.; Abraham, Tara S.; Almeida, Mariana J.; Pradhan, Anupam; Porzelle, Achim; Martínez, María Santos; Bolscher, Judith M.; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M.; Churcher, Tom S.; Sala, Katarzyna A.; Zakutansky, Sara E.; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M.; Sauerwein, Robert W.; Dechering, Koen J.; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A.; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G.; Leroy, Didier; Siegl, Peter; Delves, Michael J.; Kyle, Dennis E.; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N.; Sinden, Robert E.; Winzeler, Elizabeth A.; Charman, Susan A.; Bebrevska, Lidiya; Gray, David W.; Campbell, Simon; Fairlamb, Alan H.; Willis, Paul A.; Rayner, Julian C.; Fidock, David A.; Read, Kevin D.; Gilbert, Ian H.

    2015-06-01

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.

  20. Antimalarial therapy selection for quinolone resistance among Escherichia coli in the absence of quinolone exposure, in tropical South America.

    Science.gov (United States)

    Davidson, Ross J; Davis, Ian; Willey, Barbara M; Rizg, Keyro; Bolotin, Shelly; Porter, Vanessa; Polsky, Jane; Daneman, Nick; McGeer, Allison; Yang, Paul; Scolnik, Dennis; Rowsell, Roy; Imas, Olga; Silverman, Michael S

    2008-07-16

    Bacterial resistance to antibiotics is thought to develop only in the presence of antibiotic pressure. Here we show evidence to suggest that fluoroquinolone resistance in Escherichia coli has developed in the absence of fluoroquinolone use. Over 4 years, outreach clinic attendees in one moderately remote and five very remote villages in rural Guyana were surveyed for the presence of rectal carriage of ciprofloxacin-resistant gram-negative bacilli (GNB). Drinking water was tested for the presence of resistant GNB by culture, and the presence of antibacterial agents and chloroquine by HPLC. The development of ciprofloxacin resistance in E. coli was examined after serial exposure to chloroquine. Patient and laboratory isolates of E. coli resistant to ciprofloxacin were assessed by PCR-sequencing for quinolone-resistance-determining-region (QRDR) mutations. In the very remote villages, 4.8% of patients carried ciprofloxacin-resistant E. coli with QRDR mutations despite no local availability of quinolones. However, there had been extensive local use of chloroquine, with higher prevalence of resistance seen in the villages shortly after a Plasmodium vivax epidemic (pwater, but chloroquine was demonstrated to be present. Chloroquine was found to inhibit the growth of E. coli in vitro. Replica plating demonstrated that 2-step QRDR mutations could be induced in E. coli in response to chloroquine. In these remote communities, the heavy use of chloroquine to treat malaria likely selected for ciprofloxacin resistance in E. coli. This may be an important public health problem in malarious areas.

  1. Antimalarial therapy selection for quinolone resistance among Escherichia coli in the absence of quinolone exposure, in tropical South America.

    Directory of Open Access Journals (Sweden)

    Ross J Davidson

    Full Text Available BACKGROUND: Bacterial resistance to antibiotics is thought to develop only in the presence of antibiotic pressure. Here we show evidence to suggest that fluoroquinolone resistance in Escherichia coli has developed in the absence of fluoroquinolone use. METHODS: Over 4 years, outreach clinic attendees in one moderately remote and five very remote villages in rural Guyana were surveyed for the presence of rectal carriage of ciprofloxacin-resistant gram-negative bacilli (GNB. Drinking water was tested for the presence of resistant GNB by culture, and the presence of antibacterial agents and chloroquine by HPLC. The development of ciprofloxacin resistance in E. coli was examined after serial exposure to chloroquine. Patient and laboratory isolates of E. coli resistant to ciprofloxacin were assessed by PCR-sequencing for quinolone-resistance-determining-region (QRDR mutations. RESULTS: In the very remote villages, 4.8% of patients carried ciprofloxacin-resistant E. coli with QRDR mutations despite no local availability of quinolones. However, there had been extensive local use of chloroquine, with higher prevalence of resistance seen in the villages shortly after a Plasmodium vivax epidemic (p<0.01. Antibacterial agents were not found in the drinking water, but chloroquine was demonstrated to be present. Chloroquine was found to inhibit the growth of E. coli in vitro. Replica plating demonstrated that 2-step QRDR mutations could be induced in E. coli in response to chloroquine. CONCLUSIONS: In these remote communities, the heavy use of chloroquine to treat malaria likely selected for ciprofloxacin resistance in E. coli. This may be an important public health problem in malarious areas.

  2. Stage-specific activity of potential antimalarial compounds measured in vitro by flow cytometry in comparison to optical microscopy and hypoxanthine uptake

    Directory of Open Access Journals (Sweden)

    Carmen E Contreras

    2004-03-01

    Full Text Available The evaluation of new antimalarial agents using older methods of monitoring sensitivity to antimalarial drugs are laborious and poorly suited to discriminate stage-specific activity. We used flow cytometry to study the effect of established antimalarial compounds, cysteine protease inhibitors, and a quinolone against asexual stages of Plasmodium falciparum. Cultured P. falciparum parasites were treated for 48 h with different drug concentrations and the parasitemia was determined by flow cytometry methods after DNA staining with propidium iodide. P. falciparum erythrocytic life cycle stages were readily distinguished by flow cytometry. Activities of established and new antimalarial compounds measured by flow cytometry were equivalent to results obtained with microscopy and metabolite uptake assays. The antimalarial activity of all compounds was higher against P. falciparum trophozoite stages. Advantages of flow cytometry analysis over traditional assays included higher throughput for data collection, insight into the stage-specificity of antimalarial activity avoiding use of radioactive isotopes.

  3. Synthesis and in vivo antimalarial activity of novel naphthoquine derivatives with linear/cyclic structured pendants.

    Science.gov (United States)

    Tang, Ling; Bei, Zhuchun; Song, Yabin; Xu, Likun; Wang, Hong; Zhang, Dongna; Dou, Yuanyuan; Lv, Kai; Wang, Hongquan

    2017-07-01

    Naphthoquine (NQ) was discovered by our institute as an antimalarial candidate in 1980s, and currently employed as an artemisinin-based combination therapy partner drug. Resistance to NQ was found in mouse model in laboratory, and might emerge in future as widely used. We herein report the design and synthesis of NQ derivatives by replacing t-butyl moiety with linear/cyclic structured pendants. All the target compounds 6a-l and intermediates 5a-h were tested for their in vivo antimalarial activity against Plasmodium berghei K173 strain in mice. Compounds 6a and 6j were found to have a comparable or slightly more potent activity (the 50% effective dose [ED 50 ], which is required to decrease parasitemia by 50%: 0.38-0.43 mg/kg) than NQ (ED 50 : 0.48 mg/kg). The newly designed compounds 6a and 6j might be promising antimalarial candidates for further research.

  4. Synthesis of a Bicyclic Azetidine with In Vivo Antimalarial Activity Enabled by Stereospecific, Directed C(sp3)-H Arylation.

    Science.gov (United States)

    Maetani, Micah; Zoller, Jochen; Melillo, Bruno; Verho, Oscar; Kato, Nobutaka; Pu, Jun; Comer, Eamon; Schreiber, Stuart L

    2017-08-16

    The development of new antimalarial therapeutics is necessary to address the increasing resistance to current drugs. Bicyclic azetidines targeting Plasmodium falciparum phenylalanyl-tRNA synthetase comprise one promising new class of antimalarials, especially due to their activities against three stages of the parasite's life cycle, but a lengthy synthetic route to these compounds may affect the feasibility of delivering new therapeutic agents within the cost constraints of antimalarial drugs. Here, we report an efficient synthesis of antimalarial compound BRD3914 (EC 50 = 15 nM) that hinges on a Pd-catalyzed, directed C(sp 3 )-H arylation of azetidines at the C3 position. This newly developed protocol exhibits a broad substrate scope and provides access to valuable, stereochemically defined building blocks. BRD3914 was evaluated in P. falciparum-infected mice, providing a cure after four oral doses.

  5. Synthesis and antimalarial evaluation of novel isocryptolepine derivatives.

    Science.gov (United States)

    Whittell, Louise R; Batty, Kevin T; Wong, Rina P M; Bolitho, Erin M; Fox, Simon A; Davis, Timothy M E; Murray, Paul E

    2011-12-15

    A series of mono- and di-substituted analogues of isocryptolepine have been synthesized and evaluated for in vitro antimalarial activity against chloroquine sensitive (3D7) and resistant (W2mef) Plasmodium falciparum and for cytotoxicity (3T3 cells). Di-halogenated compounds were the most potent derivatives and 8-bromo-2-chloroisocryptolepine displayed the highest selectivity index (106; the ratio of cytotoxicity (IC(50)=9005 nM) to antimalarial activity (IC(50)=85 nM)). Our evaluation of novel isocryptolepine compounds has demonstrated that di-halogenated derivatives are promising antimalarial lead compounds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Synthesis and evaluation of antimalarial activity of curcumin derivatives

    International Nuclear Information System (INIS)

    Gomes, Patricia Ramos; Miguel, Fabio Balbino; Almeida, Mauro Vieira de; Couri, Mara Rubia Costa; Oliveira, Michael Eder de; Ferreira, Vanessa Viana; Guimaraes, Daniel Silqueira Martins; Lima, Aline Brito de; Barbosa, Camila de Souza; Oliveira, Mariana Amorim de; Almeida, Mauro Vieira de; Viana, Gustavo Henrique Ribeiro; Varotti, Fernando de Pilla

    2014-01-01

    ne of the main challenges in the development of new antimalarial drugs is to achieve a viable lead candidate with good pharmacokinetic properties. Curcumin has a broad range of biological activities, including antimalarial activity. Herein, we report the antimalarial activity of six curcumin derivatives (6-12) and an initial analysis of their pharmacokinetic properties. Five compounds have demonstrated potent activity against the P. falciparum in vitro (IC 50 values ranging from 1.7 to 15.2 μg mL -1 ), with moderate or low cytotoxicity against the HeLa cell line. The substitution of the carbonyl group in 6 by a 2,4-dinitrophenylhydrazone group (to afford 11) increases the Selective Index. These preliminary results indicate curcumin derivatives as potential antimalarial compounds. (author)

  7. Influence Of Quinolone Lethality on Irradiated Anaerobic Growth of Escherichia Coli

    International Nuclear Information System (INIS)

    Ibrahim, I.M.; El-Kabbany, H.M.; El-Esseily, E.SH.

    2012-01-01

    Bacteriostatic and bactericidal activities were measured with wild type cells and isomerase mutants of Escherichia coli for ciprofloxacin, formation of quinolone-gyrase-DNA complexes, observed as a sodium dodecyl sulfate (SDS) dependent drop in cell lysate viscosity, occurred during aerobic and anaerobic growth and in the presence and in the absence of chloramphenicol. Quinolone activity against Escherichia coli was examined during aerobic growth, aerobic treatment with chloramphenicol, and anaerobic growth. Nalidixic acid, norfloxacin and ciprofloxacin were lethal for cultures growing aerobically, and the bacteriostatic activity of each quinolone was unaffected by anaerobic growth. However, lethal activity was distinct for each quinolone with cells treated aerobically with chloramphenicol or grown anaerobically. Nalidixic acid failed to kill cells under both conditions, norfloxacin killed cells when they were grown anaerobically but not when they were treated with chloramphenicol, ciprofloxacin killed cells under both conditions but required higher concentrations than those required with cells grown aerobically, C-methoxy fluoro quinolone was equally lethal under all conditions. However, lethal chromosome fragmentation, detected as a drop in viscosity in the absence of SDS, was occurred with nalidixic acid treatment only under aerobic conditions in the absence of chloramphenicol, thus, all quinolones tested appeared to form reversible bacteriostatic complexes containing broken DNA during aerobic growth, during anaerobic growth, and when protein synthesis is blocked. The ability to fragment chromosomes rapidly kill cells under these conditions depends on quinolone structure. The radiation of sublethal dose was 3 Gy at rate of 0.6 Gy/min was shown as non-significant result

  8. Novel inhibitors of IMPDH: a highly potent and selective quinolone-based series.

    Science.gov (United States)

    Watterson, Scott H; Carlsen, Marianne; Dhar, T G Murali; Shen, Zhongqi; Pitts, William J; Guo, Junqing; Gu, Henry H; Norris, Derek; Chorba, John; Chen, Ping; Cheney, Daniel; Witmer, Mark; Fleener, Catherine A; Rouleau, Katherine; Townsend, Robert; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2003-02-10

    A series of novel quinolone-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are described.

  9. Synthesis, characterization, molecular docking and in vitro antimalarial properties of new carboxamides bearing sulphonamide.

    Science.gov (United States)

    Ugwu, D I; Okoro, U C; Ukoha, P O; Okafor, S; Ibezim, A; Kumar, N M

    2017-07-28

    Sulphonamides and carboxamides have shown large number of pharmacological properties against different types of diseases among which is malaria. Twenty four new carboxamide derivatives bearing benzenesulphonamoyl alkanamides were synthesized and investigated for their in silico and in vitro antimalarial and antioxidant properties. The substituted benzenesulphonyl chlorides (1a-c) were treated with various amino acids (2a-h) to obtain the benzenesulphonamoyl alkanamides (3a-x) which were subsequently treated with benzoyl chloride to obtain the N-benzoylated derivatives (5a-f, i-n and q-v). Further reactions of the N-benzoylated derivatives or proline derivatives with 4-aminoacetophenone (6) using boric acid as a catalyst gave the sulphonamide carboxamide derivatives (7a-x) in excellent yields. The in vitro antimalarial studies showed that all synthesized compounds had antimalarial property. Compound 7k, 7c, 7l, 7s, and 7j had mean MIC value of 0.02, 0.03, 0.05, 0.06 and 0.08 μM respectively comparable with chloroquine 0.06 μM. Compound 7c was the most potent antioxidant agent with IC 50 value of 0.045 mM comparable with 0.34 mM for ascorbic acid. In addition to the successful synthesis of the target molecules using boric acid catalysis, the compounds were found to have antimalarial and antioxidant activities comparable with known antimalarial and antioxidant drugs. The class of compounds reported herein have the potential of reducing oxidative stress arising from malaria parasite and chemotherapeutic agent used in the treatment of malaria. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Synthesis and antimalarial activity of new 4-amino-7-chloroquinolyl amides, sulfonamides, ureas and thioureas.

    Science.gov (United States)

    Ekoue-Kovi, Kekeli; Yearick, Kimberly; Iwaniuk, Daniel P; Natarajan, Jayakumar K; Alumasa, John; de Dios, Angel C; Roepe, Paul D; Wolf, Christian

    2009-01-01

    We report the synthesis and in vitro antimalarial activities of more than 50 7-chloro-4-aminoquinolyl-derived sulfonamides 3-8 and 11-26, ureas 19-22, thioureas 23-26, and amides 27-54. Many of the CQ analogues prepared for this study showed submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strains of Plasmodium falciparum) and low resistance indices were obtained in most cases. Systematic variation of the side chain length and introduction of fluorinated aliphatic and aromatic termini revealed promising leads that overcome CQ resistance. In particular, sulfonamide 3 exhibiting a short side chain with a terminal dansyl moiety combined high antiplasmodial potency with a low resistance index and showed IC(50)s of 17.5 and 22.7 nM against HB3 and Dd2 parasites.

  11. Quinolone resistance: much more than predicted

    Directory of Open Access Journals (Sweden)

    Alvaro eHernandez

    2011-02-01

    Full Text Available Since quinolones are synthetic antibiotics, it was predicted that mutations in target genes would be the only mechanism through which resistance could be acquired, because there will not be quinolone resistance genes in nature. Contrary to this prediction, a variety of elements ranging from efflux pumps, target-protecting proteins and even quinolone-modifying enzymes have been shown to contribute to quinolone resistance. The finding of some of these elements in plasmids indicates that quinolone resistance can be transferable. As a result, there has been a developing interest on the reservoirs for quinolone resistance genes and on the potential risks associated with the use of these antibiotics in non-clinical environments. As a matter of fact, plasmid-encoded, quinolone-resistance qnr genes originated in the chromosome of aquatic bacteria, thus the use of quinolones in fish farming might constitute a risk for the emergence of resistance. Failure to predict the development of quinolone resistance reinforces the need of taking into consideration the wide plasticity of biological systems for future predictions. This plasticity allows pathogens to deal with toxic compounds, including those with a synthetic origin as quinolones.

  12. Mechanism of quinolone action and resistance.

    Science.gov (United States)

    Aldred, Katie J; Kerns, Robert J; Osheroff, Neil

    2014-03-18

    Quinolones are one of the most commonly prescribed classes of antibacterials in the world and are used to treat a variety of bacterial infections in humans. Because of the wide use (and overuse) of these drugs, the number of quinolone-resistant bacterial strains has been growing steadily since the 1990s. As is the case with other antibacterial agents, the rise in quinolone resistance threatens the clinical utility of this important drug class. Quinolones act by converting their targets, gyrase and topoisomerase IV, into toxic enzymes that fragment the bacterial chromosome. This review describes the development of the quinolones as antibacterials, the structure and function of gyrase and topoisomerase IV, and the mechanistic basis for quinolone action against their enzyme targets. It will then discuss the following three mechanisms that decrease the sensitivity of bacterial cells to quinolones. Target-mediated resistance is the most common and clinically significant form of resistance. It is caused by specific mutations in gyrase and topoisomerase IV that weaken interactions between quinolones and these enzymes. Plasmid-mediated resistance results from extrachromosomal elements that encode proteins that disrupt quinolone-enzyme interactions, alter drug metabolism, or increase quinolone efflux. Chromosome-mediated resistance results from the underexpression of porins or the overexpression of cellular efflux pumps, both of which decrease cellular concentrations of quinolones. Finally, this review will discuss recent advancements in our understanding of how quinolones interact with gyrase and topoisomerase IV and how mutations in these enzymes cause resistance. These last findings suggest approaches to designing new drugs that display improved activity against resistant strains.

  13. Targetting the hemozoin synthesis pathway for antimalarial drug and detected by TEM (Transmission electron microscope)

    Science.gov (United States)

    Abbas, Jamilah; Artanti, Nina; Sundowo, Andini; Dewijanti, Indah Dwiatmi; Hanafi, Muhammad; Lisa, Syafrudin, Din

    2017-11-01

    Malaria is a major public health problem mainly due to the development of resistance by the most lethal causative parasite species, the alarming spread of drug resistance and limited number of effective drug available now. Therefore it is important to discover new antimalarial drug. Malaria is caused by a singlecelled parasite from the genus Plasmodium. Plasmodium falciparum parasite infect red blood cells, ingesting and degradation hemoglobin in the acidic food vacuola trough a sequential metabolic process involving multiple proteases. During these process, hemoglobin is utilized as the predominant source of nutrition. Proteolysis of hemoglobin yields amino acid for protein synthesis as well as toxic heme. Massive degradation of hemoglobin generates large amount of toxic heme. Malaria parasite has evolved a distinct mechanism for detoxification of heme through conversion into insoluble crystalline pigment, known as hemozoin (β hematoin). Hemozoin synthesis is an indispensable process for the parasite and is the target for action of several known antimalarial drug. TEM (Transmission Electron Microscope) technology for hemozoin formation in vitro assay was done in this research. Calophyllum aerophyllum Lauterb as medicinal plants was used as a source of antimalarial drug. Acetone extracts of C. lowii showed growth inhibition against parasite P. falciparum with IC50 = 5.2 µg/mL. Whereas from hexane, acetone and methanol fraction of C. aerophyllum showed growth inhibition with IC50 = 0.054, 0.055 and 0.0054 µg/mL respectively. New drug from Calophyllum might have potential compounds that have unique structures and mechanism of action which required to develop new drug for treatment of sensitive and drug resistant strain of malaria.

  14. N-cinnamoylated chloroquine analogues as dual-stage antimalarial leads.

    Science.gov (United States)

    Pérez, Bianca C; Teixeira, Cátia; Albuquerque, Inês S; Gut, Jiri; Rosenthal, Philip J; Gomes, José R B; Prudêncio, Miguel; Gomes, Paula

    2013-01-24

    The control of malaria is challenged by drug resistance, and new antimalarial drugs are needed. New drug discovery efforts include consideration of hybrid compounds as potential multitarget antimalarials. Previous work from our group has demonstrated that hybrid structures resulting from cinnamic acid conjugation with heterocyclic moieties from well-known antimalarials present improved antimalarial activity. Now, we report the synthesis and SAR analysis of an expanded series of cinnamic acid derivatives displaying remarkably high activities against both blood- and liver-stage malaria parasites. Two compounds judged most promising, based on their in vitro activity and druglikeness according to the Lipinski rules and Veber filter, were active in vivo against blood-stage rodent malaria parasites. Therefore, the compounds reported represent a new entry as promising dual-stage antimalarial leads.

  15. The interaction of x-rays and antimalarials

    International Nuclear Information System (INIS)

    Geoghegan, D.S.; Skinner-Adams, T.; Davis, T.M.E.

    2001-01-01

    Full text: The radiation sensitivity of malaria parasites has three potential clinical applications, namely i) to prevent the transmission of malaria by blood transfusion, ii) as adjunctive therapy when a radioactive isotope is complexed to a conventional antimalarial drug, and iii) to attenuate the pathogenicity of specific parasite stages as part of the development of a vaccine. In the first two applications, detailed information relating to parasite radiosensitivity and the interaction of ionising radiation with antimalarials is of vital importance because dosimetry must allow for the exposure of normal cells. Malaria parasite cultures (Plasmodium falciparum) were exposed to a logarithmic series of concentrations of antimalarial agents and irradiated using a Siemens Stabilipan orthovoltage radiotherapy unit. The irradiation was performed at room temperature and ambient oxygen concentration. Control samples were also irradiated. The DNA synthesis in each culture was measured 48 hours post irradiation by using a 3 H-hypoxanthine incorporation assay. The antimalarials studied are: artesunate, quinine, retinol and chloroquine. The radiosensitivity of Plasmodium falciparum is not dependent on the strain of parasite with the dose required to inhibit 50% of DNA synthesis (ID 50 ) equal to 24.7 ± 3.0 Gy. This applies equally for the drug resistant and drug sensitive strains studied. Because the measured radiosensitivity is dependent on the sera oxygen concentration, the reported value for the ID 50 may not apply in hypoxic situations. The interaction of ionising radiation with the antimalarials shows synergy with retinol and choloquine, additivity with quinine and slight antagonism with artesunate. Radionuclide therapy may emerge as a novel treatment for malaria. If this does occur, then, although all strains appear to be equally radiosensitive, care must be taken when combining ionising radiation with existing antimalarials for the treatment of malaria. Copyright

  16. Docking, synthesis and antimalarial activity of novel 4-anilinoquinoline derivatives.

    Science.gov (United States)

    Vijayaraghavan, Shilpa; Mahajan, Supriya

    2017-04-15

    A series of 4-anilinoquinoline triazine derivatives were designed, synthesized and screened for in vivo antimalarial activity against a chloroquine-sensitive strain of Plasmodium berghei. The compounds were further subjected to in vitro antimalarial activity against chloroquine-resistant W2 strain of Plasmodium falciparum and β-haematin inhibition studies. All the compounds exhibited in vivo antimalarial activity better than that shown by the standard drug, chloroquine. Twelve out of fifteen compounds showed better inhibition than that of chloroquine against chloroquine-resistant W2 strain of Plasmodium falciparum. Ten compounds showed β-haematin inhibition, better than that of chloroquine, with IC 50 values in the range of 18-25µM. One compound, 3k, was found to be better than artemisinin against W2 strain of Plasmodium falciparum and also displayed the best β-haematin inhibitory activity, thereby becoming eligible to be explored as a potential lead for antimalarial chemotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Synthesis of febrifugine derivatives and development of an effective and safe tetrahydroquinazoline-type antimalarial.

    Science.gov (United States)

    Kikuchi, Haruhisa; Horoiwa, Seiko; Kasahara, Ryota; Hariguchi, Norimitsu; Matsumoto, Makoto; Oshima, Yoshiteru

    2014-04-09

    Febrifugine, a quinazoline alkaloid isolated from Dichroa febrifuga roots, shows powerful antimalarial activity against Plasmodium falciparum. Although the use of ferifugine as an antimalarial drug has been precluded because of its severe side effects, its potent antimalarial activity has stimulated medicinal chemists to pursue its derivatives instead, which may provide valuable leads for novel antimalarial drugs. In the present study, we synthesized new derivatives of febrifugine and evaluated their in vitro and in vivo antimalarial activities to develop antimalarials that are more effective and safer. As a result, we proposed tetrahydroquinazoline-type derivative as a safe and effective antimalarial candidate. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Synthesis of chiral chloroquine and its analogues as antimalarial agents.

    Science.gov (United States)

    Sinha, Manish; Dola, Vasanth R; Soni, Awakash; Agarwal, Pooja; Srivastava, Kumkum; Haq, Wahajul; Puri, Sunil K; Katti, Seturam B

    2014-11-01

    In this investigation, we describe a new approach to chiral synthesis of chloroquine and its analogues. All tested compounds displayed potent activity against chloroquine sensitive as well as chloroquine resistant strains of Plasmodium falciparum in vitro and Plasmodium yoelii in vivo. Compounds S-13 b, S-13c, S-13 d and S-13 i displayed excellent in vitro antimalarial activity with an IC50 value of 56.82, 60.41, 21.82 and 7.94 nM, respectively, in the case of resistant strain. Furthermore, compounds S-13a, S-13c and S-13 d showed in vivo suppression of 100% parasitaemia on day 4 in the mouse model against Plasmodium yoelii when administered orally. These results underscore the application of synthetic methodology and need for further lead optimization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Pharmacomodulation of the Antimalarial Plasmodione: Synthesis of Biaryl- and N-Arylalkylamine Analogues, Antimalarial Activities and Physicochemical Properties

    Directory of Open Access Journals (Sweden)

    Karène Urgin

    2017-01-01

    Full Text Available With the aim of increasing the structural diversity on the early antimalarial drug plasmodione, an efficient and versatile procedure to prepare a series of biaryl- and N-arylalkylamines as plasmodione analogues is described. Using the naturally occurring and commercially available menadione as starting material, a 2-step sequence using a Kochi-Anderson reaction and subsequent Pd-catalyzed Suzuki-Miyaura coupling was developed to prepare three representative biphenyl derivatives in good yields for antimalarial evaluation. In addition, synthetic methodologies to afford 3-benzylmenadione derivatives bearing a terminal -N(Me2 or -N(Et2 in different positions (ortho, meta and para on the aryl ring of the benzylic chain of plasmodione were investigated through reductive amination was used as the optimal route to prepare these protonable N-arylalkylamine privileged scaffolds. The antimalarial activities were evaluated and discussed in light of their physicochemical properties. Among the newly synthesized compounds, the para-position of the substituent remains the most favourable position on the benzyl chain and the carbamate -NHBoc was found active both in vitro (42 nM versus 29 nM for plasmodione and in vivo in Plasmodium berghei-infected mice. The measured acido-basic features of these new molecules support the cytosol-food vacuole shuttling properties of non-protonable plasmodione derivatives essential for redox-cycling. These findings may be useful in antimalarial drug optimization.

  20. Pharmacomodulation of the Antimalarial Plasmodione: Synthesis of Biaryl- and N-Arylalkylamine Analogues, Antimalarial Activities and Physicochemical Properties.

    Science.gov (United States)

    Urgin, Karène; Jida, Mouhamad; Ehrhardt, Katharina; Müller, Tobias; Lanzer, Michael; Maes, Louis; Elhabiri, Mourad; Davioud-Charvet, Elisabeth

    2017-01-19

    With the aim of increasing the structural diversity on the early antimalarial drug plasmodione, an efficient and versatile procedure to prepare a series of biaryl- and N -arylalkylamines as plasmodione analogues is described. Using the naturally occurring and commercially available menadione as starting material, a 2-step sequence using a Kochi-Anderson reaction and subsequent Pd-catalyzed Suzuki-Miyaura coupling was developed to prepare three representative biphenyl derivatives in good yields for antimalarial evaluation. In addition, synthetic methodologies to afford 3-benzylmenadione derivatives bearing a terminal - N (Me)₂ or - N (Et)₂ in different positions ( ortho , meta and para) on the aryl ring of the benzylic chain of plasmodione were investigated through reductive amination was used as the optimal route to prepare these protonable N -arylalkylamine privileged scaffolds. The antimalarial activities were evaluated and discussed in light of their physicochemical properties. Among the newly synthesized compounds, the para -position of the substituent remains the most favourable position on the benzyl chain and the carbamate - N HBoc was found active both in vitro (42 nM versus 29 nM for plasmodione) and in vivo in Plasmodium berghei -infected mice. The measured acido-basic features of these new molecules support the cytosol-food vacuole shuttling properties of non-protonable plasmodione derivatives essential for redox-cycling. These findings may be useful in antimalarial drug optimization.

  1. DRUG-INTERACTIONS WITH QUINOLONE ANTIBACTERIALS

    NARCIS (Netherlands)

    BROUWERS, JRBJ

    1992-01-01

    The quinolone antibacterials are prone to many interactions with other drugs. Quinolone absorption is markedly reduced with antacids containing aluminium, magnesium and/or calcium and therapeutic failure may result. Other metallic ion-containing drugs, such as sucralfate, iron salts, and zinc salts,

  2. Mechanism of quinolone resistance in anaerobic bacteria.

    Science.gov (United States)

    Oh, H; Edlund, C

    2003-06-01

    Several recently developed quinolones have excellent activity against a broad range of aerobic and anaerobic bacteria and are thus potential drugs for the treatment of serious anaerobic and mixed infections. Resistance to quinolones is increasing worldwide, but is still relatively infrequent among anaerobes. Two main mechanisms, alteration of target enzymes (gyrase and topoisomerase IV) caused by chromosomal mutations in encoding genes, or reduced intracellular accumulation due to increased efflux of the drug, are associated with quinolone resistance. These mechanisms have also been found in anaerobic species. High-level resistance to the newer broad-spectrum quinolones often requires stepwise mutations in target genes. The increasing emergence of resistance among anaerobes may be a consequence of previous widespread use of quinolones, which may have enriched first-step mutants in the intestinal tract. Quinolone resistance in the Bacteroides fragilis group strains is strongly correlated with amino acid substitutions at positions 82 and 86 in GyrA (equivalent to positions 83 and 87 of Escherichia coli). Several studies have indicated that B. fragilis group strains possess efflux pump systems that actively expel quinolones, leading to resistance. DNA gyrase seems also to be the primary target for quinolones in Clostridium difficile, since amino acid substitutions in GyrA and GyrB have been detected in resistant strains. To what extent other mechanisms, such as mutational events in other target genes or alterations in outer-membrane proteins, contribute to resistance among anaerobes needs to be further investigated.

  3. Synthesis and biological evaluation of febrifugine analogues as potential antimalarial agents.

    Science.gov (United States)

    Zhu, Shuren; Zhang, Quan; Gudise, Chandrashekar; Wei, Lai; Smith, Erika; Zeng, Yuling

    2009-07-01

    Febrifugine is an alkaloid isolated from Dichroa febrifuga Lour as the active component against Plasmodium falciparum. Adverse side effects have precluded febrifugine as a potential clinical drug. In this study novel febrifugine analogues were designed and synthesized. Lower toxicity was achieved by reducing or eliminating the tendency of forming chemically reactive and toxic intermediates and metabolites. Synthesized compounds were evaluated for acute toxicity and in vitro and in vivo antimalarial efficacy. Some compounds are much less toxic than the natural product febrifugine and existing antimalarial drug chloroquine and are expected to possess wide therapeutic windows. These compounds, as well as the underlying design rationale, may find usefulness in the discovery and development of new antimalarial drugs.

  4. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.

    Science.gov (United States)

    Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk

    2014-07-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.

  5. Synthesis and Evaluation of Some New Isoquine Analogues for Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Chandra Nath Saha

    2009-01-01

    Full Text Available Amodiaquine is a 4-aminoquinoline antimalarial that can cause adverse side effects including hepatic and haematological toxicity. The drug toxicity involves the formation of an electrophilic metabolite, amodiaquine quinoneimine (AQQI, which binds to cellular macromolecules leading to hepatotoxicity and agranulocytosis. Interchange of the 3ʼ hydroxyl and the 4ʼ Mannich side-chain function of amodiaquine provides an amodiaquine regioisomer (isoquine that cannot form toxic quinoneimine metabolites. By a simple two-step procedure, four isoquine analogues were synthesized and subsequently evaluated against the chloroquine sensitive RKL-2 strain of Plasmodium falciparum in vitro. All synthesized analogues demonstrated differential level of antimalarial activity against the test strain. However, no compound was found to exhibit better antimalarial property as compared to chloroquine.

  6. New Role of Quinolones in Respiratory Tract Infections

    Directory of Open Access Journals (Sweden)

    Ronald F Grossman

    1998-01-01

    Full Text Available Because of limited activity of the standard quinolones such as ciprofloxacin and ofloxacin against some clinically important organisms including Streptococcus pneumoniae and methicillin-resistant Staphylococcus aureus, new quinolones have been developed. In addition to their improved activity against S pneumoniae, some also demonstrate excellent anaerobic activity. None of the quinolones have a role to play in the treatment of paediatric infections. Quinolones (both older and newer agents have demonstrated equivalent efficacy to standard antimicrobials in the treatment of acute sinusitis. Several groups have suggested that quinolones are excellent agents in the treatment of high risk patients with acute exacerbations of chronic bronchitis. These patients include the elderly, and those with frequent exacerbations, significant comorbid conditions. long duration of chronic bronchitis and major impairment of lung function. There is no evidence to suggest that the newer quinolones will differ from the currently available agents for th is disease. The major advantage of the newer quinolones appears to be in the treatment of patients with community-acquired pneumonia where pneumococcal infection is a real concern. A new parenteral quinolone with pneumococcal activity may replace the standard macrolide/cephalosporin combination that is commonly prescribed. For patients with nosocomial pneumonia, the newer agents are alternative choices, especially among patients with early onset pneumonia (less than five days of hospitalization, but are unlikely to replace ciprofloxacin in the intensive care unit setting because of poor Pseudomonas aeruginosa coverage.

  7. Synthesis and exploration of novel curcumin analogues as anti-malarial agents.

    Science.gov (United States)

    Mishra, Satyendra; Karmodiya, Krishanpal; Surolia, Namita; Surolia, Avadhesha

    2008-03-15

    Curcumin, a major yellow pigment and active component of turmeric, has been shown to possess anti-inflammatory and anti-cancer activities. Recent studies have indicated that curcumin inhibits chloroquine-sensitive (CQ-S) and chloroquine-resistant (CQ-R) Plasmodium falciparum growth in culture with an IC(50) of approximately 3.25 microM (MIC=13.2 microM) and IC(50) 4.21 microM (MIC=14.4 microM), respectively. In order to expand their potential as anti-malarials a series of novel curcumin derivatives were synthesized and evaluated for their ability to inhibit P. falciparum growth in culture. Several curcumin analogues examined show more effective inhibition of P. falciparum growth than curcumin. The most potent curcumin compounds 3, 6, and 11 were inhibitory for CQ-S P. falciparum at IC(50) of 0.48, 0.87, 0.92 microM and CQ-R P. falciparum at IC(50) of 0.45 microM, 0.89, 0.75 microM, respectively. Pyrazole analogue of curcumin (3) exhibited sevenfold higher anti-malarial potency against CQ-S and ninefold higher anti-malarial potency against CQ-R. Curcumin analogues described here represent a novel class of highly selective P. falciparum inhibitors and promising candidates for the design of novel anti-malarial agents.

  8. Structure-activity relationship of new antimalarial 1-aryl-3-susbtituted propanol derivatives: Synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery.

    Science.gov (United States)

    Quiliano, Miguel; Pabón, Adriana; Moles, Ernest; Bonilla-Ramirez, Leonardo; Fabing, Isabelle; Fong, Kim Y; Nieto-Aco, Diego A; Wright, David W; Pizarro, Juan C; Vettorazzi, Ariane; López de Cerain, Adela; Deharo, Eric; Fernández-Busquets, Xavier; Garavito, Giovanny; Aldana, Ignacio; Galiano, Silvia

    2018-05-25

    Design, synthesis, structure-activity relationship, cytotoxicity studies, in silico drug-likeness, genotoxicity screening, and in vivo studies of new 1-aryl-3-substituted propanol derivatives led to the identification of nine compounds with promising in vitro (55, 56, 61, 64, 66, and 70-73) and in vivo (66 and 72) antimalarial profiles against Plasmodium falciparum and Plasmodium berghei. Compounds 55, 56, 61, 64, 66 and 70-73 exhibited potent antiplasmodial activity against chloroquine-resistant strain FCR-3 (IC 50 s activity in chloroquine-sensitive and multidrug-resistant strains (IC 50 s antimalarial compounds. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Introducing New Antimalarial Analogues of Chloroquine and Amodiaquine: A Narrative Review

    Directory of Open Access Journals (Sweden)

    Arezoo Rafiee Parhizgar

    2017-03-01

    Full Text Available Antimalarial drugs with the 4-aminoquinoline scaffold such as the important drugs, chloroquine (CQ and amodiaquine (AQ, have been used to prevent and treat malaria for many years. The importance of these drugs is related to their simple usage, high efficacy, affordability, and cost-effectiveness of their synthesis. In recent years, with the spread of parasite resistance to CQ and cross-resistance to its other analogues have decreased their consumption in many geographical areas. On the other hand, AQ is an effective antimalarial drug which its usage has been restricted due to hepatic and hematological toxicities. The significance of the quinoline ring at quinoline-based antimalarial drugs has prompted research centers and pharmaceutical companies to focus on the design and synthesis of new analogues of these drugs, especially CQ and AQ analogues. Accordingly, various derivatives have been synthesized and evaluated in vitro and in vivo against the resistant strains of the malaria parasite to solve the problem of drug resistance. Also, the pharmacokinetic properties of these compounds have been evaluated to augment their efficacy and diminish their toxicity. Some of these analogues are currently in clinical and preclinical development. Consequently, the recent researches showed yet 4-aminoquinoline scaffold is active moiety in new compounds with antiplasmodial activity. Hence, the aim of this review article is to introduce of the novel synthetic analogues of CQ and AQ, which may constitute the next generation of antimalarial drugs with the 4-aminoquinoline scaffold.

  10. Introducing New Antimalarial Analogues of Chloroquine and Amodiaquine: A Narrative Review.

    Science.gov (United States)

    Parhizgar, Arezoo Rafiee; Tahghighi, Azar

    2017-03-01

    Antimalarial drugs with the 4-aminoquinoline scaffold such as the important drugs, chloroquine (CQ) and amodiaquine (AQ), have been used to prevent and treat malaria for many years. The importance of these drugs is related to their simple usage, high efficacy, affordability, and cost-effectiveness of their synthesis. In recent years, with the spread of parasite resistance to CQ and cross-resistance to its other analogues have decreased their consumption in many geographical areas. On the other hand, AQ is an effective antimalarial drug which its usage has been restricted due to hepatic and hematological toxicities. The significance of the quinoline ring at quinoline-based antimalarial drugs has prompted research centers and pharmaceutical companies to focus on the design and synthesis of new analogues of these drugs, especially CQ and AQ analogues. Accordingly, various derivatives have been synthesized and evaluated in vitro and in vivo against the resistant strains of the malaria parasite to solve the problem of drug resistance. Also, the pharmacokinetic properties of these compounds have been evaluated to augment their efficacy and diminish their toxicity. Some of these analogues are currently in clinical and preclinical development. Consequently, the recent researches showed yet 4-aminoquinoline scaffold is active moiety in new compounds with antiplasmodial activity. Hence, the aim of this review article is to introduce of the novel synthetic analogues of CQ and AQ, which may constitute the next generation of antimalarial drugs with the 4-aminoquinoline scaffold.

  11. Post-marketing surveillance of quinolones 1988-1990.

    Science.gov (United States)

    Davey, P G; McDonald, T; Lindsay, G

    1991-04-01

    It has been much easier to obtain original data on adverse drug reactions (ADR) of quinolones from the pharmaceutical industry than it was two years ago. This is to be welcomed and, as anticipated, the new data continue to suggest that the new 4-quinolones have an ADR profile which is very similar to that of other antimicrobials. Visual disturbance is not a prominent feature, in contrast to the ADR profile of nalidixic acid. Better definition of quinolone ADRs requires prospective study, and the results of a newly completed prescription event monitoring study are awaited with interest. The potential use of computerised databases and record linkage is examined, but at present the number of quinolone prescriptions is too small to assess documentation of serious but rare events such as convulsions. Physicians need to be aware of the limitations of current data on suspected ADRs. Further investment in computerised databases is required to satisfy the requirements for attributing causality of an event to a drug.

  12. The synthesis, antimalarial activity and CoMFA analysis of novel aminoalkylated quercetin analogs.

    Science.gov (United States)

    Helgren, Travis R; Sciotti, Richard J; Lee, Patricia; Duffy, Sandra; Avery, Vicky M; Igbinoba, Osayawemwen; Akoto, Matthew; Hagen, Timothy J

    2015-01-15

    A series of novel aminoalkylated quercetin analogs, prepared via the Mannich reaction of various primary and secondary amines with formaldehyde, were tested for antimalarial activity. The compounds were screened against three drug resistant malarial strains (D6, C235 and W2) and were found to exhibit sub-micromolar activity across all three strains (0.065-13.0μM). The structure-activity relationship determined from the antimalarial activity data suggests the inclusion of phenethyl amine sidechains on the quercetin scaffolding is necessary for potent activity. Additionally, the most active compounds ((5) and (6)) were tested for both early and late stage anti-gametocytocidal activity. Finally, the antimalarial activity data were utilized to construct comparative molecular field analysis (CoMFA) models to be used for further compound refinement. Copyright © 2014 Elqsevier Ltd. All rights reserved.

  13. Synthesis and evaluation of 7-substituted 4-aminoquinoline analogues for antimalarial activity.

    Science.gov (United States)

    Hwang, Jong Yeon; Kawasuji, Takashi; Lowes, David J; Clark, Julie A; Connelly, Michele C; Zhu, Fangyi; Guiguemde, W Armand; Sigal, Martina S; Wilson, Emily B; Derisi, Joseph L; Guy, R Kiplin

    2011-10-27

    We previously reported that substituted 4-aminoquinolines with a phenyl ether substituent at the 7-position of the quinoline ring and the capability of intramolecular hydrogen bonding between the protonated amine on the side chain and a hydrogen bond acceptor on the amine's alkyl substituents exhibited potent antimalarial activity against the multidrug resistant strain P. falciparum W2. We employed a parallel synthetic method to generate diaryl ether, biaryl, and alkylaryl 4-aminoquinoline analogues in the background of a limited number of side chain variations that had previously afforded potent 4-aminoquinolines. All subsets were evaluated for their antimalarial activity against the chloroquine-sensitive strain 3D7 and the chloroquine-resistant K1 strain as well as for cytotoxicity against mammalian cell lines. While all three arrays showed good antimalarial activity, only the biaryl-containing subset showed consistently good potency against the drug-resistant K1 strain and good selectivity with regard to mammalian cytotoxicity. Overall, our data indicate that the biaryl-containing series contains promising candidates for further study.

  14. Synthesis and biological evaluation of some novel pyrido[1,2-a]pyrimidin-4-ones as antimalarial agents.

    Science.gov (United States)

    Mane, Uttam R; Mohanakrishnan, D; Sahal, Dinkar; Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram

    2014-05-22

    Novel pyrido[1,2-a]pyrimidin-4-ones have been synthesized and evaluated for their antimalarial activity by SYBR Green I assay against erythrocytic stages of chloroquine (CQ) sensitive Pf 3D7 strain. The antimalarial screening of 42 different compounds revealed that 3-Fluorobenzyl(4-oxo-4H-pyrido [1,2-a]pyrimidin-3-yl)carbamate (21, IC50 value 33 μM) and 4-Oxo-N-[4-(trifluoromethyl)benzyl]-4H-pyrido[1,2-a]pyrimidine-3-carboxamide (37, IC50 value 37 μM) showed moderate antimalarial activity. Cytotoxicity study was performed against mammalian cell line (Huh-7) by using the MTT assay for the moderately active compounds. Structural activity relationship (SAR) studies displayed that B-ring unsubstituted pyrido[1,2-a]pyrimidine scaffold is responsible for the antimalarial activities of the evaluated derivatives. This SAR based antimalarial screening supported that pyrido[1,2-a]pyrimidin-4-one can be considered as a lead heterocyclic structure for further development of more potent derivatives for antimalarial activity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Polyoxometalate coordination induced controllable release of quinolone in hybrid film

    Science.gov (United States)

    Yang, Fan; Li, Yang; Lv, Yu-Guang; Zhou, Shu-Jing; Li, Si; Gao, Guang-Gang; Liu, Hong

    2018-05-01

    Due to some side effects of quinolones in vivo, it is an urgent issue to extend their new applications in vitro. In this paper, structure-determined vanadium-quinolone functionalized polymolybdates of (NH4)2 [(γ-Mo8O26){VO(CF)2}2] (1) and (NH4)2 [(γ-Mo8O26){VO(NF)2}2] (2) (CF = ciprofloxacin; NF = norfloxacin) have been designed and synthesized. Complex 1 or 2 features a γ-type [Mo8O26]4- polyanion functionalized by two monocapped vanadium-quinolone complexes. Different H-bonds and π···π interactions allow 1 or 2 to form a 2D layered structure at solid state. When complex 1 or 2 is transferred into polyvinyl alcohol (PVA) film, its release rate in solution is lower than that of CF- or NF-PVA film and thus forming a novel quinolone delivery system. This is the first time that slow release effect of quinolone is achieved by polyoxometalate coordination effect. The slow release of 1 or 2 in PVA film is mainly ascribed to the coordination of quinolone with polyoxometalate anions.

  16. [The history of the development and changes of quinolone antibacterial agents].

    Science.gov (United States)

    Takahashi, Hisashi; Hayakawa, Isao; Akimoto, Takeshi

    2003-01-01

    The quinolones, especially the new quinolones (the 6-fluoroquinolones), are the synthetic antibacterial agents to rival the Beta-lactam and the macrolide antibacterials for impact in clinical usage in the antibacterial therapeutic field. They have a broad antibacterial spectrum of activity against Gram-positive, Gram-negative and mycobacterial pathogens as well as anaerobes. Further, they show good-to-moderate oral absorption and tissue penetration with favorable pharmacokinetics in humans resulting in high clinical efficacy in the treatment of many kinds of infections. They also exhibit excellent safety profiles as well as those of oral Beta-lactam antibiotics. The bacterial effects of quinolones inhibit the function of bacterial DNA gyrase and topoisomerase IV. The history of the development of the quinolones originated from nalidixic acid (NA), developed in 1962. In addition, the breakthrough in the drug design for the scaffold and the basic side chains have allowed improvements to be made to the first new quinolone, norfloxacin (NFLX), patented in 1978. Although currently more than 10,000 compounds have been already synthesized in the world, only two percent of them were developed and tested in clinical studies. Furthermore, out of all these compounds, only twenty have been successfully launched into the market. In this paper, the history of the development and changes of the quinolones are described from the first quinolone, NA, via, the first new quinolone (6-fluorinated quinolone) NFLX, to the latest extended-spectrum quinolone antibacterial agents against multi-drug resistant bacterial infections. NA has only modest activity against Gram-negative bacteria and low oral absorption, therefore a suitable candidate for treatment of systemic infections (UTIs) is required. Since the original discovery of NA, a series of quinolones, which are referred to as the old quinolones, have been developed leading to the first new quinolone, NFLX, with moderate improvements

  17. A short synthesis and biological evaluation of potent and nontoxic antimalarial bridged bicyclic beta-sulfonyl-endoperoxides.

    Science.gov (United States)

    Bachi, Mario D; Korshin, Edward E; Hoos, Roland; Szpilman, Alex M; Ploypradith, Poonsakdi; Xie, Suji; Shapiro, Theresa A; Posner, Gary H

    2003-06-05

    The syntheses and in vitro antimalarial screening of 50 bridged, bicyclic endoperoxides of types 9-13 are reported. In contrast to antimalarial trioxanes of the artemisinin family, but like yingzhaosu A and arteflene, the peroxide function of compounds 9-13 is contained in a 2,3-dioxabicyclo[3.3.1]nonane system 6. Peroxides 9 and 10 (R(1) = OH) are readily available through a multicomponent, sequential, free-radical reaction involving thiol-monoterpenes co-oxygenation (a TOCO reaction). beta-Sulfenyl peroxides 9 and 10 (R(1) = OH) are converted into beta-sulfinyl and beta-sulfonyl peroxides of types 11-13 by controlled S-oxidation and manipulation of the tert-hydroxyl group through acylation, alkylation, or dehydration followed by selective hydrogenation. Ten enantiopure beta-sulfonyl peroxides of types 12 and 13 exhibit in vitro antimalarial activity comparable to that of artemisinin (IC(50) = 6-24 nM against Plasmodium falciparum NF54). In vivo testing of a few selected peroxides against Plasmodium berghei N indicates that the antimalarial efficacies of beta-sulfonyl peroxides 39a, 46a, 46b, and 50a are comparable to those of some of the best antimalarial drugs and are higher than artemisinin against chloroquine-resistant Plasmodium yoelii ssp. NS. In view of the nontoxicity of beta-sulfonyl peroxides 39a, 46a, and 46b in mice, at high dosing, these compounds are regarded as promising antimalarial drug candidates.

  18. "Changes in cartilage of rats after treatment with Quinolone and in Magnesium-deficient diet "

    Directory of Open Access Journals (Sweden)

    Shakibaei M

    2002-07-01

    Full Text Available Ultrastructural changes in immature articular carilage were studied after treatment of 5-weeks-old rats with ofloxacin, a fluoroquinolone, and in magnesium deficiency.We concluded that quinolone-induced arthropathy is probably due to chelation of functionally available magnesium in joint cartilage as magnesium deficiency in joint cartilage could impair chondrocyte-matrix- interaction which is mediated by cation-dependent integrin-receptors of the β1-subfamily. With immuno-histochemical methods using monoclonal and polyclonal antibodies we showed that B1 integrins were expressed in rat joint cartilage. Joint cartilage lesions were detected in ofloxacin-treated and magnesium-deficient rats. Lesions were more pronounced in the quinolone-treated group. Expression of several integrins was reduced in the vicinity of lesions after oral treatment with 2×600 mg ofloxacin/kg body wt for one day. Gross-structural lesions (e.g. cleft formation, unmasked collagen fibres in magnesium deficient rats were very similar but changes in intergrin expression were less pronounced. Alterations observed on the ultrastructural level showed striking similarities in magnesium-deficient rats and in rats treated with single doses of 600 mg ofloxacin per kg body wt.Typical observation were: bundle shaped, electron-dense aggregates on the surface and in the cytoplasm of chondrocytes, detachement of the cell membrance from the matrix and necrotic chondrocytes, reduced synthesis and/or reduced of extracellular matrix and swelling of cell organelles such as mitochondria.The results of this study confirm our previously reported finding that quinolone-induced arthropathy probably is caued by a reduction of functionally available magnesium (ionized Mg2+ in cartilage. Furthermore, they provide a basis for aimed studies with human cartilage samples from quinolone-treated patients which might be available postmortal or after hip replacement surgery

  19. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    NARCIS (Netherlands)

    Baragana, B.; Hallyburton, I.; Lee, M.C.; Norcross, N.R.; Grimaldi, R.; Otto, T.D.; Proto, W.R.; Blagborough, A.M.; Meister, S.; Wirjanata, G.; Ruecker, A.; Upton, L.M.; Abraham, T.S.; Almeida, M.J.; Pradhan, A.; Porzelle, A.; Martinez, M.S.; Bolscher, J.M.; Woodland, A.; Norval, S.; Zuccotto, F.; Thomas, J.; Simeons, F.; Stojanovski, L.; Osuna-Cabello, M.; Brock, P.M.; Churcher, T.S.; Sala, K.A.; Zakutansky, S.E.; Jimenez-Diaz, M.B.; Sanz, L.M.; Riley, J.; Basak, R.; Campbell, M.; Avery, V.M.; Sauerwein, R.W.; Dechering, K.J.; Noviyanti, R.; Campo, B.; Frearson, J.A.; Angulo-Barturen, I.; Ferrer-Bazaga, S.; Gamo, F.J.; Wyatt, P.G.; Leroy, D.; Siegl, P.; Delves, M.J.; Kyle, D.E.; Wittlin, S.; Marfurt, J.; Price, R.N.; Sinden, R.E.; Winzeler, E.A.; Charman, S.A.; Bebrevska, L.; Gray, D.W.; Campbell, S.; Fairlamb, A.H.; Willis, P.A.; Rayner, J.C.; Fidock, D.A.; Read, K.D.; Gilbert, I.H.

    2015-01-01

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial

  20. Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities.

    Science.gov (United States)

    Thakkar, Sampark S; Thakor, Parth; Ray, Arabinda; Doshi, Hiren; Thakkar, Vasudev R

    2017-10-15

    Benzothiazole analogues are of interest due to their potential activity against malarial and microbial infections. In search of suitable antimicrobial and antimalarial agents, we report here the synthesis, characterization and biological activities of benzothiazole analogues (J 1-J 10). The molecules were characterized by IR, Mass, 1 H NMR, 13 C NMR and elemental analysis. The in vitro antimicrobial activity was investigated against pathogenic strains; the results were explained with the help of DFT and PM6 molecular orbital calculations. In vitro cytotoxicity and genotoxicity of the molecules were studied against S. pombe cells. In vitro antimalarial activity was studied. The active compounds J 1, J 2, J 3, J 5 and J 6 were further evaluated for enzyme inhibition efficacy against the receptor Pf-DHFR, computational and in vitro studies were carried out to examine their candidatures as lead dihydrofolate reductase inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. On peroxide antimalarials

    Directory of Open Access Journals (Sweden)

    IGOR OPSENICA

    2007-12-01

    Full Text Available Several dicyclohexylidene tetraoxanes were prepared in order to gain a further insight into structure–activity relationship of this kind of antimalarials. The tetraoxanes 2–5, obtained as a cis/trans mixture, showed pronounced antimalarial activity against Plasmodium falciparum chloroquine susceptible D6, chloroquine resistant W2 and multidrug-resistant TM91C235 (Thailand strains. They have better than or similar activity to the corresponding desmethyl dicyclohexylidene derivatives. Two chimeric endoperoxides with superior antimalarial activity to the natural product ascaridole were also synthesized.

  2. Parasite-Mediated Degradation of Synthetic Ozonide Antimalarials Impacts In Vitro Antimalarial Activity.

    Science.gov (United States)

    Giannangelo, Carlo; Stingelin, Lukas; Yang, Tuo; Tilley, Leann; Charman, Susan A; Creek, Darren J

    2018-03-01

    The peroxide bond of the artemisinins inspired the development of a class of fully synthetic 1,2,4-trioxolane-based antimalarials, collectively known as the ozonides. Similar to the artemisinins, heme-mediated degradation of the ozonides generates highly reactive radical species that are thought to mediate parasite killing by damaging critical parasite biomolecules. We examined the relationship between parasite dependent degradation and antimalarial activity for two ozonides, OZ277 (arterolane) and OZ439 (artefenomel), using a combination of in vitro drug stability and pulsed-exposure activity assays. Our results showed that drug degradation is parasite stage dependent and positively correlates with parasite load. Increasing trophozoite-stage parasitemia leads to substantially higher rates of degradation for both OZ277 and OZ439, and this is associated with a reduction in in vitro antimalarial activity. Under conditions of very high parasitemia (∼90%), OZ277 and OZ439 were rapidly degraded and completely devoid of activity in trophozoite-stage parasite cultures exposed to a 3-h drug pulse. This study highlights the impact of increasing parasite load on ozonide stability and in vitro antimalarial activity and should be considered when investigating the antimalarial mode of action of the ozonide antimalarials under conditions of high parasitemia. Copyright © 2018 American Society for Microbiology.

  3. Increasing quinolone resistance in Salmonella enterica serotype enteritidis

    DEFF Research Database (Denmark)

    Mølbak, K.; Gerner-Smidt, P.; Wegener, Henrik Caspar

    2002-01-01

    Until recently, Salmonella enterica serotype Enteritidis has remained sensitive to most antibiotics. However, national surveillance data from Denmark show that quinolone resistance in S. Enteritidis has increased from 0.8% in 1995 to 8.5% in 2000. These data support concerns that the current use...... of quinolone in food animals leads to increasing resistance in S. Enteritidis and that action should be taken to limit such use....

  4. Quinolone-based IMPDH inhibitors: introduction of basic residues on ring D and SAR of the corresponding mono, di and benzofused analogues.

    Science.gov (United States)

    Dhar, T G Murali; Watterson, Scott H; Chen, Ping; Shen, Zhongqi; Gu, Henry H; Norris, Derek; Carlsen, Marianne; Haslow, Kristin D; Pitts, William J; Guo, Junqing; Chorba, John; Fleener, Catherine A; Rouleau, Katherine A; Townsend, Robert; Hollenbaugh, Diane; Iwanowicz, Edwin J

    2003-02-10

    The synthesis and the structure-activity relationships (SAR) of analogues derived from the introduction of basic residues on ring D of quinolone-based inhibitors of IMPDH are described. This led to the identification of compound 27 as a potent inhibitor of IMPDH with significantly improved aqueous solubility over the lead compound 1.

  5. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection.

    Science.gov (United States)

    Ruiz, Joaquim

    2003-05-01

    Quinolones are broad-spectrum antibacterial agents, commonly used in both clinical and veterinary medicine. Their extensive use has resulted in bacteria rapidly developing resistance to these agents. Two mechanisms of quinolone resistance have been established to date: alterations in the targets of quinolones, and decreased accumulation due to impermeability of the membrane and/or an overexpression of efflux pump systems. Recently, mobile elements have also been described, carrying the qnr gene, which confers resistance to quinolones.

  6. N-cinnamoylation of antimalarial classics: quinacrine analogues with decreased toxicity and dual-stage activity.

    Science.gov (United States)

    Gomes, Ana; Pérez, Bianca; Albuquerque, Inês; Machado, Marta; Prudêncio, Miguel; Nogueira, Fátima; Teixeira, Cátia; Gomes, Paula

    2014-02-01

    Plasmodium falciparum, the causative agent of the most lethal form of malaria, is becoming increasingly resistant to most available drugs. A convenient approach to combat parasite resistance is the development of analogues of classical antimalarial agents, appropriately modified in order to restore their relevance in antimalarial chemotherapy. Following this line of thought, the design, synthesis and in vitro evaluation of N-cinnamoylated quinacrine surrogates, 9-(N-cinnamoylaminobutyl)-amino-6-chloro-2-methoxyacridines, is reported. The compounds were found to be highly potent against both blood-stage P.falciparum, chloroquine-sensitive 3D7 (IC50 =17.0-39.0 nM) and chloroquine-resistant W2 and Dd2 strains (IC50 =3.2-41.2 and 27.1-131.0 nM, respectively), and liver-stage P.berghei (IC50 =1.6-4.9 μM) parasites. These findings bring new hope for the possible future "rise of a fallen angel" in antimalarial chemotherapy, with a potential resurgence of quinacrine-related compounds as dual-stage antimalarial leads. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Plasmid-mediated quinolone resistance in Salmonella serotypes isolated from chicken carcasses in Turkey

    Directory of Open Access Journals (Sweden)

    Zafer Ata

    2014-01-01

    Full Text Available Quinolones have been extensively used for treatment of a variety of invasive and systemic infections of salmonellosis. Widespread use of these agents has been associated with the emergence and dissemination of quinolone-resistant pathogens. The quinolone resistance and plasmid-mediated quinolone resistance determinants (qnrA, qnrB, qnrS and aac(6’-Ib-cr of 85 Salmonella isolates from chicken carcasses were investigated in this study. Isolates were serotyped according to the Kauffman-White-Le Minor scheme, and broth microdilution method was used to determine quinolone resistance. Plasmid-mediated quinolone resistance genes were investigated by real-time PCR and positive results were confirmed by sequencing. Among the Salmonella isolates, 30/85 (35% and 18/85 (21% were found to be resistant to enrofloxacin (MIC ≥ 2 mg/ml, and danofloxacin (MIC ≥ 2 mg/ml, respectively. All the isolates were negative for qnrA, qnrB and aac(6’-Ib-cr genes, nevertheless 2% (S. Brandenburg and S. Dabou were positive for qnrS (qnrS1 determinant. This study is the first and unique investigating the plasmid- mediated quinolone resistance determinants of Salmonella isolated from chicken carcasses in Turkey.

  8. Antimalarial drug quality in Africa.

    Science.gov (United States)

    Amin, A A; Kokwaro, G O

    2007-10-01

    There are several reports of sub-standard and counterfeit antimalarial drugs circulating in the markets of developing countries; we aimed to review the literature for the African continent. A search was conducted in PubMed in English using the medical subject headings (MeSH) terms: 'Antimalarials/analysis'[MeSH] OR 'Antimalarials/standards'[MeSH] AND 'Africa'[MeSH]' to include articles published up to and including 26 February 2007. Data were augmented with reports on the quality of antimalarial drugs in Africa obtained from colleagues in the World Health Organization. We summarized the data under the following themes: content and dissolution; relative bioavailability of antimalarial products; antimalarial stability and shelf life; general tests on pharmaceutical dosage forms; and the presence of degradation or unidentifiable impurities in formulations. The search yielded 21 relevant peer-reviewed articles and three reports on the quality of antimalarial drugs in Africa. The literature was varied in the quality and breadth of data presented, with most bioavailability studies poorly designed and executed. The review highlights the common finding in drug quality studies that (i) most antimalarial products pass the basic tests for pharmaceutical dosage forms, such as the uniformity of weight for tablets, (ii) most antimalarial drugs pass the content test and (iii) in vitro product dissolution is the main problem area where most drugs fail to meet required pharmacopoeial specifications, especially with regard to sulfadoxine-pyrimethamine products. In addition, there are worryingly high quality failure rates for artemisinin monotherapies such as dihydroartemisinin (DHA); for instance all five DHA sampled products in one study in Nairobi, Kenya, were reported to have failed the requisite tests. There is an urgent need to strengthen pharmaceutical management systems such as post-marketing surveillance and the broader health systems in Africa to ensure populations in the

  9. Quinolone resistant campylobacter infections in Denmark: risk factors and clinical consequences

    DEFF Research Database (Denmark)

    Engberg, J.; Neimann, J.; Nielsen, E. M.

    2004-01-01

    origin) was associated with a decreased risk. Typing data showed an association between strains from retail food products and broiler chickens and quinolone-sensitive domestically acquired C. jejuni infections. An association between treatment with a fluoroquinolone before stool-specimen collection......We integrated data on quinolone and macrolide susceptibility patterns with epidemiologic and typing data from Campylobacter jejuni and C. coli infections in two Danish counties. The mean duration of illness was longer for 86 patients with quinolone-resistant C. jejuni infections (median 13.2 days...

  10. Novel 1,4-naphthoquinone-based sulfonamides: Synthesis, QSAR, anticancer and antimalarial studies.

    Science.gov (United States)

    Pingaew, Ratchanok; Prachayasittikul, Veda; Worachartcheewan, Apilak; Nantasenamat, Chanin; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong

    2015-10-20

    A novel series of 1,4-naphthoquinones (33-44) tethered by open and closed chain sulfonamide moieties were designed, synthesized and evaluated for their cytotoxic and antimalarial activities. All quinone-sulfonamide derivatives displayed a broad spectrum of cytotoxic activities against all of the tested cancer cell lines including HuCCA-1, HepG2, A549 and MOLT-3. Most quinones (33-36 and 38-43) exerted higher anticancer activity against HepG2 cell than that of the etoposide. The open chain analogs 36 and 42 were shown to be the most potent compounds. Notably, the restricted sulfonamide analog 38 with 6,7-dimethoxy groups exhibited the most potent antimalarial activity (IC₅₀ = 2.8 μM). Quantitative structure-activity relationships (QSAR) study was performed to reveal important chemical features governing the biological activities. Five constructed QSAR models provided acceptable predictive performance (Rcv 0.5647-0.9317 and RMSEcv 0.1231-0.2825). Four additional sets of structurally modified compounds were generated in silico (34a-34d, 36a-36k, 40a-40d and 42a-42k) in which their activities were predicted using the constructed QSAR models. A comprehensive discussion of the structure-activity relationships was made and a set of promising compounds (i.e., 33, 36, 38, 42, 36d, 36f, 42e, 42g and 42f) was suggested for further development as anticancer and antimalarial agents. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Mechanisms of quinolone resistance and implications for human and animal health

    Directory of Open Access Journals (Sweden)

    Velhner Maja

    2010-01-01

    Full Text Available Quinolone antibiotics have been widely used in human and veterinary medicine. This has caused the development of resistance and difficulties in the treatment of complicated bacterial infections in humans. The resistance to quinolones develops due to chromosome mutations and it can also be transferred by plasmids. The target enzyme for quinolones in Gram-negative bacteria is Gyrasa A, while the target enzyme in Grampositive bacteria is mostly topoisomerase IV. Gyrase A consists of two subunits encoded by genes gyrA and gyrB. The function of the enzyme is to introduce negative super coiling in DNA and therefore is essential for the replication of bacteria. Quinolone resistance develops if point mutations at 83 and/or 87 codon are introduced on gyrA. Establishing a minimal inhibitory concentration (MIC to this group of antimicrobials will reveal possible mutations. Recently it was discovered that quinolone resistance is transmittable by plasmid termed PMQR (plasmid mediated quinolone resistance. The target gene marked qnr encodes a pentapeptide repeat family protein. Pentapeptide repeats form sheets, involved in protein-protein interactions. Qnr protein binds to GyrA protecting the enzyme from the inhibitory effect of ciprofloxacin. The distribution of qnr related resistance is higher in humans than in animals. In poultry, however, this type of resistance is present more than in other animals. Plasmid mediated resistance contributes to the faster spread of quinolone resistance. Proper food handling will significantly contribute to decreasing the risk from infection to which people are exposed. In medical and veterinary laboratories antimicrobial resistance monitoring in clinical and environmental isolates is advised. Since correlation between antibiotics application and antimicrobial resistance is often suggested, antimicrobial use must be under strict control of the authorities both in human and in veterinary medicine. .

  12. Plasmid-Mediated Quinolone Resistance in Shigella flexneri Isolated From Macaques

    Directory of Open Access Journals (Sweden)

    Anthony J. Mannion

    2018-03-01

    Full Text Available Non-human primates (NHPs for biomedical research are commonly infected with Shigella spp. that can cause acute dysentery or chronic episodic diarrhea. These animals are often prophylactically and clinically treated with quinolone antibiotics to eradicate these possible infections. However, chromosomally- and plasmid-mediated antibiotic resistance has become an emerging concern for species in the family Enterobacteriaceae. In this study, five individual isolates of multi-drug resistant Shigella flexneri were isolated from the feces of three macaques. Antibiotic susceptibility testing confirmed resistance or decreased susceptibility to ampicillin, amoxicillin-clavulanic acid, cephalosporins, gentamicin, tetracycline, ciprofloxacin, enrofloxacin, levofloxacin, and nalidixic acid. S. flexneri isolates were susceptible to trimethoprim-sulfamethoxazole, and this drug was used to eradicate infection in two of the macaques. Plasmid DNA from all isolates was positive for the plasmid-encoded quinolone resistance gene qnrS, but not qnrA and qnrB. Conjugation and transformation of plasmid DNA from several S. flexneri isolates into antibiotic-susceptible Escherichia coli strains conferred the recipients with resistance or decreased susceptibility to quinolones and beta-lactams. Genome sequencing of two representative S. flexneri isolates identified the qnrS gene on a plasmid-like contig. These contigs showed >99% homology to plasmid sequences previously characterized from quinolone-resistant Shigella flexneri 2a and Salmonella enterica strains. Other antibiotic resistance genes and virulence factor genes were also identified in chromosome and plasmid sequences in these genomes. The findings from this study indicate macaques harbor pathogenic S. flexneri strains with chromosomally- and plasmid-encoded antibiotic resistance genes. To our knowledge, this is the first report of plasmid-mediated quinolone resistance in S. flexneri isolated from NHPs and warrants

  13. 4-Aminoquinoline-pyrimidine hybrids: synthesis, antimalarial activity, heme binding and docking studies.

    Science.gov (United States)

    Kumar, Deepak; Khan, Shabana I; Tekwani, Babu L; Ponnan, Prija; Rawat, Diwan S

    2015-01-07

    A series of novel 4-aminoquinoline-pyrimidine hybrids has been synthesized and evaluated for their antimalarial activity. Several compounds showed promising in vitro antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. Selected compound 7g exhibited significant suppression of parasitemia in the in vivo assay. The heme binding studies were conducted to determine the mode of action of these hybrid molecules. These compounds form a stable 1:1 complex with hematin suggesting that heme may be one of the possible targets of these hybrids. The interaction of these conjugate hybrids was also investigated by the molecular docking studies in the binding site of PfDHFR. The pharmacokinetic property analysis of best active compounds was also studied using ADMET prediction. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Plasmid-mediated quinolone resistance; interactions between human, animal and environmental ecologies

    Directory of Open Access Journals (Sweden)

    Laurent ePOIREL

    2012-02-01

    Full Text Available Resistance to quinolones and fluoroquinolones is being increasingly reported among human but also veterinary isolates during the last two to three decades, very likely as a consequence of the large clinical usage of those antibiotics. Even if the principle mechanisms of resistance to quinolones are chromosome-encoded, due to modifications of molecular targets (DNA gyrase and topoisomerase IV, decreased outer-membrane permeability (porin defect and overexpression of naturally-occurring efflux, the emergence of plasmid-mediated quinolone resistance (PMQR has been reported since 1998. Although these PMQR determinants confer low-level resistance to quinolones and/or fluoroquinolones, they are a favorable background for selection of additional chromosome-encoded quinolone resistance mechanisms. Different transferable mechanisms have been identified, corresponding to the production of Qnr proteins, of the aminoglycoside acetyltransferase AAC(6’-Ib-cr, or of the QepA-type or OqxAB-type efflux pumps. Qnr proteins protect target enzymes (DNA gyrase and type IV topoisomerase from quinolone inhibition (mostly nalidixic acid. The AAC(6’-Ib-cr determinant acetylates several fluoroquinolones, such as norfloxacin and ciprofloxacin. Finally, the QepA and OqxAB efflux pumps extrude fluoroquinolones from the bacterial cell. A series of studies have identified the environment to be a reservoir of PMQR genes, with farm animals and aquatic habitats being significantly involved. In addition, the origin of the qnr genes has been identified, corresponding to the waterborne species Shewanella sp. Altogether, the recent observations suggest that the aquatic environment might constitute the original source of PMQR genes, that would secondly spread among animal or human isolates.

  15. Quinolone Resistance Reversion by Targeting the SOS Response.

    Science.gov (United States)

    Recacha, E; Machuca, J; Díaz de Alba, P; Ramos-Güelfo, M; Docobo-Pérez, F; Rodriguez-Beltrán, J; Blázquez, J; Pascual, A; Rodríguez-Martínez, J M

    2017-10-10

    Suppression of the SOS response has been postulated as a therapeutic strategy for potentiating antimicrobial agents. We aimed to evaluate the impact of its suppression on reversing resistance using a model of isogenic strains of Escherichia coli representing multiple levels of quinolone resistance. E. coli mutants exhibiting a spectrum of SOS activity were constructed from isogenic strains carrying quinolone resistance mechanisms with susceptible and resistant phenotypes. Changes in susceptibility were evaluated by static (MICs) and dynamic (killing curves or flow cytometry) methodologies. A peritoneal sepsis murine model was used to evaluate in vivo impact. Suppression of the SOS response was capable of resensitizing mutant strains with genes encoding three or four different resistance mechanisms (up to 15-fold reductions in MICs). Killing curve assays showed a clear disadvantage for survival (Δlog 10 CFU per milliliter [CFU/ml] of 8 log units after 24 h), and the in vivo efficacy of ciprofloxacin was significantly enhanced (Δlog 10 CFU/g of 1.76 log units) in resistant strains with a suppressed SOS response. This effect was evident even after short periods (60 min) of exposure. Suppression of the SOS response reverses antimicrobial resistance across a range of E. coli phenotypes from reduced susceptibility to highly resistant, playing a significant role in increasing the in vivo efficacy. IMPORTANCE The rapid rise of antibiotic resistance in bacterial pathogens is now considered a major global health crisis. New strategies are needed to block the development of resistance and to extend the life of antibiotics. The SOS response is a promising target for developing therapeutics to reduce the acquisition of antibiotic resistance and enhance the bactericidal activity of antimicrobial agents such as quinolones. Significant questions remain regarding its impact as a strategy for the reversion or resensitization of antibiotic-resistant bacteria. To address this

  16. In vitro antimalarial activity of novel semisynthetic nocathiacin I antibiotics.

    Science.gov (United States)

    Sharma, Indu; Sullivan, Margery; McCutchan, Thomas F

    2015-01-01

    Presently, the arsenal of antimalarial drugs is limited and needs to be replenished. We evaluated the potential antimalarial activity of two water-soluble derivatives of nocathiacin (BMS461996 and BMS411886) against the asexual blood stages of Plasmodium falciparum. Nocathiacins are a thiazolyl peptide group of antibiotics, are structurally related to thiostrepton, have potent activity against a wide spectrum of multidrug-resistant Gram-positive bacteria, and inhibit protein synthesis. The in vitro growth inhibition assay was done using three laboratory strains of P. falciparum displaying various levels of chloroquine (CQ) susceptibility. Our results indicate that BMS461996 has potent antimalarial activity and inhibits parasite growth with mean 50% inhibitory concentrations (IC50s) of 51.55 nM for P. falciparum 3D7 (CQ susceptible), 85.67 nM for P. falciparum Dd2 (accelerated resistance to multiple drugs [ARMD]), and 99.44 nM for P. falciparum K1 (resistant to CQ, pyrimethamine, and sulfadoxine). Similar results at approximately 7-fold higher IC50s were obtained with BMS411886 than with BMS461996. We also tested the effect of BMS491996 on gametocytes; our results show that at a 20-fold excess of the mean IC50, gametocytes were deformed with a pyknotic nucleus and growth of stage I to IV gametocytes was arrested. This preliminary study shows a significant potential for nocathiacin analogues to be developed as antimalarial drug candidates and to warrant further investigation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Machine learning prioritizes synthesis of primaquine ureidoamides with high antimalarial activity and attenuated cytotoxicity.

    Science.gov (United States)

    Levatić, Jurica; Pavić, Kristina; Perković, Ivana; Uzelac, Lidija; Ester, Katja; Kralj, Marijeta; Kaiser, Marcel; Rottmann, Matthias; Supek, Fran; Zorc, Branka

    2018-02-25

    Primaquine (PQ) is a commonly used drug that can prevent the transmission of Plasmodium falciparum malaria, however toxicity limits its use. We prepared five groups of PQ derivatives: amides 1a-k, ureas 2a-k, semicarbazides 3a,b, acylsemicarbazides 4a-k and bis-ureas 5a-v, and evaluated them for antimalarial activity in vitro against the erythrocytic stage of P. falciparum NF54. Particular substituents, such as trityl (in 2j and 5r) and methoxybenzhydryl (in 3b and 5v) were associated with a favorable cytotoxicity-to-activity ratio. To systematically link structural features of PQ derivatives to antiplasmodial activity, we performed a quantitative structure-activity relationship (QSAR) study using the Support Vector Machines machine learning method. This yielded a highly accurate statistical model (R 2  = 0.776 in cross-validation), which was used to prioritize novel candidate compounds. Seven novel PQ-ureidoamides 10a-g were synthesized and evaluated for activity, highlighting the benzhydryl ureidoamides 10e and 10f derived from p-chlorophenylglycine. Further experiments on human cell lines revealed that 10e and 10f are an order of magnitude less toxic than PQ in vitro while having antimalarial activity indistinguishable from PQ. The toxicity profile of novel compounds 10 toward human cells was particularly favorable when the glucose-6-phosphate dehydrogenase (G6PD) was inhibited, while toxicity of PQ was exacerbated by G6PD inhibition. Our work therefore highlights promising lead compounds for the development of effective antimalarial drugs that may also be safer for G6PD-deficient patients. In addition, we provide computational inferences of antimalarial activity and cytotoxicity for thousands of PQ-like molecular structures. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Synthesis and evaluation of antimalarial activity of curcumin derivatives; Sintese e avaliacao da atividade antimalarica de compostos derivados da curcumina

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Patricia Ramos; Miguel, Fabio Balbino; Almeida, Mauro Vieira de; Couri, Mara Rubia Costa [Universidade Federal de Juiz de Fora (UFSJ), MG (Brazil). Instituto de Ciencias Exatas. Departamento de Quimica; Oliveira, Michael Eder de; Ferreira, Vanessa Viana; Guimaraes, Daniel Silqueira Martins; Lima, Aline Brito de; Barbosa, Camila de Souza; Oliveira, Mariana Amorim de; Almeida, Mauro Vieira de; Viana, Gustavo Henrique Ribeiro; Varotti, Fernando de Pilla, E-mail: varotti@ufsj.edu.br [Universidade Federal de Sao Joao Del Rei (UFSJ), MG (Brazil). Centro de Ciencias da Saude; others, and

    2014-05-15

    ne of the main challenges in the development of new antimalarial drugs is to achieve a viable lead candidate with good pharmacokinetic properties. Curcumin has a broad range of biological activities, including antimalarial activity. Herein, we report the antimalarial activity of six curcumin derivatives (6-12) and an initial analysis of their pharmacokinetic properties. Five compounds have demonstrated potent activity against the P. falciparum in vitro (IC{sub 50} values ranging from 1.7 to 15.2 μg mL{sup -1}), with moderate or low cytotoxicity against the HeLa cell line. The substitution of the carbonyl group in 6 by a 2,4-dinitrophenylhydrazone group (to afford 11) increases the Selective Index. These preliminary results indicate curcumin derivatives as potential antimalarial compounds. (author)

  19. Antipneumococcal activity of DW-224a, a new quinolone, compared to those of eight other agents.

    Science.gov (United States)

    Kosowska-Shick, Klaudia; Credito, Kim; Pankuch, Glenn A; Lin, Gengrong; Bozdogan, Bülent; McGhee, Pamela; Dewasse, Bonifacio; Choi, Dong-Rack; Ryu, Jei Man; Appelbaum, Peter C

    2006-06-01

    DW-224a is a new broad-spectrum quinolone with excellent antipneumococcal activity. Agar dilution MIC was used to test the activity of DW-224a compared to those of penicillin, ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin against 353 quinolone-susceptible pneumococci. The MICs of 29 quinolone-resistant pneumococci with defined quinolone resistance mechanisms against seven quinolones and an efflux mechanism were also tested. DW-224a was the most potent quinolone against quinolone-susceptible pneumococci (MIC(50), 0.016 microg/ml; MIC(90), 0.03 microg/ml), followed by gemifloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. beta-Lactam MICs rose with those of penicillin G, and azithromycin resistance was seen mainly in strains with raised penicillin G MICs. Against the 29 quinolone-resistant strains, DW-224a had the lowest MICs (0.06 to 1 microg/ml) compared to those of gemifloxacin, clinafloxacin, moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. DW-224a at 2x MIC was bactericidal after 24 h against eight of nine strains tested. Other quinolones gave similar kill kinetics relative to higher MICs. Serial passages of nine strains in the presence of sub-MIC concentrations of DW-224a, moxifloxacin, levofloxacin, ciprofloxacin, gatifloxacin, gemifloxacin, amoxicillin-clavulanate, cefuroxime, and azithromycin were performed. DW-224a yielded resistant clones similar to moxifloxacin and gemifloxacin but also yielded lower MICs. Azithromycin selected resistant clones in three of the five parents tested. Amoxicillin-clavulanate and cefuroxime did not yield resistant clones after 50 days.

  20. The counterfeit anti-malarial is a crime against humanity: a systematic review of the scientific evidence.

    Science.gov (United States)

    Karunamoorthi, Kaliyaperumal

    2014-06-02

    combination with the synthesis and supply of next generation malaria control tools, such as low-cost anti-malarials, must promote the development of a counterfeit-free and malaria-free future.

  1. Antimalarial drug induced decrease in creatinine clearance

    NARCIS (Netherlands)

    Landewé, R. B.; Vergouwen, M. S.; Goeei The, S. G.; van Rijthoven, A. W.; Breedveld, F. C.; Dijkmans, B. A.

    1995-01-01

    To confirm the antimalarial drug induced increase of creatinine to determine the factors contributing to this effect. Patients with rheumatoid arthritis (RA) (n = 118) who have used or still use antimalarials (chloroquine or hydroxychloroquine). Serum creatinines prior to antimalarials and serum

  2. Plasmid mediated quinolone resistance in Enterobacteriaceae

    NARCIS (Netherlands)

    Veldman, K.T.; LS Klinisch Onderzoek Wagenaar

    2014-01-01

    This thesis describes the occurrence of Plasmid Mediated Quinolone Resistance (PMQR) in Salmonella and E. coli from The Netherlands and other European countries. Furthermore, the genetic background of these genes was characterized. Fluoroquinolones are widely used antibiotics in both human and

  3. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids

    Directory of Open Access Journals (Sweden)

    Birgit Viira

    2016-06-01

    Full Text Available Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.

  4. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids.

    Science.gov (United States)

    Viira, Birgit; Gendron, Thibault; Lanfranchi, Don Antoine; Cojean, Sandrine; Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre; Maes, Louis; Maran, Uko; Loiseau, Philippe M; Davioud-Charvet, Elisabeth

    2016-06-29

    Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs) represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.

  5. Synthesis, antimalarial activity and molecular docking of hybrid 4-aminoquinoline-1,3,5-triazine derivatives.

    Science.gov (United States)

    Bhat, Hans Raj; Singh, Udaya Pratap; Thakur, Anjali; Kumar Ghosh, Surajit; Gogoi, Kabita; Prakash, Anil; Singh, Ramendra K

    2015-10-01

    A series of novel hybrid 4-aminoquinoline 1,3,5-triazine derivatives was synthesized in a five-steps reaction and evaluated for their in vitro antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (RKL-2) strains of Plasmodium falciparum. Entire synthetic derivatives showed higher antimalarial activity on the sensitive strain while two compounds, viz., 9a and 9c displayed good activity against both the strains of P. falciparum. The observed activity was further substantiated by docking study on both wild and qradruple mutant type P. falciparum dihydrofolate reductase-thymidylate synthase (pf-DHFR-TS). Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The in vitro activity of BMS-284756, a new des-fluorinated quinolone.

    Science.gov (United States)

    Weller, T M A; Andrews, J M; Jevons, G; Wise, R

    2002-01-01

    The in vitro activity of BMS-284756 (previously T-3811ME), a des-fluoro(6) quinolone, was investigated and compared with those of six other antimicrobial agents. Susceptibility tests were performed on 919 Gram-positive, Gram-negative (including nine quinolone-resistant Escherichia coli) and anaerobic bacteria, three Chlamydia isolates and four Mycobacteria spp. BMS-284756 was marginally less active against the Enterobacteriaceae, but was the most active quinolone against staphylococci, enterococci and peptostreptococci. Against Streptococcus pneumoniae, BMS-284756 and gemifloxacin were more active than other quinolones. The MIC(90) of BMS-284756 was > or = 2 mg/L for the following bacteria: E. coli (MIC(90) 16 mg/L), Acinetobacter spp. (8 mg/L), Pseudomonas aeruginosa (64 mg/L) and Enterococcus faecium (4 mg/L). The MIC of BMS-284756 for Mycobacterium spp. was within one dilution of the MIC of ciprofloxacin. BMS-284756 was markedly more active than ciprofloxacin against the Chlamydia isolates tested.

  7. Proficiency study for quinolones in egg

    NARCIS (Netherlands)

    Berendsen, B.J.A.; Stolker, A.A.M.

    2008-01-01

    The aim of this proficiency study was to give laboratories the possibility to evaluate or demonstrate their competence for the analysis of quinolones in egg. Furthermore the specificity of the applied methods is evaluated by including possibly interfering compounds in the proficiency study. This

  8. Manzamine alkaloids: isolation, cytotoxicity, antimalarial activity and SAR studies.

    Science.gov (United States)

    Ashok, Penta; Ganguly, Swastika; Murugesan, Sankaranarayanan

    2014-11-01

    The infectious disease Malaria is caused by different species of the genus Plasmodium. Resistance to quinoline antimalarial drugs and decreased susceptibility to artemisinin-based combination therapy have increased the need for novel antimalarial agents. Historically, natural products have been used for the treatment of infectious diseases. Identification of natural products and their semi-synthetic derivatives with potent antimalarial activity is an important method for developing novel antimalarial agents. Manzamine alkaloids are a unique group of β-carboline alkaloids isolated from various species of marine sponge displaying potent antimalarial activity against drug-sensitive and -resistant strains of Plasmodium. In this review, we demonstrate antimalarial potency, cytotoxicity and antimalarial SAR of manzamine alkaloids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Antimalarial Activity of Plant Metabolites.

    Science.gov (United States)

    Pan, Wen-Hui; Xu, Xin-Ya; Shi, Ni; Tsang, Siu Wai; Zhang, Hong-Jie

    2018-05-06

    Malaria, as a major global health problem, continues to affect a large number of people each year, especially those in developing countries. Effective drug discovery is still one of the main efforts to control malaria. As natural products are still considered as a key source for discovery and development of therapeutic agents, we have evaluated more than 2000 plant extracts against Plasmodium falciparum . As a result, we discovered dozens of plant leads that displayed antimalarial activity. Our phytochemical study of some of these plant extracts led to the identification of several potent antimalarial compounds. The prior comprehensive review article entitled “Antimalarial activity of plant metabolites” by Schwikkard and Van Heerden (2002) reported structures of plant-derived compounds with antiplasmodial activity and covered literature up to the year 2000. As a continuation of this effort, the present review covers the antimalarial compounds isolated from plants, including marine plants, reported in the literature from 2001 to the end of 2017. During the span of the last 17 years, 175 antiplasmodial compounds were discovered from plants. These active compounds are organized in our review article according to their plant families. In addition, we also include ethnobotanical information of the antimalarial plants discussed.

  10. Antimalarial Activity of Plant Metabolites

    Directory of Open Access Journals (Sweden)

    Wen-Hui Pan

    2018-05-01

    Full Text Available Malaria, as a major global health problem, continues to affect a large number of people each year, especially those in developing countries. Effective drug discovery is still one of the main efforts to control malaria. As natural products are still considered as a key source for discovery and development of therapeutic agents, we have evaluated more than 2000 plant extracts against Plasmodium falciparum. As a result, we discovered dozens of plant leads that displayed antimalarial activity. Our phytochemical study of some of these plant extracts led to the identification of several potent antimalarial compounds. The prior comprehensive review article entitled “Antimalarial activity of plant metabolites” by Schwikkard and Van Heerden (2002 reported structures of plant-derived compounds with antiplasmodial activity and covered literature up to the year 2000. As a continuation of this effort, the present review covers the antimalarial compounds isolated from plants, including marine plants, reported in the literature from 2001 to the end of 2017. During the span of the last 17 years, 175 antiplasmodial compounds were discovered from plants. These active compounds are organized in our review article according to their plant families. In addition, we also include ethnobotanical information of the antimalarial plants discussed.

  11. Evaluating the impact of a novel restricted reimbursement policy for quinolone antibiotics: A time series analysis

    Directory of Open Access Journals (Sweden)

    Manns Braden

    2012-08-01

    Full Text Available Abstract Background Publicly-funded drug plans often use prior authorization policies to limit drug prescribing. To guide physician prescribing of a class of antibiotics with broad antimicrobial activity (quinolone antibiotics in accordance with new prescribing guidelines, Alberta’s provincial health ministry implemented a new mechanism for formulary restriction entitled the optional special authorization (OSA program. We conducted an observational study to determine the impact of this new formulary restriction policy on antimicrobial prescription rates as well as any clinical consequences. Methods Quinolone antibiotic use, and adherence with quinolone prescribing guidelines, was assessed before and after implementation of the OSA program in patients with common outpatient infections using an administrative data cohort and a chart review cohort, respectively. At the same time this policy was implemented to limit quinolone prescribing, two new quinolone antibiotics were added to the formulary. Using administrative data, we analysed a total of 397,534 unique index visits with regard to overall antibiotic utilization, and through chart review, we analysed 1681 charts of patients with infections of interest to determine the indications for quinolone usage. Results Using segmented regression models adjusting for age, sex and physician enrollment in the OSA program, there was no statistically significant change in the monthly rate of all quinolone use (−3.5 (95% CI −5.5, 1.4 prescriptions per 1000 index visits following implementation of the OSA program (p = 0.74. There was a significant level change in the rate of quinolone antibiotic use for urinary tract infection (−33.6 (95% CI: -23.8, -43.4 prescriptions and upper respiratory tract infection (−16.1 (95%CI: -11.6, -20.6 prescriptions per 1000 index visits. Among quinolone prescriptions identified on chart review, 42.5% and 58.5% were consistent with formulary guidelines before and

  12. Interactions of DB75, a Novel Antimalarial Agent, with Other Antimalarial Drugs In Vitro▿

    OpenAIRE

    Purfield, Anne E.; Tidwell, Richard R.; Meshnick, Steven R.

    2008-01-01

    Pafuramidine is a novel orally active antimalarial. To identify a combination partner, we measured the in vitro antimalarial activities of the active metabolite, DB75, with amodiaquine, artemisinin, atovaquone, azithromycin, chloroquine, clindamycin, mefloquine, piperaquine, pyronaridine, tafenoquine, and tetracycline. None of the drugs tested demonstrated antagonistic or synergistic activity in combination with pafuramidine.

  13. Introducing New Antimalarial Analogues of Chloroquine and Amodiaquine: A Narrative Review

    OpenAIRE

    Arezoo Rafiee Parhizgar; Azar Tahghighi

    2017-01-01

    Antimalarial drugs with the 4-aminoquinoline scaffold such as the important drugs, chloroquine (CQ) and amodiaquine (AQ), have been used to prevent and treat malaria for many years. The importance of these drugs is related to their simple usage, high efficacy, affordability, and cost-effectiveness of their synthesis. In recent years, with the spread of parasite resistance to CQ and cross-resistance to its other analogues have decreased their consumption in many geographical areas. On the othe...

  14. Biomimetic synthesis, antimicrobial, antileishmanial and antimalarial activities of euglobals and their analogues.

    Science.gov (United States)

    Bharate, Sandip B; Bhutani, Kamlesh K; Khan, Shabana I; Tekwani, Babu L; Jacob, Melissa R; Khan, Ikhlas A; Singh, Inder Pal

    2006-03-15

    In the present communication, naturally occurring phloroglucinol-monoterpene adducts, euglobals G1-G4 (3b/a and 4a/b) and 16 new analogues (13a/b-18a/b and 19-22) were synthesized by biomimetic approach. These synthetic compounds differ from natural euglobals in the nature of monoterpene and acyl functionality. All of these compounds were evaluated for their antibacterial, antifungal, antileishmanial and antimalarial activities. Analogue 17b possessed good antibacterial activity against methicillin-resistant Staphylococcus aureus, while analogues 19-22 possessed potent antifungal activity against Candida glabrata with IC50s ranging from 1.5 to 2.5 microg/mL. Euglobals along with all synthesized analogues exhibited antileishmanial activity. Amongst these, euglobal G2 (3a), G3 (4a) and analogues 13a and 14a showed potent antileishmanial activity with IC50s ranging from 2.8 to 3.9 microg/mL. Analogue 16a possessed antimalarial activity against chloroquine sensitive D6 clone of Plasmodium falciparum. None of the compounds showed toxicity against mammalian kidney fibroblasts (vero cells) upto the concentration of 4.76 microg/ml.

  15. Quinolone Resistance among Salmonella enterica from Cattle, Broilers and Swine in Denmark

    DEFF Research Database (Denmark)

    Wiuff, C.; Baggesen, Dorte Lau; Madsen, M.

    2000-01-01

    This study was conducted to determine the susceptibility to nalidixic acid and fluoroquinolones of Salmonella Dublin, S. Enteritidis, and S. Typhimurium isolates from cattle, broilers, and pigs over time in Denmark and to characterise the gyrA, gyrB, and parC genes in quinolone-resistant isolates...... that quinolone-resistant isolates have emerged in recent years among food-producing animals, especially among S. Enteritidis from broilers in Denmark, and that the resistance mainly is associated with mutations in gyrA.......This study was conducted to determine the susceptibility to nalidixic acid and fluoroquinolones of Salmonella Dublin, S. Enteritidis, and S. Typhimurium isolates from cattle, broilers, and pigs over time in Denmark and to characterise the gyrA, gyrB, and parC genes in quinolone-resistant isolates...... to quinolones. A single (1.1%) S. Typhimurium isolate from 1995 and three (5.9%) from 1998 were resistant to nalidixic acid. Six (9.0%) S. Dublin isolates from 1996, four (4.2%) from 1997, and one (1.7%) from 1998 were resistant to nalidixic acid. Resistance was not observed among isolates from cattle in 1999...

  16. Synthesis of gallinamide A analogues as potent falcipain inhibitors and antimalarials.

    Science.gov (United States)

    Conroy, Trent; Guo, Jin T; Elias, Nabiha; Cergol, Katie M; Gut, Jiri; Legac, Jennifer; Khatoon, Lubna; Liu, Yang; McGowan, Sheena; Rosenthal, Philip J; Hunt, Nicholas H; Payne, Richard J

    2014-12-26

    Analogues of the natural product gallinamide A were prepared to elucidate novel inhibitors of the falcipain cysteine proteases. Analogues exhibited potent inhibition of falcipain-2 (FP-2) and falcipain-3 (FP-3) and of the development of Plasmodium falciparum in vitro. Several compounds were equipotent to chloroquine as inhibitors of the 3D7 strain of P. falciparum and maintained potent activity against the chloroquine-resistant Dd2 parasite. These compounds serve as promising leads for the development of novel antimalarial agents.

  17. Anticancer Effect of AntiMalarial Artemisinin Compounds | Das ...

    African Journals Online (AJOL)

    A PubMed search of about 127 papers on anti‑cancer effects of antimalarials has revealed that this class of drug, including other antimalarials, have several biological characteristics that include anticancer properties. ... Keywords: Anticancer agents, Antimalarials, Antitumor activity, Artemisinins, Novel chemotherapy ...

  18. Mechanisms of resistance to quinolones and epidemiological significance of Salmonella spp.

    OpenAIRE

    Velhner, Maja

    2016-01-01

    Bacteria develop resistance to antimicrobial agents by a number of different mechanisms. The resistance to (fluoro)quinolones in Salmonella is of particular importance especially if therapy in humans is required. For decades there has been a significant interest in studying the biology of Salmonella because these bacteria are among the leading causes of foodborne illnesses around the globe. To this date, two main mechanisms of quinolone resistance have been established: alteration in the targ...

  19. The Emergence of Quinolone Resistant Shigella sonnei, Pondicherry, India.

    Directory of Open Access Journals (Sweden)

    Ankita Das

    Full Text Available Ciprofloxacin resistant Shigella sonnei across the globe have been increasing alarmingly. In order to understand the emergence of S.sonnei with respect to ciprofloxacin resistance in our patient population, the following study was carried out. Of the 184 Shigella sp. Isolated from 2012 to 2015, 34 S.sonnei which were confirmed by standard methods and subjected to antimicrobial susceptibility testing were selected. The minimum inhibitory concentrations (MICs of 16/34 quinolone resistant isolates tested ranged from 4micrograms/ml to 16micrograms/ml for ciprofloxacin, from 16 micrograms/ml to 64 micrograms/ml for ofloxacin and from 16micrograms/ml to 64micrograms/ml for levofloxacin. Sequence determination of the quinolone resistance determining regions of gyrA, gyrB, parC, and parE genes showed mutations in GyrA at Gln69/Trp, Phe71/Ser, Ser72/Pro, Met75/Leu, Ser90/Cys, Met94/Leu, His106/Pro, Asn161/His, Thr163/Ala and in ParC at Ala64/Asp. Among the plasmid-mediated quinolone resistance (PMQRs targets investigated,qnrB was the most (93.7% prevalent followed by qnrC (18.7%. None hadqnrA, qnrS and qepA. Two (0.1% of the isolates harboured theaac(6'-lb gene. Drug accumulation assay detected the presence of efflux pump activity in 9/15 (60% among ciprofloxacin resistant isolates. All isolates harboured the ipaH gene followed by ial (17.6%, sen (11.7%, set1A&set1B (5.8% genes. None had stx1 element. PCR for Enterobacterial repetitive intergenic consensus (ERIC sequences resulted in 4 unique clusters, of which Type III was the most (44% dominant but there was no correlation between the ERIC types and the antibiotic resistance pattern or the virulence profile. A documented increase in S.sonnei harbouring the qnrgenes and some unusual genes like set1Aand indicate an ongoing process of horizontal gene transfer. The accumulation of novel mutations in GyrA and ParC in the presence of efflux pump and PMQR genes contributed to the raised MIC to quinolones

  20. Plants as antimalarial agents in Sub-Saharan Africa.

    Science.gov (United States)

    Chinsembu, Kazhila C

    2015-12-01

    Although the burden of malaria is decreasing, parasite resistance to current antimalarial drugs and resistance to insecticides by vector mosquitoes threaten the prospects of malaria elimination in endemic areas. Corollary, there is a scientific departure to discover new antimalarial agents from nature. Because the two antimalarial drugs quinine and artemisinin were discovered through improved understanding of the indigenous knowledge of plants, bioprospecting Sub-Saharan Africa's enormous plant biodiversity may be a source of new and better drugs to treat malaria. This review analyses the medicinal plants used to manage malaria in Sub-Saharan Africa. Chemical compounds with antiplasmodial activity are described. In the Sub-Saharan African countries cited in this review, hundreds of plants are used as antimalarial remedies. While the number of plant species is not exhaustive, plants used in more than one country probably indicate better antimalarial efficacy and safety. The antiplasmodial data suggest an opportunity for inventing new antimalarial drugs from Sub-Saharan-African flora. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Lanthanum triflate triggered synthesis of tetrahydroquinazolinone derivatives of N-allyl quinolone and their biological assessment

    Directory of Open Access Journals (Sweden)

    Jardosh Hardik H.

    2012-01-01

    Full Text Available A series of 24 derivatives of tetrahydroquinazolinone has been synthesized by one-pot cyclocondensation reaction of N-allyl quinolones, cyclic β-diketones and (thiourea/N-phenylthiourea in presence of lanthanum triflate catalyst. This methodology allowed us to achieve the products in excellent yield by stirring at room temperature. All the synthesized compounds were investigated against a representative panel of pathogenic strains using broth microdilution MIC (minimum inhibitory concentration method for their in vitro antimicrobial activity. Amongst these sets of heterocyclic compounds 5h, 6b, 6h, 5f, 5l, 5n and 6g found to have admirable activity.

  2. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: A review.

    Science.gov (United States)

    Memvanga, Patrick B; Tona, Gaston L; Mesia, Gauthier K; Lusakibanza, Mariano M; Cimanga, Richard K

    2015-07-01

    Malaria is the most prevalent parasitic disease and the foremost cause of morbidity and mortality in the Democratic Republic of Congo. For the management of this disease, a large Congolese population recourses to traditional medicinal plants. To date the efficacy and safety of many of these plants have been validated scientifically in rodent malaria models. In order to generate scientific evidence of traditional remedies used in the Democratic Republic of Congo for the management of malaria, and show the potential of Congolese plants as a major source of antimalarial drugs, this review highlights the antiplasmodial and toxicological properties of the Congolese antimalarial plants investigated during the period of 1999-2014. In doing so, a useful resource for further complementary investigations is presented. Furthermore, this review may pave the way for the research and development of several available and affordable antimalarial phytomedicines. In order to get information on the different studies, a Google Scholar and PubMed literature search was performed using keywords (malaria, Congolese, medicinal plants, antiplasmodial/antimalarial activity, and toxicity). Data from non-indexed journals, Master and Doctoral dissertations were also collected. Approximately 120 extracts and fractions obtained from Congolese medicinal plants showed pronounced or good antiplasmodial activity. A number of compounds with interesting antiplasmodial properties were also isolated and identified. Some of these compounds constituted new scaffolds for the synthesis of promising antimalarial drugs. Interestingly, most of these extracts and compounds possessed high selective activity against Plasmodium parasites compared to mammalian cells. The efficacy and safety of several plant-derived products was confirmed in mice, and a good correlation was observed between in vitro and in vivo antimalarial activity. The formulation of several plant-derived products also led to some clinical trials

  3. Antimalarial drugs in pregnancy: a review

    NARCIS (Netherlands)

    Nosten, François; McGready, Rose; d'Alessandro, Umberto; Bonell, Ana; Verhoeff, Francine; Menendez, Clara; Mutabingwa, Thenonest; Brabin, Bernard

    2006-01-01

    In this review we examine the available information on the safety of antimalarials in pregnancy, from both animal and human studies. The antimalarials that can be used in pregnancy include (1) chloroquine, (2) amodiaquine, (3) quinine, (4) azithromycin, (5) sulfadoxine-pyrimethamine, (6) mefloquine,

  4. Antimalarial Activity of Azadipeptide Nitriles

    OpenAIRE

    Löser, Reik; Gut, Jiri; Rosenthal, Philip J.; Frizler, Maxim; Gütschow, Michael; Andrews, Katherine T.

    2009-01-01

    Azadipeptide nitriles – novel cysteine protease inhibitors – display structure-dependent antimalarial activity against both chloroquine-sensitive and chloroquine-resistant lines of cultured Plasmodium falciparum malaria parasites. Inhibition of parasite’s haemoglobin-degrading cysteine proteases was also investigated, revealing the azadipeptide nitriles as potent inhibitors of falcipain-2 and -3. A correlation between the cysteine protease-inhibiting activity and the antimalarial potential of...

  5. Synthesis, in vitro and in silico antimalarial activity of 7-chloroquinoline and 4H-chromene conjugates.

    Science.gov (United States)

    Parthiban, A; Muthukumaran, J; Manhas, Ashan; Srivastava, Kumkum; Krishna, R; Rao, H Surya Prakash

    2015-10-15

    A new series of chloroquinoline-4H-chromene conjugates incorporating piperizine or azipane tethers were synthesized and their anti-malarial activity were evaluated against two Plasmodium falciparum strains namely 3D7 chloroquine sensitive (CQS) and K1 chloroquine resistant (CQR). Chloroquine was used as the standard and also reference for comparison. The conjugates exhibit intense UV absorption with λmax located at 342 nm (log ε=4.0), 254 nm (log ε=4.2), 223 nm (log ε=4.4) which can be used to spectrometrically track the molecules even in trace amounts. Among all the synthetic compounds, two molecules namely 6-nitro and N-piperazine groups incorporated 7d and 6-chloro and N-azapane incorporated 15b chloroquinoline-4H-chromene conjugates showed significant anti-malarial activity against two strains (3D7 and K1) of P. falciparum. These values are lesser than the values of standard antimalarial compound. Molecular docking results suggested that these two compounds showing strong binding affinity with P. falciparum lactate dehydrogenase (PfLDH) and also they occupy the co-factor position which indicated that they could be the potent inhibitors for dreadful disease malaria and specifically attack the glycolytic pathway in parasite for energy production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Some Pharmacological Aspects of Antimalarial Drugs

    African Journals Online (AJOL)

    1974-06-15

    Jun 15, 1974 ... Some Pharmacological Aspects of Antimalarial. Drugs. D.BOTHA. SUMMARY. A short review is given of antimalarial drugs currently in use. S. Air. Med. l., 48, 1263 (1974). CLASSIFICATION. The chemotherapy of malaria may be conveniently classi- fied as (i) casual prophylaxis; (ii) suppressive treatment;.

  7. The inactivation of RNase G reduces the Stenotrophomonas maltophilia susceptibility to quinolones by triggering the heat shock response.

    Directory of Open Access Journals (Sweden)

    Alejandra eBernardini

    2015-10-01

    Full Text Available Quinolone resistance is usually due to mutations in the genes encoding bacterial topoisomerases. However different reports have shown that neither clinical quinolone resistant isolates nor in vitro obtained S. maltophilia mutants present mutations in such genes. The mechanisms so far described consist on efflux pumps' overexpression. Our objective is to get information on novel mechanisms of S. maltophilia quinolone resistance. For this purpose, a transposon-insertion mutant library was obtained in S. maltophilia D457.. One mutant presenting reduced susceptibility to nalidixic acid was selected. Inverse PCR showed that the inactivated gene encodes RNase G. Complementation of the mutant with wild-type RNase G allele restored the susceptibility to quinolones. Transcriptomic and real-time RT-PCR analyses showed that several genes encoding heat-shock response proteins were expressed at higher levels in the RNase defective mutant than in the wild-type strain. In agreement with this situation, heat-shock reduces the S. maltophilia susceptibility to quinolone. We can then conclude that the inactivation of the RNase G reduces the susceptibility of S. maltophilia to quinolones, most likely by regulating the expression of heat-shock response genes. Heat-shock induces a transient phenotype of quinolone resistance in S. maltophilia.

  8. Synthesis, in vitro and in vivo antimalarial assessment of sulfide, sulfone and vinyl amide-substituted 1,2,4-trioxanes prepared via thiol-olefin co-oxygenation (TOCO) of allylic alcohols.

    Science.gov (United States)

    Amewu, Richard; Gibbons, Peter; Mukhtar, Amira; Stachulski, Andrew V; Ward, Stephen A; Hall, Charlotte; Rimmer, Karen; Davies, Jill; Vivas, Livia; Bacsa, John; Mercer, Amy E; Nixon, Gemma; Stocks, Paul A; O'Neill, Paul M

    2010-05-07

    Thiol-Olefin Co-Oxygenation (TOCO) methodology has been applied to the synthesis of a small library of weak base and polar 1,2,4-trioxanes. The 1,2,4-trioxane units synthesised exhibit remarkable stability as they survive base catalysed hydrolysis and mixed anhydride/amine coupling reactions. This unique stability feature has enabled a range of novel substitution patterns to be incorporated within the spiro 1,2,4-trioxane unit. Selected analogues express potent in vitro nM antimalarial activity, low cytotoxicity and oral activity in the Plasmodium berghei mouse model of malaria.

  9. Benefits of a Pharmacology Antimalarial Reference Standard and Proficiency Testing Program Provided by the Worldwide Antimalarial Resistance Network (WWARN)

    Science.gov (United States)

    Lourens, Chris; Lindegardh, Niklas; Barnes, Karen I.; Guerin, Philippe J.; Sibley, Carol H.; White, Nicholas J.

    2014-01-01

    Comprehensive assessment of antimalarial drug resistance should include measurements of antimalarial blood or plasma concentrations in clinical trials and in individual assessments of treatment failure so that true resistance can be differentiated from inadequate drug exposure. Pharmacometric modeling is necessary to assess pharmacokinetic-pharmacodynamic relationships in different populations to optimize dosing. To accomplish both effectively and to allow comparison of data from different laboratories, it is essential that drug concentration measurement is accurate. Proficiency testing (PT) of laboratory procedures is necessary for verification of assay results. Within the Worldwide Antimalarial Resistance Network (WWARN), the goal of the quality assurance/quality control (QA/QC) program is to facilitate and sustain high-quality antimalarial assays. The QA/QC program consists of an international PT program for pharmacology laboratories and a reference material (RM) program for the provision of antimalarial drug standards, metabolites, and internal standards for laboratory use. The RM program currently distributes accurately weighed quantities of antimalarial drug standards, metabolites, and internal standards to 44 pharmacology, in vitro, and drug quality testing laboratories. The pharmacology PT program has sent samples to eight laboratories in four rounds of testing. WWARN technical experts have provided advice for correcting identified problems to improve performance of subsequent analysis and ultimately improved the quality of data. Many participants have demonstrated substantial improvements over subsequent rounds of PT. The WWARN QA/QC program has improved the quality and value of antimalarial drug measurement in laboratories globally. It is a model that has potential to be applied to strengthening laboratories more widely and improving the therapeutics of other infectious diseases. PMID:24777099

  10. Pentamethylcyclopentadienyl-rhodium and iridium complexes containing (N^N and N^O) bound chloroquine analogue ligands: synthesis, characterization and antimalarial properties.

    Science.gov (United States)

    Ekengard, Erik; Kumar, Kamlesh; Fogeron, Thibault; de Kock, Carmen; Smith, Peter J; Haukka, Matti; Monari, Magda; Nordlander, Ebbe

    2016-03-07

    The synthesis and characterization of twenty new pentamethylcyclopentadienyl-rhodium and iridium complexes containing N^N and N^O-chelating chloroquine analogue ligands are described. The in vitro antimalarial activity of the new ligands as well as the complexes was evaluated against the chloroquine sensitive (CQS) NF54 and the chloroquine resistant (CQR) Dd2 strains of Plasmodium falciparum. The antimalarial activity was found to be good to moderate; although all complexes are less active than artesunate, some of the ligands and complexes showed better activity than chloroquine (CQ). In particular, rhodium complexes were found to be considerably more active than iridium complexes against the CQS NF54 strain. Salicylaldimine Schiff base ligands having electron-withdrawing groups (F, Cl, Br, I and NO2) in para position of the salicyl moiety and their rhodium complexes showed good antiplasmodial activity against both the CQS-NF54 and the CQR-Dd2 strains. The crystal structures of (η(5)-pentamethylcyclopentadienyl){N(1)-(7-chloroquinolin-4-yl)-N(2)-(pyridin-2-ylmethyl)ethane-1,2-diamine)} chlororhodium(III) chloride and (η(5)-pentamethylcyclopentadienyl){(4-chloro-2-(((2-((7-chloroquinolin-4-yl)amino)ethyl)imino)methyl)phenolate)}chlororhodium(III) chloride are reported. The crystallization of the amino-pyridyl complex (η(5)-pentamethylcyclopentadienyl){(N(1)-(7-chloroquinolin-4-yl)-N(2)-(pyridin-2-ylmethyl)ethane-1,2-diamine)}chloroiridium(III) chloride in acetone resulted in the formation of the imino-pyridyl derivative (η(5)-pentamethylcyclopentadienyl){(N1-(7-chloroquinolin-4-yl)-N2-(pyridin-2-ylmethylene)ethane-1,2-diamine)}chloroiridium(III) chloride, the crystal structure of which is also reported.

  11. Terahertz absorption spectra of commonly used antimalarial drugs

    Science.gov (United States)

    Bawuah, Prince; Zeitler, J. Axel; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2018-06-01

    Terahertz (THz) spectra from the pure forms [i.e. the active pharmaceutical ingredients (APIs)] of four commonly used antimalarial drugs are reported. The well-defined spectral fingerprints obtained for these APIs in the spectral range of 0.1 THz-3 THz show the sensitivity of the THz time-domain spectroscopic (THz-TDS) method for screening antimalarial drugs. For identification purpose, two commercially available antimalarial tablets were detected. Clear spectral fingerprints of the APIs in the antimalarial tablets were obtained even amidst the several types of excipients present in the tablets. This observation further proves the high sensitivity of the THz techniques in tracking the presence or absence of API in a pharmaceutical tablet. We envisage that the spectral data obtained for these drugs can contribute to a spectroscopic database in the far infrared spectral region and hence support the modelling of THz sensing to differentiate between genuine and counterfeit antimalarial tablets.

  12. Terahertz absorption spectra of commonly used antimalarial drugs

    Science.gov (United States)

    Bawuah, Prince; Zeitler, J. Axel; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2018-03-01

    Terahertz (THz) spectra from the pure forms [i.e. the active pharmaceutical ingredients (APIs)] of four commonly used antimalarial drugs are reported. The well-defined spectral fingerprints obtained for these APIs in the spectral range of 0.1 THz-3 THz show the sensitivity of the THz time-domain spectroscopic (THz-TDS) method for screening antimalarial drugs. For identification purpose, two commercially available antimalarial tablets were detected. Clear spectral fingerprints of the APIs in the antimalarial tablets were obtained even amidst the several types of excipients present in the tablets. This observation further proves the high sensitivity of the THz techniques in tracking the presence or absence of API in a pharmaceutical tablet. We envisage that the spectral data obtained for these drugs can contribute to a spectroscopic database in the far infrared spectral region and hence support the modelling of THz sensing to differentiate between genuine and counterfeit antimalarial tablets.

  13. Antipneumococcal activity of DK-507k, a new quinolone, compared with the activities of 10 other agents.

    Science.gov (United States)

    Browne, Frederick A; Bozdogan, Bülent; Clark, Catherine; Kelly, Linda M; Ednie, Lois; Kosowska, Klaudia; Dewasse, Bonifacio; Jacobs, Michael R; Appelbaum, Peter C

    2003-12-01

    Agar dilution MIC determination was used to compare the activity of DK-507k with those of ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, sitafloxacin, amoxicillin, cefuroxime, erythromycin, azithromycin, and clarithromycin against 113 penicillin-susceptible, 81 penicillin-intermediate, and 67 penicillin-resistant pneumococci (all quinolone susceptible). DK-507k and sitafloxacin had the lowest MICs of all quinolones against quinolone-susceptible strains (MIC at which 50% of isolates were inhibited [MIC50] and MIC90 of both, 0.06 and 0.125 microg/ml, respectively), followed by moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. MICs of beta-lactams and macrolides rose with those of penicillin G. Against 26 quinolone-resistant pneumococci with known resistance mechanisms, DK-507k and sitafloxacin were also the most active quinolones (MICs, 0.125 to 1.0 microg/ml), followed by moxifloxacin, gatifloxacin, levofloxacin, and ciprofloxacin. Mutations in quinolone resistance-determining regions of quinolone-resistant strains were in the usual regions of the parC and gyrA genes. Time-kill testing showed that both DK-507k and sitafloxacin were bactericidal against all 12 quinolone-susceptible and -resistant strains tested at twice the MIC at 24 h. Serial broth passages in subinhibitory concentrations of 10 strains for a minimum of 14 days showed that development of resistant mutants (fourfold or greater increase in the original MIC) occurred most rapidly for ciprofloxacin, followed by moxifloxacin, DK-507k, gatifloxacin, sitafloxacin, and levofloxacin. All parent strains demonstrated a fourfold or greater increase in initial MIC in DK-507k against resistant mutants were lowest, followed by those of sitafloxacin, moxifloxacin, gatifloxacin, ciprofloxacin, and levofloxacin. Four strains were subcultured in subinhibitory concentrations of each drug for 50 days: MICs of DK-507k against resistant mutants were lowest, followed by those of sitafloxacin

  14. Resistance to quinolones in Campylobacter jejuni and Campylobacter coli from Danish broilers at farm level

    DEFF Research Database (Denmark)

    Pedersen, Karl; Wedderkopp, A.

    2003-01-01

    . Quinolone resistance was investigated by determination of minimum inhibitory concentration (MIC) to nalidixic acid and enrofloxacin. Among Camp. jejuni and Camp. coli combined, 7.5% were resistant to nalidixic acid. Quinolone resistance varied considerably from farm to farm, with 0% on some farms and almost...

  15. Synergistic In Vitro Antimalarial Activity of Omeprazole and Quinine

    OpenAIRE

    Skinner-Adams, T.; Davis, T. M. E.

    1999-01-01

    Previous studies have shown that the proton pump inhibitor omeprazole has antimalarial activity in vitro. The interactions of omeprazole with commonly used antimalarial drugs were assessed in vitro. Omeprazole and quinine combinations were synergistic; however, chloroquine and omeprazole combinations were antagonistic. Artemisinin drugs had additive antimalarial activities with omeprazole.

  16. Analytical profiling of mutations in quinolone resistance determining region of gyrA gene among UPEC.

    Directory of Open Access Journals (Sweden)

    Lesley R Varughese

    Full Text Available Mutations in gyrA are the primary cause of quinolone resistance encountered in gram-negative clinical isolates. The prospect of this work was to analyze the role of gyrA mutations in eliciting high quinolone resistance in uropathogenic E.coli (UPEC through molecular docking studies. Quinolone susceptibility testing of 18 E.coli strains isolated from UTI patients revealed unusually high resistance level to all the quinolones used; especially norfloxacin and ciprofloxacin. The QRDR of gyrA was amplified and sequenced. Mutations identified in gyrA of E.coli included Ser83Leu, Asp87Asn and Ala93Gly/Glu. Contrasting previous reports, we found Ser83Leu substitution in sensitive strains. Strains with S83L, D87N and A93E (A15 and A26 demonstrated norfloxacin MICs ≥1024mg/L which could be proof that Asp87Asn is necessary for resistance phenotype. Resistance to levofloxacin was comparatively lower in all the isolates. Docking of 4 quinolones (ciprofloxacin, ofloxacin, levofloxacin and norfloxacin to normal and mutated E.coli gyrase A protein demonstrated lower binding energies for the latter, with significant displacement of norfloxacin in the mutated GyrA complex and least displacement in case of levofloxacin.

  17. 4-Nitro styrylquinoline is an antimalarial inhibiting multiple stages of Plasmodium falciparum asexual life cycle.

    Science.gov (United States)

    Roberts, Bracken F; Zheng, Yongsheng; Cleaveleand, Jacob; Lee, Sukjun; Lee, Eunyoung; Ayong, Lawrence; Yuan, Yu; Chakrabarti, Debopam

    2017-04-01

    Drugs against malaria are losing their effectiveness because of emerging drug resistance. This underscores the need for novel therapeutic options for malaria with mechanism of actions distinct from current antimalarials. To identify novel pharmacophores against malaria we have screened compounds containing structural features of natural products that are pharmacologically relevant. This screening has identified a 4-nitro styrylquinoline (SQ) compound with submicromolar antiplasmodial activity and excellent selectivity. SQ exhibits a cellular action distinct from current antimalarials, acting early on malaria parasite's intraerythrocytic life cycle including merozoite invasion. The compound is a fast-acting parasitocidal agent and also exhibits curative property in the rodent malaria model when administered orally. In this report, we describe the synthesis, preliminary structure-function analysis, and the parasite developmental stage specific action of the SQ scaffold. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. A series of 2D metal-quinolone complexes: Syntheses, structures, and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiang-Hong [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Xiao, Dong-Rong, E-mail: xiaodr98@yahoo.com.cn [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chen, Hai-Yan; Sun, Dian-Zhen; Yan, Shi-Wei; Wang, Xin; Ye, Zhong-Li [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Luo, Qun-Li, E-mail: qlluo@swu.edu.cn [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Wang, En-Bo, E-mail: wangeb889@nenu.edu.cn [Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2013-02-15

    Six novel 2D metal-quinolone complexes, namely [Cd(cfH)(bpdc)]{center_dot}H{sub 2}O (1), [M(norfH)(bpdc)]{center_dot}H{sub 2}O (M=Cd (2) and Mn (3)), [Mn{sub 2}(cfH)(odpa)(H{sub 2}O){sub 3}]{center_dot}0.5H{sub 2}O (4), [Co{sub 2}(norfH)(bpta)({mu}{sub 2}-H{sub 2}O)(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (5) and [Co{sub 3}(saraH){sub 2}(Hbpta){sub 2}(H{sub 2}O){sub 4}]{center_dot}9H{sub 2}O (6) (cfH=ciprofloxacin, norfH=norfloxacin, saraH=sarafloxacin, bpdc=4,4 Prime -biphenyldicarboxylate, odpa=4,4 Prime -oxydiphthalate, bpta=3,3 Prime ,4,4 Prime -biphenyltetracarboxylate) have been synthesized and characterized. Compounds 1-3 consist of 2D arm-shaped layers based on the 1D {l_brace}M(COO){r_brace}{sub n}{sup n+} chains. Compounds 4 and 5 display 2D structures based on tetranuclear manganese or cobalt clusters with (3,6)-connected kgd topology. Compound 6 exhibits a 2D bilayer structure, which represents the first example of metal-quinolone complexes with 2D bilayer structure. By inspection of the structures of 1-6, it is believed that the long aromatic polycarboxylate ligands are important for the formation of 2D metal-quinolone complexes. The magnetic properties of compounds 3-6 was studied, indicating the existence of antiferromagnetic interactions. Furthermore, the luminescent properties of compounds 1-2 are discussed. - Graphical abstract: Six novel 2D metal-quinolone complexes have been prepared by self-assemblies of the quinolones and metal salts in the presence of long aromatic polycarboxylates. Highlights: Black-Right-Pointing-Pointer Compounds 1-3 consist of novel 2D arm-shaped layers based on the 1D {l_brace}M(COO){r_brace}{sub n}{sup n+} chains. Black-Right-Pointing-Pointer Compounds 4 and 5 are two novel 2D layers based on tetranuclear Mn or Co clusters with kgd topology. Black-Right-Pointing-Pointer Compound 6 is the first example of metal-quinolone complexes with 2D bilayer structure. Black-Right-Pointing-Pointer Compounds 1-6 represent six unusual

  19. Synthesis and antimalarial activity evaluation of 3-(3-(7-chloroquinolin-4-ylaminopropyl-1,3-thiazinan-4-one derivatives

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Kumawat

    2016-09-01

    Full Text Available Some novel derivatives of 3-(3-(7-chloroquinolin-4-ylaminopropyl-1,3-thiazinan-4-one were synthesized and characterized by their physical and spectral data. All the synthesized compounds were subsequently screened for in vitro antimalarial activity against chloroquine sensitive strain of Plasmodium falciparum (RKL-2 employing chloroquine as the reference drug. Most of the synthesized compounds exhibited mild to moderate susceptibilities towards the parasite in comparison to the standard. It was found that antimalarial activity of 3-(3-(7-chloroquinolin-4-ylaminopropyl-2-(4-bromophenyl-1,3-thiazinan-4-one was marginally superior than all the compounds evaluated.

  20. Synthesis and antimalarial evaluation of some 4-quinazolinone derivatives based on febrifugine

    Directory of Open Access Journals (Sweden)

    Debanjan Sen

    2010-01-01

    Full Text Available A series of 2-substituted and 2,3-substituted quinazolin -4(3H-one derivatives were designed and synthesized based on the structure of febrifugine. The structures of the new compounds were confirmed by spectral analysis. The in vivo biological activity test results indicated that those compounds exhibited antimalarial activities against Plasmodium berghei in mice, at a dose of 5 mg/kg. Compared to Chloroquine and Artemisinin, these compounds have the advantages of shorter synthetic routes and consequently are highly cost effective in nature.

  1. 7-Chloroquinolinotriazoles: synthesis by the azide-alkyne cycloaddition click chemistry, antimalarial activity, cytotoxicity and SAR studies.

    Science.gov (United States)

    Pereira, Guilherme R; Brandão, Geraldo Célio; Arantes, Lucas M; de Oliveira, Háliton A; de Paula, Renata Cristina; do Nascimento, Maria Fernanda A; dos Santos, Fábio M; da Rocha, Ramon K; Lopes, Júlio César D; de Oliveira, Alaíde Braga

    2014-02-12

    Twenty-seven 7-chloroquinolinotriazole derivatives with different substituents in the triazole moiety were synthesized via copper-catalyzed cycloaddition (CuAAC) click chemistry between 4-azido-7-chloroquinoline and several alkynes. All the synthetic compounds were evaluated for their in vitro activity against Plasmodium falciparum (W2) and cytotoxicity to Hep G2A16 cells. All the products disclosed low cytotoxicity (CC50 > 100 μM) and five of them have shown moderate antimalarial activity (IC50 from 9.6 to 40.9 μM). As chloroquine analogs it was expected that these compounds might inhibit the heme polymerization and SAR studies were performed aiming to explain their antimalarial profile. New structural variations can be designed on the basis of the results obtained. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Role of the Water–Metal Ion Bridge in Mediating Interactions between Quinolones and Escherichia coli Topoisomerase IV

    Science.gov (United States)

    2015-01-01

    Although quinolones have been in clinical use for decades, the mechanism underlying drug activity and resistance has remained elusive. However, recent studies indicate that clinically relevant quinolones interact with Bacillus anthracis (Gram-positive) topoisomerase IV through a critical water–metal ion bridge and that the most common quinolone resistance mutations decrease drug activity by disrupting this bridge. As a first step toward determining whether the water–metal ion bridge is a general mechanism of quinolone–topoisomerase interaction, we characterized drug interactions with wild-type Escherichia coli (Gram-negative) topoisomerase IV and a series of ParC enzymes with mutations (S80L, S80I, S80F, and E84K) in the predicted bridge-anchoring residues. Results strongly suggest that the water–metal ion bridge is essential for quinolone activity against E. coli topoisomerase IV. Although the bridge represents a common and critical mechanism that underlies broad-spectrum quinolone function, it appears to play different roles in B. anthracis and E. coli topoisomerase IV. The water–metal ion bridge is the most important binding contact of clinically relevant quinolones with the Gram-positive enzyme. However, it primarily acts to properly align clinically relevant quinolones with E. coli topoisomerase IV. Finally, even though ciprofloxacin is unable to increase levels of DNA cleavage mediated by several of the Ser80 and Glu84 mutant E. coli enzymes, the drug still retains the ability to inhibit the overall catalytic activity of these topoisomerase IV proteins. Inhibition parallels drug binding, suggesting that the presence of the drug in the active site is sufficient to diminish DNA relaxation rates. PMID:25115926

  3. Emergence of Quinolone Resistance amongst Escherichia coli ...

    African Journals Online (AJOL)

    Rate of resistance was 22.3% showing an increase in quinolone resistance when ... FQR E. coli was more common in patients with urinary tract infection (22.9%). ... in the faeces of healthy adults was 22.9%, 6.7% in children and 22.2% in avian. ... thereby aiding the spread of antibiotic resistant strains from avians to human ...

  4. Antimalarial drug policy in India: past, present & future.

    Science.gov (United States)

    Anvikar, Anupkumar R; Arora, Usha; Sonal, G S; Mishra, Neelima; Shahi, Bharatendu; Savargaonkar, Deepali; Kumar, Navin; Shah, Naman K; Valecha, Neena

    2014-02-01

    The use of antimalarial drugs in India has evolved since the introduction of quinine in the 17 th century. Since the formal establishment of a malaria control programme in 1953, shortly after independence, treatments provided by the public sector ranged from chloroquine, the mainstay drug for many decades, to the newer, recently introduced artemisinin based combination therapy. The complexity of considerations in antimalarial treatment led to the formulation of a National Antimalarial Drug Policy to guide procurement as well as communicate best practices to both public and private healthcare providers. Challenges addressed in the policy include the use of presumptive treatment, the introduction of alternate treatments for drug-resistant malaria, the duration of primaquine therapy to prevent relapses of vivax malaria, the treatment of malaria in pregnancy, and the choice of drugs for chemoprophylaxis. While data on antimalarial drug resistance and both public and private sector treatment practices have been recently reviewed, the policy process of setting national standards has not. In this perspective on antimalarial drug policy, this review highlights its relevant history, analyzes the current policy, and examines future directions.

  5. Quinoline hybrids and their antiplasmodial and antimalarial activities.

    Science.gov (United States)

    Hu, Yuan-Qiang; Gao, Chuan; Zhang, Shu; Xu, Lei; Xu, Zhi; Feng, Lian-Shun; Wu, Xiang; Zhao, Feng

    2017-10-20

    Malaria, in particular infection with P. falciparum (the most lethal of the human malaria parasite species, responsible for nearly one million deaths every year), is one of the most devastating and common infectious disease throughout the world. Beginning with quinine, quinoline containing compounds have long been used in clinical treatment of malaria and remained the mainstays of chemotherapy against malaria. The emergence of P. falciparum strains resistant to almost all antimalarials prompted medicinal chemists and biologists to study their effective replacement with an alternative mechanism of action and new molecules. Combination with variety of quinolines and other active moieties may increase the antiplasmodial and antimalarial activities and reduce the side effects. Thus, hybridization is a very attractive strategy to develop novel antimalarials. This review aims to summarize the recent advances towards the discovery of antiplasmodial and antimalarial hybrids including quinoline skeleton to provide an insight for rational designs of more active and less toxic quinoline hybrids antimalarials. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Coexistence of blaOXA-23 with armA in quinolone-resistant Acinetobacter baumannii from a Chinese university hospital.

    Science.gov (United States)

    Shen, Min; Luan, Guangxin; Wang, Yanhong; Chang, Yaowen; Zhang, Chi; Yang, Jingni; Deng, Shanshan; Ling, Baodong; Jia, Xu

    2016-03-01

    A total of 101 Acinetobacter baumannii isolates were collected to determine the mechanisms of quinolone resistance and investigate the occurrence of carbapenem and high-level aminoglycoside resistance genes among quinolone-resistant strains. Among 77 quinolone-resistant A. baumannii harbored mutations of gyrA and parC, 41 isolates, which belonged to European clone II, had resistance to aminoglycosides and carbapenems due to the expression of armA and acquisition of blaOXA-23. Most of sequence type belonged to clonal complex 92. These results suggested hospital dissemination of multidrug-resistant A. baumannii carrying blaOXA-23, armA, and mutations of quinolone resistance-determining regions in western China. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Design, synthesis, conformational and molecular docking study of some novel acyl hydrazone based molecular hybrids as antimalarial and antimicrobial agents.

    Science.gov (United States)

    Kumar, Parvin; Kadyan, Kulbir; Duhan, Meenakshi; Sindhu, Jayant; Singh, Vineeta; Saharan, Baljeet Singh

    2017-11-14

    Acyl hydrazones are an important class of heterocyclic compounds promising pharmacological characteristics. Malaria is a life-threatening mosquito-borne blood disease caused by a plasmodium parasite. In some places, malaria can be treated and controlled with early diagnosis. However, some countries lack the resources to do this effectively. The present work involves the design and synthesis of some novel acyl hydrazone based molecular hybrids of 1,4-dihydropyridine and pyrazole (5a-g). These molecular hybrids were synthesised by condensation of 1,4-dihydropyridin-4-yl-phenoxyacetohydrazides with differently substituted pyrazole carbaldehyde. The final compound (5) showed two conformations (the major, E, s-cis and the minor, E, s-trans) as revealed by NMR spectral data and further supported by the energy calculations (MOPAC2016 using PM7 method). All the synthesised compounds were screened for their in vitro antimalarial activities against chloroquine-sensitive malaria parasite Plasmodium falciparum (3D7) and antimicrobial activity against Gram positive bacteria i.e. Bacillus cereus, Gram negative bacteria i.e. Escherichia coli and antifungal activity against one yeast i.e. Aspergillus niger. All these compounds were found more potent than chloroquine and clotrimazole, the standard drugs. In vitro antiplasmodial IC 50 value of the most potent compound 5d was found to be 4.40 nM which is even less than all the three reference drugs chloroquine (18.7 nM), pyrimethamine (11 nM) and artimisinin (6 nM). In silico binding study of compound 5d with plasmodial cysteine protease falcipain-2 indicated the inhibition of falcipain-2 as the probable reason for the antimalarial potency of compound 5d. All the compounds had shown good to excellent antimicrobial and antifungal activities.

  8. Our Evolving Understanding of the Mechanism of Quinolones

    Directory of Open Access Journals (Sweden)

    Arnaud Gutierrez

    2018-04-01

    Full Text Available The maintenance of DNA supercoiling is essential for the proper regulation of a plethora of biological processes. As a consequence of this mode of regulation, ahead of the replication fork, DNA replication machinery is prone to introducing supercoiled regions into the DNA double helix. Resolution of DNA supercoiling is essential to maintain DNA replication rates that are amenable to life. This resolution is handled by evolutionarily conserved enzymes known as topoisomerases. The activity of topoisomerases is essential, and therefore constitutes a prime candidate for targeting by antibiotics. In this review, we present hallmark investigations describing the mode of action of quinolones, one of the antibacterial classes targeting the function of topoisomerases in bacteria. By chronologically analyzing data gathered on the mode of action of this imperative antibiotic class, we highlight the necessity to look beyond primary drug-target interactions towards thoroughly understanding the mechanism of quinolones at the level of the cell.

  9. Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids.

    Science.gov (United States)

    Maurya, Shiv Shyam; Khan, Shabana I; Bahuguna, Aparna; Kumar, Deepak; Rawat, Diwan S

    2017-03-31

    A series of novel N-substituted 4-aminoquinoline-pyrimidine hybrids have been synthesized via simple and economic route and evaluated for their antimalarial activity. Most compounds showed potent antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. The most active compound 7b was analysed for heme binding activity using UV-spectrophotometer. Compound was found to interact with heme and a complex formation between compound and heme in a 1:1 stoichiometry ratio was determined using job plots. The interaction of these hybrids was also investigated by the molecular docking studies in the binding site of wild type Pf-DHFR-TS and quadruple mutant Pf-DHFR-TS. The pharmacokinetic property analysis of best active compounds was also studied by ADMET prediction. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Mechanism-based design of parasite-targeted artemisinin derivatives: synthesis and antimalarial activity of new diamine containing analogues.

    Science.gov (United States)

    Hindley, Stephen; Ward, Stephen A; Storr, Richard C; Searle, Natalie L; Bray, Patrick G; Park, B Kevin; Davies, Jill; O'Neill, Paul M

    2002-02-28

    The potent antimalarial activity of chloroquine against chloroquine-sensitive strains can be attributed, in part, to its high accumulation in the acidic environment of the heme-rich parasite food vacuole. A key component of this intraparasitic chloroquine accumulation mechanism is a weak base "ion-trapping" effect whereupon the basic drug is concentrated in the acidic food vacuole in its membrane-impermeable diprotonated form. By the incorporation of amino functionality into target artemisinin analogues, we hoped to prepare a new series of analogues that, by virtue of increased accumulation into the ferrous-rich vacuole, would display enhanced antimalarial potency. The initial part of the project focused on the preparation of piperazine-linked analogues (series 1 (7-16)). Antimalarial evaluation of these derivatives demonstrated potent activity versus both chloroquine-sensitive and chloroquine-resistant parasites. On the basis of these observations, we then set about preparing a series of C-10 carba-linked amino derivatives. Optimization of the key synthetic step using a newly developed coupling protocol provided a key intermediate, allyldeoxoartemisinin (17) in 90% yield. Further elaboration, in three steps, provided nine target C-10 carba analogues (series 2 (21-29)) in good overall yields. Antimalarial assessment demonstrated that these compounds were 4-fold more potent than artemisinin and about twice as active as artemether in vitro versus chloroquine-resistant parasites. On the basis of the products obtained from biomimetic Fe(II) degradation of the C-10 carba analogue (23), we propose that these analogues may have a mode of action subtly different from that of the parent drug artemisinin (series 1 (7-16)) and other C-10 ether derivatives such as artemether. Preliminary in vivo testing by the WHO demonstrated that four of these compounds are active orally at doses of less than 10 mg/kg. Since these analogues are available as water-soluble salts and cannot

  11. Antimalarial Activity of C-10 Substituted Triazolyl Artemisinin.

    Science.gov (United States)

    Park, Gab-Man; Park, Hyun; Oh, Sangtae; Lee, Seokjoon

    2017-12-01

    We synthesized C-10 substituted triazolyl artemisinins by the Huisgen cycloaddition reaction between dihydroartemisinins (2) and variously substituted 1, 2, 3-triazoles (8a-8h). The antimalarial activities of 32 novel artemisinin derivatives were screened against a chloroquine-resistant parasite. Among them, triazolyl artemisinins with electron-withdrawing groups showed stronger antimalarial activities than those shown by the derivatives having electron-donating groups. In particularly, m-chlorotriazolyl artemisinin (9d-12d) showed antimalarial activity equivalent to that of artemisinin and could be a strong drug candidate.

  12. CRISPR/Cas9/sgRNA-mediated targeted gene modification confirms the cause-effect relationship between gyrA mutation and quinolone resistance in Escherichia coli.

    Science.gov (United States)

    Qiu, Haixiang; Gong, Jiansen; Butaye, Patrick; Lu, Guangwu; Huang, Ke; Zhu, Guoqiang; Zhang, Jilei; Hathcock, Terri; Cheng, Darong; Wang, Chengming

    2018-05-14

    Quinolones are broad-spectrum antibiotics that have been used for decades in treating bacterial infections in humans and animals, and subsequently bacterial resistance to these agents has increased. While studies indicated the relationship between gyrA mutations and bacterial resistance to quinolones, CRISPR/Cas9 was used in this study to investigate causal role of gyrA mutation in the quinolone resistance. In this study, 818 clinical Escherichia coli isolates were analyzed for gyrA mutations and their resistance to quinolones. The CRISPR/Cas9 system was used to generate gyrA mutations in quinolone-susceptible E. coli ATCC 25922, and quinolone-resistant clinical E. coli. The antimicrobial resistance prevalence rate in E. coli against nalidixic acid, ciprofloxacin and enrofloxacin was 77.1% (631/818), 51.1% (418/818) and 49.8% (407/818), respectively. The gyrA mutations were identified in nucleotide positions 248, 255, 259, 260, 261, 273 and 300, and mutations at positions 248 and 259 resulting in amino acid changes at positions 83 and 87 were associated with quinolone resistance. Double-site amino acid mutations increase resistance to quinolones. The gyrA mutations causing changes at amino acids 83 and 87 reversed the features of quinolone resistance in ATCC and clinical strains, verifying the causal role of gyrA mutation in the quinolone resistance of E. coli.

  13. Antimalarial drug policy in India: Past, present & future

    Directory of Open Access Journals (Sweden)

    Anupkumar R Anvikar

    2014-01-01

    Full Text Available The use of antimalarial drugs in India has evolved since the introduction of quinine in the 17 th century. Since the formal establishment of a malaria control programme in 1953, shortly after independence, treatments provided by the public sector ranged from chloroquine, the mainstay drug for many decades, to the newer, recently introduced artemisinin based combination therapy. The complexity of considerations in antimalarial treatment led to the formulation of a National Antimalarial Drug Policy to guide procurement as well as communicate best practices to both public and private healthcare providers. Challenges addressed in the policy include the use of presumptive treatment, the introduction of alternate treatments for drug-resistant malaria, the duration of primaquine therapy to prevent relapses of vivax malaria, the treatment of malaria in pregnancy, and the choice of drugs for chemoprophylaxis. While data on antimalarial drug resistance and both public and private sector treatment practices have been recently reviewed, the policy process of setting national standards has not. In this perspective on antimalarial drug policy, this review highlights its relevant history, analyzes the current policy, and examines future directions.

  14. QSAR modeling and chemical space analysis of antimalarial compounds

    Science.gov (United States)

    Sidorov, Pavel; Viira, Birgit; Davioud-Charvet, Elisabeth; Maran, Uko; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2017-05-01

    Generative topographic mapping (GTM) has been used to visualize and analyze the chemical space of antimalarial compounds as well as to build predictive models linking structure of molecules with their antimalarial activity. For this, a database, including 3000 molecules tested in one or several of 17 anti- Plasmodium activity assessment protocols, has been compiled by assembling experimental data from in-house and ChEMBL databases. GTM classification models built on subsets corresponding to individual bioassays perform similarly to the earlier reported SVM models. Zones preferentially populated by active and inactive molecules, respectively, clearly emerge in the class landscapes supported by the GTM model. Their analysis resulted in identification of privileged structural motifs of potential antimalarial compounds. Projection of marketed antimalarial drugs on this map allowed us to delineate several areas in the chemical space corresponding to different mechanisms of antimalarial activity. This helped us to make a suggestion about the mode of action of the molecules populating these zones.

  15. Aspidosperma species as sources of antimalarials. Part III. A review of traditional use and antimalarial activity.

    Science.gov (United States)

    de Paula, Renata Cristina; Dolabela, Maria Fâni; de Oliveira, Alaíde Braga

    2014-03-01

    Several plant species belonging to the genus Aspidosperma are traditionally used in Brazil and other Meso- and South American countries for the treatment of malaria and fevers. These traditional uses were motivation for this review. A literature survey completed for this review has identified scientific bibliographical references to the use of 24 Aspidosperma species to treat malaria/fevers and to 19 species that have had their extracts and/or alkaloids evaluated, with good results, for in vitro and/or in vivo antimalarial activity. Indole alkaloids are typical constituents of Aspidosperma species. However, only 20 out of more than 200 known indole alkaloids isolated from this genus have been assayed for antimalarial activity. These data support the potential of Aspidosperma species as sources of antimalarials and the importance of research aimed at validating their use in the treatment of human malaria. Georg Thieme Verlag KG Stuttgart · New York.

  16. Distribution of quinolones, sulfonamides, tetracyclines in aquatic environment and antibiotic resistance in Indochina

    Directory of Open Access Journals (Sweden)

    Satoru eSuzuki

    2012-02-01

    Full Text Available Southeast Asia has become the center of rapid industrial development and economic growth. However, this growth has far outpaced investment in public infrastructure, leading to the unregulated release of many pollutants, including wastewater-related contaminants such as antibiotics. Antibiotics are of major concern because they can easily be released into the environment from numerous sources, and can subsequently induce development of antibiotic-resistant bacteria. Recent studies have shown that for some categories of drugs this source-to-environment antibiotic resistance relationship is more complex. This review summarizes current understanding regarding the presence of quinolones, sulfonamides, and tetracyclines in aquatic environments of Indochina and the prevalence of bacteria resistant to them. Several noteworthy findings are discussed: 1 quinolone contamination and the occurrence of quinolone resistance are not correlated; 2 occurrence of the sul sulfonamide resistance gene varies geographically; and 3 microbial diversity might be related to the rate of oxytetracycline resistance.

  17. In vitro selection of resistance in haemophilus influenzae by 4 quinolones and 5 beta-lactams.

    Science.gov (United States)

    Clark, Catherine; Kosowska, Klaudia; Bozdogan, Bülent; Credito, Kim; Dewasse, Bonifacio; McGhee, Pamela; Jacobs, Michael R; Appelbaum, Peter C

    2004-05-01

    We tested abilities of ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, amoxicillin, amoxicillin/clavulanate, cefixime, cefpodoxime, and cefdinir to select resistant mutants in 5 beta-lactamase positive and 5 beta-lactamase negative Haemophilus influenzae strains by single and multistep methodology. In multistep tests, amoxicillin, amoxicillin/clavulanate and cefpodoxime exposure did not cause >4-fold minimum inhibitory concentration (MIC) increase after 50 days. One mutant selected by cefdinir had one amino acid substitution (Gly490Glu) in PBP3 and became resistant to cefdinir. Cefixime exposure caused 8-fold MIC-increase in 1 strain with TEM but the mutant remained cefixime susceptible and had no alteration in PBP3 or TEM. Among 10 strains tested, ciprofloxacin, moxifloxacin, gatifloxacin, levofloxacin caused >4-fold MIC increase in 6, 6, 5, and 2 strain, respectively. Despite the increases in quinolone MICs, none of the mutants became resistant to quinolones by established criteria. Quinolone selected mutants had quindone resistance-determining region (QRDR) alterations in GyrA, GyrB, ParC, ParE. Four quinolone mutants had no QRDR alterations. Among beta-lactams cefdinir and cefixime selected one mutant each with higher MICs however amoxicillin, amoxicillin/clavulanate, and cefpodoxime exposure did not select resistant mutants.

  18. Does anti-malarial drug knowledge predict anti-malarial dispensing practice in drug outlets? A survey of medicine retailers in western Kenya

    Directory of Open Access Journals (Sweden)

    Rusk Andria

    2012-08-01

    Full Text Available Abstract Background Malaria is a major cause of morbidity and mortality in Kenya, where it is the fifth leading cause of death in both children and adults. Effectively managing malaria is dependent upon appropriate treatment. In Kenya, between 17 to 83 percent of febrile individuals first seek treatment for febrile illness over the counter from medicine retailers. Understanding medicine retailer knowledge and behaviour in treating suspected malaria and dispensing anti-malarials is crucial. Methods To investigate medicine retailer knowledge about anti-malarials and their dispensing practices, a survey was conducted of all retail drug outlets that sell anti-malarial medications and serve residents of the Webuye Health and Demographic Surveillance Site in the Bungoma East District of western Kenya. Results Most of the medicine retailers surveyed (65% were able to identify artemether-lumefantrine (AL as the Kenyan Ministry of Health recommended first-line anti-malarial therapy for uncomplicated malaria. Retailers who correctly identified this treatment were also more likely to recommend AL to adult and paediatric customers. However, the proportion of medicine retailers who recommend the correct treatment is disappointingly low. Only 48% would recommend AL to adults, and 37% would recommend it to children. It was discovered that customer demand has an influence on retailer behaviour. Retailer training and education were found to be correlated with anti-malarial drug knowledge, which in turn is correlated with dispensing practices. Medicine retailer behaviour, including patient referral practice and dispensing practices, are also correlated with knowledge of the first-line anti-malarial medication. The Kenya Ministry of Health guidelines were found to influence retailer drug stocking and dispensing behaviours. Conclusion Most medicine retailers could identify the recommended first-line treatment for uncomplicated malaria, but the percentage that could

  19. Ruthenium(II) arene complexes with chelating chloroquine analogue ligands: Synthesis, characterization and in vitro antimalarial activity†

    Science.gov (United States)

    Glans, Lotta; Ehnbom, Andreas; de Kock, Carmen; Martínez, Alberto; Estrada, Jesús; Smith, Peter J.; Haukka, Matti; Sánchez-Delgado, Roberto A.; Nordlander, Ebbe

    2012-01-01

    Three new ruthenium complexes with bidentate chloroquine analogue ligands, [Ru(η6-cym)(L1)Cl]Cl (1, cym = p-cymene, L1 = N-(2-((pyridin-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine), [Ru(η6-cym)(L2)Cl]Cl (2, L2 = N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) and [Ru(η6-cym)(L3)Cl] (3, L3 = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine) have been synthesized and characterized. In addition, the X-ray crystal structure of 2 is reported. The antimalarial activity of complexes 1–3 and ligands L1, L2 and L3, as well as the compound N-(2-(bis((pyridin-2-yl)methyl)amino)ethyl)-7-chloroquinolin-4-amine (L4), against chloroquine sensitive and chloroquine resistant Plasmodium falciparum malaria strains was evaluated. While 1 and 2 are less active than the corresponding ligands, 3 exhibits high antimalarial activity. The chloroquine analogue L2 also shows good activity against both the choloroquine sensitive and the chloroquine resistant strains. Heme aggregation inhibition activity (HAIA) at an aqueous buffer/n-octanol interface (HAIR50) and lipophilicity (D, as measured by water/n-octanol distribution coefficients) have been measured for all ligands and metal complexes. A direct correlation between the D and HAIR50 properties cannot be made because of the relative structural diversity of the complexes, but it may be noted that these properties are enhanced upon complexation of the inactive ligand L3 to ruthenium, to give a metal complex (3) with promising antimalarial activity. PMID:22249579

  20. Ferroquine and its derivatives: new generation of antimalarial agents.

    Science.gov (United States)

    Wani, Waseem A; Jameel, Ehtesham; Baig, Umair; Mumtazuddin, Syed; Hun, Lee Ting

    2015-08-28

    Malaria has been teasing human populations from a long time. Presently, several classes of antimalarial drugs are available in market, but the issues of toxicity, lower efficacy and the resistance by malarial parasites have decreased their overall therapeutic indices. Thus, the search for new promising antimalarials continues, however, the battle against malaria is far from over. Ferroquine is a derivative of chloroquine with antimalarial properties. It is the most successful of the chloroquine derivatives. Not only ferroquine, but also its derivatives have shown promising potential as antimalarials of clinical interest. Presently, much research is dedicated to the development of ferroquine derivatives as safe alternatives to antimalarial chemotherapy. The present article describes the structural, chemical and biological features of ferroquine. Several classes of ferroquine derivatives including hydroxyferroquines, trioxaferroquines, chloroquine-bridged ferrocenophanes, thiosemicarbazone derivatives, ferrocene dual conjugates, 4-N-substituted derivatives, and others have been discussed. Besides, the mechanism of action of ferroquine has been discussed. A careful observation has been made into pharmacologically significant ferroquine derivatives with better or equal therapeutic effects to that of chloroquine and ferroquine. A brief discussion of the toxicities of ferroquine derivatives has been made. Finally, efforts have been made to discuss the current challenges and future perspectives of ferroquine-based antimalarial drug development. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. World Antimalarial Resistance Network (WARN IV: Clinical pharmacology

    Directory of Open Access Journals (Sweden)

    Gbotosho Grace O

    2007-09-01

    Full Text Available Abstract A World Antimalarial Resistance Network (WARN database has the potential to improve the treatment of malaria, through informing current drug selection and use and providing a prompt warning of when treatment policies need changing. This manuscript outlines the contribution and structure of the clinical pharmacology component of this database. The determinants of treatment response are multi-factorial, but clearly providing adequate blood concentrations is pivotal to curing malaria. The ability of available antimalarial pharmacokinetic data to inform optimal dosing is constrained by the small number of patients studied, with even fewer (if any studies conducted in the most vulnerable populations. There are even less data relating blood concentration data to the therapeutic response (pharmacodynamics. By pooling all available pharmacokinetic data, while paying careful attention to the analytical methodologies used, the limitations of small (and thus underpowered individual studies may be overcome and factors that contribute to inter-individual variability in pharmacokinetic parameters defined. Key variables for pharmacokinetic studies are defined in terms of patient (or study subject characteristics, the formulation and route of administration of the antimalarial studied, the sampling and assay methodology, and the approach taken to data analysis. Better defining these information needs and criteria of acceptability of pharmacokinetic-pharmacodynamic (PK-PD studies should contribute to improving the quantity, relevance and quality of these studies. A better understanding of the pharmacokinetic properties of antimalarials and a more clear definition of what constitutes "therapeutic drug levels" would allow more precise use of the term "antimalarial resistance", as it would indicate when treatment failure is not caused by intrinsic parasite resistance but is instead the result of inadequate drug levels. The clinical pharmacology component

  2. Prevalence of plasmid-mediated quinolone resistance determinants among oxyiminocephalosporin-resistant Enterobacteriaceae in Argentina

    Directory of Open Access Journals (Sweden)

    Giovanna Rincon Cruz

    2013-11-01

    Full Text Available High quinolone resistance rates were observed among oxyiminocephalosporin-resistant enterobacteria. In the present study, we searched for the prevalence of plasmid-mediated quinolone resistance (PMQR genes within the 55 oxyiminocephalosporin-resistant enterobacteria collected in a previous survey. The main PMQR determinants were aac(6'-Ib-cr and qnrB, which had prevalence rates of 42.4% and 33.3%, respectively. The aac(6'-Ib-cr gene was more frequently found in CTX-M-15-producing isolates, while qnrB was homogeneously distributed among all CTX-M producers.

  3. Quinolones Resistance And R-Plasmids Of Clinical Isolates Of ...

    African Journals Online (AJOL)

    Background: There has been reported incidence in the emergence of. Quinolones resistance in clinical isolates in Nigeria and the level in resistance has been on the increase. Objective: To determine the antimicrobial resistance patterns and plasmids profiles of 67 clinical Pseudomonas species from a teaching hospital ...

  4. Detection of mutations in quinolone-resistant determining regions in ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... Since the use of fluoroquinolone antibiotic in clinical practice was introduced about two decades ago, quinolone-resistant E. coli strains .... containing dehydrated antibiotics (Merlin Diagnostika, Germany) in two–fold dilution. .... alterations in parC play fundamental role in developing high level of resistance ...

  5. New heterocyclic compounds: Synthesis and antitrypanosomal properties.

    Science.gov (United States)

    Pomel, S; Dubar, F; Forge, D; Loiseau, P M; Biot, C

    2015-08-15

    Three new series of quinoline, quinolone, and benzimidazole derivatives were synthesized and evaluated in vitro against Trypanosoma brucei gambiense. In the quinoline series, the metallo antimalarial drug candidate (ferroquine, FQ) and its ruthenium analogue (ruthenoquine, RQ, compound 13) showed the highest in vitro activities with IC50 values around 0.1 μM. Unfortunately, both compounds failed to cure Trypanosoma brucei brucei infected mice in vivo. The other heterocyclic compounds were active in vitro with IC50 values varying from 0.8 to 34 μM. One of the most interesting results was a fluoroquinolone derivative (compound 2) that was able to offer a survival time of 8 days after a treatment at the single dose of 100 μmol/kg by intraperitoneal route. Although no clear-cut structure-activity relationships emerged, further pharmacomodulations are worth to be developed in this series. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. N-Cinnamoylation of Antimalarial Classics: Effects of Using Acyl Groups Other than Cinnamoyl toward Dual-Stage Antimalarials.

    Science.gov (United States)

    Gomes, Ana; Machado, Marta; Lobo, Lis; Nogueira, Fátima; Prudêncio, Miguel; Teixeira, Cátia; Gomes, Paula

    2015-08-01

    In a follow-up study to our reports of N-cinnamoylated chloroquine and quinacrine analogues as promising dual-stage antimalarial leads with high in vitro potency against both blood-stage Plasmodium falciparum and liver-stage Plasmodium berghei, we decided to investigate the effect of replacing the cinnamoyl moiety with other acyl groups. Thus, a series of N-acylated analogues were synthesized, and their activities against blood- and liver-stage Plasmodium spp. were assessed along with their in vitro cytotoxicities. Although the new N-acylated analogues were found to be somewhat less active and more cytotoxic than their N-cinnamoylated counterparts, they equally displayed nanomolar activities in vitro against blood-stage drug-sensitive and drug-resistant P. falciparum, and significant in vitro liver-stage activity against P. berghei. Therefore, it is demonstrated that simple N-acylated surrogates of classical antimalarial drugs are promising dual-stage antimalarial leads. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis and antimalarial testing of neocryptolepine analogues: addition of ester function in SAR study of 2,11-disubstituted indolo[2,3-b]quinolines.

    Science.gov (United States)

    Lu, Wen-Jie; Wicht, Kathryn J; Wang, Li; Imai, Kento; Mei, Zhen-Wu; Kaiser, Marcel; El Sayed, Ibrahim El Tantawy; Egan, Timothy J; Inokuchi, Tsutomu

    2013-06-01

    This report describes the synthesis, and in vitro and in vivo antimalarial evaluations of certain ester-modified neocryptolepine (5-methyl-5H-indolo[2,3-b]quinoline) derivatives. The modifications were carried out by introducing ester groups at the C2 and/or C9 position on the neocryptolepine core and the terminal amino group of the 3-aminopropylamine substituents at the C11 position with a urea/thiourea unit. The antiplasmodial activities of our derivative agents against two different strains (CQS: NF54, and CQR: K1) and the cytotoxic activity against normal L6 cells were evaluated. The test results showed that the ester modified neocryptolepine derivatives have higher antiplasmodial activities against both strains and a low cytotoxic activity against normal cells. The best results were achieved by compounds 9c and 12b against the NF54 strain with the IC50/SI value as 2.27 nM/361 and 1.81 nM/321, respectively. While against K1 strain, all the tested compounds showed higher activity than the well-known antimalarial drug chloroquine. Furthermore, the compounds were tested for β-haematin inhibition and 12 were found to be more active than chloroquine (IC50 = 18 μM). Structure activity relationship studies exposed an interesting linear correlation between polar surface area of the molecule and β-haematin inhibition for this series. In vivo testing of compounds 7 and 8a against NF54 strain on Plasmodium berghei female mice showed that the introduction of the ester group increased the antiplasmodial activity of the neocryptolepine core substantially. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Antimalarial activity of compounds comprising a primary benzene sulfonamide fragment.

    Science.gov (United States)

    Andrews, Katherine T; Fisher, Gillian M; Sumanadasa, Subathdrage D M; Skinner-Adams, Tina; Moeker, Janina; Lopez, Marie; Poulsen, Sally-Ann

    2013-11-15

    Despite the urgent need for effective antimalarial drugs with novel modes of action no new chemical class of antimalarial drug has been approved for use since 1996. To address this, we have used a rational approach to investigate compounds comprising the primary benzene sulfonamide fragment as a potential new antimalarial chemotype. We report the in vitro activity against Plasmodium falciparum drug sensitive (3D7) and resistant (Dd2) parasites for a panel of fourteen primary benzene sulfonamide compounds. Our findings provide a platform to support the further evaluation of primary benzene sulfonamides as a new antimalarial chemotype, including the identification of the target of these compounds in the parasite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. 4-aminoquinoline analogues and its platinum (II) complexes as antimalarial agents.

    Science.gov (United States)

    de Souza, Nicolli Bellotti; Carmo, Arturene M L; Lagatta, Davi C; Alves, Márcio José Martins; Fontes, Ana Paula Soares; Coimbra, Elaine Soares; da Silva, Adilson David; Abramo, Clarice

    2011-07-01

    The high incidence of malaria and drug-resistant strains of Plasmodium have turned this disease into a problem of major health importance. One of the approaches used to control it is to search for new antimalarial agents, such as quinoline derivates. This class of compounds composes a broad group of antimalarial agents, which are largely employed, and inhibits the formation of β-haematin (malaria pigment), which is lethal to the parasite. More specifically, 4-aminoquinoline derivates represent potential sources of antimalarials, as the example of chloroquine, the most used antimalarial worldwide. In order to assess antimalarial activity, 12 4-aminoquinoline derived drugs were obtained and some of these derivatives were used to obtain platinum complexes platinum (II). These compounds were tested in vivo in a murine model and revealed remarkable inhibition of parasite multiplication values, whose majority ranged from 50 to 80%. In addition they were not cytotoxic. Thus, they may be object of further research for new antimalarial agents. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  10. Potent Plasmodium falciparum gametocytocidal activity of diaminonaphthoquinones, lead antimalarial chemotypes identified in an antimalarial compound screen.

    Science.gov (United States)

    Tanaka, Takeshi Q; Guiguemde, W Armand; Barnett, David S; Maron, Maxim I; Min, Jaeki; Connelly, Michele C; Suryadevara, Praveen Kumar; Guy, R Kiplin; Williamson, Kim C

    2015-03-01

    Forty percent of the world's population is threatened by malaria, which is caused by Plasmodium parasites and results in an estimated 200 million clinical cases and 650,000 deaths each year. Drug resistance has been reported for all commonly used antimalarials and has prompted screens to identify new drug candidates. However, many of these new candidates have not been evaluated against the parasite stage responsible for transmission, gametocytes. If Plasmodium falciparum gametocytes are not eliminated, patients continue to spread malaria for weeks after asexual parasite clearance. Asymptomatic individuals can also harbor gametocyte burdens sufficient for transmission, and a safe, effective gametocytocidal agent could also be used in community-wide malaria control programs. Here, we identify 15 small molecules with nanomolar activity against late-stage gametocytes. Fourteen are diaminonaphthoquinones (DANQs), and one is a 2-imino-benzo[d]imidazole (IBI). One of the DANQs identified, SJ000030570, is a lead antimalarial candidate. In contrast, 94% of the 650 compounds tested are inactive against late-stage gametocytes. Consistent with the ineffectiveness of most approved antimalarials against gametocytes, of the 19 novel compounds with activity against known anti-asexual-stage targets, only 3 had any strong effect on gametocyte viability. These data demonstrate the distinct biology of the transmission stages and emphasize the importance of screening for gametocytocidal activity. The potent gametocytocidal activity of DANQ and IBI coupled with their efficacy against asexual parasites provides leads for the development of antimalarials with the potential to prevent both the symptoms and the spread of malaria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Reappraisal of Antimalarials in Interferonopathies: New Perspectives for Old Drugs.

    Science.gov (United States)

    Piscianz, Elisa; Cuzzoni, Eva; Sharma, Rajan; Tesser, Alessandra; Sapra, Pooja; Tommasini, Alberto

    2017-09-11

    The story of antimalarials as antinflammatory drugs dates back several centuries. Chinin, the extract of the Cinchona bark, has been exploited since the 18th century for its antimalarial and antifebrile properties. Later, during the Second World War, the broad use of antimalarials allowed arguing their antirheumatic effect on soldiers. Since then, these drugs have been broadly used to treat Systemic Lupus Erythematosus, but, only recently, have the molecular mechanisms of action been partly clarified. Inhibitory action on vacuole function and trafficking has been considered for decades the main mechanism of the action of antimalarials, affecting the activation of phagocytes and dendritic cells. In addition, chloroquine is also known as a potent inhibitor of autophagy, providing another possible explanation of its antinflammatory action. However, much attention has been recently devoted to the action of antimalarials on the so-called cGAS-STING pathway leading from the sensing of cytoplasmic nucleic acids to the production of type I interferons. This pathway is a fundamental mechanism of host defence, since it is able to detect microbial DNA and induce the type I interferon-mediated immune response. Of note, genetic defects in the degradation of nucleic acids lead to inappropriate cGAS-STING activation and inflammation. These disorders, called type I interferonopathies, represent a valuable model to study the antinflammatory potential of antimalarials. We will discuss possible development of antimalarials to improve the treatment of type I interferonopathies and likely multifactorial disorders characterised by interferon inflammation, such as Systemic Lupus Erythematosus. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Modular synthesis and in vitro and in vivo antimalarial assessment of C-10 pyrrole mannich base derivatives of artemisinin.

    Science.gov (United States)

    Pacorel, Bénédicte; Leung, Suet C; Stachulski, Andrew V; Davies, Jill; Vivas, Livia; Lander, Hollie; Ward, Stephen A; Kaiser, Marcel; Brun, Reto; O'Neill, Paul M

    2010-01-28

    In two steps from dihydroartemisinin, a small array of 16 semisynthetic C-10 pyrrole Mannich artemisinin derivatives (7a-p) have been prepared in moderate to excellent yield. In vitro analysis against both chloroquine sensitive and resistant strains has demonstrated that these analogues have nanomolar antimalarial activity, with several compounds being more than 3 times more potent than the natural product artemisinin. In addition to a potent antimalarial profile, these molecules also have very high in vitro therapeutic indices. Analysis of the optimal Mannich side chain substitution for in vitro and in vivo activity reveals that the morpholine and N-methylpiperazine Mannich side chains provide analogues with the best activity profiles, both in vitro and in vivo in the Peter's 4 day test.

  13. In vitro activity of five quinolones and analysis of the quinolone resistance-determining regions of gyrA, gyrB, parC, and parE in Ureaplasma parvum and Ureaplasma urealyticum clinical isolates from perinatal patients in Japan.

    Science.gov (United States)

    Kawai, Yasuhiro; Nakura, Yukiko; Wakimoto, Tetsu; Nomiyama, Makoto; Tokuda, Tsugumichi; Takayanagi, Toshimitsu; Shiraishi, Jun; Wasada, Kenshi; Kitajima, Hiroyuki; Fujita, Tomio; Nakayama, Masahiro; Mitsuda, Nobuaki; Nakanishi, Isao; Takeuchi, Makoto; Yanagihara, Itaru

    2015-04-01

    Ureaplasma spp. cause several disorders, such as nongonococcal urethritis, miscarriage, and preterm delivery with lung infections in neonates, characterized by pathological chorioamnionitis in the placenta. Although reports on antibiotic resistance in Ureaplasma are on the rise, reports on quinolone-resistant Ureaplasma infections in Japan are limited. The purpose of this study was to determine susceptibilities to five quinolones of Ureaplasma urealyticum and Ureaplasma parvum isolated from perinatal samples in Japan and to characterize the quinolone resistance-determining regions in the gyrA, gyrB, parC, and parE genes. Out of 28 clinical Ureaplasma strains, we isolated 9 with high MICs of quinolones and found a single parC gene mutation, resulting in the change S83L. Among 158 samples, the ParC S83L mutation was found in 37 samples (23.4%), including 1 sample harboring a ParC S83L-GyrB P462S double mutant. Novel mutations of ureaplasmal ParC (S83W and S84P) were independently found in one of the samples. Homology modeling of the ParC S83W mutant suggested steric hindrance of the quinolone-binding pocket (QBP), and de novo prediction of peptide structures revealed that the ParC S84P may break/kink the formation of the α4 helix in the QBP. Further investigations are required to unravel the extent and mechanism of antibiotic resistance of Ureaplasma spp. in Japan. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. In vitro effect of some quinolone antibiotics on strains of ...

    African Journals Online (AJOL)

    A total of 30 different strains of Staphylococcus aureus were isolated from some selected wards of Madonna University Teaching Hospital (MUTH), Elele, Nigeria, using blood agar and nutrient agar. All the isolates were subjected to some selected quinolones (ciprofloxacin, pefloxacin, ofloxacin, norfloxcin and sparfloxacin) ...

  15. Characterization of Plasmid-Mediated Quinolone Resistance Determinants in High-Level Quinolone-Resistant Enterobacteriaceae Isolates from the Community: First Report of qnrD Gene in Algeria.

    Science.gov (United States)

    Yanat, Betitera; Machuca, Jesús; Díaz-De-Alba, Paula; Mezhoud, Halima; Touati, Abdelaziz; Pascual, Álvaro; Rodríguez-Martínez, José-Manuel

    2017-01-01

    The objective was to assess the prevalence of plasmid-mediated quinolone resistance (PMQR)-producing isolates in a collection of quinolone-resistant Enterobacteriaceae of community origin isolated in Bejaia, Algeria. A total of 141 nalidixic acid-resistant Enterobacteriaceae community isolates were collected in Bejaia (Northern Algeria) and screened for PMQR genes using polymerase chain reaction (PCR). For PMQR-positive strains, antimicrobial susceptibility testing was performed by broth microdilution and disk diffusion. Mutations in the quinolone resistance-determining regions of the target genes, gyrA and parC, were detected with a PCR-based method and sequencing. Southern blotting, conjugation and transformation assays and molecular typing by pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing were also performed. The prevalence of PMQR-producing Enterobacteriaceae isolates was 13.5% (19/141); 11 of these isolates produced Aac(6')-Ib-cr and 8 were qnr-positive (4 qnrB1-like, 2 qnrS1-like, and 2 qnrD1-like), including the association with aac(6')-Ib-cr gene in three cases. PMQR gene transfer by conjugation was successful in 6 of 19 isolates tested. PFGE revealed that most of the PMQR-positive Escherichia coli isolates were unrelated, except for two groups comprising two and four isolates, respectively, including the virulent multidrug-resistant clone E. coli ST131 that were clonally related. Our findings indicate that PMQR determinants are prevalent in Enterobacteriaceae isolates from the community studied. We describe the first report of the qnrD gene in Algeria.

  16. Estimated Under-Five Deaths Associated with Poor-Quality Antimalarials in Sub-Saharan Africa

    Science.gov (United States)

    Renschler, John P.; Walters, Kelsey M.; Newton, Paul N.; Laxminarayan, Ramanan

    2015-01-01

    Many antimalarials sold in sub-Saharan Africa are poor-quality (falsified, substandard, or degraded), and the burden of disease caused by this problem is inadequately quantified. In this article, we estimate the number of under-five deaths caused by ineffective treatment of malaria associated with consumption of poor-quality antimalarials in 39 sub-Saharan countries. Using Latin hypercube sampling our estimates were calculated as the product of the number of private sector antimalarials consumed by malaria-positive children in 2013; the proportion of private sector antimalarials consumed that were of poor-quality; and the case fatality rate (CFR) of under-five malaria-positive children who did not receive appropriate treatment. An estimated 122,350 (interquartile range [IQR]: 91,577–154,736) under-five malaria deaths were associated with consumption of poor-quality antimalarials, representing 3.75% (IQR: 2.81–4.75%) of all under-five deaths in our sample of 39 countries. There is considerable uncertainty surrounding our results because of gaps in data on case fatality rates and prevalence of poor-quality antimalarials. Our analysis highlights the need for further investigation into the distribution of poor-quality antimalarials and the need for stronger surveillance and regulatory efforts to prevent the sale of poor-quality antimalarials. PMID:25897068

  17. Fluorine walk: The impact of fluorine in quinolone amides on their activity against African sleeping sickness.

    Science.gov (United States)

    Berninger, Michael; Erk, Christine; Fuß, Antje; Skaf, Joseph; Al-Momani, Ehab; Israel, Ina; Raschig, Martina; Güntzel, Paul; Samnick, Samuel; Holzgrabe, Ulrike

    2018-05-25

    Human African Trypanosomiasis, also known as African sleeping sickness, is caused by the parasitic protozoa of the genus Trypanosoma. If there is no pharmacological intervention, the parasites can cross the blood-brain barrier (BBB), inevitably leading to death of the patients. Previous investigation identified the quinolone amide GHQ168 as a promising lead compound having a nanomolar activity against T. b. brucei. Here, the role of a fluorine substitution at different positions was investigated in regard to toxicity, pharmacokinetics, and antitrypanosomal activity. This 'fluorine walk' led to new compounds with improved metabolic stability and consistent activity against T. b. brucei. The ability of the new quinolone amides to cross the BBB was confirmed using an 18 F-labelled quinolone amide derivative by means of ex vivo autoradiography of a murine brain. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations

    Science.gov (United States)

    Mott, Bryan T.; Eastman, Richard T.; Guha, Rajarshi; Sherlach, Katy S.; Siriwardana, Amila; Shinn, Paul; McKnight, Crystal; Michael, Sam; Lacerda-Queiroz, Norinne; Patel, Paresma R.; Khine, Pwint; Sun, Hongmao; Kasbekar, Monica; Aghdam, Nima; Fontaine, Shaun D.; Liu, Dongbo; Mierzwa, Tim; Mathews-Griner, Lesley A.; Ferrer, Marc; Renslo, Adam R.; Inglese, James; Yuan, Jing; Roepe, Paul D.; Su, Xin-zhuan; Thomas, Craig J.

    2015-01-01

    Drug resistance in Plasmodium parasites is a constant threat. Novel therapeutics, especially new drug combinations, must be identified at a faster rate. In response to the urgent need for new antimalarial drug combinations we screened a large collection of approved and investigational drugs, tested 13,910 drug pairs, and identified many promising antimalarial drug combinations. The activity of known antimalarial drug regimens was confirmed and a myriad of new classes of positively interacting drug pairings were discovered. Network and clustering analyses reinforced established mechanistic relationships for known drug combinations and identified several novel mechanistic hypotheses. From eleven screens comprising >4,600 combinations per parasite strain (including duplicates) we further investigated interactions between approved antimalarials, calcium homeostasis modulators, and inhibitors of phosphatidylinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR). These studies highlight important targets and pathways and provide promising leads for clinically actionable antimalarial therapy. PMID:26403635

  19. Prevalence of quinolone resistance mechanisms in Enterobacteriaceae producing acquired AmpC β-lactamases and/or carbapenemases in Spain.

    Science.gov (United States)

    Machuca, Jesús; Agüero, Jesús; Miró, Elisenda; Conejo, María Del Carmen; Oteo, Jesús; Bou, Germán; González-López, Juan José; Oliver, Antonio; Navarro, Ferran; Pascual, Álvaro; Martínez-Martínez, Luis

    2017-10-01

    Quinolone resistance in Enterobacteriaceae species has increased over the past few years, and is significantly associated to beta-lactam resistance. The aim of this study was to evaluate the prevalence of chromosomal- and plasmid-mediated quinolone resistance in acquired AmpC β-lactamase and/or carbapenemase-producing Enterobacteriaceae isolates. The presence of chromosomal- and plasmid-mediated quinolone resistance mechanisms [mutations in the quinolone resistance determining region (QRDR) of gyrA and parC and qnr, aac(6')-Ib-cr and qepA genes] was evaluated in 289 isolates of acquired AmpC β-lactamase- and/or carbapenemase-producing Enterobacteriaceae collected between February and July 2009 in 35 Spanish hospitals. Plasmid mediated quinolone resistance (PMQR) genes were detected in 92 isolates (31.8%), qnr genes were detected in 83 isolates (28.7%), and the aac(6')-Ib-cr gene was detected in 20 isolates (7%). qnrB4 gene was the most prevalent qnr gene detected (20%), associated, in most cases, with DHA-1. Only 14.6% of isolates showed no mutations in gyrA or parC with a ciprofloxacin MIC of 0.5mg/L or higher, whereas PMQR genes were detected in 90% of such isolates. qnrB4 gene was the most prevalent PMQR gene detected, and was significantly associated with acquired AmpC β-lactamase DHA-1. PMQR determinants in association with other chromosomal-mediated quinolone resistance mechanisms, different to mutations in gyrA and parC (increased energy-dependent efflux, altered lipopolysaccharide or porin loss), could lead to ciprofloxacin MIC values that exceed breakpoints established by the main international committees to define clinical antimicrobial susceptibility breakpoints. Copyright © 2016 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  20. Detection of mutations in mtrR gene in quinolone resistant strains of N.gonorrhoeae isolated from India

    Directory of Open Access Journals (Sweden)

    S V Kulkarni

    2015-01-01

    Full Text Available Background and Objectives: Emergence of multi-drug resistant Neisseria gonorrhoeae resulting from new genetic mutation is a serious threat in controlling gonorrhea. This study was undertaken to identify and characterise mutations in the mtrR genes in N.gonorrhoeae isolates resistant to six different antibiotics in the quinolone group. Materials and Methods: The Minimum inhibitory concentrations (MIC of five quinolones for 64 N.gonorrhoeae isolates isolated during Jan 2007-Jun 2009 were determined by E-test method. Mutations in MtrR loci were examined by deoxyribonucleic acid (DNA sequencing. Results: The proportion of N.gonorrhoeae strains resistant to anti-microbials was 98.4% for norfloxacin and ofloxacin, 96.8% for enoxacin and ciprofloxacin, 95.3% for lomefloxacin. Thirty-one (48.4% strains showed mutation (single/multiple in mtrR gene. Ten different mutations were observed and Gly-45 → Asp, Tyr-105 → His being the most common observed mutation. Conclusion: This is the first report from India on quinolone resistance mutations in MtrRCDE efflux system in N.gonorrhoeae. In conclusion, the high level of resistance to quinolone and single or multiple mutations in mtrR gene could limit the drug choices for gonorrhoea.

  1. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors.

    OpenAIRE

    Rosenthal, P J; Olson, J E; Lee, G K; Palmer, J T; Klaus, J L; Rasnick, D

    1996-01-01

    We evaluated the antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. A number of vinyl sulfones strongly inhibited falcipain, a Plasmodium falciparum cysteine proteinase that is a critical hemoglobinase. In studies of cultured parasites, nanomolar concentrations of three vinyl sulfones inhibited parasite hemoglobin degradation, metabolic activity, and development. The antimalarial effects correlated with the inhibition of falcipain. Our results suggest that vinyl sulfones or...

  2. Detection of quinolones in commercial eggs obtained from farms in the Espaíllat Province in the Dominican Republic.

    Science.gov (United States)

    Moscoso, S; de los Santos, F Solís; Andino, A G; Diaz-Sanchez, Sandra; Hanning, I

    2015-01-01

    Previously, we reported the use of quinolones in broiler chickens resulted in residues in retail poultry meat obtained from nine districts in the Santiago Province of the Dominican Republic. Residues in poultry products are a concern due to consumer allergies and the potential to develop antibiotic-resistant bacteria. Given the use of quinolones in poultry production and our previous findings in poultry meat, the objective of this study was to evaluate the presence of quinolone residues in eggs. Samples were collected from 48 different farms located in three of the four municipalities (Moca, Cayetano Germosén, and Jamao) of the Espaíllat Province. Each farm was sampled three times between July and September for a total of 144 samples. Samples were evaluated qualitatively and quantitatively for quinolone residues using the Equinox test. Operation systems (cage or floor), seasonality, and location were considered along with egg-producer sizes that were defined as small scale, eggs per day; medium scale, 30,000 to 60,000 eggs per day; or large scale, >60,000 eggs per day. From small-, medium-, and large-scale producers, 69, 50, and 40% of samples were positive for quinolone residues, respectively. A greater number of samples were positive (61%) in floor-laying hen producers compared with those using cages (40%). In the Jamao municipality, 67% of the samples were positive compared with Moca and Cayetano Germosén, where 56 and 25% of samples were positive, respectively. Sampling time had an effect on percent positives: samples collected in July, August, and September were 71, 19, and 63% positive, respectively. Overall, 51% of the samples obtained from eggs produced in the province of Espaíllat were positive for quinolone residues at levels higher than the maximum limits for edible tissue established by the regulatory agencies, including the European Union and U.S. Department of Agriculture. The results obtained from this research confirmed the presence of quinolone

  3. Antimalarial activity of plumbagin in vitro and in animal models.

    Science.gov (United States)

    Sumsakul, Wiriyaporn; Plengsuriyakarn, Tullayakorn; Chaijaroenkul, Wanna; Viyanant, Vithoon; Karbwang, Juntra; Na-Bangchang, Kesara

    2014-01-12

    Plumbagin is the major active constituent in several plants including Plumbago indica Linn. (root). This compound has been shown to exhibit a wide spectrum of biological and pharmacological activities. The present study aimed to evaluate the in vitro and in vivo antimalarial activity of plumbagin including its acute and subacute toxicity in mice. In vitro antimalarial activity of plumbagin against K1 and 3D7 Plasmodium falciparum clones were assessed using SYBR Green I based assay. In vivo antimalarial activity was investigated in Plasmodium berghei-infected mouse model (a 4-day suppressive test). Plumbagin exhibited promising antimalarial activity with in vitro IC50 (concentration that inhibits parasite growth to 50%) against 3D7 chloroquine-sensitive P. falciparum and K1 chloroquine-resistant P. falciparum clones of 580 (270-640) and 370 (270-490) nM, respectively. Toxicity testing indicated relatively low toxicity at the dose levels up to 100 (single oral dose) and 25 (daily doses for 14 days) mg/kg body weight for acute and subacute toxicity, respectively. Chloroquine exhibited the most potent antimalarial activity in mice infected with P. berghei ANKA strain with respect to its activity on the reduction of parasitaemia on day 4 and the prolongation of survival time. Plumbagin at the dose of 25 mg/kg body weight given for 4 days was safe and produced weak antimalarial activity. Chemical derivatization of the parent compound or preparation of modified formulation is required to improve its systemic bioavailability.

  4. Dynamics of quinolone resistance in fecal Escherichia coli of finishing pigs after ciprofloxacin administration.

    Science.gov (United States)

    Huang, Kang; Xu, Chang-Wen; Zeng, Bo; Xia, Qing-Qing; Zhang, An-Yun; Lei, Chang-Wei; Guan, Zhong-Bin; Cheng, Han; Wang, Hong-Ning

    2014-09-01

    Escherichia coli resistance to quinolones has now become a serious issue in large-scale pig farms of China. It is necessary to study the dynamics of quinolone resistance in fecal Escherichia coli of pigs after antimicrobial administration. Here, we present the hypothesis that the emergence of resistance in pigs requires drug accumulation for 7 days or more. To test this hypothesis, 26 pigs (90 days old, about 30 kg) not fed any antimicrobial after weaning were selected and divided into 2 equal groups: the experimental (EP) group and control (CP) group. Pigs in the EP group were orally treated daily with 5 mg ciprofloxacin/kg of body weight for 30 days, and pigs in the CP group were fed a normal diet. Fresh feces were collected at 16 time points from day 0 to day 61. At each time point, ten E. coli clones were tested for susceptibility to quinolones and mutations of gyrA and parC. The results showed that the minimal inhibitory concentration (MIC) for ciprofloxacin increased 16-fold compared with the initial MIC (0.5 µg/ml) after ciprofloxacin administration for 3 days and decreased 256-fold compared with the initial MIC (0.5 µg/ml) after ciprofloxacin withdrawal for 26 days. GyrA (S83L, D87N/ D87Y) and parC (S80I) substitutions were observed in all quinolone-resistant E. coli (QREC) clones with an MIC ≥8 µg/ml. This study provides scientific theoretical guidance for the rational use of antimicrobials and the control of bacterial resistance.

  5. Antimalarial Drug: From its Development to Deface.

    Science.gov (United States)

    Barik, Tapan Kumar

    2015-01-01

    Wiping out malaria is now the global concern as about three billion people are at risk of malaria infection globally. Despite of extensive research in the field of vaccine development for malaria, till now, no effective vaccine is available for use and hence only antimalarial drugs remain our best hope for both treatment and prevention of malaria. However, emergence and spread of drug resistance has been a major obstacle for the success of malaria elimination globally. This review will summarize the information related to antimalarial drugs, drug development strategies, drug delivery through nanoparticles, few current issues like adverse side effects of most antimalarial drugs, non availability of drugs in the market and use of fake/poor quality drugs that are hurdles to malaria control. As we don't have any other option in the present scenario, we have to take care of the existing tools and make them available to almost all malaria affected area.

  6. Synthesis and Antimicrobial Activities of Some New Pyrazoles ...

    African Journals Online (AJOL)

    NICO

    29 antimalarial,30 antimicrobial,31,32 antiviral,33,34 hypoglycaemic,35 anti-HIV activity,36 insecticidal,37 and anti- fungal38 activities. In view of these reports and in continuation of our previous work39 we describe here a facile synthesis of.

  7. Emergence of quinolone resistance among extended-spectrum beta-lactamase-producing Enterobacteriaceae in the Central African Republic: genetic characterization

    Directory of Open Access Journals (Sweden)

    Frank Thierry

    2011-08-01

    Full Text Available Abstract Background Cross-resistance to quinolones and beta-lactams is frequent in Enterobacteriaceae, due to the wide use of these antibiotics clinically and in the food industry. Prescription of one of these categories of antibiotic may consequently select for bacteria resistant to both categories. Genetic mechanisms of resistance may be secondary to a chromosomal mutation located in quinolone resistance determining region of DNA gyrase or topoisomerase IV or to a plasmid acquisition. The insertion sequence ISCR1 is often associated with qnr and may favour its dissemination in Gram-negative bacteria. The aim of this study was to determine the genetic mechanism of quinolone resistance among extended-spectrum beta-lactamase-producing Enterobacteriaceae strains in the Central African Republic. Findings Among seventeen ESBL-producing Enterobacteriaceae isolated from urine, pus or stool between January 2003 and October 2005 in the Central African Republic, nine were resistant to ciprofloxacin (seven from community patients and two from hospitalized patients. The ESBL were previously characterized as CTX-M-15 and SHV-12. Susceptibility to nalidixic acid, norfloxacin and ciprofloxacin, and the minimal inhibitory concentrations of these drugs were determined by disc diffusion and agar dilution methods, respectively. The presence of plasmid-borne ISCR1-qnrA region was determined by PCR and amplicons, if any, were sent for sequencing. Quinolone resistance determining region of DNA gyrase gyrA gene was amplified by PCR and then sequenced for mutation characterization. We found that all CTX-M-producing strains were resistant to the tested quinolones. All the isolates had the same nucleotide mutation at codon 83 of gyrA. Two Escherichia coli strains with the highest MICs were shown to harbour an ISCR1-qnrA1 sequence. This genetic association might favour dissemination of resistance to quinolone and perhaps other antibiotics among Enterobacteriaceae

  8. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    Directory of Open Access Journals (Sweden)

    Avinaba Mukherjee

    2016-03-01

    Full Text Available Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug

  9. QSAR models for anti-malarial activity of 4-aminoquinolines.

    Science.gov (United States)

    Masand, Vijay H; Toropov, Andrey A; Toropova, Alla P; Mahajan, Devidas T

    2014-03-01

    In the present study, predictive quantitative structure - activity relationship (QSAR) models for anti-malarial activity of 4-aminoquinolines have been developed. CORAL, which is freely available on internet (http://www.insilico.eu/coral), has been used as a tool of QSAR analysis to establish statistically robust QSAR model of anti-malarial activity of 4-aminoquinolines. Six random splits into the visible sub-system of the training and invisible subsystem of validation were examined. Statistical qualities for these splits vary, but in all these cases, statistical quality of prediction for anti-malarial activity was quite good. The optimal SMILES-based descriptor was used to derive the single descriptor based QSAR model for a data set of 112 aminoquinolones. All the splits had r(2)> 0.85 and r(2)> 0.78 for subtraining and validation sets, respectively. The three parametric multilinear regression (MLR) QSAR model has Q(2) = 0.83, R(2) = 0.84 and F = 190.39. The anti-malarial activity has strong correlation with presence/absence of nitrogen and oxygen at a topological distance of six.

  10. [Occurrence of quinolone and sulfonamide antibiotics in swine and cattle manures from large-scale feeding operations of Guangdong Province].

    Science.gov (United States)

    Tai, Yi-Ping; Luo, Xiao-Dong; Mo, Ce-Hui; Li, Yan-Wen; Wu, Xiao-Lian; Liu, Xing-Yue

    2011-04-01

    The occurrence and distribution of four quinolones and four sulfonamides in swine and cattle feces sampled from twenty large-scale feeding operations in different areas of Guangdong province were detected using solid phase extraction (SPE) and high performance liquid chromatography (HPLC). Quinolone and sulfonamide compounds were observed in all pig dung samples. Their total concentrations ranged from 24.5 microg/kg to 1516.2 microg/kg (F. W.) with an average of 581.0 microg/kg and ranged from 1925.9-13399.5 microg/kg with an average of 4403.9 microg/kg respectively. The dominant compounds in pig feces were ciprofloxacin and enrofloxacin for quinolones and sulfamerazine and sulfamethoxazole for sulfonamides. Quinolone compounds which dominated with norfloxacin and ciprofloxacin were also observed in all cattle dung samples, its total concentrations ranged from 73.2 microg/kg to 1328.0 microg/kg which averaged 572.9 microg/kg. While the positive rates of sulfonamide compounds detected in cattle dung samples were above 90%, predominated by sulfamethoxazole and sulfamerazine. Concentration and distribution of both quinolone and sulfonamide compounds in swine and cattle dungs of different feeding operations varied greatly. Relatively high concentrations of the two kinds of antibiotics were found in both swine and cattle dungs from Guangzhou area, while sulfameter and sulfamethazine in cattle dungs from Foshan and Shenzhen areas were below the limit of detection.

  11. Design, Synthesis, Molecular Docking, and Antibacterial Evaluation of Some Novel Flouroquinolone Derivatives as Potent Antibacterial Agent

    Directory of Open Access Journals (Sweden)

    Mehul M. Patel

    2014-01-01

    Full Text Available Objective. Quinolone moiety is an important class of nitrogen containing heterocycles widely used as key building blocks for medicinal agents. It exhibits a wide spectrum of pharmacophores and has bactericidal, antiviral, antimalarial, and anticancer activities. In view of the reported antimicrobial activity of various fluoroquinolones, the importance of the C-7 substituents is that they exhibit potent antimicrobial activities. Our objective was to synthesize newer quinolone analogues with increasing bulk at C-7 position of the main 6-fluoroquinolone scaffold to produce the target compounds which have potent antimicrobial activity. Methods. A novel series of 1-ethyl-6-fluoro-4-oxo-7-{4-[2-(4-substituted phenyl-2-(substituted-ethyl]-1-piperazinyl}-1,4-dihydroquinoline-3-carboxylic acid derivatives were synthesized. To understand the interaction of binding sites with bacterial protein receptor, the docking study was performed using topoisomerase II DNA gyrase enzymes (PDB ID: 2XCT by Schrodinger’s Maestro program. In vitro antibacterial activity of the synthesized compounds was studied and the MIC value was calculated by the broth dilution method. Results. Among all the synthesized compounds, some compounds showed potent antimicrobial activity. The compound 8g exhibited good antibacterial activity. Conclusion. This investigation identified the potent antibacterial agents against certain infections.

  12. In vivo Antimalarial Activity of Methanol and Water Extracts of ...

    African Journals Online (AJOL)

    Conclusions: The possible active compounds responsible for the observed chemosupression may be flavonoids, terpeneoids and anthraquinones which are present in the extract. This is the first report on the in vivo antimalarial activity of E. thorifolium. Keywords: Antimalarial, Eryngium thorifolium, Plasmodium berghei, ...

  13. Natural cocoa as diet-mediated antimalarial prophylaxis.

    Science.gov (United States)

    Addai, F K

    2010-05-01

    The Maya of Central America are credited with the first consumption of cocoa and maintaining its ancient Olmec name kakawa translated in English as "God Food", in recognition of its multiple health benefits. The legend of cocoa is receiving renewed attention in recent years, on account of epidemiological and scientific studies that support its cardiovascular health benefits. Increasing numbers of scientific reports corroborating cocoa's antiquated reputation as health food persuaded this author to promote regular consumption of cocoa in Ghana since 2004. Cocoa is readily available in Ghana; the country is the second largest producer accounting for 14% of the world's output. Numerous anecdotal reports of reduced episodic malaria in people who daily drink natural unsweetened cocoa beverage prompted a search for scientific mechanisms that possibly account for cocoa's antimalarial effects. This paper presents the outcome as a hypothesis. Internet search for literature on effects of cocoa's ingredients on malaria parasites and illness using a variety of search tools. Evidential literature suggests five mechanisms that possibly underpin cocoa's anecdotal antimalarial effects. (i) Increased availability of antioxidants in plasma, (ii) membrane effects in general and erythrocyte membrane in particular, (iii) increased plasma levels of nitric oxide, (iv) antimalarial activity of cocoa flavanoids and their derivatives, and (v) boosted immune system mediated by components of cocoa including cocoa butter, polyphenols, magnesium, and zinc. A hypothesis is formulated that cocoa offers a diet-mediated antimalarial prophylaxis; and an additional novel tool in the fight against the legendary scourge.

  14. Metal complexes of the fourth generation quinolone antimicrobial drug gatifloxacin: Synthesis, structure and biological evaluation

    Science.gov (United States)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.

    2010-08-01

    Three metal complexes of the fourth generation quinolone antimicrobial agent gatifloxacin (GFLX) with Y(ΙΙΙ), Zr(ΙV) and U(VΙ) have been prepared and characterized with physicochemical and spectroscopic techniques. In these complexes, gatifloxacin acts as a bidentate deprotonated ligand bound to the metal through the ketone oxygen and a carboxylato oxygen. The complexes are six-coordinated with distorted octahedral geometry. The kinetic parameters for gatifloxacin and the three prepared complexes have been evaluated from TGA curves by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The calculated bond length and force constant, F(U dbnd O), for the UO 2 bond in uranyl complex are 1.7522 Å and 639.46 N m -1. The antimicrobial activity of the complexes has been tested against microorganisms, three bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and two fungi species, penicillium ( P. rotatum) and trichoderma ( T. sp.), showing that they exhibit higher activity than free ligand.

  15. Pattern of the Antimalarials Prescription during Pregnancy in Bangui, Central African Republic

    Directory of Open Access Journals (Sweden)

    Alexandre Manirakiza

    2011-01-01

    Full Text Available Introduction. The aim of this study was to identify the antimalarials prescribed during the pregnancy and to document their timing. Method. From June to September 2009, a survey was conducted on 565 women who gave birth in the Castors maternity in Bangui. The antenatal clinics cards were checked in order to record the types of antimalarials prescribed during pregnancy according to gestational age. Results. A proportion of 28.8% ANC cards contained at least one antimalarial prescription. The commonest categories of antimalarials prescribed were: quinine (56.7%, artemisinin-based combinations (26.8% and artemisinin monotherapy (14.4%. Among the prescriptions that occurred in the first trimester of pregnancy, artemisinin-based combinations and artemisinin monotherapies represented the proportions of (10.9% and (13.3%. respectively. Conclusion. This study showed a relatively high rate (>80% of the recommended antimalarials prescription regarding categories of indicated antimalarials from national guidelines. But, there is a concern about the prescription of the artemisinin derivatives in the first trimester of pregnancy, and the prescription of artemisinin monotherapy. Thus, the reinforcement of awareness activities of health care providers on the national malaria treatment during pregnancy is suggested.

  16. Pattern of the Antimalarials Prescription during Pregnancy in Bangui, Central African Republic

    Science.gov (United States)

    Manirakiza, Alexandre; Soula, Georges; Laganier, Remi; Klement, Elise; Djallé, Djibrine; Methode, Moyen; Madji, Nestor; Heredeïbona, Luc Salva; Le Faou, Alain; Delmont, Jean

    2011-01-01

    Introduction. The aim of this study was to identify the antimalarials prescribed during the pregnancy and to document their timing. Method. From June to September 2009, a survey was conducted on 565 women who gave birth in the Castors maternity in Bangui. The antenatal clinics cards were checked in order to record the types of antimalarials prescribed during pregnancy according to gestational age. Results. A proportion of 28.8% ANC cards contained at least one antimalarial prescription. The commonest categories of antimalarials prescribed were: quinine (56.7%), artemisinin-based combinations (26.8%) and artemisinin monotherapy (14.4%). Among the prescriptions that occurred in the first trimester of pregnancy, artemisinin-based combinations and artemisinin monotherapies represented the proportions of (10.9%) and (13.3%). respectively. Conclusion. This study showed a relatively high rate (>80%) of the recommended antimalarials prescription regarding categories of indicated antimalarials from national guidelines. But, there is a concern about the prescription of the artemisinin derivatives in the first trimester of pregnancy, and the prescription of artemisinin monotherapy. Thus, the reinforcement of awareness activities of health care providers on the national malaria treatment during pregnancy is suggested. PMID:22312567

  17. Quinoline-Based Hybrid Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Xhamla Nqoro

    2017-12-01

    Full Text Available The application of quinoline-based compounds for the treatment of malaria infections is hampered by drug resistance. Drug resistance has led to the combination of quinolines with other classes of antimalarials resulting in enhanced therapeutic outcomes. However, the combination of antimalarials is limited by drug-drug interactions. In order to overcome the aforementioned factors, several researchers have reported hybrid compounds prepared by reacting quinoline-based compounds with other compounds via selected functionalities. This review will focus on the currently reported quinoline-based hybrid compounds and their preclinical studies.

  18. Synthesis, characterization of some novel 1,3,4-oxadiazole compounds containing 8-hydroxy quinolone moiety as potential antibacterial and anticancer agents

    Directory of Open Access Journals (Sweden)

    Vinayak Mahadev Adimule

    2014-12-01

    Full Text Available In the present work a series of novel derivatives of 8-hydroxy quinolone substituted 1,3,4-oxadiazole compounds were synthesized by convergent synthetic method and studied for their antibacterial and anticancer properties. The cell lines used for cytotoxic evaluation were HeLa, Caco-2 and MCF7. The synthetic chemistry involved conversion of various substituted aromatic acids into ethyl ester 2a-e. The ethyl ester was converted into corresponding carbohydrazide 3a-e. Carbohydrazides are reacted with chloroacetic acid, phosphorous oxytrichloride and irradiated with microwave in order to obtain the various key intermediates 2-(chloromethyl-5-(substituted phenyl-1,3,4-oxadiazole 4a-e. The 2-(chloromethyl-5-(substituted phenyl-1,3,4-oxadiazole was reacted with 8-hydroxy quinolone in presence of sodium hydride and obtained a series of 8-hydroxy quinoline substituted 1,3,4-oxadiazoles 5a-e. Among the synthesised compounds, the cytotoxicity of the compound 5b i.e. 8-{[5-(2,4-dichlorophenyl-1,3,4-oxadiazol-2-yl]methoxy}quinoline against MCF7 with IC50 of 5.3µM and the compound 5e i.e. 8-{[5-(4-bromophenyl-1,3,4-oxadiazol-2-yl]methoxy}quinoline showed MIC of < 6.25µg/mL against Staphylococcus aureus which is comparable with the known standards. The standards used for cytotoxic evaluation was 5-fluorouracil and for antibacterial was nitrofurazone

  19. A non-cytotoxic N-dehydroabietylamine derivative with potent antimalarial activity.

    Science.gov (United States)

    Sadashiva, Maralinganadoddi P; Gowda, Raghavendra; Wu, Xianzhu; Inamdar, Gajanan S; Kuzu, Omer F; Rangappa, Kanchugarakoppal S; Robertson, Gavin P; Gowda, D Channe

    2015-08-01

    Malaria caused by the Plasmodium parasites continues to be an enormous global health problem owing to wide spread drug resistance of parasites to many of the available antimalarial drugs. Therefore, development of new classes of antimalarial agents is essential to effectively treat malaria. In this study, the efficacy of naturally occurring diterpenoids, dehydroabietylamine and abietic acid, and their synthetic derivatives was assessed for antimalarial activity. Dehydroabietylamine and its N-trifluoroacetyl, N-tribromoacetyl, N-benzoyl, and N-benzyl derivatives showed excellent activity against P. falciparum parasites with IC50 values of 0.36 to 2.6 µM. Interestingly, N-dehydroabietylbenzamide showed potent antimalarial activity (IC50 0.36), and negligible cytotoxicity (IC50 >100 µM) to mammalian cells; thus, this compound can be an important antimalarial drug. In contrast, abietic acid was only marginally effective, exhibiting an IC50 value of ~82 µM. Several carboxylic group-derivatives of abietic acid were moderately active with IC50 values of ~8.2 to ~13.3 µM. These results suggest that a detailed understanding of the structure-activity relationship of abietane diterpenoids might provide strategies to exploit this class of compounds for malaria treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement.

    Science.gov (United States)

    Shen, Shuo; Liu, Shu-Zhi; Zhang, Yu-Shi; Du, Mao-Bo; Liang, Ai-Hua; Song, Li-Hua; Ye, Zu-Guang

    2015-01-01

    Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem-ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic.

  1. Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water.

    Science.gov (United States)

    Conte, Danieli; Palmeiro, Jussara Kasuko; da Silva Nogueira, Keite; de Lima, Thiago Marenda Rosa; Cardoso, Marco André; Pontarolo, Roberto; Degaut Pontes, Flávia Lada; Dalla-Costa, Libera Maria

    2017-02-01

    Multidrug-resistant (MDR) bacteria are widespread in hospitals and have been increasingly isolated from aquatic environments. The aim of the present study was to characterize extended-spectrum β-lactamase (ESBL) and quinolone-resistant Enterobacteriaceae from a hospital effluent, sanitary effluent, inflow sewage, aeration tank, and outflow sewage within a wastewater treatment plant (WWTP), as well as river water upstream and downstream (URW and DRW, respectively), of the point where the WWTP treated effluent was discharged. β-lactamase (bla) genes, plasmid-mediated quinolone resistance (PMQR), and quinolone resistance-determining regions (QRDRs) were assessed by amplification and sequencing in 55 ESBL-positive and/or quinolone-resistant isolates. Ciprofloxacin residue was evaluated by high performance liquid chromatography. ESBL-producing isolates were identified in both raw (n=29) and treated (n=26) water; they included Escherichia coli (32), Klebsiella pneumoniae (22) and Klebsiella oxytoca (1). Resistance to both cephalosporins and quinolone was observed in 34.4% of E. coli and 27.3% of K. pneumoniae. Resistance to carbapenems was found in 5.4% of K. pneumoniae and in K. oxytoca. Results indicate the presence of bla CTX-M (51/55, 92.7%) and bla SHV (8/55, 14.5%) ESBLs, and bla GES (2/55, 3.6%) carbapenemase-encoding resistance determinants. Genes conferring quinolone resistance were detected at all sites, except in the inflow sewage and aeration tanks. Quinolone resistance was primarily attributed to amino acid substitutions in the QRDR of GyrA (47%) or to the presence of PMQR (aac-(6')-Ib-cr, oqxAB, qnrS, and/or qnrB; 52.9%) determinants. Ciprofloxacin residue was absent only from URW. Our results have shown strains carrying ESBL genes, PMQR determinants, and mutations in the gyrA QRDR genes mainly in hospital effluent, URW, and DRW samples. Antimicrobial use, and the inefficient removal of MDR bacteria and antibiotic residue during sewage treatment, may

  2. Poisoning by anti-malarial drugs

    African Journals Online (AJOL)

    had taken chloroquine: no other anti-malarial drugs were involved [1]. ... and angio-oedema have been described. Itching without a ... 15mg/L the risk of permanent visual damage and cardiac dysrhythmias is ... to use an alternative method.

  3. Quantitative determination of quinolones residues in milk by HPLC-FLD

    Directory of Open Access Journals (Sweden)

    Marilena Gili

    2012-10-01

    Full Text Available Veterinary drugs have become an integral part of the livestock production and play an important role in maintenance of animal welfare. The use of veterinary medicines may be cause of the presence of drug residues in animal food products if appropriate withdrawal periods are not respected or if contaminated feeds are used. This work presents the development of an HPLC-FLD method for the quantitative de-tection of eight quinolones – norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, difloxacin, oxolinic acid, nalidixic acid, flumequine– in bovine milk. After deproteination and extraction with a metaphos-phoric acid 1% w/v / methanol / acetonitrile (60/20/20 v/v/v solution, the sample is partially evaporated and cleaned up on a reversed phase SPE cartridge.The extract is analyzed using an high performance liquid chromatograph with fluorescence detector. Mean recovery ranged between 65% - 88%. All the an-alytes can be identified and quantified in the concentration range 15 - 60 μg/Kg for danofloxacin and 25 - 150 μg/Kg for the other quinolones.

  4. Antistaphylococcal activity of DX-619, a new des-F(6)-quinolone, compared to those of other agents.

    Science.gov (United States)

    Bogdanovich, Tatiana; Esel, Duygu; Kelly, Linda M; Bozdogan, Bülent; Credito, Kim; Lin, Gengrong; Smith, Kathy; Ednie, Lois M; Hoellman, Dianne B; Appelbaum, Peter C

    2005-08-01

    The in vitro activity of DX-619, a new des-F(6)-quinolone, was tested against staphylococci and compared to those of other antimicrobials. DX-619 had the lowest MIC ranges/MIC(50)s/MIC(90)s (microg/ml) against 131 Staphylococcus aureus strains (32), and ciprofloxacin (>32/>32). Raised quinolone MICs were associated with mutations in GyrA (S84L) and single or double mutations in GrlA (S80F or Y; E84K, G, or V) in all S. aureus strains tested. A recent vancomycin-resistant S. aureus (VRSA) strain (Hershey) was resistant to available quinolones and was inhibited by DX-619 at 0.25 microg/ml and sitafloxacin at 1.0 microg/ml. Vancomycin (except VRSA), linezolid, ranbezolid, tigecycline, and quinupristin-dalfopristin were active against all strains, and teicoplanin was active against S. aureus but less active against coagulase-negative staphylococci. DX-619 produced resistant mutants with MICs of 1 to >32 microg/ml after 32 microg/ml for ciprofloxacin, sitafloxacin, moxifloxacin, and gatifloxacin. DX-619 and sitafloxacin were also more active than other tested drugs against selected mutants and had the lowest mutation frequencies in single-step resistance selection. DX-619 and sitafloxacin were bactericidal against six quinolone-resistant (including the VRSA) and seven quinolone-susceptible strains tested, whereas gatifloxacin, moxifloxacin, levofloxacin, and ciprofloxacin were bactericidal against 11, 10, 7, and 5 strains at 4x MIC after 24 h, respectively. DX-619 was also bactericidal against one other VRSA strain, five vancomycin-intermediate S. aureus strains, and four vancomycin-intermediate coagulase-negative staphylococci. Linezolid, ranbezolid, and tigecycline were bacteriostatic and quinupristin-dalfopristin, teicoplanin, and vancomycin were bactericidal against two, eight, and nine strains, and daptomycin and oritavancin were rapidly bactericidal against all strains, including the VRSA. DX-619 has potent in vitro activity against staphylococci, including

  5. Quinolone Resistance Reversion by Targeting the SOS Response

    Directory of Open Access Journals (Sweden)

    E. Recacha

    2017-10-01

    Full Text Available Suppression of the SOS response has been postulated as a therapeutic strategy for potentiating antimicrobial agents. We aimed to evaluate the impact of its suppression on reversing resistance using a model of isogenic strains of Escherichia coli representing multiple levels of quinolone resistance. E. coli mutants exhibiting a spectrum of SOS activity were constructed from isogenic strains carrying quinolone resistance mechanisms with susceptible and resistant phenotypes. Changes in susceptibility were evaluated by static (MICs and dynamic (killing curves or flow cytometry methodologies. A peritoneal sepsis murine model was used to evaluate in vivo impact. Suppression of the SOS response was capable of resensitizing mutant strains with genes encoding three or four different resistance mechanisms (up to 15-fold reductions in MICs. Killing curve assays showed a clear disadvantage for survival (Δlog10 CFU per milliliter [CFU/ml] of 8 log units after 24 h, and the in vivo efficacy of ciprofloxacin was significantly enhanced (Δlog10 CFU/g of 1.76 log units in resistant strains with a suppressed SOS response. This effect was evident even after short periods (60 min of exposure. Suppression of the SOS response reverses antimicrobial resistance across a range of E. coli phenotypes from reduced susceptibility to highly resistant, playing a significant role in increasing the in vivo efficacy.

  6. Antimalarial naphthoquinones. Synthesis via click chemistry, in vitro activity, docking to PfDHODH and SAR of lapachol-based compounds.

    Science.gov (United States)

    Brandão, Geraldo Célio; Rocha Missias, Franciele C; Arantes, Lucas Miquéias; Soares, Luciana Ferreira; Roy, Kuldeep K; Doerksen, Robert J; Braga de Oliveira, Alaide; Pereira, Guilherme Rocha

    2018-02-10

    Lapachol is an abundant prenyl naphthoquinone occurring in Brazilian Bignoniaceae that was clinically used, in former times, as an antimalarial drug, despite its moderate effect. Aiming to search for potentially better antimalarials, a series of 1,2,3-triazole derivatives was synthesized by chemical modification of lapachol. Alkylation of the hydroxyl group gave its propargyl ether which, via copper-catalyzed cycloaddition (CuAAC) click chemistry with different organic azides, afforded 17 naphthoquinonolyl triazole derivatives. All the synthetic compounds were evaluated for their in vitro activity against chloroquine resistant Plasmodium falciparum (W2) and for cytotoxicity to HepG2 cells. Compounds containing the naphthoquinolyl triazole moieties showed higher antimalarial activity than lapachol (IC 50 123.5 μM) and selectivity index (SI) values in the range of 4.5-197.7. Molecular docking simulations of lapachol, atovaquone and all the newly synthesized compounds were carried out for interactions with PfDHODH, a mitochondrial enzyme of the parasite respiratory chain that is essential for de novo pyrimidine biosynthesis. Docking of the naphthoquinonolyl triazole derivatives to PfDHODH yielded scores between -9.375 and -14.55 units, compared to -9.137 for lapachol and -12.95 for atovaquone and disclosed the derivative 17 as a lead compound. Therefore, the study results show the enhancement of DHODH binding affinity correlated with improvement of SI values and in vitro activities of the lapachol derivatives. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Cajachalcone: An Antimalarial Compound from Cajanus cajan Leaf Extract

    Directory of Open Access Journals (Sweden)

    E. O. Ajaiyeoba

    2013-01-01

    Full Text Available Cajanus cajan L, a member of the family Fabaceae, was identified from the Nigerian antimalarial ethnobotany as possessing antimalarial properties. The bioassay-guided fractionation of the crude methanol extract of C. cajan leaves was done in vitro using the multiresistant strain of Plasmodium falciparum (K1 in the parasite lactate dehydrogenase assay. Isolation of compound was achieved by a combination of chromatographic techniques, while the structure of the compound was elucidated by spectroscopy. This led to the identification of a cajachalcone, 2′,6′-dihydroxy-4-methoxy chalcone, as the biologically active constituent from the ethyl acetate fraction. Cajachalcone had an IC50 value of 2.0 μg/mL (7.4 μM and could be a lead for anti-malarial drug discovery.

  8. Studies on the antagonistic action between chloramphenicol and quinolones with presence of bovine serum albumin by fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Liu Baosheng; Zhao Fengli; Xue Chunli; Wang Jing; Lu Yunkai

    2010-01-01

    Chloramphenicol (CHL) and quinolone drugs like ofloxacin (OFLX), lomefloxacin (LMX) and ciprofloxacin (CPFX) can all quench the fluorescence of bovine serum albumin (BSA) in the aqueous solution of pH=7.40. This quenching effect becomes more significant when CHL and quinolone drugs coexist. Based on this, further studies on the interactions between CHL and quinolone drugs using fluorescence spectrum are established. The results showed that the interaction between the drugs would increase the binding constant and binding stability of the drug and protein, thus reducing the amount of drugs transported to their targets. Therefore, free drug concentration at targets would decrease, reducing the efficacy of the drugs. It indicated that there exists antagonistic action between drugs. The results also showed that the quenching mechanism of BSA by the drugs is a static procedure. The number of binding sites is 1 in various systems. Due to the existence of the antagonistic action between drugs, the binding distance r is reduced. Studies utilizing synchronous spectra showed that the antagonistic action between the drugs would affect the conformation of BSA, making protein molecules extend and hydrophobic decrease. The order of antagonistic action between CHL and quinolone drugs is: CPFX>OFLX>LMX with presence of BSA.

  9. Studies on the antagonistic action between chloramphenicol and quinolones with presence of bovine serum albumin by fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu Baosheng, E-mail: lbs@hbu.edu.c [Key Laboratory of Medical Chemistry and Molecular Diagnosis, Ministry of Education, Center of Physics and Chemistry, Hebei University, Baoding 071002 (China); Zhao Fengli; Xue Chunli; Wang Jing; Lu Yunkai [Key Laboratory of Medical Chemistry and Molecular Diagnosis, Ministry of Education, Center of Physics and Chemistry, Hebei University, Baoding 071002 (China)

    2010-05-15

    Chloramphenicol (CHL) and quinolone drugs like ofloxacin (OFLX), lomefloxacin (LMX) and ciprofloxacin (CPFX) can all quench the fluorescence of bovine serum albumin (BSA) in the aqueous solution of pH=7.40. This quenching effect becomes more significant when CHL and quinolone drugs coexist. Based on this, further studies on the interactions between CHL and quinolone drugs using fluorescence spectrum are established. The results showed that the interaction between the drugs would increase the binding constant and binding stability of the drug and protein, thus reducing the amount of drugs transported to their targets. Therefore, free drug concentration at targets would decrease, reducing the efficacy of the drugs. It indicated that there exists antagonistic action between drugs. The results also showed that the quenching mechanism of BSA by the drugs is a static procedure. The number of binding sites is 1 in various systems. Due to the existence of the antagonistic action between drugs, the binding distance r is reduced. Studies utilizing synchronous spectra showed that the antagonistic action between the drugs would affect the conformation of BSA, making protein molecules extend and hydrophobic decrease. The order of antagonistic action between CHL and quinolone drugs is: CPFX>OFLX>LMX with presence of BSA.

  10. Antimalarial Anthrone and Chromone from the Leaf Latex of Aloe ...

    African Journals Online (AJOL)

    In Ethiopian traditional medicine, the leaf latex of Aloe debranan Chrstian is used for the treatment of several diseases including malaria. In an ongoing search for effective, safe and cheap antimalarial agents from plants, the leaf latex of A. debrana was tested for its in vivo antimalarial activity, in a 4-day suppressive assay ...

  11. Antimalarial Activity of Methanolic Leaf Extract of Piper betle L.

    Directory of Open Access Journals (Sweden)

    Adel A. Amran

    2010-12-01

    Full Text Available The need for new compounds active against malaria parasites is made more urgent by the rapid spread of drug-resistance to available antimalarial drugs. The crude methanol extract of Piper betle leaves (50–400 mg/kg was investigated for its antimalarial activity against Plasmodium berghei (NK65 during early and established infections. The phytochemical and antioxidant potentials of the crude extract were evaluated to elucidate the possibilities of its antimalarial effects. The safety of the extract was also investigated in ICR mice of both sexes by the acute oral toxicity limit test. The leaf extract demonstrated significant (P < 0.05 schizonticidal activity in all three antimalarial evaluation models. Phytochemical screening showed that the leaf extract contains some vital antiplasmodial chemical constituents. The extract also exhibited a potent ability to scavenge the free radicals. The results of acute toxicity showed that the methanol extract of Piper betle leaves is toxicologically safe by oral administration. The results suggest that the Malaysian folklorical medicinal application of the extract of Piper betle leaf has a pharmacological basis.

  12. Structure-Activity Relationship of the Antimalarial Ozonide Artefenomel (OZ439).

    Science.gov (United States)

    Dong, Yuxiang; Wang, Xiaofang; Kamaraj, Sriraghavan; Bulbule, Vivek J; Chiu, Francis C K; Chollet, Jacques; Dhanasekaran, Manickam; Hein, Christopher D; Papastogiannidis, Petros; Morizzi, Julia; Shackleford, David M; Barker, Helena; Ryan, Eileen; Scheurer, Christian; Tang, Yuanqing; Zhao, Qingjie; Zhou, Lin; White, Karen L; Urwyler, Heinrich; Charman, William N; Matile, Hugues; Wittlin, Sergio; Charman, Susan A; Vennerstrom, Jonathan L

    2017-04-13

    Building on insights gained from the discovery of the antimalarial ozonide arterolane (OZ277), we now describe the structure-activity relationship (SAR) of the antimalarial ozonide artefenomel (OZ439). Primary and secondary amino ozonides had higher metabolic stabilities than tertiary amino ozonides, consistent with their higher pK a and lower log D 7.4 values. For primary amino ozonides, addition of polar functional groups decreased in vivo antimalarial efficacy. For secondary amino ozonides, additional functional groups had variable effects on metabolic stability and efficacy, but the most effective members of this series also had the highest log D 7.4 values. For tertiary amino ozonides, addition of polar functional groups with H-bond donors increased metabolic stability but decreased in vivo antimalarial efficacy. Primary and tertiary amino ozonides with cycloalkyl and heterocycle substructures were superior to their acyclic counterparts. The high curative efficacy of these ozonides was most often associated with high and prolonged plasma exposure, but exposure on its own did not explain the presence or absence of either curative efficacy or in vivo toxicity.

  13. Renaissance of antibiotics against difficult infections: Focus on oritavancin and new ketolides and quinolones.

    Science.gov (United States)

    Van Bambeke, Françoise

    2014-11-01

    Lipoglycopeptide, ketolide, and quinolone antibiotics are currently in clinical development, with specific advantages over available molecules within their respective classes. The lipoglycopeptide oritavancin is bactericidal against MRSA, vancomycin-resistant enterococci, and multiresistant Streptococcus pneumoniae, and proved effective and safe for the treatment of acute bacterial skin and skin structure infection (ABSSSI) upon administration of a single 1200 mg dose (two completed phase III trials). The ketolide solithromycin (two phase III studies recruiting for community-acquired pneumonia) shows a profile of activity similar to that of telithromycin, but in vitro data suggest a lower risk of hepatotoxicity, visual disturbance, and aggravation of myasthenia gravis due to reduced affinity for nicotinic receptors. Among quinolones, finafloxacin and delafloxacin share the unique property of an improved activity in acidic environments (found in many infection sites). Finafloxacin (phase II completed; activity profile similar to that of ciprofloxacin) is evaluated for complicated urinary tract and Helicobacter pylori infections. The other quinolones (directed towards Gram-positive pathogens) show improved activity on MRSA and multiresistant S. pneumoniae compared to current molecules. They are in clinical evaluation for ABSSSI (avarofloxacin (phase II completed), nemonoxacin and delafloxacin (ongoing phase III)), respiratory tract infections (zabofloxacin and nemonoxacin (ongoing phase III)), or gonorrhea (delafloxacin).

  14. Disturbance in hemoglobin metabolism and in vivo antimalarial activity of azole antimycotics

    Directory of Open Access Journals (Sweden)

    Juan Ricardo Rodrigues

    2011-02-01

    Full Text Available Plasmodium parasites degrade host hemoglobin to obtain free amino acids, essential for protein synthesis. During this event, free toxic heme moieties crystallize spontaneously to produce a non-toxic pigment called hemozoin or ß-hematin. In this context, a group of azole antimycotics, clotrimazole (CTZ, ketoconazole (KTZ and fluconazole (FCZ, were investigated for their abilities to inhibit ß-hematin synthesis (IßHS and hemoglobin proteolysis (IHbP in vitro. The ß-hematin synthesis was recorded by spectrophotometry at 405 nm and the hemoglobin proteolysis was determined by SDS-PAGE 12.5%, followed by densitometric analysis. Compounds were also assayed in vivo in a malaria murine model. CTZ and KTZ exhibited the maximal effects inhibiting both biochemical events, showing inhibition of β-hematin synthesis (IC50 values of 12.4 ± 0.9 µM and 14.4 ± 1.4 µM respectively and inhibition of hemoglobin proteolysis (80.1 ± 2.0% and 55.3 ± 3.6%, respectively. There is a broad correlation to the in vivo results, especially CTZ, which reduced the parasitemia (%P of infected-mice at 4th day post-infection significantly compared to non-treated controls (12.4 ± 3.0% compared to 26.6 ± 3.7%, p = 0.014 and prolonged the survival days post-infection. The results indicated that the inhibition of the hemoglobin metabolism by the azole antimycotics could be responsible for their antimalarial effect.

  15. Antimalarial Activity of Small-Molecule Benzothiazole Hydrazones.

    Science.gov (United States)

    Sarkar, Souvik; Siddiqui, Asim A; Saha, Shubhra J; De, Rudranil; Mazumder, Somnath; Banerjee, Chinmoy; Iqbal, Mohd S; Nag, Shiladitya; Adhikari, Susanta; Bandyopadhyay, Uday

    2016-07-01

    We synthesized a new series of conjugated hydrazones that were found to be active against malaria parasite in vitro, as well as in vivo in a murine model. These hydrazones concentration-dependently chelated free iron and offered antimalarial activity. Upon screening of the synthesized hydrazones, compound 5f was found to be the most active iron chelator, as well as antiplasmodial. Compound 5f also interacted with free heme (KD [equilibrium dissociation constant] = 1.17 ± 0.8 μM), an iron-containing tetrapyrrole released after hemoglobin digestion by the parasite, and inhibited heme polymerization by parasite lysate. Structure-activity relationship studies indicated that a nitrogen- and sulfur-substituted five-membered aromatic ring present within the benzothiazole hydrazones might be responsible for their antimalarial activity. The dose-dependent antimalarial and heme polymerization inhibitory activities of the lead compound 5f were further validated by following [(3)H]hypoxanthine incorporation and hemozoin formation in parasite, respectively. It is worth mentioning that compound 5f exhibited antiplasmodial activity in vitro against a chloroquine/pyrimethamine-resistant strain of Plasmodium falciparum (K1). We also evaluated in vivo antimalarial activity of compound 5f in a murine model where a lethal multiple-drug-resistant strain of Plasmodium yoelii was used to infect Swiss albino mice. Compound 5f significantly suppressed the growth of parasite, and the infected mice experienced longer life spans upon treatment with this compound. During in vitro and in vivo toxicity assays, compound 5f showed minimal alteration in biochemical and hematological parameters compared to control. In conclusion, we identified a new class of hydrazone with therapeutic potential against malaria. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Genetic markers associated with resistance to beta-lactam and quinolone antimicrobials in non-typhoidal Salmonella isolates from humans and animals in central Ethiopia

    Directory of Open Access Journals (Sweden)

    Tadesse Eguale

    2017-01-01

    Full Text Available Abstract Background Beta-lactam and quinolone antimicrobials are commonly used for treatment of infections caused by non-typhoidal Salmonella (NTS and other pathogens. Resistance to these classes of antimicrobials has increased significantly in the recent years. However, little is known on the genetic basis of resistance to these drugs in Salmonella isolates from Ethiopia. Methods Salmonella isolates with reduced susceptibility to beta-lactams (n = 43 were tested for genes encoding for beta-lactamase enzymes, and those resistant to quinolones (n = 29 for mutations in the quinolone resistance determining region (QRDR as well as plasmid mediated quinolone resistance (PMQR genes using PCR and sequencing. Results Beta-lactamase genes (bla were detected in 34 (79.1% of the isolates. The dominant bla gene was blaTEM, recovered from 33 (76.7% of the isolates, majority being TEM-1 (24, 72.7% followed by TEM-57, (10, 30.3%. The blaOXA-10 and blaCTX-M-15 were detected only in a single S. Concord human isolate. Double substitutions in gyrA (Ser83-Phe + Asp87-Gly as well as parC (Thr57-Ser + Ser80-Ile subunits of the quinolone resistance determining region (QRDR were detected in all S. Kentucky isolates with high level resistance to both nalidixic acid and ciprofloxacin. Single amino acid substitutions, Ser83-Phe (n = 4 and Ser83-Tyr (n = 1 were also detected in the gyrA gene. An isolate of S. Miami susceptible to nalidixic acid but intermediately resistant to ciprofloxacin had Thr57-Ser and an additional novel mutation (Tyr83-Phe in the parC gene. Plasmid mediated quinolone resistance (PMQR genes investigated were not detected in any of the isolates. In some isolates with decreased susceptibility to ciprofloxacin and/or nalidixic acid, no mutations in QRDR or PMQR genes were detected. Over half of the quinolone resistant isolates in the current study 17 (58.6% were also resistant to at least one of the beta-lactam antimicrobials

  17. Quinine conjugates and quinine analogues as potential antimalarial agents.

    Science.gov (United States)

    Jones, Rachel A; Panda, Siva S; Hall, C Dennis

    2015-06-05

    Malaria is a tropical disease, prevalent in Southeast Asia and Africa, resulting in over half a million deaths annually; efforts to develop new antimalarial agents are therefore particularly important. Quinine continues to play a role in the fight against malaria, but quinoline derivatives are more widely used. Drugs based on the quinoline scaffold include chloroquine and primaquine, which are able to act against the blood and liver stages of the parasite's life cycle. The purpose of this review is to discuss reported biologically active compounds based on either the quinine or quinoline scaffold that may have enhanced antimalarial activity. The review emphasises hybrid molecules, and covers advances made in the last five years. The review is divided into three sections: modifications to the quinine scaffold, modifications to aminoquinolines and finally metal-containing antimalarial compounds. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Novel series of 1,2,4-trioxane derivatives as antimalarial agents.

    Science.gov (United States)

    Rudrapal, Mithun; Chetia, Dipak; Singh, Vineeta

    2017-12-01

    Among three series of 1,2,4-trioxane derivatives, five compounds showed good in vitro antimalarial activity, three compounds of which exhibited better activity against P. falciparum resistant (RKL9) strain than the sensitive (3D7) one. Two best compounds were one from aryl series and the other from heteroaryl series with IC 50 values of 1.24 µM and 1.24 µM and 1.06 µM and 1.17 µM, against sensitive and resistant strains, respectively. Further, trioxane derivatives exhibited good binding affinity for the P. falciparum cysteine protease falcipain 2 receptor (PDB id: 3BPF) with well defined drug-like and pharmacokinetic properties based on Lipinski's rule of five with additional physicochemical and ADMET parameters. In view of having antimalarial potential, 1,2,4-trioxane derivative(s) reported herein may be useful as novel antimalarial lead(s) in the discovery and development of future antimalarial drug candidates as P. falciparum falcipain 2 inhibitors against resistant malaria.

  19. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement

    Directory of Open Access Journals (Sweden)

    Shen S

    2015-06-01

    Full Text Available Shuo Shen, Shu-Zhi Liu, Yu-Shi Zhang, Mao-Bo Du, Ai-Hua Liang, Li-Hua Song, Zu-Guang Ye Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China Abstract: Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem–ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data

  20. Acridine and Acridinones: Old and New Structures with Antimalarial Activity

    OpenAIRE

    Valdés, Aymé Fernández-Calienes

    2011-01-01

    Since emergence of chloroquine-resistant Plasmodium falciparum and reports of parasite resistance to alternative drugs, there has been renewed interest in the antimalarial activity of acridines and their congeners, the acridinones. This article presents literature compilation of natural acridinone alkaloids and synthetic 9-substituted acridines, acridinediones, haloalcoxyacridinones and 10-N-substituted acridinones with antimalarial activity. The review also provides an outlook to antimalaria...

  1. Antimalarial activity of methanolic leaf extract of Piper betle L.

    Science.gov (United States)

    Al-Adhroey, Abdulelah H; Nor, Zurainee M; Al-Mekhlafi, Hesham M; Amran, Adel A; Mahmud, Rohela

    2010-12-28

    The need for new compounds active against malaria parasites is made more urgent by the rapid spread of drug-resistance to available antimalarial drugs. The crude methanol extract of Piper betle leaves (50-400 mg/kg) was investigated for its antimalarial activity against Plasmodium berghei (NK65) during early and established infections. The phytochemical and antioxidant potentials of the crude extract were evaluated to elucidate the possibilities of its antimalarial effects. The safety of the extract was also investigated in ICR mice of both sexes by the acute oral toxicity limit test. The leaf extract demonstrated significant (P Piper betle leaves is toxicologically safe by oral administration. The results suggest that the Malaysian folklorical medicinal application of the extract of Piper betle leaf has a pharmacological basis.

  2. In Vivo Antimalarial Activity of Solvent Fractions of the Leaves of ...

    African Journals Online (AJOL)

    Increasing resistance of Plasmodium falciparum to almost all the available antimalarial drugs urges a search for newer antimalarial drugs. Justicia schimperiana Hochst. Ex Nees is traditionally used for the treatment of malaria and a study conducted previously on the crude leaf extract confirmed that the plant is endowed ...

  3. Synthetic Antimalarial Maculopathy: A Case Report

    Directory of Open Access Journals (Sweden)

    Aziz El Ouaf

    2017-04-01

    Full Text Available Antimalarial drug-induced retinopathy was first described in the 1950s. Screening for preclinical poisoning prevents evolution to irreversible maculopathy. We discuss, through the case of maculopathy with antimalarial (AM revealed by progressive bilateral decrease in vision in a patient with lupus, the modalities of monitoring patients treated with AM and the management of a potential intoxication. All authors stress the need for clinical and paraclinical ophthalmological monitoring regularly to detect early signs of impaired retinal function at a reversible stage. Indeed, at a more severe retinal intoxication, impaired visual function remains irreversible and can lead to blindness. A full ophthalmologic assessment is necessary before starting long course treatment with AM, possibly coupled with additional tests (central visual field, colour vision and/or electrophysiological examinations.

  4. Comparison of antimalarial activity of Artemisia turanica extract with current drugs in vivo.

    Science.gov (United States)

    Taherkhani, Mahboubeh; Rustaiyan, Abdolhossein; Nahrevanian, Hossein; Naeimi, Sabah; Taherkhani, Tofigh

    2013-03-01

    The purpose of this study was to compare antimalarial activity of Artemisia turanica Krasch as Iranian flora with current antimalarial drugs against Plasmodium berghei in vivo in mice. Air-dried aerial parts of Iranian flora A. turanica were collected from Khorasan, northeastern Iran, extracted with Et2O/MeOH/Petrol and defatted. Toxicity of herbal extracts was assessed on male NMRI mice, and their antimalarial efficacy was compared with antimalarial drugs [artemether, chloroquine and sulfadoxinepyrimethamine (Fansidar)] on infected P. berghei animals. All the groups were investigated for parasitaemia, body weight, hepatomegaly, splenomegaly and anemia. The significance of differences was determined by Analysis of Variances (ANOVA) and Student's t-test using Graph Pad Prism software. The inhibitory effects of A. turanica extract on early decline of P. berghei parasitaemia highlights its antimalarial activity, however, this effect no longer can be observed in the late infection. This may be due to the metabolic process of A. turanica crude extract by mice and reduction of its concentration in the body. Crude extract of A. turanica represented its antisymptomatic effects by stabilization of body, liver and spleen weights. This study confirmed antimalarial effects of A. turanica extracts against murine malaria in vivo during early infection, however, there are more benefits on pathophysiological symptoms by this medication.

  5. Antimalarial activity of HIV-1 protease inhibitor in chromone series.

    Science.gov (United States)

    Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn

    2014-12-01

    Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Substandard anti-malarial drugs in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Sie Ali

    2008-05-01

    Full Text Available Abstract Background There is concern about an increasing infiltration of markets by substandard and fake medications against life-threatening diseases in developing countries. This is particularly worrying with regard to the increasing resistance development of Plasmodium falciparum against affordable anti-malarial medications, which has led to a change to more expensive drugs in most endemic countries. Methods A representative sample of modern anti-malarial medications from licensed (public and private pharmacies, community health workers and illicit (market and street vendors, shops sources has been collected in the Nouna Health District in north-western Burkina Faso in 2006. All drugs were tested for their quality with the standard procedures of the German Pharma Health Fund-Minilab. Detected low standard drugs were re-tested with European Pharmacopoeia 2.9.1 standards for disintegration and ultraviolet-visible spectroscopy at the laboratory of the Heidelberg University for confirmation. Results Overall, 86 anti-malarial drug samples were collected, of which 77 samples have been included in the final analysis. The sample consisted of 39/77 (50% chloroquine, 10/77 (13% pyrimethamine-sulphadoxine, 9/77 (12% quinine, 6/77 (8% amodiaquine, 9/77 (12% artesunate, and 4/77 (5% artemether-lumefantrine. 32/77 (42% drug samples were found to be of poor quality, of which 28 samples failed the visual inspection, nine samples had substandard concentrations of the active ingredient, four samples showed poor disintegration, and one sample contained non of the stated active ingredient. The licensed and the illicit market contributed 5/47 (10.6% and 27/30 (90.0% samples of substandard drugs respectively. Conclusion These findings provide further evidence for the wide-spread existence of substandard anti-malarial medications in Africa and call for strengthening of the regulatory and quality control capacity of affected countries, particularly in view of the

  7. A Click Chemistry-Based Proteomic Approach Reveals that 1,2,4-Trioxolane and Artemisinin Antimalarials Share a Common Protein Alkylation Profile.

    Science.gov (United States)

    Ismail, Hanafy M; Barton, Victoria E; Panchana, Matthew; Charoensutthivarakul, Sitthivut; Biagini, Giancarlo A; Ward, Stephen A; O'Neill, Paul M

    2016-05-23

    In spite of the recent increase in endoperoxide antimalarials under development, it remains unclear if all these chemotypes share a common mechanism of action. This is important since it will influence cross-resistance risks between the different classes. Here we investigate this proposition using novel clickable 1,2,4-trioxolane activity based protein-profiling probes (ABPPs). ABPPs with potent antimalarial activity were able to alkylate protein target(s) within the asexual erythrocytic stage of Plasmodium falciparum (3D7). Importantly, comparison of the alkylation fingerprint with that generated from an artemisinin ABPP equivalent confirms a highly conserved alkylation profile, with both endoperoxide classes targeting proteins in the glycolytic, hemoglobin degradation, antioxidant defence, protein synthesis and protein stress pathways, essential biological processes for plasmodial survival. The alkylation signatures of the two chemotypes show significant overlap (ca. 90 %) both qualitatively and semi-quantitatively, suggesting a common mechanism of action that raises concerns about potential cross-resistance liabilities.

  8. Evaluation of spiropiperidine hydantoins as a novel class of antimalarial agents.

    Science.gov (United States)

    Meyers, Marvin J; Anderson, Elizabeth J; McNitt, Sarah A; Krenning, Thomas M; Singh, Megh; Xu, Jing; Zeng, Wentian; Qin, Limei; Xu, Wanwan; Zhao, Siting; Qin, Li; Eickhoff, Christopher S; Oliva, Jonathan; Campbell, Mary A; Arnett, Stacy D; Prinsen, Michael J; Griggs, David W; Ruminski, Peter G; Goldberg, Daniel E; Ding, Ke; Liu, Xiaorong; Tu, Zhengchao; Tortorella, Micky D; Sverdrup, Francis M; Chen, Xiaoping

    2015-08-15

    Given the rise of parasite resistance to all currently used antimalarial drugs, the identification of novel chemotypes with unique mechanisms of action is of paramount importance. Since Plasmodium expresses a number of aspartic proteases necessary for its survival, we have mined antimalarial datasets for drug-like aspartic protease inhibitors. This effort led to the identification of spiropiperidine hydantoins, bearing similarity to known inhibitors of the human aspartic protease β-secretase (BACE), as new leads for antimalarial drug discovery. Spiropiperidine hydantoins have a dynamic structure-activity relationship profile with positions identified as being tolerant of a variety of substitution patterns as well as a key piperidine N-benzyl phenol pharmacophore. Lead compounds 4e (CWHM-123) and 12k (CWHM-505) are potent antimalarials with IC50 values against Plasmodium falciparum 3D7 of 0.310 μM and 0.099 μM, respectively, and the former features equivalent potency on the chloroquine-resistant Dd2 strain. Remarkably, these compounds do not inhibit human aspartic proteases BACE, cathepsins D and E, or Plasmodium plasmepsins II and IV despite their similarity to known BACE inhibitors. Although the current leads suffer from poor metabolic stability, they do fit into a drug-like chemical property space and provide a new class of potent antimalarial agents for further study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Comparison of oral artesunate and dihydroartemisinin antimalarial bioavailabilities in acute falciparum malaria

    NARCIS (Netherlands)

    Newton, Paul N.; van Vugt, Michele; Teja-Isavadharm, Paktiya; Siriyanonda, Duangsuda; Rasameesoroj, Maneerat; Teerapong, Pramote; Ruangveerayuth, Ronatrai; Slight, Thra; Nosten, Francois; Suputtamongkol, Yupin; Looareesuwan, Sornchai; White, Nicholas J.

    2002-01-01

    Plasma antimalarial activity following oral artesunate or dihydroartemisinin (DHA) treatment was measured by a bioassay in 18 patients with uncomplicated falciparum malaria. The mean antimalarial activity in terms of the bioavailability of DHA relative to that of artesunate did not differ

  10. Prevalence and Molecular Detection of Quinolone-Resistant E. coli in Rectal Swab of Apparently Healthy Cattle in Bangladesh

    OpenAIRE

    Md. Montasir Mamun; Jayedul Hassan; K. H. M. Nazmul Hussain Nazir; Md. Alimul Islam; Khalada Zesmin; Md. Bahanur Rahman; Md. Tanvir Rahman

    2017-01-01

    Emergence of antibiotic resistance is a serious health problem both in human and animal all over the world. In this study, we investigated the prevalence of quinolone-resistant E. coli isolated from apparently healthy cattle in Mymensingh district, Bangladesh. A total of 137 rectal swabs was screened among which 95 was found positive for E. coli. Confirmation of isolation of E. coli was done by PCR targeting 16S rRNA gene of E. coli (prevalence 69.3%). Resistance against quinolone is primaril...

  11. In silico and in vivo anti-malarial studies of 18β glycyrrhetinic acid from Glycyrrhiza glabra.

    Directory of Open Access Journals (Sweden)

    Komal Kalani

    Full Text Available Malaria is one of the most prevailing fatal diseases causing between 1.2 and 2.7 million deaths all over the world each year. Further, development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents possessing novel modes of action. Over the past few years triterpenoids from higher plants have shown a wide range of anti-malarial activities. As a part of our drug discovery program for anti-malarial agents from Indian medicinal plants, roots of Glycyrrhizaglabra were chemically investigated, which resulted in the isolation and characterization of 18β-glycyrrhetinic acid (GA as a major constituent. The in vitro studies against P. falciparum showed significant (IC50 1.69 µg/ml anti-malarial potential for GA. Similarly, the molecular docking studies showed adequate docking (LibDock score of 71.18 for GA and 131.15 for standard anti-malarial drug chloroquine. Further, in silico pharmacokinetic and drug-likeness studies showed that GA possesses drug-like properties. Finally, in vivo evaluation showed a dose dependent anti-malarial activity ranging from 68-100% at doses of 62.5-250 mg/kg on day 8. To the best of our knowledge this is the first ever report on the anti-malarial potential of GA. Further work on optimization of the anti-malarial lead is under progress.

  12. Modelling the impact of antimalarial quality on the transmission of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Aleisha R. Brock

    2017-05-01

    Full Text Available Background: The use of poor quality antimalarial medicines, including the use of non-recommended medicines for treatment such as sulfadoxine-pyrimethamine (SP monotherapy, undermines malaria control and elimination efforts. Furthermore, the use of subtherapeutic doses of the active ingredient(s can theoretically promote the emergence and transmission of drug resistant parasites. Methods: We developed a deterministic compartmental model to quantify the impact of antimalarial medicine quality on the transmission of SP resistance, and validated it using sensitivity analysis and a comparison with data from Kenya collected in 2006. We modelled human and mosquito population dynamics, incorporating two Plasmodium falciparum subtypes (SP-sensitive and SP-resistant and both poor quality and good quality (artemether-lumefantrine antimalarial use. Findings: The model predicted that an increase in human malaria cases, and among these, an increase in the proportion of SP-resistant infections, resulted from an increase in poor quality SP antimalarial use, whether it was full- or half-dose SP monotherapy. Interpretation: Our findings suggest that an increase in poor quality antimalarial use predicts an increase in the transmission of resistance. This highlights the need for stricter control and regulation on the availability and use of poor quality antimalarial medicines, in order to offer safe and effective treatments, and work towards the eradication of malaria. Keywords: Deterministic compartmental model, Falsified antimalarial medicine, Substandard antimalarial treatments, Antimalarial quality, Plasmodium falciparum malaria, Drug resistance

  13. Antimalarial activity of selected Ethiopian medicinal plants in mice

    Directory of Open Access Journals (Sweden)

    Eshetu M. Bobasa

    2018-02-01

    Full Text Available Context: Parasites are the leading killers in subtropical areas of which malaria took the lion share from protozoan diseases. Measuring the impact of antimalarial drug resistance is difficult, and the impact may not be recognized until it is severe, especially in high transmission areas. Aims: To evaluate the in vivo antimalarial activities of hydroalcoholic extracts of the roots of Piper capense and Adhatoda schimperiana, against Plasmodium berghei in mice. Methods: Four-day suppressive and curative test animal models were used to explore the antimalarial activities of the plants. 200, 400, and 600 mg/kg of each plant extract was administered to check the activities versus vehicle administered mice. Mean survival time and level of parasitemia were the major variables employed to compare the efficacy vs. negative control. Results: In both models the 400 and 600 mg/kg doses of Adhatoda schimperiana and the 600 mg/kg dose Piper capense. showed significant parasitemia suppression and increased in mean survival time at p≤0.05. The middle dose of Piper capense had a border line inhibition where the extracts were considered active when parasitemia was reduced by ≥ 30%. Conclusions: The hydroalcoholic extracts of the roots of Adhatoda schimperiana and Piper capense possess moderate antimalarial activities, which prove its traditional claims. Thus, further studies should be done to isolate the active constituents for future use in the modern drug discovery.

  14. The ACTwatch project: methods to describe anti-malarial markets in seven countries.

    Science.gov (United States)

    Shewchuk, Tanya; O'Connell, Kathryn A; Goodman, Catherine; Hanson, Kara; Chapman, Steven; Chavasse, Desmond

    2011-10-31

    Policy makers, governments and donors are faced with an information gap when considering ways to improve access to artemisinin-based combination therapy (ACT) and malaria diagnostics including rapid diagnostic tests (RDTs). To help address some of these gaps, a five-year multi-country research project called ACTwatch was launched. The project is designed to provide a comprehensive picture of the anti-malarial market to inform national and international anti-malarial drug policy decision-making. The project is being conducted in seven malaria-endemic countries: Benin, Cambodia, the Democratic Republic of Congo, Madagascar, Nigeria, Uganda and Zambia from 2008 to 2012.ACTwatch measures which anti-malarials are available, where they are available and at what price and who they are used by. These indicators are measured over time and across countries through three study components: outlet surveys, supply chain studies and household surveys. Nationally representative outlet surveys examine the market share of different anti-malarials passing through public facilities and private retail outlets. Supply chain research provides a picture of the supply chain serving drug outlets, and measures mark-ups at each supply chain level. On the demand side, nationally representative household surveys capture treatment seeking patterns and use of anti-malarial drugs, as well as respondent knowledge of anti-malarials. The research project provides findings on both the demand and supply side determinants of anti-malarial access. There are four key features of ACTwatch. First is the overlap of the three study components where nationally representative data are collected over similar periods, using a common sampling approach. A second feature is the number and diversity of countries that are studied which allows for cross-country comparisons. Another distinguishing feature is its ability to measure trends over time. Finally, the project aims to disseminate findings widely for decision

  15. The ACTwatch project: methods to describe anti-malarial markets in seven countries

    Directory of Open Access Journals (Sweden)

    Chapman Steven

    2011-10-01

    Full Text Available Abstract Background Policy makers, governments and donors are faced with an information gap when considering ways to improve access to artemisinin-based combination therapy (ACT and malaria diagnostics including rapid diagnostic tests (RDTs. To help address some of these gaps, a five-year multi-country research project called ACTwatch was launched. The project is designed to provide a comprehensive picture of the anti-malarial market to inform national and international anti-malarial drug policy decision-making. Methods The project is being conducted in seven malaria-endemic countries: Benin, Cambodia, the Democratic Republic of Congo, Madagascar, Nigeria, Uganda and Zambia from 2008 to 2012. ACTwatch measures which anti-malarials are available, where they are available and at what price and who they are used by. These indicators are measured over time and across countries through three study components: outlet surveys, supply chain studies and household surveys. Nationally representative outlet surveys examine the market share of different anti-malarials passing through public facilities and private retail outlets. Supply chain research provides a picture of the supply chain serving drug outlets, and measures mark-ups at each supply chain level. On the demand side, nationally representative household surveys capture treatment seeking patterns and use of anti-malarial drugs, as well as respondent knowledge of anti-malarials. Discussion The research project provides findings on both the demand and supply side determinants of anti-malarial access. There are four key features of ACTwatch. First is the overlap of the three study components where nationally representative data are collected over similar periods, using a common sampling approach. A second feature is the number and diversity of countries that are studied which allows for cross-country comparisons. Another distinguishing feature is its ability to measure trends over time. Finally, the

  16. The ACTwatch project: methods to describe anti-malarial markets in seven countries

    Science.gov (United States)

    2011-01-01

    Background Policy makers, governments and donors are faced with an information gap when considering ways to improve access to artemisinin-based combination therapy (ACT) and malaria diagnostics including rapid diagnostic tests (RDTs). To help address some of these gaps, a five-year multi-country research project called ACTwatch was launched. The project is designed to provide a comprehensive picture of the anti-malarial market to inform national and international anti-malarial drug policy decision-making. Methods The project is being conducted in seven malaria-endemic countries: Benin, Cambodia, the Democratic Republic of Congo, Madagascar, Nigeria, Uganda and Zambia from 2008 to 2012. ACTwatch measures which anti-malarials are available, where they are available and at what price and who they are used by. These indicators are measured over time and across countries through three study components: outlet surveys, supply chain studies and household surveys. Nationally representative outlet surveys examine the market share of different anti-malarials passing through public facilities and private retail outlets. Supply chain research provides a picture of the supply chain serving drug outlets, and measures mark-ups at each supply chain level. On the demand side, nationally representative household surveys capture treatment seeking patterns and use of anti-malarial drugs, as well as respondent knowledge of anti-malarials. Discussion The research project provides findings on both the demand and supply side determinants of anti-malarial access. There are four key features of ACTwatch. First is the overlap of the three study components where nationally representative data are collected over similar periods, using a common sampling approach. A second feature is the number and diversity of countries that are studied which allows for cross-country comparisons. Another distinguishing feature is its ability to measure trends over time. Finally, the project aims to disseminate

  17. Pyrimidines in antimalarial drug design

    CSIR Research Space (South Africa)

    Moleele, SS

    2008-09-01

    Full Text Available of the routes attempted are shown in Scheme 1. Pyrimidines In Antimalarial Drug Design S S Moleele1, D Gravestock1, A L Rousseau1, R L Van Zyl2 1Discovery Chemistry, CSIR, Biosciences, Private Bag X2, Modderfontein, 1645, South Africa; SMoleele@csir.co.za 2...

  18. Naturally occurring cobalamins have antimalarial activity.

    Science.gov (United States)

    Chemaly, Susan M; Chen, Chien-Teng; van Zyl, Robyn L

    2007-05-01

    The acquisition of resistance by malaria parasites towards existing antimalarials has necessitated the development of new chemotherapeutic agents. The effect of vitamin B(12) derivatives on the formation of beta-haematin (synthetic haemozoin) was determined under conditions similar to those in the parasitic food vacuole (using chloroquine, a known inhibitor of haemozoin formation for comparison). Adenosylcobalamin (Ado-cbl), methylcobalamin (CH(3)-cbl) and aquocobalamin (H(2)O-cbl) were approximately forty times more effective inhibitors of beta-haematin formation than chloroquine, cyanocobalamin (CN-cbl) was slightly more inhibitory than chloroquine, while dicyanocobinamide had no effect. It is proposed that the cobalamins exert their inhibitory effect on beta-haematin formation by pi-interactions of their corrin ring with the Fe(III)-protoporphyrin ring and by hydrogen-bonding using their 5,6-dimethylbenzimidazole/ribose/sugar side-chain. The antimalarial activity for the cobalamins (Ado-cbl>CH(3)-cbl>H(2)O-cbl>CN-cbl) was found to be less than that for chloroquine or quinine. Ado-cbl, CH(3)-cbl and CN-cbl do not accumulate in the parasite food vacuole by pH trapping, but H(2)O-cbl does. Unlike humans, the malaria parasite has only one enzyme that uses cobalamin as a cofactor, namely methionine synthase, which is important for growth and metabolism. Thus cobalamins in very small amounts are necessary for Plasmodium falciparum growth but in larger amounts they display antimalarial properties.

  19. A New In Vivo Screening Paradigm to Accelerate Antimalarial Drug Discovery

    Science.gov (United States)

    Jiménez-Díaz, María Belén; Viera, Sara; Ibáñez, Javier; Mulet, Teresa; Magán-Marchal, Noemí; Garuti, Helen; Gómez, Vanessa; Cortés-Gil, Lorena; Martínez, Antonio; Ferrer, Santiago; Fraile, María Teresa; Calderón, Félix; Fernández, Esther; Shultz, Leonard D.; Leroy, Didier; Wilson, David M.; García-Bustos, José Francisco; Gamo, Francisco Javier; Angulo-Barturen, Iñigo

    2013-01-01

    The emergence of resistance to available antimalarials requires the urgent development of new medicines. The recent disclosure of several thousand compounds active in vitro against the erythrocyte stage of Plasmodium falciparum has been a major breakthrough, though converting these hits into new medicines challenges current strategies. A new in vivo screening concept was evaluated as a strategy to increase the speed and efficiency of drug discovery projects in malaria. The new in vivo screening concept was developed based on human disease parameters, i.e. parasitemia in the peripheral blood of patients on hospital admission and parasite reduction ratio (PRR), which were allometrically down-scaled into P. berghei-infected mice. Mice with an initial parasitemia (P0) of 1.5% were treated orally for two consecutive days and parasitemia measured 24 h after the second dose. The assay was optimized for detection of compounds able to stop parasite replication (PRR = 1) or induce parasite clearance (PRR >1) with statistical power >99% using only two mice per experimental group. In the P. berghei in vivo screening assay, the PRR of a set of eleven antimalarials with different mechanisms of action correlated with human-equivalent data. Subsequently, 590 compounds from the Tres Cantos Antimalarial Set with activity in vitro against P. falciparum were tested at 50 mg/kg (orally) in an assay format that allowed the evaluation of hundreds of compounds per month. The rate of compounds with detectable efficacy was 11.2% and about one third of active compounds showed in vivo efficacy comparable with the most potent antimalarials used clinically. High-throughput, high-content in vivo screening could rapidly select new compounds, dramatically speeding up the discovery of new antimalarial medicines. A global multilateral collaborative project aimed at screening the significant chemical diversity within the antimalarial in vitro hits described in the literature is a feasible task

  20. A new in vivo screening paradigm to accelerate antimalarial drug discovery.

    Directory of Open Access Journals (Sweden)

    María Belén Jiménez-Díaz

    Full Text Available The emergence of resistance to available antimalarials requires the urgent development of new medicines. The recent disclosure of several thousand compounds active in vitro against the erythrocyte stage of Plasmodium falciparum has been a major breakthrough, though converting these hits into new medicines challenges current strategies. A new in vivo screening concept was evaluated as a strategy to increase the speed and efficiency of drug discovery projects in malaria. The new in vivo screening concept was developed based on human disease parameters, i.e. parasitemia in the peripheral blood of patients on hospital admission and parasite reduction ratio (PRR, which were allometrically down-scaled into P. berghei-infected mice. Mice with an initial parasitemia (P0 of 1.5% were treated orally for two consecutive days and parasitemia measured 24 h after the second dose. The assay was optimized for detection of compounds able to stop parasite replication (PRR = 1 or induce parasite clearance (PRR >1 with statistical power >99% using only two mice per experimental group. In the P. berghei in vivo screening assay, the PRR of a set of eleven antimalarials with different mechanisms of action correlated with human-equivalent data. Subsequently, 590 compounds from the Tres Cantos Antimalarial Set with activity in vitro against P. falciparum were tested at 50 mg/kg (orally in an assay format that allowed the evaluation of hundreds of compounds per month. The rate of compounds with detectable efficacy was 11.2% and about one third of active compounds showed in vivo efficacy comparable with the most potent antimalarials used clinically. High-throughput, high-content in vivo screening could rapidly select new compounds, dramatically speeding up the discovery of new antimalarial medicines. A global multilateral collaborative project aimed at screening the significant chemical diversity within the antimalarial in vitro hits described in the literature is a

  1. Deployment of ACT antimalarials for treatment of malaria: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Leslie Toby

    2008-12-01

    Full Text Available Abstract Following a long period when the effectiveness of existing mono-therapies for antimalarials was steadily declining with no clear alternative, most malaria-endemic countries in Africa and Asia have adopted artemisinin combination therapy (ACT as antimalarial drug policy. Several ACT drugs exist and others are in the pipeline. If properly targeted, they have the potential to reduce mortality from malaria substantially. The major challenge now is to get the drugs to the right people. Current evidence suggests that most of those who need the drugs do not get them. Simultaneously, a high proportion of those who are given antimalarials do not in fact have malaria. Financial and other barriers mean that, in many settings, the majority of those with malaria, particularly the poorest, do not access formal healthcare, so the provision of free antimalarials via this route has only limited impact. The higher cost of ACT creates a market for fake drugs. Addressing these problems is now a priority. This review outlines current evidence, possible solutions and research priorities.

  2. QSAR study on the antimalarial activity of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors.

    Science.gov (United States)

    Hou, X; Chen, X; Zhang, M; Yan, A

    2016-01-01

    Plasmodium falciparum, the most fatal parasite that causes malaria, is responsible for over one million deaths per year. P. falciparum dihydroorotate dehydrogenase (PfDHODH) has been validated as a promising drug development target for antimalarial therapy since it catalyzes the rate-limiting step for DNA and RNA biosynthesis. In this study, we investigated the quantitative structure-activity relationships (QSAR) of the antimalarial activity of PfDHODH inhibitors by generating four computational models using a multilinear regression (MLR) and a support vector machine (SVM) based on a dataset of 255 PfDHODH inhibitors. All the models display good prediction quality with a leave-one-out q(2) >0.66, a correlation coefficient (r) >0.85 on both training sets and test sets, and a mean square error (MSE) antimalarial activity. The models are capable of predicting inhibitors' antimalarial activity and the molecular descriptors for building the models could be helpful in the development of new antimalarial drugs.

  3. Anticancer Effect of AntiMalarial Artemisinin Compounds

    African Journals Online (AJOL)

    Artemisinin is a naturally occurring antimalarial showing anticancer properties. ..... Artemisinins usually promote apoptosis rather than necrosis in most cases ... artemisinin-mediated inhibition of vascular endothelial growth factor C (VEGF-C).

  4. Effect of pyrimido[1,6-a]benzimidazoles, quinolones, and Ca2+ on the DNA gyrase-mediated cleavage reaction.

    Science.gov (United States)

    Gmünder, H; Kuratli, K; Keck, W

    1995-01-01

    The quinolones inhibit the A subunit of DNA gyrase in the presence of Mg2+ by interrupting the DNA breakage and resealing steps, and the latter step is also retarded without quinolones if Mg2+ is replaced by Ca2+. Pyrimido[1,6-a]benzimidazoles have been found to represent a new class of potent DNA gyrase inhibitors which also act at the A subunit. To determine alterations in the DNA sequence specificity of DNA gyrase for cleavage sites in the presence of inhibitors of both classes or in the presence of Ca2+, we used DNA restriction fragments of 164, 85, and 71 bp from the pBR322 plasmid as model substrates. Each contained, at a different position, the 20-bp pBR322 sequence around position 990, where DNA gyrase preferentially cleaves in the presence of quinolones. Our results show that pyrimido[1,6-a]benzimidazoles have a mode of action similar to that of quinolones; they inhibit the resealing step and influence the DNA sequence specificity of DNA gyrase in the same way. Differences between inhibitors of both classes could be observed only in the preferences of DNA gyrase for these cleavage sites. The 20-bp sequence appeared to have some properties that induced DNA gyrase to cleave all three DNA fragments in the presence of inhibitors within this sequence, whereas cleavage in the presence of Ca2+ was in addition dependent on the length of the DNA fragments. PMID:7695300

  5. Analytical sample preparation strategies for the determination of antimalarial drugs in human whole blood, plasma and urine

    DEFF Research Database (Denmark)

    Casas, Mònica Escolà; Hansen, Martin; Krogh, Kristine A

    2014-01-01

    Abstract Antimalarial drugs commonly referred to as antimalarials , include a variety of compounds with different physicochemical properties. There is a lack of information on antimalarial distribution in the body over time after administration, eg the drug ...

  6. Chitosan-based nanocarriers for antimalarials

    Science.gov (United States)

    Dreve, Simina; Kacso, Iren; Popa, Adriana; Raita, Oana; Bende, A.; Borodi, Gh.; Bratu, I.

    2012-02-01

    The objective of this research was to synthesize and characterize chitosan-based liquid and solid materials with unique absorptive and mechanical properties as carriers for quinine - one of the most used antimalarial drug. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare solid release systems as sponges is presented. The preparation by double emulsification of CTS hydrogels carrying quinine as anti-malarial drug is reported. The concentration of quinine in the CTS hydrogel was 0.08 mmol. Chitosan - drug loaded hydrogel was used to generate solid sponges by freeze-drying at -610°C and 0.09 atm. Structural investigations of the solid formulations were done by Fourier-transformed infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-VIS), spectrofluorimetry, differential scanning calorimetry (DSC) and X-ray diffractometry. The results indicated that the drug molecule is forming temporary chelates in CTS hydrogels and sponges. Electron paramagnetic resonance (EPR) demonstrates the presence of free radicals in a wide range and the antioxidant activity for chitosan - drug supramolecular cross-linked assemblies.

  7. Changes of the Quinolones Resistance to Gram-positive Cocci Isolated during the Past 8 Years in the First Bethune Hospital

    Science.gov (United States)

    Xu, Jiancheng; Chen, Qihui; Yao, Hanxin; Zhou, Qi

    This study was to investigate the quinolones resistance to gram-positive cocci isolated in the First Bethune Hospital during the past 8 years. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). The rates of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococci (MRCNS) were 50.8%∼83.3% and 79.4%∼81.5%during the past 8 years, respectively. In recent 8 years, the quinolones resistance to gram-positive cocci had increased. Monitoring of the quinolones resistance to gram-positive cocci should be strengthened. The change of the antimicrobial resistance should be investigated in order to guide rational drug usage in the clinic and prevent bacterial strain of drug resistance from being transmitted.

  8. Antimalarial sesquiterpene lactones from oncosiphon piluliferum

    CSIR Research Space (South Africa)

    Pillay, P

    2006-02-01

    Full Text Available for the treatment of malaria. Through this consortium, an indigenous plant, Oncosiphon piluliferum, was identified as a potential source of new antimalarial drugs. Bio-assay-guided fractionation based on in vitro antiplasmodial activity led to the isolation of five...

  9. Synthesis, antimalarial activity in vitro, and docking studies of novel neolignan derivatives.

    Science.gov (United States)

    Pereira, Glaécia A N; Souza, Gisele C; Santos, Lourivaldo S; Barata, Lauro E S; Meneses, Carla C F; Krettli, Antoniana U; Daniel-Ribeiro, Cláudio Tadeu; Alves, Cláudio Nahum

    2017-09-01

    The absence of effective vaccines against malaria and the difficulties associated with controlling mosquito vectors have left chemotherapy as the primary control measure against malaria. However, the emergence and spread of parasite resistance to conventional antimalarial drugs result in a worrisome scenario making the search for new drugs a priority. In the present study, the activities of nine neolignan derivatives were evaluated as follows: (i) against blood forms of chloroquine-resistant Plasmodium falciparum (clone W2), using the tritiated hypoxanthine incorporation and anti-HRPII assays; (ii) for cytotoxic activity against cultured human hepatoma cells (HepG2); and (iii) for intermolecular interaction with the P. falciparum cysteine protease of falcipain-2 (F2) by molecular docking. The neolignan derivatives 9 and 10 showed activity against the blood form of the chloroquine-resistant P. falciparum clone W2 and were not cytotoxic against cultured human hepatoma cells. A molecular docking study of these two neolignans with FP2 revealed several intermolecular interactions that should guide the design of future analogs. © 2017 John Wiley & Sons A/S.

  10. In vivo antimalarial activity of extracts of Tanzanian medicinal plants used for the treatment of malaria.

    Science.gov (United States)

    Nondo, Ramadhani S O; Erasto, Paul; Moshi, Mainen J; Zacharia, Abdallah; Masimba, Pax J; Kidukuli, Abdul W

    2016-01-01

    Plants used in traditional medicine have been the source of a number of currently used antimalarial medicines and continue to be a promising resource for the discovery of new classes of antimalarial compounds. The aim of this study was to evaluate in vivo antimalarial activity of four plants; Erythrina schliebenii Harms, Holarrhena pubescens Buch-Ham, Phyllanthus nummulariifolius Poir, and Caesalpinia bonducella (L.) Flem used for treatment of malaria in Tanzania. In vivo antimalarial activity was assessed using the 4-day suppressive antimalarial assay. Mice were infected by injection via tail vein with 2 × 10(7) erythrocytes infected with Plasmodium berghei ANKA. Extracts were administered orally, once daily, for a total of four daily doses from the day of infection. Chloroquine (10 mg/kg/day) and solvent (5 mL/kg/day) were used as positive and negative controls, respectively. The extracts of C. bonducella, E. schliebenii, H. pubescens, and P. nummulariifolius exhibited dose-dependent suppression of parasite growth in vivo in mice, with the highest suppression being by C. bonducella extract. While each of the plant extracts has potential to yield useful antimalarial compounds, the dichloromethane root extract of C. bonducella seems to be the most promising for isolation of active antimalarial compound(s). In vivo antimalarial activity presented in this study supports traditional uses of C. bonducella roots, E. schliebenii stem barks, H. pubescens roots, and P. nummulariifolius for treatment of malaria.

  11. In vivo antimalarial activity of extracts of Tanzanian medicinal plants used for the treatment of malaria

    Directory of Open Access Journals (Sweden)

    Ramadhani SO Nondo

    2016-01-01

    Full Text Available Plants used in traditional medicine have been the source of a number of currently used antimalarial medicines and continue to be a promising resource for the discovery of new classes of antimalarial compounds. The aim of this study was to evaluate in vivo antimalarial activity of four plants; Erythrina schliebenii Harms, Holarrhena pubescens Buch-Ham, Phyllanthus nummulariifolius Poir, and Caesalpinia bonducella (L. Flem used for treatment of malaria in Tanzania. In vivo antimalarial activity was assessed using the 4-day suppressive antimalarial assay. Mice were infected by injection via tail vein with 2 Χ 10 7 erythrocytes infected with Plasmodium berghei ANKA. Extracts were administered orally, once daily, for a total of four daily doses from the day of infection. Chloroquine (10 mg/kg/day and solvent (5 mL/kg/day were used as positive and negative controls, respectively. The extracts of C. bonducella, E. schliebenii, H. pubescens, and P. nummulariifolius exhibited dose-dependent suppression of parasite growth in vivo in mice, with the highest suppression being by C. bonducella extract. While each of the plant extracts has potential to yield useful antimalarial compounds, the dichloromethane root extract of C. bonducella seems to be the most promising for isolation of active antimalarial compound(s. In vivo antimalarial activity presented in this study supports traditional uses of C. bonducella roots, E. schliebenii stem barks, H. pubescens roots, and P. nummulariifolius for treatment of malaria.

  12. Antimalarial activity of Garcinia mangostana L rind and its synergistic effect with artemisinin in vitro.

    Science.gov (United States)

    Tjahjani, Susy

    2017-02-28

    Malaria especially falciparum malaria still causes high morbidity and mortality in tropical countries. Several factors have been linked to this situation and the most important one is the rapid spread of parasite resistance to the currently available antimalarials, including artemisinin. Artemisinin is the main component of the currently recommended antimalarial, artemisinin based combination therapy (ACT), and it is a free radical generating antimalarial. Garcinia mangostana L (mangosteen) rind contain a lot of xanthone compounds acting as an antioxidant and exhibited antimalarial activity. The aim of this study was to evaluate the antimalarial activity of mangosteen rind extract and its fractions and their interaction with artemisinin against the 3D7 clone of Plasmodium falciparum in vitro. Dry ripe mangosteen rind was extracted with ethanol followed by fractionation with hexane, ethylacetate, buthanol, and water consecutively to get ethanol extract, hexane, athylacetate, buthanol, and water fractions. Each of these substances was diluted in DMSO and examined for antimalarial activity either singly or in combination with artemisinin in vitro against Plasmodium falciparum 3D7 clone. Synergism between these substances with artemisinin was evaluated according to certain formula to get the sum of fractional inhibitory concentration 50 (∑FIC 50 ). Analysis of the parasite growth in vitro indicated that IC 50 of these mangosteen rind extract, hexane, ethylacetate, buthanol, and water fraction ranged from 0.41 to > 100 μg/mL. All of the ∑FIC50 were antimalarial activity of the extract and fractions of G.mangostana L rind and its synergistic effect with artemisinin. Further study using lead compound(s) isolated from extract and fractions should be performed to identify more accurately their mechanism of antimalarial activities.

  13. Antibiotics threaten wildlife: circulating quinolone residues and disease in Avian scavengers.

    Directory of Open Access Journals (Sweden)

    Jesús A Lemus

    Full Text Available Antibiotic residues that may be present in carcasses of medicated livestock could pass to and greatly reduce scavenger wildlife populations. We surveyed residues of the quinolones enrofloxacin and its metabolite ciprofloxacin and other antibiotics (amoxicillin and oxytetracycline in nestling griffon Gyps fulvus, cinereous Aegypius monachus and Egyptian Neophron percnopterus vultures in central Spain. We found high concentrations of antibiotics in the plasma of many nestling cinereous (57% and Egyptian (40% vultures. Enrofloxacin and ciprofloxacin were also found in liver samples of all dead cinereous vultures. This is the first report of antibiotic residues in wildlife. We also provide evidence of a direct association between antibiotic residues, primarily quinolones, and severe disease due to bacterial and fungal pathogens. Our results indicate that, by damaging the liver and kidney and through the acquisition and proliferation of pathogens associated with the depletion of lymphoid organs, continuous exposure to antibiotics could increase mortality rates, at least in cinereous vultures. If antibiotics ingested with livestock carrion are clearly implicated in the decline of the vultures in central Spain then it should be considered a primary concern for conservation of their populations.

  14. Case management of malaria fever in Cambodia: results from national anti-malarial outlet and household surveys

    Directory of Open Access Journals (Sweden)

    Littrell Megan

    2011-10-01

    Full Text Available Abstract Background Continued progress towards global reduction in morbidity and mortality due to malaria requires scale-up of effective case management with artemisinin-combination therapy (ACT. The first case of artemisinin resistance in Plasmodium falciparum was documented in western Cambodia. Spread of artemisinin resistance would threaten recent gains in global malaria control. As such, the anti-malarial market and malaria case management practices in Cambodia have global significance. Methods Nationally-representative household and outlet surveys were conducted in 2009 among areas in Cambodia with malaria risk. An anti-malarial audit was conducted among all public and private outlets with the potential to sell anti-malarials. Indicators on availability, price and relative volumes sold/distributed were calculated across types of anti-malarials and outlets. The household survey collected information about management of recent "malaria fevers." Case management in the public versus private sector, and anti-malarial treatment based on malaria diagnostic testing were examined. Results Most public outlets (85% and nearly half of private pharmacies, clinics and drug stores stock ACT. Oral artemisinin monotherapy was found in pharmacies/clinics (9%, drug stores (14%, mobile providers (4% and grocery stores (2%. Among total anti-malarial volumes sold/distributed nationally, 6% are artemisinin monotherapies and 72% are ACT. Only 45% of people with recent "malaria fever" reportedly receive a diagnostic test, and the most common treatment acquired is a drug cocktail containing no identifiable anti-malarial. A self-reported positive diagnostic test, particularly when received in the public sector, improves likelihood of receiving anti-malarial treatment. Nonetheless, anti-malarial treatment of reportedly positive cases is low among people who seek treatment exclusively in the public (61% and private (42% sectors. Conclusions While data on the anti-malarial

  15. Synthesis and biological evaluation of tricyclic guanidine analogues of batzelladine K for antimalarial, antileishmanial, antibacterial, antifungal, and anti-HIV activities.

    Science.gov (United States)

    Ahmed, Nafees; Brahmbhatt, Keyur G; Khan, Shabana I; Jacob, Melissa; Tekwani, Babu L; Sabde, Sudeep; Mitra, Debashis; Singh, Inder P; Khan, Ikhlas A; Bhutani, Kamlesh K

    2013-04-01

    Fifty analogues of batzelladine K were synthesized and evaluated for in vitro antimalarial (Plasmodium falciparum), antileishmanial (Leishmania donovani), antimicrobial (panel of bacteria and fungi), antiviral (HIV-1) activities. Analogues 14h and 20l exhibited potential antimalarial activity against chloroquine-sensitive D6 strain with IC(50) 1.25 and 0.88 μM and chloroquine-resistant W2 strain with IC(50) 1.64 and 1.07 μM, respectively. Analogues 12c and 14c having nonyl substitution showed the most potent antileishmanial activity with IC(50) 2.39 and 2.78 μM and IC(90) 11.27 and 12.76 μM, respectively. Three analogues 12c, 14c, and 14i were the most active against various pathogenic bacteria and fungi with IC(50) Analogue 20l having pentyl and methyl substituents on tricycle showed promising activities against all pathogens. However, none was found active against HIV-1. Our study demonstrated that the tricyclic guanidine compounds provide new structural class for broad spectrum activity. © 2012 John Wiley & Sons A/S.

  16. Defining the Timing of Action of Antimalarial Drugs against Plasmodium falciparum

    Science.gov (United States)

    Langer, Christine; Goodman, Christopher D.; McFadden, Geoffrey I.

    2013-01-01

    Most current antimalarials for treatment of clinical Plasmodium falciparum malaria fall into two broad drug families and target the food vacuole of the trophozoite stage. No antimalarials have been shown to target the brief extracellular merozoite form of blood-stage malaria. We studied a panel of 12 drugs, 10 of which have been used extensively clinically, for their invasion, schizont rupture, and growth-inhibitory activity using high-throughput flow cytometry and new approaches for the study of merozoite invasion and early intraerythrocytic development. Not surprisingly, given reported mechanisms of action, none of the drugs inhibited merozoite invasion in vitro. Pretreatment of erythrocytes with drugs suggested that halofantrine, lumefantrine, piperaquine, amodiaquine, and mefloquine diffuse into and remain within the erythrocyte and inhibit downstream growth of parasites. Studying the inhibitory activity of the drugs on intraerythrocytic development, schizont rupture, and reinvasion enabled several different inhibitory phenotypes to be defined. All drugs inhibited parasite replication when added at ring stages, but only artesunate, artemisinin, cycloheximide, and trichostatin A appeared to have substantial activity against ring stages, whereas the other drugs acted later during intraerythrocytic development. When drugs were added to late schizonts, only artemisinin, cycloheximide, and trichostatin A were able to inhibit rupture and subsequent replication. Flow cytometry proved valuable for in vitro assays of antimalarial activity, with the free merozoite population acting as a clear marker for parasite growth inhibition. These studies have important implications for further understanding the mechanisms of action of antimalarials, studying and evaluating drug resistance, and developing new antimalarials. PMID:23318799

  17. Caged Garcinia Xanthones, a Novel Chemical Scaffold with Potent Antimalarial Activity.

    Science.gov (United States)

    Ke, Hangjun; Morrisey, Joanne M; Qu, Shiwei; Chantarasriwong, Oraphin; Mather, Michael W; Theodorakis, Emmanuel A; Vaidya, Akhil B

    2017-01-01

    Caged Garcinia xanthones (CGXs) constitute a family of natural products that are produced by tropical/subtropical trees of the genus Garcinia CGXs have a unique chemical architecture, defined by the presence of a caged scaffold at the C ring of a xanthone moiety, and exhibit a broad range of biological activities. Here we show that synthetic CGXs exhibit antimalarial activity against Plasmodium falciparum, the causative parasite of human malaria, at the intraerythrocytic stages. Their activity can be substantially improved by attaching a triphenylphosphonium group at the A ring of the caged xanthone. Specifically, CR135 and CR142 were found to be highly effective antimalarial inhibitors, with 50% effective concentrations as low as ∼10 nM. CGXs affect malaria parasites at multiple intraerythrocytic stages, with mature stages (trophozoites and schizonts) being more vulnerable than immature rings. Within hours of CGX treatment, malaria parasites display distinct morphological changes, significant reduction of parasitemia (the percentage of infected red blood cells), and aberrant mitochondrial fragmentation. CGXs do not, however, target the mitochondrial electron transport chain, the target of the drug atovaquone and several preclinical candidates. CGXs are cytotoxic to human HEK293 cells at the low micromolar level, which results in a therapeutic window of around 150-fold for the lead compounds. In summary, we show that CGXs are potent antimalarial compounds with structures distinct from those of previously reported antimalarial inhibitors. Our results highlight the potential to further develop Garcinia natural product derivatives as novel antimalarial agents. Copyright © 2016 American Society for Microbiology.

  18. In Vivo Antimalarial Activity and Mechanisms of Action of 4-Nerolidylcatechol Derivatives

    Science.gov (United States)

    Rocha e Silva, Luiz Francisco; Nogueira, Karla Lagos; Pinto, Ana Cristina da Silva; Katzin, Alejandro Miguel; Sussmann, Rodrigo A. C.; Muniz, Magno Perêa; Neto, Valter Ferreira de Andrade; Chaves, Francisco Célio Maia; Coutinho, Julia Penna; Lima, Emerson Silva; Krettli, Antoniana Ursine; Tadei, Wanderli Pedro

    2015-01-01

    4-Nerolidylcatechol (1) is an abundant antiplasmodial metabolite that is isolated from Piper peltatum roots. O-Acylation or O-alkylation of compound 1 provides derivatives exhibiting improved stability and significant in vitro antiplasmodial activity. The aim of this work was to study the in vitro inhibition of hemozoin formation, inhibition of isoprenoid biosynthesis in Plasmodium falciparum cultures, and in vivo antimalarial activity of several 4-nerolidylcatechol derivatives. 1,2-O,O-Diacetyl-4-nerolidylcatechol (2) inhibited in vitro hemozoin formation by up to 50%. In metabolic labeling studies using [1-(n)-3H]geranylgeranyl pyrophosphate, diester 2 significantly inhibited the biosynthesis of isoprenoid metabolites ubiquinone 8, menaquinone 4, and dolichol 12 in cultures of P. falciparum 3D7. Similarly, 2-O-benzyl-4-nerolidylcatechol (3) significantly inhibited the biosynthesis of dolichol 12. P. falciparum in vitro protein synthesis was not affected by compounds 2 or 3. At oral doses of 50 mg per kg of body weight per day, compound 2 suppressed Plasmodium berghei NK65 in infected BALB/c mice by 44%. This in vivo result for derivative 2 represents marked improvement over that obtained previously for natural product 1. Compound 2 was not detected in mouse blood 1 h after oral ingestion or in mixtures with mouse blood/blood plasma in vitro. However, it was detected after in vitro contact with human blood or blood plasma. Derivatives of 4-nerolidylcatechol exhibit parasite-specific modes of action, such as inhibition of isoprenoid biosynthesis and inhibition of hemozoin formation, and they therefore merit further investigation for their antimalarial potential. PMID:25801563

  19. A mutational analysis and molecular dynamics simulation of quinolone resistance proteins QnrA1 and QnrC from Proteus mirabilis

    Directory of Open Access Journals (Sweden)

    Ye Xinyu

    2010-10-01

    Full Text Available Abstract Background The first report on the transferable, plasmid-mediated quinolone-resistance determinant qnrA1 was in 1998. Since then, qnr alleles have been discovered worldwide in clinical strains of Gram-negative bacilli. Qnr proteins confer quinolone resistance, and belong to the pentapeptide repeat protein (PRP family. Several PRP crystal structures have been solved, but little is known about the functional significance of their structural arrangement. Results We conducted random and site-directed mutagenesis on qnrA1 and on qnrC, a newly identified quinolone-resistance gene from Proteus mirabilis. Many of the Qnr mutants lost their quinolone resistance function. The highly conserved hydrophobic Leu or Phe residues at the center of the pentapeptide repeats are known as i sites, and loss-of-function mutations included replacement of the i site hydrophobic residues with charged residues, replacing the i-2 site, N-terminal to the i residues, with bulky side-chain residues, introducing Pro into the β-helix coil, deletion of the N- and C-termini, and excision of a central coil. Molecular dynamics simulations and homology modeling demonstrated that QnrC overall adopts a stable β-helix fold and shares more similarities with MfpA than with other PRP structures. Based on homology modeling and molecular dynamics simulation, the dysfunctional point mutations introduced structural deformations into the quadrilateral β-helix structure of PRPs. Of the pentapeptides of QnrC, two-thirds adopted a type II β-turn, while the rest adopted type IV turns. A gap exists between coil 2 and coil 3 in the QnrC model structure, introducing a structural flexibility that is similar to that seen in MfpA. Conclusion The hydrophobic core and the β-helix backbone conformation are important for maintaining the quinolone resistance property of Qnr proteins. QnrC may share structural similarity with MfpA.

  20. Quantitative structure-activity relationship analysis to elucidate the clearance mechanisms of Tc-99m labeled quinolone antibiotics

    International Nuclear Information System (INIS)

    Salahinejad, M.; Mirshojaei, S.F.

    2016-01-01

    This study aims to establish molecular modeling methods for predicting the liver and kidney uptakes of Tc-99m labeled quinolone antibiotics. Some three-dimensional quantitative-activity relationships (3D-QSAR) models were developed using comparative molecular field analysis and grid-independent descriptors procedures. As a first report on 3D-QSAR modeling, the predicted liver and kidney uptakes for quinolone antibiotics were in good agreement with the experimental values. The obtained results confirm the importance of hydrophobic interactions, size and steric hindrance of antibiotic molecules in their liver uptakes, while the electrostatic interactions and hydrogen bonding ability have impressive effects on their kidney uptakes. (author)

  1. From crystal to compound: structure-based antimalarial drug discovery.

    Science.gov (United States)

    Drinkwater, Nyssa; McGowan, Sheena

    2014-08-01

    Despite a century of control and eradication campaigns, malaria remains one of the world's most devastating diseases. Our once-powerful therapeutic weapons are losing the war against the Plasmodium parasite, whose ability to rapidly develop and spread drug resistance hamper past and present malaria-control efforts. Finding new and effective treatments for malaria is now a top global health priority, fuelling an increase in funding and promoting open-source collaborations between researchers and pharmaceutical consortia around the world. The result of this is rapid advances in drug discovery approaches and technologies, with three major methods for antimalarial drug development emerging: (i) chemistry-based, (ii) target-based, and (iii) cell-based. Common to all three of these approaches is the unique ability of structural biology to inform and accelerate drug development. Where possible, SBDD (structure-based drug discovery) is a foundation for antimalarial drug development programmes, and has been invaluable to the development of a number of current pre-clinical and clinical candidates. However, as we expand our understanding of the malarial life cycle and mechanisms of resistance development, SBDD as a field must continue to evolve in order to develop compounds that adhere to the ideal characteristics for novel antimalarial therapeutics and to avoid high attrition rates pre- and post-clinic. In the present review, we aim to examine the contribution that SBDD has made to current antimalarial drug development efforts, covering hit discovery to lead optimization and prevention of parasite resistance. Finally, the potential for structural biology, particularly high-throughput structural genomics programmes, to identify future targets for drug discovery are discussed.

  2. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.

    Science.gov (United States)

    Marrero-Ponce, Yovani; Iyarreta-Veitía, Maité; Montero-Torres, Alina; Romero-Zaldivar, Carlos; Brandt, Carlos A; Avila, Priscilla E; Kirchgatter, Karin; Machado, Yanetsy

    2005-01-01

    and stochastic atom-based quadratic fingerprints were 93.93% and 92.77%, respectively. The quadratic maps-based TOMOCOMD-CARDD approach implemented in this work was successfully compared with four of the most useful models for antimalarials selection reported to date. The developed models were then used in a simulation of a virtual search for Ras FTase (FTase = farnesyltransferase) inhibitors with antimalarial activity; 70% and 100% of the 10 inhibitors used in this virtual search were correctly classified, showing the ability of the models to identify new lead antimalarials. Finally, these two QSAR models were used in the identification of previously unknown antimalarials. In this sense, three synthetic intermediaries of quinolinic compounds were evaluated as active/inactive ones using the developed models. The synthesis and biological evaluation of these chemicals against two malaria strains, using chloroquine as a reference, was performed. An accuracy of 100% with the theoretical predictions was observed. Compound 3 showed antimalarial activity, being the first report of an arylaminomethylenemalonate having such behavior. This result opens a door to a virtual study considering a higher variability of the structural core already evaluated, as well as of other chemicals not included in this study. We conclude that the approach described here seems to be a promising QSAR tool for the molecular discovery of novel classes of antimalarial drugs, which may meet the dual challenges posed by drug-resistant parasites and the rapid progression of malaria illnesses.

  3. Antimalarial properties of imipramine and amitriptyline

    International Nuclear Information System (INIS)

    Dutta, P.; Siegel, L.; Pinto, J.; Meshnick, S.

    1986-01-01

    This laboratory has previously demonstrated that imipramine (IM) and amitriptyline (AM), inhibit the conversion of riboflavin to its coenzymic derivatives. Several other laboratories have shown that dietary riboflavin deficiency is protective against malarial infection. In the present investigation, the authors determined whether IM and AM exert antimalarial effects similar to that of riboflavin deficiency, as they have hypothesized. In addition, they evaluated whether these drugs, like other antimalarial agents, increase the hemolytic response to ferriprotoporphyrin IX (FP). The growth of P. falciparum (FCR3) in the absence or presence of these drugs (80 μM) was measured by incubating parasitized erythrocytes for 48 h in RPMI 1640 medium. Parasitemia was determined by counting erythrocyte smears and monitoring ( 3 H)hypoxanthine uptake. With no drug, parasitemia was 20.3 +/- 5.3%, whereas in the presence of IM and AM, parasitemia was reduced to 7.3 +/- 0.8% and 13.6 +/- 2.8%, respectively. The uptake of ( 3 H)hypoxanthine was reduced to 47 +/- 3.6% and 54 +/- 2.9% of control by IM and AM, respectively. Assays of hemolysis were conducted by incubating 0.5% RBC suspension in NaCl-Tris buffer for 3 h at 37 0 C with variable concentrations of drugs and/or FP (1-7 μM). Both drugs at 10 to 100 μM significantly enhanced hemolysis induced by FP. No hemolysis by these drugs was detected in the absence of FP. It is concluded that the tricyclic antidepressants, IM and AM, possess substantial antimalarial properties, thereby supporting the hypothesis that drugs which interfere with riboflavin metabolism should also provide protection against malaria

  4. Structure-Based Design: Synthesis, X-ray Crystallography, and Biological Evaluation of N-Substituted-4-Hydroxy-2-Quinolone-3-Carboxamides as Potential Cytotoxic Agents.

    Science.gov (United States)

    Sabbah, Dima A; Hishmah, Bayan; Sweidan, Kamal; Bardaweel, Sanaa; AlDamen, Murad; Zhong, Haizhen A; Abu Khalaf, Reema; Hasan Ibrahim, Ameerah; Al-Qirim, Tariq; Abu Sheikha, Ghassan; Mubarak, Mohammad S

    2018-01-01

    Oncogenic potential of phosphatidylinositol 3-kinase (PI3Kα) has been highlighted as a therapeutic target for anticancer drug design. Target compounds were designed to address the effect of different substitution patterns at the N atom of the carboxamide moiety on the bioactivity of this series. Synthesis of the targeted compounds, crystallography, biological evaluation tests against human colon carcinoma (HCT-116), and Glide docking studies. A new series of N-substituted- 4-hydroxy-2-quinolone-3-carboxamides was prepared and characterized by means of FT-IR, 1H and 13C NMR, and elemental analysis. In addition, the identity of the core nucleus 5 was successfully characterized with the aid of X-ray crystallography. Biological activity of prepared compounds was investigated in vitro against human colon carcinoma (HCT-116) cell line. Results revealed that these compounds inhibit cell proliferation and induce apoptosis through an increase in caspase-3 activity and a decrease in DNA cellular content. Compounds 7, 14, and 17 which have H-bond acceptor moiety on p-position displayed promising PI3Kα inhibitory activity. On the other hand, derivatives tailored with bulky and hydrophobic motifs (16 and 18) on o- and m-positions exhibited moderate activity. Molecular docking studies against PI3Kα and caspase-3 showed an agreement between the predicted binding affinity (ΔGobsd) and IC50 values of the derivatives for the caspase-3 model. Furthermore, Glide docking studies against PI3Kα demonstrated that the newly synthesized compounds accommodate PI3Kα kinase catalytic domain and form H-bonding with key binding residues. The series exhibited a potential PI3Kα inhibitory activity in HCT-116 cell line. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. A nationwide survey of the quality of antimalarials in retail outlets in Tanzania.

    Science.gov (United States)

    Kaur, Harparkash; Goodman, Catherine; Thompson, Eloise; Thompson, Katy-Anne; Masanja, Irene; Kachur, S Patrick; Abdulla, Salim

    2008-01-01

    Retail pharmaceutical products are commonly used to treat fever and malaria in sub-Saharan African countries. Small scale studies have suggested that poor quality antimalarials are widespread throughout the region, but nationwide data are not available that could lead to generalizable conclusions about the extent to which poor quality drugs are available in African communities. This study aimed to assess the quality of antimalarials available from retail outlets across mainland Tanzania. We systematically purchased samples of oral antimalarial tablets from retail outlets across 21 districts in mainland Tanzania in 2005. A total of 1080 antimalarial formulations were collected including 679 antifol antimalarial samples (394 sulfadoxine/pyrimethamine and 285 sulfamethoxypyrazine/pyrimethamine), 260 amodiaquine samples, 63 quinine samples, and 51 artemisinin derivative samples. A systematic subsample of 304 products was assessed for quality by laboratory based analysis to determine the amount of the active ingredient and dissolution profile by following the published United States Pharmacopoeia (USP) monogram for the particular tablet being tested. Products for which a published analytical monogram did not exist were assessed on amount of active ingredient alone. Overall 38 or 12.2% of the samples were found to be of poor quality. Of the antifolate antimalarial drugs tested 13.4% were found to be of poor quality by dissolution and content analysis using high-performance liquid chromatography (HPLC). Nearly one quarter (23.8%) of quinine tablets did not comply within the tolerance limits of the dissolution and quantification analysis. Quality of amodiaquine drugs was relatively better but still unacceptable as 7.5% did not comply within the tolerance limits of the dissolution analysis. Formulations of the artemisinin derivatives all contained the stated amount of active ingredient when analysed using HPLC alone. Substandard antimalarial formulations were widely

  6. A nationwide survey of the quality of antimalarials in retail outlets in Tanzania.

    Directory of Open Access Journals (Sweden)

    Harparkash Kaur

    Full Text Available Retail pharmaceutical products are commonly used to treat fever and malaria in sub-Saharan African countries. Small scale studies have suggested that poor quality antimalarials are widespread throughout the region, but nationwide data are not available that could lead to generalizable conclusions about the extent to which poor quality drugs are available in African communities. This study aimed to assess the quality of antimalarials available from retail outlets across mainland Tanzania.We systematically purchased samples of oral antimalarial tablets from retail outlets across 21 districts in mainland Tanzania in 2005. A total of 1080 antimalarial formulations were collected including 679 antifol antimalarial samples (394 sulfadoxine/pyrimethamine and 285 sulfamethoxypyrazine/pyrimethamine, 260 amodiaquine samples, 63 quinine samples, and 51 artemisinin derivative samples. A systematic subsample of 304 products was assessed for quality by laboratory based analysis to determine the amount of the active ingredient and dissolution profile by following the published United States Pharmacopoeia (USP monogram for the particular tablet being tested. Products for which a published analytical monogram did not exist were assessed on amount of active ingredient alone. Overall 38 or 12.2% of the samples were found to be of poor quality. Of the antifolate antimalarial drugs tested 13.4% were found to be of poor quality by dissolution and content analysis using high-performance liquid chromatography (HPLC. Nearly one quarter (23.8% of quinine tablets did not comply within the tolerance limits of the dissolution and quantification analysis. Quality of amodiaquine drugs was relatively better but still unacceptable as 7.5% did not comply within the tolerance limits of the dissolution analysis. Formulations of the artemisinin derivatives all contained the stated amount of active ingredient when analysed using HPLC alone.Substandard antimalarial formulations were

  7. Augmentation of the Differentiation Response to Antitumor Antimalarials

    National Research Council Canada - National Science Library

    Rahim, Rayhana

    2003-01-01

    .... We have shown that the quinoline antimalarials chloroquine (CO) and hydroxychioroquine (HCQ) inhibit proliferation and induce differentiation in breast cancer cell lines without toxicity to normal MCF-10A cells...

  8. Design, synthesis and antimalarial activity of novel bis{N-[(pyrrolo[1,2-a]quinoxalin-4-yl)benzyl]-3-aminopropyl}amine derivatives.

    Science.gov (United States)

    Guillon, Jean; Cohen, Anita; Gueddouda, Nassima Meriem; Das, Rabindra Nath; Moreau, Stéphane; Ronga, Luisa; Savrimoutou, Solène; Basmaciyan, Louise; Monnier, Alix; Monget, Myriam; Rubio, Sandra; Garnerin, Timothée; Azas, Nadine; Mergny, Jean-Louis; Mullié, Catherine; Sonnet, Pascal

    2017-12-01

    Novel series of bis- and tris-pyrrolo[1,2-a]quinoxaline derivatives 1 were synthesized and tested for in vitro activity upon the intraerythrocytic stage of W2 and 3D7 Plasmodium falciparum strains. Biological results showed good antimalarial activity with IC 50 in the μM range. In attempting to investigate the large broad-spectrum antiprotozoal activities of these new derivatives, their properties toward Leishmania donovani were also investigated and revealed their selective antiplasmodial profile. In parallel, the in vitro cytotoxicity of these molecules was assessed on the human HepG2 cell line. Structure-activity relationships of these new synthetic compounds are discussed here. The bis-pyrrolo[1,2-a]quinoxalines 1n and 1p were identified as the most potent antimalarial candidates with selectivity index (SI) of 40.6 on W2 strain, and 39.25 on 3D7 strain, respectively. As the telomeres of the parasite could constitute an attractive target, we investigated the possibility of targeting Plasmodium telomeres by stabilizing the Plasmodium telomeric G-quadruplexes through a FRET melting assay by our new compounds.

  9. Study of the antimalarial properties of hydroxyethylamine derivatives using green fluorescent protein transformed Plasmodium berghei

    Directory of Open Access Journals (Sweden)

    Mariana Conceição Souza

    2015-06-01

    Full Text Available A rapid decrease in parasitaemia remains the major goal for new antimalarial drugs and thus, in vivo models must provide precise results concerning parasitaemia modulation. Hydroxyethylamine comprise an important group of alkanolamine compounds that exhibit pharmacological properties as proteases inhibitors that has already been proposed as a new class of antimalarial drugs. Herein, it was tested the antimalarial property of new nine different hydroxyethylamine derivatives using the green fluorescent protein (GFP-expressing Plasmodium berghei strain. By comparing flow cytometry and microscopic analysis to evaluate parasitaemia recrudescence, it was observed that flow cytometry was a more sensitive methodology. The nine hydroxyethylamine derivatives were obtained by inserting one of the following radical in the para position: H, 4Cl, 4-Br, 4-F, 4-CH3, 4-OCH3, 4-NO2, 4-NH2 and 3-Br. The antimalarial test showed that the compound that received the methyl group (4-CH3 inhibited 70% of parasite growth. Our results suggest that GFP-transfected P. berghei is a useful tool to study the recrudescence of novel antimalarial drugs through parasitaemia examination by flow cytometry. Furthermore, it was demonstrated that the insertion of a methyl group at the para position of the sulfonamide ring appears to be critical for the antimalarial activity of this class of compounds.

  10. A SAR and QSAR study of new artemisinin compounds with antimalarial activity.

    Science.gov (United States)

    Santos, Cleydson Breno R; Vieira, Josinete B; Lobato, Cleison C; Hage-Melim, Lorane I S; Souto, Raimundo N P; Lima, Clarissa S; Costa, Elizabeth V M; Brasil, Davi S B; Macêdo, Williams Jorge C; Carvalho, José Carlos T

    2013-12-30

    The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs) and molecular docking were used to investigate the interaction between ligands and the receptor (heme). Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE), the charge on the O11 oxygen atom (QO11), the torsion angle O1-O2-Fe-N2 (D2) and the maximum rate of R/Sanderson Electronegativity (RTe+). These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.

  11. Low-level quinolone-resistance in multi-drug resistant typhoid

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S H; Khan, M A [Armed Forces Inst. of Pathology, Rawalpindi (Pakistan). Dept. of Microbiolgy

    2008-01-15

    To find out the frequency of low-level quinolone-resistance in Multi-Drug Resistant (MDR) typhoid using nalidixic acid screening disc. Blood was obtained from suspected cases of typhoid fever and cultured in to BacT/ALERT. The positive blood cultures bottles were subcultured. The isolates were identified by colony morphology and biochemical tests using API-20E galleries. Susceptibility testing of isolates was done by modified Kirby-Bauer disc diffusion method on Muellar Hinton Agar. For the isolates, which were resistant to nalidixic acid by disc diffusion method, Minimal Inhibitory Concentrations (MICs) of ciprofloxacin and nalidixic acid were determined by using the E-test strips. Disc diffusion susceptibility tests and MICs were interpreted according to the guidelines provided by National Committee for Control Laboratory Standard (NCCLS). A total of 21(65.5%) out of 32 isolates of Salmonellae were nalidixic acid-resistant by disk diffusion method. All the nalidixic acid-resistant isolates by disc diffusion method were confirmed by MICs for both ciprofloxacin and nalidixic acid. All the nalidixic acid-resistant isolates had a ciprofloxacin MIC of 0.25-1 microg/ml (reduced susceptibility) and nalidixic acid MICs > 32 microg (resistant). Out of all Salmonella isolates, 24 (75%) were found to be MDR, and all were S. typbi. Low-level quinolone-resistance in typhoid was high in this small series. Screening for nalidixic acid resistance with a 30 microg nalidixic acid disk is a reliable and cost-effective method to detect low-level fluoroquinolone resistance, especially in the developing countries. (author)

  12. Low-level quinolone-resistance in multi-drug resistant typhoid

    International Nuclear Information System (INIS)

    Mirza, S.H.; Khan, M.A.

    2008-01-01

    To find out the frequency of low-level quinolone-resistance in Multi-Drug Resistant (MDR) typhoid using nalidixic acid screening disc. Blood was obtained from suspected cases of typhoid fever and cultured in to BacT/ALERT. The positive blood cultures bottles were subcultured. The isolates were identified by colony morphology and biochemical tests using API-20E galleries. Susceptibility testing of isolates was done by modified Kirby-Bauer disc diffusion method on Muellar Hinton Agar. For the isolates, which were resistant to nalidixic acid by disc diffusion method, Minimal Inhibitory Concentrations (MICs) of ciprofloxacin and nalidixic acid were determined by using the E-test strips. Disc diffusion susceptibility tests and MICs were interpreted according to the guidelines provided by National Committee for Control Laboratory Standard (NCCLS). A total of 21(65.5%) out of 32 isolates of Salmonellae were nalidixic acid-resistant by disk diffusion method. All the nalidixic acid-resistant isolates by disc diffusion method were confirmed by MICs for both ciprofloxacin and nalidixic acid. All the nalidixic acid-resistant isolates had a ciprofloxacin MIC of 0.25-1 microg/ml (reduced susceptibility) and nalidixic acid MICs > 32 microg (resistant). Out of all Salmonella isolates, 24 (75%) were found to be MDR, and all were S. typbi. Low-level quinolone-resistance in typhoid was high in this small series. Screening for nalidixic acid resistance with a 30 microg nalidixic acid disk is a reliable and cost-effective method to detect low-level fluoroquinolone resistance, especially in the developing countries. (author)

  13. Quinolone resistance-associated amino acid substitutions affect enzymatic activity of Mycobacterium leprae DNA gyrase.

    Science.gov (United States)

    Yamaguchi, Tomoyuki; Yokoyama, Kazumasa; Nakajima, Chie; Suzuki, Yasuhiko

    2017-07-01

    Quinolones are important antimicrobials for treatment of leprosy, a chronic infectious disease caused by Mycobacterium leprae. Although it is well known that mutations in DNA gyrase are responsible for quinolone resistance, the effect of those mutations on the enzymatic activity is yet to be studied in depth. Hence, we conducted in vitro assays to observe supercoiling reactions of wild type and mutated M. leprae DNA gyrases. DNA gyrase with amino acid substitution Ala91Val possessed the highest activity among the mutants. DNA gyrase with Gly89Cys showed the lowest level of activity despite being found in clinical strains, but it supercoiled DNA like the wild type does if applied at a sufficient concentration. In addition, patterns of time-dependent conversion from relaxed circular DNA into supercoiled DNA by DNA gyrases with clinically unreported Asp95Gly and Asp95Asn were observed to be distinct from those by the other DNA gyrases.

  14. Removal of tetracyclines, sulfonamides, and quinolones by industrial-scale composting and anaerobic digestion processes.

    Science.gov (United States)

    Liu, Hang; Pu, Chengjun; Yu, Xiaolu; Sun, Ying; Chen, Junhao

    2018-02-15

    This study evaluated and compared the removal of antibiotics by industrial-scale composting and anaerobic digestion at different seasons. Twenty compounds belonged to three classes of widely used veterinary antibiotics (i.e., tetracyclines, sulfonamides, and quinolones) were investigated. Results show that of the three groups of antibiotics, tetracyclines were dominant in swine feces and poorly removed by anaerobic digestion with significant accumulation in biosolids, particularly in winter. Compared to that in winter, a much more effective removal (> 97%) by anaerobic digestion was observed for sulfonamides in summer. By contrast, quinolones were the least abundant antibiotics in swine feces and exhibited a higher removal by anaerobic digestion in winter than in summer. The overall removal of antibiotics by aerobic composting could be more than 90% in either winter or summer. Nevertheless, compost products from livestock farms in Beijing contained much higher antibiotics than commercial organic fertilizers. Thus, industrial composting standards should be strictly applied to livestock farms to further remove antibiotics and produce high quality organic fertilizer.

  15. Increasing resistance to quinolones: A four-year prospective study of urinary tract infection pathogens

    Directory of Open Access Journals (Sweden)

    Orhiosefe Omigie

    2009-08-01

    Full Text Available Orhiosefe Omigie, Lawrence Okoror, Patience Umolu, Gladys IkuuhDepartment of Microbiology, Ambrose Alli University, Ekpoma, NigeriaAbstract: A four-year prospective study was carried out to determine the incidence and rate of development of resistance by common urinary tract infection (UTI pathogens to quinolone antimicrobial agents. Results show that there is high intrinsic resistance to the quinolones among strains of Pseudomonas aeruginosa (43.4%, Escherichia coli (26.3%, and Proteus spp. (17.1%. Over four years, rising rates of resistance were observed in P. aeruginosa (14.6% increase, Staphylococcus aureus (9.8%, and E. coli (9.7%. The highest potency was exhibited by ciprofloxacin (91.2%, levofloxacin (89.2%, and moxifloxacin (85.1%, while there were high rates of resistance to nalidixic acid (51.7% and pefloxacin (29.0%. Coliforms, particularly E. coli (>45%, remain the most prevalent causative agents of UTI while females within the age range of 20–50 years were most vulnerable to UTI.Keywords: UTI, microorganisms, antibiotics, resistance

  16. In vitro antimalarial activity of Calophyllum bicolor and hemozoin crystals observed by Transmission Electron Microscope (TEM)

    OpenAIRE

    Abbas Jamilah

    2018-01-01

    Objective : In continuation of our antimalarial candidate drug discovery program on Indonesia medicinal plants especially from stem bark of Calophyllum bicolor. Metode : We extracted of bioactive crude extract with hexane, acetone and methanol from stem bark of Calophyllum bicolor and evaluated their antimalarial activity by using parasite Plasmodium falciparum in vitro. Results: Methanol fraction showed most active and potent antimalarial activity dose dependent in in vitro experiments with ...

  17. Enterobacteriaceae resistant to third-generation cephalosporins and quinolones in fresh culinary herbs imported from Southeast Asia.

    Science.gov (United States)

    Veldman, Kees; Kant, Arie; Dierikx, Cindy; van Essen-Zandbergen, Alieda; Wit, Ben; Mevius, Dik

    2014-05-02

    Since multidrug resistant bacteria are frequently reported from Southeast Asia, our study focused on the occurrence of ESBL-producing Enterobacteriaceae in fresh imported herbs from Thailand, Vietnam and Malaysia. Samples were collected from fresh culinary herbs imported from Southeast Asia in which ESBL-suspected isolates were obtained by selective culturing. Analysis included identification by MALDI-TOF mass spectrometry, susceptibility testing, XbaI-PFGE, microarray, PCR and sequencing of specific ESBL genes, PCR based replicon typing (PBRT) of plasmids and Southern blot hybridization. In addition, the quinolone resistance genotype was characterized by screening for plasmid mediated quinolone resistance (PMQR) genes and mutations in the quinolone resistance determining region (QRDR) of gyrA and parC. The study encompassed fifty samples of ten batches of culinary herbs (5 samples per batch) comprising nine different herb variants. The herbs originated from Thailand (Water morning glory, Acacia and Betel leaf), Vietnam (Parsley, Asian pennywort, Houttuynia leaf and Mint) and Malaysia (Holy basil and Parsley). By selective culturing 21 cefotaxime resistant Enterobacteriaceae were retrieved. Array analysis revealed 18 isolates with ESBL genes and one isolate with solely non-ESBL beta-lactamase genes. Mutations in the ampC promoter region were determined in two isolates with PCR and sequencing. The isolates were identified as Klebsiella pneumoniae (n=9), Escherichia coli (n=6), Enterobacter cloacae complex (n=5) and Enterobacter spp. (n=1). All isolates tested were multidrug resistant. Variants of CTX-M enzymes were predominantly found followed by SHV enzymes. PMQR genes (including aac(6')-1b-cr, qnrB and qnrS) were also frequently detected. In almost all cases ESBL and quinolone resistance genes were located on the same plasmid. Imported fresh culinary herbs from Southeast Asia are a potential source for contamination of food with multidrug resistant bacteria

  18. Isolation, molecular identification and quinolone-susceptibility testing of Arcobacter spp. isolated from fresh vegetables in Spain.

    Science.gov (United States)

    González, Ana; Bayas Morejón, Isidro Favián; Ferrús, María Antonia

    2017-08-01

    Some species of the Arcobacter genus are considered emerging foodborne and waterborne enteropathogens. However, the presence of Arcobacter spp. in vegetables very little is known, because most studies have focused on foods of animal origin. On the other hand, quinolones are considered as first-line drugs for the treatment of infection by campylobacteria in human patients, but few data are currently available about the resistance levels to these antibiotics among Arcobacter species. Therefore, the aim of this study was to investigate the presence and diversity of arcobacters isolated from fresh vegetables such as lettuces, spinaches, chards and cabbages. Resistance to quinolones of the isolates was also investigated. One hundred fresh vegetables samples purchased from seven local retail markets in Valencia (Spain) during eight months were analysed. The study included 41 lettuces, 21 spinaches, 34 chards and 4 cabbages. Samples were analysed by culture and by molecular methods before and after enrichment. By culture, 17 out of 100 analysed samples were Arcobacter positive and twenty-five isolates were obtained from them. Direct detection by PCR was low, with only 4% Arcobacter spp. positive samples. This percentage increased considerably, up 20%, after 48 h enrichment. By polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), 17 out of the 25 isolates were identified as A. butzleri and 8 as A. cryaerophilus. Only two A. butzleri isolates showed resistance to levofloxacin and ciprofloxacin. The sequencing of a fragment of the QRDR region of the gyrA gene from the quinolones-resistant isolates revealed the presence of a mutation in position 254 of this gene (C-T transition). This study is the first report about the presence of pathogenic species of Arcobacter spp. in chards and cabbages and confirms that fresh vegetables can act as transmission vehicle to humans. Moreover, the presence of A. butzleri quinolone resistant in vegetables could

  19. Synthesis, Docking, In Vitro and In Vivo Antimalarial Activity of Hybrid 4-aminoquinoline-1,3,5-triazine Derivatives Against Wild and Mutant Malaria Parasites.

    Science.gov (United States)

    Bhat, Hans Raj; Singh, Udaya Pratap; Gahtori, Prashant; Ghosh, Surajit Kumar; Gogoi, Kabita; Prakash, Anil; Singh, Ramendra K

    2015-09-01

    A new series of hybrid 4-aminoquinoline-1,3,5-triazine derivatives was synthesized by a four-step reaction. Target compounds were screened for in vitro antimalarial activity against chloroquine-sensitive (3D-7) and chloroquine-resistant (RKL-2) strains of Plasmodium falciparum. Compounds exhibited, by and large, good antimalarial activity against the resistant strain, while two of them, that is 8g and 8a, displayed higher activity against both the strains of P. falciparum. Additionally, docking study was performed on both wild (1J3I.pdb) and quadruple mutant (N51I, C59R, S108 N, I164L, 3QG2.pdb) type pf-DHFR-TS to highlight the structural features of hybrid molecules. © 2014 John Wiley & Sons A/S.

  20. Optimization of 2-Anilino 4-Amino Substituted Quinazolines into Potent Antimalarial Agents with Oral in Vivo Activity.

    Science.gov (United States)

    Gilson, Paul R; Tan, Cyrus; Jarman, Kate E; Lowes, Kym N; Curtis, Joan M; Nguyen, William; Di Rago, Adrian E; Bullen, Hayley E; Prinz, Boris; Duffy, Sandra; Baell, Jonathan B; Hutton, Craig A; Jousset Subroux, Helene; Crabb, Brendan S; Avery, Vicky M; Cowman, Alan F; Sleebs, Brad E

    2017-02-09

    Novel antimalarial therapeutics that target multiple stages of the parasite lifecycle are urgently required to tackle the emerging problem of resistance with current drugs. Here, we describe the optimization of the 2-anilino quinazoline class as antimalarial agents. The class, identified from publicly available antimalarial screening data, was optimized to generate lead compounds that possess potent antimalarial activity against P. falciparum parasites comparable to the known antimalarials, chloroquine and mefloquine. During the optimization process, we defined the functionality necessary for activity and improved in vitro metabolism and solubility. The resultant lead compounds possess potent activity against a multidrug resistant strain of P. falciparum and arrest parasites at the ring phase of the asexual stage and also gametocytogensis. Finally, we show that the lead compounds are orally efficacious in a 4 day murine model of malaria disease burden.

  1. Monitoring antimalarial safety and tolerability in clinical trials: A case study from Uganda

    Directory of Open Access Journals (Sweden)

    Mpimbaza Arthur

    2008-06-01

    Full Text Available Abstract Background New antimalarial regimens, including artemisinin-based combination therapies (ACTs, have been adopted widely as first-line treatment for uncomplicated malaria. Although these drugs appear to be safe and well-tolerated, experience with their use in Africa is limited and continued assessment of safety is a priority. However, no standardized guidelines for evaluating drug safety and tolerability in malaria studies exist. A system for monitoring adverse events in antimalarial trials conducted in Uganda was developed. Here the reporting system is described, and difficulties faced in analysing and interpreting the safety results are illustrated, using data from the trials. Case description Between 2002 and 2007, eleven randomized, controlled clinical trials were conducted to compare the efficacy, safety, and tolerability of different antimalarial regimens for treatment of uncomplicated malaria in Uganda. The approach to adverse event monitoring was similar in all studies. A total of 5,614 treatments were evaluated in 4,876 patients. Differences in baseline characteristics and patterns of adverse event reporting were noted between the sites, which limited the ability to pool and analyse data. Clinical failure following antimalarial treatment confounded associations between treatment and adverse events that were also common symptoms of malaria, particularly in areas of lower transmission intensity. Discussion and evaluation Despite prospectively evaluating for adverse events, limitations in the monitoring system were identified. New standardized guidelines for monitoring safety and tolerability in antimalarial trials are needed, which should address how to detect events of greatest importance, including serious events, those with a causal relationship to the treatment, those which impact on adherence, and events not previously reported. Conclusion Although the World Health Organization has supported the development of

  2. Strengthening of national capacity in implementation of antimalarial drug quality assurance in Thailand.

    Science.gov (United States)

    Vijaykadga, Saowanit; Cholpol, Sawat; Sitthimongkol, Saipin; Pawaphutanan, Anusorn; Pinyoratanachot, Arunya; Rojanawatsirivet, Chaiporn; Kovithvattanapong, Rojana; Thimasarn, Krongthong

    2006-01-01

    Substandard and counterfeit pharmaceutical products, including antimalarial drugs, appear to be widespread internationally and affect both the developing and developed countries. The aim of the study was to investigate the quality of antimalarial drugs, ie, artesunate (ART), chloroquine (CHL), mefloquine (MEF), quinine (QUI), sulfadoxine/pyrimethamine (S/P) and tetracycline (TT) obtained from the government sector and private pharmacies in 4 Thai provinces: Mae Hong Son, Kanchanaburi, Ranong, and Chanthaburi. Three hundred sixty-nine samples of 6 antimalarial drugs from 27 government hospitals, 27 malaria clinics, and 53 drugstores, were collected. Drug quality was assessed by simple disintegration test and semi-quantitative thin-layer chromatography in each province; 10% passed, 100% failed and doubtful samples were sent to be verified by high performance liquid chromatography (HPLC) at the Thai National Drug Analysis Laboratory, (NL). Fifteen point four percent of ART, 11.1% of CHL and 29.4% of QUI were substandard. Based on the finding, drug regulatory authorities in the country took appropriate action against violators to ensure that antimalarial drugs consumed by malaria patients are of good quality.

  3. Anticancer Properties of Distinct Antimalarial Drug Classes

    Science.gov (United States)

    Hooft van Huijsduijnen, Rob; Guy, R. Kiplin; Chibale, Kelly; Haynes, Richard K.; Peitz, Ingmar; Kelter, Gerhard; Phillips, Margaret A.; Vennerstrom, Jonathan L.; Yuthavong, Yongyuth; Wells, Timothy N. C.

    2013-01-01

    We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. PMID:24391728

  4. Anticancer properties of distinct antimalarial drug classes.

    Directory of Open Access Journals (Sweden)

    Rob Hooft van Huijsduijnen

    Full Text Available We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor, emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings.

  5. qnrA6 genetic environment and quinolone resistance conferred on Proteus mirabilis.

    Science.gov (United States)

    Jayol, Aurélie; Janvier, Frédéric; Guillard, Thomas; Chau, Françoise; Mérens, Audrey; Robert, Jérôme; Fantin, Bruno; Berçot, Béatrice; Cambau, Emmanuelle

    2016-04-01

    To determine the genetic location and environment of the qnrA6 gene in Proteus mirabilis PS16 where it was first described and to characterize the quinolone resistance qnrA6 confers. Transformation experiments and Southern blotting were performed for plasmid and genomic DNA of P. mirabilis PS16 to determine the qnrA6 location. Combinatorial PCRs with primers in qnrA6 and genes usually surrounding qnrA genes were used to determine the genetic environment. The qnrA6 coding region, including or not the promoter region, was cloned into vectors pTOPO and pBR322 and the MICs of six quinolones were measured for transformants of Escherichia coli TOP10 and P. mirabilis ATCC 29906 Rif(R). qnrA6 was shown to be chromosomally encoded in P. mirabilis PS16 and its genetic environment was 81%-87% similar to that of qnrA2 in the Shewanella algae chromosome. The 5138 bp region up- and downstream of qnrA6 contained an IS10 sequence surrounded by two ISCR1. This resulted in qnrA6 being displaced 1.9 kb from its native promoter but supplied a promoter present in ISCR1. qnrA6 cloned into pTOPO and pBR322 conferred a 4-32-fold increase in fluoroquinolone MICs when expressed in E. coli but only 2-3-fold in P. mirabilis. When including the promoter region, a further increase in resistance was observed in both species, reaching MIC values above clinical breakpoints for only P. mirabilis. qnrA6 is the first chromosomally located qnrA gene described in Enterobacteriaceae. The quinolone resistance conferred by qnrA6 depends on the proximity of an efficient promoter and the host strain where it is expressed. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Shifts in the Antibiotic Susceptibility, Serogroups, and Clonal Complexes of Neisseria meningitidis in Shanghai, China: A Time Trend Analysis of the Pre-Quinolone and Quinolone Eras.

    Science.gov (United States)

    Chen, Mingliang; Guo, Qinglan; Wang, Ye; Zou, Ying; Wang, Gangyi; Zhang, Xi; Xu, Xiaogang; Zhao, Miao; Hu, Fupin; Qu, Di; Chen, Min; Wang, Minggui

    2015-06-01

    Fluoroquinolones have been used broadly since the end of the 1980s and have been recommended for Neisseria meningitidis prophylaxis since 2005 in China. The aim of this study was to determine whether and how N. meningitidis antimicrobial susceptibility, serogroup prevalence, and clonal complex (CC) prevalence shifted in association with the introduction and expanding use of quinolones in Shanghai, a region with a traditionally high incidence of invasive disease due to N. meningitidis. A total of 374 N. meningitidis isolates collected by the Shanghai Municipal Center for Disease Control and Prevention between 1965 and 2013 were studied. Shifts in the serogroups and CCs were observed, from predominantly serogroup A CC5 (84%) in 1965-1973 to serogroup A CC1 (58%) in 1974-1985, then to serogroup C or B CC4821 (62%) in 2005-2013. The rates of ciprofloxacin nonsusceptibility in N. meningitidis disease isolates increased from 0% in 1965-1985 to 84% (31/37) in 2005-2013 (p convenience isolates from 1965-1985 were available. The increasing prevalence of ciprofloxacin resistance since 2005 in Shanghai was associated with the spread of hypervirulent lineages CC4821 and CC5. Two resistant meningococcal clones ChinaCC4821-R1-C/B and ChinaCC5-R14-A have emerged in Shanghai during the quinolone era. Ciprofloxacin should be utilized with caution for the chemoprophylaxis of N. meningitidis in China.

  7. A qualitative assessment of the challenges of WHO prequalification for anti-malarial drugs in China.

    Science.gov (United States)

    Huang, Yangmu; Pan, Ke; Peng, Danlu; Stergachis, Andy

    2018-04-03

    While China is a major manufacturer of artemisinin and its derivatives, it lags as a global leader in terms of the total export value of anti-malarial drugs as finished pharmaceutical products ready for marketing and use by patients. This may be due to the limited number of World Health Organization (WHO) prequalified anti-malarial drugs from China. Understanding the reasons for the slow progress of WHO prequalification (PQ) in China can help improve the current situation and may lead to greater efforts in malaria eradication by Chinese manufacturers. In-depth interviews were conducted in China between November 2014 and December 2016. A total of 26 key informants from central government agencies, pharmaceutical companies, universities, and research institutes were interviewed, all of which had current or previous experience overseeing or implementing anti-malarial research and development in China. Chinese anti-malarial drugs that lack WHO PQ are mainly exported for use in the African private market. High upfront costs with unpredictable benefits, as well as limited information and limited technical support on WHO PQ, were reported as the main barriers to obtain WHO PQ for anti-malarial drugs by respondents from Chinese pharmaceutical companies. Potential incentives identified by respondents included tax relief, human resource training and consultation, as well as other incentives related to drug approval, such as China's Fast Track Channel. Government support, as well as innovative incentives and collaboration mechanisms are needed for further adoption of WHO PQ for anti-malarial drugs in China.

  8. Poor quality vital anti-malarials in Africa - an urgent neglected public health priority

    Directory of Open Access Journals (Sweden)

    Newton Paul N

    2011-12-01

    Full Text Available Abstract Background Plasmodium falciparum malaria remains a major public health problem. A vital component of malaria control rests on the availability of good quality artemisinin-derivative based combination therapy (ACT at the correct dose. However, there are increasing reports of poor quality anti-malarials in Africa. Methods Seven collections of artemisinin derivative monotherapies, ACT and halofantrine anti-malarials of suspicious quality were collected in 2002/10 in eleven African countries and in Asia en route to Africa. Packaging, chemical composition (high performance liquid chromatography, direct ionization mass spectrometry, X-ray diffractometry, stable isotope analysis and botanical investigations were performed. Results Counterfeit artesunate containing chloroquine, counterfeit dihydroartemisinin (DHA containing paracetamol (acetaminophen, counterfeit DHA-piperaquine containing sildenafil, counterfeit artemether-lumefantrine containing pyrimethamine, counterfeit halofantrine containing artemisinin, and substandard/counterfeit or degraded artesunate and artesunate+amodiaquine in eight countries are described. Pollen analysis was consistent with manufacture of counterfeits in eastern Asia. These data do not allow estimation of the frequency of poor quality anti-malarials in Africa. Conclusions Criminals are producing diverse harmful anti-malarial counterfeits with important public health consequences. The presence of artesunate monotherapy, substandard and/or degraded and counterfeit medicines containing sub-therapeutic amounts of unexpected anti-malarials will engender drug resistance. With the threatening spread of artemisinin resistance to Africa, much greater investment is required to ensure the quality of ACTs and removal of artemisinin monotherapies. The International Health Regulations may need to be invoked to counter these serious public health problems.

  9. Aphadilactones A-D, four diterpenoid dimers with DGAT inhibitory and antimalarial activities from a Meliaceae plant.

    Science.gov (United States)

    Liu, Jia; He, Xiu-Feng; Wang, Gai-Hong; Merino, Emilio F; Yang, Sheng-Ping; Zhu, Rong-Xiu; Gan, Li-She; Zhang, Hua; Cassera, Maria B; Wang, He-Yao; Kingston, David G I; Yue, Jian-Min

    2014-01-17

    Aphadilactones A-D (1-4), four diastereoisomers possessing an unprecedented carbon skeleton, were isolated from the Meliaceae plant Aphanamixis grandifolia. Their challenging structures and absolute configurations were determined by a combination of spectroscopic data, chemical degradation, fragment synthesis, experimental CD spectra, and ECD calculations. Aphadilactone C (3) with the 5S,11S,5'S,11'S configuration showed potent and selective inhibition against the diacylglycerol O-acyltransferase-1 (DGAT-1) enzyme (IC50 = 0.46 ± 0.09 μM, selectivity index > 217) and is the strongest natural DGAT-1 inhibitor discovered to date. In addition, compounds 1-4 showed significant antimalarial activities with IC50 values of 190 ± 60, 1350 ± 150, 170 ± 10, and 120 ± 50 nM, respectively.

  10. A SAR and QSAR Study of New Artemisinin Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Cleydson Breno R. Santos

    2013-12-01

    Full Text Available The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs and molecular docking were used to investigate the interaction between ligands and the receptor (heme. Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE, the charge on the O11 oxygen atom (QO11, the torsion angle O1-O2-Fe-N2 (D2 and the maximum rate of R/Sanderson Electronegativity (RTe+. These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.

  11. Antimalarial Activity of Acetylenic Thiophenes from Echinops hoehnelii Schweinf

    Directory of Open Access Journals (Sweden)

    Helen Bitew

    2017-11-01

    Full Text Available Malaria is one of the world’s most severe endemic diseases and due to the emergence of resistance to the currently available medicines, the need for new targets and relevant antimalarial drugs remains acute. The crude extract, four solvent fractions and two isolated compounds from the roots of Echinops hoehnelii were tested for their antimalarial activity using the standard four-day suppressive method in Plasmodium berghei-infected mice. The 80% methanol extract exhibited suppression of 4.6%, 27.8%, 68.5% and 78.7% at dose of 50, 100, 200 and 400 mg/kg respectively. The dichloromethane fraction displayed chemosuppression of 24.9, 33.5 and 43.0% dose of 100, 200 and 400 mg/kg of body weight. Five acetylenicthiophenes were isolated from the dichloromethane fraction of which 5-(penta-1,3-diynyl-2-(3,4-dihydroxybut-1-ynyl-thiophene decreased the level of parasitaemia by 43.2% and 50.2% while 5-(penta-1,3-diynyl-2-(3-chloro-4-acetoxy-but-1-yn-thiophene suppressed by 18.8% and 32.7% at 50 and 100 mg/kg, respectively. The study confirmed the traditional claim of the plant to treat malaria and could be used as a new lead for the development of antimalarial drugs.

  12. Access to artesunate-amodiaquine, quinine and other anti-malarials: policy and markets in Burundi.

    Science.gov (United States)

    Amuasi, John H; Diap, Graciela; Blay-Nguah, Samuel; Boakye, Isaac; Karikari, Patrick E; Dismas, Baza; Karenzo, Jeanne; Nsabiyumva, Lievin; Louie, Karly S; Kiechel, Jean-René

    2011-02-10

    Malaria is the leading cause of morbidity and mortality in post-conflict Burundi. To counter the increasing challenge of anti-malarial drug resistance and improve highly effective treatment Burundi adopted artesunate-amodiaquine (AS-AQ) as first-line treatment for uncomplicated Plasmodium falciparum malaria and oral quinine as second-line treatment in its national treatment policy in 2003. Uptake of this policy in the public, private and non-governmental (NGO) retail market sectors of Burundi is relatively unknown. This study was conducted to evaluate access to national policy recommended anti-malarials. Adapting a standardized methodology developed by Health Action International/World Health Organization (HAI/WHO), a cross-sectional survey of 70 (24 public, 36 private, and 10 NGO) medicine outlets was conducted in three regions of Burundi, representing different levels of transmission of malaria. The availability on day of the survey, the median prices, and affordability (in terms of number of days' wages to purchase treatment) of AS-AQ, quinine and other anti-malarials were calculated. Anti-malarials were stocked in all outlets surveyed. AS-AQ was available in 87.5%, 33.3%, and 90% of public, private, and NGO retail outlets, respectively. Quinine was the most common anti-malarial found in all outlet types. Non-policy recommended anti-malarials were mainly found in the private outlets (38.9%) compared to public (4.2%) and NGO (0%) outlets. The median price of a course of AS-AQ was US$0.16 (200 Burundi Francs, FBu) for the public and NGO markets, and 3.5-fold higher in the private sector (US$0.56 or 700 FBu). Quinine tablets were similarly priced in the public (US$1.53 or 1,892.50 FBu), private and NGO sectors (both US$1.61 or 2,000 FBu). Non-policy anti-malarials were priced 50-fold higher than the price of AS-AQ in the public sector. A course of AS-AQ was affordable at 0.4 of a day's wage in the public and NGO sectors, whereas, it was equivalent to 1.5 days worth

  13. Blood schizontocidal activity of methylene blue in combination with antimalarials against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Garavito G.

    2007-06-01

    Full Text Available Methylene blue (MB is the oldest synthetic antimalarial. It is not used anymore as antimalarial but should be reconsidered. For this purpose we have measured its impact on both chloroquine sensitive and resistant Plasmodium strains. We showed that around 5 nM of MB were able to inhibit 50% of the parasite growth in vitro and that late rings and early trophozoites were the most sensitive stages; while early rings, late trophozoites and schizonts were less sensitive. Drug interaction study following fractional inhibitory concentrations (FIC method showed antagonism with amodiaquine, atovaquone, doxycycline, pyrimethamine; additivity with artemether, chloroquine, mefloquine, primaquine and synergy with quinine. These results confirmed the interest of MB that could be integrated in a new low cost antimalarial combination therapy.

  14. Synthesis of antimalarial amide analogues based on the plant serrulatane diterpenoid 3,7,8-trihydroxyserrulat-14-en-19-oic acid.

    Science.gov (United States)

    Kumar, Rohitesh; Duffy, Sandra; Avery, Vicky M; Davis, Rohan A

    2017-09-01

    A plant-derived natural product scaffold, 3,7,8-trihydroxyserrulat-14-en-19-oic acid (1) was isolated in high yield from the aerial parts of the endemic Australian desert plant Eremophila microtheca. This scaffold (1) was subsequently used in the generation of a series of new amide analogues via a one-pot mixed anhydride amidation using pivaloyl chloride. The structures of all analogues were characterized using MS, NMR, and UV data. The major serrulatane natural products (1-3), isolated from the plant extract, and all amide analogues (6-15) together with several pivaloylated derivatives of 3,7,8-trihydroxyserrulat-14-en-19-oic acid (16-18) were evaluated for their antimalarial activity against 3D7 (chloroquine sensitive) and Dd2 (chloroquine resistant) Plasmodium falciparum strains, and preliminary cytotoxicity data were also acquired using the human embryonic kidney cell line HEK293. The natural product scaffold (1) did not display any antimalarial activity at 10µM. Replacing the carboxylic acid of 1 with various amides resulted in moderate activity against the P. falciparum 3D7 strain with IC 50 values ranging from 1.25 to 5.65µM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Research Article Antimalarial Drugs for Pediatrics - Prescribing and ...

    African Journals Online (AJOL)

    Erah

    2011-03-23

    Mar 23, 2011 ... is a need to institute measures to ensure rational prescribing, dispensing and use of antimalarial drugs in pediatrics. ... facilities, strategies to control behaviour in the private sector are ..... changes were implemented in 2006 in.

  16. Identification of novel PfDHODH inhibitors as antimalarial agents via pharmacophore-based virtual screening followed by molecular docking and in vivo antimalarial activity.

    Science.gov (United States)

    Vyas, V K; Qureshi, G; Ghate, M; Patel, H; Dalai, S

    2016-06-01

    Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyses the fourth reaction of de novo pyrimidine biosynthesis in parasites, and represents an important target for the treatment of malaria. In this study, we describe pharmacophore-based virtual screening combined with docking study and biological evaluation as a rational strategy for identification of novel hits as antimalarial agents. Pharmacophore models were established from known PfDHODH inhibitors using the GALAHAD module with IC50 values ranging from 0.033 μM to 142 μM. The best pharmacophore model consisted of three hydrogen bond acceptor, one hydrogen bond donor and one hydrophobic features. The pharmacophore models were validated through receiver operating characteristic and Günere-Henry scoring methods. The best pharmacophore model as a 3D search query was searched against the IBS database. Several compounds with different structures (scaffolds) were retrieved as hit molecules. Among these compounds, those with a QFIT value of more than 81 were docked in the PfDHODH enzyme to further explore the binding modes of these compounds. In silico pharmacokinetic and toxicities were predicted for the best docked molecules. Finally, the identified hits were evaluated in vivo for their antimalarial activity in a parasite inhibition assay. The hits reported here showed good potential to become novel antimalarial agents.

  17. Implementation of a reference standard and proficiency testing programme by the World Wide Antimalarial Resistance Network (WWARN

    Directory of Open Access Journals (Sweden)

    Barnes Karen I

    2010-12-01

    Full Text Available Abstract Background The Worldwide Antimalarial Resistance Network (WWARN is a global collaboration to support the objective that anyone affected by malaria receives effective and safe drug treatment. The Pharmacology module aims to inform optimal anti-malarial drug selection. There is an urgent need to define the drug exposure - effect relationship for most anti-malarial drugs. Few anti-malarials have had their therapeutic blood concentration levels defined. One of the main challenges in assessing safety and efficacy data in relation to drug concentrations is the comparability of data generated from different laboratories. To explain differences in anti-malarial pharmacokinetics in studies with different measurement laboratories it is necessary to confirm the accuracy of the assay methods. This requires the establishment of an external quality assurance process to assure results that can be compared. This paper describes this process. Methods The pharmacology module of WWARN has established a quality assurance/quality control (QA/QC programme consisting of two separate components: 1. A proficiency testing programme where blank human plasma spiked with certified reference material (CRM in different concentrations is sent out to participating bioanalytical laboratories. 2. A certified reference standard programme where accurately weighed amounts of certified anti-malarial reference standards, metabolites, and internal standards are sent to participating bioanalytical and in vitro laboratories. Conclusion The proficiency testing programme is designed as a cooperative effort to help participating laboratories assess their ability to carry out drug analysis, resolve any potential problem areas and to improve their results - and, in so doing, to improve the quality of anti-malarial pharmacokinetic data published and shared with WWARN. By utilizing the same source of standards for all laboratories, it is possible to minimize bias arising from poor

  18. Antimalarial Drugs for Pediatrics - Prescribing and Dispensing ...

    African Journals Online (AJOL)

    Purpose: To assess dispensing and prescribing practices with regard to antimalarial drugs for pediatrics in private pharmacies and public hospitals in Dar es Salaam, Tanzania. Methods: This was a cross-sectional, descriptive study that assessed the knowledge and practice of 200 drug dispensers in the private community ...

  19. Ex Vivo Activity of Endoperoxide Antimalarials, Including Artemisone and Arterolane, against Multidrug-Resistant Plasmodium falciparum Isolates from Cambodia

    Science.gov (United States)

    2014-10-01

    OCT 2014 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Ex Vivo Activity of Endoperoxide Antimalarials , Including Artemisone...Prescribed by ANSI Std Z39-18 Ex Vivo Activity of Endoperoxide Antimalarials , Including Artemisone and Arterolane, against Multidrug-Resistant...potent antimalarial activity (2, 3). Despite having a rapid mecha- nism of action, artemisinin resistance eventually emerged and was first detected

  20. 76 FR 38122 - Notice of Availability for Exclusive, Non-Exclusive, or Partially-Exclusive Licensing of an...

    Science.gov (United States)

    2011-06-29

    ... compounds have radical curative antimalarial activity. Brenda S. Bowen, Army Federal Register Liaison... Guanidylimidazoline Derivatives as Antimalarial Agents, Synthesis of and Methods of Use Thereof AGENCY: Department of... ``Guanidylimidazole and Guanidylimidazoline Derivatives as Antimalarial Agents, Synthesis of and Methods of Use...

  1. In vitro and in vivo assessment of the anti-malarial activity of Caesalpinia pluviosa

    Directory of Open Access Journals (Sweden)

    Eberlin Marcos N

    2011-05-01

    Full Text Available Abstract Background To overcome the problem of increasing drug resistance, traditional medicines are an important source for potential new anti-malarials. Caesalpinia pluviosa, commonly named "sibipiruna", originates from Brazil and possess multiple therapeutic properties, including anti-malarial activity. Methods Crude extract (CE was obtained from stem bark by purification using different solvents, resulting in seven fractions. An MTT assay was performed to evaluate cytotoxicity in MCF-7 cells. The CE and its fractions were tested in vitro against chloroquine-sensitive (3D7 and -resistant (S20 strains of Plasmodium falciparum and in vivo in Plasmodium chabaudi-infected mice. In vitro interaction with artesunate and the active C. pluviosa fractions was assessed, and mass spectrometry analyses were conducted. Results At non-toxic concentrations, the 100% ethanolic (F4 and 50% methanolic (F5 fractions possessed significant anti-malarial activity against both 3D7 and S20 strains. Drug interaction assays with artesunate showed a synergistic interaction with the F4. Four days of treatment with this fraction significantly inhibited parasitaemia in mice in a dose-dependent manner. Mass spectrometry analyses revealed the presence of an ion corresponding to m/z 303.0450, suggesting the presence of quercetin. However, a second set of analyses, with a quercetin standard, showed distinct ions of m/z 137 and 153. Conclusions The findings show that the F4 fraction of C. pluviosa exhibits anti-malarial activity in vitro at non-toxic concentrations, which was potentiated in the presence of artesunate. Moreover, this anti-malarial activity was also sustained in vivo after treatment of infected mice. Finally, mass spectrometry analyses suggest that a new compound, most likely an isomer of quercetin, is responsible for the anti-malarial activity of the F4.

  2. The antimalarial drug quinine interferes with serotonin biosynthesis and action

    DEFF Research Database (Denmark)

    Islahudin, Farida; Tindall, Sarah M.; Mellor, Ian R.

    2014-01-01

    The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor of the neurotransmit......The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor...... tryptophan. The study shows that quinine disrupts both serotonin biosynthesis and function, giving important new insight to the action of quinine on mammalian cells....

  3. Bayesian models trained with HTS data for predicting β-haematin inhibition and in vitro antimalarial activity.

    Science.gov (United States)

    Wicht, Kathryn J; Combrinck, Jill M; Smith, Peter J; Egan, Timothy J

    2015-08-15

    A large quantity of high throughput screening (HTS) data for antimalarial activity has become available in recent years. This includes both phenotypic and target-based activity. Realising the maximum value of these data remains a challenge. In this respect, methods that allow such data to be used for virtual screening maximise efficiency and reduce costs. In this study both in vitro antimalarial activity and inhibitory data for β-haematin formation, largely obtained from publically available sources, has been used to develop Bayesian models for inhibitors of β-haematin formation and in vitro antimalarial activity. These models were used to screen two in silico compound libraries. In the first, the 1510 U.S. Food and Drug Administration approved drugs available on PubChem were ranked from highest to lowest Bayesian score based on a training set of β-haematin inhibiting compounds active against Plasmodium falciparum that did not include any of the clinical antimalarials or close analogues. The six known clinical antimalarials that inhibit β-haematin formation were ranked in the top 2.1% of compounds. Furthermore, the in vitro antimalarial hit-rate for this prioritised set of compounds was found to be 81% in the case of the subset where activity data are available in PubChem. In the second, a library of about 5000 commercially available compounds (Aldrich(CPR)) was virtually screened for ability to inhibit β-haematin formation and then for in vitro antimalarial activity. A selection of 34 compounds was purchased and tested, of which 24 were predicted to be β-haematin inhibitors. The hit rate for inhibition of β-haematin formation was found to be 25% and a third of these were active against P. falciparum, corresponding to enrichments estimated at about 25- and 140-fold relative to random screening, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Potentiation of antimalarial activity of arteether in combination with Vetiver root extract.

    Science.gov (United States)

    Dhawan, Sangeeta; Gunjan, Sarika; Pal, Anirban; Tripathi, Renu

    2016-05-01

    In malaria, development of resistance towards artemisinin derivatives has urged the need for new drugs or new drug combinations to tackle the drug resistant malaria. We studied the fresh root extract of Vetiver zizanioides (Linn.) Nash (VET) with a CDRI-CIMAP antimalarial α/β arteether (ART) together for their antimalarial potential. Our results showed additive to synergistic antimalarial activity of VET and ART with sum fractional inhibitory concentrations Σ FICs 1.02 ± 0.24 and 1.12 ± 0.32 for chloroquine sensitive (CQS) and chloroquine resistant (CQR) strain of Plasmodium falciparum (William H. Welch), respectively. Further, these combinations were explored against multidrug resistant rodent malaria parasite i.e. P. yoelii nigeriensis. Analysis of in vivo interaction of ART and VET showed that 10 mg/kg x 5 days of ART with 1000 mg/kg of VET x 5 days cured 100% mice infected with MDR parasite, while the same dose of ART could produce only up to 30% cure and VET fraction was not curative at all. Synergism/additiveness, found between VET and ART is reported for the first time. The curative dose of ART in the combination was reduced to its one fourth, and thus limits the side effects, if any. Although antimalarial potential of ART was enhanced by VET, action mechanism of later needs to be elucidated in detail.

  5. Environment-sensitive quinolone demonstrating long-lived fluorescence and unusually slow excited-state intramolecular proton transfer kinetics

    Czech Academy of Sciences Publication Activity Database

    Zamotaiev, O. M.; Shvadchak, Volodymyr; Sych, T. P.; Melnychuk, N. A.; Yushchenko, Dmytro A.; Mely, Y.; Pivovarenko, V. G.

    2016-01-01

    Roč. 4, č. 3 (2016), č. článku 034004. ISSN 2050-6120 Institutional support: RVO:61388963 Keywords : quinolone * fluorescent probes * local polarity * hydration * excited-state intramolecular proton transfer * kinetics Subject RIV: CC - Organic Chemistry Impact factor: 2.656, year: 2016

  6. Microbial burden of some herbal antimalarials marketed at Elele, Rivers State.

    Science.gov (United States)

    Tatfeng, Y M; Olama, E H; Ojo, T O

    2009-12-30

    Herbal antimalarials still remain an alternative to our traditional communities who can not afford orthodox antimalarials. This study was aimed at investigating the microbial quality of six herbal antimalarials using standard microbiological methods. Of the six preparations analyzed, "schnapps", palm wine and water were the media of preparation; the water base preparations recorded higher microbial load. The mean microbial load was 159.5 × 10(5) cfu/ml and 217.4 × 10(2)cfu/ml in water and alcohol base preparations respectively. The microbial profile of the preparations showed that the schnapps base preparations were predominantly contaminated with Bacillus sp (Aerobic spore bearers) and Mucor spp. The palm wine preparation harboured Bacillus sp, yeasts and Mucor spp while the water base preparations had several isolates such as Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli 0157H7, Proteus mirabilis, Enterococcus feacalis, Serratia marcensces, Staph. aureus, Bacillus spp and Mucor spp. Conclusively, this study underlines the public health importance of these preparations given the high burden of such human pathogen as Ecoli O157H7, Ps aeruginosa, Stahp aureus, etc. in the preparations.

  7. Modulation of Antimalarial Activity at a Putative Bisquinoline Receptor In Vivo Using Fluorinated Bisquinolines.

    Science.gov (United States)

    Fielding, Alistair J; Lukinović, Valentina; Evans, Philip G; Alizadeh-Shekalgourabi, Said; Bisby, Roger H; Drew, Michael G B; Male, Verity; Del Casino, Alessio; Dunn, James F; Randle, Laura E; Dempster, Nicola M; Nahar, Lutfun; Sarker, Satyajit D; Cantú Reinhard, Fabián G; de Visser, Sam P; Dascombe, Mike J; Ismail, Fyaz M D

    2017-05-17

    Antimalarials can interact with heme covalently, by π⋅⋅⋅π interactions or by hydrogen bonding. Consequently, the prototropy of 4-aminoquinolines and quinoline methanols was investigated by using quantum mechanics. Calculations showed mefloquine protonated preferentially at the piperidine and was impeded at the endocyclic nitrogen because of electronic rather than steric factors. In gas-phase calculations, 7-substituted mono- and bis-4-aminoquinolines were preferentially protonated at the endocyclic quinoline nitrogen. By contrast, compounds with a trifluoromethyl substituent on both the 2- and 8-positions, reversed the order of protonation, which now favored the exocyclic secondary amine nitrogen at the 4-position. Loss of antimalarial efficacy by CF 3 groups simultaneously occupying the 2- and 8-positions was recovered if the CF 3 group occupied the 7-position. Hence, trifluoromethyl groups buttressing the quinolinyl nitrogen shifted binding of antimalarials to hematin, enabling switching from endocyclic to the exocyclic N. Both theoretical calculations (DFT calculations: B3LYP/BS1) and crystal structure of (±)-trans-N 1 ,N 2 -bis-(2,8-ditrifluoromethylquinolin-4-yl)cyclohexane-1,2-diamine were used to reveal the preferred mode(s) of interaction with hematin. The order of antimalarial activity in vivo followed the capacity for a redox change of the iron(III) state, which has important implications for the future rational design of 4-aminoquinoline antimalarials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II.

    Directory of Open Access Journals (Sweden)

    Rachael E Hawtin

    2010-04-01

    Full Text Available Topoisomerase II is critical for DNA replication, transcription and chromosome segregation and is a well validated target of anti-neoplastic drugs including the anthracyclines and epipodophyllotoxins. However, these drugs are limited by common tumor resistance mechanisms and side-effect profiles. Novel topoisomerase II-targeting agents may benefit patients who prove resistant to currently available topoisomerase II-targeting drugs or encounter unacceptable toxicities. Voreloxin is an anticancer quinolone derivative, a chemical scaffold not used previously for cancer treatment. Voreloxin is completing Phase 2 clinical trials in acute myeloid leukemia and platinum-resistant ovarian cancer. This study defined voreloxin's anticancer mechanism of action as a critical component of rational clinical development informed by translational research.Biochemical and cell-based studies established that voreloxin intercalates DNA and poisons topoisomerase II, causing DNA double-strand breaks, G2 arrest, and apoptosis. Voreloxin is differentiated both structurally and mechanistically from other topoisomerase II poisons currently in use as chemotherapeutics. In cell-based studies, voreloxin poisoned topoisomerase II and caused dose-dependent, site-selective DNA fragmentation analogous to that of quinolone antibacterials in prokaryotes; in contrast etoposide, the nonintercalating epipodophyllotoxin topoisomerase II poison, caused extensive DNA fragmentation. Etoposide's activity was highly dependent on topoisomerase II while voreloxin and the intercalating anthracycline topoisomerase II poison, doxorubicin, had comparable dependence on this enzyme for inducing G2 arrest. Mechanistic interrogation with voreloxin analogs revealed that intercalation is required for voreloxin's activity; a nonintercalating analog did not inhibit proliferation or induce G2 arrest, while an analog with enhanced intercalation was 9.5-fold more potent.As a first-in-class anticancer

  9. Antimalarial Activity of Cocos nucifera Husk Fibre: Further Studies

    Directory of Open Access Journals (Sweden)

    J. O. Adebayo

    2013-01-01

    Full Text Available In this study, the antimalarial and toxicity potentials of husk fibre extracts of five Nigerian varieties of Cocos nucifera were evaluated in vitro. The only active extract fraction, West African Tall (WAT ethyl acetate extract fraction, was then evaluated for its phytochemical constituents, antimalarial and toxicity potentials at varying doses (31.25–500 mg/kg body weight using various organ function indices. The results revealed that WAT ethyl acetate extract fraction (WATEAEF contained alkaloids, tannins, and flavonoids and was active against Plasmodium falciparum W2 strain maintained in continuous culture, with a selectivity index of 30.3. The same extract fraction was active in vivo against Plasmodium berghei NK65, causing more than 50% reduction in parasitaemia on days 4 and 6 after inoculation at various doses administered. WATEAEF did not significantly alter (P>0.05 function indices of the liver and cardiovascular system at all doses administered but significantly increased (P<0.05 plasma creatinine concentration at 250 and 500 mg/Kg body weight compared to controls. The results of this study suggest that WATEAEF possesses antimalarial activity and may not adversely affect normal liver function nor predispose subjects to cardiovascular diseases but may impair normal kidney function at higher doses. Further studies are underway to isolate the active principles.

  10. Factors contributing to antimalarial drug resistance in Rachuonyo ...

    African Journals Online (AJOL)

    Qualitative and quantitative data were collected among 380 respondents including health care providers, people seeking malaria treatment and Community Own Resource (CORPs), from 47 registered health facilities. The study revealed that all health facilities were using general-purpose trucks to transport antimalarial ...

  11. Antimalarial prescribing patterns in state hospitals and selected ...

    African Journals Online (AJOL)

    slowdown of progression to resistance could be achieved by improving prescribing practice, drug quality, and patient compliance. Objective: To determine the antimalarial prescribing pattern and to assess rational prescribing of chloroquine by prescribers in government hospitals and parastatals in Lagos State. Methods: ...

  12. Quinolactacins A, B and C: novel quinolone compounds from Penicillium sp. EPF-6. II. Physico-chemical properties and structure elucidation.

    Science.gov (United States)

    Takahashi, S; Kakinuma, N; Iwai, H; Yanagisawa, T; Nagai, K; Suzuki, K; Tokunaga, T; Nakagawa, A

    2000-11-01

    Three novel quinolone compounds, quinolactacins A (1), B (2) and C (3), have been found from the fermentation broth of Penicillium sp. EPF-6, a fungus isolated from the larvae of mulberry pyralid (Margaronia pyloalis Welker). The molecular formulas of 1, 2 and 3 were determined to be C16H18N2O2, C15H16N2O2 and C16H18N2O3, respectively by FAB-MS and NMR spectral analyses. The structures of these compounds have a novel quinolone skeleton with a gamma-lactam ring consisting of C12H8N2O2 as the common chromophore.

  13. Mechanisms of quinolone action and microbial response.

    Science.gov (United States)

    Hawkey, Peter M

    2003-05-01

    Over the years, chromosomal mapping of the bacterial genome of Escherichia coli has demonstrated that many loci are associated with quinolone resistance, which is mainly a result of chromosomal mutation or alteration of the quantity or type of porins in the outer membrane of Gram-negative bacteria. There has been one report of a small and confined episode of plasmid-mediated resistance to fluoroquinolones, which did not appear to persist. With the increasingly widespread use of an expanding range of fluoroquinolone antibiotics, a range and mix in individual bacterial isolates of the different mechanisms of resistance to fluoroquinolones will undoubtedly be encountered amongst clinically significant bacteria. Currently, transferable resistance is extremely rare and most resistant bacteria arise from clonal expansion of mutated strains. However, it is conceivable that in the future, horizontal gene transfer may become a more important means of conferring resistance to fluoroquinolones.

  14. Ameliorative antimalarial effects of the combination of rutin and swertiamarin on malarial parasites

    Directory of Open Access Journals (Sweden)

    Divya Shitlani

    2016-06-01

    Full Text Available Objective: To ameliorate the antimalarial activity via the combination of rutin (flavonoid and swertiamarin (glycoside. Methods: The antimalarial effects were assessed by in vitro and in vivo methodology. In vitro antiplasmodial activity was assessed by using Plasmodium falciparum cultured media and determined the IC 50 value of individual drugs and their combinations. In in vivo methodology, antimalarial effects of rutin, swertiamarin (200–280 mg/kg/day, p.o. and their combination in 1:1, 1:2 and 2:1 ratios were investigated early and established malaria infections using Swiss albino mice infected with Plasmodium berghei. Chloroquine phosphate (5 mg/kg/day, p.o. was used as the standard drug. Results: IC 50 values of the rutin and swertiamarin via in vitro study revealed (9.50 ± 0.29 µg/ mL and (8.17 ± 0.17 µg/mL respectively. Whereas, the combination in 1:1 ratio [IC50 of (5.51 ± 0.18 µg/mL] showed better antiplasmodial activity against Plasmodium falciparum. In vivo results showed that rutin and swertiamarin had chemosuppressant effects in a dose-dependent manner, whereas, combination in 1:1 ratio possessed potential antimalarial activity similar to chloroquine phosphate. The drug interaction between rutin and swertiamarin revealed the synergistic effect on 1:1 ratio and additive effect on 1:2 and 2:1 ratios. Conclusions: The results of the in vitro and in vivo study clearly indicate that the combination (1:1 of rutin and swertiamarin showed potential antimalarial activity rather than an individual of each and their combinations 1:2 and 2:1.

  15. Access to artemisinin-combination therapy (ACT) and other anti-malarials: national policy and markets in Sierra Leone.

    Science.gov (United States)

    Amuasi, John H; Diap, Graciela; Nguah, Samuel Blay; Karikari, Patrick; Boakye, Isaac; Jambai, Amara; Lahai, Wani Kumba; Louie, Karly S; Kiechel, Jean-Rene

    2012-01-01

    Malaria remains the leading burden of disease in post-conflict Sierra Leone. To overcome the challenge of anti-malarial drug resistance and improve effective treatment, Sierra Leone adopted artemisinin-combination therapy artesunate-amodiaquine (AS+AQ) as first-line treatment for uncomplicated P. falciparum malaria. Other national policy anti-malarials include artemether-lumefantrine (AL) as an alternative to AS+AQ, quinine and artemether for treatment of complicated malaria; and sulphadoxine-pyrimethamine (SP) for intermittent preventive treatment (IPTp). This study was conducted to evaluate access to national policy recommended anti-malarials. A cross-sectional survey of 127 medicine outlets (public, private and NGO) was conducted in urban and rural areas. The availability on the day of the survey, median prices, and affordability policy and available non-policy anti-malarials were calculated. Anti-malarials were stocked in 79% of all outlets surveyed. AS+AQ was widely available in public medicine outlets; AL was only available in the private and NGO sectors. Quinine was available in nearly two-thirds of public and NGO outlets and over one-third of private outlets. SP was widely available in all outlets. Non-policy anti-malarials were predominantly available in the private outlets. AS+AQ in the public sector was widely offered for free. Among the anti-malarials sold at a cost, the same median price of a course of AS+AQ (US$1.56), quinine tablets (US$0.63), were found in both the public and private sectors. Quinine injection had a median cost of US$0.31 in the public sector and US$0.47 in the private sector, while SP had a median cost of US$0.31 in the public sector compared to US$ 0.63 in the private sector. Non-policy anti-malarials were more affordable than first-line AS+AQ in all sectors. A course of AS+AQ was affordable at nearly two days' worth of wages in both the public and private sectors.

  16. Malaria and antimalarial plants in Roraima, Brazil.

    Science.gov (United States)

    Milliken, W

    1997-01-01

    One of the numerous problems created by the gold rush which took place in northern Brazil (Roraima State) at the end of the 1980s was a severe epidemic of malaria amongst the indigenous peoples of the region. Worst hit were the Yanomami Indians, who had lived in almost total isolation prior to this event. The problem has been exacerbated by the development of chloroquine-resistant strains of Plasmodium falciparum. In an effort to identify viable alternatives to dependence on western medicine for malaria treatment, a survey was carried out on the local plant species (wild and cultivated) used for this purpose in Roraima. Fieldwork was carried out amongst seven indigenous peoples, as well as with the non-indigenous settlers. Over 90 species were collected, many of which have been cited as used for treatment of malaria and fevers elsewhere. Knowledge of antimalarial plants was found to vary greatly between the communities, and in some cases there was evidence of recent experimentation. Initial screening of plant extracts has shown a high incidence of significant antimalarial activity amongst the species collected.

  17. Identification of a Plasmid-Mediated Quinolone Resistance Gene in Salmonella Isolates from Texas Dairy Farm Environmental Samples.

    Science.gov (United States)

    Cummings, K J; Rodriguez-Rivera, L D; Norman, K N; Ohta, N; Scott, H M

    2017-06-01

    A recent increase in plasmid-mediated quinolone resistance (PMQR) has been detected among Salmonella isolated from humans in the United States, and it is necessary to determine the sources of human infection. We had previously isolated Salmonella from dairy farm environmental samples collected in Texas, and isolates were tested for anti-microbial susceptibility. Two isolates, serotyped as Salmonella Muenster, showed the discordant pattern of nalidixic acid susceptibility and intermediate susceptibility to ciprofloxacin. For this project, whole-genome sequencing of both isolates was performed to detect genes associated with quinolone resistance. The plasmid-mediated qnrB19 gene and IncR plasmid type were identified in both isolates. To our knowledge, this is the first report of PMQR in Salmonella isolated from food animals or agricultural environments in the United States. © 2016 Blackwell Verlag GmbH.

  18. Relationship between Antimalarial Activity and Heme Alkylation for Spiro- and Dispiro-1,2,4-Trioxolane Antimalarials▿

    Science.gov (United States)

    Creek, Darren J.; Charman, William N.; Chiu, Francis C. K.; Prankerd, Richard J.; Dong, Yuxiang; Vennerstrom, Jonathan L.; Charman, Susan A.

    2008-01-01

    The reaction of spiro- and dispiro-1,2,4-trioxolane antimalarials with heme has been investigated to provide further insight into the mechanism of action for this important class of antimalarials. A series of trioxolanes with various antimalarial potencies was found to be unreactive in the presence of Fe(III) hemin, but all were rapidly degraded by reduced Fe(II) heme. The major reaction product from the heme-mediated degradation of biologically active trioxolanes was an alkylated heme adduct resulting from addition of a radical intermediate. Under standardized reaction conditions, a correlation (R2 = 0.88) was found between the extent of heme alkylation and in vitro antimalarial activity, suggesting that heme alkylation may be related to the mechanism of action for these trioxolanes. Significantly less heme alkylation was observed for the clinically utilized artemisinin derivatives compared to the equipotent trioxolanes included in this study. PMID:18268087

  19. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    OpenAIRE

    Huthmacher, Carola; Hoppe, Andreas; Bulik, Sascha; Holzh?tter, Hermann-Georg

    2010-01-01

    Abstract Background Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. Results Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicte...

  20. Actualidad de las quinolonas Present situation of quinolones

    Directory of Open Access Journals (Sweden)

    Manuel Cué Brugueras

    2005-04-01

    Full Text Available Las quinolonas son los antimicrobianos que han tenido un mayor desarrollo en los últimos años. Después de obtenerse el ácido nalidíxico, en 1962, se desarrollaron varios compuestos con características muy similares, que solo se establecieron como antisépticos urinarios, y que constituyeron la primera generación de quinolonas, hasta que en 1978, mediante la adición de un grupo piperacinil en posición 7 y un átomo de flúor en posición 6 comenzó a desarrollarse un conjunto de agentes antibacterianos llamados piperacinil fluoroquinolonas o simplemente fluoroquinolonas. El primero de ellos fue el norfloxacino, con el cual se logró una mayor actividad antimicrobiana del grupo y su uso sistémico. Durante años las fluroquinolonas fueron consideradas como un grupo homogéneo de antibióticos, con propiedades semejantes y, por tanto, como la segunda y última posibilidad de generación de quinolonas, pero las posibilidades de transformación de su estructura química ha producido un desarrollo vertiginoso de este grupo, que lo ha convertido en el más acelerado dentro de los antibióticos, con compuestos de mayor espectro antibacteriano, penetración tisular y seguridad, y con menor manifestación de resistencia antimicrobiana, demostrada hasta el presente, lo cual ha hecho que actualmente existan 4 generaciones de quinolonas, que se haya ampliado su uso y que continúe su desarrollo. Por tal motivo, se presenta una revisión que incluye espectro y mecanismo de acción, resistencia bacteriana, farmacodinamia y farmacocinética, interacciones medicamentosas, efectos adversos, indicaciones y dosificación de las más usadas.The quinolones are antimicrobial agents that have attained their highest development in the last years. After obtaining nalidixic acid, in 1962, several compounds were developed with similar characteristics that were only established as urinary antiseptics and that were the first generation of quinolones until 1978, when

  1. High Prevalence of Plasmid-Mediated Quinolone Resistance and IncQ Plasmids Carrying qnrS2 Gene in Bacteria from Rivers near Hospitals and Aquaculture in China

    OpenAIRE

    Wen, Yanping; Pu, Xiaoying; Zheng, Wei; Hu, Guang

    2016-01-01

    Effluents from hospital and aquaculture are considered important sources of quinolone resistance. However, little information is available on the impact of this effluent on nearby rivers. In this study, 188 ciprofloxacin-resistant bacterial isolates obtained from rivers near hospitals and aquaculture were screened for plasmid-mediated quinolone resistance (PMQR) genes. Species identification, antibiotic susceptibility testing, and PMQR gene transferability assessment were conducted for PMQR-p...

  2. Synthesis and in-vitro antibacterial activity of N-piperazinyl quinolone derivatives with 5-chloro-2-thienyl group

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background and the purpose of the study: Fluoroquinolones are an important group of antimicrobial agents that are used widely in the treatment of various infectious diseases. The purpose of the present study was to synthesize new N-piperazinyl quinolone derivatives with 5-chloro-2-theinyl group having possible antimicrobial activity. Methods: Reaction of ciprofloxacin (1, norfloxacin (2 and enoxacin (3 with α-bromoketone 10 or α-bromooxime derivatives 11a-c in DMF, in the presence of NaHCO3 at room temperature, afforded corresponding ketones 4a-c or oxime derivatives 5-7(a-c, respectively. Results and major conclusion: The synthesized compounds were tested against a series of Gram-positive and Gram-negative bacteria. The results of MIC tests against both Gram-positive and Gram-negative bacteria revealed that ciprofloxacin derivatives (compounds 4a, 5a, 6a and 7a were more active than norfloxacin and enoxacin analogues. Compound 5a, containing N-[2-(5-chlorothiophen-2-yl-2-hydroxyiminoethyl] residue provided a high in vitro antibacterial activity against Gram-positive bacteria, with MIC of 0.06, 0.125, 0.5 and 0.125 μg/mL against S. aureus, S. epidermidis, E. feacalis and B. subtilis, respectively. Its activity was found to be 4 to 8 times better than reference drug (ciprofloxacin against all Gram-positive bacteria with the exception of E. feacalis.

  3. Mass anti-malarial administration in western Cambodia: a qualitative study of factors affecting coverage.

    Science.gov (United States)

    Pell, Christopher; Tripura, Rupam; Nguon, Chea; Cheah, Phaikyeong; Davoeung, Chan; Heng, Chhouen; Dara, Lim; Sareth, Ma; Dondorp, Arjen; von Seidlein, Lorenz; Peto, Thomas J

    2017-05-19

    Mass anti-malarial administration has been proposed as a key component of the Plasmodium falciparum malaria elimination strategy in the Greater Mekong sub-Region. Its effectiveness depends on high levels of coverage in the target population. This article explores the factors that influenced mass anti-malarial administration coverage within a clinical trial in Battambang Province, western Cambodia. Qualitative data were collected through semi-structured interviews and focus group discussions with villagers, in-depth interviews with study staff, trial drop-outs and refusers, and observations in the communities. Interviews were audio-recorded, transcribed and translated from Khmer to English for qualitative content analysis using QSR NVivo. Malaria was an important health concern and villagers reported a demand for malaria treatment. This was in spite of a fall in incidence over the previous decade and a lack of familiarity with asymptomatic malaria. Participants generally understood the overall study aim and were familiar with study activities. Comprehension of the study rationale was however limited. After the first mass anti-malarial administration, seasonal health complaints that participants attributed to the anti-malarial as "side effects" contributed to a decrease of coverage in round two. Staff therefore adapted the community engagement approach, bringing to prominence local leaders in village meetings. This contributed to a subsequent increase in coverage. Future mass anti-malarial administration must consider seasonal disease patterns and the importance of local leaders taking prominent roles in community engagement. Further research is needed to investigate coverage in scenarios that more closely resemble implementation i.e. without participation incentives, blood sampling and free healthcare.

  4. In vivo antimalarial activity of a labdane diterpenoid from the leaves of Otostegia integrifolia Benth.

    Science.gov (United States)

    Endale, Abyot; Bisrat, Daniel; Animut, Abebe; Bucar, Franz; Asres, Kaleab

    2013-12-01

    In Ethiopian traditional medicine, the leaves of Otostegia integrifolia Benth. are used for the treatment of several diseases including malaria. In an ongoing search for effective, safe and cheap antimalarial agents from plants, the 80% methanol leaf extract O. integrifolia was tested for its in vivo antimalarial activity, in a 4-day suppressive assay against Plasmodium berghei. Activity-guided fractionation of this extract which showed potent antiplasmodial activity resulted in the isolation of a labdane diterpenoid identified as otostegindiol. Otostegindiol displayed a significant (P antimalarial activity at doses of 25, 50 and 100 mg/kg with chemosuppression values of 50.13, 65.58 and 73.16%, respectively. Acute toxicity studies revealed that the crude extract possesses no toxicity in mice up to a maximum dose of 5000 mg/kg suggesting the relative safety of the plant when administered orally. The results of the present study indicate that otostegindiol is among the antimalarial principles in this medicinal plant, and further support claims for the traditional medicinal use of the plant for the treatment of malaria. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Plant-Derived Antimalarial Agents: New Leads and Efficient Phytomedicines. Part II. Non-Alkaloidal Natural Products

    Directory of Open Access Journals (Sweden)

    Alaíde Braga de Oliveira

    2009-08-01

    Full Text Available Malaria is still the most destructive and dangerous parasitic infection in many tropical and subtropical countries. The burden of this disease is getting worse, mainly due to the increasing resistance of Plasmodium falciparum against the widely available antimalarial drugs. There is an urgent need for new, more affordable and accessible antimalarial agents possessing original modes of action. Natural products have played a dominant role in the discovery of leads for the development of drugs to treat human diseases, and this fact anticipates that new antimalarial leads may certainly emerge from tropical plant sources. This present review covers most of the recently-published non-alkaloidal natural compounds from plants with antiplasmodial and antimalarial properties, belonging to the classes of terpenes, limonoids, flavonoids, chromones, xanthones, anthraquinones, miscellaneous and related compounds, besides the majority of papers describing antiplasmodial crude extracts published in the last five years not reviewed before. In addition, some perspectives and remarks on the development of new drugs and phytomedicines for malaria are succinctly discussed.

  6. Antimalarial activity of the terpene nerolidol.

    Science.gov (United States)

    Saito, Alexandre Y; Marin Rodriguez, Adriana A; Menchaca Vega, Danielle S; Sussmann, Rodrigo A C; Kimura, Emília A; Katzin, Alejandro M

    2016-12-01

    Malaria, an infectious disease that kills more than 438,000 people per year worldwide, is a major public health problem. The emergence of strains resistant to conventional therapeutic agents necessitates the discovery of new drugs. We previously demonstrated that various substances, including terpenes, have antimalarial activity in vitro and in vivo. Nerolidol is a sesquiterpene present as an essential oil in several plants that is used in scented products and has been approved by the US Food and Drug Administration as a food-flavouring agent. In this study, the antimalarial activity of nerolidol was investigated in a mouse model of malaria. Mice were infected with Plasmodium berghei ANKA and were treated with 1000 mg/kg/dose nerolidol in two doses delivered by the oral or inhalation route. In mice treated with nerolidol, parasitaemia was inhibited by >99% (oral) and >80% (inhalation) until 14 days after infection (P  0.05). The toxicity of nerolidol administered by either route was not significant, whilst genotoxicity was observed only at the highest dose tested. These results indicate that combined use of nerolidol and other drugs targeting different points of the same isoprenoid pathway may be an effective treatment for malaria. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  7. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen

    Science.gov (United States)

    Plouffe, David; Brinker, Achim; McNamara, Case; Henson, Kerstin; Kato, Nobutaka; Kuhen, Kelli; Nagle, Advait; Adrián, Francisco; Matzen, Jason T.; Anderson, Paul; Nam, Tae-gyu; Gray, Nathanael S.; Chatterjee, Arnab; Janes, Jeff; Yan, S. Frank; Trager, Richard; Caldwell, Jeremy S.; Schultz, Peter G.; Zhou, Yingyao; Winzeler, Elizabeth A.

    2008-01-01

    The growing resistance to current first-line antimalarial drugs represents a major health challenge. To facilitate the discovery of new antimalarials, we have implemented an efficient and robust high-throughput cell-based screen (1,536-well format) based on proliferation of Plasmodium falciparum (Pf) in erythrocytes. From a screen of ≈1.7 million compounds, we identified a diverse collection of ≈6,000 small molecules comprised of >530 distinct scaffolds, all of which show potent antimalarial activity (antimalarials were identified in this screen, thus validating our approach. In addition, we identified many novel chemical scaffolds, which likely act through both known and novel pathways. We further show that in some cases the mechanism of action of these antimalarials can be determined by in silico compound activity profiling. This method uses large datasets from unrelated cellular and biochemical screens and the guilt-by-association principle to predict which cellular pathway and/or protein target is being inhibited by select compounds. In addition, the screening method has the potential to provide the malaria community with many new starting points for the development of biological probes and drugs with novel antiparasitic activities. PMID:18579783

  8. POTENCY OF THE INDONESIAN MEDICINAL PLANTS AS ANTIMALARIAL DRUGS

    Directory of Open Access Journals (Sweden)

    Subeki Subeki

    2012-12-01

    Full Text Available The Indonesian traditional herbal medicine has been practiced for many centuries in Indonesia to treat malaria diseases. Although modern medicine is becoming increasingly important, herbal medicine is still very popular. In order to select raw material for preparation of safety herbal medicines, forty five medicinal plants have been tested for acute toxicity in mouse at a dose 715 mg/kg body weight. The extracts of Asclepias curassavica leave, Alstonia scholaris leave, Decospermum fruticosum leave, Elaocarpus petiolatus bark, Elaocarpus parvifolius bark, Eurycoma longifolia root, Garcinia rigida bark, Nephelium lappaceum bark, Pentaspodan motleyi leave, Picrasma javanica leave, Phyllanthus niruri whole, Quassia indica leave, Syzygium pycnanthum bark, Tetrasera scandens leave, Cratoxylum glaucum bark, Sandoricum emarginatum bark, Mallotus paniculatus leave, Microcos ovatolanceolata bark, Poikilospermum suaveolens leave, Fibraurea chloroleuea leave, Tetrasera scandens root, and Timonius billitonensis bark showed toxicity with mortality level of 20-100%. The remaining 32 plant extracts were not toxic at dose tested. The toxic plant species should be considered in the preparation of herbal medicines. Of the safety extracts were tested for their antimalarial activity against Plasmodium berghei in vivo at a dose 715 mg/kg body weight. Extract of Carica papaya leave was most active than other plant extracts with parasitemia 1.13%, while control showed 17.21%. More research is needed to scientifically prove efficacy and to identity antimalarial constituents in the plant extracts. Key words: Indonesian medicinal plant, jamu, toxicity, antimalarial activity, Plasmodium berghei.

  9. Lack of efflux mediated quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi A

    Directory of Open Access Journals (Sweden)

    Sylvie eBaucheron

    2014-01-01

    Full Text Available Salmonella enterica serovars Typhi and Paratyphi A isolates from human patients in France displaying different levels of resistance to quinolones or fluoroquinolones were studied for resistance mechanisms to these antimicrobial agents. All resistant isolates carried either single or multiple target gene mutations (i.e. in gyrA, gyrB, or parC correlating with the resistance levels observed. Active efflux, through upregulation of multipartite efflux systems, has also been previously reported as contributing mechanism for other serovars. Therefore, we investigated also the occurrence of non-target gene mutations in regulatory regions affecting efflux pump expression. However, no mutation was detected in these regions in both Typhi and Paratyphi isolates of this study. Besides, no overexpression of the major efflux systems was observed for these isolates. Nevertheless, a large deletion of 2334 bp was identified in the acrS-acrE region of all S. Typhi strains but which did not affect the resistance phenotype. As being specific to S. Typhi, this deletion could be used for specific molecular detection purposes. In conclusion, the different levels of quinolone or FQ resistance in both S. Typhi and S. Paratyphi A seem to rely only on target modifications.

  10. Lead optimization of antimalarial propafenone analogues.

    Science.gov (United States)

    Lowes, David; Pradhan, Anupam; Iyer, Lalitha V; Parman, Toufan; Gow, Jason; Zhu, Fangyi; Furimsky, Anna; Lemoff, Andrew; Guiguemde, W Armand; Sigal, Martina; Clark, Julie A; Wilson, Emily; Tang, Liang; Connelly, Michele C; Derisi, Joseph L; Kyle, Dennis E; Mirsalis, Jon; Guy, R Kiplin

    2012-07-12

    Previously reported studies identified analogues of propafenone that had potent antimalarial activity, reduced cardiac ion channel activity, and properties that suggested the potential for clinical development for malaria. Careful examination of the bioavailability, pharmacokinetics, toxicology, and efficacy of this series of compounds using rodent models revealed orally bioavailable compounds that are nontoxic and suppress parasitemia in vivo. Although these compounds possess potential for further preclinical development, they also carry some significant challenges.

  11. Safety and Tolerability Profile of Artemisinin-Based Antimalarial ...

    African Journals Online (AJOL)

    The WHO in 2001 advocated artemisinin- based antimalarial combination therapy (ACT), which was adopted by Nigeria in 2005. The objective of this study was to characterize the safety and tolerability profile of the ACTs in adult patients with uncomplicated malaria. A descriptive longitudinal study was conducted in the ...

  12. Antimalarial natural products: a review

    Directory of Open Access Journals (Sweden)

    Faraz Mojab

    2012-03-01

    Results and Conclusion: There is an urgent need for the development of new treatments for malaria. Many countries have a vast precedence in the use of medicinal plants and the required knowledge spans many centuries. Although malaria is controlled in Iran, some researchers tend to study malaria and related subjects. In vitro biological tests for the detection of antimalarial activities in plant extracts are currently available. It is vital that the efficacy and safety of traditional medicines be validated and their active constituents be identified in order to establish reliable quality control measures.

  13. Bioguided investigation of the antimalarial activities of Trema orientalis

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-28

    Oct 28, 2015 ... Article Number: 3F00A6755934. ISSN 1684-5315 ... License 4.0 · International License ... extract was analyzed using thin layer chromatography (TLC) plates,. Merck .... makes it a viable candidate in the search for antimalarial.

  14. Vitiquinolone--a quinolone alkaloid from Hibiscus vitifolius Linn.

    Science.gov (United States)

    Ramasamy, D; Saraswathy, A

    2014-02-15

    Phytochemical investigations of the powdered root of Hibiscus vitifolius Linn. (Malvaceae) was extracted successively with n-hexane and chloroform. Analysis of the n-hexane extract by GC-MS led to the identification of twenty-six components by comparison of their mass spectra with GC-MS library data. A novel quinolone alkaloid, vitiquinolone (5) together with eight known compounds viz. β-Amyrin acetate (1), n-octacosanol (2), β-Amyrin (3), stigmasterol (4), xanthyletin (6), alloxanthoxyletin (7), xanthoxyletin (8) and betulinic acid (9) were isolated from chloroform extract by column chromatography over silica gel. The structure of vitiquinolone was established on the basis of spectroscopic methods including UV, IR, 1D, 2D NMR and ESI-MS. The known compounds were identified on the basis of their physical and spectroscopic data as reported in the literature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. New luminophor-activators based on (fluoro)quinolone antibacterials

    International Nuclear Information System (INIS)

    Polishchuk, A.V.; Karaseva, E.T.; Korpela, T.; Karasev, V.E.

    2008-01-01

    It was shown that (fluoro)quinolone antibiotics form strongly fluorescent solid-state complexes with Eu(III) and Tb(III) lanthanide ions, with a wavelength red-shift beneficial for applications to greenhouse-cover polymers. Complexes with optimal properties were prepared by the mechanical activation of fine-dispersed composite mixtures with the lanthanide salts. The spectral properties, photo-stability to UV-light, and compatibility with the polyethylene matrix were investigated. The formulation additives of the tablet forms of the antibiotic medicines did not quench the fluorescence from the lanthanide ions. Therefore, the outdated drug forms of the antibiotics can serve as cheap recyclable sources for the covering material of greenhouses. In addition, diphenylguanidine (DPG) was investigated as a coligand. DPG enhanced fluorescence of the fluoroquinolone complexes by decreasing the non-radiative energy loss through O-H vibration of H 2 O

  16. Bioactive compounds fractionated from endophyte Streptomyces SUK 08 with promising ex-vivo antimalarial activity

    Directory of Open Access Journals (Sweden)

    Noraziah Mohamad Zin

    2017-12-01

    Full Text Available Objective: To determine ex vivo antimalarial activity and cytotoxicity of endophytic Streptomyces SUK 08 as well as the main core structure fractionated from its crude extract. Methods: The activities of SUK 08 crude extract were evaluated by using the Plasmodium lactate dehydrogenase assay and synchronization test against rodent malaria parasite Plasmodium berghei, instead of human malarial parasite Plasmodium falciparum. The cytotoxicity of the crude extract was determined by MTT assay. The crude extract was analyzed by thin-layer chromatography and gas chromatography–mass spectrophotometry. Results: The ethyl acetate crude extract showed very promising antimalarial activity with IC50 of 1.25 mg/mL. The synchronization tests showed that ethyl acetate extraction could inhibit all stages of the Plasmodium life cycle, but it was most effective at the Plasmodium ring stage. On the basis of a MTT assay on Chang Liver cells, ethyl acetate and ethanol demonstrated IC50 values of >1.0 mg/mL. The IC50 of parasitemia at 5% and 30% for this extract was lower than chloroquine. Thin-layer chromatography, with 1: 9 ratio of ethyl acetate: hexane, was used to isolate several distinct compounds. Based on gas chromatography–mass spectrophotometry analysis, three core structures were identified as cyclohexane, butyl propyl ester, and 2,3-heptanedione. Structurally, these compounds were similar to currently available antimalarial drugs. Conclusions: The results suggest that compounds isolated from Streptomyces SUK 08 are viable antimalarial drug candidates that require further investigations. Keywords: Butyl–propyl–ester, Cyclohexane, 2,3-Heptanedione, Endophyte, Streptomyces, Antimalarial

  17. Antimalarial activity of Syzygium guineense during early and established Plasmodium infection in rodent models.

    Science.gov (United States)

    Tadesse, Solomon Asmamaw; Wubneh, Zewdu Birhanu

    2017-01-05

    In Ethiopia, the leaves of Syzygium guineense have been found useful for the prevention and cure of malaria, and demonstrated antiplasmodial activity in vitro. Nevertheless, no scientific study has been conducted to confirm its antimalarial activity in vivo. Therefore, the objective of the study was to evaluate the antimalarial effect of Syzygium guineense leaf extract in mice. Inoculation of the study mice was carried out by using the malaria parasite, Plasmodium berghei. The plant extract was prepared at 200, 400 and 600 mg/kg. Chloroquine and distilled water was administered to the positive and negative control groups respectively. Parameters like parasitaemia, survival time and body weight were determined following standard tests (4-day suppressive, Rane's and repository tests). Syzygium guineense crude leaf extract displayed considerable (p activity in both the repository and curative tests. The extract also prevented body weight loss and prolonged survival date of mice significantly (P antimalarial activity in mice. The test substance was found to be safe with no observable signs of toxicity in the study mice. The results of the present work confirmed the in vitro antiplasmodial finding and traditional claims in vivo in mice. Therefore, Syzygium guineense could be regarded as a potential source to develop safe, effective and affordable antimalarial agent.

  18. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum

    Science.gov (United States)

    Vaidya, Akhil B.; Morrisey, Joanne M.; Zhang, Zhongsheng; Das, Sudipta; Daly, Thomas M.; Otto, Thomas D.; Spillman, Natalie J.; Wyvratt, Matthew; Siegl, Peter; Marfurt, Jutta; Wirjanata, Grennady; Sebayang, Boni F.; Price, Ric N.; Chatterjee, Arnab; Nagle, Advait; Stasiak, Marcin; Charman, Susan A.; Angulo-Barturen, Iñigo; Ferrer, Santiago; Belén Jiménez-Díaz, María; Martínez, María Santos; Gamo, Francisco Javier; Avery, Vicky M.; Ruecker, Andrea; Delves, Michael; Kirk, Kiaran; Berriman, Matthew; Kortagere, Sandhya; Burrows, Jeremy; Fan, Erkang; Bergman, Lawrence W.

    2014-01-01

    The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na+ regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na+ homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na+ homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes. PMID:25422853

  19. In vitro antioxidant and antimalarial activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del.

    Science.gov (United States)

    Sadiq, Muhammad Bilal; Tharaphan, Pattamon; Chotivanich, Kesinee; Tarning, Joel; Anal, Anil Kumar

    2017-07-18

    The emergence of drug resistant malaria is threatening our ability to treat and control malaria in the Southeast Asian region. There is an urgent need to develop novel and chemically diverse antimalarial drugs. This study aimed at evaluating the antimalarial and antioxidant potentials of Acacia nilotica plant extracts. The antioxidant activities of leaves, pods and bark extracts were determined by standard antioxidant assays; reducing power capacity, % lipid peroxidation inhibition and ferric reducing antioxidant power assay. The antimalarial activities of plant extracts against Plasmodium falciparum parasites were determined by the 48 h schizont maturation inhibition assay. Further confirmation of schizonticide activity of extracts was made by extending the incubation period up to 96 h after removing the plant extract residues from parasites culture. Inhibition assays were analyzed by dose-response modelling. In all antioxidant assays, leaves of A. nilotica showed higher antioxidant activity than pods and bark. Antimalarial IC 50 values of leaves, pods and bark extracts were 1.29, 4.16 and 4.28 μg/ml respectively, in the 48 h maturation assay. The IC 50 values determined for leaves, pods and bark extracts were 3.72, 5.41 and 5.32 μg/ml respectively, after 96 h of incubation. All extracts inhibited the development of mature schizont, indicating schizonticide activity against P. falciparum. A. nilotica extracts showed promising antimalarial and antioxidant effects. However, further investigation is needed to isolate and identify the active components responsible for the antimalarial and antioxidant effects.

  20. Structure-based design synthesis of functionalized 3-(5-(s-phenyl)-4H-pyrazol-3-yl)-2H-chromen-2-one motifs and indigenous plant extracts and their antimalarial potential

    Science.gov (United States)

    Olayinka, Ajani; Grace, Olasehinde; Titilope, Dokunmu; Ruth, Diji-Geske; Olabode, Onileere; John, Openibo; Oreoluwa, Oluseye; Tochukwu, Chileke; Ezekiel, Adebiyi

    2018-04-01

    Resistance of the malaria parasite to conventional therapeutic agents calls for increased efforts in antimalarial drug discovery. Current efforts should be targeted at developing safe and affordable new agents to counter the spread of malaria parasites that are resistant to existing therapy. In this study, toxicological and in vivo antiplasmodial properties of 3-(5-(s-phenyl)-4H-pyrazol-3-yl)-42H-chromen-2, Mangifera indica and Tithonia diversifolia in swiss albino mice models, Musmusculus were investigated. 2H-Chromen-2-one also known as coumarin is highly privileged oxygen-containing heterocyclic entity which are present in plant kingdom as secondary metabolites. The maceration technique of crude drug extraction was employed using cold water extraction. Toxicological analysis was carried out using Lorke's method for acute toxicity testing while the chemosuppressive activity was carried out using Peter's four day test on early infection. We also report the synthesis of functionalized 3-(5-(s-phenyl)-4H-pyrazol-3-yl)-2H-chromen-2-one motifs via microwave assisted synthetic approach and isolation of indigenous plant extract in order to investigate their antimalarial efficacy. The condensation reaction of 3-acetylcoumarin with various benzaldehyde derivatives resulted in the formation of 3-[3-acryloyl]-2H-chromen-2-one which was subsequently reaction the hydrazine hydrate via microwave assisted hydrazinolysis to afford the targeted 3-(5-(s-phenyl)-4H-pyrazol-3-yl)-2H-chromen-2-one motifs. The chemical structures were confirmed by analytical data and spectroscopic means such as FT-IR, UV, 1H NMR, 13C NMR and DEPT-135. The microwave assisted reaction was remarkably successful and gave targeted 3-(5-(s-phenyl)-4H-pyrazol-3-yl)-2H-chromen-2-one motifs in higher yields at lesser reaction time compared to conventional heating method. The LD50 of the aqueous extracts of the leaves and stem bark Mangifera indica was established to be ± 707.11 mg/kg b.w., p.o. (body weight

  1. Validation of an optical surface plasmon resonance biosensor assay for screening (fluoro)quinolones in egg, fish and poultry

    NARCIS (Netherlands)

    Huet, A.C.; Charlier, C.; Weigel, S.; Benrejeb Godefroy, S.; Delahaut, P.

    2009-01-01

    A surface plasmon resonance biosensor immunoassay has been developed for multi-residue determination of 13 (fluoro)quinolone antibiotics in poultry meat, eggs and fish. The following performance characteristics were determined according to the guidelines laid down for screening assay validation in

  2. Antimalarial activity of abietane ferruginol analogues possessing a phthalimide group.

    Science.gov (United States)

    González, Miguel A; Clark, Julie; Connelly, Michele; Rivas, Fatima

    2014-11-15

    The abietane-type diterpenoid (+)-ferruginol, a bioactive compound isolated from New Zealand's Miro tree (Podocarpus ferruginea), displays relevant pharmacological properties, including antimicrobial, cardioprotective, anti-oxidative, anti-plasmodial, leishmanicidal, anti-ulcerogenic, anti-inflammatory and anticancer. Herein, we demonstrate that ferruginol (1) and some phthalimide containing analogues 2-12 have potential antimalarial activity. The compounds were evaluated against malaria strains 3D7 and K1, and cytotoxicity was measured against a mammalian cell line panel. A promising lead, compound 3, showed potent activity with an EC50 = 86 nM (3D7 strain), 201 nM (K1 strain) and low cytotoxicity in mammalian cells (SI>290). Some structure-activity relationships have been identified for the antimalarial activity in these abietane analogues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay.

    Science.gov (United States)

    Linares, María; Viera, Sara; Crespo, Benigno; Franco, Virginia; Gómez-Lorenzo, María G; Jiménez-Díaz, María Belén; Angulo-Barturen, Íñigo; Sanz, Laura María; Gamo, Francisco-Javier

    2015-11-05

    The emergence of Plasmodium falciparum resistance to artemisinins threatens to undermine the effectiveness of artemisinin-based combination anti-malarial therapy. Developing suitable drugs to replace artemisinins requires the identification of new compounds that display rapid parasite killing kinetics. However, no current methods fully meet the requirements to screen large compound libraries for candidates with such properties. This study describes the development and validation of an in vitro parasite viability fast assay for identifying rapidly parasiticidal anti-malarial drugs. Parasite killing kinetics were determined by first culturing unlabelled erythrocytes with P. falciparum in the presence of anti-malarial drugs for 24 or 48 h. After removing the drug, samples were added to erythrocytes pre-labelled with intracellular dye to allow their subsequent identification. The ability of viable parasites to re-establish infection in labelled erythrocytes could then be detected by two-colour flow cytometry after tagging of parasite DNA. Thus, double-stained erythrocytes (with the pre-labelled intracellular dye and the parasite DNA dye) result only after establishment of new infections by surviving parasites. The capacity of the test anti-malarial drugs to eliminate viable parasites within 24 or 48 h could, therefore, be determined. The parasite viability fast assay could be completed within 48 h following drug treatment and distinguished between rapidly parasiticidal anti-malarial drugs versus those acting more slowly. The assay was validated against ten standard anti-malarial agents with known properties and results correlated well with established methods. An abbreviated assay, suitable for adaption to medium-high throughput screening, was validated and applied against a set of 20 compounds retrieved from the publically available Medicines for Malaria Venture 'Malaria Box'. The quantification of new infections to determine parasite viability offers important

  4. Antimalarials and the fight against malaria in Brazil.

    Science.gov (United States)

    Carmargo, Luiz Ma; de Oliveira, Saulo; Basano, Sergio; Garcia, Célia Rs

    2009-08-01

    Malaria, known as the "fevers," has been treated for over three thousand years in China with extracts of plants of the genus Artemisia (including Artemisia annua, A. opiacea, and A. lancea) from which the active compound is artemisin, a sesquiterpene that is highly effective in the treatment of the disease, especially against young forms of the parasite. South American Indians in the seventeenth century already used an extract of the bark of chinchona tree, commonly named "Jesuits' powder." Its active compound was isolated in 1820 and its use spread all over the world being used as a prophylactic drug during the construction of the Madeira-Mamoré railroad in the beginning of the twentieth century. During the 1920s to the 1940s, new antimalarial drugs were synthesized to increase the arsenal against this parasite. However, the parasite has presented systematic resistence to conventional antimalarial drugs, driving researchers to find new strategies to treat the disease. In the present review we discuss how Brazil treats Plasmodium-infected patients.

  5. Antimalarial Activity of Orally Administered Curcumin Incorporated in Eudragit®-Containing Liposomes

    Directory of Open Access Journals (Sweden)

    Elisabet Martí Coma-Cros

    2018-05-01

    Full Text Available Curcumin is an antimalarial compound easy to obtain and inexpensive, having shown little toxicity across a diverse population. However, the clinical use of this interesting polyphenol has been hampered by its poor oral absorption, extremely low aqueous solubility and rapid metabolism. In this study, we have used the anionic copolymer Eudragit® S100 to assemble liposomes incorporating curcumin and containing either hyaluronan (Eudragit-hyaluronan liposomes or the water-soluble dextrin Nutriose® FM06 (Eudragit-nutriosomes. Upon oral administration of the rehydrated freeze-dried nanosystems administered at 25/75 mg curcumin·kg−1·day−1, only Eudragit-nutriosomes improved the in vivo antimalarial activity of curcumin in a dose-dependent manner, by enhancing the survival of all Plasmodium yoelii-infected mice up to 11/11 days, as compared to 6/7 days upon administration of an equal dose of the free compound. On the other hand, animals treated with curcumin incorporated in Eudragit-hyaluronan liposomes did not live longer than the controls, a result consistent with the lower stability of this formulation after reconstitution. Polymer-lipid nanovesicles hold promise for their development into systems for the oral delivery of curcumin-based antimalarial therapies.

  6. Assessing the quality of anti-malarial drugs from Gabonese pharmacies using the MiniLab®: a field study

    NARCIS (Netherlands)

    Visser, Benjamin J.; Meerveld-Gerrits, Janneke; Kroon, Daniëlle; Mougoula, Judith; Vingerling, Rieke; Bache, Emmanuel; Boersma, Jimmy; van Vugt, Michèle; Agnandji, Selidji T.; Kaur, Harparkash; Grobusch, Martin P.

    2015-01-01

    Recent studies alluded to the alarming scale of poor anti-malarial drug quality in malaria-endemic countries, but also illustrated the major geographical gaps in data on anti-malarial drug quality from endemic countries. Data are particularly scarce from Central Africa, although it carries the

  7. Muddled mechanisms: recent progress towards antimalarial target identification [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Rachel L. Edwards

    2016-10-01

    Full Text Available In the past decade, malaria rates have plummeted as a result of aggressive infection control measures and the adoption of artemisinin-based combination therapies (ACTs. However, a potential crisis looms ahead. Treatment failures to standard antimalarial regimens have been reported in Southeast Asia, and devastating consequences are expected if resistance spreads to the African continent. To prevent a potential public health emergency, the antimalarial arsenal must contain therapeutics with novel mechanisms of action (MOA. An impressive number of high-throughput screening (HTS campaigns have since been launched, identifying thousands of compounds with activity against one of the causative agents of malaria, Plasmodium falciparum. Now begins the difficult task of target identification, for which studies are often tedious, labor intensive, and difficult to interpret. In this review, we highlight approaches that have been instrumental in tackling the challenges of target assignment and elucidation of the MOA for hit compounds. Studies that apply these innovative techniques to antimalarial target identification are described, as well as the impact of the data in the field.

  8. QSAR, docking and ADMET studies of artemisinin derivatives for antimalarial activity targeting plasmepsin II, a hemoglobin-degrading enzyme from P. falciparum.

    Science.gov (United States)

    Qidwai, Tabish; Yadav, Dharmendra K; Khan, Feroz; Dhawan, Sangeeta; Bhakuni, R S

    2012-01-01

    This work presents the development of quantitative structure activity relationship (QSAR) model to predict the antimalarial activity of artemisinin derivatives. The structures of the molecules are represented by chemical descriptors that encode topological, geometric, and electronic structure features. Screening through QSAR model suggested that compounds A24, A24a, A53, A54, A62 and A64 possess significant antimalarial activity. Linear model is developed by the multiple linear regression method to link structures to their reported antimalarial activity. The correlation in terms of regression coefficient (r(2)) was 0.90 and prediction accuracy of model in terms of cross validation regression coefficient (rCV(2)) was 0.82. This study indicates that chemical properties viz., atom count (all atoms), connectivity index (order 1, standard), ring count (all rings), shape index (basic kappa, order 2), and solvent accessibility surface area are well correlated with antimalarial activity. The docking study showed high binding affinity of predicted active compounds against antimalarial target Plasmepsins (Plm-II). Further studies for oral bioavailability, ADMET and toxicity risk assessment suggest that compound A24, A24a, A53, A54, A62 and A64 exhibits marked antimalarial activity comparable to standard antimalarial drugs. Later one of the predicted active compound A64 was chemically synthesized, structure elucidated by NMR and in vivo tested in multidrug resistant strain of Plasmodium yoelii nigeriensis infected mice. The experimental results obtained agreed well with the predicted values.

  9. New concepts in antimalarial use and mode of action in dermatology.

    Science.gov (United States)

    Kalia, Sunil; Dutz, Jan P

    2007-01-01

    Although chloroquine, hydroxychloroquine and quinacrine were originally developed for the treatment of malaria, these medications have been used to treat skin disease for over 50 years. Recent clinical data have confirmed the usefulness of these medications for the treatment of lupus erythematosus. Current research has further enhanced our understanding of the pharmacologic mechanisms of action of these drugs involving inhibition of endosomal toll-like receptor (TLR) signaling limiting B cell and dendritic cell activation. With this understanding, the use of these medications in dermatology is broadening. This article highlights the different antimalarials used within dermatology through their pharmacologic properties and mechanism of action, as well as indicating their clinical uses. In addition, contraindications, adverse effects, and possible drug interactions of antimalarials are reviewed.

  10. Detection of In Vitro Antimalarial Activity of Some Myanmar Medicinal Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ei, Shun Lai; Mon, Hla Myat; Myint, Khin Htay

    2008-06-15

    In order to find out the novel effective antimalarials. six medicinal plants, namely Erythrina stricta Roxb. (Kathit), Luffa acutangula Roxb. (Thabut - Kja), Cordia rothii Roem. and Schult. (Thanet), Tribulus terrestris Linn. (Sule). Zizphus oenoplia Mill. (Paung - pe) and Mimusops elengi Roxb. (Khaye) were selected and tested for their antimalarial activity by using in vitro microdilution technique. According to the in vitro test results, Erythrina stricta Roxb. (Kathit) was found to possess significant suppressive effect on Plasmodium falciparum. With the serially diluted extract dosage concentrations ranging from 1.250 ng/ml to 40,000 ng/ml, the schizont suppressive percentage of Eryhrina stricta Roxb. (Kathi) was observed to be 19.57%, 35.44%, 55.18%, 96.04%,100% and 100% respectively.

  11. Detection of In Vitro Antimalarial Activity of Some Myanmar Medicinal Plants

    International Nuclear Information System (INIS)

    Shun Lai Ei; Hla Myat Mon; Khin Htay Myint

    2008-06-01

    In order to find out the novel effective antimalarials. six medicinal plants, namely Erythrina stricta Roxb. (Kathit), Luffa acutangula Roxb. (Thabut - Kja), Cordia rothii Roem. and Schult. (Thanet), Tribulus terrestris Linn. (Sule). Zizphus oenoplia Mill. (Paung - pe) and Mimusops elengi Roxb. (Khaye) were selected and tested for their antimalarial activity by using in vitro microdilution technique. According to the in vitro test results, Erythrina stricta Roxb. (Kathit) was found to possess significant suppressive effect on Plasmodium falciparum. With the serially diluted extract dosage concentrations ranging from 1.250 ng/ml to 40,000 ng/ml, the schizont suppressive percentage of Eryhrina stricta Roxb. (Kathi) was observed to be 19.57%, 35.44%, 55.18%, 96.04%,100% and 100% respectively

  12. Incorporation of basic side chains into cryptolepine scaffold: structure-antimalarial activity relationships and mechanistic studies.

    Science.gov (United States)

    Lavrado, João; Cabal, Ghislain G; Prudêncio, Miguel; Mota, Maria M; Gut, Jiri; Rosenthal, Philip J; Díaz, Cecília; Guedes, Rita C; dos Santos, Daniel J V A; Bichenkova, Elena; Douglas, Kenneth T; Moreira, Rui; Paulo, Alexandra

    2011-02-10

    The synthesis of cryptolepine derivatives containing basic side-chains at the C-11 position and their evaluations for antiplasmodial and cytotoxicity properties are reported. Propyl, butyl, and cycloalkyl diamine side chains significantly increased activity against chloroquine-resistant Plasmodium falciparum strains while reducing cytotoxicity when compared with the parent compound. Localization studies inside parasite blood stages by fluorescence microscopy showed that these derivatives accumulate inside the nucleus, indicating that the incorporation of a basic side chain is not sufficient enough to promote selective accumulation in the acidic digestive vacuole of the parasite. Most of the compounds within this series showed the ability to bind to a double-stranded DNA duplex as well to monomeric hematin, suggesting that these are possible targets associated with the observed antimalarial activity. Overall, these novel cryptolepine analogues with substantially improved antiplasmodial activity and selectivity index provide a promising starting point for development of potent and highly selective agents against drug-resistant malaria parasites.

  13. original article antimalarial use and the associated factors in rural

    African Journals Online (AJOL)

    boaz

    This study was set out to find out the pattern of antimalarial drug use in a Nigerian rural community following the aggressive price subsidy ... facilities in South-East Nigeria also showed that only .... descriptive statistics in the analysis command,.

  14. International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries

    DEFF Research Database (Denmark)

    Veldman, Kees; Cavaco, Lina; Mevius, Dik

    2011-01-01

    OBJECTIVES: This study was initiated to collect retrospective information on the occurrence of plasmid-mediated quinolone resistance (PMQR) in Salmonella enterica and Escherichia coli isolates in Europe and to identify the responsible genes. METHODS: Databases of national reference laboratories...... containing MIC values for Salmonella and E. coli isolated between 1994 and 2009 in animals, humans, food and the environment from 13 European countries were screened for isolates exhibiting a defined quinolone resistance phenotype, i.e. reduced susceptibility to fluoroquinolones and nalidixic acid. PCR...... isolate. No qnrC or qepA genes were detected in either Salmonella or E. coli. CONCLUSIONS: This study shows the occurrence and dissemination of PMQR genes in Salmonella and E. coli in Europe with a defined quinolone resistance phenotype. We also report the first detection of qnrD in Salmonella collected...

  15. Comparison of Antimicrobial Properties of Nano Quinolone with its Microscale Effects

    Science.gov (United States)

    Behbahani, G. Rezaie; Sadr, M. Hossaini; Nabipour, H.; Behbahani, H. Rezaei; Vahedpour, M.; Barzegar, L.

    2013-06-01

    Nano nalidixic acid was prepared by ultrasonic method in carbon tetrachloride. Nano nalidixic acid (quinolone antibiotic) was characterized by X-ray diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscope (SEM). The antibacterial activities of nano nalidixic acid were tested against microorganisms and compared with the microscale drug. The results show that nano nalidixic acid has good inhibitory properties against two Gram-positive species, Staphylococcus aureus and Bacillus subtilis. Nano nalidixic acid also showed good antifungal activity against Candida albicans. Nano nalidixic acid can be injected into the human body as a decontaminating agent to prevent the growth of harmful microorganisms more effectively than the micro-sized drug.

  16. Understanding private sector antimalarial distribution chains: a cross-sectional mixed methods study in six malaria-endemic countries.

    Science.gov (United States)

    Palafox, Benjamin; Patouillard, Edith; Tougher, Sarah; Goodman, Catherine; Hanson, Kara; Kleinschmidt, Immo; Rueda, Sergio Torres; Kiefer, Sabine; O'Connell, Kathryn A; Zinsou, Cyprien; Phok, Sochea; Akulayi, Louis; Arogundade, Ekundayo; Buyungo, Peter; Mpasela, Felton; Chavasse, Desmond

    2014-01-01

    Private for-profit outlets are important treatment sources for malaria in most endemic countries. However, these outlets constitute only the last link in a chain of businesses that includes manufacturers, importers and wholesalers, all of which influence the availability, price and quality of antimalarials patients can access. We present evidence on the composition, characteristics and operation of these distribution chains and of the businesses that comprise them in six endemic countries (Benin, Cambodia, Democratic Republic of Congo, Nigeria, Uganda and Zambia). We conducted nationally representative surveys of antimalarial wholesalers during 2009-2010 using an innovative sampling approach that captured registered and unregistered distribution channels, complemented by in-depth interviews with a range of stakeholders. Antimalarial distribution chains were pyramidal in shape, with antimalarials passing through a maximum of 4-6 steps between manufacturer and retailer; however, most likely pass through 2-3 steps. Less efficacious non-artemisinin therapies (e.g. chloroquine) dominated weekly sales volumes among African wholesalers, while volumes for more efficacious artemisinin-based combination therapies (ACTs) were many times smaller. ACT sales predominated only in Cambodia. In all countries, consumer demand was the principal consideration when selecting products to stock. Selling prices and reputation were key considerations regarding supplier choice. Business practices varied across countries, with large differences in the proportions of wholesalers offering credit and delivery services to customers, and the types of distribution models adopted by businesses. Regulatory compliance also varied across countries, particularly with respect to licensing. The proportion of wholesalers possessing any up-to-date licence from national regulators was lowest in Benin and Nigeria, where vendors in traditional markets are important antimalarial supply sources. The structure

  17. Understanding private sector antimalarial distribution chains: a cross-sectional mixed methods study in six malaria-endemic countries.

    Directory of Open Access Journals (Sweden)

    Benjamin Palafox

    Full Text Available Private for-profit outlets are important treatment sources for malaria in most endemic countries. However, these outlets constitute only the last link in a chain of businesses that includes manufacturers, importers and wholesalers, all of which influence the availability, price and quality of antimalarials patients can access. We present evidence on the composition, characteristics and operation of these distribution chains and of the businesses that comprise them in six endemic countries (Benin, Cambodia, Democratic Republic of Congo, Nigeria, Uganda and Zambia.We conducted nationally representative surveys of antimalarial wholesalers during 2009-2010 using an innovative sampling approach that captured registered and unregistered distribution channels, complemented by in-depth interviews with a range of stakeholders. Antimalarial distribution chains were pyramidal in shape, with antimalarials passing through a maximum of 4-6 steps between manufacturer and retailer; however, most likely pass through 2-3 steps. Less efficacious non-artemisinin therapies (e.g. chloroquine dominated weekly sales volumes among African wholesalers, while volumes for more efficacious artemisinin-based combination therapies (ACTs were many times smaller. ACT sales predominated only in Cambodia. In all countries, consumer demand was the principal consideration when selecting products to stock. Selling prices and reputation were key considerations regarding supplier choice. Business practices varied across countries, with large differences in the proportions of wholesalers offering credit and delivery services to customers, and the types of distribution models adopted by businesses. Regulatory compliance also varied across countries, particularly with respect to licensing. The proportion of wholesalers possessing any up-to-date licence from national regulators was lowest in Benin and Nigeria, where vendors in traditional markets are important antimalarial supply sources

  18. Malaria healthcare policy change in Kenya: implications on sales and marketing of antimalarials.

    Science.gov (United States)

    Ngure, Peter K; Nyaoke, Lorraine; Minja, David

    2012-03-01

    Malaria healthcare policy change in Kenya aimed at improving the control of malaria but faced a number of challenges in implementation related to marketing of the drugs. This research investigated the effect of the change of the national malaria policy on drug sales and strategic marketing responses of antimalarial pharmaceutical companies in Kenya. A descriptive cross-sectional design was employed to describe the existing state of antimalarials market in Kenya after the change of the malaria healthcare policy. Policy change did result in an increase in the sales of Coartem®. Novartis Pharma recorded a 97% growth in sales of Coartem® between 2003 and 2004. However, this increase was not experienced by all the companies. Further, SPs (which had been replaced as first-line therapy for malaria) registered good sales. In most cases, these sales were higher than the sales of Coartem®. Generally, the sales contribution of SPs and generic antimalarial medicines exceeded that of Coartem® for most distributors. The most common change made to marketing strategies by distributors (62.5%) was to increase imports of antimalarials. A total of 40% of the manufacturers preferred to increase their budgetary allocation for marketing activities. In view of the fact that continued sale of SP drugs and limited availability of AL poses the risk of increasing the incidence of malaria in Kenya, it is therefore, recommended that pharmacy surveillance systems be strengthened to ensure drugs that have been rendered non-viable or that prescription-only medicines are not sold contrary to the national guidelines.

  19. Development of an optical surface plasmon resonance biosensor assay for (fluoro) quinolones in egg, fish, and poultry meat

    NARCIS (Netherlands)

    Huet, A.C.; Charlier, C.; Singh, G.; Benrejeb Godefroy, S.; Leivo, J.; Vehniainen, M.; Nielen, M.W.F.; Weigel, S.; Delahaut, P.

    2008-01-01

    The aim of this study was to develop an optical biosensor inhibition immunoassay, based on the surface plasmon resonance (SPR) principle, for use as a screening test for 13 (fluoro)quinolones, including flumequine, used as veterinary drugs in food-producing animals. For this, we immobilised various

  20. In vivo Antimalarial Activity of Methanol and Water Extracts of ...

    African Journals Online (AJOL)

    review of the plants of the American continent with antimalarial ... dried at room temperature and ground into fine powder using a ball mill .... substance in a liquid is determined by ... In addition, ionic compounds are generally most soluble in ...

  1. Antimalarial efficacy of nine medicinal plants traditionally used by the Karens of Andaman and Nicobar Islands, India

    Directory of Open Access Journals (Sweden)

    M. Punnam Chander

    2016-03-01

    Full Text Available The aim of this study was to assess the antimalarial activity of nine medicinal plants used by Karens of Andaman and Nicobar Islands, against Plasmodium falciparum chloroquine-sensitive MRC-2 isolate. The methanol extracts were obtained by cold percolation method and in vitro antimalarial activity was assessed using M-III method. The results indicated that out of nine plant species tested, four plants, viz., Z. spectabilis, S. wallichiana, C. pulcherrima and Amomum sp. demonstrated significant antimalarial activity (50% inhibitory concentration values were 5.5 ± 0.7, 12.0 ± 2.5, 14.6 ± 1.3 and 37.3 ± 2.5 μg/mL respectively with no toxicity effect on erythrocytes.

  2. Lead Optimization of Anti-Malarial Propafenone Analogs

    Science.gov (United States)

    Lowes, David; Pradhan, Anupam; Iyer, Lalitha V.; Parman, Toufan; Gow, Jason; Zhu, Fangyi; Furimsky, Anna; Lemoff, Andrew; Guiguemde, W. Armand; Sigal, Martina; Clark, Julie A.; Wilson, Emily; Tang, Liang; Connelly, Michele C.; DeRisi, Joseph L.; Kyle, Dennis E.; Mirsalis, Jon; Guy, R. Kiplin

    2015-01-01

    Previously reported studies identified analogs of propafenone that had potent antimalarial activity, reduced cardiac ion channel activity, and properties that suggested the potential for clinical development for malaria. Careful examination of the bioavailability, pharmacokinetics, toxicology, and efficacy of this series of compounds using rodent models revealed orally bioavailable compounds that are non-toxic and suppress parasitemia in vivo. Although these compounds possess potential for further preclinical development, they also carry some significant challenges. PMID:22708838

  3. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in Uganda

    OpenAIRE

    Hubbard Alan E; Dorsey Grant; Gupta Vinay; Rosenthal Philip J; Greenhouse Bryan

    2010-01-01

    Abstract Background Molecular genotyping is performed in anti-malarial trials to determine whether recurrent parasitaemia after therapy represents a recrudescence (treatment failure) or new infection. The use of capillary instead of agarose gel electrophoresis for genotyping offers technical advantages, but it is unclear whether capillary electrophoresis will result in improved classification of anti-malarial treatment outcomes. Methods Samples were genotyped using both gel and capillary elec...

  4. Development of a TaqMan Allelic Discrimination Assay for detection of Single Nucleotides Polymorphisms associated with anti-malarial drug resistance

    Directory of Open Access Journals (Sweden)

    Kamau Edwin

    2012-01-01

    Full Text Available Abstract Background Anti-malarial drug resistance poses a threat to current global efforts towards control and elimination of malaria. Several methods are used in monitoring anti-malarial drug resistance. Molecular markers such as single nucleotide polymorphism (SNP for example are increasingly being used to identify genetic mutations related to anti-malarial drug resistance. Several methods are currently being used in analysis of SNP associated with anti-malarial drug resistance and although each one of these methods has unique strengths and shortcoming, there is still need to improve and/or develop new methods that will close the gap found in the current methods. Methods TaqMan Allelic Discrimination assays for detection of SNPs associated with anti-malarial drug resistance were designed for analysis on Applied Biosystems PCR platform. These assays were designed by submitting SNP sequences associated with anti-malarial drug resistance to Applied Biosystems website. Eleven SNPs associated with resistance to anti-malarial drugs were selected and tested. The performance of each SNP assay was tested by creating plasmid DNAs carrying codons of interests and analysing them for analysis. To test the sensitivity and specificity of each SNP assay, 12 clinical samples were sequenced at codons of interest and used in the analysis. Plasmid DNAs were used to establish the Limit of Detection (LoD for each assay. Results Data from genetic profiles of the Plasmodium falciparum laboratory strains and sequence data from 12 clinical samples was used as the reference method with which the performance of the SNP assays were compared to. The sensitivity and specificity of each SNP assay was establish at 100%. LoD for each assay was established at 2 GE, equivalent to less than 1 parasite/μL. SNP assays performed well in detecting mixed infection and analysis of clinical samples. Conclusion TaqMan Allelic Discrimination assay provides a good alternative tool in

  5. Antimalarial and antiplasmodial activity of husk extract and fractions of Zea mays.

    Science.gov (United States)

    Okokon, Jude E; Antia, Bassey S; Mohanakrishnan, Dinesh; Sahal, Dinkar

    2017-12-01

    Zea mays L. (Poacae) husk decoctions are traditionally used in the treatment of malaria by various tribes in Nigeria. To assess the antimalarial and antiplasmodial potentials of the husk extract and fractions on malaria parasites using in vivo and in vitro models. The ethanol husk extract and fractions (187-748 mg/kg, p.o.) of Zea mays were investigated for antimalarial activity against Plasmodium berghei using rodent (mice) malaria models and in vitro activity against chloroquine sensitive (Pf 3D7) and resistant (Pf INDO) strains of Plasmodium falciparum using the SRBR green assay method. Median lethal dose and cytotoxic activities against HeLa and HEKS cells were also carried out. The GCMS analysis of the most active fraction was carried out. The husk extract (187-748 mg/kg, p.o.) with LD 50 of 1874.83 mg/kg was found to exert significant (p antimalarial activity against P. berghei infection in suppressive, prophylactive and curative tests. The crude extract and fractions also exerted prominent activity against both chloroquine sensitive (Pf 3D7) and resistant (Pf INDO) strains of P. falciparum with the ethyl acetate fraction exerting the highest activity with IC 50 values of 9.31 ± 0.46 μg/mL (Pf 3D7) and 3.69 ± 0.66 μg/mL (Pf INDO). The crude extract and fractions were not cytotoxic to the two cell lines tested with IC 50 values of >100 μg/mL against both HeLa and HEKS cell lines. These results suggest that the husk extract/fractions of Zea mays possesses antimalarial and antiplasmodial activities and these justify its use in ethnomedicine to treat malaria infections.

  6. Discovery of novel alkylated (bis)urea and (bis)thiourea polyamine analogues with potent antimalarial activities.

    Science.gov (United States)

    Verlinden, Bianca K; Niemand, Jandeli; Snyman, Janette; Sharma, Shiv K; Beattie, Ross J; Woster, Patrick M; Birkholtz, Lyn-Marie

    2011-10-13

    A series of alkylated (bis)urea and (bis)thiourea polyamine analogues were synthesized and screened for antimalarial activity against chloroquine-sensitive and -resistant strains of Plasmodium falciparum in vitro. All analogues showed growth inhibitory activity against P. falciparum at less than 3 μM, with the majority having effective IC(50) values in the 100-650 nM range. Analogues arrested parasitic growth within 24 h of exposure due to a block in nuclear division and therefore asexual development. Moreover, this effect appears to be cytotoxic and highly selective to malaria parasites (>7000-fold lower IC(50) against P. falciparum) and is not reversible by the exogenous addition of polyamines. With this first report of potent antimalarial activity of polyamine analogues containing 3-7-3 or 3-6-3 carbon backbones and substituted terminal urea- or thiourea moieties, we propose that these compounds represent a structurally novel class of antimalarial agents.

  7. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission

    NARCIS (Netherlands)

    Kuhen, K.L.; Chatterjee, A.K.; Rottmann, M.; Gagaring, K.; Borboa, R.; Buenviaje, J.; Chen, Z.; Francek, C.; Wu, T.; Nagle, A.; Barnes, S.W.; Plouffe, D.; Lee, M.C.; Fidock, D.A.; Graumans, W.; Vegte, M.G. van de; Gemert, G.J.A. van; Wirjanata, G.; Sebayang, B.; Marfurt, J.; Russell, B.; Suwanarusk, R.; Price, R.N.; Nosten, F.; Tungtaeng, A.; Gettayacamin, M.; Sattabongkot, J.; Taylor, J.; Walker, J.R.; Tully, D.; Patra, K.P.; Flannery, E.L.; Vinetz, J.M.; Renia, L.; Sauerwein, R.W.; Winzeler, E.A.; Glynne, R.J.; Diagana, T.T.

    2014-01-01

    Renewed global efforts toward malaria eradication have highlighted the need for novel antimalarial agents with activity against multiple stages of the parasite life cycle. We have previously reported the discovery of a novel class of antimalarial compounds in the imidazolopiperazine series that have

  8. CNS adverse events associated with antimalarial agents. Fact or fiction?

    NARCIS (Netherlands)

    Phillips-Howard, P. A.; ter Kuile, F. O.

    1995-01-01

    CNS adverse drug events are dramatic, and case reports have influenced clinical opinion on the use of antimalarials. Malaria also causes CNS symptoms, thus establishing causality is difficult. CNS events are associated with the quinoline and artemisinin derivatives. Chloroquine, once considered too

  9. Design and Synthesis of Some New Quinoline Based 1,2,3-Triazoles as Antimicrobial and Antimalarial Agents

    Directory of Open Access Journals (Sweden)

    Parthasaradhi Y.

    2015-09-01

    Full Text Available A series of novel 6-bromo-2-chloro-3-(4-phenyl-[1,2,3]triazol-1-ylmethyl-quinoline and its derivatives (5a-j were synthesized in good yields from the intermediates (6-bromo-2-chloro-quinolin-3-yl-methanol (2, methanesulfonic acid (6-bromo-2-chloroquinolin-3-ylmethyl methanesulfonate (3 and 3-azidomethyl-6-bromo-2-chloro-quinoline (4. The synthetic route leading to the title compounds is commenced from commercially available 6-bromo-2-chloro-quinolin-3-carbaldehyde (1. The chemical structures of the newly synthesized compounds were elucidated by their IR, 1H and 13C NMR, mass spectral data and elemental analysis. Further, all the target compounds were screened for their antimicrobial activity against various microorganisms and antimalarial activity towards P. falciparum. DOI: http://dx.doi.org/10.17807/orbital.v7i3.692 

  10. Interference with hemozoin formation represents an important mechanism of schistosomicidal action of antimalarial quinoline methanols.

    Directory of Open Access Journals (Sweden)

    Juliana B R Corrêa Soares

    Full Text Available BACKGROUND: The parasitic trematode Schistosoma mansoni is one of the major causative agents of human schistosomiasis, which afflicts 200 million people worldwide. Praziquantel remains the main drug used for schistosomiasis treatment, and reliance on the single therapy has been prompting the search for new therapeutic compounds against this disease. Our group has demonstrated that heme crystallization into hemozoin (Hz within the S. mansoni gut is a major heme detoxification route with lipid droplets involved in this process and acting as a potential chemotherapeutical target. In the present work, we investigated the effects of three antimalarial compounds, quinine (QN, quinidine (QND and quinacrine (QCR in a murine schistosomiasis model by using a combination of biochemical, cell biology and molecular biology approaches. METHODOLOGY/PRINCIPAL FINDINGS: Treatment of S. mansoni-infected female Swiss mice with daily intraperitoneal injections of QN, and QND (75 mg/kg/day from the 11(th to 17(th day after infection caused significant decreases in worm burden (39%-61% and egg production (42%-98%. Hz formation was significantly inhibited (40%-65% in female worms recovered from QN- and QND-treated mice and correlated with reduction in the female worm burden. We also observed that QN treatment promoted remarkable ultrastructural changes in male and female worms, particularly in the gut epithelium and reduced the granulomatous reaction to parasite eggs trapped in the liver. Microarray gene expression analysis indicated that QN treatment increased the expression of transcripts related to musculature, protein synthesis and repair mechanisms. CONCLUSIONS: The overall significant reduction in several disease burden parameters by the antimalarial quinoline methanols indicates that interference with Hz formation in S. mansoni represents an important mechanism of schistosomicidal action of these compounds and points out the heme crystallization process as a

  11. The Redox Cycler Plasmodione Is a Fast-Acting Antimalarial Lead Compound with Pronounced Activity against Sexual and Early Asexual Blood-Stage Parasites.

    Science.gov (United States)

    Ehrhardt, Katharina; Deregnaucourt, Christiane; Goetz, Alice-Anne; Tzanova, Tzvetomira; Gallo, Valentina; Arese, Paolo; Pradines, Bruno; Adjalley, Sophie H; Bagrel, Denyse; Blandin, Stephanie; Lanzer, Michael; Davioud-Charvet, Elisabeth

    2016-09-01

    Previously, we presented the chemical design of a promising series of antimalarial agents, 3-[substituted-benzyl]-menadiones, with potent in vitro and in vivo activities. Ongoing studies on the mode of action of antimalarial 3-[substituted-benzyl]-menadiones revealed that these agents disturb the redox balance of the parasitized erythrocyte by acting as redox cyclers-a strategy that is broadly recognized for the development of new antimalarial agents. Here we report a detailed parasitological characterization of the in vitro activity profile of the lead compound 3-[4-(trifluoromethyl)benzyl]-menadione 1c (henceforth called plasmodione) against intraerythrocytic stages of the human malaria parasite Plasmodium falciparum We show that plasmodione acts rapidly against asexual blood stages, thereby disrupting the clinically relevant intraerythrocytic life cycle of the parasite, and furthermore has potent activity against early gametocytes. The lead's antiplasmodial activity was unaffected by the most common mechanisms of resistance to clinically used antimalarials. Moreover, plasmodione has a low potential to induce drug resistance and a high killing speed, as observed by culturing parasites under continuous drug pressure. Drug interactions with licensed antimalarial drugs were also established using the fixed-ratio isobologram method. Initial toxicological profiling suggests that plasmodione is a safe agent for possible human use. Our studies identify plasmodione as a promising antimalarial lead compound and strongly support the future development of redox-active benzylmenadiones as antimalarial agents. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Cinnamoylated chloroquine analogues: A new structural class of antimalarial agents.

    Science.gov (United States)

    Gayam, Venkatareddy; Ravi, Subban

    2017-07-28

    A novel series of cinnamoylated chloroquine hybrid analogues were synthesized and evaluated as antimalarial agents. The trans cinnamic acid derivatives (3-8) were synthesized by utilizing substituted aldehydes and malanoic acid in DMF catalysed by DABCO. The final cinnamoylated chloroquine analogues (9-14) were synthesized by utilizing DCC coupling reagent. The amido chloroquine (17) was prepared from acid (16) and compound 2 in benzene using SOCl 2 as chlorinating agent. The corresponding ester (15) was prepared from 2-hydroxy acetophenone and 2-bromoacetates in actonitrile in presence of K 2 CO 3  as base followed by basic hydrolysis. The preparation of amide based chloroquine-chalcone analogues (18-22), were obtained by the combination of amido chloroquine (17) and aldehydes in 10% aq. KOH in methanol at room temperature. Further we prepared epichlorohydrin based chloroquine-chalcone analogues (25-28), by reacting the epoxide (24a, 24b and 24c) with 2 and methelenedioxy aniline. In vitro antimalarial activity against chloroquine sensitive strain 3D7, chloroquine resistant strain K1 of P. falciparum and in vitro cytotoxicity of compounds using VERO cell line was carried out. The synthesized molecules showed significant in vitro antimalarial activity especially against CQ resistant strain (K1). Among tested compounds, 13, 9 and 10 were found to be the most potent compounds of the series with IC 50 value of 44.06, 48.04 and 59.37 nM against chloroquine resistant K1 strain. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Prevalence of Smqnr and plasmid-mediated quinolone resistance determinants in clinical isolates of Stenotrophomonas maltophilia from Japan: novel variants of Smqnr

    Directory of Open Access Journals (Sweden)

    H. Kanamori

    2015-09-01

    Full Text Available Stenotrophomonas maltophilia is an important pathogen in healthcare-associated infections. S. maltophilia may contain Smqnr, a quinolone resistance gene encoding the pentapeptide repeat protein, which confers low-level quinolone resistance upon expression in a heterologous host. We investigated the prevalence of Smqnr and plasmid-mediated quinolone resistance (PMQR determinants in S. maltophilia isolates from Japan. A total of 181 consecutive and nonduplicate clinical isolates of S. maltophilia were collected from four areas of Japan. The antimicrobial susceptibility profiles for these strains were determined. PCR was conducted for Smqnr and PMQR genes, including qnrA, qnrB, qnrC, qnrS, aac(6′-Ib and qepA. PCR products for Smqnr and aac(6′-Ib were sequenced. For the S. maltophilia isolates containing Smqnr, pulsed-field gel electrophoresis (PFGE was performed using XbaI. Resistance rates to ceftazidime, levofloxacin, trimethoprim–sulfamethoxazole, chloramphenicol and minocycline were 67.4%, 6.1%, 17.7%, 8.8% and 0%, respectively. The minimum inhibitory concentration required to inhibit the growth of 50% and 90% of organisms were 0.5 and 2 mg/L for moxifloxacin but 1 and 4 mg/L for levofloxacin, respectively. Smqnr was detected in 104 of the 181 S. maltophilia isolates (57.5%, and the most frequent was Smqnr6, followed by Smqnr8 and Smqnr11. Eleven novel variants from Smqnr48 to Smqnr58 were detected. The 24 Smqnr-containing S. maltophilia isolates were typed by PFGE and divided into 21 unique types. Nine S. maltophilia isolates (5.0% carried aac(6′-Ib-cr. No qnr or qepA genes were detected. This study describes a high prevalence of Smqnr and novel variants of Smqnr among S. maltophilia from Japan. Continuous antimicrobial surveillance and further molecular epidemiological studies on quinolone resistance in S. maltophilia are needed.

  14. Virtual Screening Techniques to Probe the Antimalarial Activity of some Traditionally Used Phytochemicals.

    Science.gov (United States)

    Shibi, Indira G; Aswathy, Lilly; Jisha, Radhakrishnan S; Masand, Vijay H; Gajbhiye, Jayant M

    2016-01-01

    Malaria parasites show resistance to most of the antimalarial drugs and hence developing antimalarials which can act on multitargets rather than a single target will be a promising strategy of drug design. Here we report a new approach by which virtual screening of 292 unique phytochemicals present in 72 traditionally important herbs is used for finding out inhibitors of plasmepsin-2 and falcipain-2 for antimalarial activity against P. falciparum. Initial screenings of the selected molecules by Random Forest algorithm model of Weka using the bioassay datasets AID 504850 and AID 2302 screened 120 out of the total 292 phytochemicals to be active against the targets. Toxtree scan cautioned 21 compounds to be either carcinogenic or mutagenic and were thus removed for further analysis. Out of the remaining 99 compounds, only 46 compounds offered drug-likeness as per the 'rule of five' criteria. Out of ten antimalarial drug targets, only two target proteins such as 3BPF and 3PNR of falcipain-2 and 1PFZ and 2BJU of plasmepsin-2 are selected as targets. The potential binding of the selected 46 compounds to the active sites of these four targets was analyzed using MOE software. The docked conformations and the interactions with the binding pocket residues of the target proteins were understood by 'Ligplot' analysis. It has been found that 8 compounds are dual inhibitors of falcipain-2 and plasmepsin-2, with the best binding energies. Compound 117 (6aR, 12aS)-12a-Hydroxy-9-methoxy-2,3-dimethylenedioxy-8-prenylrotenone (Usaratenoid C) present in the plant Millettia usaramensis showed maximum molecular docking score.

  15. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica.

    Science.gov (United States)

    Chinchilla, Misael; Valerio, Idalia; Sánchez, Ronald; Mora, Víctor; Bagnarello, Vanessa; Martínez, Laura; Gonzalez, Antonieta; Vanegas, Juan Carlos; Apestegui, Alvaro

    2012-06-01

    Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biol6gica Alberto Manuel Brenes (REBAMB), were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae); Xanthosoma undipes (Araceae); Iriartea deltoidea (Arecaceae); Neurolaena lobata (Asteraceae); Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae); Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae); Hampea appendiculata (Malvaceae); Ruagea glabra, Guarea glabra (Meliaceae); Psidium guajava (Myrtaceae); Bocconia frutescens (Papaveraceae); Piper friedrichsthalii (Piperaceae); Clematis dioica (Ranunculaceae); Prunus annularis (Rosaceae); Siparuna thecaphora (Siparunaceae); Solanum arboreum, Witheringia solanacea (Solanaceae); Ticodendrum incognitum (Ticodendraceae); Heliocarpus appendiculatus (Tiliaceae) and Myriocarpa longipes (Urticaceae). We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9 microg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  16. Antimalarial activity of novel 5-aryl-8-aminoquinoline derivatives.

    Science.gov (United States)

    Shiraki, Hiroaki; Kozar, Michael P; Melendez, Victor; Hudson, Thomas H; Ohrt, Colin; Magill, Alan J; Lin, Ai J

    2011-01-13

    In an attempt to separate the antimalarial activity of tafenoquine (3) from its hemolytic side effects in glucose-6-phosphate dehydrogenase (G6PD) deficiency patients, a series of 5-aryl-8-aminoquinoline derivatives was prepared and assessed for antimalarial activities. The new compounds were found metabolically stable in human and mouse microsomal preparations, with t(1/2) > 60 min, and were equal to or more potent than primaquine (2) and 3 against Plasmodium falciparum cell growth. The new agents were more active against the chloroquine (CQ) resistant clone than to the CQ-sensitive clone. Analogues with electron donating groups showed better activity than those with electron withdrawing substituents. Compounds 4bc, 4bd, and 4be showed comparable therapeutic index (TI) to that of 2 and 3, with TI ranging from 5 to 8 based on IC(50) data. The new compounds showed no significant causal prophylactic activity in mice infected with Plasmodium berghei sporozoites, but are substantially less toxic than 2 and 3 in mouse tests.

  17. Antimalarial Activity of Ultra-Short Peptides

    Directory of Open Access Journals (Sweden)

    María Yolanda Rios

    2009-12-01

    Full Text Available Ultra-short peptides 1-9 were designed and synthesized with phenylalanine, ornithine and proline amino acid residues and their effect on antimalarial activity was analyzed. On the basis of the IC50 data for these compounds, the effects of nature, polarity, and amino acid sequence on Plasmodium berghei schizont cultures were analyzed too. Tetrapeptides Phe-Orn-Phe-Orn (4 and Lys-Phe-Phe-Orn (5 showed a very important activity with IC50 values of 3.31 and 2.57 μM, respectively. These two tetrapeptides are candidates for subsequent in vivo assays and SARS investigations.

  18. Evaluation of In-vivo Antimalarial Activity of Methanol Leaf Extract of ...

    African Journals Online (AJOL)

    Abstract. Purpose: To evaluate the in-vivo antimalarial activity of the methanol extract of the leaves of Glyphaea brevis in ... alternative malarial drugs, with novel modes of action [4]. ... The mean lethal dose of the three fractions. (ethylacetate ...

  19. Efforts Aimed To Reduce Attrition in Antimalarial Drug Discovery: A Systematic Evaluation of the Current Antimalarial Targets Portfolio.

    Science.gov (United States)

    Chaparro, María Jesús; Calderón, Félix; Castañeda, Pablo; Fernández-Alvaro, Elena; Gabarró, Raquel; Gamo, Francisco Javier; Gómez-Lorenzo, María G; Martín, Julio; Fernández, Esther

    2018-04-13

    Malaria remains a major global health problem. In 2015 alone, more than 200 million cases of malaria were reported, and more than 400,000 deaths occurred. Since 2010, emerging resistance to current front-line ACTs (artemisinin combination therapies) has been detected in endemic countries. Therefore, there is an urgency for new therapies based on novel modes of action, able to relieve symptoms as fast as the artemisinins and/or block malaria transmission. During the past few years, the antimalarial community has focused their efforts on phenotypic screening as a pragmatic approach to identify new hits. Optimization efforts on several chemical series have been successful, and clinical candidates have been identified. In addition, recent advances in genetics and proteomics have led to the target deconvolution of phenotypic clinical candidates. New mechanisms of action will also be critical to overcome resistance and reduce attrition. Therefore, a complementary strategy focused on identifying well-validated targets to start hit identification programs is essential to reinforce the clinical pipeline. Leveraging published data, we have assessed the status quo of the current antimalarial target portfolio with a focus on the blood stage clinical disease. From an extensive list of reported Plasmodium targets, we have defined triage criteria. These criteria consider genetic, pharmacological, and chemical validation, as well as tractability/doability, and safety implications. These criteria have provided a quantitative score that has led us to prioritize those targets with the highest probability to deliver successful and differentiated new drugs.

  20. Characterization of primaquine imidazolidin-4-ones with antimalarial activity by electrospray ionization-ion trap mass spectrometry

    Science.gov (United States)

    Vale, Nuno; Moreira, Rui; Gomes, Paula

    2008-02-01

    The extensive characterization by electrospray ionization-ion trap mass spectrometry (ESI-MSn) of 20 imidazolidin-4-ones derived from the antimalarial primaquine was well obtained. These compounds are being under investigation as potential antimalarials, as they have been previously found to be active against rodent P. berghei malaria and to be highly stable under physiological conditions. Experiments by collision-induced dissociation (CID) in the nozzle-skimmer region or by tandem-MS have shown the title compounds to be remarkably stable. Mechanisms are proposed to explain the major fragmentations observed in ESI-MSn experiments. Overall, this work represents an unprecedented contribution to a deeper insight into imidazolidin-4-one antimalarials based on a classic 8-aminoquinolinic scaffold. Data herein reported and discussed may be an useful guide for future studies on therapeutically relevant molecules possessing either the 8-aminoquinoline or the imidazolidin-4-one motifs.

  1. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica

    Directory of Open Access Journals (Sweden)

    Misael Chinchilla

    2012-06-01

    Full Text Available Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biológica Alberto Manuel Brenes (REBAMB, were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P. berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae; Xanthosoma undipes (Araceae; Iriartea deltoidea (Arecaceae; Neurolaena lobata (Asteraceae; Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae; Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae; Hampea appendiculata (Malvaceae; Ruagea glabra, Guarea glabra (Meliaceae; Psidium guajava (Myrtaceae; Bocconia frutescens (Papaveraceae; Piper friedrichsthalii (Piperaceae; Clematis dioica (Ranunculaceae; Prunus annularis (Rosaceae; Siparuna thecaphora (Siparunaceae; Solanum arboreum, Witheringia solanácea (Solanaceae; Ticodendrum incognitum (Ticodendraceae; Heliocarpus appendiculatus (Tiliaceae and Myriocarpa longipes (Urticaceae. We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9μg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  2. Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity.

    Science.gov (United States)

    Vanaerschot, Manu; Lucantoni, Leonardo; Li, Tao; Combrinck, Jill M; Ruecker, Andrea; Kumar, T R Santha; Rubiano, Kelly; Ferreira, Pedro E; Siciliano, Giulia; Gulati, Sonia; Henrich, Philipp P; Ng, Caroline L; Murithi, James M; Corey, Victoria C; Duffy, Sandra; Lieberman, Ori J; Veiga, M Isabel; Sinden, Robert E; Alano, Pietro; Delves, Michael J; Lee Sim, Kim; Winzeler, Elizabeth A; Egan, Timothy J; Hoffman, Stephen L; Avery, Vicky M; Fidock, David A

    2017-10-01

    Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.

  3. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity

    Science.gov (United States)

    Vanaerschot, Manu; Lucantoni, Leonardo; Li, Tao; Combrinck, Jill M.; Ruecker, Andrea; Kumar, T.R. Santha; Rubiano, Kelly; Ferreira, Pedro E.; Siciliano, Giulia; Gulati, Sonia; Henrich, Philipp P.; Ng, Caroline L.; Murithi, James M.; Corey, Victoria C.; Duffy, Sandra; Lieberman, Ori J.; Veiga, M. Isabel; Sinden, Robert E.; Alano, Pietro; Delves, Michael J.; Sim, Kim Lee; Winzeler, Elizabeth A.; Egan, Timothy J.; Hoffman, Stephen L.; Avery, Vicky M.; Fidock, David A.

    2017-01-01

    Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress P. berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR/Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 as a determinant of parasite resistance to HHQs. Hemoglobin and heme fractionation assays suggest a mode of action that results in reduced hemozoin levels and might involve inhibition of host hemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs including lumefantrine, confirming that HHQs have a different mode of action than other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria. PMID:28808258

  4. Evaluation of the ex vivo antimalarial activity of organotin (IV) ethylphenyldithiocarbamate on erythrocytes infected with Plasmodium berghei NK 65.

    Science.gov (United States)

    Awang, Normah; Jumat, Hafizah; Ishak, Shafariatul Akmar; Kamaludin, Nurul Farahana

    2014-06-01

    Malaria is the most destructive and dangerous parasitic disease. The commonness of this disease is getting worse mainly due to the increasing resistance of Plasmodium falciparum against antimalarial drugs. Therefore, the search for new antimalarial drug is urgently needed. This study was carried out to evaluate the effects of dibutyltin (IV) ethylphenyldithiocarbamate (DBEP), diphenyltin (IV) ethylphenyldithiocarbamate (DPEP) and triphenyltin (IV) ethylphenyldithiocarbamate (TPEP) compounds as antimalarial agents. These compounds were evaluated against erythrocytes infected with Plasmodium berghei NK65 via ex vivo. Organotin (IV) ethylphenyldithiocarbamate, [R(n)Sn(C9H10NS2)(4-n)] with R = C4H9 and C6H5 for n = 2; R = C6H5 for n = 3 is chemically synthesised for its potential activities. pLDH assay was employed for determination of the concentration that inhibited 50% of the Plasmodium's activity (IC50) after 24 h treatment at concentration range of 10-0.0000001 mg mL(-1). Plasmodium berghei NK65 was cultured in vitro to determine the different morphology of trophozoite and schizont. Only DPEP and TPEP compounds have antimalarial activity towards P. berghei NK65 at IC50 0.094±0.011 and 0.892±0.088 mg mL(-1), respectively. The IC50 of DPEP and TPEP were lowest at 30% parasitemia with IC50 0.001±0.00009 and 0.0009±0.0001 mg mL(-1), respectively. In vitro culture showed that TPEP was effective towards P. berghei NK65 in trophozoite and schizont morphology with IC50 0.0001±0.00005 and 0.00009±0.00003 μg mL(-1), respectively. In conclusion, DPEP and TPEP have antimalarial effect on erythrocytes infected with P. berghei NK65 and have potential as antimalarial and schizonticidal agents.

  5. Evaluation of in vivo antimalarial activity of the ethanolic leaf extracts ...

    African Journals Online (AJOL)

    Prof. Ogunji

    Plasmodium berghei berghei in mice was evaluated. ... indicated in the consistent increase in weight and slight increase in the PCV ... Key words: Chromolaena odorata, Cymbopogon citratus, anti-malarial .... This was prepared by determining both the percentage parasitaemia and the ..... Malaria vaccine: Multiple targets.

  6. Screening of the antimalarial activity of plants of the Cucurbitaceae family

    Directory of Open Access Journals (Sweden)

    Cláudia Zuany Amorim

    1991-01-01

    Full Text Available Crude ethanolic extracts (CEEs from two species of Cucurbitaceae, Cucurbita maxima and Momordica charantia (commonly called "abóbora moranga" and melão de São Caetano", respectively were assayed for antimalarial activity by the 4-d suppressive test. The CEE of dry C. maxima seeds showed strong antimalarial activity following oral administration (259 and 500 mg/kg, reducing by 50% the levels of parasistemia in Plasmodium berghey-infected mice. Treatment of normal animals with 500 mg/Kg of the extract three days before intravenous injection of P. berghei caused a significant 30% reduction in parasitemic levels. No effect was observed when the animals were treated with the CEE only on the day of inoculation. Oral administration of the CEE of dry M. charantia leaves adminstered orally was ineffective up to 500 mg/Kg in lowering the parasitemic levels of malarious mice.

  7. QUANTITATIVE ELECTRONIC STRUCTURE - ACTIVITY RELATIONSHIP OF ANTIMALARIAL COMPOUND OF ARTEMISININ DERIVATIVES USING PRINCIPAL COMPONENT REGRESSION APPROACH

    Directory of Open Access Journals (Sweden)

    Paul Robert Martin Werfette

    2010-06-01

    Full Text Available Analysis of quantitative structure - activity relationship (QSAR for a series of antimalarial compound artemisinin derivatives has been done using principal component regression. The descriptors for QSAR study were representation of electronic structure i.e. atomic net charges of the artemisinin skeleton calculated by AM1 semi-empirical method. The antimalarial activity of the compound was expressed in log 1/IC50 which is an experimental data. The main purpose of the principal component analysis approach is to transform a large data set of atomic net charges to simplify into a data set which known as latent variables. The best QSAR equation to analyze of log 1/IC50 can be obtained from the regression method as a linear function of several latent variables i.e. x1, x2, x3, x4 and x5. The best QSAR model is expressed in the following equation,  (;;   Keywords: QSAR, antimalarial, artemisinin, principal component regression

  8. A herbicide structure-activity analysis of the antimalarial lead compound MMV007978 against Arabidopsis thaliana.

    Science.gov (United States)

    Corral, Maxime G; Leroux, Julie; Tresch, Stefan; Newton, Trevor; Stubbs, Keith A; Mylne, Joshua S

    2018-07-01

    To fight herbicide-resistant weeds, new herbicides are needed; particularly ones with new modes of action. Building on the revelation that many antimalarial drugs are herbicidal, here we focus on the Medicines for Malaria Venture antimalarial lead compound MMV007978 that has herbicidal activity against the model plant Arabidopsis thaliana. Twenty-two variations of the lead compound thiophenyl motif revealed that change was tolerated provided ring size and charge were retained. MMV007978 was active against select monocot and dicot weeds, and physiological profiling indicated that its mode of action is related to germination and cell division. Of interest is the fact that the compound has a profile that is currently not found among known herbicides. We demonstrate that the antimalarial compound MMV007978 is also herbicidal and that exploiting lead compounds that are often understudied could lead to the identification of interesting herbicidal scaffolds. Further structural investigation of MMV007978 could provide improved herbicidal chemistries with a potential new mode of action. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  9. Gracilioethers A-C, Antimalarial Metabolites from the Marine Sponge Agelas gracilis

    NARCIS (Netherlands)

    Ueoka, R.; Nakao, Y.; Kawatsu, S.; Yaegashi, J.; Matsumoto, Y.; Matsunaga, S.; Furihata, K; van Soest, R.W.M.; Fusetani, N.

    2009-01-01

    Three new antiprotozoan compounds, gracilioethers A−C (1−3), have been isolated from the marine sponge Agelas gracilis. Their structures were elucidated on the basis of spectroscopic and chemical methods. Gracilioethers A−C showed antimalarial activity against Plasmodium falciparum with IC50 values

  10. A genome wide association study of Plasmodium falciparum susceptibility to 22 antimalarial drugs in Kenya.

    Directory of Open Access Journals (Sweden)

    Jason P Wendler

    Full Text Available Drug resistance remains a chief concern for malaria control. In order to determine the genetic markers of drug resistant parasites, we tested the genome-wide associations (GWA of sequence-based genotypes from 35 Kenyan P. falciparum parasites with the activities of 22 antimalarial drugs.Parasites isolated from children with acute febrile malaria were adapted to culture, and sensitivity was determined by in vitro growth in the presence of anti-malarial drugs. Parasites were genotyped using whole genome sequencing techniques. Associations between 6250 single nucleotide polymorphisms (SNPs and resistance to individual anti-malarial agents were determined, with false discovery rate adjustment for multiple hypothesis testing. We identified expected associations in the pfcrt region with chloroquine (CQ activity, and other novel loci associated with amodiaquine, quinazoline, and quinine activities. Signals for CQ and primaquine (PQ overlap in and around pfcrt, and interestingly the phenotypes are inversely related for these two drugs. We catalog the variation in dhfr, dhps, mdr1, nhe, and crt, including novel SNPs, and confirm the presence of a dhfr-164L quadruple mutant in coastal Kenya. Mutations implicated in sulfadoxine-pyrimethamine resistance are at or near fixation in this sample set.Sequence-based GWA studies are powerful tools for phenotypic association tests. Using this approach on falciparum parasites from coastal Kenya we identified known and previously unreported genes associated with phenotypic resistance to anti-malarial drugs, and observe in high-resolution haplotype visualizations a possible signature of an inverse selective relationship between CQ and PQ.

  11. Prevalence of quinolone resistance determinant qnrA6 among broad- and extended-spectrum beta-lactam-resistant Proteus mirabilis and Morganella morganii clinical isolates with sul1-type class 1 integron association in a Tunisian Hospital.

    Science.gov (United States)

    Mahrouki, Sihem; Perilli, Mariagrazia; Bourouis, Amel; Chihi, Hela; Ferjani, Mustapha; Ben Moussa, Mohamed; Amicosante, Gianfranco; Belhadj, Omrane

    2013-08-01

    The aim of this study was to investigate the prevalence and the emergence of plasmid-mediated quinolone resistance among broad-spectrum beta-lactam-resistant Proteus mirabilis and Morganella morganii clinical isolates recovered in the Military Hospital in Tunisia. Of 200 strains examined, 50 exhibited resistance to quinolones. Quinolone resistance determinants (qnr and aac(6')-Ib-cr) were characterized by multiplex PCR and sequencing. Chromosomal quinolone resistance mutations in the quinolone resistance-determining region (QRDR) and class 1 integron characterization were analysed by PCR and sequencing. The clonal relationship between the isolates was studied by pulsed-field gel electrophoresis (PFGE). Fourteen isolates harboured qnrA6 and among them 8 (57%) were extended-spectrum beta-lactamase (ESBL) producers, whilst 12 (85%) isolates harboured blaDHA-1. Mutations in the QRDR were detected in gyrA (Ser83Ile, Glu87Lys), gyrB (Ser464Phe), and parC (Ser80Ile). qnrA6 and blaDHA-1 genes were found embedded in complex sul1-type class 1 integrons. A gene cassette carrying aac(6')-Ib-cr was found located in the class 1 integron upstream of the qacEΔ1 gene. According to the PFGE analysis, the isolates were clonally unrelated. This is the first description in North Africa of class 1 integrons carrying blaDHA-1, qnrA6 gene, and aac(6')-Ib-cr determinants in clinical strains of Proteus mirabilis and Morganella morganii.

  12. Antimalarial activity and safety assessment of Flueggea virosa leaves and its major constituent with special emphasis on their mode of action.

    Science.gov (United States)

    Singh, Shiv Vardan; Manhas, Ashan; Kumar, Yogesh; Mishra, Sonali; Shanker, Karuna; Khan, Feroz; Srivastava, Kumkum; Pal, Anirban

    2017-05-01

    A clinical emergency stands due to the appearance of drug resistant Plasmodium strains necessitate novel and effective antimalarial chemotypes, where plants seem as the prime option, especially after the discovery of quinine and artemisinin. The present study was aimed towards bioprospecting leaves of Flueggea virosa for its antimalarial efficacy and active principles. Crude hydro-ethanolic extract along with solvent derived fractions were tested in vitro against Plasmodium falciparum CQ sensitive (3D7) and resistant (K1) strains, where all the fractions exhibited potential activity (IC 50 values active constituent (IC 50, 8.07±2.05μM) of ethyl acetate fraction with the inhibition of heme polymerization pathway of malaria parasite being one of the possible chemotherapeutic target. Furthermore, bergenin exhibited a moderate antimalarial activity against P. berghei and also ameliorated parasite induced systemic inflammation in host (mice). Safe toxicity profile elucidated through in vitro cytotoxicity and in silico ADME/T predications evidently suggest that bergenin possess drug like properties. Hence, the present study validates the traditional usage of F. indica as an antimalarial remedy and also insists for further chemical modifications of bergenin to obtain more effective antimalarial chemotypes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Antimicrobial peptides: a new class of antimalarial drugs?

    Directory of Open Access Journals (Sweden)

    Nuno eVale

    2014-12-01

    Full Text Available A range of antimicrobial peptides (AMP exhibit activity on malaria parasites, Plasmodium spp, in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs.

  14. A single LC-tandem mass spectrometry method for the simultaneous determination of 14 antimalarial drugs and their metabolites in human plasma.

    Science.gov (United States)

    Hodel, E M; Zanolari, B; Mercier, T; Biollaz, J; Keiser, J; Olliaro, P; Genton, B; Decosterd, L A

    2009-04-01

    Among the various determinants of treatment response, the achievement of sufficient blood levels is essential for curing malaria. For helping us at improving our current understanding of antimalarial drugs pharmacokinetics, efficacy and toxicity, we have developed a liquid chromatography-tandem mass spectrometry method (LC-MS/MS) requiring 200mul of plasma for the simultaneous determination of 14 antimalarial drugs and their metabolites which are the components of the current first-line combination treatments for malaria (artemether, artesunate, dihydroartemisinin, amodiaquine, N-desethyl-amodiaquine, lumefantrine, desbutyl-lumefantrine, piperaquine, pyronaridine, mefloquine, chloroquine, quinine, pyrimethamine and sulfadoxine). Plasma is purified by a combination of protein precipitation, evaporation and reconstitution in methanol/ammonium formate 20mM (pH 4.0) 1:1. Reverse-phase chromatographic separation of antimalarial drugs is obtained using a gradient elution of 20mM ammonium formate and acetonitrile both containing 0.5% formic acid, followed by rinsing and re-equilibration to the initial solvent composition up to 21min. Analyte quantification, using matrix-matched calibration samples, is performed by electro-spray ionization-triple quadrupole mass spectrometry by selected reaction monitoring detection in the positive mode. The method was validated according to FDA recommendations, including assessment of extraction yield, matrix effect variability, overall process efficiency, standard addition experiments as well as antimalarials short- and long-term stability in plasma. The reactivity of endoperoxide-containing antimalarials in the presence of hemolysis was tested both in vitro and on malaria patients samples. With this method, signal intensity of artemisinin decreased by about 20% in the presence of 0.2% hemolysed red-blood cells in plasma, whereas its derivatives were essentially not affected. The method is precise (inter-day CV%: 3.1-12.6%) and sensitive

  15. Mutations in the P-Type Cation-Transporter ATPase 4, PfATP4, Mediate Resistance to Both Aminopyrazole and Spiroindolone Antimalarials

    Science.gov (United States)

    2015-01-01

    Aminopyrazoles are a new class of antimalarial compounds identified in a cellular antiparasitic screen with potent activity against Plasmodium falciparum asexual and sexual stage parasites. To investigate their unknown mechanism of action and thus identify their target, we cultured parasites in the presence of a representative member of the aminopyrazole series, GNF-Pf4492, to select for resistance. Whole genome sequencing of three resistant lines showed that each had acquired independent mutations in a P-type cation-transporter ATPase, PfATP4 (PF3D7_1211900), a protein implicated as the novel Plasmodium spp. target of another, structurally unrelated, class of antimalarials called the spiroindolones and characterized as an important sodium transporter of the cell. Similarly to the spiroindolones, GNF-Pf4492 blocks parasite transmission to mosquitoes and disrupts intracellular sodium homeostasis. Our data demonstrate that PfATP4 plays a critical role in cellular processes, can be inhibited by two distinct antimalarial pharmacophores, and supports the recent observations that PfATP4 is a critical antimalarial target. PMID:25322084

  16. Effects of the anti-malarial compound cryptolepine and its analogues in human lymphocytes and sperm in the Comet assay.

    Science.gov (United States)

    Gopalan, Rajendran C; Emerce, Esra; Wright, Colin W; Karahalil, Bensu; Karakaya, Ali E; Anderson, Diana

    2011-12-15

    Malaria is a mosquito-borne infectious disease caused by the genus Plasmodium. It causes one million deaths per year in African children under the age of 5 years. There is an increasing development of resistance of malarial parasites to chloroquine and other currently used anti-malarial drugs. Some plant products such as the indoloquinoline alkaloid cryptolepine have been shown to have potent activity against P. falciparum in vitro. On account of its toxicity, cryptolepine is not suitable for use as an antimalarial drug but a number of analogues of cryptolepine have been synthesised in an attempt to find compounds that have reduced cytotoxicity and these have been investigated in the present study in human sperm and lymphocytes using the Comet assay. The results suggest that cryptolepine and the analogues cause DNA damage in lymphocytes, but appear to have no effect on human sperm at the assessed doses. In the context of antimalarial drug development, the data suggest that all cryptolepine compounds and in particular 2,7-dibromocryptolepine cause DNA damage and therefore may not be suitable for pre clinical development as antimalarial agents. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Identification of β-Amino alcohol grafted 1,4,5 trisubstituted 1,2,3-triazoles as potent antimalarial agents.

    Science.gov (United States)

    Devender, Nalmala; Gunjan, Sarika; Chhabra, Stuti; Singh, Kartikey; Pasam, Venkata Reddy; Shukla, Sanjeev K; Sharma, Abhisheak; Jaiswal, Swati; Singh, Sunil Kumar; Kumar, Yogesh; Lal, Jawahar; Trivedi, Arun Kumar; Tripathi, Renu; Tripathi, Rama Pati

    2016-02-15

    In a quest to discover new drugs, we have synthesized a series of novel β-amino alcohol grafted 1,2,3-triazoles and screened them for their in vitro antiplasmodial and in vivo antimalarial activity. Among them, compounds 16 and 25 showed potent activity against chloroquine-sensitive (Pf3D7) strain with IC50 of 0.87 and 0.3 μM respectively, while compounds 7 and 13 exhibited better activity in vitro than the reference drug against chloroquine-resistance strain (PfK1) with IC50 of 0.5 μM each. Compound 25 showed 86.8% in vivo antimalarial efficacy with favorable pharmacokinetic parameters. Mechanistic studies divulged that potent compounds significantly boosted p53 protein levels to exhibit the antimalarial activity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Trends in pregnancy outcomes in Malawian adolescents receiving antimalarial and hematinic supplements

    NARCIS (Netherlands)

    Msyamboza, Kelias; Savage, Emma; Kalanda, Gertrude; Kazembe, Peter; Gies, Sabine; d'Alessandro, Umberto; Brabin, Bernard J.

    2010-01-01

    Objective. To describe pregnancy outcomes of adolescent and adult primigravidae receiving antimalarials and hematinic supplementation and compare findings with a survey in this area a decade earlier. Design. Cross-sectional surveys in intervention and control sites. Setting. Community, antenatal and

  19. In vitro antimalarial drug susceptibility in Thai border areas from 1998–2003

    Directory of Open Access Journals (Sweden)

    Mungthin Mathirut

    2005-08-01

    Full Text Available Abstract Background The Thai-Myanmar and Thai-Cambodia borders have been historically linked with the emergence and spread of Plasmodium falciparum parasites resistant to antimalarial drugs. Indeed, the areas are often described as harbouring multi-drug resistant parasites. These areas of Thailand have experienced significant changes in antimalarial drug exposure patterns over the past decade. This study describes the in vitro antimalarial susceptibility patterns of 95 laboratory-adapted P. falciparum isolates, collected between 1998 and 2003,. Methods Ninety five P. falciparum isolates were collected from five sites in Thailand between 1998 and 2003. After laboratory adaptation to in vitro culture, the susceptibility of these parasites to a range of established antimalarial drugs (chloroquine [CQ], mefloquine [MQ], quinine [QN] and dihydroartemisinin [DHA] was determined by the isotopic microtest. Results Mefloquine (MQ sensitivity remained poorest in areas previously described as MQ-resistant areas. Sensitivity to MQ of parasites from this area was significantly lower than those from areas reported to harbour moderate (p = 0.002 of low level MQ resistance (p = 000001. Importantly for all drugs tested, there was a considerable range in absolute parasite sensitivities. There was a weak, but statistically positive correlation between parasite sensitivity to CQ and sensitivity to both QN and MQ and a positive correlation between MQ and QN. In terms of geographical distribution, parasites from the Thai-Cambodia were tended to be less sensitive to all drugs tested compared to the Thai-Myanmar border. Parasite sensitivity to all drugs was stable over the 6-year collection period with the exception of QN. Conclusion This study highlights the high degree of variability in parasite drug sensitivity in Thailand. There were geographical differences in the pattern of resistance which might reflect differences in drug usage in each area. In contrast to many

  20. Development in Assay Methods for in Vitro Antimalarial Drug Efficacy Testing: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Shweta Sinha

    2017-10-01

    Full Text Available The emergence and spread of drug resistance are the major challenges in malaria eradication mission. Besides various strategies laid down by World Health Organization, such as vector management, source reduction, early case detection, prompt treatment, and development of new diagnostics and vaccines, nevertheless the need for new and efficacious drugs against malaria has become a critical priority on the global malaria research agenda. At several screening stages, millions of compounds are screened (1,000–2,000,000 compounds per screening campaign, before pre-clinical trials to select optimum lead. Carrying out in vitro screening of antimalarials is very difficult as different assay methods are subject to numerous sources of variability across different laboratories around the globe. Despite this, in vitro screening is an essential part of antimalarial drug development as it enables to resource various confounding factors such as host immune response and drug–drug interaction. Therefore, in this article, we try to illustrate the basic necessity behind in vitro study and how new methods are developed and subsequently adopted for high-throughput antimalarial drug screening and its application in achieving the next level of in vitro screening based on the current approaches (such as stem cells.

  1. Comparative antibacterial activity of topical antiseptic eardrops against methicillin-resistant Staphylococcus aureus and quinolone-resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Youn, Cha Kyung; Jang, Sook-Jin; Jo, Eu-Ri; Choi, Ji Ae; Sim, Ju-Hwan; Cho, Sung Il

    2016-06-01

    Aural irrigation using antiseptic solutions can be an effective medical treatment of chronic suppurative otitis media (CSOM) owing to the increasing prevalence of antibiotic-resistant CSOM infections. In the present study, we compared the antimicrobial activities of 100% Burow's solution, 50% Burow's solution, 2% acetic acid, vinegar with water (1:1), and 4% boric acid solution against methicillin-resistant Staphylococcus aureus (MRSA), methicillin-susceptible S. aureus (MSSA), quinolone-resistant Pseudomonas aeruginosa (QRPA), and quinolone-susceptible P. aeruginosa (QSPA) in vitro. We examined the antimicrobial activities of five antiseptic solutions against MRSA, MSSA, QRPA, and QSPA. The antimicrobial activities of the solutions were calculated as a percentage of the surviving microorganisms by dividing the viable count in each antiseptic solution with that in control. The time (D10 value) required for each of the five solutions to inactivate 90% of the microorganism population was also investigated. Burow's solution exhibited the highest antimicrobial activity and the lowest D10 value against MRSA, MSSA, QRPA, and QSPA, followed by 2% acetic acid, vinegar with water (1:1), and 4% boric acid solution. Our results indicate that Burow's solution has the most potent activity against bacteria including antibiotic-resistant strains. Twofold dilution of the solution is recommended to avoid ototoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Antimalarial activity of 4-(5-trifluoromethyl-1H-pyrazol-1-yl)-chloroquine analogues.

    Science.gov (United States)

    Cunico, Wilson; Cechinel, Cleber A; Bonacorso, Helio G; Martins, Marcos A P; Zanatta, Nilo; de Souza, Marcus V N; Freitas, Isabela O; Soares, Rodrigo P P; Krettli, Antoniana U

    2006-02-01

    The antimalarial activity of chloroquine-pyrazole analogues, synthesized from the reaction of 1,1,1-trifluoro-4-methoxy-3-alken-2-ones with 4-hydrazino-7-chloroquinoline, has been evaluated in vitro against a chloroquine resistant Plasmodium falciparum clone. Parasite growth in the presence of the test drugs was measured by incorporation of [(3)H]hypoxanthine in comparison to controls with no drugs. All but one of the eight (4,5-dihydropyrazol-1-yl) chloroquine 2 derivatives tested showed a significant activity in vitro, thus, are a promising new class of antimalarials. The three most active ones were also tested in vivo against Plasmodium berghei in mice. However, the (pyrazol-1-yl) chloroquine 3 derivatives were mostly inactive, suggesting that the aromatic functionality of the pyrazole ring was critical.

  3. Formation of the diuretic chlorazanil from the antimalarial drug proguanil--implications for sports drug testing.

    Science.gov (United States)

    Thevis, Mario; Geyer, Hans; Thomas, Andreas; Tretzel, Laura; Bailloux, Isabelle; Buisson, Corinne; Lasne, Francoise; Schaefer, Maximilian S; Kienbaum, Peter; Mueller-Stoever, Irmela; Schänzer, Wilhelm

    2015-11-10

    Chlorazanil (Ordipan, N-(4-chlorophenyl)-1,3,5-triazine-2,4-diamine) is a diuretic agent and as such prohibited in sport according to the regulations of the World Anti-Doping Agency (WADA). Despite its introduction into clinical practice in the late 1950s, the worldwide very first two adverse analytical findings were registered only in 2014, being motive for an in-depth investigation of these cases. Both individuals denied the intake of the drug; however, the athletes did declare the use of the antimalarial prophylactic agent proguanil due to temporary residences in African countries. A structural similarity between chlorazanil and proguanil is given but no direct metabolic relation has been reported in the scientific literature. Moreover, chlorazanil has not been confirmed as a drug impurity of proguanil. Proguanil however is metabolized in humans to N-(4-chlorophenyl)-biguanide, which represents a chemical precursor in the synthesis of chlorazanil. In the presence of formic acid, formaldehyde, or formic acid esters, N-(4-chlorophenyl)-biguanide converts to chlorazanil. In order to probe for potential sources of the chlorazanil detected in the doping control samples, drug formulations containing proguanil and urine samples of individuals using proguanil as antimalarial drug were subjected to liquid chromatography-high resolution/high accuracy mass spectrometry. In addition, in vitro simulations with 4-chlorophenyl-biguanide and respective reactants were conducted in urine and resulting specimens analyzed for the presence of chlorazanil. While no chlorazanil was found in drug formulations, the urine samples of 2 out of 4 proguanil users returned findings for chlorazanil at low ng/mL levels, similar to the adverse analytical findings in the doping control samples. Further, in the presence of formaldehyde, formic acid and related esters, 4-chlorophenyl-biguanide was found to produce chlorazanil in human urine, suggesting that the detection of the obsolete diuretic

  4. Analysis of plasmid-mediated quinolone resistance genes in clinical isolates of the tribe Proteeae from Argentina: First report of qnrD in the Americas.

    Science.gov (United States)

    Albornoz, Ezequiel; Lucero, Celeste; Romero, Genara; Rapoport, Melina; Guerriero, Leonor; Andres, Patricia; Galas, Marcelo; Corso, Alejandra; Petroni, Alejandro

    2014-12-01

    To analyse the occurrence and prevalence of plasmid-mediated quinolone resistance (PMQR) genes in the tribe Proteeae, 81 isolates (65 Proteus spp., 12 Morganella morganii and 4 Providencia stuartii) consecutively collected in 66 hospitals belonging to the WHONET-Argentina Resistance Surveillance Network were studied. Of the 81 isolates, 50 (62%) were susceptible to quinolones [43/65 (66%) Proteus spp. and 7/12 (58%) M. morganii). The remaining 31 isolates (22 Proteus spp., 5 M. morganii and all P. stuartii) showed high-level resistance to nalidixic acid (NAL) and decreased susceptibility or resistance to ciprofloxacin. All NAL-resistant isolates harboured mutations associated with quinolone resistance (MAQRs) in both gyrA (S83I/R) and parC (S80I/R), and some also had MAQRs in gyrB (S464Y/F). The unique PMQR gene detected was qnrD, which was found in 2/81 isolates (Proteus mirabilis Q1084 and Proteus vulgaris Q5169), giving a prevalence of 2.5% in Proteeae. These two isolates were from different geographical regions and both harboured MAQRs in gyrA and parC. The qnrD genes were located on the related plasmids pEAD1-1 (2683bp) and pEAD1-2 (2669bp). Plasmid pEAD1-1 was 100% identical to pCGH15 and differed in only three nucleotides from pDIJ09-518a, which were previously found in clinical isolates of P. mirabilis (China) and Providencia rettgeri (France), respectively, whilst pEAD1-2 was not previously described. The extended-spectrum β-lactamase CTX-M-2 was found in 27% (22/81) of the isolates and was significantly associated with quinolone resistance but not with qnrD (only P. mirabilis Q1084 expressed CTX-M-2). This is the first report of qnrD in the Americas. Copyright © 2014 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  5. Effect of cooking on residues of the quinolones oxolinic acid and flumequine in fish.

    Science.gov (United States)

    Steffenak, I; Hormazabal, V; Yndestad, M

    1994-01-01

    The effect of cooking on residues of the quinolones oxolinic acid and flumequine in fish was investigated. Salmon containing residues of oxolinic acid and flumequine was boiled or baked in the oven. Samples of raw and cooked muscle, skin, and bone, as well as of the water in which the fish was boiled and juice from the baked fish, were analysed. Oxolinic acid and flumequine did not degrade at the temperatures reached when cooking the fish. However, fish muscle free from drug residues may be contaminated during boiling and baking due to leakage of the drug from reservoirs in the fish.

  6. New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity.

    Science.gov (United States)

    Guillon, Jean; Moreau, Stéphane; Mouray, Elisabeth; Sinou, Véronique; Forfar, Isabelle; Fabre, Solene Belisle; Desplat, Vanessa; Millet, Pascal; Parzy, Daniel; Jarry, Christian; Grellier, Philippe

    2008-10-15

    Following our search for antimalarial compounds, novel series of ferrocenic pyrrolo[1,2-a]quinoxaline derivatives 1-2 were synthesized from various substituted nitroanilines and tested for in vitro activity upon the erythrocytic development of Plasmodiumfalciparum strains with different chloroquine-resistance status. The pyrrolo[1,2-a]quinoxalines 1 were prepared in 6-8 steps through a regioselective palladium-catalyzed monoamination by coupling 4-chloropyrrolo[1,2-a]quinoxalines with 1,3-bis(aminopropyl)piperazine or -methylamine using Xantphos as the ligand. The ferrocenic bispyrrolo[1,2-a]quinoxalines 2 were prepared by reductive amination of previously described bispyrrolo[1,2-a]quinoxalines 9 with ferrocene-carboxaldehyde, by treatment with NaHB(OAc)(3). The best results were observed with ferrocenic pyrrolo[1,2-a]quinoxalines linked by a bis(3-aminopropyl)piperazine. Moreover, it was observed that a methoxy group on the pyrrolo[1,2-a]quinoxaline nucleus and no substitution on the terminal N-ferrocenylmethylamine function enhanced the pharmacological activity. Selected compounds 1b, 1f-h, 1l and 2a were tested for their ability to inhibit beta-haematin formation, the synthetic equivalent of hemozoin, by using the HPIA (heme polymerization inhibitory activity) assay. Of the tested compounds, only 2a showed a beta-haematin formation inhibition, but no inhibition of haem polymerization was observed with the other selected ferrocenic monopyrrolo[1,2-a]quinoxaline derivatives 1b, 1f-h and 1l, as the IC(50) values were superior to 10 equivalents.

  7. Antimalarial efficacy of Pongamia pinnata (L) Pierre against Plasmodium falciparum (3D7 strain) and Plasmodium berghei (ANKA).

    Science.gov (United States)

    Satish, P V V; Sunita, K

    2017-09-11

    The objective of the current study was to assess the in vitro antiplasmodial activities of leaf, bark, flower, and the root of Pongamia pinnata against chloroquine-sensitive Plasmodium falciparum (3D7 strain), cytotoxicity against Brine shrimp larvae and THP-1 cell line. For in vivo study, the plant extract which has shown potent in vitro antimalarial activity was tested against Plasmodium berghei (ANKA strain). The plant Pongamia pinnata was collected from the herbal garden of Acharya Nagarjuna University of Guntur district, Andhra Pradesh, India. Sequentially crude extracts of methanol (polar), chloroform (non-polar), hexane (non-polar), ethyl acetate (non-polar) and aqueous (polar) of dried leaves, bark, flowers and roots of Pongamia pinnata were prepared using Soxhlet apparatus. The extracts were screened for in vitro antimalarial activity against P. falciparum 3D7 strain. The cytotoxicity studies of crude extracts were conducted against Brine shrimp larvae and THP-1 cell line. Phytochemical analysis of the plant extracts was carried out by following the standard methods. The chemical injury to erythrocytes due to the plant extracts was checked. The in vivo study was conducted on P. berghei (ANKA) infected BALB/c albino mice by following 4-Day Suppressive, Repository, and Curative tests. Out of all the tested extracts, the methanol extract of the bark of Pongamia pinnata had shown an IC 50 value of 11.67 μg/mL with potent in vitro antimalarial activity and cytotoxicity evaluation revealed that this extract was not toxic against Brine shrimp and THP-1 cells. The injury to erythrocytes analysis had not shown any morphological alterations and damage to the erythrocytes after 48 h of incubation. Because methanolic bark extract of Pongamia pinnata has shown good antimalarial activity in vitro, it was also tested in vivo. So the extract had exhibited an excellent activity against P. berghei malaria parasite while decrement of parasite counts was moderately low and

  8. Cyquant cell proliferation assay as a fluorescence-based method for in vitro screening of antimalarial activity.

    Science.gov (United States)

    Sriwilaijaroen, Nongluk; Kelly, Jane Xu; Riscoe, Michael; Wilairat, Prapon

    2004-12-01

    The appearance of drug resistant parasites and the absence of an effective vaccine have resulted in the need for new effective antimalarial drugs. Consequently, a convenient method for in vitro screening of large numbers of antimalarial drug candidates has become apparent. The CyQUANT cell proliferation assay is a highly sensitive fluorescence-based method for quantitation of cell number by measuring the strong fluorescence produced when green GR dye binds to nucleic acids. We have applied the CyQUANT assay method to evaluate the growth of Plasmodium falciparum D6 strain in culture. The GR-nucleic acid fluorescence linearly correlated with percent parasitemia at both 0.75 or 1 percent hematocrit with the same correlation coefficient of r2 = 0.99. The sensitivity of P. falciparum D6 strain to chloroquine and to 3,6-bis-omega-diethylaminoamyloxyxanthone, a novel antimalarial, determined by the CyQUANT assay were comparable to those obtained by the traditional [3H]-ethanolamine assay: IC50 value of chloroquine was 54 nM and 51 nM by the CyQUANT and [3H]-ethanolamine assay, respectively; IC50 value for 3,6-bis-omega-diethylaminoamyloxyxanthone was 254 nM and 223 nM by the CyQUANT and [3H]-ethanolamine assay, respectively. This procedure requires no radioisotope, uses simple equipment, and is an easy and convenient procedure, with no washing and harvesting steps. Moreover, all procedures can be set up continuously and thus, the CyQUANT assay is suitable in automatic high through-put drug screening of antimalarial drugs.

  9. Stevens-Johnson syndrome associated with Malarone antimalarial prophylaxis.

    Science.gov (United States)

    Emberger, Michael; Lechner, Arno Michael; Zelger, Bernhard

    2003-07-01

    To the best of our knowledge, Stevens-Johnson syndrome (SJS) has not been reported previously as an adverse reaction to Malarone, which is a combination of atovaquone and proguanil hydrochloride used for antimalarial prophylaxis and therapy. We describe a 65-year-old patient who had SJS with typical clinical and histopathological findings associated with the use of Malarone prophylaxis for malaria. This report should alert physicians to this severe cutaneous reaction, and Malarone should be added to the list of drugs that can potentially cause SJS.

  10. New anti-HIV-1, antimalarial, and antifungal compounds from Terminalia bellerica

    DEFF Research Database (Denmark)

    Valsaraj, R; Pushpangadan, P; Smitt, U W

    1997-01-01

    A bioactivity-guided fractionation of an extract of Terminalia bellerica fruit rind led to the isolation of two new lignans named termilignan (1) and thannilignan (2), together with 7-hydroxy-3',4'-(methylenedioxy)flavan (3) and anolignan B (4). All four compounds possessed demonstrable anti-HIV-......, antimalarial, and antifungal activity in vitro....

  11. Role of Quinone Reductase 2 in the Antimalarial Properties of Indolone-Type Derivatives

    Directory of Open Access Journals (Sweden)

    Laure-Estelle Cassagnes

    2017-01-01

    Full Text Available Indolone-N-oxides have antiplasmodial properties against Plasmodium falciparum at the erythrocytic stage, with IC50 values in the nanomolar range. The mechanism of action of indolone derivatives involves the production of free radicals, which follows their bioreduction by an unknown mechanism. In this study, we hypothesized that human quinone reductase 2 (hQR2, known to act as a flavin redox switch upon binding to the broadly used antimalarial chloroquine, could be involved in the activity of the redox-active indolone derivatives. Therefore, we investigated the role of hQR2 in the reduction of indolone derivatives. We analyzed the interaction between hQR2 and several indolone-type derivatives by examining enzymatic kinetics, the substrate/protein complex structure with X-ray diffraction analysis, and the production of free radicals with electron paramagnetic resonance. The reduction of each compound in cells overexpressing hQR2 was compared to its reduction in naïve cells. This process could be inhibited by the specific hQR2 inhibitor, S29434. These results confirmed that the anti-malarial activity of indolone-type derivatives was linked to their ability to serve as hQR2 substrates and not as hQR2 inhibitors as reported for chloroquine, leading to the possibility that substrate of hQR2 could be considered as a new avenue for the design of new antimalarial compounds.

  12. Reduction of anti-malarial consumption after rapid diagnostic tests implementation in Dar es Salaam: a before-after and cluster randomized controlled study

    Directory of Open Access Journals (Sweden)

    Swai Ndeniria

    2011-04-01

    Full Text Available Abstract Background Presumptive treatment of all febrile patients with anti-malarials leads to massive over-treatment. The aim was to assess the effect of implementing malaria rapid diagnostic tests (mRDTs on prescription of anti-malarials in urban Tanzania. Methods The design was a prospective collection of routine statistics from ledger books and cross-sectional surveys before and after intervention in randomly selected health facilities (HF in Dar es Salaam, Tanzania. The participants were all clinicians and their patients in the above health facilities. The intervention consisted of training and introduction of mRDTs in all three hospitals and in six HF. Three HF without mRDTs were selected as matched controls. The use of routine mRDT and treatment upon result was advised for all patients complaining of fever, including children under five years of age. The main outcome measures were: (1 anti-malarial consumption recorded from routine statistics in ledger books of all HF before and after intervention; (2 anti-malarial prescription recorded during observed consultations in cross-sectional surveys conducted in all HF before and 18 months after mRDT implementation. Results Based on routine statistics, the amount of artemether-lumefantrine blisters used post-intervention was reduced by 68% (95%CI 57-80 in intervention and 32% (9-54 in control HF. For quinine vials, the reduction was 63% (54-72 in intervention and an increase of 2.49 times (1.62-3.35 in control HF. Before-and-after cross-sectional surveys showed a similar decrease from 75% to 20% in the proportion of patients receiving anti-malarial treatment (Risk ratio 0.23, 95%CI 0.20-0.26. The cluster randomized analysis showed a considerable difference of anti-malarial prescription between intervention HF (22% and control HF (60% (Risk ratio 0.30, 95%CI 0.14-0.70. Adherence to test result was excellent since only 7% of negative patients received an anti-malarial. However, antibiotic

  13. Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from Brazil.

    Science.gov (United States)

    Ferreira, Mariana C; Cantrell, Charles L; Wedge, David E; Gonçalves, Vívian N; Jacob, Melissa R; Khan, Shabana; Rosa, Carlos A; Rosa, Luiz H

    2017-10-01

    Endophytic fungi, present mainly in the Ascomycota and Basidiomycota phyla, are associated with different plants and represent important producers of bioactive natural products. Brazil has a rich biodiversity of plant species, including those reported as being endemic. Among the endemic Brazilian plant species, Vellozia gigantea (Velloziaceae) is threatened by extinction and is a promising target to recover endophytic fungi. The present study focused on bioprospecting of bioactive compounds of the endophytic fungi associated with V. gigantea, an endemic, ancient, and endangered plant species that occurs only in the rupestrian grasslands of Brazil. The capability of 285 fungal isolates to produce antimicrobial and antimalarial activities was examined. Fungi were grown at solid-state fermentation to recover their crude extracts in dichloromethane. Bioactive extracts were analysed by chromatographic fractionation and NMR and displayed compounds with antimicrobial, antimycobacterial, and antimalarial activities. Five fungi produced antimicrobial and antimalarial compounds. Extracts of Diaporthe miriciae showed antifungal, antibacterial, and antimalarial activities; Trichoderma effusum displayed selective antibacterial activity against methicillin-resistant Staphylococcus aureus and Mycobacterium intracellulare; and three Penicillium species showed antibacterial activity. D. miriciae extract contained highly functionalised secondary metabolites, yielding the compound epoxycytochalasin H with high antimalarial activity against the chloroquine-resistant strain of Plasmodium falciparum, with an IC50 approximately 3.5-fold lower than that with chloroquine. Our results indicate that V. gigantea may represent a microhabitat repository hotspot of potential fungi producers of bioactive compounds and suggest that endophytic fungal communities might be an important biological component contributing to the fitness of the plants living in the rupestrian grassland.

  14. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin

    Directory of Open Access Journals (Sweden)

    Swain Bijay K

    2009-02-01

    Full Text Available Abstract Background Herbal extracts of Andrographis paniculata (AP and Hedyotis corymbosa (HC are known as hepato-protective and fever-reducing drugs since ancient time and they have been used regularly by the people in the south Asian sub-continent. Methanolic extracts of these two plants were tested in vitro on choloroquine sensitive (MRC-pf-20 and resistant (MRC-pf-303 strains of Plasmodium falciparum for their anti-malarial activity. Methods Growth inhibition was determined using different concentrations of these plant extracts on synchronized P. falciparum cultures at the ring stage. The interactions between these two plant extracts and individually with curcumin were studied in vitro. The performance of these two herbal extracts in isolation and combination were further evaluated in vivo on Balb/c mice infected with Plasmodium berghei ANKA and their efficacy was compared with that of curcumin. The in vivo toxicity of the plant derived compounds as well as their parasite stage-specificity was studied. Results The 50% inhibitory concentration (IC50 of AP (7.2 μg/ml was found better than HC (10.8 μg/ml. Combination of these two herbal drugs showed substantial enhancement in their anti-malarial activity. Combinatorial effect of each of these with curcumin also revealed anti-malarial effect. Additive interaction between the plant extracts (AP + HC and their individual synergism with curcumin (AP+CUR, HC+CUR were evident from this study. Increased in vivo potency was also observed with the combination of plant extracts over the individual extracts and curcumin. Both the plant extracts were found to inhibit the ring stage of the parasite and did not show any in vivo toxicity, whether used in isolation or in combination. Conclusion Both these two plant extracts in combination with curcumin could be an effective, alternative source of herbal anti-malarial drugs.

  15. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin

    Science.gov (United States)

    Mishra, Kirti; Dash, Aditya P; Swain, Bijay K; Dey, Nrisingha

    2009-01-01

    Background Herbal extracts of Andrographis paniculata (AP) and Hedyotis corymbosa (HC) are known as hepato-protective and fever-reducing drugs since ancient time and they have been used regularly by the people in the south Asian sub-continent. Methanolic extracts of these two plants were tested in vitro on choloroquine sensitive (MRC-pf-20) and resistant (MRC-pf-303) strains of Plasmodium falciparum for their anti-malarial activity. Methods Growth inhibition was determined using different concentrations of these plant extracts on synchronized P. falciparum cultures at the ring stage. The interactions between these two plant extracts and individually with curcumin were studied in vitro. The performance of these two herbal extracts in isolation and combination were further evaluated in vivo on Balb/c mice infected with Plasmodium berghei ANKA and their efficacy was compared with that of curcumin. The in vivo toxicity of the plant derived compounds as well as their parasite stage-specificity was studied. Results The 50% inhibitory concentration (IC50) of AP (7.2 μg/ml) was found better than HC (10.8 μg/ml). Combination of these two herbal drugs showed substantial enhancement in their anti-malarial activity. Combinatorial effect of each of these with curcumin also revealed anti-malarial effect. Additive interaction between the plant extracts (AP + HC) and their individual synergism with curcumin (AP+CUR, HC+CUR) were evident from this study. Increased in vivo potency was also observed with the combination of plant extracts over the individual extracts and curcumin. Both the plant extracts were found to inhibit the ring stage of the parasite and did not show any in vivo toxicity, whether used in isolation or in combination. Conclusion Both these two plant extracts in combination with curcumin could be an effective, alternative source of herbal anti-malarial drugs. PMID:19216765

  16. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase

    NARCIS (Netherlands)

    Paquet, T.; Manach, C.; Cabrera, D.G.; Younis, Y.; Henrich, P.P.; Abraham, T.S.; Lee, M.C.; Basak, R.; Ghidelli-Disse, S.; Lafuente-Monasterio, M.J.; Bantscheff, M.; Ruecker, A.; Blagborough, A.M.; Zakutansky, S.E.; Zeeman, A.M.; White, K.L.; Shackleford, D.M.; Mannila, J.; Morizzi, J.; Scheurer, C.; Angulo-Barturen, I.; Martinez, M.S.; Ferrer, S.; Sanz, L.M.; Gamo, F.J.; Reader, J.; Botha, M.; Dechering, K.J.; Sauerwein, R.W.; Tungtaeng, A.; Vanachayangkul, P.; Lim, C.S.; Burrows, J.; Witty, M.J.; Marsh, K.C.; Bodenreider, C.; Rochford, R.; Solapure, S.M.; Jimenez-Diaz, M.B.; Wittlin, S.; Charman, S.A.; Donini, C.; Campo, B.; Birkholtz, L.M.; Hanson, K.K.; Drewes, G.; Kocken, C.H.; Delves, M.J.; Leroy, D.; Fidock, D.A.; Waterson, D.; Street, L.J.; Chibale, K

    2017-01-01

    As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with

  17. Antimalarial peroxides: the first intramolecular 1,2,4,5-tetraoxane

    Directory of Open Access Journals (Sweden)

    BOGDAN A. SOLAJA

    2002-07-01

    Full Text Available An intramolecular steroidal 1,2,4,5-tetraoxane has been synthesised in six steps starting from methyl 3-oxo-7a,12a-diacetoxy-5b-cholan-24-oate. The synthesised 1,2,4,5-tetraoxane has moderate in vitro antimalarial activity against P. falciparum strains (IC50 (D6 = 0.35 mg/mL; IC50 (W2 = 0.29 mg/mL.

  18. Peculiarities in cases of spina bifida cystica managed recently in south-east Nigeria: could antimalarial drugs be a major but unrecognized etiologic factor?

    Science.gov (United States)

    Emejulu, Jude-Kennedy C; Okwaraoha, Blaise Ogedi

    2011-01-01

    Spina bifida is a long-known disease arising from the incomplete fusion of the caudal neuropore in the first month of intrauterine life. It is thought to have a multifactorial etiology, the most important of which is folic acid deficiency. In evaluating its etiology, the role of antifolate agents like antimalarial drugs is rarely given a strong mention. This is a 44-month prospective study of consecutive cases of spina bifida cystica presenting to the Neurosurgery Unit of Nnamdi Azikiwe University Teaching Hospital, Nnewi, South-East Nigeria. Data collection was with a structured proforma from presentation, and collation done with Microsoft Excel broadsheet and data analysis with SPSS and χ2 test. A total of 41 cases of spina bifida were attended to within the period, with 92.7% cases of spina bifida cystica. Most presented by >12-24 months, with a consistent history of maternal ingestion of antimalarial drugs during the first trimester of pregnancy. Spina bifida cystica was diagnosed mostly in children whose mothers ingested antimalarial drugs during the first trimester of gestation. There may be a need to critically evaluate the contribution of antimalarial drugs to the etiopathogenesis of this malformation and develop safer antimalarial treatment in pregnancy. Copyright © 2012 S. Karger AG, Basel.

  19. Phytochemical screening and antimalarial activity of some plants traditionally used in Indonesia

    Directory of Open Access Journals (Sweden)

    Syamsudin Abdillah

    2015-06-01

    Full Text Available Objective: To evaluate ethanolic extracts of phytochemical screening, in vitro and in vivo antiplasmodial activities of 15 plants used as antimalarial in Sei Kepayang, North Sumatra. Methods: Extraction was done through maceration with 70% ethanol and screened against chemical content, in vitro test anti-plasmodium against Plasmodium falciparum 3D7 strain and in vivo test in mice infected Plasmodium berghei. Results: The results showed that the plant extract contained a group of saponins, flavonoids, alkaloids, quinone, sterols, triterpene, tannins and cumarine. However, extract of Momordica charantia, Carica papaya, Garcinia atroviridis, Alstonia scholaris, Smallanthus sonchifolia and Cassia siamea had strong anti-plasmodium activity both in vitro and in vivo. Conclusions: In vitro and in vivo antiplasmodial activities of 15 plants are used as antimalarial in Sei Kepayang, North Sumatra. All the plants have in vitro and in vivo anti-plasmodium activity except Orthosiphon stamineus and Luffa cylindrica (ED50 > 1 000 mg/kg body weight and IC50 > 100 μg/mL, respectively.

  20. Antimalarial Activity of KAF156 in Falciparum and Vivax Malaria.

    Science.gov (United States)

    White, Nicholas J; Duong, Tran T; Uthaisin, Chirapong; Nosten, François; Phyo, Aung P; Hanboonkunupakarn, Borimas; Pukrittayakamee, Sasithon; Jittamala, Podjanee; Chuthasmit, Kittiphum; Cheung, Ming S; Feng, Yiyan; Li, Ruobing; Magnusson, Baldur; Sultan, Marc; Wieser, Daniela; Xun, Xiaolei; Zhao, Rong; Diagana, Thierry T; Pertel, Peter; Leong, F Joel

    2016-09-22

    KAF156 belongs to a new class of antimalarial agents (imidazolopiperazines), with activity against asexual and sexual blood stages and the preerythrocytic liver stages of malarial parasites. We conducted a phase 2, open-label, two-part study at five centers in Thailand and Vietnam to assess the antimalarial efficacy, safety, and pharmacokinetic profile of KAF156 in adults with acute Plasmodium vivax or P. falciparum malaria. Assessment of parasite clearance rates in cohorts of patients with vivax or falciparum malaria who were treated with multiple doses (400 mg once daily for 3 days) was followed by assessment of the cure rate at 28 days in a separate cohort of patients with falciparum malaria who received a single dose (800 mg). Median parasite clearance times were 45 hours (interquartile range, 42 to 48) in 10 patients with falciparum malaria and 24 hours (interquartile range, 20 to 30) in 10 patients with vivax malaria after treatment with the multiple-dose regimen and 49 hours (interquartile range, 42 to 54) in 21 patients with falciparum malaria after treatment with the single dose. Among the 21 patients who received the single dose and were followed for 28 days, 1 had reinfection and 7 had recrudescent infections (cure rate, 67%; 95% credible interval, 46 to 84). The mean (±SD) KAF156 terminal elimination half-life was 44.1±8.9 hours. There were no serious adverse events in this small study. The most common adverse events included sinus bradycardia, thrombocytopenia, hypokalemia, anemia, and hyperbilirubinemia. Vomiting of grade 2 or higher occurred in 2 patients, 1 of whom discontinued treatment because of repeated vomiting after receiving the single 800-mg dose. More adverse events were reported in the single-dose cohort, which had longer follow-up, than in the multiple-dose cohorts. KAF156 showed antimalarial activity without evident safety concerns in a small number of adults with uncomplicated P. vivax or P. falciparum malaria. (Funded by Novartis and

  1. The Antimalarial Effect of Curcumin Is Mediated by the Inhibition of Glycogen Synthase Kinase-3β.

    Science.gov (United States)

    Ali, Amatul Hamizah; Sudi, Suhaini; Basir, Rusliza; Embi, Noor; Sidek, Hasidah Mohd

    2017-02-01

    Curcumin, a bioactive compound in Curcuma longa, exhibits various pharmacological activities, including antimalarial effects. In silico docking simulation studies suggest that curcumin possesses glycogen synthase kinase-3β (GSK3β)-inhibitory properties. The involvement of GSK3 in the antimalarial effects in vivo is yet to be demonstrated. In this study, we aimed to evaluate whether the antimalarial effects of curcumin involve phosphorylation of host GSK3β. Intraperitoneal administration of curcumin into Plasmodium berghei NK65-infected mice resulted in dose-dependent chemosuppression of parasitemia development. At the highest dose tested (30 mg/kg body weight), both therapeutic and prophylactic administrations of curcumin resulted in suppression exceeding 50% and improved median survival time of infected mice compared to control. Western analysis revealed a 5.5-fold (therapeutic group) and 1.8-fold (prophylactic group) increase in phosphorylation of Ser 9 GSK3β and 1.6-fold (therapeutic group) and 1.7-fold (prophylactic group) increase in Ser 473 Akt in liver of curcumin-treated infected animals. Following P. berghei infection, levels of pro- and anti-inflammatory cytokines, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-10, and IL-4 were elevated by 7.5-, 35.0-, 33.0-, and 2.2-fold, respectively. Curcumin treatment (therapeutic) caused a significant decrease (by 6.0- and 2.0-fold, respectively) in serum TNF-α and IFN-γ level, while IL-10 and IL-4 were elevated (by 1.4- and 1.8-fold). Findings from the present study demonstrate for the first time that the antimalarial action of curcumin involved inhibition of GSK3β.

  2. Antimalarial Activity of the Chemical Constituents of the Leaf Latex of Aloe pulcherrima Gilbert and Sebsebe.

    Science.gov (United States)

    Teka, Tekleab; Bisrat, Daniel; Yeshak, Mariamawit Yonathan; Asres, Kaleab

    2016-10-28

    Malaria is one of the three major global public health threats due to a wide spread resistance of the parasites to the standard antimalarial drugs. Considering this growing problem, the ethnomedicinal approach in the search for new antimalarial drugs from plant sources has proven to be more effective and inexpensive. The leaves of Aloe pulcherrima Gilbert and Sebsebe, an endemic Ethiopian plant, are locally used for the treatment of malaria and other infectious diseases. Application of the leaf latex of A. pulcherrima on preparative silica gel TLC led to the isolation of two C -glycosylated anthrones, identified as nataloin ( 1 ) and 7-hydroxyaloin ( 2 ) by spectroscopic techniques (UV, IR, ¹H- and 13 C-NMR, HR-ESIMS). Both the latex and isolated compounds displayed antimalarial activity in a dose-independent manner using a four-day suppressive test, with the highest percent suppression of 56.2% achieved at 200 mg/kg/day for 2 . The results indicate that both the leaf latex of A. pulcherrima and its two major constituents are endowed with antiplasmodial activities, which support the traditional use of the leaves of the plant for the treatment of malaria.

  3. Identification and functional validation of the novel antimalarial resistance locus PF10_0355 in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Daria Van Tyne

    2011-04-01

    Full Text Available The Plasmodium falciparum parasite's ability to adapt to environmental pressures, such as the human immune system and antimalarial drugs, makes malaria an enduring burden to public health. Understanding the genetic basis of these adaptations is critical to intervening successfully against malaria. To that end, we created a high-density genotyping array that assays over 17,000 single nucleotide polymorphisms (∼ 1 SNP/kb, and applied it to 57 culture-adapted parasites from three continents. We characterized genome-wide genetic diversity within and between populations and identified numerous loci with signals of natural selection, suggesting their role in recent adaptation. In addition, we performed a genome-wide association study (GWAS, searching for loci correlated with resistance to thirteen antimalarials; we detected both known and novel resistance loci, including a new halofantrine resistance locus, PF10_0355. Through functional testing we demonstrated that PF10_0355 overexpression decreases sensitivity to halofantrine, mefloquine, and lumefantrine, but not to structurally unrelated antimalarials, and that increased gene copy number mediates resistance. Our GWAS and follow-on functional validation demonstrate the potential of genome-wide studies to elucidate functionally important loci in the malaria parasite genome.

  4. The Impact of Introducing Malaria Rapid Diagnostic Tests on Fever Case Management: A Synthesis of Ten Studies from the ACT Consortium.

    Science.gov (United States)

    Bruxvoort, Katia J; Leurent, Baptiste; Chandler, Clare I R; Ansah, Evelyn K; Baiden, Frank; Björkman, Anders; Burchett, Helen E D; Clarke, Siân E; Cundill, Bonnie; DiLiberto, Debora D; Elfving, Kristina; Goodman, Catherine; Hansen, Kristian S; Kachur, S Patrick; Lal, Sham; Lalloo, David G; Leslie, Toby; Magnussen, Pascal; Mangham-Jefferies, Lindsay; Mårtensson, Andreas; Mayan, Ismail; Mbonye, Anthony K; Msellem, Mwinyi I; Onwujekwe, Obinna E; Owusu-Agyei, Seth; Rowland, Mark W; Shakely, Delér; Staedke, Sarah G; Vestergaard, Lasse S; Webster, Jayne; Whitty, Christopher J M; Wiseman, Virginia L; Yeung, Shunmay; Schellenberg, David; Hopkins, Heidi

    2017-10-01

    Since 2010, the World Health Organization has been recommending that all suspected cases of malaria be confirmed with parasite-based diagnosis before treatment. These guidelines represent a paradigm shift away from presumptive antimalarial treatment of fever. Malaria rapid diagnostic tests (mRDTs) are central to implementing this policy, intended to target artemisinin-based combination therapies (ACT) to patients with confirmed malaria and to improve management of patients with nonmalarial fevers. The ACT Consortium conducted ten linked studies, eight in sub-Saharan Africa and two in Afghanistan, to evaluate the impact of mRDT introduction on case management across settings that vary in malaria endemicity and healthcare provider type. This synthesis includes 562,368 outpatient encounters (study size range 2,400-432,513). mRDTs were associated with significantly lower ACT prescription (range 8-69% versus 20-100%). Prescribing did not always adhere to malaria test results; in several settings, ACTs were prescribed to more than 30% of test-negative patients or to fewer than 80% of test-positive patients. Either an antimalarial or an antibiotic was prescribed for more than 75% of patients across most settings; lower antimalarial prescription for malaria test-negative patients was partly offset by higher antibiotic prescription. Symptomatic management with antipyretics alone was prescribed for fewer than 25% of patients across all scenarios. In community health worker and private retailer settings, mRDTs increased referral of patients to other providers. This synthesis provides an overview of shifts in case management that may be expected with mRDT introduction and highlights areas of focus to improve design and implementation of future case management programs.

  5. In Vivo Antiplasmodial Potentials of the Combinations of Four Nigerian Antimalarial Plants

    Directory of Open Access Journals (Sweden)

    Adeleke Clement Adebajo

    2014-08-01

    Full Text Available Various combinations of Nauclea latifolia root, Artocarpus altilis stem bark, Murraya koenigii leaf and Enantia chlorantha stem bark used in African ethnomedicine as decoctions for malaria and fevers, and combinations with standard drugs, were investigated for antiplasmodial activities using Plasmodium berghei berghei-infected mice. The respective prophylactic and curative ED50 values of 189.4 and 174.5 mg/kg for N. latifolia and chemosuppressive ED50 value of 227.2 mg/kg for A. altilis showed that they were the best antimalarial herbal drugs. A 1.6-fold increase of the survival time given by the negative control was elicited by M. koenigii, thereby confirming its curative activity. Pyrimethamine with an ED50 of 0.5 ± 0.1 mg/kg for the prophylactic, and chloroquine with ED50 = 2.2 ± 0.1 and 2.2 ± 0.0 mg/kg for the chemosuppressive and curative tests, respectively, were significantly (p < 0.05 more active. Co-administrations of N. latifolia with the standard drugs significantly reduced their prophylactic, chemosuppressive and curative actions, possibly increasing the parasites’ resistance. Binary combinations of N. latifolia or M. koenigii with any of the other plants significantly increased the prophylactic and suppressive activities of their individual plants, respectively. Also, E. chlorantha with A. altilis or N. latifolia enhanced their respective prophylactic or curative activities, making these combinations most beneficial against malaria infections. Combinations of three and four extracts gave varied activities. Hence, the results justified the combinations of ethnomedicinal plants in antimalarial herbal remedies and showed the importance of the three in vivo models in establishing antimalarial activity.

  6. Endoperoxide polyketides from a Chinese Plakortis simplex: further evidence of the impact of stereochemistry on antimalarial activity of simple 1,2-dioxanes.

    Science.gov (United States)

    Chianese, Giuseppina; Persico, Marco; Yang, Fan; Lin, Hou-Wen; Guo, Yue-Wei; Basilico, Nicoletta; Parapini, Silvia; Taramelli, Donatella; Taglialatela-Scafati, Orazio; Fattorusso, Caterina

    2014-09-01

    Chemical investigation of the organic extract obtained from the sponge Plakortis simplex collected in the South China Sea afforded five new polyketide endoperoxides (2 and 4-7), along with two known analogues (1 and 3). The stereostructures of these metabolites have been deduced on the basis of spectroscopic analysis and chemical conversion. The isolated endoperoxide derivatives have been tested for their in vitro antimalarial activity against Plasmodium falciparum strains, showing IC50 values in the low micromolar range. The structure-activity relationships were analyzed by means of a detailed computational investigation and rationalized in the light of the mechanism of action proposed for this class of simple antimalarials. The relative orientation of the atoms involved in the putative radical generation and transfer reaction was demonstrated to have a great impact on the antimalarial activity. The resulting 3D pharmacophoric model can be a useful guide to design simple and effective antimalarial lead compounds belonging to the class of 1,2-dioxanes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Proteomics analysis of antimalarial targets of Garcinia mangostana Linn.

    Institute of Scientific and Technical Information of China (English)

    Wanna; Chaijaroenkul; Artitiya; Thiengsusuk; Kanchana; Rungsihirunrat; Stephen; Andrew; Ward; Kesara; Na-Bangchang

    2014-01-01

    Objective:To investigate possible protein targets for antimalarial activity of Garcina mangostana Linn.(G.mangostana)(pericarp)in 3D7 Plasmodium falciparum clone using 2-dimensional electrophoresis and liquid chromatography mass-spectrometry(LC/MS/MS).Methods:3D7 Plasmodium falciparum was exposed to the crude ethanolic extract of G.mangostana Linn.(pericarp)at the concentrations of 12μg/mL(1C50level:concentration that inhibits parasite growth by 50%)and 30μg/mL(1C90level:concentration that inhibits parasite growth by 90%)for 12 h.Parasite proteins were separated by 2-dimensional electrophoresis and identified by LC/MS/MS.Results:At the IC50concentration,about 82%of the expressed parasite proteins were matched with the control(non-exposed),while at the IC90concentration,only 15%matched proteins were found.The selected protein spots from parasite exposed to the plant extract at the concentration of 12μg/mL were identified as eneymes that play role in glycolysis pathway,i.e.,phosphoglyeerate mutase putative,L-lactate dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase,and fruetose-bisphosphate aldolase/phosphoglyeerate kinase.The proteosome was found in parasite exposed to 30μg/mL of the extract.Conclusions:Results suggest that proteins involved in the glycolysis pathway may be the targets for antimalarial activity of G.mangostana Linn.(pericarp).

  8. Antimalarial Bioavailability and Disposition of Artesunate in Acute Falciparum Malaria

    OpenAIRE

    Newton, Paul; Suputtamongkol, Yupin; Teja-Isavadharm, Paktiya; Pukrittayakamee, Sasithon; Navaratnam, V; Bates, Imelda; White, Nicholas

    2000-01-01

    The pharmacokinetic properties of oral and intravenous artesunate (2 mg/kg of body weight) were studied in 19 adult patients with acute uncomplicated Plasmodium falciparum malaria by using a randomized crossover design. A sensitive bioassay was used to measure the antimalarial activity in plasma which results from artesunate and its principal metabolite, dihydroartemisinin. The oral study was repeated with 15 patients during convalescence. The mean absolute oral bioavailability of the antimal...

  9. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants

    Directory of Open Access Journals (Sweden)

    Valter F de Andrade-Neto

    2007-06-01

    Full Text Available In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae, the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae, respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae, all presented significant in vitro inhibition (more active than quinine and chloroquine of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.

  10. Pharmacological effects of primaquine ureas and semicarbazides on the central nervous system in mice and antimalarial activity in vitro.

    Science.gov (United States)

    Kedzierska, Ewa; Orzelska, Jolanta; Perković, Ivana; Knežević, Danijel; Fidecka, Sylwia; Kaiser, Marcel; Zorc, Branka

    2016-02-01

    New primaquine (PQ) urea and semicarbazide derivatives 1-4 were screened for the first time for central nervous system (CNS) and antimalarial activity. Behavioural tests were performed on mice. In vitro cytotoxicity on L-6 cells and activity against erythrocytic stages of Plasmodium falciparum was determined. Compound 4 inhibited 'head-twitch' responses and decreased body temperature of mice, which suggests some involvement of the serotonergic system. Compound 4 protected mice against clonic seizures and was superior in the antimalarial test. A hybrid of two PQ urea 2 showed a strong antimalarial activity, confirming the previous findings of the high activity of bis(8-aminoquinolines) and other bisantimalarial drugs. All the compounds decreased the locomotor activity of mice, what suggests their weak depressive effects on the CNS, while PQ derivatives 1 and 2 increased amphetamine-induced hyperactivity. None of the compounds impaired coordination, what suggests a lack of their neurotoxicity. All the tested compounds presented an antinociceptive activity in the 'writhing' test. Compounds 3 and 4 were active in nociceptive tests, and those effects were reversed by naloxone. Compound 4 could be a useful lead compound in the development of CNS active agents and antimalarials, whereas compound 3 may be considered as the most promising lead for new antinociceptive agents. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  11. Antimalarial activity of 80 % methanolic extract of Brassica nigra (L.) Koch. (Brassicaceae) seeds against Plasmodium berghei infection in mice.

    Science.gov (United States)

    Muluye, Abrham Belachew; Melese, Eshetie; Adinew, Getnet Mequanint

    2015-10-15

    Resistances to currently available drugs and insecticides, significant drug toxicities and costs and lack of vaccines currently complicated the treatment of malaria. A continued search for safe, effective and affordable plant-based antimalarial agents thus becomes crucial and vital in the face of these difficulties. The aim of the study was to evaluate the antimalarial activity of 80 % methanolic extract of the seeds of Brassica nigra against Plasmodium berghei infection in mice. Chloroquine sensitive Plasmodium berghei (ANKA strain) was used to test the antimalarial activity of the extract. In suppressive and prophylactic models, Swiss albino male mice were randomly grouped into five groups of five mice each. Group I mice were treated with the vehicle, group II, III and IV were treated with 100, 200, and 400 mg/kg of the extract, respectively and the last group (V) mice were treated with chloroquine (10 mg/kg). The level of parasitemia, survival time and variation in weight of mice were used to determine the antimalarial activity of the extract. Chemosuppressive activities produced by the extract of the seeds of Brassica nigra were 21.88, 50.00 (P activities were 17.42, 21.21 and 53.79 % (P activities and the plant may contain biologically active principles which are relevant in the treatment and prophylaxis of malaria, thus supporting further studies of the plant for its active components.

  12. A medicinal chemistry perspective on 4-aminoquinoline antimalarial drugs.

    Science.gov (United States)

    O'Neill, Paul M; Ward, Stephen A; Berry, Neil G; Jeyadevan, J Prince; Biagini, Giancarlo A; Asadollaly, Egbaleh; Park, B Kevin; Bray, Patrick G

    2006-01-01

    A broad overview is presented describing the current knowledge and the ongoing research concerning the 4-aminoquinolines (4AQ) as chemotherapeutic antimalarial agents. Included are discussions of mechanism of action, structure activity relationships (SAR), chemistry, metabolism and toxicity and parasite resistance mechanisms. In discussions of SAR, particular emphasis has been given to activity versus chloroquine resistant strains of Plasmodium falciparum. Promising new lead compounds undergoing development are described and an overview of physicochemical properties of chloroquine and amodiaquine analogues is also included.

  13. Influence of smoking on disease severity and antimalarial therapy in cutaneous lupus erythematosus

    DEFF Research Database (Denmark)

    Kuhn, A; Sigges, J; Biazar, C

    2014-01-01

    . Smoking behaviour was assessed by the EUSCLE Core Set Questionnaire in 838 patients and statistically analysed using an SPSS database. The results were correlated with the Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI) and the efficacy of antimalarial treatment. RESULTS: A high...

  14. How patients take malaria treatment: a systematic review of the literature on adherence to antimalarial drugs.

    Directory of Open Access Journals (Sweden)

    Katia Bruxvoort

    Full Text Available BACKGROUND: High levels of patient adherence to antimalarial treatment are important in ensuring drug effectiveness. To achieve this goal, it is important to understand levels of patient adherence, and the range of study designs and methodological challenges involved in measuring adherence and interpreting results. Since antimalarial adherence was reviewed in 2004, there has been a major expansion in the use of artemisinin-based combination therapies (ACTs in the public sector, as well as initiatives to make them more widely accessible through community health workers and private retailers. These changes and the large number of recent adherence studies raise the need for an updated review on this topic. OBJECTIVE: We conducted a systematic review of studies reporting quantitative results on patient adherence to antimalarials obtained for treatment. RESULTS: The 55 studies identified reported extensive variation in patient adherence to antimalarials, with many studies reporting very high adherence (90-100% and others finding adherence of less than 50%. We identified five overarching approaches to assessing adherence based on the definition of adherence and the methods used to measure it. Overall, there was no clear pattern in adherence results by approach. However, adherence tended to be higher among studies where informed consent was collected at the time of obtaining the drug, where patient consultations were directly observed by research staff, and where a diagnostic test was obtained. CONCLUSION: Variations in reported adherence may reflect factors related to patient characteristics and the nature of their consultation with the provider, as well as methodological variations such as interaction between the research team and patients before and during the treatment. Future studies can benefit from an awareness of the impact of study procedures on adherence outcomes, and the identification of improved measurement methods less dependent on self-report.

  15. How patients take malaria treatment: a systematic review of the literature on adherence to antimalarial drugs.

    Science.gov (United States)

    Bruxvoort, Katia; Goodman, Catherine; Kachur, S Patrick; Schellenberg, David

    2014-01-01

    High levels of patient adherence to antimalarial treatment are important in ensuring drug effectiveness. To achieve this goal, it is important to understand levels of patient adherence, and the range of study designs and methodological challenges involved in measuring adherence and interpreting results. Since antimalarial adherence was reviewed in 2004, there has been a major expansion in the use of artemisinin-based combination therapies (ACTs) in the public sector, as well as initiatives to make them more widely accessible through community health workers and private retailers. These changes and the large number of recent adherence studies raise the need for an updated review on this topic. We conducted a systematic review of studies reporting quantitative results on patient adherence to antimalarials obtained for treatment. The 55 studies identified reported extensive variation in patient adherence to antimalarials, with many studies reporting very high adherence (90-100%) and others finding adherence of less than 50%. We identified five overarching approaches to assessing adherence based on the definition of adherence and the methods used to measure it. Overall, there was no clear pattern in adherence results by approach. However, adherence tended to be higher among studies where informed consent was collected at the time of obtaining the drug, where patient consultations were directly observed by research staff, and where a diagnostic test was obtained. Variations in reported adherence may reflect factors related to patient characteristics and the nature of their consultation with the provider, as well as methodological variations such as interaction between the research team and patients before and during the treatment. Future studies can benefit from an awareness of the impact of study procedures on adherence outcomes, and the identification of improved measurement methods less dependent on self-report.

  16. Targeting Plasmodium falciparum Hsp90: Towards Reversing Antimalarial Resistance

    Directory of Open Access Journals (Sweden)

    Dea Shahinas

    2013-02-01

    Full Text Available Malaria continues to exact a great human toll in tropical settings. Antimalarial resistance is rife and the parasite inexorably develops mechanisms to outwit our best drugs, including the now first-line choice, artesunate. Novel strategies to circumvent resistance are needed. Here we detail drug development focusing on heat shock protein 90 and its central role as a chaperone. A growing body of evidence supports the role for Hsp90 inhibitors as adjunctive drugs able to restore susceptibility to traditionally efficacious compounds like chloroquine.

  17. Deconstructing Quinoline-Class Antimalarials to Identify Fundamental Physicochemical Properties of Beta-Hematin Crystal Growth Inhibitors.

    Science.gov (United States)

    Olafson, Katy N; Nguyen, Tam Q; Vekilov, Peter G; Rimer, Jeffrey D

    2017-10-04

    A versatile approach to control crystallization involves the use of modifiers, which are additives that interact with crystal surfaces and alter their growth rates. Elucidating a modifier's binding specificity to anisotropic crystal surfaces is a ubiquitous challenge that is critical to their design. In this study, we select hematin, a byproduct of malaria parasites, as a model system to examine the complementarity of modifiers (i.e., antimalarial drugs) to β-hematin crystal surfaces. We divide two antimalarials, chloroquine and amodiaquine, into segments consisting of a quinoline base, common to both drugs, and side chains that differentiate their modes of action. Using a combination of scanning probe microscopy, bulk crystallization, and analytical techniques, we show that the base and side chain work synergistically to reduce the rate of hematin crystallization. In contrast to general observations that modifiers retain their function upon segmentation, we show that the constituents do not act as modifiers. A systematic study of quinoline isomers and analogues shows how subtle rearrangement and removal of functional moieties can create effective constituents from previously ineffective modifiers, along with tuning their inhibitory modes of action. These findings highlight the importance of specific functional moieties in drug compounds, leading to an improved understanding of modifier-crystal interactions that could prove to be applicable to the design of new antimalarials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Heme polymerization inhibition activity (HPIA) assay of synthesized xanthone derivative as antimalarial compound

    Science.gov (United States)

    Fitriastuti, Dhina; Jumina, Priatmoko

    2017-03-01

    Xanthone is a phenolic secondary metabolite of Garcinia and Calophyllum herbs which has been clinically proven to display anti malaria activity. In the present paper, 2,3,4-trihydroxy-5-methyl xanthone which has been synthesized from gallic acid and o-cresol in Eaton's reagent was tested for its activity as antimalarial. Thus, HPIA assay of the synthesized xanthones was successfully conducted. The HPIA assay was carried out towards the xanthone, chloroquine diphosphate as positive control and distilled water as negative control in various concentration. The samples were reacted with hematin (ferriprotoporphyrin IX hydroxide) and the absorbance of the precipitate was observed by using Elisa reader. The results of HPIA assay showed that 2,3,4-trihydroxy-5-methyl xanthone and chloroquine have IC50 values of 0.755 and 1.462 mg/mL or 2.92 and 4.57 mM, respectively. 2,3,4-Trihydroxy-5-methyl xanthone displayed better antimalarial activity than chloroquine.

  19. Enzyme-mediated quenching of the Pseudomonas quinolone signal (PQS promotes biofilm formation of Pseudomonas aeruginosa by increasing iron availability

    Directory of Open Access Journals (Sweden)

    Beatrix Tettmann

    2016-12-01

    Full Text Available The 2-alkyl-3-hydroxy-4(1H-quinolone 2,4-dioxygenase HodC was previously described to cleave the Pseudomonas quinolone signal, PQS, which is exclusively used in the complex quorum sensing (QS system of Pseudomonas aeruginosa, an opportunistic pathogen employing QS to regulate virulence and biofilm development. Degradation of PQS by exogenous addition of HodC to planktonic cells of P. aeruginosa attenuated production of virulence factors, and reduced virulence in planta. However, proteolytic cleavage reduced the efficacy of HodC. Here, we identified the secreted protease LasB of P. aeruginosa to be responsible for HodC degradation. In static biofilms of the P. aeruginosa PA14 lasB::Tn mutant, the catalytic activity of HodC led to an increase in viable biomass in newly formed but also in established biofilms, and reduced the expression of genes involved in iron metabolism and siderophore production, such as pvdS, pvdL, pvdA and pvdQ. This is likely due to an increase in the levels of bioavailable iron by degradation of PQS, which is able to sequester iron from the surrounding environment. Thus, HodC, despite its ability to quench the production of virulence factors, is contraindicated for combating P. aeruginosa biofilms.

  20. Discovery of potent, novel, non-toxic anti-malarial compounds via quantum modelling, virtual screening and in vitro experimental validation

    Directory of Open Access Journals (Sweden)

    Kaludov Nikola

    2011-09-01

    Full Text Available Abstract Background Developing resistance towards existing anti-malarial therapies emphasize the urgent need for new therapeutic options. Additionally, many malaria drugs in use today have high toxicity and low therapeutic indices. Gradient Biomodeling, LLC has developed a quantum-model search technology that uses quantum similarity and does not depend explicitly on chemical structure, as molecules are rigorously described in fundamental quantum attributes related to individual pharmacological properties. Therapeutic activity, as well as toxicity and other essential properties can be analysed and optimized simultaneously, independently of one another. Such methodology is suitable for a search of novel, non-toxic, active anti-malarial compounds. Methods A set of innovative algorithms is used for the fast calculation and interpretation of electron-density attributes of molecular structures at the quantum level for rapid discovery of prospective pharmaceuticals. Potency and efficacy, as well as additional physicochemical, metabolic, pharmacokinetic, safety, permeability and other properties were characterized by the procedure. Once quantum models are developed and experimentally validated, the methodology provides a straightforward implementation for lead discovery, compound optimizzation and de novo molecular design. Results Starting with a diverse training set of 26 well-known anti-malarial agents combined with 1730 moderately active and inactive molecules, novel compounds that have strong anti-malarial activity, low cytotoxicity and structural dissimilarity from the training set were discovered and experimentally validated. Twelve compounds were identified in silico and tested in vitro; eight of them showed anti-malarial activity (IC50 ≤ 10 μM, with six being very effective (IC50 ≤ 1 μM, and four exhibiting low nanomolar potency. The most active compounds were also tested for mammalian cytotoxicity and found to be non-toxic, with a

  1. Mechanisms of quinolone resistance in Salmonella spp. / Mecanismos de resistência às quinolonas em Salmonella spp.

    Directory of Open Access Journals (Sweden)

    Tereza Cristina Rocha Moreira de Oliveira

    2010-07-01

    Full Text Available Salmonellosis is a common and widespread zoonotic disease of humans and a frequent cause of foodborne disease. Treatment of severe and systemic salmonellosis is usually done with fluoroquinolones. In this review resistance mechanisms of Salmonella to quinolones are discussed. Single point mutations in the quinolone resistant determining region (QRDR of the gyrA gene may be sufficient to generate high levels of resistance to non-fluorated quinolones and also may decrease the fluoroquinolones susceptibility. Other resistance mechanisms that should be considered are mutations in parC gene, the possibility of acquiring resistance through plasmidial transference and hyper-expression of efflux pumps. Fluoroquinolones resistance is still relatively uncommon in Salmonella compared to other species belonging to the Enterobacteriaceae family. However, the more careful use of fluoroquinolones in veterinary and human medicine is essential to decrease the selective pressure which can avoid the emergence and spread of resistant clones and consequently maintain the clinical efficacy of this group of antibiotics.A salmonelose é uma zoonose de importância mundial e uma das mais freqüentes doenças de origem alimentar. As fluoroquinolonas são a principal opção para o tratamento de salmoneloses graves ou sistêmicas. Esta revisão de literatura teve como objetivo apresentar os principais mecanismos envolvidos na resistência de Salmonella spp a estes antimicrobianos. Mutações de ponto na Região Determinante de Resistência à Quinolona (QRDR do gene gyrA podem gerar altos níveis de resistência a quinolonas não-fluoradas, além de reduzir a suscetibilidade as fluoroquinolonas. Outros mecanismos de resistência que também precisam ser considerados são as mutações no gene parC, a possibilidade do envolvimento de plasmídios de resistência e o sistema de efluxo ativo. A resistência às fluoroquinolonas ainda é incomum em Salmonella spp., quando

  2. Shifts in the Antibiotic Susceptibility, Serogroups, and Clonal Complexes of Neisseria meningitidis in Shanghai, China: A Time Trend Analysis of the Pre-Quinolone and Quinolone Eras.

    Directory of Open Access Journals (Sweden)

    Mingliang Chen

    2015-06-01

    Full Text Available Fluoroquinolones have been used broadly since the end of the 1980s and have been recommended for Neisseria meningitidis prophylaxis since 2005 in China. The aim of this study was to determine whether and how N. meningitidis antimicrobial susceptibility, serogroup prevalence, and clonal complex (CC prevalence shifted in association with the introduction and expanding use of quinolones in Shanghai, a region with a traditionally high incidence of invasive disease due to N. meningitidis.A total of 374 N. meningitidis isolates collected by the Shanghai Municipal Center for Disease Control and Prevention between 1965 and 2013 were studied. Shifts in the serogroups and CCs were observed, from predominantly serogroup A CC5 (84% in 1965-1973 to serogroup A CC1 (58% in 1974-1985, then to serogroup C or B CC4821 (62% in 2005-2013. The rates of ciprofloxacin nonsusceptibility in N. meningitidis disease isolates increased from 0% in 1965-1985 to 84% (31/37 in 2005-2013 (p < 0.001. Among the ciprofloxacin-nonsusceptible isolates, 87% (27/31 were assigned to either CC4821 (n = 20 or CC5 (n = 7. The two predominant ciprofloxacin-resistant clones were designated ChinaCC4821-R1-C/B and ChinaCC5-R14-A. The ChinaCC4821-R1-C/B clone acquired ciprofloxacin resistance by a point mutation, and was present in 52% (16/31 of the ciprofloxacin-nonsusceptible disease isolates. The ChinaCC5-R14-A clone acquired ciprofloxacin resistance by horizontal gene transfer, and was found in 23% (7/31 of the ciprofloxacin-nonsusceptible disease isolates. The ciprofloxacin nonsusceptibility rate was 47% (7/15 among isolates from asymptomatic carriers, and nonsusceptibility was associated with diverse multi-locus sequence typing profiles and pulsed-field gel electrophoresis patterns. As detected after 2005, ciprofloxacin-nonsusceptible strains were shared between some of the patients and their close contacts. A limitation of this study is that isolates from 1986-2004 were not available

  3. SMS for Life: a pilot project to improve anti-malarial drug supply management in rural Tanzania using standard technology

    Science.gov (United States)

    2010-01-01

    Background Maintaining adequate supplies of anti-malarial medicines at the health facility level in rural sub-Saharan Africa is a major barrier to effective management of the disease. Lack of visibility of anti-malarial stock levels at the health facility level is an important contributor to this problem. Methods A 21-week pilot study, 'SMS for Life', was undertaken during 2009-2010 in three districts of rural Tanzania, involving 129 health facilities. Undertaken through a collaborative partnership of public and private institutions, SMS for Life used mobile telephones, SMS messages and electronic mapping technology to facilitate provision of comprehensive and accurate stock counts from all health facilities to each district management team on a weekly basis. The system covered stocks of the four different dosage packs of artemether-lumefantrine (AL) and quinine injectable. Results Stock count data was provided in 95% of cases, on average. A high response rate (≥ 93%) was maintained throughout the pilot. The error rate for composition of SMS responses averaged 7.5% throughout the study; almost all errors were corrected and messages re-sent. Data accuracy, based on surveillance visits to health facilities, was 94%. District stock reports were accessed on average once a day. The proportion of health facilities with no stock of one or more anti-malarial medicine (i.e. any of the four dosages of AL or quinine injectable) fell from 78% at week 1 to 26% at week 21. In Lindi Rural district, stock-outs were eliminated by week 8 with virtually no stock-outs thereafter. During the study, AL stocks increased by 64% and quinine stock increased 36% across the three districts. Conclusions The SMS for Life pilot provided visibility of anti-malarial stock levels to support more efficient stock management using simple and widely available SMS technology, via a public-private partnership model that worked highly effectively. The SMS for Life system has the potential to alleviate

  4. SMS for Life: a pilot project to improve anti-malarial drug supply management in rural Tanzania using standard technology

    Directory of Open Access Journals (Sweden)

    Mwafongo Winfred

    2010-10-01

    Full Text Available Abstract Background Maintaining adequate supplies of anti-malarial medicines at the health facility level in rural sub-Saharan Africa is a major barrier to effective management of the disease. Lack of visibility of anti-malarial stock levels at the health facility level is an important contributor to this problem. Methods A 21-week pilot study, 'SMS for Life', was undertaken during 2009-2010 in three districts of rural Tanzania, involving 129 health facilities. Undertaken through a collaborative partnership of public and private institutions, SMS for Life used mobile telephones, SMS messages and electronic mapping technology to facilitate provision of comprehensive and accurate stock counts from all health facilities to each district management team on a weekly basis. The system covered stocks of the four different dosage packs of artemether-lumefantrine (AL and quinine injectable. Results Stock count data was provided in 95% of cases, on average. A high response rate (≥ 93% was maintained throughout the pilot. The error rate for composition of SMS responses averaged 7.5% throughout the study; almost all errors were corrected and messages re-sent. Data accuracy, based on surveillance visits to health facilities, was 94%. District stock reports were accessed on average once a day. The proportion of health facilities with no stock of one or more anti-malarial medicine (i.e. any of the four dosages of AL or quinine injectable fell from 78% at week 1 to 26% at week 21. In Lindi Rural district, stock-outs were eliminated by week 8 with virtually no stock-outs thereafter. During the study, AL stocks increased by 64% and quinine stock increased 36% across the three districts. Conclusions The SMS for Life pilot provided visibility of anti-malarial stock levels to support more efficient stock management using simple and widely available SMS technology, via a public-private partnership model that worked highly effectively. The SMS for Life system has

  5. Plants of the Annonaceae traditionally used as antimalarials: a review

    Directory of Open Access Journals (Sweden)

    Gina Frausin

    2014-01-01

    Full Text Available Species of the Annonaceae family are used all over the tropics in traditional medicine in tropical regions for the treatment of malaria and other illnesses. Phytochemical studies of this family have revealed chemical components which could offer new alternatives for the treatment and control of malaria. Searches in scientific reference sites (SciFinder Scholar, Scielo, PubMed, ScienceDirect and ISI Web of Science and a bibliographic literature search for species of Annonaceae used traditionally to treat malaria and fever were carried out. This family contains 2,100 species in 123 genera. We encountered 113 articles reporting medicinal use of one or more species of this family including 63 species in 27 genera with uses as antimalarials and febrifuges. Even though the same species of Annonaceae are used by diverse ethnic groups, different plant parts are often chosen for applications, and diverse methods of preparation and treatment are used. The ethanol extracts of Polyalthia debilis and Xylopia aromatica proved to be quite active against Plasmodium falciparum in vitro (median inhibition concentration, IC50 < 1.5 µg/mL. Intraperitoneal injection of Annickia chlorantha aqueous extracts (cited as Enantia chlorantha cleared chloroquine-resistant Plasmodium yoelii nigeriensis from the blood of mice in a dose-dependant manner. More phytochemical profiles of Annonaceous species are required; especially information on the more commonly distributed antimalarial compounds in this family.

  6. Evolutionary ARMS Race: Antimalarial Resistance Molecular Surveillance.

    Science.gov (United States)

    Prosser, Christiane; Meyer, Wieland; Ellis, John; Lee, Rogan

    2018-04-01

    Molecular surveillance of antimalarial drug resistance markers has become an important part of resistance detection and containment. In the current climate of multidrug resistance, including resistance to the global front-line drug artemisinin, there is a consensus to upscale molecular surveillance. The most salient limitation to current surveillance efforts is that skill and infrastructure requirements preclude many regions. This includes sub-Saharan Africa, where Plasmodium falciparum is responsible for most of the global malaria disease burden. New molecular and data technologies have emerged with an emphasis on accessibility. These may allow surveillance to be conducted in broad settings where it is most needed, including at the primary healthcare level in endemic countries, and extending to the village health worker. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Tritium labelling and characterization of the antimalarial drug (+/-)-chloroquine by several methods

    Energy Technology Data Exchange (ETDEWEB)

    Egan, J.A.Judith A.; Laseter, Anne G; Filer, C.N.Crist N. E-mail: crist.filer@perkinelmer.com

    2002-09-01

    To study its mechanism of antimalarial action, a tritium labelled analogue of (+/-)-chloroquine was required at high specific activity. Two synthetic methods were successfully employed. [3-{sup 3}H] (+/-)-Chloroquine 2 was prepared by the catalytic tritium dehalogenation of an iodo precursor and [N-ethyl-{sup 3}H] (+/-)-chloroquine 4 was synthesized by the alkylation of (+/-)-desethylchloroquine with [{sup 3}H] ethyl iodide.

  8. Tritium labelling and characterization of the antimalarial drug (+/-)-chloroquine by several methods

    International Nuclear Information System (INIS)

    Egan, J.A.Judith A.; Laseter, Anne G.; Filer, C.N.Crist N.

    2002-01-01

    To study its mechanism of antimalarial action, a tritium labelled analogue of (+/-)-chloroquine was required at high specific activity. Two synthetic methods were successfully employed. [3- 3 H] (+/-)-Chloroquine 2 was prepared by the catalytic tritium dehalogenation of an iodo precursor and [N-ethyl- 3 H] (+/-)-chloroquine 4 was synthesized by the alkylation of (+/-)-desethylchloroquine with [ 3 H] ethyl iodide

  9. High-content live cell imaging with RNA probes: advancements in high-throughput antimalarial drug discovery

    Directory of Open Access Journals (Sweden)

    Cervantes Serena

    2009-06-01

    Full Text Available Abstract Background Malaria, a major public health issue in developing nations, is responsible for more than one million deaths a year. The most lethal species, Plasmodium falciparum, causes up to 90% of fatalities. Drug resistant strains to common therapies have emerged worldwide and recent artemisinin-based combination therapy failures hasten the need for new antimalarial drugs. Discovering novel compounds to be used as antimalarials is expedited by the use of a high-throughput screen (HTS to detect parasite growth and proliferation. Fluorescent dyes that bind to DNA have replaced expensive traditional radioisotope incorporation for HTS growth assays, but do not give additional information regarding the parasite stage affected by the drug and a better indication of the drug's mode of action. Live cell imaging with RNA dyes, which correlates with cell growth and proliferation, has been limited by the availability of successful commercial dyes. Results After screening a library of newly synthesized stryrl dyes, we discovered three RNA binding dyes that provide morphological details of live parasites. Utilizing an inverted confocal imaging platform, live cell imaging of parasites increases parasite detection, improves the spatial and temporal resolution of the parasite under drug treatments, and can resolve morphological changes in individual cells. Conclusion This simple one-step technique is suitable for automation in a microplate format for novel antimalarial compound HTS. We have developed a new P. falciparum RNA high-content imaging growth inhibition assay that is robust with time and energy efficiency.

  10. Saleability of anti-malarials in private drug shops in Muheza, Tanzania: a baseline study in an era of assumed artemisinin combination therapy (ACT

    Directory of Open Access Journals (Sweden)

    Ringsted Frank M

    2011-08-01

    Full Text Available Abstract Background Artemether-lumefantrine (ALu replaced sulphadoxine-pymimethamine (SP as the official first-line anti-malarial in Tanzania in November 2006. So far, artemisinin combination therapy (ACT is contra-indicated during pregnancy by the national malaria treatment guidelines, and pregnant women depend on SP for Intermittent Preventive Treatment (IPTp during pregnancy. SP is still being dispensed by private drug stores, but it is unknown to which extent. If significant, it may undermine its official use for IPTp through induction of resistance. The main study objective was to perform a baseline study of the private market for anti-malarials in Muheza town, an area with widespread anti-malarial drug resistance, prior to the implementation of a provider training and accreditation programme that will allow accredited drug shops to sell subsidized ALu. Methods All drug shops selling prescription-only anti-malarials, in Muheza town, Tanga Region voluntarily participated from July to December 2009. Qualitative in-depth interviews were conducted with owners or shopkeepers on saleability of anti-malarials, and structured questionnaires provided quantitative data on drugs sales volume. Results All surveyed drug shops illicitly sold SP and quinine (QN, and legally amodiaquine (AQ. Calculated monthly sale was 4,041 doses, in a town with a population of 15,000 people. Local brands of SP accounted for 74% of sales volume, compared to AQ (13%, QN (11% and ACT (2%. Conclusions In community practice, the saleability of ACT was negligible. SP was best-selling, and use was not reserved for IPTp, as stipulated in the national anti-malarial policy. It is a major reason for concern that such drug-pressure in the community equals de facto intermittent presumptive treatment. In an area where SP drug resistance remains high, unregulated SP dispensing to people other than pregnant women runs the risk of eventually jeopardizing the effectiveness of the IPTp

  11. Recent advances in novel heterocyclic scaffolds for the treatment of drug-resistant malaria.

    Science.gov (United States)

    Kumar, Sahil; Singh, Rajesh K; Patial, Babita; Goyal, Sachin; Bhardwaj, T R

    2016-01-01

    Malaria is a major public health problem all over the world, particularly in tropical and subtropical countries due to the development of resistance and most deadly infection is caused by Plasmodium falciparum. There is a direct need for the discovery of new drugs with unique structures and mechanism of action to treat sensitive and drug-resistant strains of various plasmodia for radical cure of this disease. Traditional compounds such as quinine and related derivatives represent a major source for the development of new drugs. This review presents recent modifications of 4-aminoquinoline and 8-aminoquinolone rings as leads to novel active molecules which are under clinical trials. The review also encompasses the other heterocyclic compounds emerged as potential antimalarial agents with promising results such as acridinediones and acridinone analogues, pyridines and quinolones as antimalarials. Miscellaneous heterocyclics such as tetroxane derivatives, indole derivatives, imidazolopiperazine derivatives, biscationic choline-based compounds and polymer-linked combined antimalarial drugs are also discussed. At last brief introduction to heterocyclics in natural products is also reviewed. Most of them have been under clinical trials and found to be promising in the treatment of drug-resistant strains of Plasmodium and others can be explored for the same purpose.

  12. Macrolide Hybrid Compounds: Drug Discovery Opportunities in Anti- Infective and Anti-inflammatory Area.

    Science.gov (United States)

    Paljetak, Hana Cipcic; Tomaskovic, Linda; Matijasic, Mario; Bukvic, Mirjana; Fajdetic, Andrea; Verbanac, Donatella; Peric, Mihaela

    2017-01-01

    Macrolides, polyketide natural products, and their 15-membered semi-synthetic derivatives are composed of substituted macrocyclic lactone ring and used primarily as potent antibiotics. Recently their usefulness was extended to antimalarial and anti-inflammatory area. Hybrid macrolides presented in this article are the next generation semi-synthetic compounds that combine pharmacophores from antibacterial, antimalarial and anti-inflammatory area with 14- and 15-membered azalide scaffolds. Antibacterial azalide hybrids with sulphonamides showed improved activity against resistant streptococci while quinolone conjugates demonstrated full coverage of respiratory pathogens including macrolide resistant strains and their efficacy was confirmed in mouse pneumonia model. Antimalarial macrolide hybrids, mainly involving (chloro)quinoline pharmacophores, showed outstanding activity against chloroquine resistant strains, favourable pharmacokinetics, promising in vivo efficacy as well as encouraging developmental potential. Anti-inflammatory hybrids were obtained by combining macrolides with corticosteroid and non-steroidal anti-inflammatory drugs. They were found active in in vivo animal models of locally induced inflammation, asthma, inflammatory bowel disease and rheumatoid arthritis and demonstrated improved safety over parent steroid drugs. Overall, macrolide hybrids possess significant potential to be developed as potent novel medicines in therapeutic areas of utmost pharmaceutical interest. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. QSAR studies of some side chain modified 7-chloro-4-aminoquinolines as antimalarial agents

    Directory of Open Access Journals (Sweden)

    Nitendra K. Sahu

    2014-11-01

    Full Text Available The quantitative structure–activity relationship (QSAR analyses were carried out for a series of new side chain modified 4-amino-7-chloroquinolines to find out the structural requirements of their antimalarial activities against both chloroquine sensitive (HB3 and resistant (Dd2 Plasmodium falciparum strain. The statistically significant best 2D QSAR models for Dd2, having correlation coefficient (r2 = 0.9188 and cross validated squared correlation coefficient (q2 = 0.8349 with external predictive ability (pred_r2 = 0.7258 and for HB3, having r2 = 0.9024, q2 = 0.8089 and pred_r2 = 0.7463 were developed by multiple linear regression coupled with genetic algorithm (GA–MLR and stepwise (SW–MLR forward algorithm, respectively. The results of the present study may be useful on the designing of more potent analogues as antimalarial agents.

  14. A characterization of the antimalarial activity of the bark of Cylicodiscus gabunensis Harms.

    Science.gov (United States)

    Aldulaimi, Omar; Uche, Fidelia I; Hameed, Hamza; Mbye, Haddijatou; Ullah, Imran; Drijfhout, Falko; Claridge, Timothy D W; Horrocks, Paul; Li, Wen-Wu

    2017-02-23

    A decoction of the bark of Cylicodiscus gabunensis Harms is used as a traditional medicine in the treatment of malaria in Nigeria. This study aims to validate the antimalarial potency of this decoction in vitro against Plasmodium falciparum and define potential bioactive constituents within the C. gabunensis bark. A bioassay-guided separation and fractionation protocol was applied to C. gabunensis extracts, exploiting the use of a Malaria Sybr Green I Fluorescence assay method to monitor antiproliferative effects on parasites as well as define 50% inhibition concentrations. Spectroscopic techniques, including GC-MS, TOF LC-MS and 1 H NMR were used to identify phytochemicals present in bioactive fractions. Analogues of gallic acid were synthesized de novo to support the demonstration of the antimalarial action of phenolic acids identified in C. gabunensis bark. In vitro cytotoxicity of plant extracts, fractions and gallate analogues was evaluated against the HepG2 cell line. The antimalarial activity of ethanolic extracts of C. gabunensis bark was confirmed in vitro, with evidence for phenolic acids, primarily gallic acid and close analogues such as ethyl gallate, likely providing this effect. Further fractionation produced the most potent fraction with a 50% inhibitory concentration of 4.7µg/ml. Spectroscopic analysis, including 1 H NMR, LC-MS and GC-MS analysis of this fraction and its acid hydrolyzed products, indicated the presence of conjugates of gallic acid with oligosaccharides. The extracts/fractions and synthetic alkyl and alkenyl gallates showed moderate selectivity against P. falciparum. These results support the use of the bark of C. gabunensis as a traditional medicine in the treatment of human malaria, with phenolic acid oligosaccharide complexes evident in the most bioactive fractions. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. The Pseudomonas Quinolone Signal (PQS)

    DEFF Research Database (Denmark)

    Sams, Thomas; Baker, Ysobel; Hodgkinson, James

    2015-01-01

    Pseudomonas aeruginosa is an opportunistichuman pathogen that routinely appears near the top ofpublic health threat lists worldwide. P. aeruginosa causes in-fections by secreting a wealth of exceptionally active exo-products, leading to tissue damage. The synthesis of manyof these virulence factors...

  16. Occurrence of quinolone- and beta-lactam-resistant Escherichia coli in danish broiler flocks

    DEFF Research Database (Denmark)

    Bortolaia, Valeria; Guardabassi, Luca; Bisgaard, Magne

    An increased concern for the possible transfer of resistant bacteria or mobile resistance elements from food animals to humans has resulted in rigorous legislation preventing i.e. practical use of fluoroquinolones in the Danish broiler industry (Olesen et al., 2004; Petersen et al., 2006...... and nalidixic acid resistances were detected in all flocks. The numbers of E. coli resistant to these drugs were higher in plates from parent flocks than in those from offspring flocks. A broiler parent flock without any history of quinolone usage tested positive for ciprofloxacin-resistant E. coli, although...... and mutations responsible for these types of resistance. References DANMAP 2005. 2006. Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark. Danish Veterinary Laboratory, Copenhagen, Denmark, ISSN 1600-2032. Olesen, I., H. Hasman...

  17. Quality of anti-malarials collected in the private and informal sectors in Guyana and Suriname

    Directory of Open Access Journals (Sweden)

    Evans Lawrence

    2012-06-01

    Full Text Available Abstract Background Despite a significant reduction in the number of malaria cases in Guyana and Suriname, this disease remains a major problem in the interior of both countries, especially in areas with gold mining and logging operations, where malaria is endemic. National malaria control programmes in these countries provide treatment to patients with medicines that are procured and distributed through regulated processes in the public sector. However, availability to medicines in licensed facilities (private sector and unlicensed facilities (informal sector is common, posing the risk of access to and use of non-recommended treatments and/or poor quality products. Methods To assess the quality of circulating anti-malarial medicines, samples were purchased in the private and informal sectors of Guyana and Suriname in 2009. The sampling sites were selected based on epidemiological data and/or distance from health facilities. Samples were analysed for identity, content, dissolution or disintegration, impurities, and uniformity of dosage units or weight variation according to manufacturer, pharmacopeial, or other validated method. Results Quality issues were observed in 45 of 77 (58% anti-malarial medicines sampled in Guyana of which 30 failed visual & physical inspection and 18 failed quality control tests. The proportion of monotherapy and ACT medicines failing quality control tests was 43% (13/30 and 11% (5/47 respectively. A higher proportion of medicines sampled from the private sector 34% (11/32 failed quality control tests versus 16% (7/45 in the informal sector. In Suriname, 58 medicines were sampled, of which 50 (86% were Artecom®, the fixed-dose combination of piperaquine-dihydroartemisinin-trimethoprim co-blistered with a primaquine phosphate tablet. All Artecom samples were found to lack a label claim for primaquine, thus failing visual and physical inspection. Conclusions The findings of the studies in both countries point to

  18. Quality of anti-malarials collected in the private and informal sectors in Guyana and Suriname.

    Science.gov (United States)

    Evans, Lawrence; Coignez, Veerle; Barojas, Adrian; Bempong, Daniel; Bradby, Sanford; Dijiba, Yanga; James, Makeida; Bretas, Gustavo; Adhin, Malti; Ceron, Nicolas; Hinds-Semple, Alison; Chibwe, Kennedy; Lukulay, Patrick; Pribluda, Victor

    2012-06-15

    Despite a significant reduction in the number of malaria cases in Guyana and Suriname, this disease remains a major problem in the interior of both countries, especially in areas with gold mining and logging operations, where malaria is endemic. National malaria control programmes in these countries provide treatment to patients with medicines that are procured and distributed through regulated processes in the public sector. However, availability to medicines in licensed facilities (private sector) and unlicensed facilities (informal sector) is common, posing the risk of access to and use of non-recommended treatments and/or poor quality products. To assess the quality of circulating anti-malarial medicines, samples were purchased in the private and informal sectors of Guyana and Suriname in 2009. The sampling sites were selected based on epidemiological data and/or distance from health facilities. Samples were analysed for identity, content, dissolution or disintegration, impurities, and uniformity of dosage units or weight variation according to manufacturer, pharmacopeial, or other validated method. Quality issues were observed in 45 of 77 (58%) anti-malarial medicines sampled in Guyana of which 30 failed visual & physical inspection and 18 failed quality control tests. The proportion of monotherapy and ACT medicines failing quality control tests was 43% (13/30) and 11% (5/47) respectively. A higher proportion of medicines sampled from the private sector 34% (11/32) failed quality control tests versus 16% (7/45) in the informal sector. In Suriname, 58 medicines were sampled, of which 50 (86%) were Artecom®, the fixed-dose combination of piperaquine-dihydroartemisinin-trimethoprim co-blistered with a primaquine phosphate tablet. All Artecom samples were found to lack a label claim for primaquine, thus failing visual and physical inspection. The findings of the studies in both countries point to significant problems with the quality of anti-malarial medicines

  19. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry

    Science.gov (United States)

    Ye, Z.; Weinberg, H.S.; Meyer, M.T.

    2007-01-01

    A multirun analytical method has been developed and validated for trace determination of 24 antibiotics including 7 sulfonamides, 3 macrolides, 7 quinolones, 6 tetracyclines, and trimethoprim in chlorine-disinfected drinking water using a single solid-phase extraction method coupled to liquid chromatography with positive electrospray tandem mass spectrometry detection. The analytes were extracted by a hydrophilic-lipophilic balanced resin and eluted with acidified methanol (0.1% formic acid), resulting in analyte recoveries generally above 90%. The limits of quantitation were mostly below 10 ng/L in drinking water. Since the concentrated sample matrix typically caused ion suppression during electrospray ionization, the method of standard addition was used for quantitation. Chlorine residuals in drinking water can react with some antibiotics, but ascorbic acid was found to be an effective chlorine quenching agent without affecting the analysis and stability of the antibiotics in water. A preliminary occurrence study using this method revealed the presence of some antibiotics in drinking waters, including sulfamethoxazole (3.0-3.4 ng/L), macrolides (1.4-4.9 ng/L), and quinolones (1.2-4.0 ng/L). ?? 2007 American Chemical Society.

  20. High content live cell imaging for the discovery of new antimalarial marine natural products

    Directory of Open Access Journals (Sweden)

    Cervantes Serena

    2012-01-01

    Full Text Available Abstract Background The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. Methods A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Results Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Conclusion Collectively, our results show that high-content live cell-imaging (HCLCI can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials.

  1. High content live cell imaging for the discovery of new antimalarial marine natural products.

    Science.gov (United States)

    Cervantes, Serena; Stout, Paige E; Prudhomme, Jacques; Engel, Sebastian; Bruton, Matthew; Cervantes, Michael; Carter, David; Tae-Chang, Young; Hay, Mark E; Aalbersberg, William; Kubanek, Julia; Le Roch, Karine G

    2012-01-03

    The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. © 2011 Cervantes et al; licensee BioMed Central Ltd.

  2. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo.

    Science.gov (United States)

    Soares, Roberta Reis; da Silva, José Marcio Fernandes; Carlos, Bianca Cecheto; da Fonseca, Camila Campos; de Souza, Laila Salomé Araújo; Lopes, Fernanda Valério; de Paula Dias, Rafael Mafra; Moreira, Paulo Otávio Lourenço; Abramo, Clarice; Viana, Gustavo Henrique Ribeiro; de Pila Varotti, Fernando; da Silva, Adilson David; Scopel, Kézia Katiani Gorza

    2015-06-01

    Malaria continues to be an important public health problem in the world. Nowadays, the widespread parasite resistance to many drugs used in antimalarial therapy has made the effective treatment of cases and control of the disease a constant challenge. Therefore, the discovery of new molecules with good antimalarial activity and tolerance to human use can be really important in the further treatment of the disease. In this study we have investigated the antiplasmodial activity of 10 synthetic compounds derived from quinoline, five of them combined to sulfonamide and five to the hydrazine or hydrazide group. The compounds were evaluated according to their cytotoxicity against HepG2 and HeLa cell lines, their antimalarial activity against CQ-sensitive and CQ-resistant Plasmodium falciparum strains and, finally, their schizonticide blood action in mice infected with Plasmodium berghei NK65. The compounds exhibited no cytotoxic action in HepG2 and HeLa cell lines when tested up to a concentration of 100 μg/mL. In addition, the hydrazine or hydrazide derivative compounds were less cytotoxic against cell lines and more active against CQ-sensitive and CQ-resistant P. falciparum strains, showing high SI (>1000 when SI was calculated using the CC50 from the 3D7 strain as reference). When tested in vivo, the hydrazine derivative 1f compound showed activity against the development of blood parasites similar to that observed with CQ, the reference drug. Interestingly, the 1f compound demonstrated the best LipE value (4.84) among all those tested in vivo. Considering the in vitro and in vivo activities of the compounds studied here and the LipE values, we believe the 1f compound to be the most promising molecule for further studies in antimalarial chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Got ACTs? Availability, price, market share and provider knowledge of anti-malarial medicines in public and private sector outlets in six malaria-endemic countries

    Directory of Open Access Journals (Sweden)

    O'Connell Kathryn A

    2011-10-01

    Full Text Available Abstract Background Artemisinin-based combination therapy (ACT is the first-line malaria treatment throughout most of the malaria-endemic world. Data on ACT availability, price and market share are needed to provide a firm evidence base from which to assess the current situation concerning quality-assured ACT supply. This paper presents supply side data from ACTwatch outlet surveys in Benin, the Democratic Republic of Congo (DRC, Madagascar, Nigeria, Uganda and Zambia. Methods Between March 2009 and June 2010, nationally representative surveys of outlets providing anti-malarials to consumers were conducted. A census of all outlets with the potential to provide anti-malarials was conducted in clusters sampled randomly. Results 28,263 outlets were censused, 51,158 anti-malarials were audited, and 9,118 providers interviewed. The proportion of public health facilities with at least one first-line quality-assured ACT in stock ranged between 43% and 85%. Among private sector outlets stocking at least one anti-malarial, non-artemisinin therapies, such as chloroquine and sulphadoxine-pyrimethamine, were widely available (> 95% of outlets as compared to first-line quality-assured ACT ( Conclusions These standardized, nationally representative results demonstrate the typically low availability, low market share and high prices of ACT, in the private sector where most anti-malarials are accessed, with some exceptions. The results confirm that there is substantial room to improve availability and affordability of ACT treatment in the surveyed countries. The data will also be useful for monitoring the impact of interventions such as the Affordable Medicines Facility for malaria.

  4. Application of computer assisted combinatorial chemistry in antivirial, antimalarial and anticancer agents design

    Science.gov (United States)

    Burello, E.; Bologa, C.; Frecer, V.; Miertus, S.

    Combinatorial chemistry and technologies have been developed to a stage where synthetic schemes are available for generation of a large variety of organic molecules. The innovative concept of combinatorial design assumes that screening of a large and diverse library of compounds will increase the probability of finding an active analogue among the compounds tested. Since the rate at which libraries are screened for activity currently constitutes a limitation to the use of combinatorial technologies, it is important to be selective about the number of compounds to be synthesized. Early experience with combinatorial chemistry indicated that chemical diversity alone did not result in a significant increase in the number of generated lead compounds. Emphasis has therefore been increasingly put on the use of computer assisted combinatorial chemical techniques. Computational methods are valuable in the design of virtual libraries of molecular models. Selection strategies based on computed physicochemical properties of the models or of a target compound are introduced to reduce the time and costs of library synthesis and screening. In addition, computational structure-based library focusing methods can be used to perform in silico screening of the activity of compounds against a target receptor by docking the ligands into the receptor model. Three case studies are discussed dealing with the design of targeted combinatorial libraries of inhibitors of HIV-1 protease, P. falciparum plasmepsin and human urokinase as potential antivirial, antimalarial and anticancer drugs. These illustrate library focusing strategies.

  5. Differences in anti-malarial activity of 4-aminoalcohol quinoline enantiomers and investigation of the presumed underlying mechanism of action

    Directory of Open Access Journals (Sweden)

    Mullié Catherine

    2012-03-01

    Full Text Available Abstract Background A better anti-malarial efficiency and lower neurotoxicity have been reported for mefloquine (MQ (+- enantiomer. However, the importance of stereoselectivity remains poorly understood as the anti-malarial activity of pure enantiomer MQ analogues has never been described. Building on these observations, a series of enantiopure 4-aminoalcohol quinoline derivatives has previously been synthesized to optimize the efficiency and reduce possible adverse effects. Their in vitro activity on Plasmodium falciparum W2 and 3D7 strains is reported here along with their inhibition of β-haematin formation and peroxidative degradation of haemin, two possible mechanisms of action of anti-malarial drugs. Results The (S-enantiomers of this series of 4-aminoalcohol quinoline derivatives were found to be at least as effective as both chloroquine (CQ and MQ. The derivative with a 5-carbon side-chain length was the more efficient on both P. falciparum strains. (R -enantiomers displayed an activity decreased by 2 to 15-fold as compared to their (S counterparts. The inhibition of β-haematin formation was significantly stronger with all tested compounds than with MQ, irrespective of the stereochemistry. Similarly, the inhibition of haemin peroxidation was significantly higher for both (S and (R-enantiomers of derivatives with a side-chain length of five or six carbons than for MQ and CQ. Conclusions The prominence of stereochemistry in the anti-malarial activity of 4-aminoalcohol quinoline derivatives is confirmed. The inhibition of β-haematin formation and haemin peroxidation can be put forward as presumed mechanisms of action but do not account for the stereoselectivity of action witnessed in vitro.

  6. Screening of Kenyan medicinal plants for antimalarial effects on Plasmodium falciparum in vitror. Final report for the period 15 December 1993 - 31 December 1994

    International Nuclear Information System (INIS)

    Ofulla, A.V.O.

    1995-01-01

    The antimalarial activities of extracts of Albizia gummifera and Aspilia mossambicensis against culture adapted isolates of Plasmodium falciparum were evaluated using an in citro 3 H-hypoxanthine uptake technique. Chloroquine was used as a standard antimalarial drug for comparison with the plant extracts. The plant extracts showed various levels of activities (expressed as 50% inhibitory concentration (IC 50 s) in ug/ml of test culture) against P. falciparum in vitro, with Al gummifera showing the highest activity (eman IC 50 of 5.98 ± 2.9 SD, n=6), followed by A. mossambicensis (mean IC 50 73.36 ± 59.3 SD, n=18). The mean antimalarial activity of chloroquine (in ug/ml) was 0.037 (± 0.04 SD, n=10), far higher than that of the plant extracts. (author). 5 refs, 2 tabs

  7. High Accumulation and In Vivo Recycling of the New Antimalarial Albitiazolium Lead to Rapid Parasite Death.

    Science.gov (United States)

    Wein, Sharon; Taudon, Nicolas; Maynadier, Marjorie; Tran Van Ba, Christophe; Margout, Delphine; Bordat, Yann; Fraisse, Laurent; Wengelnik, Kai; Cerdan, Rachel; Bressolle-Gomeni, Françoise; Vial, Henri J

    2017-08-01

    Albitiazolium is the lead compound of bisthiazolium choline analogues and exerts powerful in vitro and in vivo antimalarial activities. Here we provide new insight into the fate of albitiazolium in vivo in mice and how it exerts its pharmacological activity. We show that the drug exhibits rapid and potent activity and has very favorable pharmacokinetic and pharmacodynamic properties. Pharmacokinetic studies in Plasmodium vinckei -infected mice indicated that albitiazolium rapidly and specifically accumulates to a great extent (cellular accumulation ratio, >150) in infected erythrocytes. Unexpectedly, plasma concentrations and the area under concentration-time curves increased by 15% and 69% when mice were infected at 0.9% and 8.9% parasitemia, respectively. Albitiazolium that had accumulated in infected erythrocytes and in the spleen was released into the plasma, where it was then available for another round of pharmacological activity. This recycling of the accumulated drug, after the rupture of the infected erythrocytes, likely extends its pharmacological effect. We also established a new viability assay in the P. vinckei -infected mouse model to discriminate between fast- and slow-acting antimalarials. We found that albitiazolium impaired parasite viability in less than 6 and 3 h at the ring and late stages, respectively, while parasite morphology was affected more belatedly. This highlights that viability and morphology are two parameters that can be differentially affected by a drug treatment, an element that should be taken into account when screening new antimalarial drugs. Copyright © 2017 American Society for Microbiology.

  8. Photoreactivity of biologically active compounds. VII. Interaction of antimalarial drugs with melanin in vitro as part of phototoxicity screening.

    Science.gov (United States)

    Kristensen, S; Orsteen, A L; Sande, S A; Tønnesen, H H

    1994-10-01

    The drugs commonly used in the treatment of malaria are photochemically unstable. Several of these compounds accumulate in melanin-rich tissues and cause toxic reactions which may be light induced. As part of the screening of the photochemical properties and phototoxic capabilities of antimalarials, the in vitro interaction of eight antimalarials with melanin was studied. The dissociation constant for the drug-melanin complex and the relative number of binding sites on melanin were estimated for six of the drugs using a curve-fitting program. The reaction rate for the formation of the melanin-drug complex was determined, and the complexes were further characterized by zeta potential measurements.

  9. Isolation and Purification of C-phycocyanin from Nostoc muscorum (Cyanophyceae and Cyanobacteria Exhibits Antimalarial Activity In vitro

    Directory of Open Access Journals (Sweden)

    Sukla Biswas

    2010-10-01

    Full Text Available The Phycobilin pigments are intensively fluorescent and water soluble. They are categorized into three types, such as pigments containing high, intermediate and low energies are Phycoerythrins (Phycoerythrocyanins, Phycocyanins and Allophycocyanins, respectively. Besides light harvesting, the Phycobiliproteins have shown industrial and biomedical importance. Among them, C-phycocyanin (C-PC has been considered to be the most preferred one. The present study was undertaken to evaluate the antimalarial activity of C-PC isolated from a Nitrogen-fixing Cyanobacterium and Nostoc muscorum. C- PC was extracted and purified by acetone extraction and ammonium sulfate precipitation and dialysis followed by amicon filtration. It was isolated as a~124 kDa water soluble protein molecule. It showed antimalarial activity in vitro against Chloroquine sensitive and resistant Plasmodium falciparum strains. Inhibitory concentrations at 50%, 90% and 95% were determined as 10.27±2.79, 53.53±6.26 and 73.78±6.92 µg/ml against the Chloroquine-sensitive strains; 10.37±1.43, 56.99±11.07 and 72.79±8.59 µg/ml against Chloroquine resistant of Plasmodium falciparum strains. C-PC was found to have antimalarial activity even at a concentration of 3.0 µg/ml. The possible mechanism might be relied on the destruction of polymerization of Haemozoin by binding of C-PC with Ferriprotoporphyrin-IX at the water surface of the plasma membrane.

  10. Fe (III) complex of mefloquine hydrochloride: Synthesis ...

    African Journals Online (AJOL)

    As part of the ongoing research for more effective antimalarial drug, Fe (III) complex of mefloquine hydrochloride (antimalarial drug) was synthesized using template method. Mefloquine was tentatively found to have coordinated through the hydroxyl and the two nitrogen atoms in the quinoline and piperidine in the structure, ...

  11. Phytochemical Analysis and Antimalarial Activity Aqueous Extract of Lecaniodiscus cupanioides Root

    Directory of Open Access Journals (Sweden)

    Mikhail Olugbemiro Nafiu

    2013-01-01

    Full Text Available Root aqueous extract of Lecaniodiscus cupanioides was evaluated for antimalarial activity and analyzed for its phytochemical constituents. Twenty-four (24 albino mice were infected by intraperitoneal injection of standard inoculum of chloroquine sensitive Plasmodium berghei (NK 65. The animals were randomly divided into 6 groups of 3 mice each. Group 1 served as the control while groups II–IV were orally administered 50, 150, and 250 mg/kg body weights of extract. Groups 5 and 6 received 1.75 and 5 mg/kg of artesunate and chloroquine, respectively. The results of the phytochemical analysis showed the presence of alkaloids (2.37%, saponin (0.336, tannin (0.012 per cent, phenol (0.008 per cent, and anthraquinone (0.002 per cent. There was 100 per cent parasite inhibition in the chloroquine group and 70 per cent in the 50 mg/kg body weight on day 12, respectively. The mean survival time (MST, for the control group was 14 days, artesunate 16 days, and chloroquine 30 days, while the groups that received 50 and 250 mg/kg body weight recorded similar MST of 17 days and the 150 mg/kg body weight group recorded 19 days. The results obtained indicated that the aqueous extract of Lecaniodiscus cupanioides may provide an alternative antimalarial.

  12. Early home treatment of childhood fevers with ineffective antimalarials is deleterious in the outcome of severe malaria

    Directory of Open Access Journals (Sweden)

    Olumese Peter E

    2008-07-01

    Full Text Available Abstract Background Early diagnosis and prompt treatment including appropriate home-based treatment of malaria is a major strategy for malaria control. A major determinant of clinical outcome in case management is compliance and adherence to effective antimalarial regimen. Home-based malaria treatment with inappropriate medicines is ineffective and there is insufficient evidence on how this contributes to the outcome of severe malaria. This study evaluated the effects of pre-hospital antimalarial drugs use on the presentation and outcome of severe malaria in children in Ibadan, Nigeria. Methods Two hundred and sixty-eight children with a median age of 30 months comprising 114 children with cerebral malaria and 154 with severe malarial anaemia (as defined by WHO were prospectively enrolled. Data on socio-demographic data, treatments given at home, clinical course and outcome of admission were collected and analysed. Results A total of 168 children had treatment with an antimalarial treatment at home before presenting at the hospital when there was no improvement. There were no significant differences in the haematocrit levels, parasite counts and nutritional status of the pre-hospital treated and untreated groups. The most commonly used antimalarial medicine was chloroquine. Treatment policy was revised to Artemesinin-based Combination Therapy (ACT in 2005 as a response to unacceptable levels of therapeutic failures with chloroquine, however chloroquine use remains high. The risk of presenting as cerebral malaria was 1.63 times higher with pre-hospital use of chloroquine for treatment of malaria, with a four-fold increase in the risk of mortality. Controlling for other confounding factors including age and clinical severity, pre-hospital treatment with chloroquine was an independent predictor of mortality. Conclusion This study showed that, home treatment with chloroquine significantly impacts on the outcome of severe malaria. This finding

  13. Discovery and Characterization of ACT-451840: an Antimalarial Drug with a Novel Mechanism of Action.

    Science.gov (United States)

    Boss, Christoph; Aissaoui, Hamed; Amaral, Nathalie; Bauer, Aude; Bazire, Stephanie; Binkert, Christoph; Brun, Reto; Bürki, Cédric; Ciana, Claire-Lise; Corminboeuf, Olivier; Delahaye, Stephane; Dollinger, Claire; Fischli, Christoph; Fischli, Walter; Flock, Alexandre; Frantz, Marie-Céline; Girault, Malory; Grisostomi, Corinna; Friedli, Astrid; Heidmann, Bibia; Hinder, Claire; Jacob, Gael; Le Bihan, Amelie; Malrieu, Sophie; Mamzed, Saskia; Merot, Aurelien; Meyer, Solange; Peixoto, Sabrina; Petit, Nolwenn; Siegrist, Romain; Trollux, Julien; Weller, Thomas; Wittlin, Sergio

    2016-09-20

    More than 40 % of the world's population is at risk of being infected with malaria. Most malaria cases occur in the countries of sub-Saharan Africa, Central and South America, and Asia. Resistance to standard therapy, including artemisinin combinations, is increasing. There is an urgent need for novel antimalarials with new mechanisms of action. In a phenotypic screen, we identified a series of phenylalanine-based compounds that exhibit antimalarial activity via a new and yet unknown mechanism of action. Our optimization efforts culminated in the selection of ACT-451840 [(S,E)-N-(4-(4-acetylpiperazin-1-yl)benzyl)-3-(4-(tert-butyl)phenyl)-N-(1-(4-(4-cyanobenzyl)piperazin-1-yl)-1-oxo-3-phenylpropan-2-yl)acrylamide] for clinical development. Herein we describe our optimization efforts from the screening hit to the potential drug candidate with respect to antiparasitic activity, drug metabolism and pharmacokinetics (DMPK) properties, and in vivo pharmacological efficacy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Platelet factor 4 activity against P. falciparum and its translation to nonpeptidic mimics as antimalarials.

    Science.gov (United States)

    Love, Melissa S; Millholland, Melanie G; Mishra, Satish; Kulkarni, Swapnil; Freeman, Katie B; Pan, Wenxi; Kavash, Robert W; Costanzo, Michael J; Jo, Hyunil; Daly, Thomas M; Williams, Dewight R; Kowalska, M Anna; Bergman, Lawrence W; Poncz, Mortimer; DeGrado, William F; Sinnis, Photini; Scott, Richard W; Greenbaum, Doron C

    2012-12-13

    Plasmodium falciparum pathogenesis is affected by various cell types in the blood, including platelets, which can kill intraerythrocytic malaria parasites. Platelets could mediate these antimalarial effects through human defense peptides (HDPs), which exert antimicrobial effects by permeabilizing membranes. Therefore, we screened a panel of HDPs and determined that human platelet factor 4 (hPF4) kills malaria parasites inside erythrocytes by selectively lysing the parasite digestive vacuole (DV). PF4 rapidly accumulates only within infected erythrocytes and is required for parasite killing in infected erythrocyte-platelet cocultures. To exploit this antimalarial mechanism, we tested a library of small, nonpeptidic mimics of HDPs (smHDPs) and identified compounds that kill P. falciparum by rapidly lysing the parasite DV while sparing the erythrocyte plasma membrane. Lead smHDPs also reduced parasitemia in a murine malaria model. Thus, identifying host molecules that control parasite growth can further the development of related molecules with therapeutic potential. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Screening of Kenyan medicinal plants for antimalarial effects on Plasmodium falciparum in vitror. Final report for the period 15 December 1993 - 31 December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Ofulla, A V.O.

    1995-01-01

    The antimalarial activities of extracts of Albizia gummifera and Aspilia mossambicensis against culture adapted isolates of Plasmodium falciparum were evaluated using an in citro {sup 3}H-hypoxanthine uptake technique. Chloroquine was used as a standard antimalarial drug for comparison with the plant extracts. The plant extracts showed various levels of activities (expressed as 50% inhibitory concentration (IC{sub 50}s) in ug/ml of test culture) against P. falciparum in vitro, with Al gummifera showing the highest activity (eman IC{sub 50} of 5.98 {+-} 2.9 SD, n=6), followed by A. mossambicensis (mean IC{sub 50} 73.36 {+-} 59.3 SD, n=18). The mean antimalarial activity of chloroquine (in ug/ml) was 0.037 ({+-} 0.04 SD, n=10), far higher than that of the plant extracts. (author). 5 refs, 2 tabs.

  16. Antimalarial and cytotoxic activities of roots and fruits fractions of Astrodaucus persicus extract

    Directory of Open Access Journals (Sweden)

    Saied Goodarzi

    2017-12-01

    Full Text Available Objective(s:Astrodaucus persicus (Apiaceae is one of the two species of this genus which grows in different parts of Iran. Roots of this plant were rich in benzodioxoles and used as food additive or salad in Iran and near countries. The aim of present study was evaluation of antimalarial and cytotoxic effects of different fractions of A. persicus fruits and roots extracts. Materials and Methods: Ripe fruits and roots of A. persicuswere extracted and fractionated by hexane, chloroform, ethyl acetate and methanol, separately. Antimalarial activities of fractions were performed based on Plasmodium berghei suppressive test in mice model and percentage of parasitemia and suppression were determined for each sample. Cytotoxicity of fruits and roots fractions were investigated against human breast adenocarcinoma (MCF-7, colorectal carcinoma (SW480 and normal (L929 cell lines by MTT assay and IC50 of them were measured. Results: Hexane fraction of roots extract (RHE and ethyl acetate fraction of fruits extract (FEA of A. persicus demonstrated highest parasite inhibition (73.3 and 72.3%, respectively at 500 mg/kg/day which were significantly different from negative control group (P

  17. The effect of malaria and anti-malarial drugs on skeletal and cardiac muscles.

    Science.gov (United States)

    Marrelli, Mauro Toledo; Brotto, Marco

    2016-11-02

    Malaria remains one of the most important infectious diseases in the world, being a significant public health problem associated with poverty and it is one of the main obstacles to the economy of an endemic country. Among the several complications, the effects of malaria seem to target the skeletal muscle system, leading to symptoms, such as muscle aches, muscle contractures, muscle fatigue, muscle pain, and muscle weakness. Malaria cause also parasitic coronary artery occlusion. This article reviews the current knowledge regarding the effect of malaria disease and the anti-malarial drugs on skeletal and cardiac muscles. Research articles and case report publications that addressed aspects that are important for understanding the involvement of malaria parasites and anti-malarial therapies affecting skeletal and cardiac muscles were analysed and their findings summarized. Sequestration of red blood cells, increased levels of serum creatine kinase and reduced muscle content of essential contractile proteins are some of the potential biomarkers of the damage levels of skeletal and cardiac muscles. These biomarkers might be useful for prevention of complications and determining the effectiveness of interventions designed to protect cardiac and skeletal muscles from malaria-induced damage.

  18. Prevalence and characterisation of plasmid-mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes among Shigella isolates from Henan, China, between 2001 and 2008.

    Science.gov (United States)

    Yang, Haiyan; Duan, Guangcai; Zhu, Jingyuan; Zhang, Weidong; Xi, Yuanlin; Fan, Qingtang

    2013-08-01

    A total of 293 Shigella isolates were isolated from patients with diarrhoea in four villages of Henan, China. This study investigated the prevalence of the plasmid-mediated quinolone resistance (PMQR) genes qnrA, qnrB, qnrS, qepA and aac(6')-Ib-cr and compared the polymorphic quinolone resistance-determining regions (QRDRs) of gyrA, gyrB, parC and parE. Of the isolates, 292 were found to be resistant to nalidixic acid and pipemidic acid, whereas 77 were resistant to ciprofloxacin (resistance rate of 26.3%). Resistance of the Shigella isolates to ciprofloxacin significantly increased from 2001 to 2008 (PShigella isolates are common in China. This study found that there was a significant increase in mutation rates of the QRDR and the resistant rates to ciprofloxacin. Other mechanisms may be present in the isolates that also contribute to their resistance to ciprofloxacin. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  19. Antimalarial efficacy of Albizia lebbeck (Leguminosae) against Plasmodium falciparum in vitro & P. berghei in vivo.

    Science.gov (United States)

    Kalia, Shagun; Walter, Neha Sylvia; Bagai, Upma

    2015-12-01

    Albizia lebbeck Benth. (Leguminosae) has long been used in Indian traditional medicine. The current study was designed to test antimalarial activity of ethanolic bark extract of A. lebbeck (EBEAL). EBEAL was prepared by soxhlet extraction and subjected to phytochemical analysis. The extract was evaluated for its in vitro antimalarial activity against Plasmodium falciparum chloroquine (CQ) sensitive (MRC2) and CQ resistant (RKL9) strains. Cytotoxicity (CC 50 ) of extract against HeLa cells was evaluated. Median lethal dose (LD 50 ) was determined to assess safety of EBEAL in BALB/c mice. Schizonticidal (100-1000 mg/kg) and preventive (100-750 mg/kg) activities of EBEAL were evaluated against P. berghei. Curative activity (100-750 mg/kg) of extract was also evaluated. Phytochemical screening revealed presence of alkaloids, flavonoids, phenols, saponins, terpenes and phytosterols. The extract exhibited IC 50 of 8.2 µg/ml (MRC2) and 5.1 µg/ml (RKL9). CC 50 of extract on HeLa cell line was calculated to be >1000 µg/ml. EBEAL showed selectivity indices (SI) of >121.9 and >196.07 against MRC2 and RKL9 strains of P. falciparum, respectively. LD 50 of EBEAL was observed to be >5 g/kg. Dose-dependent chemosuppression was observed with significant ( p50 >100 mg/kg. Significant (P50 mg/kg concentration of extract on D7. The present investigation reports antiplasmodial efficacy of EBEAL in vitro against P. falciparum as evident by high SI values. ED 50 of <100 mg/kg against P. berghei categorizes EBEAL as active antimalarial. Further studies need to be done to exploit its antiplasmodial activity further.

  20. Cysteine-stabilised peptide extract of Morinda lucida (Benth) leaf exhibits antimalarial activity and augments antioxidant defense system in P. berghei-infected mice.

    Science.gov (United States)

    Adebayo, Joseph O; Adewole, Kayode E; Krettli, Antoniana U

    2017-07-31

    Cysteine-stabilised peptides (CSP) are majorly explored for their bioactivities with applications in medicine and agriculture. Morinda lucida leaf is used indigenously for the treatment of malaria; it also contains CSP but the role of CSP in the antimalarial activity of the leaf has not been evaluated. This study was therefore performed to evaluate the antimalarial activity of partially purified cysteine-stabilised peptide extract (PPCPE) of Morinda lucida leaf and its possible augmentation of the antioxidant systems of liver and erythrocytes in murine malaria. PPCPE was prepared from Morinda lucida leaf. The activity of PPCPE was evaluated in vitro against Plasmodium falciparum W2 and its cytotoxicity against a BGM kidney cell line. PPCPE was also evaluated for its antimalarial activity and its effects on selected liver and erythrocyte antioxidant parameters in P. berghei NK65-infected mice. PPCPE was not active against P. falciparum W2 (IC 50 : >50µg/ml) neither was it cytotoxic (MLD 50 : >1000µg/ml). However, PPCPE was active against P. berghei NK65 in vivo, causing 51.52% reduction in parasitaemia at 31.25mg/Kg body weight on day 4 post-inoculation. PPCPE significantly reduced (P activities of glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase in a dose-dependent manner, which was significant (P antimalarial effect and that PPCPE may augment the antioxidant defense system to alleviate the reactive oxygen species-mediated complications of malaria. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  1. Evaluation of antimalarial, free-radical-scavenging and insecticidal activities of Artemisia scoparia and A. Spicigera, Asteraceae

    Directory of Open Access Journals (Sweden)

    Fariba H. Afshar

    2011-12-01

    Full Text Available Artemisia species (Asteraceae, widespread throughout the world, are a group of important medicinal plants. The extracts of two medicinal plants of this genus, Artemisia scoparia Waldst. & Kit. and A. spicigera C. Koch, were evaluated for potential antimalarial, free-radical-scavenging and insecticidal properties, using the heme biocrystallisation and inhibition assay, the DPPH assay and the contact toxicity bioassay using the pest Tribolium castaneum, respectively. The methanol extracts of both species showed strong free-radical-scavenging activity and the RC50 values were 0.0317 and 0.0458 mg/mL, respectively, for A. scoparia and A. spicigera. The dichloromethane extracts of both species displayed a moderate level of potential antimalarial activity providing IC50 at 0.778 and 0.999 mg/mL for A. scoparia and A. spicigera, respectively. Both species of Artemisia showed insecticidal properties. However, A. spicigera was more effective than A. scoparia.

  2. Preliminary assessment of medicinal plants used as antimalarials in the southeastern Venezuelan Amazon

    Directory of Open Access Journals (Sweden)

    Caraballo Alejandro

    2004-01-01

    Full Text Available Eighteen species of medicinal plants used in the treatment of malaria in Bolívar State, Venezuela were recorded and they belonged to Compositae, Meliaceae, Anacardiaceae, Bixaceae, Boraginaceae, Caricaceae, Cucurbitaceae, Euphorbiaceae, Leguminosae, Myrtaceae, Phytolaccaceae, Plantaginaceae, Scrophulariaceae, Solanaceae and Verbenaceae families. Antimalarial plant activities have been linked to a range of compounds including anthroquinones, berberine, flavonoids, limonoids, naphthquinones, sesquiterpenes, quassinoids, indol and quinoline alkaloids.

  3. Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways

    Science.gov (United States)

    Allman, Erik L.; Painter, Heather J.; Samra, Jasmeet; Carrasquilla, Manuela

    2016-01-01

    The threat of widespread drug resistance to frontline antimalarials has renewed the urgency for identifying inexpensive chemotherapeutic compounds that are effective against Plasmodium falciparum, the parasite species responsible for the greatest number of malaria-related deaths worldwide. To aid in the fight against malaria, a recent extensive screening campaign has generated thousands of lead compounds with low micromolar activity against blood stage parasites. A subset of these leads has been compiled by the Medicines for Malaria Venture (MMV) into a collection of structurally diverse compounds known as the MMV Malaria Box. Currently, little is known regarding the activity of these Malaria Box compounds on parasite metabolism during intraerythrocytic development, and a majority of the targets for these drugs have yet to be defined. Here we interrogated the in vitro metabolic effects of 189 drugs (including 169 of the drug-like compounds from the Malaria Box) using ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS). The resulting metabolic fingerprints provide information on the parasite biochemical pathways affected by pharmacologic intervention and offer a critical blueprint for selecting and advancing lead compounds as next-generation antimalarial drugs. Our results reveal several major classes of metabolic disruption, which allow us to predict the mode of action (MoA) for many of the Malaria Box compounds. We anticipate that future combination therapies will be greatly informed by these results, allowing for the selection of appropriate drug combinations that simultaneously target multiple metabolic pathways, with the aim of eliminating malaria and forestalling the expansion of drug-resistant parasites in the field. PMID:27572391

  4. Assessing the utility of an anti-malarial pharmacokinetic-pharmacodynamic model for aiding drug clinical development

    Directory of Open Access Journals (Sweden)

    Zaloumis Sophie

    2012-08-01

    Full Text Available Abstract Background Mechanistic within-host models relating blood anti-malarial drug concentrations with the parasite-time profile help in assessing dosing schedules and partner drugs for new anti-malarial treatments. A comprehensive simulation study to assess the utility of a stage-specific pharmacokinetic-pharmacodynamic (PK-PD model for predicting within-host parasite response was performed. Methods Three anti-malarial combination therapies were selected: artesunate-mefloquine, dihydroartemisinin-piperaquine, and artemether-lumefantrine. The PK-PD model included parameters to represent the concentration-time profiles of both drugs, the initial parasite burden and distribution across the parasite life cycle, and the parasite multiplication factor due to asexual reproduction. The model also included the maximal killing rate of each drug, and the blood drug concentration associated with half of that killing effect (in vivo EC50, derived from the in vitro IC50, the extent of binding to 0.5% Albumax present in the in vitro testing media, and the drugs plasma protein binding and whole blood to plasma partitioning ratio. All stochastic simulations were performed using a Latin-Hypercube-Sampling approach. Results The simulations demonstrated that the proportion of patients cured was highly sensitive to the in vivo EC50 and the maximal killing rate of the partner drug co-administered with the artemisinin derivative. The in vivo EC50 values that corresponded to on average 95% of patients cured were much higher than the adjusted values derived from the in vitro IC50. The proportion clinically cured was not strongly influenced by changes in the parameters defining the age distribution of the initial parasite burden (mean age of 4 to 16 hours and the parasite multiplication factor every life cycle (ranging from 8 to 12 fold/cycle. The median parasite clearance times, however, lengthened as the standard deviation of the initial parasite burden increased (i

  5. Got ACTs? Availability, price, market share and provider knowledge of anti-malarial medicines in public and private sector outlets in six malaria-endemic countries.

    Science.gov (United States)

    O'Connell, Kathryn A; Gatakaa, Hellen; Poyer, Stephen; Njogu, Julius; Evance, Illah; Munroe, Erik; Solomon, Tsione; Goodman, Catherine; Hanson, Kara; Zinsou, Cyprien; Akulayi, Louis; Raharinjatovo, Jacky; Arogundade, Ekundayo; Buyungo, Peter; Mpasela, Felton; Adjibabi, Chérifatou Bello; Agbango, Jean Angbalu; Ramarosandratana, Benjamin Fanomezana; Coker, Babajide; Rubahika, Denis; Hamainza, Busiku; Chapman, Steven; Shewchuk, Tanya; Chavasse, Desmond

    2011-10-31

    Artemisinin-based combination therapy (ACT) is the first-line malaria treatment throughout most of the malaria-endemic world. Data on ACT availability, price and market share are needed to provide a firm evidence base from which to assess the current situation concerning quality-assured ACT supply. This paper presents supply side data from ACTwatch outlet surveys in Benin, the Democratic Republic of Congo (DRC), Madagascar, Nigeria, Uganda and Zambia. Between March 2009 and June 2010, nationally representative surveys of outlets providing anti-malarials to consumers were conducted. A census of all outlets with the potential to provide anti-malarials was conducted in clusters sampled randomly. 28,263 outlets were censused, 51,158 anti-malarials were audited, and 9,118 providers interviewed. The proportion of public health facilities with at least one first-line quality-assured ACT in stock ranged between 43% and 85%. Among private sector outlets stocking at least one anti-malarial, non-artemisinin therapies, such as chloroquine and sulphadoxine-pyrimethamine, were widely available (> 95% of outlets) as compared to first-line quality-assured ACT (sector, first-line quality-assured ACT was available for free in all countries except Benin and the DRC (US$1.29 [Inter Quartile Range (IQR): $1.29-$1.29] and $0.52[IQR: $0.00-$1.29] per adult equivalent dose respectively). In the private sector, first-line quality-assured ACT was 5-24 times more expensive than non-artemisinin therapies. The exception was Madagascar where, due to national social marketing of subsidized ACT, the price of first-line quality-assured ACT ($0.14 [IQR: $0.10, $0.57]) was significantly lower than the most popular treatment (chloroquine, $0.36 [IQR: $0.36, $0.36]). Quality-assured ACT accounted for less than 25% of total anti-malarial volumes; private-sector quality-assured ACT volumes represented less than 6% of the total market share. Most anti-malarials were distributed through the private sector

  6. In vitro studies on the sensitivity pattern of Plasmodium falciparum to anti-malarial drugs and local herbal extracts.

    Science.gov (United States)

    Olasehinde, Grace I; Ojurongbe, Olusola; Adeyeba, Adegboyega O; Fagade, Obasola E; Valecha, Neena; Ayanda, Isaac O; Ajayi, Adesola A; Egwari, Louis O

    2014-02-20

    The resistance of human malaria parasites to anti-malarial compounds has become considerable concern, particularly in view of the shortage of novel classes of anti-malarial drugs. One way to prevent resistance is by using new compounds that are not based on existing synthetic antimicrobial agents. Sensitivity of 100 Plasmodium falciparum isolates to chloroquine, quinine, amodiaquine, mefloquine, sulphadoxine/pyrimethamine, artemisinin, Momordica charantia ('Ejirin') Diospyros monbuttensis ('Egun eja') and Morinda lucida ('Oruwo') was determined using the in vitro microtest (Mark III) technique to determine the IC50 of the drugs. All the isolates tested were sensitive to quinine, mefloquine and artesunate. Fifty-one percent of the isolates were resistant to chloroquine, 13% to amodiaquine and 5% to sulphadoxine/pyrimethamine. Highest resistance to chloroquine (68.9%) was recorded among isolates from Yewa zone while highest resistance to amodiaquine (30%) was observed in Ijebu zone. Highest resistance to sulphadoxine/pyrimethamine was recorded in Yewa and Egba zones, respectively. A positive correlation was observed between the responses to artemisinin and mefloquine (P0.05). Highest anti-plasmodial activity was obtained with the ethanolic extract of D. monbuttensis (IC50 = 3.2 nM) while the lowest was obtained from M. lucida (IC50 = 25 nM). Natural products isolated from plants used in traditional medicine, which have potent anti-plasmodial action in vitro, represent potential sources of new anti-malarial drugs.

  7. Quinolactacins A, B and C: novel quinolone compounds from Penicillium sp. EPF-6. I. Taxonomy, production, isolation and biological properties.

    Science.gov (United States)

    Kakinuma, N; Iwai, H; Takahashi, S; Hamano, K; Yanagisawa, T; Nagai, K; Tanaka, K; Suzuki, K; Kirikae, F; Kirikae, T; Nakagawa, A

    2000-11-01

    Quinolactacins A (1), B (2) and C (3), novel quinolone antibiotics have been found from the cultured broth of a fungal strain isolated from the larvae of the mulberry pyralid Margaronia pyloalis Welker). The fungal strain, EPF-6 was identified as Penicillium sp. from its morphological characteristics. Quinolactacins were obtained from the culture medium by solvent extraction and chromatographic purification. Compound 1 showed inhibitory activity against tumor necrosis factor (TNF) production induced by murine peritoneal macrophages and macrophage-like J774.1 cells stimulated with lipopolysaccharide (LPS).

  8. Epidemiological models for the spread of anti-malarial resistance

    Directory of Open Access Journals (Sweden)

    Antia R

    2003-02-01

    Full Text Available Abstract Background The spread of drug resistance is making malaria control increasingly difficult. Mathematical models for the transmission dynamics of drug sensitive and resistant strains can be a useful tool to help to understand the factors that influence the spread of drug resistance, and they can therefore help in the design of rational strategies for the control of drug resistance. Methods We present an epidemiological framework to investigate the spread of anti-malarial resistance. Several mathematical models, based on the familiar Macdonald-Ross model of malaria transmission, enable us to examine the processes and parameters that are critical in determining the spread of resistance. Results In our simplest model, resistance does not spread if the fraction of infected individuals treated is less than a threshold value; if drug treatment exceeds this threshold, resistance will eventually become fixed in the population. The threshold value is determined only by the rates of infection and the infectious periods of resistant and sensitive parasites in untreated and treated hosts, whereas the intensity of transmission has no influence on the threshold value. In more complex models, where hosts can be infected by multiple parasite strains or where treatment varies spatially, resistance is generally not fixed, but rather some level of sensitivity is often maintained in the population. Conclusions The models developed in this paper are a first step in understanding the epidemiology of anti-malarial resistance and evaluating strategies to reduce the spread of resistance. However, specific recommendations for the management of resistance need to wait until we have more data on the critical parameters underlying the spread of resistance: drug use, spatial variability of treatment and parasite migration among areas, and perhaps most importantly, cost of resistance.

  9. Activity of clinically relevant antimalarial drugs on Plasmodium falciparum mature gametocytes in an ATP bioluminescence "transmission blocking" assay.

    Directory of Open Access Journals (Sweden)

    Joël Lelièvre

    Full Text Available BACKGROUND: Current anti-malarial drugs have been selected on the basis of their activity against the symptom-causing asexual blood stage of the parasite. Which of these drugs also target gametocytes, in the sexual stage responsible for disease transmission, remains unknown. Blocking transmission is one of the main strategies in the eradication agenda and requires the identification of new molecules that are active against gametocytes. However, to date, the main limitation for measuring the effect of molecules against mature gametocytes on a large scale is the lack of a standardized and reliable method. Here we provide an efficient method to produce and purify mature gametocytes in vitro. Based on this new procedure, we developed a robust, affordable, and sensitive ATP bioluminescence-based assay. We then assessed the activity of 17 gold-standard anti-malarial drugs on Plasmodium late stage gametocytes. METHODS AND FINDINGS: Difficulties in producing large amounts of gametocytes have limited progress in the development of malaria transmission blocking assays. We improved the method established by Ifediba and Vanderberg to obtain viable, mature gametocytes en masse, whatever the strain used. We designed an assay to determine the activity of antimalarial drugs based on the intracellular ATP content of purified stage IV-V gametocytes after 48 h of drug exposure in 96/384-well microplates. Measurements of drug activity on asexual stages and cytotoxicity on HepG2 cells were also obtained to estimate the specificity of the active drugs. CONCLUSIONS: The work described here represents another significant step towards determination of the activity of new molecules on mature gametocytes of any strain with an automated assay suitable for medium/high-throughput screening. Considering that the biology of the forms involved in the sexual and asexual stages is very different, a screen of our 2 million-compound library may allow us to discover novel anti-malarial

  10. Determination of antimicrobial resistance to extended-spectrum cephalosporin, quinolones, and vancomycin in selected human enteric pathogens from Prince Edward Island, Canada.

    Science.gov (United States)

    Awosile, Babafela; German, Gregory; Rodriguez-Lecompte, Juan Carlos; Saab, Matthew E; Heider, Luke C; McClure, J Trenton

    2018-04-05

    The aim of this study was to determine the frequency of fecal carriage of vancomycin-resistant Enterococcus spp. and Escherichia coli with reduced susceptibilities to extended-spectrum cephalosporins (ESCs) and quinolones in humans on Prince Edward Island, Canada. Convenience fecal samples from individuals on Prince Edward Island were screened phenotypically using selective culture and genotypically using multiplex polymerase chain reactions to detect E. coli and Enterococcus spp. resistant to critically important antimicrobials. Twenty-six (5.3%) of 489 individuals had E. coli with reduced susceptibility to ESCs. Twenty-five (96.2%) of the 26 isolates harbored bla TEM , 18 (69.2%) harbored bla CMY-2 , 16 (61.5%) harbored bla CTX-M groups, 2 (7.7%) harbored bla SHV genes. None of the ESC-resistant E. coli was positive for carbapenem resistance. Twenty-one (8.3%) of 253 individuals had E. coli isolates with reduced quinolone susceptibility. All 21 isolates were positive for at least 1 qnr gene, with 3 (14.3%) isolates positive for qnrB, 5 (23.8%) positive for qnrS, and 13 (61.9%) positive for both qnrB and qnrS genes. All the enterococci isolates were vancomycin-susceptible. Higher susceptibility to the critically important antimicrobials was found in this study. This study can serve as a baseline for future antimicrobial resistance surveillance within this region.

  11. Recycling antimalarial leads for cancer: Antiproliferative properties of N-cinnamoyl chloroquine analogues

    OpenAIRE

    Bianca C Perez; Iva Fernandes; Nuno Mateus; Catia Teixeira; Paula Gomes

    2013-01-01

    Cinnamic acids and quinolines are known as useful scaffolds in the discovery of antitumor agents. Therefore, N-cinnamoylated analogues of chloroquine, recently reported as potent dual-action antimalarials, were evaluated against three different cancer cell lines: MKN-28, Caco-2, and MCF-7. All compounds display anti-proliferative activity in the micromolar range against the three cell lines tested, and most of them were more active than their parent drug, chloroquine, against all cell lines t...

  12. Antimalarial pyrido[1,2-a]benzimidazoles.

    Science.gov (United States)

    Ndakala, Albert J; Gessner, Richard K; Gitari, Patricia W; October, Natasha; White, Karen L; Hudson, Alan; Fakorede, Foluke; Shackleford, David M; Kaiser, Marcel; Yeates, Clive; Charman, Susan A; Chibale, Kelly

    2011-07-14

    A novel class of antimalarial pyrido[1,2-a]benzimidazoles were synthesized and evaluated for antiplasmodial activity and cytotoxicity following hits identified from screening commercially available compound collections. The most active of these, TDR86919 (4c), showed improved in vitro activity vs the drug-resistant K1 strain of Plasmodium falciparum relative to chloroquine (IC(50) = 0.047 μM v 0.17 μM); potency was retained against a range of drug-sensitive and drug-resistant strains, with negligible cytotoxicity against the mammalian (L-6) cell line (selectivity index of >600). 4c and several close analogues (as HCl or mesylate salts) showed significant efficacy in P. berghei infected mice following both intraperitoneal (ip) and oral (po) administration, with >90% inhibition of parasitemia, accompanied by an increase in the mean survival time (MSD). The pyrido[1,2-a]benzimidazoles appeared to be relatively slow acting in vivo compared to chloroquine, and metabolic stability of the alkylamino side chain was identified as a key issue in influencing in vivo activity.

  13. In vitro and in vivo antimalarial potential of oleoresin obtained from Copaifera reticulata Ducke (Fabaceae) in the Brazilian Amazon rainforest.

    Science.gov (United States)

    de Souza, Giovana A G; da Silva, Nazaré C; de Souza, Juarez; de Oliveira, Karen R M; da Fonseca, Amanda L; Baratto, Leopoldo C; de Oliveira, Elaine C P; Varotti, Fernando de Pilla; Moraes, Waldiney P

    2017-01-15

    In view of the wide variety of the flora of the Amazon region, many plants have been studied in the search for new antimalarial agents. Copaifera reticulata is a tree distributed throughout the Amazon region which contains an oleoresin rich in sesquiterpenes and diterpenes with β-caryophyllene as the major compound. The oleoresin has demonstrated antiparasitic activity against Leishmania amazonensis. Because of this previously reported activity, this oleoresin would be expected to also have antimalarial activity. In this study we evaluated the in vitro and in vivo antimalarial potential of C. reticulata oleoresin. In vitro assays were done using P. falciparum W2 and 3D7 strains and the human fibroblast cell line 26VA Wi-4. For in vivo analysis, BALB/c mice were infected with approximately 10 6 erythrocytes parasitized by P. berghei and their parasitemia levels were observed over 7 days of treatment with C. reticulata; hematological and biochemical parameters were analyzed at the end of experiment. The oleoresin of C. reticulata containing the sesquiterpenes β-caryophyllene (41.7%) and β-bisabolene (18.6%) was active against the P. falciparum W2 and 3D7 strains (IC 50  = 1.66 and 2.54 µg/ml, respectively) and showed low cytotoxicity against the 26VA Wi-4 cell line (IC 50  > 100 µg/ml). The C. reticulata oleoresin reduced the parasitemia levels of infected animals and doses of 200 and 100 mg/kg/day reached a rate of parasitemia elimination resembling that obtained with artemisinin 100 mg/kg/day. In addition, treatment with oleoresin improved the hypoglycemic, hematologic, hepatic and renal parameters of the infected animals. The oleoresin of C. reticulata has antimalarial properties and future investigations are necessary to elucidate its mechanism of action. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. A novel way to grow hemozoin-like crystals in vitro and its use to screen for hemozoin inhibiting antimalarial compounds.

    Directory of Open Access Journals (Sweden)

    Vincent Thomas

    Full Text Available BACKGROUND: Hemozoin crystals are normally formed in vivo by Plasmodium parasites to detoxify free heme released after hemoglobin digestion during its intraerythrocytic stage. Inhibition of hemozoin formation by various drugs results in free heme concentration toxic for the parasites. As a consequence, in vitro assays have been developed to screen and select candidate antimalarial drugs based on their capacity to inhibit hemozoin formation. In this report we describe new ways to form hemozoin-like crystals that were incidentally discovered during research in the field of prion inactivation. METHODS: We investigated the use of a new assay based on naturally occurring "self-replicating" particles and previously described as presenting resistance to decontamination comparable to prions. The nature of these particles was determined using electron microscopy, Maldi-Tof analysis and X-ray diffraction. They were compared to synthetic hemozoin and to hemozoin obtained from Plasmodium falciparum. We then used the assay to evaluate the capacity of various antimalarial and anti-prion compounds to inhibit "self-replication" (crystallisation of these particles. RESULTS: We identified these particles as being similar to ferriprotoporphyrin IX crystal and confirmed the ability of these particles to serve as nuclei for growth of new hemozoin-like crystals (HLC. HLC are morphologically similar to natural and synthetic hemozoin. Growth of HLC in a simple assay format confirmed inhibition by quinolines antimalarials at potencies described in the literature. Interestingly, artemisinins and tetracyclines also seemed to inhibit HLC growth. CONCLUSIONS: The described HLC assay is simple and easy to perform and may have the potential to be used as an additional tool to screen antimalarial drugs for their hemozoin inhibiting activity. As already described by others, drugs that inhibit hemozoin crystal formation have also the potential to inhibit misfolded proteins

  15. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies.

    Directory of Open Access Journals (Sweden)

    Julia Penna-Coutinho

    Full Text Available The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH all exhibit ∼90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2. The IC(50 values for each drug in both tests were similar, were lowest for posaconazole (<5 µM and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use.

  16. Antimalarial efficacy of Albizia lebbeck (Leguminosae against Plasmodium falciparum in vitro & P. berghei in vivo

    Directory of Open Access Journals (Sweden)

    Shagun Kalia

    2015-01-01

    Full Text Available Background & objectives: Albizia lebbeck Benth. (Leguminosae has long been used in Indian traditional medicine. The current study was designed to test antimalarial activity of ethanolic bark extract of A. lebbeck (EBEAL. Methods: EBEAL was prepared by soxhlet extraction and subjected to phytochemical analysis. The extract was evaluated for its in vitro antimalarial activity against Plasmodium falciparum chloroquine (CQ sensitive (MRC2 and CQ resistant (RKL9 strains. Cytotoxicity (CC 50 of extract against HeLa cells was evaluated. Median lethal dose (LD 50 was determined to assess safety of EBEAL in BALB/c mice. Schizonticidal (100-1000 mg/kg and preventive (100-750 mg/kg activities of EBEAL were evaluated against P. berghei. Curative activity (100-750 mg/kg of extract was also evaluated. Results: Phytochemical screening revealed presence of alkaloids, flavonoids, phenols, saponins, terpenes and phytosterols. The extract exhibited IC 50 of 8.2 µg/ml (MRC2 and 5.1 µg/ml (RKL9. CC 50 of extract on HeLa cell line was calculated to be >1000 µg/ml. EBEAL showed selectivity indices (SI of >121.9 and >196.07 against MRC2 and RKL9 strains of P. falciparum, respectively. LD 50 of EBEAL was observed to be >5 g/kg. Dose-dependent chemosuppression was observed with significant ( p100 mg/kg. Significant (P<0.001 curative and repository activities were exhibited by 750 mg/kg concentration of extract on D7. Interpretation & conclusions: The present investigation reports antiplasmodial efficacy of EBEAL in vitro against P. falciparum as evident by high SI values. ED 50 of <100 mg/kg against P. berghei categorizes EBEAL as active antimalarial. Further studies need to be done to exploit its antiplasmodial activity further.

  17. Structure of the Dioxygenase AsqJ: Mechanistic Insights into a One-Pot Multistep Quinolone Antibiotic Biosynthesis

    KAUST Repository

    Brä uer, Alois; Beck, Philipp; Hintermann, Lukas; Groll, Michael

    2015-01-01

    © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Multienzymatic cascades are responsible for the biosynthesis of natural products and represent a source of inspiration for synthetic chemists. The FeII/α-ketoglutarate-dependent dioxygenase AsqJ from Aspergillus nidulans is outstanding because it stereoselectively catalyzes both a ferryl-induced desaturation reaction and epoxidation on a benzodiazepinedione. Interestingly, the enzymatically formed spiro epoxide spring-loads the 6,7-bicyclic skeleton for non-enzymatic rearrangement into the 6,6-bicyclic scaffold of the quinolone alkaloid 4′-methoxyviridicatin. Herein, we report different crystal structures of the protein in the absence and presence of synthesized substrates, surrogates, and intermediates that mimic the various stages of the reaction cycle of this exceptional dioxygenase.

  18. Structure of the Dioxygenase AsqJ: Mechanistic Insights into a One-Pot Multistep Quinolone Antibiotic Biosynthesis

    KAUST Repository

    Bräuer, Alois

    2015-11-10

    © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Multienzymatic cascades are responsible for the biosynthesis of natural products and represent a source of inspiration for synthetic chemists. The FeII/α-ketoglutarate-dependent dioxygenase AsqJ from Aspergillus nidulans is outstanding because it stereoselectively catalyzes both a ferryl-induced desaturation reaction and epoxidation on a benzodiazepinedione. Interestingly, the enzymatically formed spiro epoxide spring-loads the 6,7-bicyclic skeleton for non-enzymatic rearrangement into the 6,6-bicyclic scaffold of the quinolone alkaloid 4′-methoxyviridicatin. Herein, we report different crystal structures of the protein in the absence and presence of synthesized substrates, surrogates, and intermediates that mimic the various stages of the reaction cycle of this exceptional dioxygenase.

  19. Severe pneumococcal pneumonia: impact of new quinolones on prognosis

    Directory of Open Access Journals (Sweden)

    Meybeck Agnes

    2011-03-01

    Full Text Available Abstract Background Most guidelines have been proposing, for more than 15 years, a β-lactam combined with either a quinolone or a macrolide as empirical, first-line therapy of severe community acquired pneumonia (CAP requiring ICU admission. Our goal was to evaluate the outcome of patients with severe CAP, focusing on the impact of new rather than old fluoroquinolones combined with β-lactam in the empirical antimicrobial treatments. Methods Retrospective study of consecutive patients admitted in a 16-bed general intensive care unit (ICU, between January 1996 and January 2009, for severe (Pneumonia Severity Index > or = 4 community-acquired pneumonia due to non penicillin-resistant Streptococcus pneumoniae and treated with a β-lactam combined with a fluoroquinolone. Results We included 70 patients of whom 38 received a β-lactam combined with ofloxacin or ciprofloxacin and 32 combined with levofloxacin. Twenty six patients (37.1% died in the ICU. Three independent factors associated with decreased survival in ICU were identified: septic shock on ICU admission (AOR = 10.6; 95% CI 2.87-39.3; p = 0.0004, age > 70 yrs. (AOR = 4.88; 95% CI 1.41-16.9; p = 0.01 and initial treatment with a β-lactam combined with ofloxacin or ciprofloxacin (AOR = 4.1; 95% CI 1.13-15.13; p = 0.03. Conclusion Our results suggest that, when combined to a β-lactam, levofloxacin is associated with lower mortality than ofloxacin or ciprofloxacin in severe pneumococcal community-acquired pneumonia.

  20. Anti-malarial activity of 6-(8'Z-pentadecenyl-salicylic acid from Viola websteri in mice

    Directory of Open Access Journals (Sweden)

    Park Won-Hwan

    2009-07-01

    Full Text Available Abstract Background Petroleum ether extracts of Viola websteri Hemsl (Violaceae were reported to have anti-plasmodial activity against Plasmodium falciparum in vitro, with this activity being largely attributable to 6-(8'Z-pentadecenyl-salicylic acid (6-SA. Methods The schizontocidal activity of 6-SA on early Plasmodium berghei infections was evaluated in a four-day test. The possible 'repository' activity of 6-SA was assessed using the method described by Peters. The median lethal dose (LD50 of 6-SA, when given intraperitoneally, was also determined using uninfected ICR mice and the method of Lorke. Results In the present study, 6-SA was found to have anti-malarial activity in vivo, when tested against P. berghei in mice. 6-SA at 5, 10 and 25 mg/kg·day exhibited a significant blood schizontocidal activity in four-day early infections, repository evaluations and established infections with a significant mean survival time comparable to that of the standard drug, chloroquine (5 mg/kg·day. Conclusion 6-SA possesses a moderate anti-malarial activity that could be exploited for malaria therapy.

  1. The Effectiveness of Local Plants from Lom and Sawang Ethnics as Antimalarial Medicine

    Directory of Open Access Journals (Sweden)

    Henny Helmi

    2016-09-01

    Full Text Available Native people or ethnic societies that live in endemic malaria islands such as in Bangka Island and Belitung Island have used many medicinal plants to cure malaria. Leaves of kesembung (Scaevola taccada (Gaertn Roxb, roots of kebentak (Wikstroemia androsaemofolia Decne, and roots of medang mencena (Dapniphyllum laurinum (Benth are the examples. This research was aimed to investigate the present of some biochemical compound and evaluate the antimalarial activity of ethanol extract of the plants against Plasmodium falciparum 3D7 in vitro. The IC50 level was determined through visual observation under microscope over 5000 of giemsa-stained erythrocytes then analyzed by probit analysis. Results showed that kebentak root ethanol extract was effective to inhibit P. falciparum 3D7 with level 0.485 µg/mL. Furthermore, the IC50 level of kesembung leaves and medang root were 44.352 µg/mL and 1486.678 µg/mL respectively. Phytochemical test result showed that kebentak leaf ethanol crude extract contained triterpenoid, kesembung root contained phenol and tannins; moreover, medang root contained alkaloid, saponin, and triterpenoid.How to CiteHelmi, H., Afriyansyah, B. & Ekasari, W. (2016. The Effectiveness of Local Plants from Lom and Sawang Ethnics as Antimalarial Medicine. Biosaintifika: Journal of Biology & Biology Education, 8(2, 193-200. 

  2. Analytical sample preparation strategies for the determination of antimalarial drugs in human whole blood, plasma and urine

    DEFF Research Database (Denmark)

    Casas, Monica Escolà; Hansen, Martin; Krogh, Kristine A

    2014-01-01

    the available sample preparation strategies combined with liquid chromatographic (LC) analysis to determine antimalarials in whole blood, plasma and urine published over the last decade. Sample preparation can be done by protein precipitation, solid-phase extraction, liquid-liquid extraction or dilution. After...

  3. New molecular settings to support in vivo anti-malarial assays.

    Science.gov (United States)

    Bahamontes-Rosa, Noemí; Alejandre, Ane Rodriguez; Gomez, Vanesa; Viera, Sara; Gomez-Lorenzo, María G; Sanz-Alonso, Laura María; Mendoza-Losana, Alfonso

    2016-03-08

    Quantitative real-time PCR (qPCR) is now commonly used as a method to confirm diagnosis of malaria and to differentiate recrudescence from re-infection, especially in clinical trials and in reference laboratories where precise quantification is critical. Although anti-malarial drug discovery is based on in vivo murine efficacy models, use of molecular analysis has been limited. The aim of this study was to develop qPCR as a valid methodology to support pre-clinical anti-malarial models by using filter papers to maintain material for qPCR and to compare this with traditional methods. FTA technology (Whatman) is a rapid and safe method for extracting nucleic acids from blood. Peripheral blood samples from mice infected with Plasmodium berghei, P. yoelii, or P. falciparum were kept as frozen samples or as spots on FTA cards. The extracted genetic material from both types of samples was assessed for quantification by qPCR using sets of specific primers specifically designed for Plasmodium 18S rRNA, LDH, and CytB genes. The optimal conditions for nucleic acid extraction from FTA cards and qPCR amplification were set up, and were confirmed to be suitable for parasite quantification using DNA as template after storage at room temperature for as long as 26 months in the case of P. berghei samples and 52 months for P. falciparum and P. yoelii. The quality of DNA extracted from the FTA cards for gene sequencing and microsatellite amplification was also assessed. This is the first study to report the suitability of FTA cards and qPCR assay to quantify parasite load in samples from in vivo efficacy models to support the drug discovery process.

  4. Andrographolide: A Novel Antimalarial Diterpene Lactone Compound from Andrographis paniculata and Its Interaction with Curcumin and Artesunate

    Directory of Open Access Journals (Sweden)

    Kirti Mishra

    2011-01-01

    Full Text Available Andrographolide (AND, the diterpene lactone compound, was purified by HPLC from the methanolic fraction of the plant Andrographis paniculata. The compound was found to have potent antiplasmodial activity when tested in isolation and in combination with curcumin and artesunate against the erythrocytic stages of Plasmodium falciparum in vitro and Plasmodium berghei ANKA in vivo. IC50s for artesunate (AS, andrographolide (AND, and curcumin (CUR were found to be 0.05, 9.1 and 17.4 μM, respectively. The compound (AND was found synergistic with curcumin (CUR and addictively interactive with artesunate (AS. In vivo, andrographolide-curcumin exhibited better antimalarial activity, not only by reducing parasitemia (29%, compared to the control (81%, but also by extending the life span by 2-3 folds. Being nontoxic to the in vivo system this agent can be used as template molecule for designing new derivatives with improved antimalarial properties.

  5. Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya.

    Science.gov (United States)

    Nguta, J M; Mbaria, J M

    2013-07-30

    In Kenya, most people especially in rural areas use traditional medicine and medicinal plants to treat many diseases including malaria. Malaria is of national concern in Kenya, in view of development of resistant strains of Plasmodium falciparum to drugs especially chloroquine, which had been effective and affordable. There is need for alternative and affordable therapy. Many antimalarial drugs have been derived from medicinal plants and this is evident from the reported antiplasmodial activity. The present study reports on the in vivo antimalarial activity and brine shrimp lethality of five medicinal plants traditionally used to treat malaria in Msambweni district, Kenya. A total of five aqueous crude extracts from different plant parts used in traditional medicine for the treatment of malaria were evaluated for their in vivo antimalarial activity using Plasmodium berghei infected Swiss mice and for their acute toxicity using Brine shrimp lethality test. The screened crude plant extracts suppressed parasitaemia as follows: Azadirachta indica (L) Burm. (Meliaceae), 3.1%; Dichrostachys cinerea (L) Wight et Arn (Mimosaceae), 6.3%; Tamarindus indica L. (Caesalpiniaceae), 25.1%; Acacia seyal Del. (Mimosaceae) 27.8% and Grewia trichocarpa Hochst ex A.Rich (Tiliaceae) 35.8%. In terms of toxicity, A.indica root bark extract had an LC50 of 285.8 µg/ml and was considered moderately toxic. T.indica stem bark extract and G.trichocarpa root extract had an LC50 of 516.4 and 545.8 µg/ml respectively and were considered to be weakly toxic while A.seyal and D.cinerea root extracts had a LC50>1000 µg/ml and were therefore considered to be non toxic. The results indicate that the aqueous extracts of the tested plants when used alone as monotherapy had antimalarial activity which was significantly different from that of chloroquine (P≤0.05). The results also suggest that the anecdotal efficacy of the above plants reported by the study community is related to synergism of

  6. Accessibility, availability and affordability of anti-malarials in a rural district in Kenya after implementation of a national subsidy scheme

    Directory of Open Access Journals (Sweden)

    Simiyu Chrispinus

    2011-10-01

    Full Text Available Abstract Background Poor access to prompt and effective treatment for malaria contributes to high mortality and severe morbidity. In Kenya, it is estimated that only 12% of children receive anti-malarials for their fever within 24 hours. The first point of care for many fevers is a local medicine retailer, such as a pharmacy or chemist. The role of the medicine retailer as an important distribution point for malaria medicines has been recognized and several different strategies have been used to improve the services that these retailers provide. Despite these efforts, many mothers still purchase ineffective drugs because they are less expensive than effective artemisinin combination therapy (ACT. One strategy that is being piloted in several countries is an international subsidy targeted at anti-malarials supplied through the retail sector. The goal of this strategy is to make ACT as affordable as ineffective alternatives. The programme, called the Affordable Medicines Facility - malaria was rolled out in Kenya in August 2010. Methods In December 2010, the affordability and accessibility of malaria medicines in a rural district in Kenya were evaluated using a complete census of all public and private facilities, chemists, pharmacists, and other malaria medicine retailers within the Webuye Demographic Surveillance Area. Availability, types, and prices of anti-malarials were assessed. There are 13 public or mission facilities and 97 medicine retailers (registered and unregistered. Results The average distance from a home to the nearest public health facility is 2 km, but the average distance to the nearest medicine retailer is half that. Quinine is the most frequently stocked anti-malarial (61% of retailers. More medicine retailers stocked sulphadoxine-pyramethamine (SP; 57% than ACT (44%. Eleven percent of retailers stocked AMFm subsidized artemether-lumefantrine (AL. No retailers had chloroquine in stock and only five were selling artemisinin

  7. Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose-Efficacy Modeling.

    Science.gov (United States)

    Le Bihan, Amélie; de Kanter, Ruben; Angulo-Barturen, Iñigo; Binkert, Christoph; Boss, Christoph; Brun, Reto; Brunner, Ralf; Buchmann, Stephan; Burrows, Jeremy; Dechering, Koen J; Delves, Michael; Ewerling, Sonja; Ferrer, Santiago; Fischli, Christoph; Gamo-Benito, Francisco Javier; Gnädig, Nina F; Heidmann, Bibia; Jiménez-Díaz, María Belén; Leroy, Didier; Martínez, Maria Santos; Meyer, Solange; Moehrle, Joerg J; Ng, Caroline L; Noviyanti, Rintis; Ruecker, Andrea; Sanz, Laura María; Sauerwein, Robert W; Scheurer, Christian; Schleiferboeck, Sarah; Sinden, Robert; Snyder, Christopher; Straimer, Judith; Wirjanata, Grennady; Marfurt, Jutta; Price, Ric N; Weller, Thomas; Fischli, Walter; Fidock, David A; Clozel, Martine; Wittlin, Sergio

    2016-10-01

    Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3-4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11-16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23-39). The compound's preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as survival) in relation to area under

  8. Resistance patterns to beta-lactams and quinolones in clinical isolates of bacteria from Cuban hospitals.

    Science.gov (United States)

    Gonzáles, I; Niebla, A; Vallin, C

    1995-01-01

    The resistance patterns to 26 beta-lactams and 8 quinolones of clinical isolates from Cuban hospitals were evaluated using the disk susceptibility test, according to the NCCLS guidelines (1992). The genera studied were Escherichia sp (320), Enterobacter sp (10), Klebsiella sp (90), Proteus sp (10), Pseudomonas sp (90), Serratia sp (20), and Staphylococcus sp (80). Higher resistance to beta-lactams was observed in the genera Pseudomonas, Escherichia and Klebsiella. For fluoroquinolones we found no significant resistance, with the exception of the genus Klebsiella. The most effective antibiotics were cephalosporins of the second and third generations, fluoroquinolones, and non-classical beta-lactams (cephamycins, moxalactam and monobactams). On the contrary, a pronounced resistance was found to penicillin, oxacillin, ticarcillin, ampicillin, methicillin, nalidixic acid and cinoxacin. These resistance patterns correspond to the high consumption of these antibiotics throughout the country.

  9. The activities of current antimalarial drugs on the life cycle stages of Plasmodium: a comparative study with human and rodent parasites.

    Science.gov (United States)

    Delves, Michael; Plouffe, David; Scheurer, Christian; Meister, Stephan; Wittlin, Sergio; Winzeler, Elizabeth A; Sinden, Robert E; Leroy, Didier

    2012-02-01

    Malaria remains a disease of devastating global impact, killing more than 800,000 people every year-the vast majority being children under the age of 5. While effective therapies are available, if malaria is to be eradicated a broader range of small molecule therapeutics that are able to target the liver and the transmissible sexual stages are required. These new medicines are needed both to meet the challenge of malaria eradication and to circumvent resistance. Little is known about the wider stage-specific activities of current antimalarials that were primarily designed to alleviate symptoms of malaria in the blood stage. To overcome this critical gap, we developed assays to measure activity of antimalarials against all life stages of malaria parasites, using a diverse set of human and nonhuman parasite species, including male gamete production (exflagellation) in Plasmodium falciparum, ookinete development in P. berghei, oocyst development in P. berghei and P. falciparum, and the liver stage of P. yoelii. We then compared 50 current and experimental antimalarials in these assays. We show that endoperoxides such as OZ439, a stable synthetic molecule currently in clinical phase IIa trials, are strong inhibitors of gametocyte maturation/gamete formation and impact sporogony; lumefantrine impairs development in the vector; and NPC-1161B, a new 8-aminoquinoline, inhibits sporogony. These data enable objective comparisons of the strengths and weaknesses of each chemical class at targeting each stage of the lifecycle. Noting that the activities of many compounds lie within achievable blood concentrations, these results offer an invaluable guide to decisions regarding which drugs to combine in the next-generation of antimalarial drugs. This study might reveal the potential of life-cycle-wide analyses of drugs for other pathogens with complex life cycles.

  10. The Activities of Current Antimalarial Drugs on the Life Cycle Stages of Plasmodium: A Comparative Study with Human and Rodent Parasites

    Science.gov (United States)

    Delves, Michael; Plouffe, David; Scheurer, Christian; Meister, Stephan; Wittlin, Sergio; Winzeler, Elizabeth A.; Sinden, Robert E.; Leroy, Didier

    2012-01-01

    Background Malaria remains a disease of devastating global impact, killing more than 800,000 people every year—the vast majority being children under the age of 5. While effective therapies are available, if malaria is to be eradicated a broader range of small molecule therapeutics that are able to target the liver and the transmissible sexual stages are required. These new medicines are needed both to meet the challenge of malaria eradication and to circumvent resistance. Methods and Findings Little is known about the wider stage-specific activities of current antimalarials that were primarily designed to alleviate symptoms of malaria in the blood stage. To overcome this critical gap, we developed assays to measure activity of antimalarials against all life stages of malaria parasites, using a diverse set of human and nonhuman parasite species, including male gamete production (exflagellation) in Plasmodium falciparum, ookinete development in P. berghei, oocyst development in P. berghei and P. falciparum, and the liver stage of P. yoelii. We then compared 50 current and experimental antimalarials in these assays. We show that endoperoxides such as OZ439, a stable synthetic molecule currently in clinical phase IIa trials, are strong inhibitors of gametocyte maturation/gamete formation and impact sporogony; lumefantrine impairs development in the vector; and NPC-1161B, a new 8-aminoquinoline, inhibits sporogony. Conclusions These data enable objective comparisons of the strengths and weaknesses of each chemical class at targeting each stage of the lifecycle. Noting that the activities of many compounds lie within achievable blood concentrations, these results offer an invaluable guide to decisions regarding which drugs to combine in the next-generation of antimalarial drugs. This study might reveal the potential of life-cycle–wide analyses of drugs for other pathogens with complex life cycles. Please see later in the article for the Editors' Summary PMID

  11. Emerging quinolones resistant transfer genes among gram-negative bacteria, isolated from faeces of HIV/AIDS patients attending some Clinics and Hospitals in the City of Benin, Edo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Enabulele IO

    2006-12-01

    Full Text Available A survey of 1431 gram-negative bacilli from June 2001 to September 2005 were obtained from the faeces of 920 HIV/AIDS patients attending some Clinics and Hospitals in Benin City, Nigeria, were screened for quinolones resistance gene. The HIV/AIDS patients CD4 cells range was ≤14/mm3 ≥800/mm3 of blood. Out of the 1431 isolates, 343 (23.9% were resistance to quinolones with a MIC ≥4μg/ml for norfloxacin, ciprofloxacin and pefloxacin while a MIC of ≥32 µg/ml for nalidixic acid. The screened isolates include Pseudomonas aeruginosa 64(18.7%, E coli 92(26.8%, Klebsiella pneumoniae 53(15.4%, Salmonella typhi 39(11.4%, Shigella dysenteriae 36(10.5%, Proteus mirabilis 34(9.9% and Serratia marcescens 25(7.3%. The average resistance of the isolates to the various quinolones ranged from 42.7% to 66.7%. Klebsiella were the most resistant isolates with a mean resistance of 66.7% while Proteus were the less resistant isolates with a mean resistance of 42.7%. Most isolates were resistant to Nalidixic acid followed by norfloxacin while the less resistant were to the pefloxacin. The frequency of qnr genes transfer to EJRifr as recipient ranged from 2 x 10-2 to 6 x 10-6 with an average of 2 plasmids per cell. The molecular weight of the plasmids ranged from <2.9kbp to <5.5 kbp. This indicated that plasmids allowed the movement of genetic materials including qnr resistant genes between bacteria species and genera in Benin City, Nigeria.

  12. Saleability of anti-malarials in private drug shops in Muheza, Tanzania

    DEFF Research Database (Denmark)

    Ringsted, Frank M; Massawe, Isolide S; Lemnge, Martha M

    2011-01-01

    women depend on SP for Intermittent Preventive Treatment (IPTp) during pregnancy. SP is still being dispensed by private drug stores, but it is unknown to which extent. If significant, it may undermine its official use for IPTp through induction of resistance. The main study objective was to perform...... practice, the saleability of ACT was negligible. SP was best-selling, and use was not reserved for IPTp, as stipulated in the national anti-malarial policy. It is a major reason for concern that such drug-pressure in the community equals de facto intermittent presumptive treatment. In an area where SP drug...

  13. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in Uganda

    Directory of Open Access Journals (Sweden)

    Hubbard Alan E

    2010-01-01

    Full Text Available Abstract Background Molecular genotyping is performed in anti-malarial trials to determine whether recurrent parasitaemia after therapy represents a recrudescence (treatment failure or new infection. The use of capillary instead of agarose gel electrophoresis for genotyping offers technical advantages, but it is unclear whether capillary electrophoresis will result in improved classification of anti-malarial treatment outcomes. Methods Samples were genotyped using both gel and capillary electrophoresis from randomized trials of artemether-lumefantrine (AL vs. dihydroartemisinin-piperaquine (DP performed in two areas of Uganda: Kanungu, where transmission is moderate, and Apac, where transmission is very high. Both gel and capillary methods evaluated polymorphic regions of the merozoite surface protein 1 and 2 and glutamine rich protein genes. Results Capillary electrophoresis detected more alleles and provided higher discriminatory power than agarose gel electrophoresis at both study sites. There was only moderate agreement between classification of outcomes with the two methods in Kanungu (kappa = 0.66 and poor agreement in Apac (kappa = 0.24. Overall efficacy results were similar when using gel vs. capillary methods in Kanungu (42-day risk of treatment failure for AL: 6.9% vs. 5.5%, p = 0.4; DP 2.4% vs. 2.9%, p = 0.5. However, the measured risk of recrudescence was significantly higher when using gel vs. capillary electrophoresis in Apac (risk of treatment failure for AL: 17.0% vs. 10.7%, p = 0.02; DP: 8.5% vs. 3.4%, p = 0.03. Risk differences between AL and DP were not significantly different whether gel or capillary methods were used. Conclusions Genotyping with gel electrophoresis overestimates the risk of recrudescence in anti-malarial trials performed in areas of high transmission intensity. Capillary electrophoresis provides more accurate outcomes for such trials and should be performed when possible. In areas of moderate transmission

  14. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in Uganda.

    Science.gov (United States)

    Gupta, Vinay; Dorsey, Grant; Hubbard, Alan E; Rosenthal, Philip J; Greenhouse, Bryan

    2010-01-15

    Molecular genotyping is performed in anti-malarial trials to determine whether recurrent parasitaemia after therapy represents a recrudescence (treatment failure) or new infection. The use of capillary instead of agarose gel electrophoresis for genotyping offers technical advantages, but it is unclear whether capillary electrophoresis will result in improved classification of anti-malarial treatment outcomes. Samples were genotyped using both gel and capillary electrophoresis from randomized trials of artemether-lumefantrine (AL) vs. dihydroartemisinin-piperaquine (DP) performed in two areas of Uganda: Kanungu, where transmission is moderate, and Apac, where transmission is very high. Both gel and capillary methods evaluated polymorphic regions of the merozoite surface protein 1 and 2 and glutamine rich protein genes. Capillary electrophoresis detected more alleles and provided higher discriminatory power than agarose gel electrophoresis at both study sites. There was only moderate agreement between classification of outcomes with the two methods in Kanungu (kappa = 0.66) and poor agreement in Apac (kappa = 0.24). Overall efficacy results were similar when using gel vs. capillary methods in Kanungu (42-day risk of treatment failure for AL: 6.9% vs. 5.5%, p = 0.4; DP 2.4% vs. 2.9%, p = 0.5). However, the measured risk of recrudescence was significantly higher when using gel vs. capillary electrophoresis in Apac (risk of treatment failure for AL: 17.0% vs. 10.7%, p = 0.02; DP: 8.5% vs. 3.4%, p = 0.03). Risk differences between AL and DP were not significantly different whether gel or capillary methods were used. Genotyping with gel electrophoresis overestimates the risk of recrudescence in anti-malarial trials performed in areas of high transmission intensity. Capillary electrophoresis provides more accurate outcomes for such trials and should be performed when possible. In areas of moderate transmission, gel electrophoresis appears adequate to estimate comparative

  15. Formulation of nanotized curcumin and demonstration of its antimalarial efficacy

    Directory of Open Access Journals (Sweden)

    Ghosh A

    2014-11-01

    Full Text Available Aparajita Ghosh,1 Tanushree Banerjee,2 Suman Bhandary,1 Avadhesha Surolia31Division of Molecular Medicine, Bose Institute, Centenary Campus, Kolkata, West Bengal, India; 2Department of Biotechnology, University of Pune, Pune, India; 3Molecular Biophysics Unit, Indian Institute of Science, Bangalore, IndiaAim: The present study was conducted to overcome the disadvantages associated with the poor water solubility and low bioavailability of curcumin by synthesizing nanotized curcumin and demonstrating its efficacy in treating malaria. Materials and methods: Nanotized curcumin was prepared by a modified emulsion-diffusion-evaporation method and was characterized by means of transmission electron microscopy, atomic force microscopy, dynamic light scattering, Zetasizer, Fourier transform infrared spectroscopy, and differential thermal analysis. The novelty of the prepared nanoformulation lies in the fact that it was devoid of any polymeric matrices used in conventional carriers. The antimalarial efficacy of the prepared nanotized curcumin was then checked both in vitro and in vivo. Results: The nanopreparation was found to be non-toxic and had a particle size distribution of 20–50 nm along with improved aqueous dispersibility and an entrapment efficiency of 45%. Nanotized curcumin (half maximal inhibitory concentration [IC50]: 0.5 µM was also found to be ten-fold more effective for growth inhibition of Plasmodium falciparum in vitro as compared to its native counterpart (IC50: 5 µM. Oral bioavailability of nanotized curcumin was found to be superior to that of its native counterpart. Moreover, when Plasmodium berghei-infected mice were orally treated with nanotized curcumin, it prolonged their survival by more than 2 months with complete clearance of parasites in comparison to the untreated animals, which survived for 8 days only. Conclusion: Nanotized curcumin holds a considerable promise in therapeutics as demonstrated here for treating malaria

  16. High-level semi-synthetic production of the potent antimalarial artemisinin.

    Science.gov (United States)

    Paddon, C J; Westfall, P J; Pitera, D J; Benjamin, K; Fisher, K; McPhee, D; Leavell, M D; Tai, A; Main, A; Eng, D; Polichuk, D R; Teoh, K H; Reed, D W; Treynor, T; Lenihan, J; Fleck, M; Bajad, S; Dang, G; Dengrove, D; Diola, D; Dorin, G; Ellens, K W; Fickes, S; Galazzo, J; Gaucher, S P; Geistlinger, T; Henry, R; Hepp, M; Horning, T; Iqbal, T; Jiang, H; Kizer, L; Lieu, B; Melis, D; Moss, N; Regentin, R; Secrest, S; Tsuruta, H; Vazquez, R; Westblade, L F; Xu, L; Yu, M; Zhang, Y; Zhao, L; Lievense, J; Covello, P S; Keasling, J D; Reiling, K K; Renninger, N S; Newman, J D

    2013-04-25

    In 2010 there were more than 200 million cases of malaria, and at least 655,000 deaths. The World Health Organization has recommended artemisinin-based combination therapies (ACTs) for the treatment of uncomplicated malaria caused by the parasite Plasmodium falciparum. Artemisinin is a sesquiterpene endoperoxide with potent antimalarial properties, produced by the plant Artemisia annua. However, the supply of plant-derived artemisinin is unstable, resulting in shortages and price fluctuations, complicating production planning by ACT manufacturers. A stable source of affordable artemisinin is required. Here we use synthetic biology to develop strains of Saccharomyces cerevisiae (baker's yeast) for high-yielding biological production of artemisinic acid, a precursor of artemisinin. Previous attempts to produce commercially relevant concentrations of artemisinic acid were unsuccessful, allowing production of only 1.6 grams per litre of artemisinic acid. Here we demonstrate the complete biosynthetic pathway, including the discovery of a plant dehydrogenase and a second cytochrome that provide an efficient biosynthetic route to artemisinic acid, with fermentation titres of 25 grams per litre of artemisinic acid. Furthermore, we have developed a practical, efficient and scalable chemical process for the conversion of artemisinic acid to artemisinin using a chemical source of singlet oxygen, thus avoiding the need for specialized photochemical equipment. The strains and processes described here form the basis of a viable industrial process for the production of semi-synthetic artemisinin to stabilize the supply of artemisinin for derivatization into active pharmaceutical ingredients (for example, artesunate) for incorporation into ACTs. Because all intellectual property rights have been provided free of charge, this technology has the potential to increase provision of first-line antimalarial treatments to the developing world at a reduced average annual price.

  17. Vector incrimination and effects of antimalarial drugs on malaria transmission and control in the Amazon Basin of Brazil

    Directory of Open Access Journals (Sweden)

    T. A. Klein

    1992-01-01

    Full Text Available World ecosystems differ significantly and a multidisciplinary malaria control approach must be adjusted to meet these requirements. These include a comprehensive understanding of the malaria vectors, their behavior, seasonal distribution and abundance, susceptibility to insecticides (physiological and behavioral, methods to reduce the numbers of human gametocyte carriers through effective health care systems and antimalarial drug treatment, urban malaria transmission versus rural or forest malaria transmission, and the impact of vaccine development. Many malaria vectors are members of species complexes and individual relationship to malaria transmission, seasonal distribution, bitting behavior, etc. is poorly understood. Additionaly, malaria patients are not examined for circulating gametocytes and both falciparum and vivax malaria patients may be highly infective to mosquitoes after treatment with currently used antimalarial drugs. Studies on the physiological and behavioral effects of DDT and other insecticides are inconclusive and need to be evalusted.

  18. Total Synthesis of Marine Cyclic Enol-Phosphotriester Salinipostin Compounds

    Science.gov (United States)

    Zhao, Mingliang; Wei, Xianfeng; Liu, Xuemeng; Dong, Xueyang; Yu, Rilei; Wan, Shengbiao; Jiang, Tao

    2018-06-01

    Due to their structural diversity and variety of biological activities, marine natural products have been the subject of extensive study. These compounds, especially phospholipid polycyclic aromatic hydrocarbons, have a wide range of pharmacological applications, including embedded DNA and central nervous system, anti-tumor, anti-virus, anti-parasite, anti-bacterial, and antithrombotic effects. Unfortunately, the insufficient drug sources have limited the development of these compounds. In this study, we isolated salinpostin compounds from a fermentation solution of marine-derived Salinospora sp., which has a common bicyclic enol-phosphotriester core framework, as well as potent and selective antimalarial activities against P. falciparum with EC50 = 50 nmol L-1. The chemical synthesis of these compounds in greater quantities is necessary for their use in bioactivity studies. Thus we explored a short route with high yields and mild reaction conditions, which can generate combinatorial libraries for drug discovery and lead optimization. We developed a new total synthesis method for six cyclic enol-phosphotriester salinipotin compounds and their diastereomers. For the total synthesis of cyclipostin P, we prepared cyclic enol-phosphotriester salinipostin compounds in 10 steps from a readily accessible starting material, 1,3-dihydroxyacetone, and obtained an overall yield of 1.29%. We fully characterized these compounds by proton nuclear magnetic resonance (1H-NMR), carbon-13 NMR (13C-NMR), and high-resolution mass spectrometry (HRMS) analyses, and found they coincide absolutely with the same compounds reported previously.

  19. HPLC confirmatory method development for the determination of seven quinolones in salmon tissue (Salmo salar L.) validated according to the European Union Decision 2002/657/EC.

    Science.gov (United States)

    Evaggelopoulou, Evaggelia N; Samanidou, Victoria F

    2013-01-15

    A confirmatory high pressure liquid chromatographic method for the determination of seven quinolone antibiotics in tissue of Atlantic salmon (Salmo salar L.) was developed. Ciprofloxacin (CIP), danofloxacin (DAN), enrofloxacin (ENR), sarafloxacin (SAR), oxolinic acid (OXO), nalidixic acid (NAL) and flumequine (FLU) were separated on a Perfectsil ODS-2 120 (250 mm × 4 mm, 5 μm) column by gradient elution with a mobile phase consisting of 0.1% trifluoroacetic acid (pH=1), acetonitrile and methanol at 25°C within 22 min. Analytes were monitored at 255 nm (for the determination of OXO, NAL and FLU) and 275 nm (for CIP, DAN, ENR and SAR) by means of photodiode array detector. Examined quinolones were isolated from salmon tissue by extraction with citrate buffer solution (pH=4.7) and purified by solid phase extraction using Oasis HLB (200mg/6 mL) cartridges. The developed method was fully validated in terms of selectivity, linearity, accuracy, precision, stability and sensitivity according to the European Union Decision 2002/657/EC. The accuracy of the method was additionally proved by its application to certified reference material of salmon tissue (BCR® 725). Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Imported malaria in Finland 1995 to 2008: an overview of surveillance, travel trends, and antimalarial drug sales.

    Science.gov (United States)

    Guedes, Sandra; Siikamäki, Heli; Kantele, Anu; Lyytikäinen, Outi

    2010-01-01

    To improve pre-travel advice, we analyzed nationwide population-based surveillance data on malaria cases reported to the National Infectious Disease Register of Finland (population 5.3 million) during 1995 to 2008 and related it to data on traveling and antimalarial drug sales. Surveillance data comprised information on malaria cases reported to the National Infectious Disease Register during 1995 to 2008. Traveling data were obtained from Statistics Finland (SF) and the Association of Finnish Travel Agents (AFTA). SF data included information on overnight leisure trips to malaria-endemic countries during 2000 to 2008. AFTA data included annual number of organized trips during 1999 to 2007. Quarterly numbers of antimalarial drug sales were obtained from the Finnish Medicines Agency. Descriptive and time series analyses were performed. A total of 484 malaria cases (average annual incidence 0.7/100,000 population) were reported; 283 patients were Finnish- and 201 foreign-born. In all, 15% of all cases were children; 72% foreign- and 28% Finnish-born. Malaria infections were mostly acquired in Africa (76%). Among foreign-born cases, 89% of the infections were acquired in the region of birth. The most common species were Plasmodium falciparum (61%) and Plasmodium vivax (22%). Although traveling to malaria-endemic areas increased, no increase occurred in malaria cases, and a decreasing trend was present in antimalarial drug sales. Traveling to malaria-endemic countries and drug sales followed the same seasonal pattern, with peaks in the first and last quarter of the year. More efforts should be focused on disseminating pre-travel advice to immigrants planning to visit friends and relatives and travelers on self-organized trips. © 2010 International Society of Travel Medicine.