WorldWideScience

Sample records for antimalarial drug resistance

  1. Antimalarial drug resistance: An overview

    OpenAIRE

    Antony, Hiasindh Ashmi; Parija, Subhash Chandra

    2016-01-01

    Malaria is a major public health burden throughout the world. Resistance to the antimalarial drugs has increased the mortality and morbidity rate that is achieved so far through the malaria control program. Monitoring the drug resistance to the available antimalarial drugs helps to implement effective drug policy, through the in vivo efficacy studies, in vitro drug susceptibility tests and detection of molecular markers. It is important to understand the mechanism of the antimalarial drugs, a...

  2. Antimalarial drug resistance: An overview.

    Science.gov (United States)

    Antony, Hiasindh Ashmi; Parija, Subhash Chandra

    2016-01-01

    Malaria is a major public health burden throughout the world. Resistance to the antimalarial drugs has increased the mortality and morbidity rate that is achieved so far through the malaria control program. Monitoring the drug resistance to the available antimalarial drugs helps to implement effective drug policy, through the in vivo efficacy studies, in vitro drug susceptibility tests and detection of molecular markers. It is important to understand the mechanism of the antimalarial drugs, as it is one of the key factors in the emergence and spread of drug resistance. This review summarizes the commonly used antimalarial drugs, their mechanism of action and the genetic markers validated so far for the detection of drug-resistant parasites. PMID:26998432

  3. Antimalarial drug resistance and combination chemotherapy.

    OpenAIRE

    White, N.

    1999-01-01

    Antimarial drug resistance develops when spontaneously occurring parasite mutants with reduced susceptibility are selected, and are then transmitted. Drugs for which a single point mutation confers a marked reduction in susceptibility are particularly vulnerable. Low clearance and a shallow concentration-effect relationship increase the chance of selection. Use of combinations of antimalarials that do not share the same resistance mechanisms will reduce the chance of selection because the cha...

  4. A database of antimalarial drug resistance

    Directory of Open Access Journals (Sweden)

    Ringwald Pascal

    2006-06-01

    Full Text Available Abstract A large investment is required to develop, license and deploy a new antimalarial drug. Too often, that investment has been rapidly devalued by the selection of parasite populations resistant to the drug action. To understand the mechanisms of selection, detailed information on the patterns of drug use in a variety of environments, and the geographic and temporal patterns of resistance is needed. Currently, there is no publically-accessible central database that contains information on the levels of resistance to antimalaria drugs. This paper outlines the resources that are available and the steps that might be taken to create a dynamic, open access database that would include current and historical data on clinical efficacy, in vitro responses and molecular markers related to drug resistance in Plasmodium falciparum and Plasmodium vivax. The goal is to include historical and current data on resistance to commonly used drugs, like chloroquine and sulfadoxine-pyrimethamine, and on the many combinations that are now being tested in different settings. The database will be accessible to all on the Web. The information in such a database will inform optimal utilization of current drugs and sustain the longest possible therapeutic life of newly introduced drugs and combinations. The database will protect the valuable investment represented by the development and deployment of novel therapies for malaria.

  5. Antimalarial drug resistance in Africa: key lessons for the future

    OpenAIRE

    Takala-Harrison, Shannon; Laufer, Miriam K

    2015-01-01

    Drug-resistant parasites repeatedly arise as a result of widespread use of antimalarial drugs and have contributed significantly to the failure to control and eradicate malaria throughout the world. In this review, we describe the spread of resistance to chloroquine and sulfadoxine–pyrimethamine, two old drugs that are no longer used owing to high rates of resistance, and examine the effect of the removal of drug pressure on the survival of resistant parasites. Artemisinin-resistant malaria i...

  6. Drug resistance genomics of the antimalarial drug artemisinin

    OpenAIRE

    Elizabeth A Winzeler; Manary, Micah J

    2014-01-01

    Across the globe, over 200 million annual malaria infections result in up to 660,000 deaths, 77% of which occur in children under the age of five years. Although prevention is important, malaria deaths are typically prevented by using antimalarial drugs that eliminate symptoms and clear parasites from the blood. Artemisinins are one of the few remaining compound classes that can be used to cure multidrug-resistant Plasmodium falciparum infections. Unfortunately, clinical trials from Southeast...

  7. Drug resistance genomics of the antimalarial drug artemisinin.

    Science.gov (United States)

    Winzeler, Elizabeth A; Manary, Micah J

    2014-01-01

    Across the globe, over 200 million annual malaria infections result in up to 660,000 deaths, 77% of which occur in children under the age of five years. Although prevention is important, malaria deaths are typically prevented by using antimalarial drugs that eliminate symptoms and clear parasites from the blood. Artemisinins are one of the few remaining compound classes that can be used to cure multidrug-resistant Plasmodium falciparum infections. Unfortunately, clinical trials from Southeast Asia are showing that artemisinin-based treatments are beginning to lose their effectiveness, adding renewed urgency to the search for the genetic determinants of parasite resistance to this important drug class. We review the genetic and genomic approaches that have led to an improved understanding of artemisinin resistance, including the identification of resistance-conferring mutations in the P. falciparum kelch13 gene. PMID:25470531

  8. Fighting fire with fire: mass antimalarial drug administrations in an era of antimalarial resistance.

    Science.gov (United States)

    von Seidlein, Lorenz; Dondorp, Arjen

    2015-06-01

    The emergence and spread of antimalarial resistance has been a major liability for malaria control. The spread of chloroquine-resistant Plasmodium falciparum strains had catastrophic consequences for people in malaria-endemic regions, particularly in sub-Saharan Africa. The recent emergence of artemisinin-resistant P. falciparum strains is of highest concern. Current efforts to contain artemisinin resistance have yet to show success. In the absence of more promising plans, it has been suggested to eliminate falciparum malaria from foci of artemisinin resistance using a multipronged approach, including mass drug administrations. The use of mass drug administrations is controversial as it increases drug pressure. Based on current knowledge it is difficult to conceptualize how targeted malaria elimination could contribute to artemisinin resistance, provided a full treatment course is ensured. PMID:25831482

  9. Antimalarial Drug Resistance: Literature Review and Activities and Findings of the ICEMR Network.

    Science.gov (United States)

    Cui, Liwang; Mharakurwa, Sungano; Ndiaye, Daouda; Rathod, Pradipsinh K; Rosenthal, Philip J

    2015-09-01

    Antimalarial drugs are key tools for the control and elimination of malaria. Recent decreases in the global malaria burden are likely due, in part, to the deployment of artemisinin-based combination therapies. Therefore, the emergence and potential spread of artemisinin-resistant parasites in southeast Asia and changes in sensitivities to artemisinin partner drugs have raised concerns. In recognition of this urgent threat, the International Centers of Excellence for Malaria Research (ICEMRs) are closely monitoring antimalarial drug efficacy and studying the mechanisms underlying drug resistance. At multiple sentinel sites of the global ICEMR network, research activities include clinical studies to track the efficacies of antimalarial drugs, ex vivo/in vitro assays to measure drug susceptibilities of parasite isolates, and characterization of resistance-mediating parasite polymorphisms. Taken together, these efforts offer an increasingly comprehensive assessment of the efficacies of antimalarial therapies, and enable us to predict the emergence of drug resistance and to guide local antimalarial drug policies. Here we briefly review worldwide antimalarial drug resistance concerns, summarize research activities of the ICEMRs related to drug resistance, and assess the global impacts of the ICEMR programs. PMID:26259943

  10. Quality of antimalarials at the epicenter of antimalarial drug resistance: results from an overt and mystery client survey in Cambodia.

    Science.gov (United States)

    Yeung, Shunmay; Lawford, Harriet L S; Tabernero, Patricia; Nguon, Chea; van Wyk, Albert; Malik, Naiela; DeSousa, Mikhael; Rada, Ouk; Boravann, Mam; Dwivedi, Prabha; Hostetler, Dana M; Swamidoss, Isabel; Green, Michael D; Fernandez, Facundo M; Kaur, Harparkash

    2015-06-01

    Widespread availability of monotherapies and falsified antimalarials is thought to have contributed to the historical development of multidrug-resistant malaria in Cambodia. This study aimed to document the quality of artemisinin-containing antimalarials (ACAs) and to compare two methods of collecting antimalarials from drug outlets: through open surveyors and mystery clients (MCs). Few oral artemisinin-based monotherapies and no suspected falsified medicines were found. All 291 samples contained the stated active pharmaceutical ingredient (API) of which 69% were considered good quality by chemical analysis. Overall, medicine quality did not differ by collection method, although open surveyors were less likely to obtain oral artemisinin-based monotherapies than MCs. The results are an encouraging indication of the positive impact of the country's efforts to tackle falsified antimalarials and artemisinin-based monotherapies. However, poor-quality medicines remain an ongoing challenge that demands sustained political will and investment of human and financial resources. PMID:25897063

  11. Hyperparasitaemia and low dosing are an important source of anti-malarial drug resistance

    Directory of Open Access Journals (Sweden)

    Lee Sue J

    2009-11-01

    Full Text Available Abstract Background Preventing the emergence of anti-malarial drug resistance is critical for the success of current malaria elimination efforts. Prevention strategies have focused predominantly on qualitative factors, such as choice of drugs, use of combinations and deployment of multiple first-line treatments. The importance of anti-malarial treatment dosing has been underappreciated. Treatment recommendations are often for the lowest doses that produce "satisfactory" results. Methods The probability of de-novo resistant malaria parasites surviving and transmitting depends on the relationship between their degree of resistance and the blood concentration profiles of the anti-malarial drug to which they are exposed. The conditions required for the in-vivo selection of de-novo emergent resistant malaria parasites were examined and relative probabilities assessed. Results Recrudescence is essential for the transmission of de-novo resistance. For rapidly eliminated anti-malarials high-grade resistance can arise from a single drug exposure, but low-grade resistance can arise only from repeated inadequate treatments. Resistance to artemisinins is, therefore, unlikely to emerge with single drug exposures. Hyperparasitaemic patients are an important source of de-novo anti-malarial drug resistance. Their parasite populations are larger, their control of the infection insufficient, and their rates of recrudescence following anti-malarial treatment are high. As use of substandard drugs, poor adherence, unusual pharmacokinetics, and inadequate immune responses are host characteristics, likely to pertain to each recurrence of infection, a small subgroup of patients provides the particular circumstances conducive to de-novo resistance selection and transmission. Conclusion Current dosing recommendations provide a resistance selection opportunity in those patients with low drug levels and high parasite burdens (often children or pregnant women. Patients with

  12. Antimalarial Drugs Clear Resistant Parasites from Partially Immune Hosts

    OpenAIRE

    Cravo, Pedro; Culleton, Richard; Hunt, Paul; Walliker, David; Mackinnon, Margaret J.

    2001-01-01

    Circumstantial evidence in human malaria suggests that elimination of parasites by drug treatment meets higher success rates in individuals having some background immunity. In this study, using the rodent malaria model Plasmodium chabaudi, we show that drug-resistant parasites can be cleared by drugs when the host is partially immune.

  13. Spread of anti-malarial drug resistance: Mathematical model with implications for ACT drug policies

    Directory of Open Access Journals (Sweden)

    Dondorp Arjen M

    2008-11-01

    Full Text Available Abstract Background Most malaria-endemic countries are implementing a change in anti-malarial drug policy to artemisinin-based combination therapy (ACT. The impact of different drug choices and implementation strategies is uncertain. Data from many epidemiological studies in different levels of malaria endemicity and in areas with the highest prevalence of drug resistance like borders of Thailand are certainly valuable. Formulating an appropriate dynamic data-driven model is a powerful predictive tool for exploring the impact of these strategies quantitatively. Methods A comprehensive model was constructed incorporating important epidemiological and biological factors of human, mosquito, parasite and treatment. The iterative process of developing the model, identifying data needed, and parameterization has been taken to strongly link the model to the empirical evidence. The model provides quantitative measures of outcomes, such as malaria prevalence/incidence and treatment failure, and illustrates the spread of resistance in low and high transmission settings. The model was used to evaluate different anti-malarial policy options focusing on ACT deployment. Results The model predicts robustly that in low transmission settings drug resistance spreads faster than in high transmission settings, and treatment failure is the main force driving the spread of drug resistance. In low transmission settings, ACT slows the spread of drug resistance to a partner drug, especially at high coverage rates. This effect decreases exponentially with increasing delay in deploying the ACT and decreasing rates of coverage. In the high transmission settings, however, drug resistance is driven by the proportion of the human population with a residual drug level, which gives resistant parasites some survival advantage. The spread of drug resistance could be slowed down by controlling presumptive drug use and avoiding the use of combination therapies containing drugs with

  14. Surveillance of antimalarial drug resistance in China in the 1980s–1990s

    OpenAIRE

    Liu, De-Quan

    2014-01-01

    Since the successful preparation of the microplates and the medium for field application, the resistance degree and its geographical distribution of chloroquine-resistant Plasmodium falciparum, the fluctuation of the resistance degree of P. falciparum to chloroquine, and the sensitivity of the parasite to commonly used antimalarial drugs were investigated between 1980 and 2003 by the in vitro microtest and the in vivo four-week test recommended by the World Health Organization (WHO). The resu...

  15. Molecular Basis of Antimalarial Drug Resistance in Indonesia

    OpenAIRE

    Syafruddin D

    2003-01-01

    Malaria continues to be a major public health problem in Indonesia. In fact over 3 million clinical cases of malaria and about 100 deaths are reported annually through hospitals and public health centres (Ministry of Health, The Republic of Indonesia, compiled data, 1998). The spread of drug-resistant parasites and the recent outbreaks and re-emergence of malaria in places previously declared malaria-free have forced the Government of Indonesia to re-assess the current national malaria contro...

  16. Plasmodium falciparum susceptibility to anti-malarial drugs in Dakar, Senegal, in 2010: an ex vivo and drug resistance molecular markers study

    OpenAIRE

    Fall, Bécaye; Pascual, Aurélie; Sarr, Fatoumata; Wurtz, Nathalie; Richard, Vincent; Baret, Eric; Diémé, Yaya; Briolant, Sébastien; Bercion, Raymond; Wade, Boubacar; Tall, Adama; Pradines, Bruno

    2013-01-01

    BACKGROUND: In 2006, the Senegalese National Malaria Control Programme recommended artemisinin-based combination therapy (ACT) as the first-line treatment for uncomplicated malaria. Since the introduction of ACT, there have been very few reports on the level of resistance of P. falciparum to anti-malarial drugs. To determine whether parasite susceptibility has been affected by the new anti-malarial policies, an ex vivo susceptibility and drug resistance molecular marker study was conducted on...

  17. Prospective strategies to delay the evolution of anti-malarial drug resistance: weighing the uncertainty

    Directory of Open Access Journals (Sweden)

    McKenzie F Ellis

    2010-07-01

    Full Text Available Abstract Background The evolution of drug resistance in malaria parasites highlights a need to identify and evaluate strategies that could extend the useful therapeutic life of anti-malarial drugs. Such strategies are deployed to best effect before resistance has emerged, under conditions of great uncertainty. Methods Here, the emergence and spread of resistance was modelled using a hybrid framework to evaluate prospective strategies, estimate the time to drug failure, and weigh uncertainty. The waiting time to appearance was estimated as the product of low mutation rates, drug pressure, and parasite population sizes during treatment. Stochastic persistence and the waiting time to establishment were simulated as an evolving branching process. The subsequent spread of resistance was simulated in simple epidemiological models. Results Using this framework, the waiting time to the failure of artemisinin combination therapy (ACT for malaria was estimated, and a policy of multiple first-line therapies (MFTs was evaluated. The models quantify the effects of reducing drug pressure in delaying appearance, reducing the chances of establishment, and slowing spread. By using two first-line therapies in a population, it is possible to reduce drug pressure while still treating the full complement of cases. Conclusions At a global scale, because of uncertainty about the time to the emergence of ACT resistance, there was a strong case for MFTs to guard against early failure. Our study recommends developing operationally feasible strategies for implementing MFTs, such as distributing different ACTs at the clinic and for home-based care, or formulating different ACTs for children and adults.

  18. Molecular markers of anti-malarial drug resistance in Lahj Governorate, Yemen: baseline data and implications

    Directory of Open Access Journals (Sweden)

    Chance Michael L

    2011-08-01

    Full Text Available Abstract Background This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for Plasmodium falciparum resistance against CQ and sulphadoxine/pyrimethamine (SP. Methods Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for P. falciparum chloroquine resistance transporter gene (pfcrt-76 polymorphisms, mutation pfcrt-S163R and the antifolate resistance-associated mutations dihydrofolate reductase (dhfr-C59R and dihydropteroate synthase (dhps-K540E. Direct DNA sequencing of the pfcrt gene from three representative field samples was carried out after DNA amplification of the 13 exons of the pfcrt gene. Results Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant pfcrt T76 was 98% in 112 amplified pre-treatment samples. The presence of pfcrt T76 was poorly predictive of in vivo CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9. The prevalence of dhfr Arg-59 mutation in 99 amplified samples was 5%, while the dhps Glu-540 was not detected in any of 119 amplified samples. Sequencing the pfcrt gene confirmed that Yemeni CQ resistant P. falciparum carry the old world (Asian and African CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371. Conclusion This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR P. falciparum

  19. Role of PfATP6 and pfMRP1 in Plasmodium falciparum resistance to antimalarial drugs

    OpenAIRE

    Dahlström, Sabina

    2009-01-01

    Half of the world s population live at risk for malaria and nearly one million people die from the disease every year. The malaria burden is greatest in children and pregnant women in sub-Saharan Africa. As effective treatment is crucial for malaria control, the spread of antimalarial drug resistance has contributed significantly to malaria attributed morbidity and mortality. The current cornerstones in malaria treatment are artemisininbased combination therapy (ACT) for tre...

  20. Development of a TaqMan Allelic Discrimination Assay for detection of Single Nucleotides Polymorphisms associated with anti-malarial drug resistance

    Directory of Open Access Journals (Sweden)

    Kamau Edwin

    2012-01-01

    Full Text Available Abstract Background Anti-malarial drug resistance poses a threat to current global efforts towards control and elimination of malaria. Several methods are used in monitoring anti-malarial drug resistance. Molecular markers such as single nucleotide polymorphism (SNP for example are increasingly being used to identify genetic mutations related to anti-malarial drug resistance. Several methods are currently being used in analysis of SNP associated with anti-malarial drug resistance and although each one of these methods has unique strengths and shortcoming, there is still need to improve and/or develop new methods that will close the gap found in the current methods. Methods TaqMan Allelic Discrimination assays for detection of SNPs associated with anti-malarial drug resistance were designed for analysis on Applied Biosystems PCR platform. These assays were designed by submitting SNP sequences associated with anti-malarial drug resistance to Applied Biosystems website. Eleven SNPs associated with resistance to anti-malarial drugs were selected and tested. The performance of each SNP assay was tested by creating plasmid DNAs carrying codons of interests and analysing them for analysis. To test the sensitivity and specificity of each SNP assay, 12 clinical samples were sequenced at codons of interest and used in the analysis. Plasmid DNAs were used to establish the Limit of Detection (LoD for each assay. Results Data from genetic profiles of the Plasmodium falciparum laboratory strains and sequence data from 12 clinical samples was used as the reference method with which the performance of the SNP assays were compared to. The sensitivity and specificity of each SNP assay was establish at 100%. LoD for each assay was established at 2 GE, equivalent to less than 1 parasite/μL. SNP assays performed well in detecting mixed infection and analysis of clinical samples. Conclusion TaqMan Allelic Discrimination assay provides a good alternative tool in

  1. World Antimalarial Resistance Network (WARN) III: Molecular Markers for Drug Resistant Malaria

    OpenAIRE

    Sibley Carol H; Shafer Robert W; Price Ric N; Naidoo Inbarani; Mugittu Kefas; Meshnick Steven R; Mbacham Wilfred; Joshi Hema H; Happi Christian T; Barnwell John W; Roper Cally; Plowe Christopher V; Sutherland Colin J; Zimmerman Peter A; Rosenthal Philip J

    2007-01-01

    Abstract Molecular markers for drug resistant malaria represent public health tools of great but mostly unrealized potential value. A key reason for the failure of molecular resistance markers to live up to their potential is that data on the their prevalence is scattered in disparate databases with no linkage to the clinical, in vitro and pharmacokinetic data that are needed to relate the genetic data to relevant phenotypes. The ongoing replacement of older monotherapies for malaria by new, ...

  2. World antimalarial resistance network (WARN) III: Molecular markers for drug resistant malaria

    OpenAIRE

    plowe, cv; Roper, C.; Barnwell, JW; Happi, CT; Joshi, HH; Mbacham, W.; Meshnick, SR; Mugittu, K; Naidoo, I; Price, RN; Shafer, RW; Sibley, CH; Sutherland, CJ; Zimmerman, PA; Rosenthal, PJ

    2007-01-01

    Molecular markers for drug resistant malaria represent public health tools of great but mostly unrealized potential value. A key reason for the failure of molecular resistance markers to live up to their potential is that data on the their prevalence is scattered in disparate databases with no linkage to the clinical, in vitro and pharmacokinetic data that are needed to relate the genetic data to relevant phenotypes. The ongoing replacement of older monotherapies for malaria by new, more effe...

  3. Responding to the challenge of antimalarial drug resistance by routine monitoring to update national malaria treatment policies

    DEFF Research Database (Denmark)

    Vestergaard, Lasse S; Ringwald, Pascal

    2007-01-01

    of rational and updated malaria treatment policies, but defining and updating such policies requires a sufficient volume of high-quality drug-resistance data collected at national and regional levels. Three main tools are used for drug resistance monitoring, including therapeutic efficacy tests, in......Reduced sensitivity of Plasmodium falciparum to formerly recommended cheap and well-known antimalarial drugs places an increasing burden on malaria control programs and national health systems in endemic countries. The high costs of the new artemisinin-based combination treatments underline the use...... additional information about changing patterns of resistance. However, some of the tests are technically demanding, and thus there is a need for more resources for training and capacity building in endemic countries to be able to adequately respond to the challenge of drug resistance....

  4. Expanding the Antimalarial Drug Arsenal—Now, But How?

    Directory of Open Access Journals (Sweden)

    Rajeev K. Mehlotra

    2011-04-01

    Full Text Available The number of available and effective antimalarial drugs is quickly dwindling. This is mainly because a number of drug resistance-associated mutations in malaria parasite genes, such as crt, mdr1, dhfr/dhps, and others, have led to widespread resistance to all known classes of antimalarial compounds. Unfortunately, malaria parasites have started to exhibit some level of resistance in Southeast Asia even to the most recently introduced class of drugs, artemisinins. While there is much need, the antimalarial drug development pipeline remains woefully thin, with little chemical diversity, and there is currently no alternative to the precious artemisinins. It is difficult to predict where the next generation of antimalarial drugs will come from; however, there are six major approaches: (i re-optimizing the use of existing antimalarials by either replacement/rotation or combination approach; (ii repurposing drugs that are currently used to treat other infections or diseases; (iii chemically modifying existing antimalarial compounds; (iv exploring natural sources; (v large-scale screening of diverse chemical libraries; and (vi through parasite genome-based (“targeted” discoveries. When any newly discovered effective antimalarial treatment is used by the populus, we must maintain constant vigilance for both parasite-specific and human-related factors that are likely to hamper its success. This article is neither comprehensive nor conclusive. Our purpose is to provide an overview of antimalarial drug resistance, associated parasite genetic factors (1. Introduction; 2. Emergence of artemisinin resistance in P. falciparum, and the antimalarial drug development pipeline (3. Overview of the global pipeline of antimalarial drugs, and highlight some examples of the aforementioned approaches to future antimalarial treatment. These approaches can be categorized into “short term” (4. Feasible options for now and “long term” (5. Next generation of

  5. Effect of transmission reduction by insecticide-treated bednets (ITNs on antimalarial drug resistance in western Kenya.

    Directory of Open Access Journals (Sweden)

    Monica Shah

    Full Text Available Despite the clear public health benefit of insecticide-treated bednets (ITNs, the impact of malaria transmission-reduction by vector control on the spread of drug resistance is not well understood. In the present study, the effect of sustained transmission reduction by ITNs on the prevalence of Plasmodium falciparum gene mutations associated with resistance to the antimalarial drugs sulfadoxine-pyrimethamine (SP and chloroquine (CQ in children under the age of five years was investigated during an ITN trial in Asembo area, western Kenya. During the ITN trial, the national first line antimalarial treatment changed from CQ to SP. Smear-positive samples collected from cross sectional surveys prior to ITN introduction (baseline, n = 250 and five years post-ITN intervention (year 5 survey, n = 242 were genotyped for single nucleotide polymorphisms (SNPs at dhfr-51, 59, 108, 164 and dhps-437, 540 (SP resistance, and pfcrt-76 and pfmdr1-86 (CQ resistance. The association between the drug resistance mutations and epidemiological variables was evaluated. There were significant increases in the prevalence of SP dhps mutations and the dhfr/dhps quintuple mutant, and a significant reduction in the proportion of mixed infections detected at dhfr-51, 59 and dhps-437, 540 SNPs from baseline to the year 5 survey. There was no change in the high prevalence of pfcrt-76 and pfmdr1-86 mutations. Multivariable regression analysis further showed that current antifolate use and year of survey were significantly associated with more SP drug resistance mutations. These results suggest that increased antifolate drug use due to drug policy change likely led to the high prevalence of SP mutations 5 years post-ITN intervention and reduced transmission had no apparent effect on the existing high prevalence of CQ mutations. There is no evidence from the current study that sustained transmission reduction by ITNs reduces the prevalence of genes associated with malaria

  6. Temporal trends in prevalence of Plasmodium falciparum drug resistance alleles over two decades of changing antimalarial policy in coastal Kenya.

    Science.gov (United States)

    Okombo, John; Kamau, Alice W; Marsh, Kevin; Sutherland, Colin J; Ochola-Oyier, Lynette Isabella

    2014-12-01

    Molecular surveillance of drug resistance markers through time provides crucial information on genomic adaptations, especially in parasite populations exposed to changing drug pressures. To assess temporal trends of established genotypes associated with tolerance to clinically important antimalarials used in Kenya over the last two decades, we sequenced a region of the pfcrt locus encompassing codons 72-76 of the Plasmodium falciparum chloroquine resistance transporter, full-length pfmdr1 - encoding multi-drug resistance protein, P-glycoprotein homolog (Pgh1) and pfdhfr encoding dihydrofolate reductase, in 485 archived Plasmodium falciparum positive blood samples collected in coastal Kenya at four different time points between 1995 and 2013. Microsatellite loci were also analyzed to compare the genetic backgrounds of parasite populations circulating before and after the withdrawal of chloroquine and sulfadoxine/pyrimethamine. Our results reveal a significant increase in the prevalence of the pfcrt K76 wild-type allele between 1995 and 2013 from 38% to 81.7% (p drug in contrast to a selective sweep around the triple mutant pfdhfr allele, leading to a mono-allelic population at this locus. These findings highlight the importance of continual surveillance and characterization of parasite genotypes as indicators of the therapeutic efficacy of antimalarials, particularly in the context of changes in malaria treatment policy. PMID:25516825

  7. Seasonal distribution of anti-malarial drug resistance alleles on the island of Sumba, Indonesia

    NARCIS (Netherlands)

    Asih, P.B.; Rogers, W.O.; Susanti, A.I.; Rahmat, A.; Rozi, I.E.; Kusumaningtyas, M.A.; Dewi, R.M.; Coutrier, F.N.; Sutamihardja, A.; Ven, A.J.A.M. van der; Sauerwein, R.W.; Syafruddin, D.

    2009-01-01

    BACKGROUND: Drug resistant malaria poses an increasing public health problem in Indonesia, especially eastern Indonesia, where malaria is highly endemic. Widespread chloroquine (CQ) resistance and increasing sulphadoxine-pyrimethamine (SP) resistance prompted Indonesia to adopt artemisinin-based com

  8. Antimalarial Drug Resistance: Surveillance and Molecular Methods for National Malaria Control Programmes

    Directory of Open Access Journals (Sweden)

    Umberto D'Alessandro

    1998-09-01

    Full Text Available National malaria control programmes have the responsibility to develop a policy for malaria disease management based on a set of defined criteria as efficacy, side effects, costs and compliance. These will fluctuate over time and national guidelines will require periodic re-assessment and revision. Changing a drug policy is a major undertaking that can take several years before being fully operational. The standard methods on which a decision can be taken are the in vivo and the in vitro tests. The latter allow a quantitative measurement of the drug response and the assessment of several drugs at once. However, in terms of drug policy change its results might be difficult to interpret although they may be used as an early warning system for 2nd or 3rd line drugs. The new WHO 14-days in vivo test addresses mainly the problem of treatment failure and of haematological parameters changes in sick children. It gives valuable information on whether a drug still `works'. None of these methods are well suited for large-scale studies. Molecular methods based on detection of mutations in parasite molecules targeted by antimalarial drugs could be attractive tools for surveillance. However, their relationship with in vivo test results needs to be established

  9. Expanding the Antimalarial Drug Arsenal—Now, But How?

    OpenAIRE

    MEHLOTRA, RAJEEV K.; Grimberg, Brian T

    2011-01-01

    The number of available and effective antimalarial drugs is quickly dwindling. This is mainly because a number of drug resistance-associated mutations in malaria parasite genes, such as crt, mdr1, dhfr/dhps, and others, have led to widespread resistance to all known classes of antimalarial compounds. Unfortunately, malaria parasites have started to exhibit some level of resistance in Southeast Asia even to the most recently introduced class of drugs, artemisinins. While there is much need, th...

  10. Resistance of Plamodium falciparum to Antimalarial Drugs in Zaragoza (Antioquia, Colombia, 1998

    Directory of Open Access Journals (Sweden)

    Silvia Blair-Trujillo

    2002-04-01

    Full Text Available Plasmodium falciparum sensitivity to chloroquine (CHL, amodiaquine (AMO and sulfadoxine/pyrimethamine (SDX/PYR was assessed in vivo and in vitro in a representative sample from the population of Zaragoza in El Bajo Cauca region (Antioquia-Colombia. There were 94 patients with P. falciparum evaluated. For the in vivo test the patients were followed by clinical examination and microscopy, during 7 days. The in vitro test was performed following the recommendations of the World Health Organization. The in vivo prevalence of resistance to CHL was 67%, to AMO 3% and to SDX/PYR 9%. The in vitro test showed sensitivity to all antimalarials evaluated. Concordance for CHL between the in vivo and in vitro tests was 33%. For AMO and SDX/PYR, the concordance was 100%. We conclude that a high percentage of patients are resistant to CHL (in vivo. A high rate of intestinal parasitism might explain in part, the differences observed between the in vivo and the in vitro results. Therefore, new policies and treatment regimens should be proposed for the treatment of the infection in the region. Nationwide studies assessing the degree of resistance are needed.

  11. Pricing, distribution, and use of antimalarial drugs.

    Science.gov (United States)

    Foster, S D

    1991-01-01

    Prices of new antimalarial drugs are targeted at the "travellers' market" in developed countries, which makes them unaffordable in malaria-endemic countries where the per capita annual drug expenditures are US$ 5 or less. Antimalarials are distributed through a variety of channels in both public and private sectors, the official malaria control programmes accounting for 25-30% of chloroquine distribution. The unofficial drug sellers in markets, streets, and village shops account for as much as half of antimalarials distributed in many developing countries. Use of antimalarials through the health services is often poor; drug shortages are common and overprescription and overuse of injections are significant problems. Anxiety over drug costs may prevent patients from getting the necessary treatment for malaria, especially because of the seasonal appearance of this disease when people's cash reserves are very low. The high costs may lead them to unofficial sources, which will sell a single tablet instead of a complete course of treatment, and subsequently to increased, often irrational demand for more drugs and more injections. Increasingly people are resorting to self-medication for malaria, which may cause delays in seeking proper treatment in cases of failure, especially in areas where chloroquine resistance has increased rapidly. Self-medication is now widespread, and measures to restrict the illicit sale of drugs have been unsuccessful. The "unofficial" channels thus represent an unacknowledged extension of the health services in many countries; suggestions are advanced to encourage better self-medication by increasing the knowledge base among the population at large (mothers, schoolchildren, market sellers, and shopkeepers), with an emphasis on correct dosing and on the importance of seeking further treatment without delay, if necessary. PMID:1893512

  12. Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs

    OpenAIRE

    Mu, Jianbing; Myers, Rachel A.; Jiang, Hongying; Liu, Shengfa; Ricklefs, Stacy; Waisberg, Michael; Chotivanich, Kesinee; Wilairata, Polrat; Krudsood, Srivicha; White, Nicholas J; Udomsangpetch, Rachanee; Cui, Liwang; Ho, May; Ou, Fengzheng; Li, Haibo

    2010-01-01

    Antimalarial drugs impose strong pressure on Plasmodium falciparum parasites and leave signatures of selection in the parasite genome 1,2. Search for signals of selection may lead to genes encoding drug or immune targets 3. The lack of high-throughput genotyping methods, inadequate knowledge of parasite population history, and time-consuming adaptations of parasites to in vitro culture have hampered genome-wide association studies (GWAS) of parasite traits. Here we report genotyping of DNA fr...

  13. The prevalence and degree of resistance of Plasmodium falciparum to first-line antimalarial drugs: an in vitro study from a malaria endemic region in Yemen

    International Nuclear Information System (INIS)

    Unpublished studies on antimalarial drug efficacy have found low levels of chloroquine resistance in Yemen. This study was carried out to determine the current prevalence of drug resistance in Plasmodium falciparum in Yemen to the main anti-malarial drugs and to determine the effective concentration (EC) values. The WHO standard protocol was used for the selection of subjects, collection of blood samples, culture techniques, examination of post-culture blood slides and interpretation of results. The in vitro micro-test Mark III was used for assessing susceptibility of P. falciparum isolates. The criteria for blood parasite density was met by 219 P. falciparum malaria patients. Chloroquine resistance was found in 47% of isolated P. falciparum schizonts. Mefloquine resistance was found in 5.2%. In addition, the EC50 and EC95 values in blood that inhibited schizont maturation in resistant isolates were higher than the normal therapeutic level for mefloquine. No resistance occurred against quinine or artemisinin, with no growth at the cut off level for quinine and inhibition at low concentrations of artemisinin. Our study confirmed the occurrence of chloroquine-resistant P. falciparum and a slow increase in the rate of this resistance will increase further and spread over all the foci of malaria in Yemen. The low rate of chloroquine-resistant P. falciparum was lower than that reported in Africa or Southeast Asia, but is the first report of the mefloquine resistance in Yemen. Finally, the isolates were sensitive to low concentrations of quinine and artemisinin. (author)

  14. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    Directory of Open Access Journals (Sweden)

    Avinaba Mukherjee

    2016-03-01

    Full Text Available Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug

  15. Pricing, distribution, and use of antimalarial drugs.

    OpenAIRE

    Foster, S. D.

    1991-01-01

    Prices of new antimalarial drugs are targeted at the "travellers' market" in developed countries, which makes them unaffordable in malaria-endemic countries where the per capita annual drug expenditures are US$ 5 or less. Antimalarials are distributed through a variety of channels in both public and private sectors, the official malaria control programmes accounting for 25-30% of chloroquine distribution. The unofficial drug sellers in markets, streets, and village shops account for as much a...

  16. Plasmodium falciparum resistance to anti-malarial drugs in Papua New Guinea: evaluation of a community-based approach for the molecular monitoring of resistance

    Directory of Open Access Journals (Sweden)

    Reeder John C

    2010-01-01

    Full Text Available Abstract Background Molecular monitoring of parasite resistance has become an important complementary tool in establishing rational anti-malarial drug policies. Community surveys provide a representative sample of the parasite population and can be carried out more rapidly than accrual of samples from clinical cases, but it is not known whether the frequencies of genetic resistance markers in clinical cases differ from those in the overall population, or whether such community surveys can provide good predictions of treatment failure rates. Methods Between 2003 and 2005, in vivo drug efficacy of amodiaquine or chloroquine plus sulphadoxine-pyrimethamine was determined at three sites in Papua New Guinea. The genetic drug resistance profile (i.e., 33 single nucleotide polymorphisms in Plasmodium falciparum crt, mdr1, dhfr, dhps, and ATPase6 was concurrently assessed in 639 community samples collected in the catchment areas of the respective health facilities by using a DNA microarray-based method. Mutant allele and haplotype frequencies were determined and their relationship with treatment failure rates at each site in each year was investigated. Results PCR-corrected in vivo treatment failure rates were between 12% and 28% and varied by site and year with variable longitudinal trends. In the community samples, the frequencies of mutations in pfcrt and pfmdr1 were high and did not show significant changes over time. Mutant allele frequencies in pfdhfr were moderate and those in pfdhps were low. No mutations were detected in pfATPase6. There was much more variation between sites than temporal, within-site, variation in allele and haplotype frequencies. This variation did not correlate well with treatment failure rates. Allele and haplotype frequencies were very similar in clinical and community samples from the same site. Conclusions The relationship between parasite genetics and in vivo treatment failure rate is not straightforward. The

  17. Drug resistance in malaria

    Directory of Open Access Journals (Sweden)

    S C Parija

    2011-01-01

    Full Text Available Antimalarial chemotherapy is an important component of all malaria control programmes throughout the world. This is especially so in light of the fact that there are no antimalarial vaccines which are available for clinical use at present. Emergence and spread of malaria parasites which are resistant to many of the available antimalarials today is, therefore, a major cause for concern. Till date, resistance to all groups of antimalarials excluding artemisinin has been reported. In recent years, in vitro resistance to even artemisinin has been described. While resistance to antibacterial agents has come to prominence as a clinical problem in recent years, antiparasitic resistance in general and antimalarial resistance in particular has not received much attention, especially in the Indian scenario. The present review deals with commonly used antimalarial drugs and the mechanisms of resistance to them. Various methods of detecting antimalarial resistance and avoiding the same have also been dealt with. Newer parasite targets which can be used in developing newer antimalarial agents and antimalarials obtained from plants have also been mentioned.

  18. From hybrid compounds to targeted drug delivery in antimalarial therapy.

    Science.gov (United States)

    Oliveira, Rudi; Miranda, Daniela; Magalhães, Joana; Capela, Rita; Perry, Maria J; O'Neill, Paul M; Moreira, Rui; Lopes, Francisca

    2015-08-15

    The discovery of new drugs to treat malaria is a continuous effort for medicinal chemists due to the emergence and spread of resistant strains of Plasmodium falciparum to nearly all used antimalarials. The rapid adaptation of the malaria parasite remains a major limitation to disease control. Development of hybrid antimalarial agents has been actively pursued as a promising strategy to overcome the emergence of resistant parasite strains. This review presents the journey that started with simple combinations of two active moieties into one chemical entity and progressed into a delivery/targeted system based on major antimalarial classes of drugs. The rationale for providing different mechanisms of action against a single or additional targets involved in the multiple stages of the parasite's life-cycle is highlighted. Finally, a perspective for this polypharmacologic approach is presented. PMID:25913864

  19. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations.

    Science.gov (United States)

    Mott, Bryan T; Eastman, Richard T; Guha, Rajarshi; Sherlach, Katy S; Siriwardana, Amila; Shinn, Paul; McKnight, Crystal; Michael, Sam; Lacerda-Queiroz, Norinne; Patel, Paresma R; Khine, Pwint; Sun, Hongmao; Kasbekar, Monica; Aghdam, Nima; Fontaine, Shaun D; Liu, Dongbo; Mierzwa, Tim; Mathews-Griner, Lesley A; Ferrer, Marc; Renslo, Adam R; Inglese, James; Yuan, Jing; Roepe, Paul D; Su, Xin-Zhuan; Thomas, Craig J

    2015-01-01

    Drug resistance in Plasmodium parasites is a constant threat. Novel therapeutics, especially new drug combinations, must be identified at a faster rate. In response to the urgent need for new antimalarial drug combinations we screened a large collection of approved and investigational drugs, tested 13,910 drug pairs, and identified many promising antimalarial drug combinations. The activity of known antimalarial drug regimens was confirmed and a myriad of new classes of positively interacting drug pairings were discovered. Network and clustering analyses reinforced established mechanistic relationships for known drug combinations and identified several novel mechanistic hypotheses. From eleven screens comprising >4,600 combinations per parasite strain (including duplicates) we further investigated interactions between approved antimalarials, calcium homeostasis modulators, and inhibitors of phosphatidylinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR). These studies highlight important targets and pathways and provide promising leads for clinically actionable antimalarial therapy. PMID:26403635

  20. Polymorphisms of the oxidant enzymes glutathione S-transferase and glutathione reductase and their association with resistance ofPlasmodium falciparum isolates to antimalarial drugs

    Institute of Scientific and Technical Information of China (English)

    Raewadee Wisedpanichkij; Wanna Chaicharoenkul; Poonuch Mahamad; Prapichaya Prompradit; Kesara Na-Bangchang

    2010-01-01

    Objective:To investigate the association between amplification of the two regulatory genes controlling glutathione(GSH)levels, glutathione reductase(PfGR)and glutathione S-transferase (PfGST) genes and sensitivity ofPlasmodium falciparum (P. falciparum)isolates collected from different malaria endemic areas of Thailand to standard antimalarial drugs.Methods: A total of70P. falciparum isolates were collected from endemic areas of multi-drug resistance (Tak, Chantaburi and Ranong Provinces) during the year2008-2009. The in vitro assessment of antimalarial activity ofP. falciparumclones (K1- and Dd2 chloroquine resistant and3D7-chloroquine sensitive) and isolates to chloroquine, quinine, mefloquine and arteusnate was performed based onSYBR Green modified assay.Results:68 (97.14%), 11 (15.71%) and28 (40%) isolates respectively were classified as chloroquine-, quinine- and mefloquine-resistant isolates. With this limited number ofP. falciparum isolates included in the analysis, no significant association between amplification ofPfGST gene and sensitivity of the parasite to chloroquine, quinine, mefloquine and quinine was found. Based onPCR analysis,Dd2, K1 and3D7clones all contained only one copy of thePfGST gene. All isolates (70) also carried only one copy number of PfGST gene. There appears to be an association between amplification ofPfGR gene and chloroquine resistance. The3D7and Dd2 clones were found to carry only onePfGR gene copy, whereas the K1 clone carried two gene copies.Conclusions: Chloroquine resistance is likely to be a consequence of multi-factors and enzymes in theGSH system may be partly involved. Larger number of parasite isolates are required to increase power of the hypothesis testing in order to confirm the involvement of both genes as well as other genes implicated in glutathione metabolism in conferring chloroquine resistance.

  1. FlexiChip package: an universal microarray with a dedicated analysis software for high-thoughput SNPs detection linked to anti-malarial drug resistance

    Directory of Open Access Journals (Sweden)

    Dondorp Arjen M

    2009-10-01

    Full Text Available Abstract Background A number of molecular tools have been developed to monitor the emergence and spread of anti-malarial drug resistance to Plasmodium falciparum. One of the major obstacles to the wider implementation of these tools is the absence of practical methods enabling high throughput analysis. Here a new Zip-code array is described, called FlexiChip, linked to a dedicated software program, which largely overcomes this problem. Methods Previously published microarray probes detecting single-nucleotide polymorphisms (SNP associated with parasite resistance to anti-malarial drugs (ResMalChip were adapted for a universal microarray FlexiChip format. To evaluate the overall sensitivity of the FlexiChip package (microarray + software, the results of FlexiChip were compared to ResMalChip microarray, using the same extension probes and with the same PCR products. In both cases, sequence results were used as gold standard to calculate sensitivity and specificity. FlexiChip results obtained with a set of field isolates were then compared to those assessed in an independent reference laboratory. Results The FlexiChip package gave results identical to the ResMalChip results in 92.7% of samples (kappa coefficient 0.8491, with a standard error 0.021 and had a sensitivity of 95.88% and a specificity of 97.68% compared to the sequencing as the reference method. Moreover the method performed well compared to the results obtained in the reference laboratories, with 99.7% of identical results (kappa coefficient 0.9923, S.E. 0.0523. Conclusion Microarrays could be employed to monitor P. falciparum drug resistance markers with greater cost effectiveness and the possibility for high throughput analysis. The FlexiChip package is a promising tool for use in poor resource settings of malaria endemic countries.

  2. Targeting Plasmodium falciparum Hsp90: Towards Reversing Antimalarial Resistance

    Directory of Open Access Journals (Sweden)

    Dea Shahinas

    2013-02-01

    Full Text Available Malaria continues to exact a great human toll in tropical settings. Antimalarial resistance is rife and the parasite inexorably develops mechanisms to outwit our best drugs, including the now first-line choice, artesunate. Novel strategies to circumvent resistance are needed. Here we detail drug development focusing on heat shock protein 90 and its central role as a chaperone. A growing body of evidence supports the role for Hsp90 inhibitors as adjunctive drugs able to restore susceptibility to traditionally efficacious compounds like chloroquine.

  3. Epidemiological models for the spread of anti-malarial resistance

    Directory of Open Access Journals (Sweden)

    Antia R

    2003-02-01

    Full Text Available Abstract Background The spread of drug resistance is making malaria control increasingly difficult. Mathematical models for the transmission dynamics of drug sensitive and resistant strains can be a useful tool to help to understand the factors that influence the spread of drug resistance, and they can therefore help in the design of rational strategies for the control of drug resistance. Methods We present an epidemiological framework to investigate the spread of anti-malarial resistance. Several mathematical models, based on the familiar Macdonald-Ross model of malaria transmission, enable us to examine the processes and parameters that are critical in determining the spread of resistance. Results In our simplest model, resistance does not spread if the fraction of infected individuals treated is less than a threshold value; if drug treatment exceeds this threshold, resistance will eventually become fixed in the population. The threshold value is determined only by the rates of infection and the infectious periods of resistant and sensitive parasites in untreated and treated hosts, whereas the intensity of transmission has no influence on the threshold value. In more complex models, where hosts can be infected by multiple parasite strains or where treatment varies spatially, resistance is generally not fixed, but rather some level of sensitivity is often maintained in the population. Conclusions The models developed in this paper are a first step in understanding the epidemiology of anti-malarial resistance and evaluating strategies to reduce the spread of resistance. However, specific recommendations for the management of resistance need to wait until we have more data on the critical parameters underlying the spread of resistance: drug use, spatial variability of treatment and parasite migration among areas, and perhaps most importantly, cost of resistance.

  4. Counterfeit and Substandard Antimalarial Drugs

    Science.gov (United States)

    ... drug is in its original packaging. Inspect the packaging because many times poor quality printing indicates a counterfeited product. Be suspicious of tablets that have a peculiar odor, taste, or color, or that are extremely brittle. Get Email Updates ...

  5. Genotyping of Plasmodium falciparum using antigenic polymorphic markers and to study anti-malarial drug resistance markers in malaria endemic areas of Bangladesh

    Directory of Open Access Journals (Sweden)

    Akter Jasmin

    2012-11-01

    Full Text Available Abstract Background In the past many regions of Bangladesh were hyperendemic for malaria. Malaria control in the 1960s to 1970s eliminated malaria from the plains but in the Chittagong Hill Tracts remained a difficult to control reservoir. The Chittagong Hill Tracts have areas with between 1 and 10% annual malaria rates, predominately 90-95% Plasmodium falciparum. In Southeast Asia, multiplicity of infection for hypo-endemic regions has been approximately 1.5. Few studies on the genetic diversity of P. falciparum have been performed in Bangladesh. Anderson et al. performed a study in Khagrachari, northern Chittagong Hill Tracts in 2002 on 203 patients and found that parasites had a multiplicity of infection of 1.3 by MSP-1, MSP-2 and GLURP genotyping. A total of 94% of the isolates had the K76T Pfcrt chloroquine resistant genotype, and 70% showed the N86Y Pfmdr1 genotype. Antifolate drug resistant genotypes were high with 99% and 73% of parasites having two or more mutations at the dhfr or dhps loci. Methods Nested and real-time polymerase chain reaction (PCR methods were used to genotype P. falciparum using antigenic polymorphic markers and to study anti-malarial drug resistance markers in malaria endemic areas of Bangladesh. Results The analysis of polymorphic and drug resistant genotype on 33 paired recrudescent infections after drug treatment in the period 2004 to 2008 in the Chittagong Hill Tracts, which is just prior to countrywide provision of artemisinin combination therapy. Overall the multiplicity of infection for MSP-1 was 2.7 with a slightly smaller parasite diversity post-treatment. The 13 monoclonal infections by both GLURP and MSP-1 were evenly divided between pre- and post-treatment. The MSP-1 MAD block was most frequent in 66 of the samples. The prevalence of the K76T PfCRT chloroquine resistant allele was approximately 82% of the samples, while the resistant Pfmdr1 N86Y was present in 33% of the samples. Interestingly, the post

  6. Selection of antimalarial drug resistance after intermittent preventive treatment of infants and children (IPTi/c) in Senegal

    DEFF Research Database (Denmark)

    Ndiaye, Magatte; Tine, Roger; Faye, Babacar;

    2013-01-01

    Senegal has since 2003 used sulphadoxine-pyrimethamine (SP) for Intermittent Preventive Treatment (IPT) of malaria in risk groups. However, the large-scale IPT strategy may result in increasing drug resistance. Our study investigated the possible impact of SP-IPT given to infants and children on...... the prevalence of SP-resistant haplotypes in the Plasmodium falciparum genes Pfdhfr and Pfdhps, comparing sites with and without IPTi/c. P. falciparum positives samples (n=352) were collected from children under 5years of age during two cross-sectional surveys in 2010 and 2011 in three health...... districts (two on IPTi/c and one without IPTi/c intervention) located in the southern part of Senegal. The prevalence of SP-resistance-related haplotypes in Pfdhfr and Pfdhps was determined by nested PCR followed by sequence-specific oligonucleotide probe (SSOP)-ELISA. The prevalence of the Pfdhfr double...

  7. Anticancer properties of distinct antimalarial drug classes.

    Directory of Open Access Journals (Sweden)

    Rob Hooft van Huijsduijnen

    Full Text Available We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor, emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings.

  8. Drug-resistant malaria

    OpenAIRE

    Hyde, John E

    2005-01-01

    In the past 21 years, a modest increase in the range of antimalarial drugs approved for clinical use has been complemented by a more impressive expansion in the analysis and understanding of the molecular mechanisms underlying resistance to these agents. Such resistance is a major factor in the increasing difficulty in controlling malaria, and important developments during this period are recounted here.

  9. Extensive Drug Resistance in Malaria and Tuberculosis

    OpenAIRE

    Wongsrichanalai, Chansuda; Varma, Jay K.; Juliano, Jonathan J; Kimerling, Michael E.; MacArthur, John R

    2010-01-01

    Drug resistance in malaria and in tuberculosis (TB) are major global health problems. Although the terms multidrug-resistant TB and extensively drug-resistant TB are precisely defined, the term multidrug resistance is often loosely used when discussing malaria. Recent declines in the clinical effectiveness of antimalarial drugs, including artemisinin-based combination therapy, have prompted the need to revise the definitions of and/or to recategorize antimalarial drug resistance to include ex...

  10. The de novo selection of drug-resistant malaria parasites.

    OpenAIRE

    White, N.J.; Pongtavornpinyo, W.

    2003-01-01

    Antimalarial drug resistance emerges de novo predominantly in areas of low malaria transmission. Because of the logarithmic distribution of parasite numbers in human malaria infections, inadequately treated high biomass infections are a major source of de novo antimalarial resistance, whereas use of antimalarial prophylaxis provides a low resistance selection risk. Slowly eliminated antimalarials encourage resistance largely by providing a selective filter for resistant parasites acquired fro...

  11. Substandard anti-malarial drugs in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Sie Ali

    2008-05-01

    Full Text Available Abstract Background There is concern about an increasing infiltration of markets by substandard and fake medications against life-threatening diseases in developing countries. This is particularly worrying with regard to the increasing resistance development of Plasmodium falciparum against affordable anti-malarial medications, which has led to a change to more expensive drugs in most endemic countries. Methods A representative sample of modern anti-malarial medications from licensed (public and private pharmacies, community health workers and illicit (market and street vendors, shops sources has been collected in the Nouna Health District in north-western Burkina Faso in 2006. All drugs were tested for their quality with the standard procedures of the German Pharma Health Fund-Minilab. Detected low standard drugs were re-tested with European Pharmacopoeia 2.9.1 standards for disintegration and ultraviolet-visible spectroscopy at the laboratory of the Heidelberg University for confirmation. Results Overall, 86 anti-malarial drug samples were collected, of which 77 samples have been included in the final analysis. The sample consisted of 39/77 (50% chloroquine, 10/77 (13% pyrimethamine-sulphadoxine, 9/77 (12% quinine, 6/77 (8% amodiaquine, 9/77 (12% artesunate, and 4/77 (5% artemether-lumefantrine. 32/77 (42% drug samples were found to be of poor quality, of which 28 samples failed the visual inspection, nine samples had substandard concentrations of the active ingredient, four samples showed poor disintegration, and one sample contained non of the stated active ingredient. The licensed and the illicit market contributed 5/47 (10.6% and 27/30 (90.0% samples of substandard drugs respectively. Conclusion These findings provide further evidence for the wide-spread existence of substandard anti-malarial medications in Africa and call for strengthening of the regulatory and quality control capacity of affected countries, particularly in view of the

  12. Targeting protein kinases in the malaria parasite: update of an antimalarial drug target.

    Science.gov (United States)

    Zhang, Veronica M; Chavchich, Marina; Waters, Norman C

    2012-01-01

    Millions of deaths each year are attributed to malaria worldwide. Transmitted through the bite of an Anopheles mosquito, infection and subsequent death from the Plasmodium species, most notably P. falciparum, can readily spread through a susceptible population. A malaria vaccine does not exist and resistance to virtually every antimalarial drug predicts that mortality and morbidity associated with this disease will increase. With only a few antimalarial drugs currently in the pipeline, new therapeutic options and novel chemotypes are desperately needed. Hit-to-Lead diversity may successfully provide novel inhibitory scaffolds when essential enzymes are targeted, for example, the plasmodial protein kinases. Throughout the entire life cycle of the malaria parasite, protein kinases are essential for growth and development. Ongoing efforts continue to characterize these kinases, while simultaneously pursuing them as antimalarial drug targets. A collection of structural data, inhibitory profiles and target validation has set the foundation and support for targeting the malarial kinome. Pursuing protein kinases as cancer drug targets has generated a wealth of information on the inhibitory strategies that can be useful for antimalarial drug discovery. In this review, progress on selected protein kinases is described. As the search for novel antimalarials continues, an understanding of the phosphor-regulatory pathways will not only validate protein kinase targets, but also will identify novel chemotypes to thwart malaria drug resistance. PMID:22242850

  13. Selection of antimalarial drug resistance after intermittent preventive treatment of infants and children (IPTi/c) in Senegal

    DEFF Research Database (Denmark)

    Ndiaye, Magatte; Tine, Roger; Faye, Babacar;

    2013-01-01

    Abstract. Our study investigated the possible impact of SP-IPT given to infants and children on the prevalence of SP-resistant haplotypes in the Plasmodium falciparum genes Pfdhfr and Pfdhps, comparing sites with and without IPTi/c. P. falciparum positive samples (N = 352) collected from children...

  14. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

    OpenAIRE

    Asrar Alam

    2014-01-01

    Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes...

  15. The role of anti-malarial drugs in eliminating malaria.

    OpenAIRE

    White, NJ

    2008-01-01

    Effective anti-malarial drug treatment reduces malaria transmission. This alone can reduce the incidence and prevalence of malaria, although the effects are greater in areas of low transmission where a greater proportion of the infectious reservoir is symptomatic and receives anti-malarial treatment. Effective treatment has greater effects on the transmission of falciparum malaria, where gametocytogenesis is delayed, compared with the other human malarias in which peak gametocytaemia and tran...

  16. The role of anti-malarial drugs in eliminating malaria

    OpenAIRE

    White Nicholas J

    2008-01-01

    Abstract Effective anti-malarial drug treatment reduces malaria transmission. This alone can reduce the incidence and prevalence of malaria, although the effects are greater in areas of low transmission where a greater proportion of the infectious reservoir is symptomatic and receives anti-malarial treatment. Effective treatment has greater effects on the transmission of falciparum malaria, where gametocytogenesis is delayed, compared with the other human malarias in which peak gametocytaemia...

  17. Saleability of anti-malarials in private drug shops in Muheza, Tanzania

    DEFF Research Database (Denmark)

    Ringsted, Frank M; Massawe, Isolide S; Lemnge, Martha M;

    2011-01-01

    women depend on SP for Intermittent Preventive Treatment (IPTp) during pregnancy. SP is still being dispensed by private drug stores, but it is unknown to which extent. If significant, it may undermine its official use for IPTp through induction of resistance. The main study objective was to perform a...... baseline study of the private market for anti-malarials in Muheza town, an area with widespread anti-malarial drug resistance, prior to the implementation of a provider training and accreditation programme that will allow accredited drug shops to sell subsidized ALu. Methods: All drug shops selling...... resistance remains high, unregulated SP dispensing to people other than pregnant women runs the risk of eventually jeopardizing the effectiveness of the IPTp strategy. Further studies are recommended to find out barriers for ACT utilization and preference for self-medication and to train private drug...

  18. Drug Resistance

    Science.gov (United States)

    HIV Treatment Drug Resistance (Last updated 3/1/2016; last reviewed 3/1/2016) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  19. Targeting Plasmodium Metabolism to Improve Antimalarial Drug Design.

    Science.gov (United States)

    Avitia-Domínguez, Claudia; Sierra-Campos, Erick; Betancourt-Conde, Irene; Aguirre-Raudry, Miriam; Vázquez-Raygoza, Alejandra; Luevano-De la Cruz, Artemisa; Favela-Candia, Alejandro; Sarabia-Sanchez, Marie; Ríos-Soto, Lluvia; Méndez-Hernández, Edna; Cisneros-Martínez, Jorge; Palacio-Gastélum, Marcelo Gómez; Valdez-Solana, Mónica; Hernández-Rivera, Jessica; De Lira-Sánchez, Jaime; Campos-Almazán, Mara; Téllez-Valencia, Alfredo

    2016-01-01

    Malaria is one of the main infectious diseases in tropical developing countries and represents high morbidity and mortality rates nowadays. The principal etiological agent P. falciparum is transmitted through the bite of the female Anopheles mosquito. The issue has escalated due to the emergence of resistant strains to most of the antimalarials used for the treatment including Chloroquine, Sulfadoxine-Pyrimethamine, and recently Artemisinin derivatives, which has led to diminished effectiveness and by consequence increased the severity of epidemic outbreaks. Due to the lack of effective compounds to treat these drug-resistant strains, the discovery or development of novel anti-malaria drugs is important. In this context, one strategy has been to find inhibitors of enzymes, which play an important role for parasite survival. Today, promising results have been obtained in this regard, involving the entire P. falciparum metabolism. These inhibitors could serve as leads in the search of a new chemotherapy against malaria. This review focuses on the achievements in recent years with regard to inhibition of enzymes used as targets for drug design against malaria. PMID:26983887

  20. Amazonian Plant Natural Products: Perspectives for Discovery of New Antimalarial Drug Leads

    Directory of Open Access Journals (Sweden)

    Lucio H. Freitas-Junior

    2013-08-01

    Full Text Available Plasmodium falciparum and P. vivax malaria parasites are now resistant, or showing signs of resistance, to most drugs used in therapy. Novel chemical entities that exhibit new mechanisms of antiplasmodial action are needed. New antimalarials that block transmission of Plasmodium spp. from humans to Anopheles mosquito vectors are key to malaria eradication efforts. Although P. vivax causes a considerable number of malaria cases, its importance has for long been neglected. Vivax malaria can cause severe manifestations and death; hence there is a need for P. vivax-directed research. Plants used in traditional medicine, namely Artemisia annua and Cinchona spp. are the sources of the antimalarial natural products artemisinin and quinine, respectively. Based on these compounds, semi-synthetic artemisinin-derivatives and synthetic quinoline antimalarials have been developed and are the most important drugs in the current therapeutic arsenal for combating malaria. In the Amazon region, where P. vivax predominates, there is a local tradition of using plant-derived preparations to treat malaria. Here, we review the current P. falciparum and P. vivax drug-sensitivity assays, focusing on challenges and perspectives of drug discovery for P. vivax, including tests against hypnozoites. We also present the latest findings of our group and others on the antiplasmodial and antimalarial chemical components from Amazonian plants that may be potential drug leads against malaria.

  1. Use and quality of antimalarial drugs in the private sector in Viet Nam.

    OpenAIRE

    Cong, L D; Yen, P. T.; Nhu, T. V.; Binh, L N

    1998-01-01

    This study examines the use and quality of antimalarial drugs in the growing private sector of Viet Nam. The practices of drug vendors (called alternative treatment providers (ATPs)) as well as their stocks and the quality of drugs sold by them, and the local production and distribution of antimalarials were investigated. Antimalarials were sold by the vast majority of ATPs, almost all the common antimalarials being available for sale. The practices and indications for sale, however, varied. ...

  2. Anti-malarial drugs and the prevention of malaria in the population of malaria endemic areas

    OpenAIRE

    Greenwood Brian

    2010-01-01

    Abstract Anti-malarial drugs can make a significant contribution to the control of malaria in endemic areas when used for prevention as well as for treatment. Chemoprophylaxis is effective in preventing deaths and morbidity from malaria, but it is difficult to sustain for prolonged periods, may interfere with the development of naturally acquired immunity and will facilitate the emergence and spread of drug resistant strains if applied to a whole community. However, chemoprophylaxis targeted ...

  3. Amazonian plant natural products:perspectives for discovery of new antimalarial drug leads

    OpenAIRE

    Lucio H Freitas-Junior; Pedro Cravo; Marcus Vinícius Guimarães Lacerda; André Machado Siqueira; Carolina Borsoi Moraes; Gina Frausin; Luiz Francisco Rocha e Silva; Stefanie Costa Pinto Lopes; Renata Braga Souza Lima; Fabio Trindade Maranhão Costa; Adrian Martin Pohlit

    2013-01-01

    Plasmodium falciparum and P. vivax malaria parasites are now resistant, or showing signs of resistance, to most drugs used in therapy. Novel chemical entities that exhibit new mechanisms of antiplasmodial action are needed. New antimalarials that block transmission of Plasmodium spp. from humans to Anopheles mosquito vectors are key to malaria eradication efforts. Although P. vivax causes a considerable number of malaria cases, its importance has for long been neglected. Vivax malaria can cau...

  4. The antimalarial drug quinine interferes with serotonin biosynthesis and action

    DEFF Research Database (Denmark)

    Islahudin, Farida; Tindall, Sarah M.; Mellor, Ian R.;

    2014-01-01

    The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor of the neurotransmit...

  5. A genome wide association study of Plasmodium falciparum susceptibility to 22 antimalarial drugs in Kenya.

    Directory of Open Access Journals (Sweden)

    Jason P Wendler

    Full Text Available BACKGROUND: Drug resistance remains a chief concern for malaria control. In order to determine the genetic markers of drug resistant parasites, we tested the genome-wide associations (GWA of sequence-based genotypes from 35 Kenyan P. falciparum parasites with the activities of 22 antimalarial drugs. METHODS AND PRINCIPAL FINDINGS: Parasites isolated from children with acute febrile malaria were adapted to culture, and sensitivity was determined by in vitro growth in the presence of anti-malarial drugs. Parasites were genotyped using whole genome sequencing techniques. Associations between 6250 single nucleotide polymorphisms (SNPs and resistance to individual anti-malarial agents were determined, with false discovery rate adjustment for multiple hypothesis testing. We identified expected associations in the pfcrt region with chloroquine (CQ activity, and other novel loci associated with amodiaquine, quinazoline, and quinine activities. Signals for CQ and primaquine (PQ overlap in and around pfcrt, and interestingly the phenotypes are inversely related for these two drugs. We catalog the variation in dhfr, dhps, mdr1, nhe, and crt, including novel SNPs, and confirm the presence of a dhfr-164L quadruple mutant in coastal Kenya. Mutations implicated in sulfadoxine-pyrimethamine resistance are at or near fixation in this sample set. CONCLUSIONS/SIGNIFICANCE: Sequence-based GWA studies are powerful tools for phenotypic association tests. Using this approach on falciparum parasites from coastal Kenya we identified known and previously unreported genes associated with phenotypic resistance to anti-malarial drugs, and observe in high-resolution haplotype visualizations a possible signature of an inverse selective relationship between CQ and PQ.

  6. Public Awareness and Identification of Counterfeit Drugs in Tanzania: A View on Antimalarial Drugs

    OpenAIRE

    Mhando, Linus; Jande, Mary B.; Liwa, Anthony; Mwita, Stanley; Marwa, Karol J.

    2016-01-01

    Background. The illicit trade in counterfeit antimalarial drugs is a major setback to the fight against malaria. Information on public awareness and ability to identify counterfeit drugs is scanty. Aim. Therefore, the present study aimed at assessing public awareness and the ability to identify counterfeit antimalarial drugs based on simple observations such as appearance of the drugs, packaging, labelling, and leaflets. Methodology. A cross-sectional study was conducted using interviewer adm...

  7. Artemisinin anti-malarial drugs in China.

    Science.gov (United States)

    Guo, Zongru

    2016-03-01

    Discovered by Youyou Tu, one of the 2015 Nobel Prize winners in Physiology or Medicine, together with many other Chinese scientists, artemisinin, artemether and artesunate, as well as other artemisinins, have brought the global anti-malarial treatment to a new era, saving millions of lives all around the world for the past 40 years. The discoveries of artemisinins were carried out beginning from the 1970s, a special period in China, by hundreds of scientists all together under the "whole nation" system. This article focusing on medicinal chemistry research, briefly introduced the discovery and invention course of the scientists according to the published papers, and highlighted their academic contribution and achievements. PMID:27006895

  8. Malaria: Antimalarial resistance and policy ramificationsand challenges

    Directory of Open Access Journals (Sweden)

    Kshirsagar N

    2006-01-01

    Full Text Available ′The National health Policy 2002" of India and the "Roll Back Malaria" policy makers have set up an ambitious goal of reducing malaria mortality and morbidity by 25% by 2007, and by 50% by 2010. To achieve these goals, problems should be identified, available evidence analyzed and policy should be changed early. Infection with drug resistant malarial parasites has a tremendous impact on health (prolonged recurrent illness, increased hospital admissions and death, health system (higher cost of treatment and socioeconomics of the region. In view of the evidence of the economic burden of malaria, it has been suggested that second line treatment could be considered at 10% failure instead of 25%. Effective schizonticidal drugs will not only reduce morbidity and mortality but will also reduce transmission. Studies have shown that prevalence of viable (as tested by exflagellation test gametocytes is considerably more after the Chloroquine or Chloroquine + Sulphadoxine-Pyrimethamine treatment compared to Quinine. Unfortunately, the only gametocytocidal drug for Plasmodium falciparum, primaquine, is also loosing its efficacy. 45 mg Primaquine reduces gametocyte prevalence by 50% while a new drug, 75 mg bulaquine or 60 mg primaquine reduces it by 90%. Plasmodium vivax forms 60-70% of malaria cases in India. Relapses which occur in 10-20% of cases adds to the burden. Efficacy, as confirmed by Polymerase Chain Reaction-Single Strand Conformational Polymorphism (PCRSSCP to differentiate relapse and re-infection, of standard dose of primaquine (15 mg/day for 5 days, even 15 mg/day for 14 days for vivax malaria is reducing. Fourteen day treatment is also impractical as compliance is poor. Newer drugs, newer drug delivery systems are thus needed. Slow release formulations with blood levels maintained for one week may be useful. Rationale of giving primaquine in higher doses and different timing need to be considered. The genome of Plasmodium falciparum and

  9. In-vitro antimalarial activity of azithromycin against chloroquine sensitive and chloroquine resistant Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Biswas S

    2001-10-01

    Full Text Available BAKGROUND: The spread of drug resistance in Plasmodium falciparum has made the situation essential to look into new effective therapeutic agents like antibiotics. Azithromycin is a potential, chemotherapeutic agent which possesses antimalarial activity and favourable pharmacokinetic properties. It is an azalide microbiocide derived semi-synthetically from macrolide erythromycin. Like other antibiotics, the azalide azithromycin has ability to inhibit protein synthesis on 70S ribosomes. SETTINGS: Experimental study. SUBJECTS AND METHODS: The parasiticidal profile was studied in five chloroquine sensitive and five chloroquine resistant P. falciparum isolates obtained from various places of India. The antimalarial activity was evaluated in P. falciparum schizont maturation by short term culture for 24 hours and by exposing the parasites to the drug for 96 hours. Parasites synchronized at ring stage were put for culture with various concentrations of azithromycin dihydrate (0.01-40 micro/ml. RESULTS: At highest concentration (40 micro/ml, parasite growth was inhibited totally in all 10 isolates. Antimalarial activity at 96 hours was greater than at 24 hours in both chloroquine sensitive and resistant parasites, which may indicate that the inhibition of parasite growth may occur at clinically achievable concentration of the drug when parasites were exposed for several asexual cycles. CONCLUSION: Azithromycin shows a potential for eventual use alone or in combination in the treatment of chloroquine sensitive and resistant P. falciparum malaria.

  10. Metabolic Dysregulation Induced in Plasmodium falciparum by Dihydroartemisinin and Other Front-Line Antimalarial Drugs.

    Science.gov (United States)

    Cobbold, Simon A; Chua, Hwa H; Nijagal, Brunda; Creek, Darren J; Ralph, Stuart A; McConville, Malcolm J

    2016-01-15

    Detailed information on the mode of action of antimalarial drugs can be used to improve existing drugs, identify new drug targets, and understand the basis of drug resistance. In this study we describe the use of a time-resolved, mass spectrometry (MS)-based metabolite profiling approach to map the metabolic perturbations induced by a panel of clinical antimalarial drugs and inhibitors on Plasmodium falciparum asexual blood stages. Drug-induced changes in metabolite levels in P. falciparum-infected erythrocytes were monitored over time using gas chromatography-MS and liquid chromatography-MS and changes in specific metabolic fluxes confirmed by nonstationary [(13)C]-glucose labeling. Dihydroartemisinin (DHA) was found to disrupt hemoglobin catabolism within 1 hour of exposure, resulting in a transient decrease in hemoglobin-derived peptides. Unexpectedly, it also disrupted pyrimidine biosynthesis, resulting in increased [(13)C]-glucose flux toward malate production, potentially explaining the susceptibility of P. falciparum to DHA during early blood-stage development. Unique metabolic signatures were also found for atovaquone, chloroquine, proguanil, cycloguanil and methylene blue. We also show that this approach can be used to identify the mode of action of novel antimalarials, such as the compound Torin 2, which inhibits hemoglobin catabolism. PMID:26150544

  11. The impact of HIV-1 on the malaria parasite biomass in adults in sub-Saharan Africa contributes to the emergence of antimalarial drug resistance

    NARCIS (Netherlands)

    J.P. van Geertruyden (Jean Pierre); J. Menten (Joris); R. Colebunders (Robert); E.L. Korenromp (Eline); U. D'Alessandro (Umberto)

    2008-01-01

    textabstractBackground. HIV-related immune-suppression increases the risk of malaria (infection, disease and treatment failure) and probably the circulating parasite biomass, favoring the emergence of drug resistance parasites. Methods. The additional malaria parasite biomass related to HIV-1 co-inf

  12. Antimicrobial peptides: a new class of antimalarial drugs?

    Directory of Open Access Journals (Sweden)

    Nuno eVale

    2014-12-01

    Full Text Available A range of antimicrobial peptides (AMP exhibit activity on malaria parasites, Plasmodium spp, in their blood or mosquito stages, or both. These peptides include a diverse array of both natural and synthetic molecules varying greatly in size, charge, hydrophobicity and secondary structure features. Along with an overview of relevant literature reports regarding AMP that display antiplasmodial activity, this review makes a few considerations about those molecules as a potential new class of antimalarial drugs.

  13. Cell wall perturbation sensitizes fungi to the antimalarial drug chloroquine

    OpenAIRE

    Islahudin, Farida; Khozoie, Combiz; Bates, Steven; Ting, Kang-Nee; Pleass, Richard J.; Avery, Simon V.

    2013-01-01

    Chloroquine (CQ) has been a mainstay of antimalarial drug treatment for several decades. Additional therapeutic actions of CQ have been described, including some reports of fungal inhibition. Here we investigated the action of CQ in fungi, including the yeast model Saccharomyces cerevisiae. A genomewide yeast deletion strain collection was screened against CQ, revealing that bck1Δ and slt2Δ mutants of the cell wall integrity pathway are CQ hypersensitive. This phenotype was rescued with sorbi...

  14. Public Awareness and Identification of Counterfeit Drugs in Tanzania: A View on Antimalarial Drugs

    Directory of Open Access Journals (Sweden)

    Linus Mhando

    2016-01-01

    Full Text Available Background. The illicit trade in counterfeit antimalarial drugs is a major setback to the fight against malaria. Information on public awareness and ability to identify counterfeit drugs is scanty. Aim. Therefore, the present study aimed at assessing public awareness and the ability to identify counterfeit antimalarial drugs based on simple observations such as appearance of the drugs, packaging, labelling, and leaflets. Methodology. A cross-sectional study was conducted using interviewer administered structured questionnaire and a checklist. Respondents were required to spot the difference between genuine and counterfeit antimalarial drugs given to them. Data was analysed using SPSS version 20. Results. The majority of respondents, 163 (55.6%, were able to distinguish between genuine and counterfeit antimalarial drugs. Respondents with knowledge on health effects of counterfeit drugs were more likely to identify genuine and counterfeit drugs than their counterparts (P=0.003; OR = 2.95; 95% CI: 1.47–5.65. The majority of respondents, 190 (64.8%, perceived the presence of counterfeit drugs to be a big problem to the community. Conclusions. A substantial proportion of respondents were able to distinguish between genuine and counterfeit antimalarial drugs. Public empowerment in identifying counterfeit drugs by simple observations is a major step towards discouraging the market of counterfeit drugs.

  15. Complex polymorphisms in the Plasmodium falciparum multidrug resistance protein 2 gene and its contribution to antimalarial response.

    Science.gov (United States)

    Veiga, Maria Isabel; Osório, Nuno S; Ferreira, Pedro Eduardo; Franzén, Oscar; Dahlstrom, Sabina; Lum, J Koji; Nosten, Francois; Gil, José Pedro

    2014-12-01

    Plasmodium falciparum has the capacity to escape the actions of essentially all antimalarial drugs. ATP-binding cassette (ABC) transporter proteins are known to cause multidrug resistance in a large range of organisms, including the Apicomplexa parasites. P. falciparum genome analysis has revealed two genes coding for the multidrug resistance protein (MRP) type of ABC transporters: Pfmrp1, previously associated with decreased parasite drug susceptibility, and the poorly studied Pfmrp2. The role of Pfmrp2 polymorphisms in modulating sensitivity to antimalarial drugs has not been established. We herein report a comprehensive account of the Pfmrp2 genetic variability in 46 isolates from Thailand. A notably high frequency of 2.8 single nucleotide polymorphisms (SNPs)/kb was identified for this gene, including some novel SNPs. Additionally, we found that Pfmrp2 harbors a significant number of microindels, some previously not reported. We also investigated the potential association of the identified Pfmrp2 polymorphisms with altered in vitro susceptibility to several antimalarials used in artemisinin-based combination therapy and with parasite clearance time. Association analysis suggested Pfmrp2 polymorphisms modulate the parasite's in vitro response to quinoline antimalarials, including chloroquine, piperaquine, and mefloquine, and association with in vivo parasite clearance. In conclusion, our study reveals that the Pfmrp2 gene is the most diverse ABC transporter known in P. falciparum with a potential role in antimalarial drug resistance. PMID:25267670

  16. Antimalarial drugs for rheumatoid disease during pregnancy.

    OpenAIRE

    Koren, G

    1999-01-01

    QUESTION: One of my patients, who has rheumatoid arthritis, has just found out she is pregnant. She is being treated with hydroxychloroquine. I could not find anything about the safety of this drug during pregnancy. ANSWER: Most of the literature on this drug relates to prophylaxis for malaria. Much lower doses than those used for rheumatic diseases are given with no adverse fetal effects. Several studies on use of the drug for rheumatic diseases during pregnancy also failed to show adverse f...

  17. In vitro antimalarial drug susceptibility in Thai border areas from 1998–2003

    Directory of Open Access Journals (Sweden)

    Mungthin Mathirut

    2005-08-01

    Full Text Available Abstract Background The Thai-Myanmar and Thai-Cambodia borders have been historically linked with the emergence and spread of Plasmodium falciparum parasites resistant to antimalarial drugs. Indeed, the areas are often described as harbouring multi-drug resistant parasites. These areas of Thailand have experienced significant changes in antimalarial drug exposure patterns over the past decade. This study describes the in vitro antimalarial susceptibility patterns of 95 laboratory-adapted P. falciparum isolates, collected between 1998 and 2003,. Methods Ninety five P. falciparum isolates were collected from five sites in Thailand between 1998 and 2003. After laboratory adaptation to in vitro culture, the susceptibility of these parasites to a range of established antimalarial drugs (chloroquine [CQ], mefloquine [MQ], quinine [QN] and dihydroartemisinin [DHA] was determined by the isotopic microtest. Results Mefloquine (MQ sensitivity remained poorest in areas previously described as MQ-resistant areas. Sensitivity to MQ of parasites from this area was significantly lower than those from areas reported to harbour moderate (p = 0.002 of low level MQ resistance (p = 000001. Importantly for all drugs tested, there was a considerable range in absolute parasite sensitivities. There was a weak, but statistically positive correlation between parasite sensitivity to CQ and sensitivity to both QN and MQ and a positive correlation between MQ and QN. In terms of geographical distribution, parasites from the Thai-Cambodia were tended to be less sensitive to all drugs tested compared to the Thai-Myanmar border. Parasite sensitivity to all drugs was stable over the 6-year collection period with the exception of QN. Conclusion This study highlights the high degree of variability in parasite drug sensitivity in Thailand. There were geographical differences in the pattern of resistance which might reflect differences in drug usage in each area. In contrast to many

  18. Cloroquine – miscellaneous properties of the antimalarial drug

    Directory of Open Access Journals (Sweden)

    Robert Jarzyna

    2002-06-01

    Full Text Available Chloroquine is a drug with over 60 years of safe clinical use in the treatment of malaria. The multiple mechanisms of chloroquine action have appeared to be useful in the therapy of many miscellaneous disorders well beyond its original antimalarial purposes. This paper is focused on the application of chloroquine for the treatment of malaria, porphyria cutanea tarda, rheumatoid arthritis, palindromic rheumatism and lupus. The possibility of the use of chloroquine in the therapy of other disorders such as diabetes mellitus, AIDS, hyperlipidemia, sarcoidosis, hypercalcemia, and melanoma is reviewed. Mechanisms of action of the drug as well as side effects on metabolism are discussed in view of recent discoveries.

  19. Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes.

    Science.gov (United States)

    Goodman, Christopher D; Siregar, Josephine E; Mollard, Vanessa; Vega-Rodríguez, Joel; Syafruddin, Din; Matsuoka, Hiroyuki; Matsuzaki, Motomichi; Toyama, Tomoko; Sturm, Angelika; Cozijnsen, Anton; Jacobs-Lorena, Marcelo; Kita, Kiyoshi; Marzuki, Sangkot; McFadden, Geoffrey I

    2016-04-15

    Drug resistance compromises control of malaria. Here, we show that resistance to a commonly used antimalarial medication, atovaquone, is apparently unable to spread. Atovaquone pressure selects parasites with mutations in cytochrome b, a respiratory protein with low but essential activity in the mammalian blood phase of the parasite life cycle. Resistance mutations rescue parasites from the drug but later prove lethal in the mosquito phase, where parasites require full respiration. Unable to respire efficiently, resistant parasites fail to complete mosquito development, arresting their life cycle. Because cytochrome b is encoded by the maternally inherited parasite mitochondrion, even outcrossing with wild-type strains cannot facilitate spread of resistance. Lack of transmission suggests that resistance will be unable to spread in the field, greatly enhancing the utility of atovaquone in malaria control. PMID:27081071

  20. Treatment of Plasmodium chabaudi Parasites with Curcumin in Combination with Antimalarial Drugs: Drug Interactions and Implications on the Ubiquitin/Proteasome System

    OpenAIRE

    Zoraima Neto; Marta Machado; Ana Lindeza; Virgílio do Rosário; Gazarini, Marcos L.; Dinora Lopes

    2013-01-01

    Antimalarial drug resistance remains a major obstacle in malaria control. Evidence from Southeast Asia shows that resistance to artemisinin combination therapy (ACT) is inevitable. Ethnopharmacological studies have confirmed the efficacy of curcumin against Plasmodium spp. Drug interaction assays between curcumin/piperine/chloroquine and curcumin/piperine/artemisinin combinations and the potential of drug treatment to interfere with the ubiquitin proteasome system (UPS) were analyzed. In vivo...

  1. Home treatment of febrile children with antimalarial drugs in Togo.

    OpenAIRE

    Deming, M. S.; Gayibor, A.; Murphy, K; Jones, T. S.; Karsa, T.

    1989-01-01

    In Togo, the principal strategy for preventing death from malaria in children is prompt treatment of fever with antimalarial drugs. A household survey was conducted in a rural area of south-central Togo in which information was collected from mothers on the treatment received by 507 children under 5 years of age who, according to their mothers, had recently had fever. Altogether, 20% of the children (95% confidence interval (Cl): 15-25%) were seen at a health centre during their illness, whil...

  2. Analysis of genetic mutations associated with anti-malarial drug resistance in Plasmodium falciparum from the Democratic Republic of East Timor

    Directory of Open Access Journals (Sweden)

    Cravo Pedro VL

    2009-04-01

    Full Text Available Abstract Background In response to chloroquine (CQ resistance, the policy for the first-line treatment of uncomplicated malaria in the Democratic Republic of East Timor (DRET was changed in early 2000. The combination of sulphadoxine-pyrimethamine (SP was then introduced for the treatment of uncomplicated falciparum malaria. Methods Blood samples were collected in two different periods (2003–2004 and 2004–2005 from individuals attending hospitals or clinics in six districts of the DRET and checked for Plasmodium falciparum infection. 112 PCR-positive samples were inspected for genetic polymorphisms in the pfcrt, pfmdr1, pfdhfr and pfdhps genes. Different alleles were interrogated for potential associations that could be indicative of non-random linkage. Results Overall prevalence of mutations associated with resistance to CQ and SP was extremely high. The mutant form of Pfcrt (76T was found to be fixed even after five years of alleged CQ removal. There was a significant increase in the prevalence of the pfdhps 437G mutation (X2 = 31.1; p = 0.001 from the first to second survey periods. A non-random association was observed between pfdhfr51/pfdhps437 (p = 0.001 and pfdhfr 59/pfdhps 437 (p = 0.013 alleles. Conclusion Persistence of CQ-resistant mutants even after supposed drug withdrawal suggests one or all of the following: local P. falciparum may still be inadvertently exposed to the drug, that mutant parasites are being "imported" into the country, and/or reduced genetic diversity and low parasite transmission help maintain mutant haplotypes. The association between pfdhfr51/pfdhps437 and pfdhfr 59/pfdhps 437 alleles indicates that these are undergoing concomitant positive selection in the DRET.

  3. New emerging drug-resistant malaria

    OpenAIRE

    Viroj Wiwanitkit

    2010-01-01

    Viroj WiwanitkitWiwanitkit House, Bangkhae, Bangkok ThailandDate of preparation: 20th August 2008Conflict of interest: None declaredClinical question: What is the best treatment for artemisinin-resistant malaria?Results: There is still no better treatment than the presently used artemisinin-based combination therapies. A new antimalarial drug for this problem needs to be found.Implementation: Pitfalls to avoid when treating drug-resistant malaria:Keywords: malaria, drug resistance

  4. Effect of antimalarial drugs on stimulation and interleukin 2 production of human lymphocytes

    DEFF Research Database (Denmark)

    Bygbjerg, I C; Svenson, M; Theander, T G;

    1987-01-01

    Effect of pyrimethamine, an antimalarial antifolate, and of mefloquine, chloroquine, and quinine, which belong to the quinoline group of antimalarials, on proliferation and interleukin 2 (IL-2) production of human lymphocytes was studied in vitro. Pyrimethamine at concentrations above therapeutic...... action on human mononuclear cells of the various antimalarial drugs and the potential adverse effects of antimalarial chemotherapy are discussed....... at concentrations twice as high as those required to suppress lymphocyte proliferation. Addition of exogenous IL-2 only partially reversed the suppressive effect on lymphocyte proliferation. Delayed addition of the quinolines decreased their suppressive effect, but not completely. The mechanisms of...

  5. Natural polyhydroxyalkanoate–gold nanocomposite based biosensor for detection of antimalarial drug artemisinin

    International Nuclear Information System (INIS)

    The worrisome trend of antimalarial resistance has already highlighted the importance of artemisinin as a potent antimalarial agent. The current investigation aimed at fabricating a biosensor based on natural polymer polyhydroxyalkanoate–gold nanoparticle composite mounting on an indium-tin oxide glass plate for the analysis of artemisinin. The biosensor was fabricated using an adsorbing horse-radish peroxidase enzyme on the electrode surface for which cyclic voltammetry was used to monitor the electro-catalytic reduction of artemisinin under diffusion controlled conditions. Electrochemical interfacial properties and immobilization of enzyme onto a polyhydroxyalkanoate–gold nanoparticle film were evaluated, and confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The differential pulse voltammetric peak current for artemisinin was increased linearly (concentration range of 0.01–0.08 μg mL−1) with sensitivity of 0.26 μA μg mL−1. The greater sensitivity of the fabricated biosensor to artemisinin (optimum limits of detection were 0.0035 μg mL−1 and 0.0036 μg mL−1 in bulk and spiked human serum, respectively) could be of much aid in medical diagnosis. - Highlights: • Extraction of PHA from indigenously isolated Pseudomonas aeruginosa BPC2 • Developed PHA/AuNPs/HRP/ITO based biosensor without the use of chemical cross linker • Detection of antimalarial drug artemisinin using the nanocomposite based biosensor

  6. Natural polyhydroxyalkanoate–gold nanocomposite based biosensor for detection of antimalarial drug artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Phukon, Pinkee [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Radhapyari, Keisham [Analytical Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam (India); Konwar, Bolin Kumar [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Nagaland University (Central), Lumami, Zunheboto, Nagaland 798627 (India); Khan, Raju, E-mail: khan.raju@gmail.com [Analytical Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam (India)

    2014-04-01

    The worrisome trend of antimalarial resistance has already highlighted the importance of artemisinin as a potent antimalarial agent. The current investigation aimed at fabricating a biosensor based on natural polymer polyhydroxyalkanoate–gold nanoparticle composite mounting on an indium-tin oxide glass plate for the analysis of artemisinin. The biosensor was fabricated using an adsorbing horse-radish peroxidase enzyme on the electrode surface for which cyclic voltammetry was used to monitor the electro-catalytic reduction of artemisinin under diffusion controlled conditions. Electrochemical interfacial properties and immobilization of enzyme onto a polyhydroxyalkanoate–gold nanoparticle film were evaluated, and confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The differential pulse voltammetric peak current for artemisinin was increased linearly (concentration range of 0.01–0.08 μg mL{sup −1}) with sensitivity of 0.26 μA μg mL{sup −1}. The greater sensitivity of the fabricated biosensor to artemisinin (optimum limits of detection were 0.0035 μg mL{sup −1} and 0.0036 μg mL{sup −1} in bulk and spiked human serum, respectively) could be of much aid in medical diagnosis. - Highlights: • Extraction of PHA from indigenously isolated Pseudomonas aeruginosa BPC2 • Developed PHA/AuNPs/HRP/ITO based biosensor without the use of chemical cross linker • Detection of antimalarial drug artemisinin using the nanocomposite based biosensor.

  7. Chemogenomic profiling of Plasmodium falciparum as a tool to aid antimalarial drug discovery

    Science.gov (United States)

    Pradhan, Anupam; Siwo, Geoffrey H.; Singh, Naresh; Martens, Brian; Balu, Bharath; Button-Simons, Katrina A.; Tan, Asako; Zhang, Min; Udenze, Kenneth O.; Jiang, Rays H.Y.; Ferdig, Michael T.; Adams, John H.; Kyle, Dennis E.

    2015-01-01

    The spread of Plasmodium falciparum multidrug resistance highlights the urgency to discover new targets and chemical scaffolds. Unfortunately, lack of experimentally validated functional information about most P. falciparum genes remains a strategic hurdle. Chemogenomic profiling is an established tool for classification of drugs with similar mechanisms of action by comparing drug fitness profiles in a collection of mutants. Inferences of drug mechanisms of action and targets can be obtained by associations between shifts in drug fitness and specific genetic changes in the mutants. In this screen, P. falciparum, piggyBac single insertion mutants were profiled for altered responses to antimalarial drugs and metabolic inhibitors to create chemogenomic profiles. Drugs targeting the same pathway shared similar response profiles and multiple pairwise correlations of the chemogenomic profiles revealed novel insights into drugs’ mechanisms of action. A mutant of the artemisinin resistance candidate gene - “K13-propeller” gene (PF3D7_1343700) exhibited increased susceptibility to artemisinin drugs and identified a cluster of 7 mutants based on similar enhanced responses to the drugs tested. Our approach of chemogenomic profiling reveals artemisinin functional activity, linked by the unexpected drug-gene relationships of these mutants, to signal transduction and cell cycle regulation pathways. PMID:26541648

  8. Antimalarial drug quality in the most severely malarious parts of Africa - a six country study.

    Directory of Open Access Journals (Sweden)

    Roger Bate

    Full Text Available A range of antimalarial drugs were procured from private pharmacies in urban and peri-urban areas in the major cities of six African countries, situated in the part of that continent and the world that is most highly endemic for malaria. Semi-quantitative thin-layer chromatography (TLC and dissolution testing were used to measure active pharmaceutical ingredient content against internationally acceptable standards. 35% of all samples tested failed either or both tests, and were substandard. Further, 33% of treatments collected were artemisinin monotherapies, most of which (78% were manufactured in disobservance of an appeal by the World Health Organisation (WHO to withdraw these clinically inappropriate medicines from the market. The high persistence of substandard drugs and clinically inappropriate artemisinin monotherapies in the private sector risks patient safety and, through drug resistance, places the future of malaria treatment at risk globally.

  9. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    Directory of Open Access Journals (Sweden)

    Huthmacher Carola

    2010-08-01

    Full Text Available Abstract Background Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. Results Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicted life cycle stage specific metabolism with the help of a flux balance approach that integrates gene expression data. Predicted metabolite exchanges between parasite and host were found to be in good accordance with experimental findings when the parasite's metabolic network was embedded into that of its host (erythrocyte. Knock-out simulations identified 307 indispensable metabolic reactions within the parasite. 35 out of 57 experimentally demonstrated essential enzymes were recovered and another 16 enzymes, if additionally the assumption was made that nutrient uptake from the host cell is limited and all reactions catalyzed by the inhibited enzyme are blocked. This predicted set of putative drug targets, shown to be enriched with true targets by a factor of at least 2.75, was further analyzed with respect to homology to human enzymes, functional similarity to therapeutic targets in other organisms and their predicted potency for prophylaxis and disease treatment. Conclusions The results suggest that the set of essential enzymes predicted by our flux balance approach represents a promising starting point for further drug development.

  10. Drug resistant falciparum malaria and the use of artesunate-based combinations : focus on clinical trials sponsored by TDR

    OpenAIRE

    Walter R.J. Taylor, Jean Rigal & Piero L. Olliaro

    2003-01-01

    Antimalarial drug resistance has now become a serious global challenge and is the principal reasonfor the decline in antimalarial drug efficacy. Malaria endemic countries need inexpensive and efficaciousdrugs. Preserving the life spans of antimalarial drugs is a key part of the strategy for rollingback malaria. Artemisinin-based combinations offer a new and potentially highly effective way tocounter drug resistance. Clinical trials conducted in African children have attested to the good toler...

  11. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1 for antimalarial drug development

    Directory of Open Access Journals (Sweden)

    Roman Deniskin

    2016-04-01

    Full Text Available Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs. Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1. Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1 homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([3H]adenosine and pyrimidines ([3H]uridine, whereas wild type (fui1Δ yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 μM, compared to guanosine (14.9 μM and adenosine (142 μM. For pyrimidines, thymidine had an IC50 of 183 μM (vs. cytidine and uridine; mM range. IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 μM IC50, a 1000-fold less sensitive than human ENT1 (hENT1. The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel

  12. Global gene expression profiling of Plasmodium falciparum in response to the anti-malarial drug pyronaridine

    Directory of Open Access Journals (Sweden)

    Chavalitshewinkoon-Petmitr Porntip

    2011-08-01

    Full Text Available Abstract Background Pyronaridine (PN and chloroquine (CQ are structurally related anti-malarial drugs with primarily the same mode of action. However, PN is effective against several multidrug-resistant lines of Plasmodium falciparum, including CQ resistant lines, suggestive of important operational differences between the two drugs. Methods Synchronized trophozoite stage cultures of P. falciparum strain K1 (CQ resistant were exposed to 50% inhibitory concentrations (IC50 of PN and CQ, and parasites were harvested from culture after 4 and 24 hours exposure. Global transcriptional changes effected by drug treatment were investigated using DNA microarrays. Results After a 4 h drug exposure, PN induced a greater degree of transcriptional perturbation (61 differentially expressed features than CQ (10 features. More genes were found to respond to 24 h treatments with both drugs, and 461 features were found to be significantly responsive to one or both drugs across all treatment conditions. Filtering was employed to remove features unrelated to primary drug action, specifically features representing genes developmentally regulated, secondary stress/death related processes and sexual stage development. The only significant gene ontologies represented among the 46 remaining features after filtering relate to host exported proteins from multi-gene families. Conclusions The malaria parasite's molecular responses to PN and CQ treatment are similar in terms of the genes and pathways affected. However, PN appears to exert a more rapid response than CQ. The faster action of PN may explain why PN is more efficacious than CQ, particularly against CQ resistant isolates. In agreement with several other microarray studies of drug action on the parasite, it is not possible, however, to discern mechanism of drug action from the drug-responsive genes.

  13. Identification and Characterization of Novel Drug Resistance Loci in Plasmodium falciparum

    OpenAIRE

    Van Tyne, Daria Natalie

    2012-01-01

    Malaria has plagued mankind for millennia. Antimalarial drug use over the last century has generated highly drug-resistant parasites, which amplify the burden of this disease and pose a serious obstacle to control efforts. This dissertation is motivated by the simple fact that malaria parasites have become resistant to nearly every antimalarial drug that has ever been used, yet the precise genetic mechanisms of parasite drug resistance remain largely unknown. Our work pairs genomics-age techn...

  14. The interplay between drug resistance and fitness in malaria parasites

    OpenAIRE

    Rosenthal, Philip J.

    2013-01-01

    Controlling the spread of antimalarial drug resistance, especially resistance of Plasmodium falciparum to artemisinin-based combination therapies, is a high priority. Available data indicate that, as with other microorganisms, the spread of drug-resistant malaria parasites is limited by fitness costs that frequently accompany resistance. Resistance-mediating polymorphisms in malaria parasites have been identified in putative drug transporters and in target enzymes. The impacts of these polymo...

  15. High-content live cell imaging with RNA probes: advancements in high-throughput antimalarial drug discovery

    Science.gov (United States)

    Cervantes, Serena; Prudhomme, Jacques; Carter, David; Gopi, Krishna G; Li, Qian; Chang, Young-Tae; Le Roch, Karine G

    2009-01-01

    Background Malaria, a major public health issue in developing nations, is responsible for more than one million deaths a year. The most lethal species, Plasmodium falciparum, causes up to 90% of fatalities. Drug resistant strains to common therapies have emerged worldwide and recent artemisinin-based combination therapy failures hasten the need for new antimalarial drugs. Discovering novel compounds to be used as antimalarials is expedited by the use of a high-throughput screen (HTS) to detect parasite growth and proliferation. Fluorescent dyes that bind to DNA have replaced expensive traditional radioisotope incorporation for HTS growth assays, but do not give additional information regarding the parasite stage affected by the drug and a better indication of the drug's mode of action. Live cell imaging with RNA dyes, which correlates with cell growth and proliferation, has been limited by the availability of successful commercial dyes. Results After screening a library of newly synthesized stryrl dyes, we discovered three RNA binding dyes that provide morphological details of live parasites. Utilizing an inverted confocal imaging platform, live cell imaging of parasites increases parasite detection, improves the spatial and temporal resolution of the parasite under drug treatments, and can resolve morphological changes in individual cells. Conclusion This simple one-step technique is suitable for automation in a microplate format for novel antimalarial compound HTS. We have developed a new P. falciparum RNA high-content imaging growth inhibition assay that is robust with time and energy efficiency. PMID:19515257

  16. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    Science.gov (United States)

    Wright, Megan H.; Clough, Barbara; Rackham, Mark D.; Rangachari, Kaveri; Brannigan, James A.; Grainger, Munira; Moss, David K.; Bottrill, Andrew R.; Heal, William P.; Broncel, Malgorzata; Serwa, Remigiusz A.; Brady, Declan; Mann, David J.; Leatherbarrow, Robin J.; Tewari, Rita; Wilkinson, Anthony J.; Holder, Anthony A.; Tate, Edward W.

    2014-02-01

    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.

  17. Does anti-malarial drug knowledge predict anti-malarial dispensing practice in drug outlets? A survey of medicine retailers in western Kenya

    Directory of Open Access Journals (Sweden)

    Rusk Andria

    2012-08-01

    Full Text Available Abstract Background Malaria is a major cause of morbidity and mortality in Kenya, where it is the fifth leading cause of death in both children and adults. Effectively managing malaria is dependent upon appropriate treatment. In Kenya, between 17 to 83 percent of febrile individuals first seek treatment for febrile illness over the counter from medicine retailers. Understanding medicine retailer knowledge and behaviour in treating suspected malaria and dispensing anti-malarials is crucial. Methods To investigate medicine retailer knowledge about anti-malarials and their dispensing practices, a survey was conducted of all retail drug outlets that sell anti-malarial medications and serve residents of the Webuye Health and Demographic Surveillance Site in the Bungoma East District of western Kenya. Results Most of the medicine retailers surveyed (65% were able to identify artemether-lumefantrine (AL as the Kenyan Ministry of Health recommended first-line anti-malarial therapy for uncomplicated malaria. Retailers who correctly identified this treatment were also more likely to recommend AL to adult and paediatric customers. However, the proportion of medicine retailers who recommend the correct treatment is disappointingly low. Only 48% would recommend AL to adults, and 37% would recommend it to children. It was discovered that customer demand has an influence on retailer behaviour. Retailer training and education were found to be correlated with anti-malarial drug knowledge, which in turn is correlated with dispensing practices. Medicine retailer behaviour, including patient referral practice and dispensing practices, are also correlated with knowledge of the first-line anti-malarial medication. The Kenya Ministry of Health guidelines were found to influence retailer drug stocking and dispensing behaviours. Conclusion Most medicine retailers could identify the recommended first-line treatment for uncomplicated malaria, but the percentage that could

  18. Drug-Resistant Malaria Parasites Introduced into Madagascar from Comoros Islands

    OpenAIRE

    Ménard, Didier; Randrianarivo-Solofoniaina, Armand Eugène; Ahmed, Bedja Said; Jahevitra, Martial; Andriantsoanirina, Landy Valérie; Rasolofomanana, Justin Ranjalahy; Rabarijaona, Léon Paul

    2007-01-01

    To determine risk for drug-resistant malaria parasites entering Madagascar from Comoros Islands, we screened travelers. For the 141 Plasmodium falciparum isolates detected by real-time PCR, frequency of mutant alleles of genes associated with resistance to chloroquine and pyrimethamine was high. International-level antimalarial policy and a regional antimalarial forum are needed.

  19. Influence of LAR and VAR on Para-Aminopyridine Antimalarials Targetting Haematin in Chloroquine-Resistance.

    Science.gov (United States)

    Warhurst, David C; Craig, John C; Raheem, K Saki

    2016-01-01

    Antimalarial chloroquine (CQ) prevents haematin detoxication when CQ-base concentrates in the acidic digestive vacuole through protonation of its p-aminopyridine (pAP) basic aromatic nitrogen and sidechain diethyl-N. CQ export through the variant vacuolar membrane export channel, PFCRT, causes CQ-resistance in Plasmodium falciparum but 3-methyl CQ (sontochin SC), des-ethyl amodiaquine (DAQ) and bis 4-aminoquinoline piperaquine (PQ) are still active. This is determined by changes in drug accumulation ratios in parasite lipid (LAR) and in vacuolar water (VAR). Higher LAR may facilitate drug binding to and blocking PFCRT and also aid haematin in lipid to bind drug. LAR for CQ is only 8.3; VAR is 143,482. More hydrophobic SC has LAR 143; VAR remains 68,523. Similarly DAQ with a phenol substituent has LAR of 40.8, with VAR 89,366. In PQ, basicity of each pAP is reduced by distal piperazine N, allowing very high LAR of 973,492, retaining VAR of 104,378. In another bis quinoline, dichlorquinazine (DCQ), also active but clinically unsatisfactory, each pAP retains basicity, being insulated by a 2-carbon chain from a proximal nitrogen of the single linking piperazine. While LAR of 15,488 is still high, the lowest estimate of VAR approaches 4.9 million. DCQ may be expected to be very highly lysosomotropic and therefore potentially hepatotoxic. In 11 pAP antimalarials a quadratic relationship between logLAR and logResistance Index (RI) was confirmed, while log (LAR/VAR) vs logRI for 12 was linear. Both might be used to predict the utility of structural modifications. PMID:27483471

  20. Identification and functional validation of the novel antimalarial resistance locus PF10_0355 in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Daria Van Tyne

    2011-04-01

    Full Text Available The Plasmodium falciparum parasite's ability to adapt to environmental pressures, such as the human immune system and antimalarial drugs, makes malaria an enduring burden to public health. Understanding the genetic basis of these adaptations is critical to intervening successfully against malaria. To that end, we created a high-density genotyping array that assays over 17,000 single nucleotide polymorphisms (∼ 1 SNP/kb, and applied it to 57 culture-adapted parasites from three continents. We characterized genome-wide genetic diversity within and between populations and identified numerous loci with signals of natural selection, suggesting their role in recent adaptation. In addition, we performed a genome-wide association study (GWAS, searching for loci correlated with resistance to thirteen antimalarials; we detected both known and novel resistance loci, including a new halofantrine resistance locus, PF10_0355. Through functional testing we demonstrated that PF10_0355 overexpression decreases sensitivity to halofantrine, mefloquine, and lumefantrine, but not to structurally unrelated antimalarials, and that increased gene copy number mediates resistance. Our GWAS and follow-on functional validation demonstrate the potential of genome-wide studies to elucidate functionally important loci in the malaria parasite genome.

  1. Proposal for a new therapy for drug-resistant malaria using Plasmodium synthetic lethality inference ☆

    OpenAIRE

    Lee, Sang Joon; Seo, Eunseok; Cho, Yonghyun

    2013-01-01

    Many antimalarial drugs kill malaria parasites, but antimalarial drug resistance (ADR) and toxicity to normal cells limit their usefulness. To solve this problem, we suggest a new therapy for drug-resistant malaria. The approach consists of data integration and inference through homology analysis of yeast–human–Plasmodium. If one gene of a Plasmodium synthetic lethal (SL) gene pair has a mutation that causes ADR, a drug targeting the other gene of the SL pair might be used as an effective tre...

  2. Treatment of Plasmodium chabaudi Parasites with Curcumin in Combination with Antimalarial Drugs: Drug Interactions and Implications on the Ubiquitin/Proteasome System

    Directory of Open Access Journals (Sweden)

    Zoraima Neto

    2013-01-01

    Full Text Available Antimalarial drug resistance remains a major obstacle in malaria control. Evidence from Southeast Asia shows that resistance to artemisinin combination therapy (ACT is inevitable. Ethnopharmacological studies have confirmed the efficacy of curcumin against Plasmodium spp. Drug interaction assays between curcumin/piperine/chloroquine and curcumin/piperine/artemisinin combinations and the potential of drug treatment to interfere with the ubiquitin proteasome system (UPS were analyzed. In vivo efficacy of curcumin was studied in BALB/c mice infected with Plasmodium chabaudi clones resistant to chloroquine and artemisinin, and drug interactions were analyzed by isobolograms. Subtherapeutic doses of curcumin, chloroquine, and artemisinin were administered to mice, and mRNA was collected following treatment for RT-PCR analysis of genes encoding deubiquitylating enzymes (DUBs. Curcumin was found be nontoxic in BALB/c mice. The combination of curcumin/chloroquine/piperine reduced parasitemia to 37% seven days after treatment versus the control group’s 65%, and an additive interaction was revealed. Curcumin/piperine/artemisinin combination did not show a favorable drug interaction in this murine model of malaria. Treatment of mice with subtherapeutic doses of the drugs resulted in a transient increase in genes encoding DUBs indicating UPS interference. If curcumin is to join the arsenal of available antimalarial drugs, future studies exploring suitable drug partners would be of interest.

  3. A review of age-old antimalarial drug to combat malaria:efficacy upgradation by nanotechnology based drug delivery

    Institute of Scientific and Technical Information of China (English)

    Satyajit; Tripathy; Somenath; Roy

    2014-01-01

    Malaria is uncontrolled burden in the world till now.Despite of different efforts to develop antimalarial drug for decades,any anti-malarial drug can able to eradicate completely till now.Many anti-malarial substances are practically ineffectual because of their physicochemical limitations,cytotoxicity,chemical instability and degradation,and limited activities against intracellular parasites.Taking into consideration,the amount of research is going to conduct in the field of nanoparticle based drug delivery systems,lead to new ways of improving the treatment of infectious diseases.The study has focused on the progress and advancement of research on nanotechnology based drug delivery to eradicate the malaria.We like to focus the efficacy of nanotechnology based drug application for the opening out of novel chemotherapeutics in laboratory research,which may show the way to better use with age-old antimalarial drug and may draw the attention of pharmaceutical industries for the improvement and designing of effective anti-malarial drugs in future.

  4. Challenges of drug-resistant malaria.

    Science.gov (United States)

    Sinha, Shweta; Medhi, Bikash; Sehgal, Rakesh

    2014-01-01

    Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia-Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria. PMID:25402734

  5. Challenges of drug-resistant malaria

    Directory of Open Access Journals (Sweden)

    Sinha Shweta

    2014-01-01

    Full Text Available Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia–Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria.

  6. Evaluation of the effect of pyrimethamine, an anti-malarial drug, on HIV-1 replication

    OpenAIRE

    Oguariri, Raphael M.; Joseph W Adelsberger; Michael W Baseler; Imamichi, Tomozumi

    2010-01-01

    Co-infection of human immunodeficiency virus (HIV) with malaria is one of the pandemic problems in Africa and parts of Asia. Here we investigated the impact of PYR and two other clinical anti-malarial drugs (chloroquine [CQ] or artemisinin [ART]) on HIV-1 replication. Peripheral blood mononuclear cells (PBMCs) or MT-2 cells were infected with HIVNL4.3 strain and treated with different concentrations of the anti-malarial drugs. HIV-1 replication was measured using p24 ELISA. We show that 10 μM...

  7. Treatment of falciparum malaria in the age of drug resistance

    OpenAIRE

    Shanks G

    2006-01-01

    The growing problem of drug resistance has greatly complicated the treatment for falciparum malaria. Whereaschloroquine and sulfadoxine/pyrimethamine could once cure most infections, this is no longer true and requiresexamination of alternative regimens. Not all treatment failures are drug resistant and other issues such asexpired antimalarials and patient compliance need to be considered. Continuation of a failing treatment policyafter drug resistance is established suppresses infections rat...

  8. ANTIMALARIAL DRUGS IN THERAPY OF SYSTEMIC LUPUS ERYTHEMATOSUS: PAST, PRESENT, FUTURE

    OpenAIRE

    Tatyana Andreyevna Lisitsyna; N. M. Kosheleva

    2010-01-01

    The data available in the literature on experience in using antimalarial drugs in the treatment of systemic lupus erythematosus are summarized. A major emphasis is placed on therapy with hydroxychlorochine (plaquenil) versus chlorine. Possible mechanisms of action of the drug and its effect on the course of the disease itself and concomitant abnormalities are described. Data on the toxicity of the drug and its safe use in pregnancy and lactation are also discussed

  9. ANTIMALARIAL DRUGS IN THERAPY OF SYSTEMIC LUPUS ERYTHEMATOSUS: PAST, PRESENT, FUTURE

    Directory of Open Access Journals (Sweden)

    Tatyana Andreyevna Lisitsyna

    2010-01-01

    Full Text Available The data available in the literature on experience in using antimalarial drugs in the treatment of systemic lupus erythematosus are summarized. A major emphasis is placed on therapy with hydroxychlorochine (plaquenil versus chlorine. Possible mechanisms of action of the drug and its effect on the course of the disease itself and concomitant abnormalities are described. Data on the toxicity of the drug and its safe use in pregnancy and lactation are also discussed

  10. Stability profiling of anti-malarial drug piperaquine phosphate and impurities by HPLC-UV, TOF-MS, ESI-MS and NMR

    OpenAIRE

    Yan, Fang; Liu, Jie; Zeng, Xuefang; Zhang, Yuan; Hang, Taijun

    2014-01-01

    Background Piperaquine, 1,3-bis-[4-(7-chloroquinolyl-4)-piperazinyl-1]-propane, is an anti-malarial compound belonging to the 4-aminoquinolines, which has received renewed interest in treatment of drug resistant falciparum malaria in artemisinin-based combination therapy with dihydroartemisinin. The impurity profile of this drug product is paid an ever-increasing attention. However, there were few published studies of the complete characterization of related products or impurities in piperaqu...

  11. Plasmodium falciparum drug resistance in Angola.

    Science.gov (United States)

    Fançony, Cláudia; Brito, Miguel; Gil, Jose Pedro

    2016-01-01

    Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information on malaria drug resistance in Angola, is reviewed and discussed. The review aims to inform but also to encourage future research studies that monitor and update the information on anti-malarial drug efficacy and prevalence of molecular markers of drug resistance, key fields in the context and objectives of elimination. PMID:26858018

  12. Exploring QSAR for Antimalarial Activities and Drug Distribution within Blood of a Series of 4-Aminoquinoline Drugs Using Genetic-MLR

    Directory of Open Access Journals (Sweden)

    Amir Najafi

    2013-01-01

    Full Text Available Malaria has been one of the most significant public health problems for centuries. QSAR modeling of the antimalarial activity and blood-to-plasma concentration ratio of Chloroquine and a new series of 4-aminoquinoline derivatives were developed using genetic algorithms with multiple linear regression (GA-MLR method. We obtained two different models against Chloroquine-sensitive (3D7 and Chloroquine-resistant (W2 strains of Plasmodium falciparum with good adjustment levels. Drug distribution in blood, defined as drug blood-to-plasma concentration ratio (Rb, is related to molecular descriptors. Leave-many-out (LMO and Y-randomization methods confirmed the models' robustness.

  13. Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria: A review

    Directory of Open Access Journals (Sweden)

    Olliaro P

    2004-01-01

    Full Text Available The emergence and spread of drug resistant malaria represents a considerable challenge to controlling malaria. To date, malaria control has relied heavily on a comparatively small number of chemically related drugs, belonging to either the quinoline or the antifolate groups. Only recently have the artemisinin derivatives been used but mostly in south east Asia. Experience has shown that resistance eventually curtails the life-span of antimalarial drugs. Controlling resistance is key to ensuring that the investment put into developing new antimalarial drugs is not wasted. Current efforts focus on research into new compounds with novel mechanisms of action, and on measures to prevent or delay resistance when drugs are introduced. Drug discovery and development are long, risky and costly ventures. Antimalarial drug development has traditionally been slow but now various private and public institutions are at work to discover and develop new compounds. Today, the antimalarial development pipeline is looking reasonably healthy. Most development relies on the quinoline, antifolate and artemisinin compounds. There is a pressing need to have effective, easy to use, affordable drugs that will last a long time. Drug combinations that have independent modes of action are seen as a way of enhancing efficacy while ensuring mutual protection against resistance. Most research work has focused on the use of artesunate combined with currently used standard drugs, namely, mefloquine, amodiaquine, sulfadoxine/pyrimethamine, and chloroquine. There is clear evidence that combinations improve efficacy without increasing toxicity. However, the absolute cure rates that are achieved by combinations vary widely and depend on the level of resistance of the standard drug. From these studies, further work is underway to produce fixed dose combinations that will be packaged in blister packs. This review will summarise current antimalarial drug developments and outline recent

  14. Therapeutic efficacy of artesunate in the treatment of uncomplicated Plasmodium falciparum malaria and anti-malarial, drug-resistance marker polymorphisms in populations near the China-Myanmar border

    Directory of Open Access Journals (Sweden)

    Huang Fang

    2012-08-01

    Full Text Available Abstract Background The aim of this study was to evaluate the clinical outcome after seven-day artesunate monotherapy for uncomplicated Plasmodium falciparum malaria in Yingjiang County along the China-Myanmar border and investigate genetic polymorphisms in the P. falciparum chloroquine-resistance transporter (pfcrt, multidrug resistance 1 (pfmdr1, dihydrofolate reductase (pfdhfr, dihydropteroate synthase (pfdhps and ATPase (pfatp6 genes. Methods Patients ≥ one year of age with fever (axillary temperature ≥37.5°C or history of fever and P. falciparum mono-infection were included. Patients received anti-malarial treatment with artesunate (total dose of 16 mg/kg over seven days by directly observed therapy. After a 28-day follow-up, treatment efficacy and effectiveness were assessed based on clinical and parasitological outcomes. Treatment failure was defined as recrudescence of the original parasite and distinguished with new infection confirmed by PCR. Analysis of gene mutation and amplification were performed by nested polymerase chain reaction. Results Sixty-five patients were enrolled; 10 withdrew from the study, and six were lost to follow-up. All but two patients demonstrated adequate clinical and parasitological response; 12 had detectable parasitaemia on day 3. These two patients were confirmed to be new infection by PCR. The efficacy of artesunate was 95.9%. The pfcrt mutation in codon 76 was found in all isolates (100%, and mutations in codons 71 and 72 were found in 4.8% of parasite isolates. No mutation of pfmdr1 (codons 86 or 1246 was found. Among all samples, 5.1% were wild type for pfdhfr, whereas the other samples had mutations in four codons (51, 59, 108 and 164, and mutations in pfdhps (codons 436, 437, 540 and 581 were found in all isolates. No samples had mutations in pfatp6 codons 623 or 769, but two new mutations (N683K and R756K were found in 4.6% and 9.2% of parasite isolates, respectively. Conclusion Plasmodium

  15. Drug-Resistant Malaria: The Era of ACT

    OpenAIRE

    Lin, Jessica T.; Juliano, Jonathan J; Wongsrichanalai, Chansuda

    2010-01-01

    As drug-resistant falciparum malaria has continued to evolve and spread worldwide, artemisinin-based combination therapies (ACT) have become the centerpiece of global malaria control over the past decade. This review discusses how advances in antimalarial drug resistance monitoring and rational use of the array of ACTs now available can maximize the impact of this highly efficacious therapy, even as resistance to artemisinins is emerging in Southeast Asia.

  16. The search for new antimalarial drugs from plants used to treat fever and malaria or plants ramdomly selected: a review

    Directory of Open Access Journals (Sweden)

    Krettli Antoniana U

    2001-01-01

    Full Text Available In this review we discuss the ongoing situation of human malaria in the Brazilian Amazon, where it is endemic causing over 610,000 new acute cases yearly, a number which is on the increase. This is partly a result of drug resistant parasites and new antimalarial drugs are urgently needed. The approaches we have used in the search of new drugs during decades are now reviewed and include ethnopharmocology, plants randomly selected, extracts or isolated substances from plants shown to be active against the blood stage parasites in our previous studies. Emphasis is given on the medicinal plant Bidens pilosa, proven to be active against the parasite blood stages in tests using freshly prepared plant extracts. The anti-sporozoite activity of one plant used in the Brazilian endemic area to prevent malaria is also described, the so called "Indian beer" (Ampelozizyphus amazonicus, Rhamnaceae. Freshly prepared extracts from the roots of this plant were totally inactive against blood stage parasites, but active against sporozoites of Plasmodium gallinaceum or the primary exoerythrocytic stages reducing tissue parasitism in inoculated chickens. This result will be of practical importance if confirmed in mammalian malaria. Problems and perspectives in the search for antimalarial drugs are discussed as well as the toxicological and clinical trials to validate some of the active plants for public health use in Brazil.

  17. Recent developments in naturally derived antimalarials: cryptolepine analogues.

    Science.gov (United States)

    Wright, Colin W

    2007-06-01

    Increasing resistance of Plasmodium falciparum to commonly used antimalarial drugs has made the need for new agents increasingly urgent. In this paper, the potential of cryptolepine, an alkaloid from the West African shrub Cryptolepis sanguinolenta, as a lead towards new antimalarial agents is discussed. Several cryptolepine analogues have been synthesized that have promising in-vitro and in-vivo antimalarial activity. Studies on the antimalarial modes of action of these analogues indicate that they may have different or additional modes of action to the parent compound. Elucidation of the mode of action may facilitate the development of more potent antimalarial cryptolepine analogues. PMID:17637183

  18. Saleability of anti-malarials in private drug shops in Muheza, Tanzania: a baseline study in an era of assumed artemisinin combination therapy (ACT

    Directory of Open Access Journals (Sweden)

    Ringsted Frank M

    2011-08-01

    Full Text Available Abstract Background Artemether-lumefantrine (ALu replaced sulphadoxine-pymimethamine (SP as the official first-line anti-malarial in Tanzania in November 2006. So far, artemisinin combination therapy (ACT is contra-indicated during pregnancy by the national malaria treatment guidelines, and pregnant women depend on SP for Intermittent Preventive Treatment (IPTp during pregnancy. SP is still being dispensed by private drug stores, but it is unknown to which extent. If significant, it may undermine its official use for IPTp through induction of resistance. The main study objective was to perform a baseline study of the private market for anti-malarials in Muheza town, an area with widespread anti-malarial drug resistance, prior to the implementation of a provider training and accreditation programme that will allow accredited drug shops to sell subsidized ALu. Methods All drug shops selling prescription-only anti-malarials, in Muheza town, Tanga Region voluntarily participated from July to December 2009. Qualitative in-depth interviews were conducted with owners or shopkeepers on saleability of anti-malarials, and structured questionnaires provided quantitative data on drugs sales volume. Results All surveyed drug shops illicitly sold SP and quinine (QN, and legally amodiaquine (AQ. Calculated monthly sale was 4,041 doses, in a town with a population of 15,000 people. Local brands of SP accounted for 74% of sales volume, compared to AQ (13%, QN (11% and ACT (2%. Conclusions In community practice, the saleability of ACT was negligible. SP was best-selling, and use was not reserved for IPTp, as stipulated in the national anti-malarial policy. It is a major reason for concern that such drug-pressure in the community equals de facto intermittent presumptive treatment. In an area where SP drug resistance remains high, unregulated SP dispensing to people other than pregnant women runs the risk of eventually jeopardizing the effectiveness of the IPTp

  19. Development of a Specific Monoclonal Antibody-Based ELISA to Measure the Artemether Content of Antimalarial Drugs

    OpenAIRE

    Suqin Guo; Yongliang Cui; Lishan He; Liang Zhang; Zhen Cao; Wei Zhang; Rui Zhang; Guiyu Tan; Baomin Wang; Liwang Cui

    2013-01-01

    Artemether is one of the artemisinin derivatives that are active ingredients in antimalarial drugs. Counterfeit and substandard antimalarial drugs have become a serious problem, which demands reliable analytical tools and implementation of strict regulation of drug quality. Structural similarity among artemisinin analogs is a challenge to develop immunoassays that are specific to artemisinin derivatives. To produce specific antibodies to artemether, we used microbial fermentation of artemethe...

  20. DETECTION OF PUTATIVE ANTIMALARIAL-RESISTANT PLASMODIUM VIVAX IN ANOPHELES VECTORS AT THAILAND-CAMBODIA AND THAILAND-MYANMAR BORDERS.

    Science.gov (United States)

    Rattaprasert, Pongruj; Chaksangchaichot, Panee; Wihokhoen, Benchawan; Suparach, Nutjaree; Sorosjinda-Nunthawarasilp, Prapa

    2016-03-01

    Monitoring of multidrug-resistant (MDR)falciparum and vivax malaria has recently been included in the Global Plan for Artemisinin Resistance Containment (GPARC) of the Greater Mekong Sub-region, particularly at the Thailand-Cambodia and Thailand-Myanmar borders. In parallel to GPARC, monitoring MDR malaria parasites in anopheline vectors is an ideal augment to entomological surveillance. Employing Plasmodium- and species-specific nested PCR techniques, only P. vivax was detected in 3/109 salivary gland DNA extracts of anopheline vectors collected during a rainy season between 24-26 August 2009 and 22-24 September 2009 and a dry season between 29-31 December 2009 and 16-18 January 2010. Indoor and out- door resting mosquitoes were collected in Thong Pha Phum District, Kanchanaburi Province (border of Thailand-Myanmar) and Bo Rai District, Trat Province (border of Thailand-Cambodia): one sample from Anopheles dirus at the Thailand-Cambodia border and two samples from An. aconitus from Thailand-Myanmar border isolate. Nucleotide sequencing of dihydrofolate reductase gene revealed the presence in all three samples of four mutations known to cause high resistance to antifolate pyrimethamine, but no mutations were found in multidrug resistance transporter 1 gene that are associated with (falciparum) resistance to quinoline antimalarials. Such findings indicate the potential usefulness of this approach in monitoring the prevalence of drug-resistant malaria parasites in geographically regions prone to the development of drug resistance and where screening of human population at risk poses logistical and ethical problems. Keywords: Anopheles spp, Plasmodium vivax, antimalarial resistance, Greater Mekong Sub-region, nested PCR, vector surveillance PMID:27244954

  1. Statins as Potential Antimalarial Drugs: Low Relative Potency and Lack of Synergy with Conventional Antimalarial Drugs▿

    OpenAIRE

    Wong, Rina P. M.; Davis, Timothy M. E.

    2009-01-01

    The in vitro sensitivity of Plasmodium falciparum to atorvastatin and rosuvastatin was assessed using chloroquine-sensitive and chloroquine-resistant strains. Although atorvastatin was more potent, it had weak activity (mean 50% inhibitory concentration of ≥17 μM) and an indifferent interaction with chloroquine and dihydroartemisinin. Bioassay of plasma from an atorvastatin-treated subject showed similar results.

  2. CPP-ZFN: A potential DNA-targeting anti-malarial drug

    Directory of Open Access Journals (Sweden)

    Nain Vikrant

    2010-09-01

    . Implications of the hypothesis Targeting of the Plasmodium genome using ZFN has great potential for the development of anti-malarial drugs. It allows the development of a single drug against all malarial infections, including multidrug-resistant strains. Availability of multiple ZFN target sites in a single gene will provide alternative drug target sites to combat the development of resistance in the future.

  3. Prevalence of molecular markers of anti-malarial drug resistance in Plasmodium vivax and Plasmodium falciparum in two districts of Nepal

    DEFF Research Database (Denmark)

    Ranjitkar, Samir; Schousboe, Mette L; Thomsen, Thomas;

    2011-01-01

    ABSTRACT: BACKGROUND: Sulphadoxine-pyrimethamine (SP) and chloroquine (CQ) have been used in treatment of falciparum and vivax malaria in Nepal. Recently, resistance to both drugs have necessitated a change towards artemisinin combination therapy (ACT) against Plasmodium falciparum in highly...... high levels of in vivo resistance are reflected at molecular level as well. METHODS: Finger prick blood samples (n=189) were collected from malaria positive patients from two high endemic districts and analysed for single nucleotide polymorphisms (SNPs) in the resistance related genes of P. falciparum...... endemic areas. However, SP is still used against P. falciparum infections in low endemic areas while CQ is used in suspected cases in areas with lack of diagnostic facilities. This study examines the prevalence of molecular markers of P. falciparum and Plasmodium vivax CQ and SP resistance to determine if...

  4. Prioritization of anti-malarial hits from nature: chemo-informatic profiling of natural products with in vitro antiplasmodial activities and currently registered anti-malarial drugs

    OpenAIRE

    Egieyeh, Samuel Ayodele; Syce, James; Malan, Sarel F.; Christoffels, Alan

    2016-01-01

    Background A large number of natural products have shown in vitro antiplasmodial activities. Early identification and prioritization of these natural products with potential for novel mechanism of action, desirable pharmacokinetics and likelihood for development into drugs is advantageous. Chemo-informatic profiling of these natural products were conducted and compared to currently registered anti-malarial drugs (CRAD). Methods Natural products with in vitro antiplasmodial activities (NAA) we...

  5. Linking Murine and Human Plasmodium falciparum Challenge Models in a Translational Path for Antimalarial Drug Development.

    Science.gov (United States)

    McCarthy, James S; Marquart, Louise; Sekuloski, Silvana; Trenholme, Katharine; Elliott, Suzanne; Griffin, Paul; Rockett, Rebecca; O'Rourke, Peter; Sloots, Theo; Angulo-Barturen, Iñigo; Ferrer, Santiago; Jiménez-Díaz, María Belén; Martínez, María-Santos; Hooft van Huijsduijnen, Rob; Duparc, Stephan; Leroy, Didier; Wells, Timothy N C; Baker, Mark; Möhrle, Jörg J

    2016-06-01

    Effective progression of candidate antimalarials is dependent on optimal dosing in clinical studies, which is determined by a sound understanding of pharmacokinetics and pharmacodynamics (PK/PD). Recently, two important translational models for antimalarials have been developed: the NOD/SCID/IL2Rγ(-/-) (NSG) model, whereby mice are engrafted with noninfected and Plasmodium falciparum-infected human erythrocytes, and the induced blood-stage malaria (IBSM) model in human volunteers. The antimalarial mefloquine was used to directly measure the PK/PD in both models, which were compared to previously published trial data for malaria patients. The clinical part was a single-center, controlled study using a blood-stage Plasmodium falciparum challenge inoculum in volunteers to characterize the effectiveness of mefloquine against early malaria. The study was conducted in three cohorts (n = 8 each) using different doses of mefloquine. The characteristic delay in onset of action of about 24 h was seen in both NSG and IBSM systems. In vivo 50% inhibitory concentrations (IC50s) were estimated at 2.0 μg/ml and 1.8 μg/ml in the NSG and IBSM models, respectively, aligning with 1.8 μg/ml reported previously for patients. In the IBSM model, the parasite reduction ratios were 157 and 195 for the 10- and 15-mg/kg doses, within the range of previously reported clinical data for patients but significantly lower than observed in the mouse model. Linking mouse and human challenge models to clinical trial data can accelerate the accrual of critical data on antimalarial drug activity. Such data can guide large clinical trials required for development of urgently needed novel antimalarial combinations. (This trial was registered at the Australian New Zealand Clinical Trials Registry [http://anzctr.org.au] under registration number ACTRN12612000323820.). PMID:27044554

  6. Molecular markers associated with resistance to commonly used antimalarial drugs among Plasmodium falciparum isolates from a malaria-endemic area in Taiz governorate-Yemen during the transmission season.

    Science.gov (United States)

    Alareqi, Lina M Q; Mahdy, Mohammed A K; Lau, Yee-Ling; Fong, Mun-Yik; Abdul-Ghani, Rashad; Mahmud, Rohela

    2016-10-01

    Since 2005, artesunate (AS) plus sulfadoxine/pyrimethamine (SP) combination has been adopted as the first-line treatment for uncomplicated malaria in Yemen in response to the high level of Plasmodium falciparum resistance to chloroquine (CQ). Therefore, the aim of the present study was to determine the frequency distribution of molecular markers associated with resistance to CQ and AS plus SP combination among P. falciparum isolates from a malaria-endemic area in Taiz governorate, Yemen. Fifty P. falciparum isolates were collected during a cross-sectional study in Mawza district, Taiz, in the period from October 2013 to April 2014. The isolates were investigated for drug resistance-associated molecular markers in five genes, including P. falciparum CQ resistance transporter (pfcrt) 76T and P. falciparum multidrug resistance 1 (pfmdr1) 86Y as markers of resistance to CQ, mutations in the Kelch 13 (K13) propeller domain for resistance to AS, and P. falciparum dihydrofolate reductase (pfdhfr) and P. falciparum dihydropteroate synthase (pfdhps) genes for resistance to SP. Nested polymerase chain reaction was used to amplify target genes in DNA extracts of the isolates followed by restriction fragment length polymorphism for detecting 76T and 86Y mutations in pfcrt and pfmdr1, respectively, and by DNA sequencing for detecting mutations in K13, pfdhfr and pfdhps. All the investigated isolates from Mawza district were harboring the pfcrt 76T mutant and the pfmdr1 N86 wild-type alleles. The pfdhfr 51I/108N double mutant allele was found in 2.2% (1/45) of the isolates; however, no mutations were detected at codons 436, 437, 540, 581 and 613 of pfdhps. All P. falciparum isolates that were successfully sequenced (n=47) showed the K13 Y493, R539, I543 and C580 wild-type alleles. In conclusion, the pfcrt 76T mutant allele is fixed in the study area about six years after the official withdrawal of CQ, possibly indicating its over-the-counter availability and continued use as a

  7. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation.

    Science.gov (United States)

    Senarathna, S M D K Ganga; Page-Sharp, Madhu; Crowe, Andrew

    2016-01-01

    The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10-6 cm/sec, followed by amodiaquine around 20 x 10-6 cm/sec; both mefloquine and artesunate were around 10 x 10-6 cm/sec. Methylene blue was between 2 and 6 x 10-6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine. PMID:27045516

  8. Why Hospital Pharmacists Have Failed to Manage Antimalarial Drugs Stock-Outs in Pakistan? A Qualitative Insight

    Directory of Open Access Journals (Sweden)

    Madeeha Malik

    2013-01-01

    Full Text Available Purpose. This study aimed to explore the perceptions of hospital pharmacists towards drug management and reasons underlying stock-outs of antimalarial drugs in Pakistan. Methods. A qualitative study was designed to explore the perceptions of hospital pharmacists regarding drug management and irrational use of antimalarial drugs in two major cities of Pakistan, namely, Islamabad (national capital and Rawalpindi (twin city. Semistructured interviews were conducted with 16 hospital pharmacists using indepth interview guides at a place and time convenient for the respondents. Interviews, which were audiotaped and transcribed verbatim, were evaluated by thematic content analysis and by other authors’ analysis. Results. Most of the respondents were of the view that financial constraints, inappropriate drug management, and inadequate funding were the factors contributing toward the problem of antimalarial drug stock-outs in healthcare facilities of Pakistan. The pharmacists anticipated that prescribing by nonproprietary names, training of health professionals, accepted role of hospital pharmacist in drug management, implementation of essential drug list and standard treatment guidelines for malaria in the healthcare system can minimize the problem of drug stock outs in healthcare system of Pakistan. Conclusion. The current study showed that all the respondents in the two cities agreed that hospital pharmacist has failed to play an effective role in efficient management of anti-malarial drugs stock-outs.

  9. Virtual Screening and Docking Studies of Synthesized Chalcones: Potent Anti-Malarial Drug

    Directory of Open Access Journals (Sweden)

    Prashant Singh

    2016-03-01

    Full Text Available A novel series of Chalcones were synthesized targets asexual blood stages of Plasmodium falciparum has been analyzed by utilizing a combination of molecular modeling techniques. Statistically significant structure-based quantitative structure activity relationships models were generated and validated through acceptable predictive ability to support internal and external set of compounds. Screening of most valuable drug among of pre-synthesized drug on the basis of binding efficiency to target receptor was carried out by docking view. Prior this pre-computed Mean IC50 and MIC value were also taken in consideration. The most effective compound on the basis all consideration was found. Previous studies have suggested that Ca2+-ATPase (PfATP6 of P. falciparum is the target of many anti-malarial drugs. However, the mechanism of inhibition of Ca2+- ATPase (PfATP6 is not known. Here we address this issue using bioinformatics tools. We generated a molecular model of Ca2+-ATPase (PfATP6 of P. falciparum and performed molecular docking of all chalcones. Molecular docking programme Glide iGEMDock was used to determine binding feasibility of 52 analogues of chalcones. The comparison of docking parameters showed, more than 5 analogues are better ligands of PfATP6. The binding of chalocones to PFATP6 is mediated by both hydrogen bonding, hydrophobic and polar interactions. Our results suggest that chalcones analogues are promising lead compounds for the development of anti-malarial drugs

  10. Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach.

    Science.gov (United States)

    N, Nagasundaram; C, George Priya Doss; Chakraborty, Chiranjib; V, Karthick; D, Thirumal Kumar; V, Balaji; R, Siva; Lu, Aiping; Ge, Zhang; Zhu, Hailong

    2016-01-01

    Artemisinin resistance in Plasmodium falciparum threatens global efforts in the elimination or eradication of malaria. Several studies have associated mutations in the PfATP6 gene in conjunction with artemisinin resistance, but the underlying molecular mechanism of the resistance remains unexplored. Associated mutations act as a biomarker to measure the artemisinin efficacy. In the proposed work, we have analyzed the binding affinity and efficacy between PfATP6 and artemisinin in the presence of L263D, L263E and L263K mutations. Furthermore, we performed virtual screening to identify potential compounds to inhibit the PfATP6 mutant proteins. In this study, we observed that artemisinin binding affinity with PfATP6 gets affected by L263D, L263E and L263K mutations. This in silico elucidation of artemisinin resistance enhanced the identification of novel compounds (CID: 10595058 and 10625452) which showed good binding affinity and efficacy with L263D, L263E and L263K mutant proteins in molecular docking and molecular dynamics simulations studies. Owing to the high propensity of the parasite to drug resistance the need for new antimalarial drugs will persist until the malarial parasites are eventually eradicated. The two compounds identified in this study can be tested in in vitro and in vivo experiments as possible candidates for the designing of new potential antimalarial drugs. PMID:27471101

  11. Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach

    Science.gov (United States)

    Nagasundaram, N.; George Priya Doss, C.; Chakraborty, Chiranjib; Karthick, V.; Thirumal Kumar, D.; Balaji, V.; Siva, R.; Lu, Aiping; Ge, Zhang; Zhu, Hailong

    2016-07-01

    Artemisinin resistance in Plasmodium falciparum threatens global efforts in the elimination or eradication of malaria. Several studies have associated mutations in the PfATP6 gene in conjunction with artemisinin resistance, but the underlying molecular mechanism of the resistance remains unexplored. Associated mutations act as a biomarker to measure the artemisinin efficacy. In the proposed work, we have analyzed the binding affinity and efficacy between PfATP6 and artemisinin in the presence of L263D, L263E and L263K mutations. Furthermore, we performed virtual screening to identify potential compounds to inhibit the PfATP6 mutant proteins. In this study, we observed that artemisinin binding affinity with PfATP6 gets affected by L263D, L263E and L263K mutations. This in silico elucidation of artemisinin resistance enhanced the identification of novel compounds (CID: 10595058 and 10625452) which showed good binding affinity and efficacy with L263D, L263E and L263K mutant proteins in molecular docking and molecular dynamics simulations studies. Owing to the high propensity of the parasite to drug resistance the need for new antimalarial drugs will persist until the malarial parasites are eventually eradicated. The two compounds identified in this study can be tested in in vitro and in vivo experiments as possible candidates for the designing of new potential antimalarial drugs.

  12. A genomic and evolutionary approach reveals non-genetic drug resistance in malaria

    OpenAIRE

    Herman, Jonathan D.; Rice, Daniel P.; Ribacke, Ulf; Silterra, Jacob; Deik, Amy A.; Moss, Eli L; Broadbent, Kate M; Neafsey, Daniel E; Desai, Michael M; Clish, Clary B.; Mazitschek, Ralph; Wirth, Dyann F.

    2014-01-01

    Background Drug resistance remains a major public health challenge for malaria treatment and eradication. Individual loci associated with drug resistance to many antimalarials have been identified, but their epistasis with other resistance mechanisms has not yet been elucidated. Results We previously described two mutations in the cytoplasmic prolyl-tRNA synthetase (cPRS) gene that confer resistance to halofuginone. We describe here the evolutionary trajectory of halofuginone resistance of tw...

  13. Prevalence of molecular markers of Plasmodium falciparum drug resistance in Dakar, Senegal.

    OpenAIRE

    Wurtz Nathalie; Fall Bécaye; Pascual Aurélie; Diawara Silmane; Sow Kowry; Baret Eric; Diatta Bakary; Fall Khadidiatou B; Mbaye Pape S; Fall Fatou; Diémé Yaya; Rogier Christophe; Bercion Raymond; Briolant Sébastien; Wade Boubacar

    2012-01-01

    Abstract Background As a result of the widespread resistance to chloroquine and sulphadoxine-pyrimethamine, artemisinin-based combination therapy (ACT) (including artemether-lumefantrine and artesunate-amodiaquine) has been recommended as a first-line anti-malarial regimen in Senegal since 2006. Intermittent preventive treatments with anti-malarial drugs based on sulphadoxine-pyrimethamine are also given to children or pregnant women once per month during the transmission season. Since 2006, ...

  14. Towards optimal design of anti-malarial pharmacokinetic studies.

    OpenAIRE

    White Nicholas J; Price Ric N; Jamsen Kris M; Simpson Julie A; Lindegardh Niklas; Tarning Joel; Duffull Stephen B

    2009-01-01

    Abstract Background Characterization of anti-malarial drug concentration profiles is necessary to optimize dosing, and thereby optimize cure rates and reduce both toxicity and the emergence of resistance. Population pharmacokinetic studies determine the drug concentration time profiles in the target patient populations, including children who have limited sampling options. Currently, population pharmacokinetic studies of anti-malarial drugs are designed based on logistical, financial and ethi...

  15. Insights following change in drug policy: A descriptive study for antimalarial prescription practices in children of public sector health facilities in Jharkhand state of India

    Directory of Open Access Journals (Sweden)

    Neelima Mishra

    2013-12-01

    Full Text Available Background & objectives: Widespread resistance to chloroquine was the mainstay to implement artemisininbased combination therapy (ACT in the year 2007 in few malaria endemic states in India including Jharkhand as the first line of treatment for uncomplicated Plasmodium falciparum malaria. This study was conducted in Jharkhand state of the country just after the implementation of ACT to assess the prevailing antimalarial drug prescribing practices, availability of antimalarial drugs and the acceptability of the new policy by the health professionals for the treatment of uncomplicated P. falciparum malaria patients particularly in children ≤15 yr of age. Methods: This is a cross-sectional study in children aged ≤15 yr with malaria or to whom antimalarial drug was prescribed. Main outcome measure was prescription of recommended ACT in children aged ≤15 yr with malaria in the selected areas of Jharkhand. Results: In the year 2008, artemisinin-based combination therapy (ACT was implemented in 12 districts of the studied state; however, the availability of ACT was confirmed only in five districts. Antimalarial prescription was prevalent amongst the undiagnosed (8.4%, malaria negative (64.3% and unknown blood test result (1.2% suggesting the prevalence of irrational treatment practices. ACT prescription was very low with only 3.2% of confirmed falciparum malaria patients receiving it while others received either non-artesunate (NA treatment (88.1% including chloroquine (CQ alone, CQ + Primaquine (PQ/other drugs, sulphadoxine-pyrimethamine (SP alone, SP + other drugs or artemisinin monotherapy (AM treatment (6.3%. Still others were given nonantimalarial treatment (NM in both malaria positive (0.3% and malaria negative (2.1% cases. Interpretation & conclusion: Despite the change in drug policy in the studied state the availability and implementation of ACT was a major concern. Nevertheless, the non-availability of blister packs for children aged

  16. A review of age-old antimalarial drug to combat malaria:efficacy up-gradation by nanotechnology based drug delivery

    Institute of Scientific and Technical Information of China (English)

    Satyajit Tripathy; Somenath Roy

    2014-01-01

    Malaria is uncontrolled burden in the world till now.Despite of different efforts to develop antimalarial drug for decades, any anti-malarial drug can able to eradicate completely till now. Many anti-malarial substances are practically ineffectual because of their physicochemical limitations, cytotoxicity, chemical instability and degradation, and limited activities against intracellular parasites.Taking into consideration, the amount of research is going to conduct in the field of nanoparticle based drug delivery systems, lead to new ways of improving the treatment of infectious diseases.The study has focused on the progress and advancement of research on nanotechnology based drug delivery to eradicate the malaria.We like to focus the efficacy of nanotechnology based drug applicationfor the opening out of novel chemotherapeutics in laboratory research, which may show the way to better use with age-old antimalarial drug and may draw the attention of pharmaceutical industries for the improvement and designing of effective anti-malarial drugs in future.

  17. CRIMALDDI: a co-ordinated, rational, and integrated effort to set logical priorities in anti-malarial drug discovery initiatives

    Directory of Open Access Journals (Sweden)

    Doerig Christian

    2010-07-01

    Full Text Available Abstract Despite increasing efforts and support for anti-malarial drug R&D, globally anti-malarial drug discovery and development remains largely uncoordinated and fragmented. The current window of opportunity for large scale funding of R&D into malaria is likely to narrow in the coming decade due to a contraction in available resources caused by the current economic difficulties and new priorities (e.g. climate change. It is, therefore, essential that stakeholders are given well-articulated action plans and priorities to guide judgments on where resources can be best targeted. The CRIMALDDI Consortium (a European Union funded initiative has been set up to develop, through a process of stakeholder and expert consultations, such priorities and recommendations to address them. It is hoped that the recommendations will help to guide the priorities of the European anti-malarial research as well as the wider global discovery agenda in the coming decade.

  18. Molecular Farming in Artemisia annua, a Promising Approach to Improve Anti-malarial Drug Production.

    Science.gov (United States)

    Pulice, Giuseppe; Pelaz, Soraya; Matías-Hernández, Luis

    2016-01-01

    Malaria is a parasite infection affecting millions of people worldwide. Even though progress has been made in prevention and treatment of the disease; an estimated 214 million cases of malaria occurred in 2015, resulting in 438,000 estimated deaths; most of them occurring in Africa among children under the age of five. This article aims to review the epidemiology, future risk factors and current treatments of malaria, with particular focus on the promising potential of molecular farming that uses metabolic engineering in plants as an effective anti-malarial solution. Malaria represents an example of how a health problem may, on one hand, influence the proper development of a country, due to its burden of the disease. On the other hand, it constitutes an opportunity for lucrative business of diverse stakeholders. In contrast, plant biofarming is proposed here as a sustainable, promising, alternative for the production, not only of natural herbal repellents for malaria prevention but also for the production of sustainable anti-malarial drugs, like artemisinin (AN), used for primary parasite infection treatments. AN, a sesquiterpene lactone, is a natural anti-malarial compound that can be found in Artemisia annua. However, the low concentration of AN in the plant makes this molecule relatively expensive and difficult to produce in order to meet the current worldwide demand of Artemisinin Combination Therapies (ACTs), especially for economically disadvantaged people in developing countries. The biosynthetic pathway of AN, a process that takes place only in glandular secretory trichomes of A. annua, is relatively well elucidated. Significant efforts have been made using plant genetic engineering to increase production of this compound. These include diverse genetic manipulation approaches, such as studies on diverse transcription factors which have been shown to regulate the AN genetic pathway and other biological processes. Results look promising; however, further

  19. Availability of antimalarial drugs and evaluation of the attitude and practices for the treatment of uncomplicated malaria in bangui, central african republic.

    Science.gov (United States)

    Manirakiza, Alexandre; Njuimo, Siméon Pierre; Le Faou, Alain; Malvy, Denis; Millet, Pascal

    2010-01-01

    National malaria management policy is based upon the availability of effective and affordable antimalarial drugs. This study was undertaken to evaluate the quality of the treatment of uncomplicated malaria cases in Bangui, an area with multidrug-resistant parasites, at a time preceding implementation of a new therapeutic policy relying on the artemisinin derivative combined treatment artemether-lumefantrine. A cross-sectional study was carried out in Bangui city to assess availability of antimalarial drugs and the performances of health workers in the management of uncomplicated malaria. Availability of drugs was recorded in all drugs wholesalers (n = 3), all pharmacies in health facilities (n = 14), private drugstores (n = 15), and in 60 non-official drug shops randomly chosen in the city. Despite a limited efficacy at the time of the survey, chloroquine remained widely available in the official and nonofficial markets. Artemisinin derivatives used in monotherapy or in combination were commonly sold. In health care facilities, 93% of the uncomplicated malaria cases were treated in the absence of any laboratory confirmation and the officially recommended treatment, amodiaquine-sulfadoxine/pyrimethamine, was seldom prescribed. Thus, the national guidelines for the treatment of uncomplicated malaria are not followed by health professionals in Bangui. Its use should be implemented while a control of importation of drug has to be reinforced. PMID:20339579

  20. Experimental studies on the ecology and evolution of drug-resistant malaria parasites

    OpenAIRE

    Huijben, Silvie

    2010-01-01

    Drug resistance is a serious problem in health care in general, and in malaria treatment in particular, rendering many of our previously considered ‘wonder drugs’ useless. Recently, large sums of money have been allocated for the continuous development of new drugs to replace the failing ones. We seem to be one step behind the evolution of antimalarial resistance; is it possible to get one step ahead? Are interventions which slow down the evolution and spread of drug-resistant ...

  1. Holographic analysis on deformation and restoration of malaria-infected red blood cells by antimalarial drug

    Science.gov (United States)

    Byeon, Hyeokjun; Ha, Young-Ran; Lee, Sang Joon

    2015-11-01

    Malaria parasites induce morphological, biochemical, and mechanical changes in red blood cells (RBCs). Mechanical variations are closely related to the deformability of individual RBCs. The deformation of various RBCs, including healthy and malaria-infected RBCs (iRBCs), can be directly observed through quantitative phase imaging (QPI). The effects of chloroquine treatment on the mechanical property variation of iRBCs were investigated using time-resolved holographic QPI of single live cells on a millisecond time scale. The deformabilities of healthy RBCs, iRBCs, and drug-treated iRBCs were compared, and the effect of chloroquine on iRBC restoration was experimentally examined. The present results are beneficial to elucidate the dynamic characteristics of iRBCs and the effect of the antimalarial drug on iRBCs.

  2. Environmental, pharmacological and genetic influences on the spread of drug-resistant malaria

    OpenAIRE

    Antao, Tiago; Hastings, Ian M.

    2010-01-01

    Plasmodium falciparum malaria is subject to artificial selection from antimalarial drugs that select for drug-resistant parasites. We describe and apply a flexible new approach to investigate how epistasis, inbreeding, selection heterogeneity and multiple simultaneous drug deployments interact to influence the spread of drug-resistant malaria. This framework recognizes that different human ‘environments’ within which treatment may occur (such as semi- and non-immune humans taking full or part...

  3. Antiretroviral drug resistance testing

    Directory of Open Access Journals (Sweden)

    Sen Sourav

    2006-01-01

    Full Text Available While antiretroviral drugs, those approved for clinical use and others under evaluation, attempt in lowering viral load and boost the host immune system, antiretroviral drug resistance acts as a major impediment in the management of human immune deficiency virus type-1 (HIV-1 infection. Antiretroviral drug resistance testing has become an important tool in the therapeutic management protocol of HIV-1 infection. The reliability and clinical utilities of genotypic and phenotypic assays have been demonstrated. Understanding of complexities of interpretation of genotyping assay, along with updating of lists of mutation and algorithms, and determination of clinically relevant cut-offs for phenotypic assays are of paramount importance. The assay results are to be interpreted and applied by experienced HIV practitioners, after taking into consideration the clinical profile of the patient. This review sums up the methods of assay currently available for measuring resistance to antiretroviral drugs and outlines the clinical utility and limitations of these assays.

  4. Acquired resistance of malarial parasites against artemisinin-based drugs: social and economic impacts

    Directory of Open Access Journals (Sweden)

    Johanna M Porter-Kelley

    2010-08-01

    Full Text Available Johanna M Porter-Kelley1, Joann Cofie2, Sophonie Jean2, Mark E Brooks1, Mia Lassiter1, DC Ghislaine Mayer21Life Sciences Department, ­Winston-Salem State University, Winston Salem, NC, USA; 2Department of Biology, Virginia Commonwealth University, Richmond, VA, USAAbstract: Malaria, a disease of poverty and high morbidity and mortality in the tropical world, has led to a worldwide search for control measures. To that end, good antimalarial chemotherapies have been difficult to find in the global market and those that seem to be most effective are rapidly becoming ineffective due to the emergence and spread of drug resistance. Artemisinin, a very effective yet expensive antimalarial, has quickly become the recommended drug of choice when all other possibilities fail. However, for all its promise as the next great antimalarial, the outlook is bleak. Resistance is developing to artemisinin while another effective antimalarial is not in sight. Malaria endemic areas which are mostly in developing countries must deal with the multifaceted process of changing and implementing new national malaria treatment guidelines. This requires complex interactions between several sectors of the affected society which in some cases take place within the context of political instability. Moreover, the cost associated with preventing and containing the spread of antimalarial resistance is detrimental to economic progress. This review addresses the impact of artemisinin resistance on the socioeconomic structure of malaria endemic countries.Keywords: artemisinin-based drugs, social, economic, malarial parasite resistance

  5. Tyrosine kinase inhibitors: New class of antimalarials on the horizon?

    Science.gov (United States)

    Pathak, Vrushali; Colah, Roshan; Ghosh, Kanjaksha

    2015-08-01

    Development of the antimalarial drug resistant strains has currently become a major public health challenge. There is an urgent need to develop new antimalarial drugs. Tyrosine kinase inhibitors (TKIs) are receiving increasing attention as anticancer therapy. It has revolutionarised the management of CML to say the least. TKIs are also increasingly being implicated in complicated but vital life cycle of malaria parasite. Hence we tested two commonly used but different classes of TKIs (imatinib and sorafenib) in-vitro for their antimalarial activity and possible synergistic activity with existing antimalarial drug. Antimalarial activity was tested with the help of modified WHO microtest technique in-vitro for five different Plasmodium falciparum laboratory strains (3D7, Dd2, 7G8, MRC2, PKL9). Imatinib and sorafenib showed a promising antimalarial activity with all the strains. These compounds caused dose dependent inhibition of parasite maturation. The isobologram analysis of the interactions of these TKIs with standard antimalarial drug, artesunate revealed distinct patterns of synergism, additivity and antagonism at different ratios. Imatinib showed worthwhile synergism with artesunate indicating imatinib and other tyrosine kinase inhibitors may have significant antimalarial activity and can be used in combination therapy. PMID:26142327

  6. Use of the atmospheric generators for capnophilic bacteria Genbag-CO2 for the evaluation of in vitro Plasmodium falciparum susceptibility to standard anti-malarial drugs

    Directory of Open Access Journals (Sweden)

    Travers Dominique

    2011-01-01

    Full Text Available Abstract Background The aim of this study was to evaluate the cultivation system in which the proper atmospheric conditions for growing Plasmodium falciparum parasites were maintained in a sealed bag. The Genbag® system associated with the atmospheric generators for capnophilic bacteria Genbag CO2® was used for in vitro susceptibility test of nine standard anti-malarial drugs and compared to standard incubator conditions. Methods The susceptibility of 36 pre-identified parasite strains from a wide panel of countries was assessed for nine standard anti-malarial drugs (chloroquine, quinine, mefloquine, monodesethylamodiaquine, lumefantrine, dihydroartemisinin, atovaquone and pyrimethamine by the standard 42-hour 3H-hypoxanthine uptake inhibition method using the Genbag CO2® system and compared to controlled incubator conditions (5% CO2 and 10% O2. Results The counts per minute values in the control wells in incubator atmospheric conditions (5% CO2 and 10% O2 were significantly higher than those of Genbag® conditions (2738 cpm vs 2282 cpm, p 50 estimated under the incubator atmospheric conditions was significantly lower for atovaquone (1.2 vs 2.1 nM, p = 0.0011 and higher for the quinolines: chloroquine (127 vs 94 nM, p 50 between the 2 conditions for dihydroartemisinin, doxycycline and pyrimethamine. To reduce this difference in term of anti-malarial susceptibility, a specific cut-off was estimated for each drug under Genbag® conditions by regression. The cut-off was estimated at 77 nM for chloroquine (vs 100 nM in 10% O2, 611 nM for quinine (vs 800 nM, 30 nM for mefloquine (vs 30 nM, 61 nM for monodesethylamodiaquine (vs 80 nM and 1729 nM for pyrimethamine (vs 2000 nM. Conclusions The atmospheric generators for capnophilic bacteria Genbag CO2® is an appropriate technology that can be transferred to the field for epidemiological surveys of drug-resistant malaria. The present data suggest the importance of the gas mixture on in vitro

  7. Kinetically Controlled Drug Resistance

    DEFF Research Database (Denmark)

    Sun, Xin E.; Hansen, Bjarne Gram; Hedstrom, Lizbeth

    2011-01-01

    The filamentous fungus Penicillium brevicompactum produces the immunosuppressive drug mycophenolic acid (MPA), which is a potent inhibitor of eukaryotic IMP dehydrogenases (IMPDHs). IMPDH catalyzes the conversion of IMP to XMP via a covalent enzyme intermediate, E-XMP*; MPA inhibits by trapping E...... of resistance is not apparent. Here, we show that, unlike MPA-sensitive IMPDHs, formation of E-XMP* is rate-limiting for both PbIMPDH-A and PbIMPDH-B. Therefore, MPA resistance derives from the failure to accumulate the drug-sensitive intermediate....

  8. Activity of clinically relevant antimalarial drugs on Plasmodium falciparum mature gametocytes in an ATP bioluminescence "transmission blocking" assay.

    Directory of Open Access Journals (Sweden)

    Joël Lelièvre

    Full Text Available BACKGROUND: Current anti-malarial drugs have been selected on the basis of their activity against the symptom-causing asexual blood stage of the parasite. Which of these drugs also target gametocytes, in the sexual stage responsible for disease transmission, remains unknown. Blocking transmission is one of the main strategies in the eradication agenda and requires the identification of new molecules that are active against gametocytes. However, to date, the main limitation for measuring the effect of molecules against mature gametocytes on a large scale is the lack of a standardized and reliable method. Here we provide an efficient method to produce and purify mature gametocytes in vitro. Based on this new procedure, we developed a robust, affordable, and sensitive ATP bioluminescence-based assay. We then assessed the activity of 17 gold-standard anti-malarial drugs on Plasmodium late stage gametocytes. METHODS AND FINDINGS: Difficulties in producing large amounts of gametocytes have limited progress in the development of malaria transmission blocking assays. We improved the method established by Ifediba and Vanderberg to obtain viable, mature gametocytes en masse, whatever the strain used. We designed an assay to determine the activity of antimalarial drugs based on the intracellular ATP content of purified stage IV-V gametocytes after 48 h of drug exposure in 96/384-well microplates. Measurements of drug activity on asexual stages and cytotoxicity on HepG2 cells were also obtained to estimate the specificity of the active drugs. CONCLUSIONS: The work described here represents another significant step towards determination of the activity of new molecules on mature gametocytes of any strain with an automated assay suitable for medium/high-throughput screening. Considering that the biology of the forms involved in the sexual and asexual stages is very different, a screen of our 2 million-compound library may allow us to discover novel anti-malarial

  9. Thermodynamic Studies of Antimalarial Drugs and Their Interaction with Myoglobin, Hemoglobin and Phospholipid Model Membranes

    Directory of Open Access Journals (Sweden)

    Samira A. Barghouthi

    2005-01-01

    Full Text Available In this research we present binding studies of some selected antimalarial drugs such as primaquine and quinacrine with biomolecules. Ultraviolet-visible spectrophotometry and fluorescence spectrophotometry along with equilibrium dialysis techniques were used to monitor the interaction of these drugs with myoglobin, hemoglobin albumin and with phospholipid unilamellar vesicles. Fluorescence spectrophotometry, UV-visible difference spectrophotometry and equilibrium dialysis showed no evidence of any binding of these drugs to myoglobin or hemoglobin. However, binding to albumin was evident from a blue shift in UV-Vis absorption spectra. Both primaquine and quinacrine were found to bind to phospholipid vesicles with binding constants of 2.7 ± 0.4x102 and 8.1 ± 0.8x104, respectively. As for the number of molecules per binding site, we found that eight molecules of primaquine occupies ten binding sites and in case of quinacrine two drug molecule for each ten binding sites. Physical parameters for primaquine are determined via UV-Vis absorption at a wavelength of 350 nm. In case of quinacrine fluorescence intensity was employed to measure concentrations with an excitation wavelength of 425 nm and an emission wavelength at 497 nm.

  10. Harnessing Evolutionary Fitness in Plasmodium falciparum for Drug Discovery and Suppressing Resistance

    OpenAIRE

    Ross, Leila Saxby

    2013-01-01

    Malaria is a preventable and treatable disease caused by infection with Plasmodium parasites. Complex socioeconomic and political factors limit access to vector control and antimalarial drugs, and an estimated 600,000 people die from malaria every year. Rising drug resistance threatens to make malaria untreatable. As for all new traits, resistance is limited by fitness, and a small number of pathways are heavily favored by evolution. These pathways are targets for drug discovery. Pairing comp...

  11. Highly active ozonides selected against drug resistant malaria

    Directory of Open Access Journals (Sweden)

    Lis Lobo

    2016-01-01

    Full Text Available Ever increasing multi-drug resistance by Plasmodium falciparum is creating new challenges in malaria chemotherapy. In the absence of licensed vaccines, treatment and prevention of malaria is heavily dependent on drugs. Potency, range of activity, safety, low cost and ease of administration are crucial issues in the design and formulation of antimalarials. We have tested three synthetic ozonides NAC89, LC50 and LCD67 in vitro and in vivo against multidrug resistant Plasmodium. In vitro, LC50 was at least 10 times more efficient inhibiting P. falciparum multidrug resistant Dd2 strain than chloroquine and mefloquine and as efficient as artemisinin (ART, artesunate and dihydroartemisinin. All three ozonides showed high efficacy in clearing parasitaemia in mice, caused by multi-drug resistant Plasmodium chabaudi strains, by subcutaneous administration, demonstrating high efficacy in vivo against ART and artesunate resistant parasites.

  12. Highly active ozonides selected against drug resistant malaria.

    Science.gov (United States)

    Lobo, Lis; Sousa, Bruno de; Cabral, Lília; Cristiano, Maria Ls; Nogueira, Fátima

    2016-06-01

    Ever increasing multi-drug resistance by Plasmodium falciparum is creating new challenges in malaria chemotherapy. In the absence of licensed vaccines, treatment and prevention of malaria is heavily dependent on drugs. Potency, range of activity, safety, low cost and ease of administration are crucial issues in the design and formulation of antimalarials. We have tested three synthetic ozonides NAC89, LC50 and LCD67 in vitro and in vivo against multidrug resistant Plasmodium. In vitro, LC50 was at least 10 times more efficient inhibiting P. falciparum multidrug resistant Dd2 strain than chloroquine and mefloquine and as efficient as artemisinin (ART), artesunate and dihydroartemisinin. All three ozonides showed high efficacy in clearing parasitaemia in mice, caused by multi-drug resistant Plasmodium chabaudi strains, by subcutaneous administration, demonstrating high efficacy in vivo against ART and artesunate resistant parasites. PMID:27276364

  13. Highly active ozonides selected against drug resistant malaria

    Science.gov (United States)

    Lobo, Lis; de Sousa, Bruno; Cabral, Lília; Cristiano, Maria LS; Nogueira, Fátima

    2016-01-01

    Ever increasing multi-drug resistance by Plasmodium falciparum is creating new challenges in malaria chemotherapy. In the absence of licensed vaccines, treatment and prevention of malaria is heavily dependent on drugs. Potency, range of activity, safety, low cost and ease of administration are crucial issues in the design and formulation of antimalarials. We have tested three synthetic ozonides NAC89, LC50 and LCD67 in vitro and in vivo against multidrug resistant Plasmodium. In vitro, LC50 was at least 10 times more efficient inhibiting P. falciparum multidrug resistant Dd2 strain than chloroquine and mefloquine and as efficient as artemisinin (ART), artesunate and dihydroartemisinin. All three ozonides showed high efficacy in clearing parasitaemia in mice, caused by multi-drug resistant Plasmodium chabaudi strains, by subcutaneous administration, demonstrating high efficacy in vivo against ART and artesunate resistant parasites. PMID:27276364

  14. Drug resistance in leishmaniasis.

    Science.gov (United States)

    Croft, Simon L; Sundar, Shyam; Fairlamb, Alan H

    2006-01-01

    Leishmaniasis is a complex disease, with visceral and cutaneous manifestations, and is caused by over 15 different species of the protozoan parasite genus Leishmania. There are significant differences in the sensitivity of these species both to the standard drugs, for example, pentavalent antimonials and miltefosine, and those on clinical trial, for example, paromomycin. Over 60% of patients with visceral leishmaniasis in Bihar State, India, do not respond to treatment with pentavalent antimonials. This is now considered to be due to acquired resistance. Although this class of drugs has been used for over 60 years for leishmaniasis treatment, it is only in the past 2 years that the mechanisms of action and resistance have been identified, related to drug metabolism, thiol metabolism, and drug efflux. With the introduction of new therapies, including miltefosine in 2002 and paromomycin in 2005-2006, it is essential that there be a strategy to prevent the emergence of resistance to new drugs; combination therapy, monitoring of therapy, and improved diagnostics could play an essential role in this strategy. PMID:16418526

  15. Development of a specific monoclonal antibody-based ELISA to measure the artemether content of antimalarial drugs.

    Directory of Open Access Journals (Sweden)

    Suqin Guo

    Full Text Available Artemether is one of the artemisinin derivatives that are active ingredients in antimalarial drugs. Counterfeit and substandard antimalarial drugs have become a serious problem, which demands reliable analytical tools and implementation of strict regulation of drug quality. Structural similarity among artemisinin analogs is a challenge to develop immunoassays that are specific to artemisinin derivatives. To produce specific antibodies to artemether, we used microbial fermentation of artemether to obtain 9-hydroxyartemether, which was subsequently used to prepare a 9-O-succinylartemether hapten for conjugation with ovalbumin as the immunogen. A monoclonal antibody (mAb, designated as 2G12E1, was produced with high specificity to artemether. 2G12E1 showed low cross reactivities to dihydroartemisinin, artemisinin, artesunate and other major antimalarial drugs. An indirect competitive enzyme linked immunosorbent assay (icELISA developed showed a concentration causing 50% of inhibition for artemether as 3.7 ng mL⁻¹ and a working range of 0.7-19 ng mL⁻¹. The icELISA was applied for determination of artemether content in different commercial drugs and the results were comparable to those determined by high-performance liquid chromatography analysis. In comparison with reported broad cross activity of anti-artemisinin mAbs, the most notable advantage of the 2G12E1-based ELISA is its high specificity to artemether only.

  16. New antimalarial hits from Dacryodes edulis (Burseraceae--part I: isolation, in vitro activity, in silico "drug-likeness" and pharmacokinetic profiles.

    Directory of Open Access Journals (Sweden)

    Denis Zofou

    Full Text Available The aims of the present study were to identify the compounds responsible for the anti-malarial activity of Dacryoedes edulis (Burseraceae and to investigate their suitability as leads for the treatment of drug resistant malaria. Five compounds were isolated from ethyl acetate and hexane extracts of D. edulis stem bark and tested against 3D7 (chloroquine-susceptible and Dd2 (multidrug-resistant strains of Plasmodium falciparum, using the parasite lactate dehydrogenase method. Cytotoxicity studies were carried out on LLC-MK2 monkey kidney epithelial cell-line. In silico analysis was conducted by calculating molecular descriptors using the MOE software running on a Linux workstation. The "drug-likeness" of the isolated compounds was assessed using Lipinski criteria, from computed molecular properties of the geometry optimized structures. Computed descriptors often used to predict absorption, distribution, metabolism, elimination and toxicity (ADMET were used to assess the pharmacokinetic profiles of the isolated compounds. Antiplasmodial activity was demonstrated for the first time in five major natural products previously identified in D. edulis, but not tested against malaria parasites. The most active compound identified was termed DES4. It had IC50 values of 0.37 and 0.55 µg/mL, against 3D7 and Dd2 respectively. In addition, this compound was shown to act in synergy with quinine, satisfied all criteria of "Drug-likeness" and showed considerable probability of providing an antimalarial lead. The remaining four compounds also showed antiplasmodial activity, but were less effective than DES4. None of the tested compounds was cytotoxicity against LLC-MK2 cells, suggesting their selective activities on malaria parasites. Based on the high in vitro activity, low toxicity and predicted "Drug-likeness" DES4 merits further investigation as a possible drug lead for the treatment of malaria.

  17. Vector incrimination and effects of antimalarial drugs on malaria transmission and control in the Amazon Basin of Brazil

    Directory of Open Access Journals (Sweden)

    T. A. Klein

    1992-01-01

    Full Text Available World ecosystems differ significantly and a multidisciplinary malaria control approach must be adjusted to meet these requirements. These include a comprehensive understanding of the malaria vectors, their behavior, seasonal distribution and abundance, susceptibility to insecticides (physiological and behavioral, methods to reduce the numbers of human gametocyte carriers through effective health care systems and antimalarial drug treatment, urban malaria transmission versus rural or forest malaria transmission, and the impact of vaccine development. Many malaria vectors are members of species complexes and individual relationship to malaria transmission, seasonal distribution, bitting behavior, etc. is poorly understood. Additionaly, malaria patients are not examined for circulating gametocytes and both falciparum and vivax malaria patients may be highly infective to mosquitoes after treatment with currently used antimalarial drugs. Studies on the physiological and behavioral effects of DDT and other insecticides are inconclusive and need to be evalusted.

  18. Antimalarial activity of Malaysian Plectranthus amboinicus against Plasmodium berghei

    OpenAIRE

    Ramli, Norazsida; Ahamed, Pakeer Oothuman Syed; Elhady, Hassan Mohamed; Taher, Muhammad

    2014-01-01

    Context: Malaria is a mosquito-borne disease caused by parasitic protozoa from the genus of Plasmodium. The protozoans have developed resistance against many of current drugs. It is urgent to find an alternative source of new antimalarial agent. In the effort to discover new antimalarial agents, this research has been conducted on Plectranthus amboinicus. Aims: This study was conducted to evaluate the toxicity and antiplasmodial properties of P. amboinicus. Materials and Methods: Acute oral t...

  19. In Vitro Antimalarial Activity of Novel Semisynthetic Nocathiacin I Antibiotics

    OpenAIRE

    Sharma, Indu; Sullivan, Margery; McCutchan, Thomas F.

    2015-01-01

    Presently, the arsenal of antimalarial drugs is limited and needs to be replenished. We evaluated the potential antimalarial activity of two water-soluble derivatives of nocathiacin (BMS461996 and BMS411886) against the asexual blood stages of Plasmodium falciparum. Nocathiacins are a thiazolyl peptide group of antibiotics, are structurally related to thiostrepton, have potent activity against a wide spectrum of multidrug-resistant Gram-positive bacteria, and inhibit protein synthesis. The in...

  20. Is primaquine useful and safe as true exo-erythrocytic merontocidal, hypnozoitocidal and gametocidal antimalarial drug?

    Directory of Open Access Journals (Sweden)

    Francisco Javier López-Antuñano

    1999-10-01

    Full Text Available The main objective of this paper is to make available in a single document, a sequence of events that have been published on the biology of malaria parasites and their interaction with the human host, looking for arguments for effective and save treatment: what we know and what we would like to know about the effects of primaquine in order to justify its use in clinical and public health practice. The practicioner should be aware that the antimalarial activity, hemolytic and methemoglobinemic side effects, and detoxification of primaquine are all thought to depend on various biotransformation products of the drug. In spite of the universal use during over six decades, their site and mechanism of formation and degradation and their specific biologic effects remain very poorly understood in human beings. The mature gametocytes of P. falciparum are naturally resistant to chloroquine and other blood merontocides, but they are usually eliminated with a single dose of 1.315 mg/kg per os (p.o. of primaquine phosphate (equivalent to 0.75 mg-base. Rather than empirically, related with relapses frequency, dosage schedules should only be determined through consideration of the kinetics and dynamics of the drug and its effect on sporozoites, pre and exo-erythrocytic merontes, hypnozoites and gametocytes of P. vivax. Where medical care services are not available or not capable to detect glucose -6- phosphate dehydrogenese- (G-6-PD deficiencies and deleterious effects of the drug, we recommend not to use primaquine. Both, P. vivax primary clinical attack and P. vivax relapses, as and when they occur should be treated with a course of 10 mg/kg chloroquine-base p.o. Prevention of relapses is probably related to strain characteristics of P. vivax hypnozoites populations envolved. If well informed and qualified medical care workers decide to use primaquine in the absence of enzime defficiencies and are able to follow-up the clinical, toxicological and parasitic

  1. On peroxide antimalarials

    Directory of Open Access Journals (Sweden)

    IGOR OPSENICA

    2007-12-01

    Full Text Available Several dicyclohexylidene tetraoxanes were prepared in order to gain a further insight into structure–activity relationship of this kind of antimalarials. The tetraoxanes 2–5, obtained as a cis/trans mixture, showed pronounced antimalarial activity against Plasmodium falciparum chloroquine susceptible D6, chloroquine resistant W2 and multidrug-resistant TM91C235 (Thailand strains. They have better than or similar activity to the corresponding desmethyl dicyclohexylidene derivatives. Two chimeric endoperoxides with superior antimalarial activity to the natural product ascaridole were also synthesized.

  2. Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin

    International Nuclear Information System (INIS)

    We report that the antimalarial drug artemisinin inhibits hepatitis C virus (HCV) replicon replication in a dose-dependent manner in two replicon constructs at concentrations that have no effect on the proliferation of the exponentially growing host cells. The 50% effective concentration (EC5) for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells (luciferase assay) by artemisinin was 78 ± 21 μM. Hemin, an iron donor, was recently reported to inhibit HCV replicon replication [mediated by inhibition of the viral polymerase (C. Fillebeen, A.M. Rivas-Estilla, M. Bisaillon, P. Ponka, M. Muckenthaler, M.W. Hentze, A.E. Koromilas, K. Pantopoulos, Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus, J. Biol. Chem. 280 (2005) 9049-9057.)] at a concentration that had no adverse effect on the host cells. When combined, artemisinin and hemin resulted, over a broad concentration range, in a pronounced synergistic antiviral activity. Also at a concentration (2 μM) that alone had no effect on HCV replication, hemin still potentiated the anti-HCV activity of artemisinin

  3. Malaria, anaemia and antimalarial drug resistance in African children

    NARCIS (Netherlands)

    Obonyo, C.O.

    2006-01-01

    Malaria-associated anaemia is a potentially preventable cause of severe morbidity and mortality in children < 5years of age, in areas of high malaria transmission in sub-Saharan Africa. In a cross-sectional study of 3586 children, 80% were anaemic (haemoglobin [Hb]<11g/dL) and 3% had severe anaemia

  4. A study of toxicity and differential gene expression in murine liver following exposure to anti-malarial drugs: amodiaquine and sulphadoxine-pyrimethamine

    Directory of Open Access Journals (Sweden)

    Rath Srikanta

    2011-05-01

    Full Text Available Abstract Background Amodiaquine (AQ along with sulphadoxine-pyrimethamine (SP offers effective and cheaper treatment against chloroquine-resistant falciparum malaria in many parts of sub-Saharan Africa. Considering the previous history of hepatitis, agranulocytosis and neutrocytopenia associated with AQ monotherapy, it becomes imperative to study the toxicity of co-administration of AQ and SP. In this study, toxicity and resulting global differential gene expression was analyzed following exposure to these drugs in experimental Swiss mice. Methods The conventional markers of toxicity in serum, oxidative stress parameters in tissue homogenates, histology of liver and alterations in global transcriptomic expression were evaluated to study the toxic effects of AQ and SP in isolation and in combination. Results The combination therapy of AQ and SP results in more pronounced hepatotoxicity as revealed by elevated level of serum ALT, AST with respect to their individual drug exposure regimen. Furthermore, alterations in the activity of major antioxidant enzymes (glutathione peroxidase, superoxide dismutase, catalase, glutathione reductase, indicating the development of oxidative stress, was more significant in AQ+SP combination therapy. cDNA microarray results too showed considerably more perturbed gene expression following combination therapy of AQ and SP as compared to their individual drug treatment. Moreover, a set of genes were identified whose expression pattern can be further investigated for identifying a good biomarker for potential anti-malarial hepatotoxicity. Conclusion These observations clearly indicate AQ+SP combination therapy is hepatotoxic in experimental Swiss mice. Microarray results provide a considerable number of potential biomarkers of anti-malarial drug toxicity. These findings hence will be useful for future drug toxicity studies, albeit implications of this study in clinical conditions need to be monitored with cautions.

  5. Combination Therapy Counteracts the Enhanced Transmission of Drug-Resistant Malaria Parasites to Mosquitoes

    OpenAIRE

    Hallett, Rachel L; Colin J Sutherland; Alexander, Neal; Ord, Rosalynn; Jawara, Musa; Drakeley, Chris J.; Pinder, Margaret; Walraven, Gijs; Geoffrey A T Targett; Alloueche, Ali

    2004-01-01

    Malaria parasites carrying genes conferring resistance to antimalarials are thought to have a selective advantage which leads to higher rates of transmissibility from the drug-treated host. This is a likely mechanism for the increasing prevalence of parasites with resistance to chloroquine (CQ) and sulfadoxine-pyrimethamine in sub-Saharan Africa. Combination therapy is the key strategy being implemented to reduce the impact of resistance, but its effect on the transmission of genetically resi...

  6. Assessing the utility of an anti-malarial pharmacokinetic-pharmacodynamic model for aiding drug clinical development

    Directory of Open Access Journals (Sweden)

    Zaloumis Sophie

    2012-08-01

    Full Text Available Abstract Background Mechanistic within-host models relating blood anti-malarial drug concentrations with the parasite-time profile help in assessing dosing schedules and partner drugs for new anti-malarial treatments. A comprehensive simulation study to assess the utility of a stage-specific pharmacokinetic-pharmacodynamic (PK-PD model for predicting within-host parasite response was performed. Methods Three anti-malarial combination therapies were selected: artesunate-mefloquine, dihydroartemisinin-piperaquine, and artemether-lumefantrine. The PK-PD model included parameters to represent the concentration-time profiles of both drugs, the initial parasite burden and distribution across the parasite life cycle, and the parasite multiplication factor due to asexual reproduction. The model also included the maximal killing rate of each drug, and the blood drug concentration associated with half of that killing effect (in vivo EC50, derived from the in vitro IC50, the extent of binding to 0.5% Albumax present in the in vitro testing media, and the drugs plasma protein binding and whole blood to plasma partitioning ratio. All stochastic simulations were performed using a Latin-Hypercube-Sampling approach. Results The simulations demonstrated that the proportion of patients cured was highly sensitive to the in vivo EC50 and the maximal killing rate of the partner drug co-administered with the artemisinin derivative. The in vivo EC50 values that corresponded to on average 95% of patients cured were much higher than the adjusted values derived from the in vitro IC50. The proportion clinically cured was not strongly influenced by changes in the parameters defining the age distribution of the initial parasite burden (mean age of 4 to 16 hours and the parasite multiplication factor every life cycle (ranging from 8 to 12 fold/cycle. The median parasite clearance times, however, lengthened as the standard deviation of the initial parasite burden increased (i

  7. Plasmodium falciparum Thioredoxin Reductase (PfTrxR) and Its Role as a Target for New Antimalarial Discovery

    OpenAIRE

    Sara E. McCarty; Amanda Schellenberger; Douglas C. Goodwin; Ngolui Rene Fuanta; Tekwani, Babu L.; Calderón, Angela I.

    2015-01-01

    The growing resistance to current antimalarial drugs is a major concern for global public health. The pressing need for new antimalarials has led to an increase in research focused on the Plasmodium parasites that cause human malaria. Thioredoxin reductase (TrxR), an enzyme needed to maintain redox equilibrium in Plasmodium species, is a promising target for new antimalarials. This review paper provides an overview of the structure and function of TrxR, discusses similarities and differences...

  8. The antimalarial ferroquine: from bench to clinic

    Directory of Open Access Journals (Sweden)

    Biot C.

    2011-08-01

    Full Text Available Ferroquine (FQ, SSR97193 is currently the most advanced organometallic drug candidate and about to complete phase II clinical trials as a treatment for uncomplicated malaria. This ferrocenecontaining compound is active against both chloroquine-susceptible and chloroquine-resistant Plasmodium falciparum and P. vivax strains and/or isolates. This article focuses on the discovery of FQ, its antimalarial activity, the hypothesis of its mode of action, the current absence of resistance in vitro and recent clinical trials.

  9. Monitoring the efficacy of antimalarial medicines in India via sentinel sites: Outcomes and risk factors for treatment failure

    Directory of Open Access Journals (Sweden)

    Neelima Mishra

    2016-01-01

    Interpretation & conclusion: Till 2012, India′s national antimalarial drug resistance monitoring system proved highly efficacious and safe towards first-line antimalarials used in the country, except in Northeastern region where a decline in efficacy of AS+SP has been observed. This led to change in first-line treatment for P. falciparum to artemether-lumefantrine in Northeastern region.

  10. Drug resistance in mycobacterium tuberculosis

    OpenAIRE

    Abate, Getahun

    1999-01-01

    Drug-resistant tuberculosis is a global public health problem. This investigation was performed to find ways of improving regimens that could be used for the treatment of drug- and multidrug-resistant TB and also to find a rapid method of diagnosis of drug resistant TB, particularly MDR-TB. Among 107 isolates of M. tuberculosis from re-treatment cases of pulmonary TB in Ethiopia (study 1), 48% were resistant at least to one of the four first-line drugs tested and 12 % were A...

  11. A Mathematical Model for the Transmission and Spread of Drug Sensitive and Resistant Malaria Strains within a Human Population

    OpenAIRE

    Tumwiine, Julius; Hove-Musekwa, Senelani D.; Nyabadza, Farai

    2014-01-01

    Malaria remains by far the world's most important tropical disease, killing more people than any other communicable disease. A number of preventive and control measures have been put in place and most importantly drug treatment. The emergence of drug resistance against the most common and affordable antimalarials is widespread and poses a key obstacle to malaria control. A mathematical model that incorporates evolution of drug resistance and treatment as a preventive strategy is formulated an...

  12. Quality of anti-malarial drugs provided by public and private healthcare providers in south-east Nigeria

    Directory of Open Access Journals (Sweden)

    Uzochukwu Benjamin

    2009-02-01

    Full Text Available Abstract Background There is little existing knowledge about actual quality of drugs provided by different providers in Nigeria and in many sub-Saharan African countries. Such information is important for improving malaria treatment that will help in the development and implementation of actions designed to improve the quality of treatment. The objective of the study was to determine the quality of drugs used for the treatment of malaria in a broad spectrum of public and private healthcare providers. Methods The study was undertaken in six towns (three urban and three rural in Anambra state, south-east Nigeria. Anti-malarials (225 samples, which included artesunate, dihydroartemisinin, sulphadoxine-pyrimethamine (SP, quinine, and chloroquine, were either purchased or collected from randomly selected providers. The quality of these drugs was assessed by laboratory analysis of the dissolution profile using published pharmacopoeial monograms and measuring the amount of active ingredient using high performance liquid chromatography (HPLC. Findings It was found that 60 (37% of the anti-malarials tested did not meet the United States Pharmacopoeia (USP specifications for the amount of active ingredients, with the suspect drugs either lacking the active ingredients or containing suboptimal quantities of the active ingredients. Quinine (46% and SP formulations (39% were among drugs that did not satisfy the tolerance limits published in USP monograms. A total of 78% of the suspect drugs were from private facilities, mostly low-level providers, such as patent medicine dealers (vendors. Conclusion This study found that there was a high prevalence of poor quality drugs. The findings provide areas for public intervention to improve the quality of malaria treatment services. There should be enforced checks and regulation of drug supply management as well as stiffer penalties for people stocking substandard and counterfeit drugs.

  13. Compliance with a 2 day course of artemether-mefloquine in an area of highly multi-drug resistant Plasmodium falciparum malaria

    OpenAIRE

    Na-Bangchang, K; Congpuong, K.; Sirichaisinthop, J.; Suprakorb, K.; Karbwang, J

    1997-01-01

    Aims Multi-drug resistant Plasmodium falciparum malaria is a rapidly increasing problem in the world, particularly Thailand. Practical antimalarial regimens which are highly effective against multi-drug resistant parasites with short-term course of administration are needed. In this study, we assessed the patient compliance of a short course regimen using artemether-mefloquine.

  14. Research influence on antimalarial drug policy change in Tanzania: case study of replacing chloroquine with sulfadoxine-pyrimethamine as the first-line drug

    Directory of Open Access Journals (Sweden)

    Gonzalez-Block Miguel A

    2005-10-01

    Full Text Available Abstract Introduction Research is an essential tool in facing the challenges of scaling up interventions and improving access to services. As in many other countries, the translation of research evidence into drug policy action in Tanzania is often constrained by poor communication between researchers and policy decision-makers, individual perceptions or attitudes towards the drug and hesitation by some policy decision-makers to approve change when they anticipate possible undesirable repercussions should the policy change as proposed. Internationally, literature on the role of researchers on national antimalarial drug policy change is limited. Objectives To describe the (a role of researchers in producing evidence that influenced the Tanzanian government replace chloroquine (CQ with sulfadoxine-pyrimethamine (SP as the first-line drug and the challenges faced in convincing policy-makers, general practitioners, pharmaceutical industry and the general public on the need for change (b challenges ahead before a new drug combination treatment policy is introduced in Tanzania. Methods In-depth interviews were held with national-level policy-makers, malaria control programme managers, pharmaceutical officers, general medical practitioners, medical research library and publications officers, university academicians, heads of medical research institutions and district and regional medical officers. Additional data were obtained through a review of malaria drug policy documents and participant observations were also done. Results In year 2001, the Tanzanian Government officially changed its malaria treatment policy guidelines whereby CQ – the first-line drug for a long time was replaced with SP. This policy decision was supported by research evidence indicating parasite resistance to CQ and clinical CQ treatment failure rates to have reached intolerable levels as compared to SP and amodiaquine (AQ. Research also indicated that since SP was also facing

  15. SMS for Life: a pilot project to improve anti-malarial drug supply management in rural Tanzania using standard technology

    Directory of Open Access Journals (Sweden)

    Mwafongo Winfred

    2010-10-01

    the potential to alleviate restricted availability of anti-malarial drugs or other medicines in rural or under-resourced areas.

  16. Analysis of the electrochemical reactivity of natural hemozoin and β-hemozoin in the presence of antimalarial drugs

    International Nuclear Information System (INIS)

    We report an evaluation of the reactivity of hemozoin (HZ) and β-hemozoin (β-HZ) obtained from the Triatoma Meccus longipennis, alone and in combination with quinine and amodiaquine. Using cyclic voltammetry and carbon paste electrodes, the redox processes that these compounds undergo were analysed. The results indicated that the atom Fe presence, the substance concentration, the drugs existence and the nature of the electrolytic medium are important in the redox processes. The strongest reactivity was for β-HZ from Triatoma, which suggests that cellular molecules are embedded in an oxidising environment due to the presence of β-HZ and indicates that like HZ, β-HZ could be associate with phospholipid bilayers and interfere with their physical and chemical integrity, contributing to membrane breakdown and hyper-oxidation of molecules. It was further observed that when measuring the reactivity of HZ and β-HZ with quinine and amodiaquine, a more oxidative stress was generated between the second one and the β-HZ, which could explain the effectiveness of amodiaquine as a better antimalarial drug. Finally, it was concluded that electrochemical evaluation may be a convenient tool in determining the efficiency of antimalarial drugs and the identification of their redox processes.

  17. An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery

    Science.gov (United States)

    Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G.; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C.; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G.; Beck, Hans-Peter; Meier, Wolfgang

    2016-08-01

    Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.Medical applications of anticancer and antimalarial drugs often suffer from low aqueous

  18. Drugs reverting multidrug resistance (chemosensitizers)

    Energy Technology Data Exchange (ETDEWEB)

    Gualtieri, F. [Florence Univ. (Italy). Dip. di Scienze Farmaceutiche

    1996-12-01

    Drug resistance is a phenomenon that frequently impairs proper treatment of cancer. Multidrug resistance (MDR) is a particular case of acquired drug resistance, resulting from overexpression of a protein (P-170) that functions as a pump, clearing cells from the chemotherapic. The P-170 protein functions can be inhibited by a variety of lipophilic drugs containing a hydrophilic nitrogen, protonated at physiological pH. A considerable effort is underway to identify new drugs able to reverse MDR. Few of these molecules are already undergoing clinical trials.

  19. Antimalarial qinghaosu/artemisinin: The therapy worthy of a Nobel Prize

    OpenAIRE

    Jerapan Krungkrai; Sudaratana Rochanakij Krungkrai

    2016-01-01

    Malaria is a major cause of human morbidity and mortality in the tropical endemic countries worldwide. This is largely due to the emergence and spread of resistance to most antimalarial drugs currently available. Based on the World Health Organization recommendation, artemisinin-based combination therapies are now used as first-line treatment for Plasmodium falciparum malaria. Artemisinin or qinghaosu (Chinese name) and its derivatives are highly potent, rapidly acting antimalarial drugs. Art...

  20. Dynamics of immune response and drug resistance in malaria infection

    Directory of Open Access Journals (Sweden)

    Gurarie David

    2006-10-01

    Full Text Available Abstract Background Malaria parasites that concurrently infect a host compete on the basis of their intrinsic growth rates and by stimulating cross-reactive immune responses that inhibit each others' growth. If the phenotypes also show different drug sensitivities ('sensitive' vs. 'resistant' strains, drug treatment can change their joint dynamics and the long-term outcome of the infection: most obviously, persistent drug pressure can permit the more resistant, but otherwise competitively-inferior, strains to dominate. Methods Here a mathematical model is developed to analyse how these and more subtle effects of antimalarial drug use are modulated by immune response, repeated re-inoculation of parasites, drug pharmacokinetic parameters, dose and treatment frequency. Results The model quantifies possible effects of single and multiple (periodic treatment on the outcome of parasite competition. In the absence of further inoculation, the dosage and/or treatment frequency required for complete clearance can be estimated. With persistent superinfection, time-average parasite densities can be derived in terms of the basic immune-regulating parameters, the drug efficacy and treatment regimen. Conclusion The functional relations in the model are applicable to a wide range of conditions and transmission environments, allowing predictions to be made on both the individual and the community levels, and, in particular, transitions from drug-sensitive to drug-resistant parasite dominance to be projected on both levels.

  1. Development of a transgenic Plasmodium berghei line (Pb pfpkg expressing the P. falciparum cGMP-dependent protein kinase, a novel antimalarial drug target.

    Directory of Open Access Journals (Sweden)

    Rita Tewari

    Full Text Available With the inevitable selection of resistance to antimalarial drugs in treated populations, there is a need for new medicines to enter the clinic and new targets to progress through the drug discovery pipeline. In this study we set out to develop a transgenic rodent model for testing inhibitors of the Plasmodium falciparum cyclic GMP-dependent kinase in vivo. A model was needed that would allow us to investigate whether differences in amino acid sequence of this enzyme between species influences in vivo efficacy. Here we report the successful development of a transgenic P. berghei line in which the cyclic GMP-dependent protein kinase (PKG was replaced by the P. falciparum orthologue. We demonstrate that the P. falciparum orthologue was able to functionally complement the endogenous P. berghei pkg gene throughout blood stage development and early sexual development. However, subsequent development in the mosquito was severely compromised. We show that this is due to a defect in the female lineage of the transgenic by using genetic crosses with both male and female deficient P. berghei lines. This defect could be due to expression of a female-specific target in the mosquito stages of P. berghei that cannot be phosphorylated by the P. falciparum kinase. Using a previously reported anti-coccidial inhibitor of the cyclic GMP-dependent protein kinase, we show no difference in in vivo efficacy between the transgenic and control P. berghei lines. This in vivo model will be useful for screening future generations of cyclic GMP-dependent protein kinase inhibitors and allowing us to overcome any species-specific differences in the enzyme primary sequence that would influence in vivo efficacy in the rodent model. The approach will also be applicable to in vivo testing of other antimalarial compounds where the target is known.

  2. In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids

    Directory of Open Access Journals (Sweden)

    Birgit Viira

    2016-06-01

    Full Text Available Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.

  3. Recent advances in novel heterocyclic scaffolds for the treatment of drug-resistant malaria.

    Science.gov (United States)

    Kumar, Sahil; Singh, Rajesh K; Patial, Babita; Goyal, Sachin; Bhardwaj, T R

    2016-01-01

    Malaria is a major public health problem all over the world, particularly in tropical and subtropical countries due to the development of resistance and most deadly infection is caused by Plasmodium falciparum. There is a direct need for the discovery of new drugs with unique structures and mechanism of action to treat sensitive and drug-resistant strains of various plasmodia for radical cure of this disease. Traditional compounds such as quinine and related derivatives represent a major source for the development of new drugs. This review presents recent modifications of 4-aminoquinoline and 8-aminoquinolone rings as leads to novel active molecules which are under clinical trials. The review also encompasses the other heterocyclic compounds emerged as potential antimalarial agents with promising results such as acridinediones and acridinone analogues, pyridines and quinolones as antimalarials. Miscellaneous heterocyclics such as tetroxane derivatives, indole derivatives, imidazolopiperazine derivatives, biscationic choline-based compounds and polymer-linked combined antimalarial drugs are also discussed. At last brief introduction to heterocyclics in natural products is also reviewed. Most of them have been under clinical trials and found to be promising in the treatment of drug-resistant strains of Plasmodium and others can be explored for the same purpose. PMID:25775094

  4. Evaluation of antimalarial activity of leaves of Acokanthera schimperi and Croton macrostachyus against Plasmodium berghei in Swiss albino mice

    OpenAIRE

    Mohammed, Tigist; Erko, Berhanu; Giday, Mirutse

    2014-01-01

    Background Malaria is one of the most important tropical diseases and the greatest cause of hospitalization and death. Recurring problems of drug resistance are reinforcing the need for finding new antimalarial drugs. In this respect, natural plant products are the main sources of biologically active compounds and have potential for the development of novel antimalarial drugs. A study was conducted to evaluate extracts of the leaves of Croton macrostachyus and Acokanthera schimperi for their ...

  5. Potential antimalarial activity of indole alkaloids

    OpenAIRE

    Frederich, Michel; Tits, Monique; Angenot, Luc

    2008-01-01

    New antimalarial treatments are now urgently required, following the emergence of resistance to the most used drugs. Natural products contribute greatly to the therapeutic arsenal in this area, including artemisinin and quinine (and atovaquone, semi-synthetic). Among the natural products, indole alkaloids represent an interesting class of compounds. Screening carried out to date has revealed several substances active in vitro under the micromolar range and with a good selectivity index. This ...

  6. Altered plasmodial surface anion channel activity and in vitro resistance to permeating antimalarial compounds

    OpenAIRE

    Lisk, Godfrey; Pain, Margaret; Sellers, Morgan; Gurnev, Philip A.; Pillai, Ajay D.; Bezrukov, Sergey M.; Desai, Sanjay A.

    2010-01-01

    Erythrocytes infected with malaria parasites have increased permeability to various solutes. These changes may be mediated by an unusual small conductance ion channel known as the plasmodial surface anion channel (PSAC). While channel activity benefits the parasite by permitting nutrient acquisition, it can also be detrimental because water-soluble antimalarials may more readily access their parasite targets via this channel. Recently, two such toxins, blasticidin S and leupeptin, were used t...

  7. Population Genetics and Drug Resistance Markers: An Essential for Malaria Surveillance in Pakistan

    International Nuclear Information System (INIS)

    Plasmodium (P.) vivax is the prevalent malarial species accounting for 70% of malaria cases in Pakistan. However, baseline epidemiological data on P. vivax population structure and drug resistance are lacking from Pakistan. For population structure studies, molecular genetic markers, circumsporozoite protein (csp) and merozoite surface protein-1 (msp-1) are considered useful as these play an important role in P. vivax survival under immune and environmental pressure. Furthermore, these genes have also been identified as suitable candidates for vaccine development. While efforts for effective vaccine are underway, anti-malarial agents remain the mainstay for control. Evidence of resistance against commonly used anti-malarial agents, particularly Sulphadoxine-Pyrimethamine (SP) is threatening to make this form of control defunct. Therefore, studies on drug resistance are necessary so that anti-malarial treatment strategies can be structured and implemented accordingly by the Malaria Control Program, Pakistan. This review aims to provide information on genetic markers of P. vivax population structure and drug resistance and comment on their usefulness in molecular surveillance and control. (author)

  8. Antimalarial Preclinical Drug Development: A Single Oral Dose of A 5-Carbon-linked Trioxane Dimer Plus Mefloquine Cures Malaria-Infected Mice.

    Science.gov (United States)

    Moon, Deuk Kyu; Singhal, Vandana; Kumar, Nirbhay; Shapiro, Theresa A; Posner, Gary H

    2009-01-01

    Three new 5-carbon-linked trioxane dimer carboxylate esters have been prepared from the natural trioxane, artemisinin in only 3-steps and 40-50% overall yields. Each one of these new chemical entities is at least as efficacious as the clinically used trioxane antimalarial drug artemether when combined with mefloquine hydrochloride in a low single oral dose cure. PMID:20686674

  9. Cost-effectiveness study of three antimalarial drug combinations in Tanzania.

    Directory of Open Access Journals (Sweden)

    Virginia Wiseman

    2006-10-01

    Full Text Available BACKGROUND: As a result of rising levels of drug resistance to conventional monotherapy, the World Health Organization (WHO and other international organisations have recommended that malaria endemic countries move to combination therapy, ideally with artemisinin-based combinations (ACTs. Cost is a major barrier to deployment. There is little evidence from field trials on the cost-effectiveness of these new combinations. METHODS AND FINDINGS: An economic evaluation of drug combinations was designed around a randomised effectiveness trial of combinations recommended by the WHO, used to treat Tanzanian children with non-severe slide-proven malaria. Drug combinations were: amodiaquine (AQ, AQ with sulfadoxine-pyrimethamine (AQ+SP, AQ with artesunate (AQ+AS, and artemether-lumefantrine (AL in a six-dose regimen. Effectiveness was measured in terms of resource savings and cases of malaria averted (based on parasitological failure rates at days 14 and 28. All costs to providers and to patients and their families were estimated and uncertain variables were subjected to univariate sensitivity analysis. Incremental analysis comparing each combination to monotherapy (AQ revealed that from a societal perspective AL was most cost-effective at day 14. At day 28 the difference between AL and AQ+AS was negligible; both resulted in a gross savings of approximately US1.70 dollars or a net saving of US22.40 dollars per case averted. Varying the accuracy of diagnosis and the subsistence wage rate used to value unpaid work had a significant effect on the number of cases averted and on programme costs, respectively, but this did not change the finding that AL and AQ+AS dominate monotherapy. CONCLUSIONS: In an area of high drug resistance, there is evidence that AL and AQ+AS are the most cost-effective drugs despite being the most expensive, because they are significantly more effective than other options and therefore reduce the need for further treatment. This is

  10. Antimicrobial (Drug) Resistance: Gonorrhea

    Science.gov (United States)

    ... Marketing Share this: Main Content Area Multidrug-Resistant Neisseria gonorrhoeae (Gonorrhea) During the past 50 years, the use ... Gonorrhea is a sexually transmitted disease caused by Neisseria gonorrhoeae , a bacterium that can infect areas of the ...

  11. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter.

    Science.gov (United States)

    Petersen, Ines; Gabryszewski, Stanislaw J; Johnston, Geoffrey L; Dhingra, Satish K; Ecker, Andrea; Lewis, Rebecca E; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp P; Palatulan, Eugene; Johnson, David J; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M; Lanzer, Michael; Fidock, David A

    2015-07-01

    The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria. PMID:25898991

  12. Molecular characterisation of drug-resistant Plasmodium falciparum from Thailand

    Directory of Open Access Journals (Sweden)

    Gil José

    2002-10-01

    Full Text Available Abstract Background The increasing levels of Plasmodium falciparum resistance to chloroquine (CQ in Thailand have led to the use of alternative antimalarials, which are at present also becoming ineffective. In this context, any strategies that help improve the surveillance of drug resistance, become crucial in overcoming the problem. Methods In the present study, we have established the in vitro sensitivity to CQ, mefloquine (MF, quinine (QUIN and amodiaquine (AMQ of 52 P. falciparum isolates collected in Thailand, and assessed the prevalence of four putative genetic polymorphisms of drug resistance, pfcrt K76T, pfmdr1 N86Y, pfmdr1 D1042N and pfmdr1 Y1246D, by PCR-RFLP. Results The percentage of isolates resistant to CQ, MF, and AMQ was 96% (50/52, 62% (32/52, and 58% (18/31, respectively, while all parasites were found to be sensitive to QUIN. In addition, 41 (79% of the isolates assayed were resistant simultaneously to more than one drug; 25 to CQ and MF, 9 to CQ and AMQ, and 7 to all three drugs, CQ, MF and AMQ. There were two significant associations between drug sensitivity and presence of particular molecular markers, i CQ resistance / pfcrt 76T (P = 0.001, and ii MF resistance / pfmdr1 86N (P Conclusions i In Thailand, the high levels of CQ pressure have led to strong selection of the pfcrt 76T polymorphism and ii pfmdr1 86N appears to be a good predictor of in vitro MF resistance.

  13. In vitro antimalarial activity of different extracts of Eremostachys macrophylla Montbr. & Auch.

    OpenAIRE

    Solmaz Asnaashari; Fariba Heshmati Afshar; Atefeh Ebrahimi; Sedigheh Bamdad Moghaddam; Abbas Delazar

    2015-01-01

    Introduction: The risk of drug resistance and the use of medicinal plants in malaria prevention and treatment have led to the search for new antimalarial compounds with natural origin. Methods: In the current study, six extracts with different polarity from aerial parts and rhizomes of Eremostachys macrophylla Montbr. & Auch., were screened for their antimalarial properties by cell-free beta-hematin formation assay. Results: Dichloromethane (DCM) extracts of both parts of plant showed s...

  14. Mind the gaps - the epidemiology of poor-quality anti-malarials in the malarious world - analysis of the WorldWide Antimalarial Resistance Network database

    OpenAIRE

    Tabernero, Patricia; Facundo M Fernández; Green, Michael; Guerin, Philippe J; Newton, Paul N.

    2014-01-01

    Background Poor quality medicines threaten the lives of millions of patients and are alarmingly common in many parts of the world. Nevertheless, the global extent of the problem remains unknown. Accurate estimates of the epidemiology of poor quality medicines are sparse and are influenced by sampling methodology and diverse chemical analysis techniques. In order to understand the existing data, the Antimalarial Quality Scientific Group at WWARN built a comprehensive, open-access, global datab...

  15. Drug Resistance in Leishmaniasis

    OpenAIRE

    Croft, Simon L.; Sundar, Shyam; Fairlamb, Alan H.

    2006-01-01

    Leishmaniasis is a complex disease, with visceral and cutaneous manifestations, and is caused by over 15 different species of the protozoan parasite genus Leishmania. There are significant differences in the sensitivity of these species both to the standard drugs, for example, pentavalent antimonials and miltefosine, and those on clinical trial, for example, paromomycin. Over 60% of patients with visceral leishmaniasis in Bihar State, India, do not respond to treatment with pentavalent antimo...

  16. In vitro and in vivo anti-malarial activity of tigecycline, a glycylcycline antibiotic, in combination with chloroquine

    OpenAIRE

    Sahu, Rajnish; Walker, Larry A.; Tekwani, Babu L.

    2014-01-01

    Background Several antibiotics have shown promising anti-malarial effects and have been useful for malarial chemotherapy, particularly in combination with standard anti-malarial drugs. Tigecycline, a semi-synthetic derivative of minocycline with a unique and novel mechanism of action, is the first clinically available drug in a new class of glycylcycline antibiotics. Methods Tigecycline was tested in vitro against chloroquine (CQ)-sensitive (D6) and resistant strains (W2) of Plasmodium falcip...

  17. Antiviral Drug Resistance: Mechanisms and Clinical Implications

    OpenAIRE

    Strasfeld, Lynne; Chou, Sunwen

    2010-01-01

    Antiviral drug resistance is an increasing concern in immunocompromised patient populations, where ongoing viral replication and prolonged drug exposure lead to the selection of resistant strains. Rapid diagnosis of resistance can be made by associating characteristic viral mutations with resistance to various drugs as determined by phenotypic assays. Management of drug resistance includes optimization of host factors and drug delivery, selection of alternative therapies based on knowledge of...

  18. Extensively drug-resistant tuberculosis.

    Science.gov (United States)

    Jassal, Mandeep; Bishai, William R

    2009-01-01

    Extensively drug-resistant (XDR) tuberculosis is defined as disease caused by Mycobacterium tuberculosis with resistance to at least isoniazid and rifampicin, any fluoroquinolone, and at least one of three injectable second-line drugs (amikacin, capreomycin, or kanamycin). The definition has applicable clinical value and has allowed for more uniform surveillance in varied international settings. Recent surveillance data have indicated that the prevalence of tuberculosis drug resistance has risen to the highest rate ever recorded. The gold standard for drug-susceptibility testing has been the agar proportion method; however, this technique requires several weeks for results to be determined. More sensitive and specific diagnostic tests are still unavailable in resource-limited settings. Clinical manifestations, although variable in different settings and among different strains, have in general shown that XDR tuberculosis is associated with greater morbidity and mortality than non-XDR tuberculosis. The treatment of XDR tuberculosis should include agents to which the organism is susceptible, and should continue for a minimum of 18-24 months. However, treatment continues to be limited in tuberculosis-endemic countries largely because of weaknesses in national tuberculosis health-care models. The ultimate strategy to control drug-resistant tuberculosis is one that implements a comprehensive approach incorporating innovation from the political, social, economic, and scientific realms. PMID:18990610

  19. In vitro antimalarial activity of novel semisynthetic nocathiacin I antibiotics.

    Science.gov (United States)

    Sharma, Indu; Sullivan, Margery; McCutchan, Thomas F

    2015-01-01

    Presently, the arsenal of antimalarial drugs is limited and needs to be replenished. We evaluated the potential antimalarial activity of two water-soluble derivatives of nocathiacin (BMS461996 and BMS411886) against the asexual blood stages of Plasmodium falciparum. Nocathiacins are a thiazolyl peptide group of antibiotics, are structurally related to thiostrepton, have potent activity against a wide spectrum of multidrug-resistant Gram-positive bacteria, and inhibit protein synthesis. The in vitro growth inhibition assay was done using three laboratory strains of P. falciparum displaying various levels of chloroquine (CQ) susceptibility. Our results indicate that BMS461996 has potent antimalarial activity and inhibits parasite growth with mean 50% inhibitory concentrations (IC50s) of 51.55 nM for P. falciparum 3D7 (CQ susceptible), 85.67 nM for P. falciparum Dd2 (accelerated resistance to multiple drugs [ARMD]), and 99.44 nM for P. falciparum K1 (resistant to CQ, pyrimethamine, and sulfadoxine). Similar results at approximately 7-fold higher IC50s were obtained with BMS411886 than with BMS461996. We also tested the effect of BMS491996 on gametocytes; our results show that at a 20-fold excess of the mean IC50, gametocytes were deformed with a pyknotic nucleus and growth of stage I to IV gametocytes was arrested. This preliminary study shows a significant potential for nocathiacin analogues to be developed as antimalarial drug candidates and to warrant further investigation. PMID:25779576

  20. Five-year surveillance of molecular markers of Plasmodium falciparum antimalarial drug resistance in Korogwe District, Tanzania: accumulation of the 581G mutation in the P. falciparum dihydropteroate synthase gene

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Lusingu, John P; Mmbando, Bruno;

    2009-01-01

    In January 2007, Tanzania replaced sulfadoxine-pyrimethamine (SP) with artemether-lumefantrine for treatment of uncomplicated malaria. This study examined the impact of widespread SP use on molecular markers of Plasmodium falciparum drug resistance in blood samples from persons living in two...... contrast, the chloroquine-sensitive P. falciparum chloroquine resistance transporter (Pfcrt) CVMNK haplotype increased from 6% to 30% (P < 0.001). The dramatic increase of the triple Pfdhps mutant SGEGA haplotype may endanger the continued use of SP for intermittent presumptive treatment of pregnant women...

  1. The anti-malarial drug Mefloquine disrupts central autonomic and respiratory control in the working heart brainstem preparation of the rat

    Directory of Open Access Journals (Sweden)

    Lall Varinder K

    2012-12-01

    Full Text Available Abstract Background Mefloquine is an anti-malarial drug that can have neurological side effects. This study examines how mefloquine (MF influences central nervous control of autonomic and respiratory systems using the arterially perfused working heart brainstem preparation (WHBP of the rat. Recordings of nerve activity were made from the thoracic sympathetic chain and phrenic nerve, while heart rate (HR and perfusion pressure were also monitored in the arterially perfused, decerebrate, rat WHBP. MF was added to the perfusate at 1 μM to examine its effects on baseline parameters as well as baroreceptor and chemoreceptor reflexes. Results MF caused a significant, atropine resistant, bradycardia and increased phrenic nerve discharge frequency. Chemoreceptor mediated sympathoexcitation (elicited by addition of 0.1 ml of 0.03% sodium cyanide to the aortic cannula was significantly attenuated by the application of MF to the perfusate. Furthermore MF significantly decreased rate of return to resting HR following chemoreceptor induced bradycardia. An increase in respiratory frequency and attenuated respiratory-related sympathetic nerve discharge during chemoreceptor stimulation was also elicited with MF compared to control. However, MF did not significantly alter baroreceptor reflex sensitivity. Conclusions These studies indicate that in the WHBP, MF causes profound alterations in autonomic and respiratory control. The possibility that these effects may be mediated through actions on connexin 36 containing gap junctions in central neurones controlling sympathetic nervous outflow is discussed.

  2. Otimização do processo de extração e isolamento do antimalárico artemisinina a partir de Artemisia annua L. Optimization of the extraction and isolation of the antimalarial drug artemisinin from Artemisia annua L.

    Directory of Open Access Journals (Sweden)

    Rodney Alexandre Ferreira Rodrigues

    2006-04-01

    Full Text Available Malaria is still one of the major diseases in the world, causing physical and economic problems in tropical regions. Artemisinin (Qinghaosu, a natural compound identified in Artemisia annua L. , is an effective drug mainly against cerebral malaria. The action of this drug is immediate and parasitaemia in the treatment of drug-resistant malaria is rapidily reduced, justifying the industrial production of artemisinin. This article focuses on the industrial production of this potent antimalarial drug, including strategies for enhancing yield using inexpensive and easy steps.

  3. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs

    Directory of Open Access Journals (Sweden)

    Natalie Jane Spillman

    2015-12-01

    Full Text Available The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na+ concentration and the plasma membrane P-type cation translocating ATPase ‘PfATP4’ has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's ‘Malaria Box’. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na+. Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field.

  4. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs.

    Science.gov (United States)

    Spillman, Natalie Jane; Kirk, Kiaran

    2015-12-01

    The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na(+) concentration and the plasma membrane P-type cation translocating ATPase 'PfATP4' has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's 'Malaria Box'. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na(+). Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin) has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field. PMID:26401486

  5. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs

    Science.gov (United States)

    Spillman, Natalie Jane; Kirk, Kiaran

    2015-01-01

    The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na+ concentration and the plasma membrane P-type cation translocating ATPase ‘PfATP4’ has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's ‘Malaria Box’. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na+. Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin) has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field. PMID:26401486

  6. [Historical overview of antimalarials used in Venezuela].

    Science.gov (United States)

    Zerpa de Artiles, N

    1993-06-01

    A historical review of antimalarials used in Venezuela is presented from the time when the bark of quina was used until the massive distribution of quinine and metoquine by the Dirección de Malariología y Saneamiento Ambiental. The utility of chloroquine and primaquine against sensible parasite isolates and of sulfadoxine-pyrimethamine and quinine, currently used against P. falciparum resistant strains, is thoroughly discussed. The author suggests use of artemisimine and its derivatives as a very promising antimalarial drug. She also stresses the possibility of the application of new antimalaria vaccine against P. falciparum blood states, presently assayed in the country as an additional tool in malaria control programs. PMID:11640680

  7. Use of the atmospheric generators for capnophilic bacteria Genbag-CO2 for the evaluation of in vitro Plasmodium falciparum susceptibility to standard anti-malarial drugs

    OpenAIRE

    Travers Dominique; Amalvict Rémy; Baret Eric; Basco Leonardo K; Pascual Aurélie; Rogier Christophe; Pradines Bruno

    2011-01-01

    Abstract Background The aim of this study was to evaluate the cultivation system in which the proper atmospheric conditions for growing Plasmodium falciparum parasites were maintained in a sealed bag. The Genbag® system associated with the atmospheric generators for capnophilic bacteria Genbag CO2® was used for in vitro susceptibility test of nine standard anti-malarial drugs and compared to standard incubator conditions. Methods The susceptibility of 36 pre-identified parasite strains from a...

  8. Saleability of anti-malarials in private drug shops in Muheza, Tanzania: a baseline study in an era of assumed artemisinin combination therapy (ACT)

    OpenAIRE

    Ringsted Frank M; Massawe Isolide S; Lemnge Martha M; Bygbjerg Ib C

    2011-01-01

    Abstract Background Artemether-lumefantrine (ALu) replaced sulphadoxine-pymimethamine (SP) as the official first-line anti-malarial in Tanzania in November 2006. So far, artemisinin combination therapy (ACT) is contra-indicated during pregnancy by the national malaria treatment guidelines, and pregnant women depend on SP for Intermittent Preventive Treatment (IPTp) during pregnancy. SP is still being dispensed by private drug stores, but it is unknown to which extent. If significant, it may u...

  9. Artemisinin combination therapies price disparity between government and private health sectors and its implication on antimalarial drug consumption pattern in Morogoro Urban District, Tanzania

    Directory of Open Access Journals (Sweden)

    Malisa Allen

    2012-03-01

    Full Text Available Abstract Background Universal access to effective treatments is a goal of the Roll Back Malaria Partnership. However, despite official commitments and substantial increases in financing, this objective remains elusive, as development assistance continue to be routed largely through government channels, leaving the much needed highly effective treatments inaccessible or unaffordable to those seeking services in the private sector. Methods To quantify the effect of price disparity between the government and private health systems, this study have audited 92 government and private Drug Selling Units (DSUs in Morogoro urban district in Tanzania to determine the levels, trend and consumption pattern of antimalarial drugs in the two health systems. A combination of observation, interviews and questionnaire administered to the service providers of the randomly selected DSUs were used to collect data. Results ALU was the most selling antimalarial drug in the government health system at a subsidized price of 300 TShs (0.18 US$. By contrast, ALU that was available in the private sector (coartem was being sold at a price of about 10,000 TShs (5.9 US$, the price that was by far unaffordable, prompting people to resort to cheap but failed drugs. As a result, metakelfin (the phased out drug was the most selling drug in the private health system at a price ranging from 500 to 2,000 TShs (0.29–1.18 US$. Conclusions In order for the prompt diagnosis and treatment with effective drugs intervention to have big impact on malaria in mostly low socioeconomic malaria-endemic areas of Africa, inequities in affordability and access to effective treatment must be eliminated. For this to be ensued, subsidized drugs should be made available in both government and private health sectors to promote a universal access to effective safe and affordable life saving antimalarial drugs.

  10. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs

    OpenAIRE

    Natalie Jane Spillman; Kiaran Kirk

    2015-01-01

    The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na+ concentration and the plasma membrane P-type cation translocating ATPase ‘PfATP4’ has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antim...

  11. Drug resistance in Giardia duodenalis.

    Science.gov (United States)

    Ansell, Brendan R E; McConville, Malcolm J; Ma'ayeh, Showgy Y; Dagley, Michael J; Gasser, Robin B; Svärd, Staffan G; Jex, Aaron R

    2015-11-01

    Giardia duodenalis is a microaerophilic parasite of the human gastrointestinal tract and a major contributor to diarrheal and post-infectious chronic gastrointestinal disease world-wide. Treatment of G. duodenalis infection currently relies on a small number of drug classes. Nitroheterocyclics, in particular metronidazole, have represented the front line treatment for the last 40 years. Nitroheterocyclic-resistant G. duodenalis have been isolated from patients and created in vitro, prompting considerable research into the biomolecular mechanisms of resistance. These compounds are redox-active and are believed to damage proteins and DNA after being activated by oxidoreductase enzymes in metabolically active cells. In this review, we explore the molecular phenotypes of nitroheterocyclic-resistant G. duodenalis described to date in the context of the protist's unusual glycolytic and antioxidant systems. We propose that resistance mechanisms are likely to extend well beyond currently described resistance-associated enzymes (i.e., pyruvate ferredoxin oxidoreductases and nitroreductases), to include NAD(P)H- and flavin-generating pathways, and possibly redox-sensitive epigenetic regulation. Mechanisms that allow G. duodenalis to tolerate oxidative stress may lead to resistance against both oxygen and nitroheterocyclics, with implications for clinical control. The present review highlights the potential for systems biology tools and advanced bioinformatics to further investigate the multifaceted mechanisms of nitroheterocyclic resistance in this important pathogen. PMID:25922317

  12. Antimalarial Activity of Azadipeptide Nitriles

    OpenAIRE

    Löser, Reik; Gut, Jiri; Rosenthal, Philip J.; Frizler, Maxim; Gütschow, Michael; Andrews, Katherine T.

    2009-01-01

    Azadipeptide nitriles – novel cysteine protease inhibitors – display structure-dependent antimalarial activity against both chloroquine-sensitive and chloroquine-resistant lines of cultured Plasmodium falciparum malaria parasites. Inhibition of parasite’s haemoglobin-degrading cysteine proteases was also investigated, revealing the azadipeptide nitriles as potent inhibitors of falcipain-2 and -3. A correlation between the cysteine protease-inhibiting activity and the antimalarial potential of...

  13. Fluoxetine hydrochloride enhances in vitro susceptibility to chloroquine in resistant Plasmodium falciparum.

    OpenAIRE

    Gerena, L.; Bass, G T; Kyle, D. E.; Oduola, A M; Milhous, W K; Martin, R K

    1992-01-01

    The emergence of chloroquine resistance in Plasmodium falciparum has necessitated the development of alternate strategies for chemotherapy and chemoprophylaxis. One approach has been the identification of drugs that do not possess any intrinsic antimalarial activity when used alone but that potentiate the effect of currently available antimalarial drugs, such as chloroquine. We identified fluoxetine hydrochloride (Prozac), a commonly prescribed antidepressant, as another resistance modulator ...

  14. Pharmacokinetics of a Novel Sublingual Spray Formulation of the Antimalarial Drug Artemether in African Children with Malaria

    Science.gov (United States)

    Salman, Sam; Bendel, Daryl; Lee, Toong C.; Templeton, David

    2015-01-01

    The pharmacokinetics of sublingual artemether (ArTiMist) was investigated in 91 young African children with severe malaria or who could not tolerate oral antimalarial therapy. Each received 3.0 mg/kg of body weight of artemether at 0, 8, 24, 36, 48, and 60 h or until the initiation of oral treatment. Few blood samples were drawn postdose. Plasma artemether and dihydroartemisinin (DHA) levels were measured using liquid chromatography-mass spectrometry, and the data were analyzed using established population compartmental pharmacokinetic models. Parasite clearance was prompt (median parasite clearance time, 24 h), and there were no serious adverse events. Consistent with studies in healthy adults (S. Salman, D. Bendel, T. C. Lee, D. Templeton, and T. M. E. Davis, Antimicrob Agents Chemother 59:3197–3207, 2015, http://dx.doi.org/10.1128/AAC.05013-14), the absorption of sublingual artemether was biphasic, and multiple dosing was associated with the autoinduction of the metabolism of artemether to DHA (which itself has potent antimalarial activity). In contrast to studies using healthy volunteers, pharmacokinetic modeling indicated that the first absorption phase did not avoid first-pass metabolism, suggesting that the drug is transferred to the upper intestine through postdose fluid/food intake. Simulations using the present data and those from an earlier study in older Melanesian children with uncomplicated malaria treated with artemether-lumefantrine tablets suggested that the bioavailability of sublingual artemether was at least equivalent to that after conventional oral artemether-lumefantrine (median [interquartile range] areas under the concentration-time curve for artemether, 3,403 [2,471 to 4,771] versus 3,063 [2,358 to 4,514] μg · h/liter, respectively; and for DHA, 2,958 [2,146 to 4,278] versus 2,839 [1,812 to 3,488] μg · h/liter, respectively; P ≥ 0.42). These findings suggest that sublingual artemether could be used as prereferral treatment for sick

  15. Computation-based virtual screening for designing novel antimalarial drugs by targeting falcipain-III: A structure-based drug designing approach

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar Kesharwani

    2013-04-01

    Full Text Available Background & objectives: Cysteine proteases (falcipains, a papain-family of enzymes of Plasmodium falciparum, are responsible for haemoglobin degradation and thus necessary for its survival during asexual life cycle phase inside the human red blood cells while remaining non-functional for the human body. Therefore, these can act as potential targets for designing antimalarial drugs. The P. falciparum cysteine proteases, falcipain-II and falcipain- III are the enzymes which initiate the haemoglobin degradation, therefore, have been selected as targets. In the present study, we have designed new leupeptin analogues and subjected to virtual screening using Glide at the active site cavity of falcipain-II and falcipain-III to select the best docked analogues on the basis of Glide score and also compare with the result of AutoDock. The proposed analogues can be synthesized and tested in vivo as future potent antimalarial drugs. Methods: Protein falcipain-II and falcipain-III together with bounds inhibitors epoxysuccinate E64 (E64 and leupeptin respectively were retrieved from protein data bank (PDB and latter leupeptin was used as lead molecule to design new analogues by using Ligbuilder software and refined the molecules on the basis of Lipinski rule of five and fitness score parameters. All the designed leupeptin analogues were screened via docking simulation at the active site cavity of falcipain-II and falcipain-III by using Glide software and AutoDock. Results: The 104 new leupeptin-based antimalarial ligands were designed using structure-based drug designing approach with the help of Ligbuilder and subjected for virtual screening via docking simulation method against falcipain-II and falcipain-III receptor proteins. The Glide docking results suggest that the ligands namely result_037 shows good binding and other two, result_044 and result_042 show nearly similar binding than naturally occurring PDB bound ligand E64 against falcipain-II and in

  16. In Vitro Resistance Selections for Plasmodium falciparum Dihydroorotate Dehydrogenase Inhibitors Give Mutants with Multiple Point Mutations in the Drug-binding Site and Altered Growth*

    OpenAIRE

    Ross, Leila S.; Gamo, Francisco Javier; Lafuente-Monasterio, Maria José; Singh, Onkar M. P.; Rowland, Paul; Wiegand, Roger C.; Wirth, Dyann F

    2014-01-01

    Malaria is a preventable and treatable disease; yet half of the world's population lives at risk of infection, and an estimated 660,000 people die of malaria-related causes every year. Rising drug resistance threatens to make malaria untreatable, necessitating both the discovery of new antimalarial agents and the development of strategies to identify and suppress the emergence and spread of drug resistance. We focused on in-development dihydroorotate dehydrogenase (DHODH) inhibitors. Characte...

  17. Multiple Drugs Compete for Transport via the Plasmodium falciparum Chloroquine Resistance Transporter at Distinct but Interdependent Sites*

    OpenAIRE

    Bellanca, Sebastiano; Summers, Robert L.; Meyrath, Max; Dave, Anurag; Nash, Megan N.; Dittmer, Martin; Sanchez, Cecilia P.; Stein, Wilfred D; Martin, Rowena E.; Lanzer, Michael

    2014-01-01

    Mutations in the “chloroquine resistance transporter” (PfCRT) are a major determinant of drug resistance in the malaria parasite Plasmodium falciparum. We have previously shown that mutant PfCRT transports the antimalarial drug chloroquine away from its target, whereas the wild-type form of PfCRT does not. However, little is understood about the transport of other drugs via PfCRT or the mechanism by which PfCRT recognizes different substrates. Here we show that mutant PfCRT also transports qu...

  18. The interaction of x-rays and antimalarials

    International Nuclear Information System (INIS)

    Full text: The radiation sensitivity of malaria parasites has three potential clinical applications, namely i) to prevent the transmission of malaria by blood transfusion, ii) as adjunctive therapy when a radioactive isotope is complexed to a conventional antimalarial drug, and iii) to attenuate the pathogenicity of specific parasite stages as part of the development of a vaccine. In the first two applications, detailed information relating to parasite radiosensitivity and the interaction of ionising radiation with antimalarials is of vital importance because dosimetry must allow for the exposure of normal cells. Malaria parasite cultures (Plasmodium falciparum) were exposed to a logarithmic series of concentrations of antimalarial agents and irradiated using a Siemens Stabilipan orthovoltage radiotherapy unit. The irradiation was performed at room temperature and ambient oxygen concentration. Control samples were also irradiated. The DNA synthesis in each culture was measured 48 hours post irradiation by using a 3H-hypoxanthine incorporation assay. The antimalarials studied are: artesunate, quinine, retinol and chloroquine. The radiosensitivity of Plasmodium falciparum is not dependent on the strain of parasite with the dose required to inhibit 50% of DNA synthesis (ID50) equal to 24.7 ± 3.0 Gy. This applies equally for the drug resistant and drug sensitive strains studied. Because the measured radiosensitivity is dependent on the sera oxygen concentration, the reported value for the ID50 may not apply in hypoxic situations. The interaction of ionising radiation with the antimalarials shows synergy with retinol and choloquine, additivity with quinine and slight antagonism with artesunate. Radionuclide therapy may emerge as a novel treatment for malaria. If this does occur, then, although all strains appear to be equally radiosensitive, care must be taken when combining ionising radiation with existing antimalarials for the treatment of malaria. Copyright (2001

  19. Assessment of the efficacy of first-line antimalarial drugs after 5 years of deployment by the National Malaria Control Programme in Côte d'Ivoire

    Directory of Open Access Journals (Sweden)

    Offianan AT

    2011-11-01

    Full Text Available Andre T Offianan1, Serge B Assi2, Aristide MA Coulibaly1, Landry T N'guessan1, Aristide A Ako1, Florence K Kadjo2, Moïse K San2, Louis K Penali2 1Malariology Department, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire; 2National Malaria Control Programme, Abidjan, Côte d'Ivoire Background: The emergence of artemisinin resistance has raised concerns that the most potent antimalarial drug may be under threat. Artesunate + amodiaquine (ASAQ and artemether-lumefantrine (AL are respectively the first- and second-line treatments for uncomplicated falciparum malaria in Côte d'Ivoire. A comparison of the efficacy and safety of these two drug combinations was necessary to make evidence-based drug treatment policies. Methods: In an open-label, non inferiority, randomized, controlled clinical trial, children aged 6–59 months were randomized to receive ASAQ or AL. Both drug regimens were given for 3 days, and follow-up was for 28 days. The primary endpoint was the 28-day cure rates and was defined as proportion of patients with polymerase chain reaction (PCR-corrected cure rate after 28 days of follow-up. Findings: A total of 251 patients who were attending the Ayame and Dabakala hospitals and presenting with symptomatic acute uncomplicated falciparum malaria were randomized to receive ASAQ (128 and AL (123. The intention-to-treat analysis showed effectiveness rates of 94.5% and 93.5% for ASAQ and AL, respectively on day 28. After adjustment for PCR results, these rates were 96.1% and 96.8%, respectively. On day 28, the per-protocol analysis showed effectiveness rates of 98.4% and 96.6% for ASAQ and AL, respectively. After adjustment by PCR for reinfection, these rates were 100% for each drug, and both regimens were well tolerated. Conclusion: ASAQ and AL remain efficacious treatments of uncomplicated falciparum malaria in Ivorian children 5 years after adoption. The efficacy of ASAQ and AL in Côte d'Ivoire requires, therefore, continuous

  20. Structural mapping of the ClpB ATPases of Plasmodium falciparum: Targeting protein folding and secretion for antimalarial drug design.

    Science.gov (United States)

    AhYoung, Andrew P; Koehl, Antoine; Cascio, Duilio; Egea, Pascal F

    2015-09-01

    Caseinolytic chaperones and proteases (Clp) belong to the AAA+ protein superfamily and are part of the protein quality control machinery in cells. The eukaryotic parasite Plasmodium falciparum, the causative agent of malaria, has evolved an elaborate network of Clp proteins including two distinct ClpB ATPases. ClpB1 and ClpB2 are involved in different aspects of parasitic proteostasis. ClpB1 is present in the apicoplast, a parasite-specific and plastid-like organelle hosting various metabolic pathways necessary for parasite growth. ClpB2 localizes to the parasitophorous vacuole membrane where it drives protein export as core subunit of a parasite-derived protein secretion complex, the Plasmodium Translocon of Exported proteins (PTEX); this process is central to parasite virulence and survival in the human host. The functional associations of these two chaperones with parasite-specific metabolism and protein secretion make them prime drug targets. ClpB proteins function as unfoldases and disaggregases and share a common architecture consisting of four domains-a variable N-terminal domain that binds different protein substrates, followed by two highly conserved catalytic ATPase domains, and a C-terminal domain. Here, we report and compare the first crystal structures of the N terminal domains of ClpB1 and ClpB2 from Plasmodium and analyze their molecular surfaces. Solution scattering analysis of the N domain of ClpB2 shows that the average solution conformation is similar to the crystalline structure. These structures represent the first step towards the characterization of these two malarial chaperones and the reconstitution of the entire PTEX to aid structure-based design of novel anti-malarial drugs. PMID:26130467

  1. Stability-indicating HPLC-DAD/UV-ESI/MS impurity profiling of the anti-malarial drug lumefantrine

    Directory of Open Access Journals (Sweden)

    Duchateau Luc

    2011-02-01

    Full Text Available Abstract Background Lumefantrine (benflumetol is a fluorene derivative belonging to the aryl amino alcohol class of anti-malarial drugs and is commercially available in fixed combination products with β-artemether. Impurity characterization of such drugs, which are widely consumed in tropical countries for malaria control programmes, is of paramount importance. However, until now, no exhaustive impurity profile of lumefantrine has been established, encompassing process-related and degradation impurities in active pharmaceutical ingredients (APIs and finished pharmaceutical products (FPPs. Methods Using HPLC-DAD/UV-ESI/ion trap/MS, a comprehensive impurity profile was established based upon analysis of market samples as well as stress, accelerated and long-term stability results. In-silico toxicological predictions for these lumefantrine related impurities were made using Toxtree® and Derek®. Results Several new impurities are identified, of which the desbenzylketo derivative (DBK is proposed as a new specified degradant. DBK and the remaining unspecified lumefantrine related impurities are predicted, using Toxtree® and Derek®, to have a toxicity risk comparable to the toxicity risk of the API lumefantrine itself. Conclusions From unstressed, stressed and accelerated stability samples of lumefantrine API and FPPs, nine compounds were detected and characterized to be lumefantrine related impurities. One new lumefantrine related compound, DBK, was identified and characterized as a specified degradation impurity of lumefantrine in real market samples (FPPs. The in-silico toxicological investigation (Toxtree® and Derek® indicated overall a toxicity risk for lumefantrine related impurities comparable to that of the API lumefantrine itself.

  2. Potential impact of intermittent preventive treatment (IPT on spread of drug-resistant malaria.

    Directory of Open Access Journals (Sweden)

    Wendy Prudhomme O'Meara

    2006-05-01

    Full Text Available BACKGROUND: Treatment of asymptomatic individuals, regardless of their malaria infection status, with regularly spaced therapeutic doses of antimalarial drugs has been proposed as a method for reducing malaria morbidity and mortality. This strategy, called intermittent preventive treatment (IPT, is currently employed for pregnant women and is being studied for infants (IPTi as well. As with any drug-based intervention strategy, it is important to understand how implementation may affect the spread of drug-resistant parasites. This is a difficult issue to address experimentally because of the limited size and duration of IPTi trials as well as the intractability of distinguishing the spread of resistance due to conventional treatment of malaria episodes versus that due to IPTi when the same drug is used in both contexts. METHODS AND FINDINGS: Using a mathematical model, we evaluated the possible impact of treating individuals with antimalarial drugs at regular intervals regardless of their infection status. We translated individual treatment strategies and drug pharmacokinetics into parasite population dynamic effects and show that immunity, treatment rate, drug decay kinetics, and presumptive treatment rate are important factors in the spread of drug-resistant parasites. Our model predicts that partially resistant parasites are more likely to spread in low-transmission areas, but fully resistant parasites are more likely to spread under conditions of high transmission, which is consistent with some epidemiological observations. We were also able to distinguish between spread of resistance due to treatment of symptomatic infections and that due to IPTi. We showed that IPTi could accelerate the spread of resistant parasites, but this effect was only likely to be significant in areas of low or unstable transmission. CONCLUSIONS: The results presented here demonstrate the importance of considering both the half-life of a drug and the existing level

  3. Improving pharmacokinetic-pharmacodynamic modeling to investigate anti-infective chemotherapy with application to the current generation of antimalarial drugs.

    Directory of Open Access Journals (Sweden)

    Katherine Kay

    Full Text Available Mechanism-based pharmacokinetic-pharmacodynamic (PK/PD modelling is the standard computational technique for simulating drug treatment of infectious diseases with the potential to enhance our understanding of drug treatment outcomes, drug deployment strategies, and dosing regimens. Standard methodologies assume only a single drug is used, it acts only in its unconverted form, and that oral drugs are instantaneously absorbed across the gut wall to their site of action. For drugs with short half-lives, this absorption period accounts for a significant period of their time in the body. Treatment of infectious diseases often uses combination therapies, so we refined and substantially extended the PK/PD methodologies to incorporate (i time lags and drug concentration profiles resulting from absorption across the gut wall and, if required, conversion to another active form; (ii multiple drugs within a treatment combination; (iii differing modes of action of drugs in the combination: additive, synergistic, antagonistic; (iv drugs converted to an active metabolite with a similar mode of action. This methodology was applied to a case study of two first-line malaria treatments based on artemisinin combination therapies (ACTs, artemether-lumefantrine and artesunate-mefloquine where the likelihood of increased artemisinin tolerance/resistance has led to speculation on their continued long-term effectiveness. We note previous estimates of artemisinin kill rate were underestimated by a factor of seven, both the unconverted and converted form of the artemisinins kill parasites and the extended PK/PD methodology produced results consistent with field observations. The simulations predict that a potentially rapid decline in ACT effectiveness is likely to occur as artemisinin resistance spreads, emphasising the importance of containing the spread of artemisinin resistance before it results in widespread drug failure. We found that PK/PD data is generally very

  4. Modelling the impact of intermittent preventive treatment for malaria on selection pressure for drug resistance

    Directory of Open Access Journals (Sweden)

    Cissé Badara

    2007-01-01

    Full Text Available Abstract Background Intermittent preventive treatment (IPT is a promising intervention for malaria control, although there are concerns about its impact on drug resistance. Methods The key model inputs are age-specific values for a baseline anti-malarial dosing rate, b parasite prevalence, and c proportion of those treated with anti-malarials (outside IPT who are infected. These are used to estimate the immediate effect of IPT on the genetic coefficient of selection (s. The scenarios modelled were year round IPT to infants in rural southern Tanzania, and three doses at monthly intervals of seasonal IPT in Senegal. Results In the simulated Tanzanian setting, the model suggests a high selection pressure for drug resistance, but that IPTi would only increase this by a small amount (4.4%. The percent change in s is larger if parasites are more concentrated in infants, or if baseline drug dosing is less common or less specific. If children aged up to five years are included in the Tanzanian scenario then the predicted increase in s rises to 31%. The Senegalese seasonal IPT scenario, in children up to five years, results in a predicted increase in s of 16%. Conclusion There is a risk that the useful life of drugs will be shortened if IPT is implemented over a wide childhood age range. On the other hand, IPT delivered only to infants is unlikely to appreciably shorten the useful life of the drug used.

  5. Adverse drug events resulting from use of drugs with sulphonamide-containing anti-malarials and artemisinin-based ingredients: findings on incidence and household costs from three districts with routine demographic surveillance systems in rural Tanzania

    OpenAIRE

    Njau, JD; Kabanywanyi, AM; Goodman, CA; Macarthur, JR; Kapella, BK; Gimnig, JE; Kahigwa, E.; Bloland, PB; Abdulla, SM; Kachur, SP

    2013-01-01

    Background: Anti-malarial regimens containing sulphonamide or artemisinin ingredients are widely used in malaria-endemic countries. However, evidence of the incidence of adverse drug reactions (ADR) to these drugs is limited, especially in Africa, and there is a complete absence of information on the economic burden such ADR place on patients. This study aimed to document ADR incidence and associated household costs in three high malaria transmission districts in rural Tanzania covered by dem...

  6. Antimalarial qinghaosu/artemisinin: The therapy worthy of a Nobel Prize

    Directory of Open Access Journals (Sweden)

    Jerapan Krungkrai

    2016-05-01

    Full Text Available Malaria is a major cause of human morbidity and mortality in the tropical endemic countries worldwide. This is largely due to the emergence and spread of resistance to most antimalarial drugs currently available. Based on the World Health Organization recommendation, artemisinin-based combination therapies are now used as first-line treatment for Plasmodium falciparum malaria. Artemisinin or qinghaosu (Chinese name and its derivatives are highly potent, rapidly acting antimalarial drugs. Artemisinin was discovered in 1971 by a Chinese medical scientist Youyou Tu, who was awarded the Nobel Prize in 2015 on her discovering the antimalarial properties of qinghaosu from the traditional Chinese qinghao plant. Nevertheless, artemisinin resistance in falciparum malaria patients has first emerged on the Thai-Cambodian border in 2009, which is now prevalent across mainland Southeast Asia from Vietnam to Myanmar. Here, we reviewed malaria disease severity, history of artemisinin discovery, chemical structure, mechanism of drug action, artemisinin-based combination therapies, emergence and spread of drug resistance, including the recent findings on mechanism of resistance in the falciparum malaria parasite. This poses a serious threat to global malaria control and prompts renewed efforts for the urgent development of new antimalarial drugs.

  7. Antimalarial qinghaosu/artemisinin:The therapy worthy of a Nobel Prize

    Institute of Scientific and Technical Information of China (English)

    Jerapan Krungkrai

    2016-01-01

    Malaria is a major cause of human morbidity and mortality in the tropical endemic countries worldwide. This is largely due to the emergence and spread of resistance to most antimalarial drugs currently available. Based on the World Health Organization recommendation, artemisinin-based combination therapies are now used as first-line treatment for Plasmodium falciparum malaria. Artemisinin or qinghaosu (Chinese name) and its derivatives are highly potent, rapidly acting antimalarial drugs. Artemisinin was discovered in 1971 by a Chinese medical scientist Youyou Tu, who was awarded the Nobel Prize in 2015 on her discovering the antimalarial properties of qinghaosu from the traditional Chinese qinghao plant. Nevertheless, artemisinin resistance in falciparum malaria patients has first emerged on the Thai-Cambodian border in 2009, which is now prevalent across mainland Southeast Asia from Vietnam to Myanmar. Here, we reviewed malaria disease severity, history of artemisinin discovery, chemical structure, mechanism of drug action, artemisinin-based combination therapies, emergence and spread of drug resistance, including the recent findings on mechanism of resistance in the falciparum malaria parasite. This poses a serious threat to global malaria control and prompts renewed efforts for the urgent development of new antimalarial drugs.

  8. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement.

    Science.gov (United States)

    Shen, Shuo; Liu, Shu-Zhi; Zhang, Yu-Shi; Du, Mao-Bo; Liang, Ai-Hua; Song, Li-Hua; Ye, Zu-Guang

    2015-01-01

    Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem-ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data obtained in this study showed that the application of ethosomal technology to antimalarial cataplasm could improve the transdermal delivery of drug, enhance the efficacy, and facilitate practical application in clinic. PMID:26170661

  9. Identification of the Schistosoma mansoni Molecular Target for the Antimalarial Drug Artemether

    KAUST Repository

    Lepore, Rosalba

    2011-11-28

    Plasmodium falciparum and Schistosoma mansonii are the parasites responsible for most of the malaria and schistosomiasis cases in the world. Notwithstanding their many differences, the two agents have striking similarities in that they both are blood feeders and are targets of an overlapping set of drugs, including the well-known artemether molecule. Here we explore the possibility of using the known information about the mode of action of artemether in Plasmodium to identify the molecular target of the drug in Schistosoma and provide evidence that artemether binds to SmSERCA, a putative Ca2+-ATPase of Schistosoma. We also predict the putative binding mode of the molecule for both its Plasmodium and Schistosoma targets. Our analysis of the mode of binding of artemether to Ca2+-ATPases also provides an explanation for the apparent paradox that, although the molecule has no side effect in humans, it has been shown to possess antitumoral activity. © 2011 American Chemical Society.

  10. Prescription pattern of anti-malarial drugs in a tertiary care hospital

    Institute of Scientific and Technical Information of China (English)

    Santoshkumar R Jeevangi; Manjunath S; Sharanabasappa M Awanti

    2010-01-01

    Objective:To evaluate the prescribing pattern of anti malarial drugs in a tertiary care hospital. Methods:A prospective cross-sectional study was conducted for 6 months of patients visiting in Basaveshwar Teaching and General Hospital, Gulbarga. Data were analyzed for various drug use indicators. Results: A total of 212 prescriptions were collected, with 136 (64.15%) male and 76 (35.85%) female. There were 128 (60.37%) Plasmodium vivax cases and 84 (39.63%) Plasmodium falciparum cases. All Plasmodium vivax cases were treated with chloroquine alone and among these 16 (12.5%) recieved radical treatment with primaquine along with chloroquine. Among 84 patients with Pasmodium falciparum, 40 patients received single drug such as quinine/mefloquinine/artesunate/arteether. Another 44 patients received multidrug regime like, quinine+artesunate (54.54%), quinine+mefloquine (27.27%) and quinine+arteether (18.18%). Chloroquine was not administered to any of the patients with Plasmodium falciparum malaria. The most common adverse effects with chloroquine were anorexia, nausea, vomiting and tinnitus in 9.37%of the cases. With quinine it was nausea and vomiting in 17.64%, tinnitus in 11.76%and hypoglycemia in 2.1%of cases. Conclusions: Our study found the perennial favorites like chloroquine for Plasmodium vivax and quinine for Plasmodium falciparum were the most effective drug. In the severe Plasmodium falciparum cases the artesunate derivatives and combination of artesunate with quinine/mefloquine were most effective with fewer incidences of side effects.

  11. Estimating antimalarial drugs consumption in Africa before the switch to artemisinin-based combination therapies (ACTs

    Directory of Open Access Journals (Sweden)

    Vreeke Ed

    2007-07-01

    Full Text Available Abstract Background Having reliable forecasts is critical now for producers, malaria-endemic countries and agencies in order to adapt production and procurement of the artemisinin-based combination treatments (ACTs, the new first-line treatments of malaria. There is no ideal method to quantify drug requirements for malaria. Morbidity data give uncertain estimations. This study uses drug consumption to provide elements to help estimate quantities and financial requirements of ACTs. Methods The consumption of chloroquine, sulphadoxine/pyrimethamine and quinine both through the private and public sector was assessed in five sub-Saharan Africa countries with different epidemiological patterns (Senegal, Rwanda, Tanzania, Malawi, Zimbabwe. From these data the number of adult treatments per capita was calculated and the volumes and financial implications derived for the whole of Africa. Results Identifying and obtaining data from the private sector was difficult. The quality of information on drug supply and distribution in countries must be improved. The number of adult treatments per capita and per year in the five countries ranged from 0.18 to 0.50. Current adult treatment prices for ACTs range US$ 1–1.8. Taking the upper range for both volumes and costs, the highest number of adult treatments consumed for Africa was estimated at 314.5 million, corresponding to an overall maximum annual need for financing ACT procurement of US$ 566.1 million. In reality, both the number of cases treated and the cost of treatment are likely to be lower (projections for the lowest consumption estimate with the least expensive ACT would require US $ 113 million per annum. There were substantial variations in the market share between public and private sources among these countries (the public sector share ranging from 98% in Rwanda to 33% in Tanzania. Conclusion Additional studies are required to build a more robust methodology, and to assess current consumptions

  12. Factors related to compliance to anti-malarial drug combination: example of amodiaquine/sulphadoxine-pyrimethamine among children in rural Senegal

    Directory of Open Access Journals (Sweden)

    Sow Diarietou

    2009-06-01

    Full Text Available Abstract Background The introduction of new anti-malarial treatment that is effective, but more expensive, raises questions about whether the high level of effectiveness observed in clinical trials can be found in a context of family use. The objective of this study was to determine the factors related to adherence, when using the amodiaquine/sulphadoxine-pyrimethamine (AQ/SP association, a transitory strategy before ACT implementation in Senegal. Methods The study was conducted in five rural dispensaries. Children, between two and 10 years of age, who presented mild malaria were recruited at the time of the consultation and were prescribed AQ/SP. The child's primary caretaker was questioned at home on D3 about treatment compliance and factors that could have influenced his or her adherence to treatment. A logistic regression model was used for the analyses. Results The study sample included 289 children. The adherence rate was 64.7%. Two risks factors for non-adherence were identified: the children's age (8–10 years (ORa = 3.07 [1.49–6.29]; p = 0.004; and the profession of the head of household (retailer/employee versus farmer (ORa = 2.71 [1.34–5.48]; p = 0.006. Previously seeking care (ORa = 0.28 [0.105–0.736], p=0.001] satisfaction with received information (ORa = 0.45 [0.24–0.84]; p = 0.013, and the quality of history taking (ORa = 0.38 [0.21–0.69]; p = 0.001 were significantly associated with good compliance. Conclusion The results of the study show the importance of information and communication between caregivers and health center staff. The experience gained from this therapeutic transition emphasizes the importance of information given to the patients at the time of the consultation and drug delivery in order to improve drug use and thus prevent the emergence of rapid drug resistance.

  13. Drug-resistant tuberculosis in Sindh

    International Nuclear Information System (INIS)

    Objective: To assess the prevalence of primary and secondary drug resistance amongst the clinical isolates of M.tuberculosis, to identify risk factors and how to overcome this problem. Design: A case series of 50 indoor patients with sputum smear-positive pulmonary tuberculosis. Place and duration of Study: Department of Medicine, Liaquat University of Medical and Health Sciences Jamshoro, Sindh, (Pakistan) from January 1999 to December 2000. Patients and methods: Four first line anti-tuberculous drugs rifampicine, ethambutol and streptomycin were tested for sensitivity pattern. Results: Twelve (26.66%) were sensitive to all four drugs, 12(26.66%) were resistant to one drug, 14 (31.11%) were resistant to two drugs, 2 (4.44%) were resistant to three drugs, and 5(11.11%) were resistant to all four drugs. Resistance to isoniazid was the most common in 27 cases (60%) with primary resistance in 6(13.33%) and secondary resistance in 21(46.66%), followed by resistance to streptomycin in 17 cases (37.77%) with primary resistance in 5(11.11%) and secondary resistance in 12 (26.66%). Resistance to ethambutol in 10 cases (22.22%) and rifampicine in 11 (24.44%) and all cases were secondary. Similarly multi-drugs resistance (MRD) TB was found in 11(24.44%) isolates. Conclusion: This study showed high prevalence of drug resistance among clinical isolates of M. tuberculosis. Their is a need to establish centers at number of places with adequate facilities for susceptibility testing so that the resistant pattern could be ascertained and treatment regimens tailored accordingly. (author)

  14. Drug-Resistant Tuberculosis: Challenges and Progress.

    Science.gov (United States)

    Kurz, Sebastian G; Furin, Jennifer J; Bark, Charles M

    2016-06-01

    Antimicrobial resistance is a natural evolutionary process, which in the case of Mycobacterium tuberculosis is based on spontaneous chromosomal mutations, meaning that well-designed combination drug regimens provided under supervised therapy will prevent the emergence of drug-resistant strains. Unfortunately, limited resources, poverty, and neglect have led to the emergence of drug-resistant tuberculosis throughout the world. The international community has responded with financial and scientific support, leading to new rapid diagnostics, new drugs and regimens in advanced clinical development, and an increasingly sophisticated understanding of resistance mechanisms and their application to all aspects of TB control and treatment. PMID:27208770

  15. Effect of antimalarial drug primaquine and its derivatives on the ionization potential of hemoglobin: A QM/MM study

    OpenAIRE

    Liu, Haining; Ding, Yuanqing; Walker, Larry A.; Doerksen, Robert J

    2013-01-01

    We used quantum mechanics/molecular mechanics calculations to test if antimalarial primaquine (PQ) and its derivatives aid the conversion of hemoglobin to methemoglobin by binding to hemoglobin and merely lowering hemoglobin’s ionization potential (IP). Our results showed that PQ and its derivatives do not significantly lower the hemoglobin IP, disproving the hypothesis.

  16. Prevalence of molecular markers of Plasmodium falciparum drug resistance in Dakar, Senegal

    Directory of Open Access Journals (Sweden)

    Wurtz Nathalie

    2012-06-01

    Full Text Available Abstract Background As a result of the widespread resistance to chloroquine and sulphadoxine-pyrimethamine, artemisinin-based combination therapy (ACT (including artemether-lumefantrine and artesunate-amodiaquine has been recommended as a first-line anti-malarial regimen in Senegal since 2006. Intermittent preventive treatments with anti-malarial drugs based on sulphadoxine-pyrimethamine are also given to children or pregnant women once per month during the transmission season. Since 2006, there have been very few reports on the susceptibility of Plasmodium falciparum to anti-malarial drugs. To estimate the prevalence of resistance to several anti-malarial drugs since the introduction of the widespread use of ACT, the presence of molecular markers associated with resistance to chloroquine and sulphadoxine-pyrimethamine was assessed in local isolates at the military hospital of Dakar. Methods The prevalence of genetic polymorphisms in genes associated with anti-malarial drug resistance, i.e., Pfcrt, Pfdhfr, Pfdhps and Pfmdr1, and the copy number of Pfmdr1 were evaluated for a panel of 174 isolates collected from patients recruited at the military hospital of Dakar from 14 October 2009 to 19 January 2010. Results The Pfcrt 76T mutation was identified in 37.2% of the samples. The Pfmdr1 86Y and 184F mutations were found in 16.6% and 67.6% of the tested samples, respectively. Twenty-eight of the 29 isolates with the 86Y mutation were also mutated at codon 184. Only one isolate (0.6% had two copies of Pfmdr1. The Pfdhfr 108N/T, 51I and 59R mutations were identified in 82.4%, 83.5% and 74.1% of the samples, respectively. The double mutant (108N and 51I was detected in 83.5% of the isolates, and the triple mutant (108N, 51I and 59R was detected in 75.3%. The Pfdhps 437G, 436F/A and 613S mutations were found in 40.2%, 35.1% and 1.8% of the samples, respectively. There was no double mutant (437G and 540E or no quintuple mutant (Pfdhfr 108N, 51I and 59R

  17. A Chemical Proteomics Approach for the Search of Pharmacological Targets of the Antimalarial Clinical Candidate Albitiazolium in Plasmodium falciparum Using Photocrosslinking and Click Chemistry

    OpenAIRE

    Diana Marcela Penarete-Vargas; Anaïs Boisson; Serge Urbach; Hervé Chantelauze; Suzanne Peyrottes; Laurent Fraisse; Vial, Henri J

    2014-01-01

    Plasmodium falciparum is responsible for severe malaria which is one of the most prevalent and deadly infectious diseases in the world. The antimalarial therapeutic arsenal is hampered by the onset of resistance to all known pharmacological classes of compounds, so new drugs with novel mechanisms of action are critically needed. Albitiazolium is a clinical antimalarial candidate from a series of choline analogs designed to inhibit plasmodial phospholipid metabolism. Here we developed an origi...

  18. Overcoming drug resistance by regulating nuclear receptors

    OpenAIRE

    Chen, Taosheng

    2010-01-01

    Drug resistance involves multiple mechanisms. Multidrug resistance (MDR) is the leading cause of treatment failure in cancer therapy. Elevated levels of MDR proteins [members of the ATP-binding cassette (ABC) transporter family] increase cellular efflux and decrease the effectiveness of chemotherapeutic agents. As a salvage approach to overcome drug resistance, inhibitors of MDR proteins have been developed, but have had limited success mainly due to undesired toxicities. Nuclear receptors (N...

  19. Pharmacokinetics of a Novel Sublingual Spray Formulation of the Antimalarial Drug Artemether in African Children with Malaria

    OpenAIRE

    Salman, Sam; Bendel, Daryl; Lee, Toong C.; Templeton, David; Davis, Timothy M. E.

    2015-01-01

    The pharmacokinetics of sublingual artemether (ArTiMist) was investigated in 91 young African children with severe malaria or who could not tolerate oral antimalarial therapy. Each received 3.0 mg/kg of body weight of artemether at 0, 8, 24, 36, 48, and 60 h or until the initiation of oral treatment. Few blood samples were drawn postdose. Plasma artemether and dihydroartemisinin (DHA) levels were measured using liquid chromatography-mass spectrometry, and the data were analyzed using establis...

  20. Drug resistance pattern in multidrug resistance pulmonary tuberculosis patients

    International Nuclear Information System (INIS)

    To evaluate the frequency of drug resistance profiles of multidrug resistant tuberculosis (MDR-TB) isolates of pulmonary tuberculosis patients, against both the first and the second line drugs. Study Design: An observational study. Place and Duration of Study: The multidrug resistant tuberculosis (MDR-TB) ward of Ojha Institute of Chest Diseases (OICD), Karachi, from 1996 to 2006. Methodology: Culture proven MDR-TB cases (resistant to both isoniazid and Rifampicin) were retrospectively reviewed. Susceptibility testing was performed at the clinical laboratory of the Aga Khan University. Sensitivity against both first and second line anti-tuberculosis drugs was done. Susceptibility testing was performed using Agar proportion method on enriched middle brook 7H10 medium (BBL) for Rifampicin, Isoniazid, Streptomycin, Ethambutol, Ethionamide, Capreomycin and Ciprofloxacin. Pyrazinamide sensitivity was carried out using the BACTEC 7H12 medium. During the study period MTB H37Rv was used as control. Results: Out of total 577 patients, all were resistant to both Rifampicin and Isoniazid (INH). 56.5% isolates were resistant to all five first line drugs. Resistances against other first line drugs was 76.60% for Pyrazinamide, 73% for Ethambutol and 68.11% for Streptomycin. Five hundred and ten (88%) cases were MDR plus resistant to one more first line drug. Forty (07%) isolates were MDR plus Quinolone-resistant. They were sensitive to Capreomycin but sensitivity against Amikacin and Kanamycin were not tested. Conclusion: There were high resistance rates in MDR-TB to remaining first line and second line drugs. Continuous monitoring of drug resistance pattern especially of MDR isolates and treatment in specialized centers is a crucial need for future TB control in Pakistan. (author)

  1. Case management of malaria fever in Cambodia: results from national anti-malarial outlet and household surveys

    Directory of Open Access Journals (Sweden)

    Littrell Megan

    2011-10-01

    Full Text Available Abstract Background Continued progress towards global reduction in morbidity and mortality due to malaria requires scale-up of effective case management with artemisinin-combination therapy (ACT. The first case of artemisinin resistance in Plasmodium falciparum was documented in western Cambodia. Spread of artemisinin resistance would threaten recent gains in global malaria control. As such, the anti-malarial market and malaria case management practices in Cambodia have global significance. Methods Nationally-representative household and outlet surveys were conducted in 2009 among areas in Cambodia with malaria risk. An anti-malarial audit was conducted among all public and private outlets with the potential to sell anti-malarials. Indicators on availability, price and relative volumes sold/distributed were calculated across types of anti-malarials and outlets. The household survey collected information about management of recent "malaria fevers." Case management in the public versus private sector, and anti-malarial treatment based on malaria diagnostic testing were examined. Results Most public outlets (85% and nearly half of private pharmacies, clinics and drug stores stock ACT. Oral artemisinin monotherapy was found in pharmacies/clinics (9%, drug stores (14%, mobile providers (4% and grocery stores (2%. Among total anti-malarial volumes sold/distributed nationally, 6% are artemisinin monotherapies and 72% are ACT. Only 45% of people with recent "malaria fever" reportedly receive a diagnostic test, and the most common treatment acquired is a drug cocktail containing no identifiable anti-malarial. A self-reported positive diagnostic test, particularly when received in the public sector, improves likelihood of receiving anti-malarial treatment. Nonetheless, anti-malarial treatment of reportedly positive cases is low among people who seek treatment exclusively in the public (61% and private (42% sectors. Conclusions While data on the anti-malarial

  2. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection

    DEFF Research Database (Denmark)

    Chen, M; Theander, T G; Christensen, S B;

    1994-01-01

    Licochalcone A, isolated from Chinese licorice roots, inhibited the in vitro growth of both chloroquine-susceptible (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum strains in a [3H]hypoxanthine uptake assay. The growth inhibition of the chloroquine-resistant strain by licochalcone A was...... licochalcone A exhibits potent antimalarial activity and might be developed into a new antimalarial drug....

  3. Chemotherapy and drug resistance status of malaria parasite in northeast India

    Institute of Scientific and Technical Information of China (English)

    Diganta Goswami; Indra Baruah; Sunil Dhiman; Bipul Rabha; Vijay Veer; Lokendra Singh; Dhirendra Kumar Sharma

    2013-01-01

    India reports the highest number of malaria cases in Southeast Asia, of which Plasmodiumfalciparum contribute more than half of the cases every year. North eastern states of India contribute only 3.96% of country’s population but account for >10% of total reported malaria cases, 11% of Plasmodium falciparum cases and 20% of malaria related deaths annually. In India, chloroquine resistance was reported for the first time from northeast region and since then chloroquine treatment failure is being reported from many parts of the region. Increased chloroquine treatment failure has led to change of the drug policy to artemisinin combination therapy as first line of malaria treatment in the region. However, replacing chloroquine to artemisinin combination therapy has not shown significant difference in the overall malaria incidence in the region. The present review addresses the current malaria situation of northeastern region of India in the light of antimalarials drug resistance.

  4. The role of glucuronidation in drug resistance.

    Science.gov (United States)

    Mazerska, Zofia; Mróz, Anna; Pawłowska, Monika; Augustin, Ewa

    2016-03-01

    The final therapeutic effect of a drug candidate, which is directed to a specific molecular target strongly depends on its absorption, distribution, metabolism and excretion (ADME). The disruption of at least one element of ADME may result in serious drug resistance. In this work we described the role of one element of this resistance: phase II metabolism with UDP-glucuronosyltransferases (UGTs). UGT function is the transformation of their substrates into more polar metabolites, which are better substrates for the ABC transporters, MDR1, MRP and BCRP, than the native drug. UGT-mediated drug resistance can be associated with (i) inherent overexpression of the enzyme, named intrinsic drug resistance or (ii) induced expression of the enzyme, named acquired drug resistance observed when enzyme expression is induced by the drug or other factors, as food-derived compounds. Very often this induction occurs via ligand binding receptors including AhR (aryl hydrocarbon receptor) PXR (pregnane X receptor), or other transcription factors. The effect of UGT dependent resistance is strengthened by coordinate action and also a coordinate regulation of the expression of UGTs and ABC transporters. This coupling of UGT and multidrug resistance proteins has been intensively studied, particularly in the case of antitumor treatment, when this resistance is "improved" by differences in UGT expression between tumor and healthy tissue. Multidrug resistance coordinated with glucuronidation has also been described here for drugs used in the management of epilepsy, psychiatric diseases, HIV infections, hypertension and hypercholesterolemia. Proposals to reverse UGT-mediated drug resistance should consider the endogenous functions of UGT. PMID:26808161

  5. High School Students Are a Target Group for Fight against Self-Medication with Antimalarial Drugs: A Pilot Study in University of Kinshasa, Democratic Republic of Congo.

    Science.gov (United States)

    Kabongo Kamitalu, Ramsès; Aloni, Michel Ntetani

    2016-01-01

    Aim. To assess the self-medication against malaria infection in population of Congolese students in Kinshasa, Democratic Republic of Congo (DRC). Methods. A cross-sectional study was carried out in University of Kinshasa, Kinshasa, Democratic Republic of Congo. Medical records of all students with malaria admitted to Centre de Santé Universitaire of University of Kinshasa from January 1, 2008, to April 30, 2008, were reviewed retrospectively. Results. The median age of the patients was 25.4 years (range: from 18 to 36 years). The majority of them were male (67.9%). Artemisinin-based combination treatments (ACTs) was the most used self-prescribed antimalarial drugs. However, self-medication was associated with the ingestion of quinine in 19.9% of cases. No case of ingestion of artesunate/artemether in monotherapy was found. All the medicines taken were registered in DRC. In this series, self-prescribed antimalarial was very irrational in terms of dose and duration of treatment. Conclusion. This paper highlights self-medication by a group who should be aware of malaria treatment protocols. The level of self-prescribing quinine is relatively high among students and is disturbing for a molecule reserved for severe disease in Congolese health care policy in management of malaria. PMID:27340411

  6. Multidrug resistant to extensively drug resistant tuberculosis: What is next?

    Indian Academy of Sciences (India)

    Amita Jain; Pratima Dixit

    2008-11-01

    Drug resistant tuberculosis is a man made problem. While tuberculosis is hundred percent curable, multidrug resistant tuberculosis (MDR-TB) is difficult to treat. Inadequate and incomplete treatment and poor treatment adherence has led to a newer form of drug resistance known as extensively drug resistant tuberculosis (XDR-TB). XDR-TB is defined as tuberculosis caused by Mycobacterium tuberculosis strain, which is resistant to at least rifampicin and isoniazid among the first line anti tubercular drugs (MDR-TB) in addition to resistance to any fluroquinolones and at least one of three injectable second line anti tubercular drugs i.e. amikacin, kanamycin and/or capreomycin. Mismanagement of tuberculosis paves the way to drug resistant tuberculosis. Emergence of XDR-TB is reported world wide. Reported prevalence rates of XDR-TB of total MDR cases are; 6.6% overall worldwide, 6.5% in industrialized countries, 13.6% in Russia and Eastern Europe, 1.5% in Asia, 0.6% in Africa and Middle East and 15.4% in Republic of Korea. Better management and control of tuberculosis specially drug resistant TB by experienced and qualified doctors, access to standard microbiology laboratory, co-morbitidy of HIV and tuberculosis, new anti-TB drug regimens, better diagnostic tests, international standards for second line drugs (SLD)-susceptibility testing, invention of newer anti-tubercular molecules and vaccines and knowing the real magnitude of XDR-TB are some of the important issues to be addressed for effective prevention and management of XDR-TB.

  7. Emerging pathogens: Dynamics, mutation and drug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Perelson, A.S.; Goldstein, B.; Korber, B.T. [and others

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were to develop models of the spread of pathogens, such as HIV-1 and influenza, in humans, and then to use the models to address the possibility of designing appropriate drug therapies that may limit the ability of the pathogen to escape treatment by mutating into a drug resistant form. We have developed a model of drug-resistance to amantidine and rimantadine, the two major antiviral drugs used to treat influenza, and have used the model to suggest treatment strategies during an epidemic.

  8. In vitro activity of artemether against African isolates (Senegal) of Plasmodium falciparum in comparison with standard antimalarial drugs

    OpenAIRE

    Pradines, B; Rogier, C.; Fusai, T; Tall, A; Trape, Jean-François; Doury, J C

    1998-01-01

    The in vitro activity of artemether against 56 African isolates of #Plasmodium falciparum$ from Senegal was evaluated using an isotope-based drug susceptibility semi-microtest. The 50% inhibitory concentration (IC50) values for artemether were in narrow range from 0.8 to 15.2 nM (mean IC50 = 3.43 nM) and the 95% confidence interval (CI) was 2.50-4.36 nM. Artemether was equally effective on chloroquine-sensitive and chloroquine-resistant isolates (mean IC50 = 346 nM, 95% CI = 2.08-4.84 nM vers...

  9. Facing multi-drug resistant tuberculosis.

    Science.gov (United States)

    Sotgiu, Giovanni; Migliori, Giovanni Battista

    2015-06-01

    Multi-drug resistant tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis strains resistant to at least two of the most effective anti-tuberculosis drugs (i.e., isoniazid and rifampicin). Therapeutic regimens based on second- and third-line anti-tuberculosis medicines showed poor efficacy, safety, and tolerability profiles. It was estimated that in 2012 the multi-drug resistant tuberculosis incidence ranged from 300,000 to 600,000 cases, mainly diagnosed in the Eastern European and Central Asian countries. The highest proportion of cases is among individuals previously exposed to anti-tuberculosis drugs. Three main conditions can favour the emergence and spread of multi-drug resistant tuberculosis: the poor implementation of the DOTS strategy, the shortage or the poor quality of the anti-tuberculosis drugs, and the poor therapeutic adherence of the patients to the prescribed regimens. Consultation with tuberculosis experts (e.g., consilium) is crucial to tailor the best anti-tuberculosis therapy. New therapeutic options are necessary: bedaquiline and delamanid seem promising drugs; in particular, during the development phase they demonstrated a protective effect against the emergence of further resistances towards the backbone drugs. In the recent past, other antibiotics have been administered off-label: the most relevant efficacy, safety, and tolerability profile was proved in linezolid-, meropenem/clavulanate-, cotrimoxazole-containing regimens. New research and development activities are needed in the diagnostic, therapeutic, preventive fields. PMID:24792579

  10. Absence of Association between Polymorphisms in the RING E3 Ubiquitin Protein Ligase Gene and Ex Vivo Susceptibility to Conventional Antimalarial Drugs in Plasmodium falciparum Isolates from Dakar, Senegal.

    Science.gov (United States)

    Gendrot, Mathieu; Fall, Bécaye; Madamet, Marylin; Fall, Mansour; Wade, Khalifa Ababacar; Amalvict, Rémy; Nakoulima, Aminata; Benoit, Nicolas; Diawara, Silman; Diémé, Yaya; Diatta, Bakary; Wade, Boubacar; Pradines, Bruno

    2016-08-01

    The RING E3 ubiquitin protein ligase is crucial for facilitating the transfer of ubiquitin. The only polymorphism identified in the E3 ubiquitin protein ligase gene was the D113N mutation (62.5%) but was not significantly associated with the 50% inhibitory concentration (IC50) of conventional antimalarial drugs. However, some mutated isolates (D113N) present a trend of reduced susceptibility to piperaquine (P = 0.0938). To evaluate the association of D113N polymorphism with susceptibility to antimalarials, more isolates are necessary. PMID:27185795

  11. Mapping the genome of Plasmodium falciparum on the drug-like chemical space reveals novel anti-malarial targets and potential drug leads

    DEFF Research Database (Denmark)

    Jensen, Kasper; Plichta, Damian Rafal; Panagiotou, Gianni;

    2012-01-01

    The parasite Plasmodium falciparum is the main agent responsible for malaria. In this study, we exploited a recently published chemical library from GlaxoSmithKline (GSK) that had previously been confirmed to inhibit parasite growth of the wild type (3D7) and the multi-drug resistance (D2d) strai...

  12. Combination therapy counteracts the enhanced transmission of drug-resistant malaria parasites to mosquitoes.

    Science.gov (United States)

    Hallett, Rachel L; Sutherland, Colin J; Alexander, Neal; Ord, Rosalynn; Jawara, Musa; Drakeley, Chris J; Pinder, Margaret; Walraven, Gijs; Targett, Geoffrey A T; Alloueche, Ali

    2004-10-01

    Malaria parasites carrying genes conferring resistance to antimalarials are thought to have a selective advantage which leads to higher rates of transmissibility from the drug-treated host. This is a likely mechanism for the increasing prevalence of parasites with resistance to chloroquine (CQ) and sulfadoxine-pyrimethamine in sub-Saharan Africa. Combination therapy is the key strategy being implemented to reduce the impact of resistance, but its effect on the transmission of genetically resistant parasites from treated patients to mosquito vectors has not been measured directly. In a trial comparing CQ monotherapy to the combination CQ plus artesunate (AS) in Gambian children with uncomplicated falciparum malaria, we measured transmissibility by feeding Anopheles gambiae mosquitoes with blood from 43 gametocyte-positive patients through a membrane. In the CQ-treated group, gametocytes from patients carrying parasites with the CQ resistance-associated allele pfcrt-76T prior to treatment produced infected mosquitoes with 38 times higher Plasmodium falciparum oocyst burdens than mosquitoes fed on gametocytes from patients infected with sensitive parasites (P < 0.001). Gametocytes from parasites carrying the resistance-associated allele pfmdr1-86Y produced 14-fold higher oocyst burdens than gametocytes from patients infected with sensitive parasites (P = 0.011). However, parasites carrying either of these resistance-associated alleles pretreatment were not associated with higher mosquito oocyst burdens in the CQ-AS-treated group. Thus, combination therapy overcomes the transmission advantage enjoyed by drug-resistant parasites. PMID:15388456

  13. Neurostimulation for Drug-Resistant Epilepsy

    OpenAIRE

    DeGiorgio, Christopher M.; Krahl, Scott E.

    2013-01-01

    Purpose of Review: The purpose of this review is to provide an evidence-based update on the neurostimulation options available for patients with drug-resistant epilepsy in the United States and in European countries.

  14. A new double-antibody sandwich ELISA targeting Plasmodium falciparum aldolase to evaluate anti-malarial drug sensitivity

    Directory of Open Access Journals (Sweden)

    Brun Reto

    2009-10-01

    Full Text Available Abstract Background The standard in vitro test to assess anti-malarial activity of chemical compounds is the [3H]hypoxanthine incorporation assay. It is a radioactivity-based method to measure DNA replication of Plasmodium in red blood cells. The method is highly reproducible, however, the handling of radioactive material is costly, hazardous and requires the availability of appropriate technology and trained staff. Several other ways to evaluate in vitro anti-malarial activity do exist, all with their own assets and limitations. Methods The newly developed double-antibody sandwich ELISA described here is based on the properties of a non-overlapping pair of monoclonal antibodies directed against Plasmodium falciparum aldolase. This glycolytic enzyme possesses some unique nucleotide sequences compared to the human isoenzymes and has been highly conserved through evolution. Out of twenty possibilities, the most sensitive antibody pair was selected and used to quantitatively detect parasite aldolase in infected blood lysates. Results A total of 34 compounds with anti-malarial activity were tested side-by-side by ELISA and the [3H]hypoxanthine incorporation assay. The novel ELISA provided IC50s closely paralleling those from the radioactivity-based assay (R = 0.99, p Conclusion The newly developed ELISA presents several advantages over the comparative method, the [3H]hypoxanthine incorporation assay. The assay is highly reproducible, less hazardous (involves no radioactivity and requires little and cheap technical equipment. Relatively unskilled personnel can conduct this user-friendly assay. All this makes it attractive to be employed in resource-poor laboratories.

  15. Antimalarials and the fight against malaria in Brazil

    Directory of Open Access Journals (Sweden)

    Luiz MA Carmargo

    2009-04-01

    Full Text Available Luiz MA Carmargo1, Saulo de Oliveira2, Sergio Basano3, Célia RS Garcia21ICBV-USP, Monte Negro, Rondônia, Brasil; 2Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, SP, Brazil; 3CEMETRON, Porto Velho, Guaporé, BrazilAbstract: Malaria, known as the “fevers,” has been treated for over three thousand years in China with extracts of plants of the genus Artemisia (including Artemisia annua, A. opiacea, and A. lancea from which the active compound is artemisin, a sesquiterpene that is highly effective in the treatment of the disease, especially against young forms of the parasite. South American Indians in the seventeenth century already used an extract of the bark of chinchona tree, commonly named “Jesuits’ powder.” Its active compound was isolated in 1820 and its use spread all over the world being used as a prophylactic drug during the construction of the Madeira–Mamoré railroad in the beginning of the twentieth century. During the 1920s to the 1940s, new antimalarial drugs were synthesized to increase the arsenal against this parasite. However, the parasite has presented systematic resistence to conventional antimalarial drugs, driving researchers to find new strategies to treat the disease. In the present review we discuss how Brazil treats Plasmodium-infected patients.Keywords: Plasmodium falciparum, malaria, antimalarials, calcium

  16. Antiviral Drug Resistance of Human Cytomegalovirus

    OpenAIRE

    Lurain, Nell S.; Chou, Sunwen

    2010-01-01

    Summary: The study of human cytomegalovirus (HCMV) antiviral drug resistance has enhanced knowledge of the virological targets and the mechanisms of antiviral activity. The currently approved drugs, ganciclovir (GCV), foscarnet (FOS), and cidofovir (CDV), target the viral DNA polymerase. GCV anabolism also requires phosphorylation by the virus-encoded UL97 kinase. GCV resistance mutations have been identified in both genes, while FOS and CDV mutations occur only in the DNA polymerase gene. Co...

  17. Antifungal drugs and resistance: Current concepts

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Nigam

    2015-04-01

    Full Text Available Recently, clinical failure and relapses have been observed in patients treated with antifungals. Drug resistance has become an important problem leading to significant negative social, psychological, and occupational health effects and quality of life. Early recognition and treatment is essential to reduce morbidity and possibility of transmission. The increased use, inappropriate prescribing and over the counter sale of antifungal agents has also added in the development of resistance to these drugs. The main biochemical and molecular mechanisms that contribute to antifungal resistance include reduced uptake of the drug, an active transport out of the cell or modified drug metabolic degradation of the cell, changes in the interaction of the drug to the target site or other enzymes involved in the process by point mutations, overexpression of the target molecule, overproduction or mutation of the target enzyme, amplification and gene conversion (recombination, and increased cellular efflux and occurrence of biofilm. Although, there is considerable knowledge concerning the biochemical, genetic and clinical aspects of resistance to antifungal agents, expansion of our understanding of the mechanisms by which antifungal resistance emerges and spreads, quicker methods for the determination of resistance, targetting efflux pumps, especially ATP binding cassette (ABC transporters and heat shock protein 90, new drug delivery systems, optimizing therapy according to pharmacokinetic and pharmacodynamic characteristics, new classes of antifungal drugs that are active against azole-resistant isolates, and use of combinations of antifungal drugs or use of adjunctive immunostimulatory therapy and other modalities of treatment will clearly be important for future treatment strategies and in preventing development of resistance.

  18. Chemotherapy of Drug-Resistant Malaria

    OpenAIRE

    1996-01-01

    OBJECTIVE: To review the impact of drug-resistant malaria on current management of plasmodial infections.DATA SOURCES: A MEDLINE search of the English-language medical literature from 1985 to 1995; bibliographies of selected papers; international malaria advisory experts.DATA SYNTHESIS: Combinations of artemisinin derivatives and mefloquine or atovaquone plus proguanil appear to be the most active drug regimens against multidrug-resistant falciparum malaria from Southeast Asia. The optimal th...

  19. Emergence of Extensively Drug Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    2007-03-01

    Extensively drug-resistant tuberculosis (XDR TB) outbreaks have been reported in South Africa, and strains have been identified on 6 continents. Dr. Peter Cegielski, team leader for drug-resistant TB with the Division of Tuberculosis Elimination at CDC, comments on a multinational team's report on this emerging global public health threat.  Created: 3/1/2007 by Emerging Infectious Diseases.   Date Released: 3/26/2007.

  20. Molecular epidemiology of drug-resistant malaria in western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Menge David M

    2008-07-01

    Full Text Available Abstract Background Since the late 1980s a series of malaria epidemics has occurred in western Kenya highlands. Among the possible factors that may contribute to the highland malaria epidemics, parasite resistance to antimalarials has not been well investigated. Methods Using parasites from highland and lowland areas of western Kenya, we examined key mutations associated with Plasmodium falciparum resistance to sulfadoxine – pyrimethamine and chloroquine, including dihydrofolate reductase (pfdhfr and dihydropteroate synthetase (pfdhps, chloroquine resistance transporter gene (pfcrt, and multi-drug resistance gene 1 (pfmdr1. Results We found that >70% of samples harbored 76T pfcrt mutations and over 80% of samples harbored quintuple mutations (51I/59R/108N pfdhfr and 437G/540E pfdhps in both highland and lowland samples. Further, we did not detect significant difference in the frequencies of these mutations between symptomatic and asymptomatic malaria volunteers, and between highland and lowland samples. Conclusion These findings suggest that drug resistance of malaria parasites in the highlands could be contributed by the mutations and their high frequencies as found in the lowland. The results are discussed in terms of the role of drug resistance as a driving force for malaria outbreaks in the highlands.

  1. The ABCs of multidrug resistance in malaria.

    NARCIS (Netherlands)

    Koenderink, J.B.; Kavishe, R.A.; Rijpma, S.R.; Russel, F.G.M.

    2010-01-01

    Expanding drug resistance could become a major problem in malaria treatment, as only a limited number of effective antimalarials are available. Drug resistance has been associated with single nucleotide polymorphisms and an increased copy number of multidrug resistance protein 1 (MDR1), an ATP-bindi

  2. Host candidate gene polymorphisms and clearance of drug-resistant Plasmodium falciparum parasites

    Directory of Open Access Journals (Sweden)

    Rockett Kirk

    2011-08-01

    Full Text Available Abstract Background Resistance to anti-malarial drugs is a widespread problem for control programmes for this devastating disease. Molecular tests are available for many anti-malarial drugs and are useful tools for the surveillance of drug resistance. However, the correlation of treatment outcome and molecular tests with particular parasite markers is not perfect, due in part to individuals who are able to clear genotypically drug-resistant parasites. This study aimed to identify molecular markers in the human genome that correlate with the clearance of malaria parasites after drug treatment, despite the drug resistance profile of the protozoan as predicted by molecular approaches. Methods 3721 samples from five African countries, which were known to contain genotypically drug resistant parasites, were analysed. These parasites were collected from patients who subsequently failed to clear their infection following drug treatment, as expected, but also from patients who successfully cleared their infections with drug-resistant parasites. 67 human polymorphisms (SNPs on 17 chromosomes were analysed using Sequenom's mass spectrometry iPLEX gold platform, to identify regions of the human genome, which contribute to enhanced clearance of drug resistant parasites. Results An analysis of all data from the five countries revealed significant associations between the phenotype of ability to clear drug-resistant Plasmodium falciparum infection and human immune response loci common to all populations. Overall, three SNPs showed a significant association with clearance of drug-resistant parasites with odds ratios of 0.76 for SNP rs2706384 (95% CI 0.71-0.92, P = 0.005, 0.66 for SNP rs1805015 (95% CI 0.45-0.97, P = 0.03, and 0.67 for SNP rs1128127 (95% CI 0.45-0.99, P = 0.05, after adjustment for possible confounding factors. The first two SNPs (rs2706384 and rs1805015 are within loci involved in pro-inflammatory (interferon-gamma and anti-inflammatory (IL-4

  3. Drug resistance in Schistosomiasis: a review

    Directory of Open Access Journals (Sweden)

    John I. Bruce

    1987-01-01

    Full Text Available Drug resistance associated with the treatment of human schistosomiasis appears to be an emerging problem requiring more attention from the scientific community than the subject currently receives. Drug-resistant strains of Schistosoma mansoni have been isolated by various investigators as a result of laboratory experimentation or from a combination of field and laboratory studies. Review of this data appears to indicate that the lack of susceptibility observed for some of the isolated strains cannot be ascribed solely to previous administration of antischistosome drugs and thus further studies are required to elucidate this phenomena. Strains of S. mansoni have now been identified from Brazil which are resistant to oxamniquine, hycanthone and niridazole; from Puerto Rico which are resistant to hycanthone and oxamniquine; and from Kenya which are resistant to niridazole and probably oxamniquine. Strains derived by in vitro selection and resistant to oxamniquine and possibly to oltipraz are also available. All of these strains are currently maintained in the laboratory in snails and mice, thus providing for the first time an opportunity for indepth comparative studies. Preliminary data indicates that S. haematobium strains resistant to metrifonate may be occurring in Kenya. This problem could poise great difficulty in the eventual development of antischistosomal agents. Biomphalaria glabrata from Puerto Rico and Brazil were found to be susceptible to drug-resistant S. mansoni from each country.

  4. Drug Resistance Proteins and Refractory Epilepsy

    OpenAIRE

    J Gordon Millichap

    2002-01-01

    Expression of multi-drug resistance gene-1 P-glycoprotein (MDR1) and multidrug resistance-associated protein 1 (MRP1) in refractory epilepsy was studied at the Epilepsy Research Group, Institutes of Neurology and Child Health, University College, London, and Radcliffe Infirmary, Oxford, UK.

  5. Malaria Epidemic and Drug Resistance, Djibouti

    OpenAIRE

    Rogier, Christophe; Pradines, Bruno; H. Bogreau; Koeck, Jean-Louis; Kamil, Mohamed-Ali; Mercereau-Puijalon, Odile

    2005-01-01

    Analysis of Plasmodium falciparum isolates collected before, during, and after a 1999 malaria epidemic in Djibouti shows that, despite a high prevalence of resistance to chloroquine, the epidemic cannot be attributed to a sudden increase in drug resistance of local parasite populations.

  6. Assessment of Malaria In Vitro Drug Combination Screening and Mixed-Strain Infections Using the Malaria Sybr Green I-Based Fluorescence Assay▿

    OpenAIRE

    Co, Edgie-Mark A.; Dennull, Richard A.; Reinbold, Drew D.; Waters, Norman C; Johnson, Jacob D.

    2009-01-01

    Several drug development strategies, including optimization of new antimalarial drug combinations, have been used to counter malaria drug resistance. We evaluated the malaria Sybr green I-based fluorescence (MSF) assay for its use in in vitro drug combination sensitivity assays. Drug combinations of previously published synergistic (atovaquone and proguanil), indifferent (chloroquine and azithromycin), and antagonistic (chloroquine and atovaquone) antimalarial drug interactions were tested ag...

  7. Molecular surveillance of drug resistance through imported isolates of Plasmodium falciparum in Europe

    DEFF Research Database (Denmark)

    Jelinek, Tomas; Peyerl-Hoffmann, Gabriele; Mühlberger, Nikolai;

    2002-01-01

    and chloroquine. The screening results were used to map the prevalence of mutations and, thus, levels of potential drug resistance in endemic areas world-wide. RESULTS: 337 isolates have been tested so far. Prevalence of mutations that are associated with resistance to chloroquine on the pfcrt and......BACKGROUND: Results from numerous studies point convincingly to correlations between mutations at selected genes and phenotypic resistance to antimalarials in Plasmodium falciparum isolates. In order to move molecular assays for point mutations on resistance-related genes into the realm of applied...... tools for surveillance, we investigated a selection of P. falciparum isolates that were imported during the year 2001 into Europe to study the prevalence of resistance-associated point mutations at relevant codons. In particular, we tested for parasites which were developing resistance to antifolates...

  8. Exposure to anti-malarial drugs and monitoring of adverse drug reactions using toll-free mobile phone calls in private retail sector in Sagamu, Nigeria: implications for pharmacovigilance

    Directory of Open Access Journals (Sweden)

    Ogunwande Isiaka A

    2011-08-01

    Full Text Available Abstract Background Adverse drug reactions (ADRs contribute to ill-health or life-threatening outcomes of therapy during management of infectious diseases. The exposure to anti-malarial and use of mobile phone technology to report ADRs following drug exposures were investigated in Sagamu - a peri-urban community in Southwest Nigeria. Methods Purchase of medicines was actively monitored for 28 days in three Community Pharmacies (CP and four Patent and Proprietary Medicine Stores (PPMS in the community. Information on experience of ADRs was obtained by telephone from 100 volunteers who purchased anti-malarials during the 28-day period. Results and Discussion A total of 12,093 purchases were recorded during the period. Antibiotics, analgesics, vitamins and anti-malarials were the most frequently purchased medicines. A total of 1,500 complete courses of anti-malarials were purchased (12.4% of total purchases; of this number, purchases of sulphadoxine-pyrimethamine (SP and chloroquine (CQ were highest (39.3 and 25.2% respectiuvely. Other anti-malarials purchased were artesunate monotherapy (AS - 16.1%, artemether-lumefantrine (AL 10.0%, amodiaquine (AQ - 6.6%, quinine (QNN - 1.9%, halofantrine (HF - 0.2% and proguanil (PR - 0.2%. CQ was the cheapest (USD 0.3 and halofantrine the most expensive (USD 7.7. AL was 15.6 times ($4.68 more expensive than CQ. The response to mobile phone monitoring of ADRs was 57% in the first 24 hours (day 1 after purchase and decreased to 33% by day 4. Participants in this monitoring exercise were mostly with low level of education (54%. Conclusion The findings from this study indicate that ineffective anti-malaria medicines including monotherapies remain widely available and are frequently purchased in the study area. Cost may be a factor in the continued use of ineffective monotherapies. Availability of a toll-free telephone line may facilitate pharmacovigilance and follow up of response to medicines in a resource

  9. Towards rapid genotyping of resistant malaria parasites: could loop-mediated isothermal amplification be the solution?

    OpenAIRE

    Abdul-Ghani, Rashad

    2014-01-01

    Loop-mediated isothermal amplification (LAMP) is an innovative molecular technique that has been validated for point-of-care testing to diagnose malaria. Molecular detection and tracking of anti-malarial drug resistance is mainly based on highly sophisticated, costly and time-consuming techniques. With the validation of resistance-associated gene mutations in malaria parasites, there is a need to develop rapid, easy-to-use molecular tests for anti-malarial drug resistance genotyping. LAMP cou...

  10. Blood schizontocidal activity of methylene blue in combination with antimalarials against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Garavito G.

    2007-06-01

    Full Text Available Methylene blue (MB is the oldest synthetic antimalarial. It is not used anymore as antimalarial but should be reconsidered. For this purpose we have measured its impact on both chloroquine sensitive and resistant Plasmodium strains. We showed that around 5 nM of MB were able to inhibit 50% of the parasite growth in vitro and that late rings and early trophozoites were the most sensitive stages; while early rings, late trophozoites and schizonts were less sensitive. Drug interaction study following fractional inhibitory concentrations (FIC method showed antagonism with amodiaquine, atovaquone, doxycycline, pyrimethamine; additivity with artemether, chloroquine, mefloquine, primaquine and synergy with quinine. These results confirmed the interest of MB that could be integrated in a new low cost antimalarial combination therapy.

  11. [Drug resistant epilepsy. Clinical and neurobiological concepts].

    Science.gov (United States)

    Espinosa-Jovel, Camilo A; Sobrino-Mejía, Fidel E

    2015-08-16

    Drug-resistant epilepsy, is a condition defined by the International League Against Epilepsy as persistent seizures despite having used at least two appropriate and adequate antiepileptic drug treatments. Approximately 20-30% of patients with epilepsy are going to be resistant to antiepileptic drugs, with different patterns of clinical presentation, which are related to the biological basis of this disease (de novo resistance, relapsing-remitting and progressive). Drug resistant epilepsy, impacts negatively the quality of life and significantly increases the risk of premature death. From the neurobiological point of view, this medical condition is the result of the interaction of multiple variables related to the underlying disease, drug interactions and proper genetic aspects of each patient. Thanks to advances in pharmacogenetics and molecular biology research, currently some hypotheses may explain the cause of this condition and promote the study of new therapeutic options. Currently, overexpression of membrane transporters such as P-glycoprotein, appears to be one of the most important mechanisms in the development of drug resistant epilepsy. The objective of this review is to deepen the general aspects of this clinical condition, addressing the definition, epidemiology, differential diagnosis and the pathophysiological bases. PMID:26204087

  12. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    International Nuclear Information System (INIS)

    Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7DOX-2), epirubicin (MCF-7EPI), paclitaxel (MCF-7TAX-2), or docetaxel (MCF-7TXT). During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does occur at the threshold dose, the magnitude of resistance

  13. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    Directory of Open Access Journals (Sweden)

    Veitch Zachary

    2008-11-01

    Full Text Available Abstract Background Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7DOX-2, epirubicin (MCF-7EPI, paclitaxel (MCF-7TAX-2, or docetaxel (MCF-7TXT. During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. Results In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. Conclusion This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does

  14. Development of ELISA-based methods to measure the anti-malarial drug chloroquine in plasma and in pharmaceutical formulations

    DEFF Research Database (Denmark)

    Khalil, Insaf F; Alifrangis, Michael; Recke, Camilla;

    2011-01-01

    therapeutic agent. There is a dire need to continue monitoring quality of CQ as there is a major influx of substandard and fake formulations into malaria-endemic countries. The use of fake/substandard drugs will result in sub-therapeutic levels endangering the patient and possibly select for parasite......In Central and South America and Eastern and Southern Africa, Plasmodium vivax infections accounts for 71-81% and 5% of malaria cases, respectively. In these areas, chloroquine (CQ) remains the treatment of choice for P. vivax malaria. In addition, CQ has recently proven to be an effective HIV-1...... resistance. The aim of this study was to develop an inexpensive, simple antibody-based ELISA to measure CQ concentrations in tablets and in plasma....

  15. Potential antimalarials from African natural products: a review

    Directory of Open Access Journals (Sweden)

    Bashir Lawal

    2015-12-01

    Full Text Available Ethnopharmacological relevance: Malaria remains an overwhelming infectious disease with significant health challenges in African and other endemic countries globally. Resistance to antimalarial drugs has become one of the most momentous challenges to human health and thus has necessitated the hunt for new and effective drugs. Consequently, few decades have witnessed a surfeit of research geared to validate the effectiveness of commonly used traditionally medicines against malaria fever. The present review work focuses on documenting natural products from African whose activity has been reported in-vivo or invi-tro against malaria parasite. Methods: Literature was collected using electronic search of published articles (Google Scholar, PubMed, Medline, Sciencedirect, Science domain that report on antiplasmodial activity of natural products from differernts Africa region. Results: A Total of 652 plant taxa from 146 families, 134 isolated antimalarial compounds from 39 plants species, 2 herbal formulations and 4 insect/products were found to be reported in literature from 1996 to 2015. Plants species from family Asteraceae (11.04%, Fababceae (8.128%, Euphorbiaceae (5.52%, Rubiaceas (5.52% and Apocyanaceae (5.214%, have received more scientific validation than others. Conclusion: African natural products possess remarkable healing properties as revealed in the various citations as promising antimalarial agents. Some of these natural products from Africa demonstrate high, promising or low activities against plasmodium parasite. This study also shows that natural products from Africa have a huge amount of novel antimalarial compounds that could serve as a leads for the development of new and effective antiplasmodial drugs. However, in a view of bridging the gap in knowledge, clinical validation of these natural products is of paramount importance. [J Intercult Ethnopharmacol 2015; 4(4.000: 318-343

  16. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Guyue eCheng

    2016-04-01

    Full Text Available The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants, the community level resistance (i.e., bilofilms and persisters is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals.

  17. Coinfection and the evolution of drug resistance.

    Science.gov (United States)

    Hansen, J; Day, T

    2014-12-01

    Recent experimental work in the rodent malaria model has shown that when two or more strains share a host, there is competitive release of drug-resistant strains upon treatment. In other words, the propagule output of a particular strain is repressed when competing with other strains and increases upon the removal of this competition. This within-host effect is predicted to have an important impact on the evolution and growth of resistant strains. However, how this effect translates to epidemiological parameters at the between-host level, the level at which disease and resistance spread, has yet to be determined. Here we present a general, between-host epidemiological model that explicitly takes into account the effect of coinfection and competitive release. Although our model does show that when there is coinfection competitive release may contribute to the emergence of resistance, it also highlights an additional between-host effect. It is the combination of these two effects, the between-host effect and the within-host effect, that determines the overall influence of coinfection on the emergence of resistance. Therefore, even when competitive release of drug-resistant strains occurs, within an infected individual, it is not necessarily true that coinfection will result in the increased emergence of resistance. These results have important implications for the control of the emergence and spread of drug resistance. PMID:25417787

  18. In vitro and in vivo assessment of the anti-malarial activity of Caesalpinia pluviosa

    Directory of Open Access Journals (Sweden)

    Eberlin Marcos N

    2011-05-01

    Full Text Available Abstract Background To overcome the problem of increasing drug resistance, traditional medicines are an important source for potential new anti-malarials. Caesalpinia pluviosa, commonly named "sibipiruna", originates from Brazil and possess multiple therapeutic properties, including anti-malarial activity. Methods Crude extract (CE was obtained from stem bark by purification using different solvents, resulting in seven fractions. An MTT assay was performed to evaluate cytotoxicity in MCF-7 cells. The CE and its fractions were tested in vitro against chloroquine-sensitive (3D7 and -resistant (S20 strains of Plasmodium falciparum and in vivo in Plasmodium chabaudi-infected mice. In vitro interaction with artesunate and the active C. pluviosa fractions was assessed, and mass spectrometry analyses were conducted. Results At non-toxic concentrations, the 100% ethanolic (F4 and 50% methanolic (F5 fractions possessed significant anti-malarial activity against both 3D7 and S20 strains. Drug interaction assays with artesunate showed a synergistic interaction with the F4. Four days of treatment with this fraction significantly inhibited parasitaemia in mice in a dose-dependent manner. Mass spectrometry analyses revealed the presence of an ion corresponding to m/z 303.0450, suggesting the presence of quercetin. However, a second set of analyses, with a quercetin standard, showed distinct ions of m/z 137 and 153. Conclusions The findings show that the F4 fraction of C. pluviosa exhibits anti-malarial activity in vitro at non-toxic concentrations, which was potentiated in the presence of artesunate. Moreover, this anti-malarial activity was also sustained in vivo after treatment of infected mice. Finally, mass spectrometry analyses suggest that a new compound, most likely an isomer of quercetin, is responsible for the anti-malarial activity of the F4.

  19. Drug targeting of leptin resistance.

    Science.gov (United States)

    Santoro, Anna; Mattace Raso, Giuseppina; Meli, Rosaria

    2015-11-01

    Leptin regulates glucose, lipid and energy homeostasis as well as feeding behavior, serving as a bridge between peripheral metabolically active tissues and the central nervous system (CNS). Indeed, this adipocyte-derived hormone, whose circulating levels mirror fat mass, not only exerts its anti-obesity effects mainly modulating the activity of specific hypothalamic neurons expressing the long form of the leptin receptor (Ob-Rb), but it also shows pleiotropic functions due to the activation of Ob-Rb in peripheral tissues. Nevertheless, several mechanisms have been suggested to mediate leptin resistance, including obesity-associated hyperleptinemia, impairment of leptin access to CNS and the reduction in Ob-Rb signal transduction effectiveness, among others. During the onset and progression of obesity, the dampening of leptin sensitivity often occurs, preventing the efficacy of leptin replacement therapy from overcoming obesity and/or its comorbidities. This review focuses on obesity-associated leptin resistance and the mechanisms underpinning this condition, to highlight the relevance of leptin sensitivity restoration as a useful therapeutic strategy to treat common obesity and its complications. Interestingly, although promising strategies to counteract leptin resistance have been proposed, these pharmacological approaches have shown limited efficacy or even relevant adverse effects in preclinical and clinical studies. Therefore, the numerous findings from this review clearly indicate a lack of a single and efficacious treatment for leptin resistance, highlighting the necessity to find new therapeutic tools to improve leptin sensitivity, especially in patients with most severe disease profiles. PMID:26071010

  20. Epithelial-mesenchymal Transition and Tumor Drug Resistance

    Directory of Open Access Journals (Sweden)

    Linlin ZHANG

    2013-01-01

    Full Text Available Resistance to antineoplastic drugs is a common problem in cancer treatments. Epithelial-mesenchymal transition (EMT, which plays an important role in the process of drug resistance, may provide opportunity to solve this problem. This article reviews the characteristics of EMT, relationship between EMT and drug resistance, mechanism of EMT in tumor drug resistance in details.

  1. Epithelial-mesenchymal Transition and Tumor Drug Resistance

    OpenAIRE

    Zhang, Linlin; Wu, Zhihao; Zhou, Qinghua

    2013-01-01

    Resistance to antineoplastic drugs is a common problem in cancer treatments. Epithelial-mesenchymal transition (EMT), which plays an important role in the process of drug resistance, may provide opportunity to solve this problem. This article reviews the characteristics of EMT, relationship between EMT and drug resistance, mechanism of EMT in tumor drug resistance in details.

  2. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities.

    Science.gov (United States)

    Pulcini, Serena; Staines, Henry M; Lee, Andrew H; Shafik, Sarah H; Bouyer, Guillaume; Moore, Catherine M; Daley, Daniel A; Hoke, Matthew J; Altenhofen, Lindsey M; Painter, Heather J; Mu, Jianbing; Ferguson, David J P; Llinás, Manuel; Martin, Rowena E; Fidock, David A; Cooper, Roland A; Krishna, Sanjeev

    2015-01-01

    Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased sensitivity to chloroquine and some other quinoline antimalarials, but exhibit no or minimal change in sensitivity to artemisinins, when compared with parental strains. A transgenic parasite line expressing the L272F variant of PfCRT confirmed this increased chloroquine sensitivity and enlarged food vacuole phenotype. Furthermore, the introduction of the C101F or L272F mutation into a chloroquine-resistant variant of PfCRT reduced the ability of this protein to transport chloroquine by approximately 93 and 82%, respectively, when expressed in Xenopus oocytes. These data provide, at least in part, a mechanistic explanation for the increased sensitivity of the mutant parasite lines to chloroquine. Taken together, these findings provide new insights into PfCRT function and PfCRT-mediated drug resistance, as well as the food vacuole, which is an important target of many antimalarial drugs. PMID:26420308

  3. Development of ELISA-based methods to measure the anti-malarial drug chloroquine in plasma and in pharmaceutical formulations

    Directory of Open Access Journals (Sweden)

    Ronn Anita

    2011-08-01

    Full Text Available Abstract Background In Central and South America and Eastern and Southern Africa, Plasmodium vivax infections accounts for 71-81% and 5% of malaria cases, respectively. In these areas, chloroquine (CQ remains the treatment of choice for P. vivax malaria. In addition, CQ has recently proven to be an effective HIV-1 therapeutic agent. There is a dire need to continue monitoring quality of CQ as there is a major influx of substandard and fake formulations into malaria-endemic countries. The use of fake/substandard drugs will result in sub-therapeutic levels endangering the patient and possibly select for parasite resistance. The aim of this study was to develop an inexpensive, simple antibody-based ELISA to measure CQ concentrations in tablets and in plasma. Methods A monoclonal antibody (MAb that reacts with the N-side chain of the CQ molecule was prepared by use of a CQ analogue. A specific and reliable ELISA for detection of CQ was developed. The developed assay was validated by measuring CQ in tablets sold in Denmark, India and Sudan. Furthermore, kinetics of CQ concentrations in plasma of four volunteers, who ingested two tablets of Malarex® containing, 250 mg CQ base, were measured before drug intake, three hours later and thereafter at days 1, 3, 7, 14, 21 and 28. The same plasma samples were simultaneously measured by high performance liquid chromatography (HPLC. Results The ELISA proved an easy-to-handle and very sensitive tool for the detection of CQ with a lower limit of detection at 3.9 ng/ml. ELISA levels of CQ in plasma showed high agreement with the levels obtained by HPLC (r = 0.98. The specificity in the negative control group was 100%. Conclusion The developed ELISA can be used for quality screening of CQ in pharmaceutical formulations and for drug monitoring in malaria and in other infectious diseases, such as HIV, where CQ proved to be an effective therapeutic agent. The methodology has been exploited to develop monoclonal

  4. Dissolution enhancement of a poorly water-soluble antimalarial drug by means of a modified multi-fluid nozzle pilot spray drier

    International Nuclear Information System (INIS)

    A spray drier with a modified multi-fluid nozzle was used to prepare microparticles of a poorly water-soluble antimalarial drug, artemisinin (ART), with the aim of improving its dissolution in water. ART was co-spray dried with a hydrophilic polymer, polyethylene glycol (PEG). The differential scanning calorimetry and X-ray diffraction studies showed that the crystallinity of ART decreased after spray drying. Compared to the physical mixture of ART and PEG, the amorphous phase of ART in the spray dried ART-PEG composites increased, which depended on the weight ratio of drug to polymer. The phase-solubility studies revealed that the aqueous solubility of ART was improved by the presence of PEG. The dissolution of ART from the spray dried ART-PEG composites was more rapid than that from their respective physical mixture and the original ART powder. For example, the dissolution of ART from the spray dried ART-PEG composite (1:6) was 6.5 times higher than that from the original ART powder in the first 30 min. In the mathematical modeling, the Weibull and Korsemeyer-Peppas models were found to best fit to the in vitro dissolution data and then the drug release mechanism was considered as the Fickian diffusion.

  5. A phase I trial to evaluate the safety and pharmacokinetics of low-dose methotrexate as an anti-malarial drug in Kenyan adult healthy volunteers

    Directory of Open Access Journals (Sweden)

    Oyoo George O

    2011-03-01

    Full Text Available Abstract Background Previous investigations indicate that methotrexate, an old anticancer drug, could be used at low doses to treat malaria. A phase I evaluation was conducted to assess the safety and pharmacokinetic profile of this drug in healthy adult male Kenyan volunteers. Methods Twenty five healthy adult volunteers were recruited and admitted to receive a 5 mg dose of methotrexate/day/5 days. Pharmacokinetics blood sampling was carried out at 2, 4, 6, 12 and 24 hours following each dose. Nausea, vomiting, oral ulcers and other adverse events were solicited during follow up of 42 days. Results The mean age of participants was 23.9 ± 3.3 years. Adherence to protocol was 100%. No grade 3 solicited adverse events were observed. However, one case of transiently elevated liver enzymes, and one serious adverse event (not related to the product were reported. The maximum concentration (Cmax was 160-200 nM and after 6 hours, the effective concentration (Ceff was Conclusion Low-dose methotraxate had an acceptable safety profile. However, methotrexate blood levels did not reach the desirable Ceff of 250-400-nM required to clear malaria infection in vivo. Further dose finding and safety studies are necessary to confirm suitability of this drug as an anti-malarial agent.

  6. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    Science.gov (United States)

    Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C. S.; Norcross, Neil R.; Grimaldi, Raffaella; Otto, Thomas D.; Proto, William R.; Blagborough, Andrew M.; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M.; Abraham, Tara S.; Almeida, Mariana J.; Pradhan, Anupam; Porzelle, Achim; Martínez, María Santos; Bolscher, Judith M.; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M.; Churcher, Tom S.; Sala, Katarzyna A.; Zakutansky, Sara E.; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M.; Sauerwein, Robert W; Dechering, Koen J.; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A.; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G.; Leroy, Didier; Siegl, Peter; Delves, Michael J.; Kyle, Dennis E.; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N.; Sinden, Robert E.; Winzeler, Elizabeth; Charman, Susan A.; Bebrevska, Lidiya; Gray, David W.; Campbell, Simon; Fairlamb, Alan H.; Willis, Paul; Rayner, Julian C.; Fidock, David A.; Read, Kevin D.; Gilbert, Ian H.

    2015-01-01

    Summary There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. We describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the parasite, with good pharmacokinetic properties, and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along mRNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery. PMID:26085270

  7. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    Science.gov (United States)

    Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C. S.; Norcross, Neil R.; Grimaldi, Raffaella; Otto, Thomas D.; Proto, William R.; Blagborough, Andrew M.; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M.; Abraham, Tara S.; Almeida, Mariana J.; Pradhan, Anupam; Porzelle, Achim; Martínez, María Santos; Bolscher, Judith M.; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M.; Churcher, Tom S.; Sala, Katarzyna A.; Zakutansky, Sara E.; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M.; Sauerwein, Robert W.; Dechering, Koen J.; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A.; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G.; Leroy, Didier; Siegl, Peter; Delves, Michael J.; Kyle, Dennis E.; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N.; Sinden, Robert E.; Winzeler, Elizabeth A.; Charman, Susan A.; Bebrevska, Lidiya; Gray, David W.; Campbell, Simon; Fairlamb, Alan H.; Willis, Paul A.; Rayner, Julian C.; Fidock, David A.; Read, Kevin D.; Gilbert, Ian H.

    2015-06-01

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.

  8. Improving Pharmacokinetic-Pharmacodynamic Modeling to Investigate Anti-Infective Chemotherapy with Application to the Current Generation of Antimalarial Drugs

    OpenAIRE

    Katherine Kay; Hastings, Ian M.

    2013-01-01

    Mechanism-based pharmacokinetic-pharmacodynamic (PK/PD) modelling is the standard computational technique for simulating drug treatment of infectious diseases with the potential to enhance our understanding of drug treatment outcomes, drug deployment strategies, and dosing regimens. Standard methodologies assume only a single drug is used, it acts only in its unconverted form, and that oral drugs are instantaneously absorbed across the gut wall to their site of action. For drugs with short ha...

  9. A Method for Amplicon Deep Sequencing of Drug Resistance Genes in Plasmodium falciparum Clinical Isolates from India.

    Science.gov (United States)

    Rao, Pavitra N; Uplekar, Swapna; Kayal, Sriti; Mallick, Prashant K; Bandyopadhyay, Nabamita; Kale, Sonal; Singh, Om P; Mohanty, Akshaya; Mohanty, Sanjib; Wassmer, Samuel C; Carlton, Jane M

    2016-06-01

    A major challenge to global malaria control and elimination is early detection and containment of emerging drug resistance. Next-generation sequencing (NGS) methods provide the resolution, scalability, and sensitivity required for high-throughput surveillance of molecular markers of drug resistance. We have developed an amplicon sequencing method on the Ion Torrent PGM platform for targeted resequencing of a panel of six Plasmodium falciparum genes implicated in resistance to first-line antimalarial therapy, including artemisinin combination therapy, chloroquine, and sulfadoxine-pyrimethamine. The protocol was optimized using 12 geographically diverse P. falciparum reference strains and successfully applied to multiplexed sequencing of 16 clinical isolates from India. The sequencing results from the reference strains showed 100% concordance with previously reported drug resistance-associated mutations. Single-nucleotide polymorphisms (SNPs) in clinical isolates revealed a number of known resistance-associated mutations and other nonsynonymous mutations that have not been implicated in drug resistance. SNP positions containing multiple allelic variants were used to identify three clinical samples containing mixed genotypes indicative of multiclonal infections. The amplicon sequencing protocol has been designed for the benchtop Ion Torrent PGM platform and can be operated with minimal bioinformatics infrastructure, making it ideal for use in countries that are endemic for the disease to facilitate routine large-scale surveillance of the emergence of drug resistance and to ensure continued success of the malaria treatment policy. PMID:27008882

  10. A Method for Amplicon Deep Sequencing of Drug Resistance Genes in Plasmodium falciparum Clinical Isolates from India

    Science.gov (United States)

    Rao, Pavitra N.; Uplekar, Swapna; Kayal, Sriti; Mallick, Prashant K.; Bandyopadhyay, Nabamita; Kale, Sonal; Singh, Om P.; Mohanty, Akshaya; Mohanty, Sanjib; Wassmer, Samuel C.

    2016-01-01

    A major challenge to global malaria control and elimination is early detection and containment of emerging drug resistance. Next-generation sequencing (NGS) methods provide the resolution, scalability, and sensitivity required for high-throughput surveillance of molecular markers of drug resistance. We have developed an amplicon sequencing method on the Ion Torrent PGM platform for targeted resequencing of a panel of six Plasmodium falciparum genes implicated in resistance to first-line antimalarial therapy, including artemisinin combination therapy, chloroquine, and sulfadoxine-pyrimethamine. The protocol was optimized using 12 geographically diverse P. falciparum reference strains and successfully applied to multiplexed sequencing of 16 clinical isolates from India. The sequencing results from the reference strains showed 100% concordance with previously reported drug resistance-associated mutations. Single-nucleotide polymorphisms (SNPs) in clinical isolates revealed a number of known resistance-associated mutations and other nonsynonymous mutations that have not been implicated in drug resistance. SNP positions containing multiple allelic variants were used to identify three clinical samples containing mixed genotypes indicative of multiclonal infections. The amplicon sequencing protocol has been designed for the benchtop Ion Torrent PGM platform and can be operated with minimal bioinformatics infrastructure, making it ideal for use in countries that are endemic for the disease to facilitate routine large-scale surveillance of the emergence of drug resistance and to ensure continued success of the malaria treatment policy. PMID:27008882

  11. Challenges of drug-resistant malaria

    OpenAIRE

    Sinha Shweta; Medhi Bikash; Sehgal Rakesh

    2014-01-01

    Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia–Thailand border threatened all the previous success. This review addresses the glob...

  12. Antifungal drugs and resistance: Current concepts

    OpenAIRE

    Pramod Kumar Nigam

    2015-01-01

    Recently, clinical failure and relapses have been observed in patients treated with antifungals. Drug resistance has become an important problem leading to significant negative social, psychological, and occupational health effects and quality of life. Early recognition and treatment is essential to reduce morbidity and possibility of transmission. The increased use, inappropriate prescribing and over the counter sale of antifungal agents has also added in the development of resistance to the...

  13. Mechanisms of Candida biofilm drug resistance

    OpenAIRE

    Taff, Heather T.; Mitchell, Kaitlin F.; Edward, Jessica A; Andes, David R.

    2013-01-01

    Candida commonly adheres to implanted medical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. As currently available antifungals have minimal activity against biofilms, new drugs to treat these recalcitrant infections are urgently needed. Recent investigations have begun to shed light on the mechanisms behind the profound resistance associated with the biofilm mode of growth. This resistance appears to be multifactorial, involvin...

  14. Drug-resistant tuberculosis: emerging treatment options

    Directory of Open Access Journals (Sweden)

    Adhvaryu MR

    2011-12-01

    Full Text Available Meghna Adhvaryu1, Bhasker Vakharia21Department of Biotechnology, SRK Institute of Computer Education and Applied Sciences, 2R&D, Bhuma Research in Ayurvedic and Herbal Medicine, Surat, Gujarat, IndiaAbstract: Multidrug-resistant tuberculosis has emerged worldwide, with an increasing incidence due to failure of implementation of apparently effective first-line antituberculous therapy as well as primary infection with drug-resistant strains. Failure of current therapy is attributed to a long duration of treatment leading to nonadherence and irregular therapy, lack of patient education about the disease, poverty, irregular supply by care providers, drug–drug interactions in patients coinfected with human immunodeficiency virus (HIV, inadequate regulations causing market overlap and irresponsible drug usage in the private sector, and lack of research, with no addition of new drugs in the last four decades. Present standards of care for the treatment of drug-susceptible tuberculosis, multidrug-resistant tuberculosis, tuberculosis-HIV coinfection, and latent tuberculosis infection are all unsatisfactory. Since 2000, the World Health Organization (WHO has focused on drug development for tuberculosis, as well as research in all relevant aspects to discover new regimens by 2015 and to eliminate tuberculosis as a public health concern by 2050. As a result, some 20 promising compounds from 14 groups of drugs have been discovered. Twelve candidates from eight classes are currently being evaluated in clinical trials. Ongoing research should prioritize identification of novel targets and newer application of existing drugs, discovery of multitargeted drugs from natural compounds, strengthening host factors by immunopotentiation with herbal immunomodulators, as well as protective vaccines before and after exposure, consideration of surgical measures when indicated, development of tools for rapid diagnosis, early identification of resistant strains, and

  15. Drug resistance patterns in pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Objective: To determine the resistance patterns of mycobacterium tuberculosis (MTB) isolates among category I and II patients of pulmonary tuberculosis. Methods: This cross sectional study was conducted at the Department of Medicine, Liaquat University of Medical and Health Sciences Jamshoro, from November 2008 to September 2009. Patients were divided into category I and II. The sputa were collected, stained with Ziehl-Nielsen (Z-N) staining and ultimately inoculated on Lowenstein-Jensen (L-J) media for six weeks. Out of 890 pulmonary tuberculosis (PTB) patients, the growth was obtained in 285 cases. The Drug sensitivity testing (DST) for Isoniazid (INH), Rifampicin (RIF), Ethambutol (EMB) Pyrazinamide (PZA) and Streptomycin (SM) were performed. The data was analyzed on SPSS 10.0. A p-value of <0.05 was taken as significant. Result: Out of 285 cases, 176 (61.75%) were male and 109 (38.24%) female. The mean age was 37 +- 19.90 years. The DST showed drug sensitive and drug resistant isolates in 80 (28.05%) and 205 (71.92%) cases respectively (p=0.001). The drug resistant tuberculosis (DR-TB) rates for individual drugs; INH, RIF, EMB, PZA and SM were 51,22%, 15.4%, 13.33%, 9%12, and 3.85% respectively (p=0.03). The MDR-TB isolates were detected in 120 (42.10%) cases, including 5 (5.88%) in category I and 115 (57.50%) in category II patients (p=0.0001). Conclusion: Drug resistant and multidrug resistant tuberculosis was observed mainly in category II patients. However, primary MDR was also observed in category I patients and reflects dissemination of MDR cases within the community. (author)

  16. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Rajmohan Rajamuthiah

    Full Text Available Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC: 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs. The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively, but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections.

  17. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement

    Directory of Open Access Journals (Sweden)

    Shen S

    2015-06-01

    Full Text Available Shuo Shen, Shu-Zhi Liu, Yu-Shi Zhang, Mao-Bo Du, Ai-Hua Liang, Li-Hua Song, Zu-Guang Ye Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China Abstract: Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel compound antimalarial transdermal nanosystem–ethosomal cataplasm, to investigate its characteristics and efficiency, and to systematically explore the penetration-enhancing mechanisms of ethosomal cataplasm. Artesunate-loaded ethosomes and febrifugine-loaded ethosomes were prepared, and their characteristics were evaluated. Drug-loaded ethosomes were incorporated in the matrix of cataplasm to form the compound antimalarial ethosomal cataplasm. With the help of ethosomal technology, the accumulated permeation quantity of artesunate significantly increased at 8 hours after administration, which was 1.57 times as much as that of conventional cataplasm. Soon after administration, the ethosomal cataplasm could make a large quantity of antimalarial drug quickly penetrate through skin, then the remaining drug in the ethosomal cataplasm could be steadily released. These characteristics of ethosomal cataplasm are favorable for antimalarial drugs to kill Plasmodium spp. quickly and prevent the resurgence of Plasmodium spp. As expected, the ethosomal cataplasm showed good antimalarial efficiency in this experiment. The negative conversion rates were 100% and the recurrence rates were 0% at all dosages. The mechanism of penetration enhancement of the ethosomal cataplasm was systematically explored using an optics microscope, polarization microscope, and transmission electron microscopy. The microstructure, ultrastructure, and birefringent structure in skin were observed. Data

  18. Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype.

    Science.gov (United States)

    Santos, Sofia A; Lukens, Amanda K; Coelho, Lis; Nogueira, Fátima; Wirth, Dyann F; Mazitschek, Ralph; Moreira, Rui; Paulo, Alexandra

    2015-09-18

    A series of 3-piperidin-4-yl-1H-indoles with building block diversity was synthesized based on a hit derived from an HTS whole-cell screen against Plasmodium falciparum. Thirty-eight compounds were obtained following a three-step synthetic approach and evaluated for anti-parasitic activity. The SAR shows that 3-piperidin-4-yl-1H-indole is intolerant to most N-piperidinyl modifications. Nevertheless, we were able to identify a new compound (10d) with lead-like properties (MW = 305; cLogP = 2.42), showing antimalarial activity against drug-resistant and sensitive strains (EC50 values ∼ 3 μM), selectivity for malaria parasite and no cross-resistance with chloroquine, thus representing a potential new chemotype for further optimization towards novel and affordable antimalarial drugs. PMID:26295174

  19. Ex Vivo Drug Susceptibility Testing and Molecular Profiling of Clinical Plasmodium falciparum Isolates from Cambodia from 2008 to 2013 Suggest Emerging Piperaquine Resistance.

    Science.gov (United States)

    Chaorattanakawee, Suwanna; Saunders, David L; Sea, Darapiseth; Chanarat, Nitima; Yingyuen, Kritsanai; Sundrakes, Siratchana; Saingam, Piyaporn; Buathong, Nillawan; Sriwichai, Sabaithip; Chann, Soklyda; Se, Youry; Yom, You; Heng, Thay Kheng; Kong, Nareth; Kuntawunginn, Worachet; Tangthongchaiwiriya, Kuntida; Jacob, Christopher; Takala-Harrison, Shannon; Plowe, Christopher; Lin, Jessica T; Chuor, Char Meng; Prom, Satharath; Tyner, Stuart D; Gosi, Panita; Teja-Isavadharm, Paktiya; Lon, Chanthap; Lanteri, Charlotte A

    2015-08-01

    Cambodia's first-line artemisinin combination therapy, dihydroartemisinin-piperaquine (DHA-PPQ), is no longer sufficiently curative against multidrug-resistant Plasmodium falciparum malaria at some Thai-Cambodian border regions. We report recent (2008 to 2013) drug resistance trends in 753 isolates from northern, western, and southern Cambodia by surveying for ex vivo drug susceptibility and molecular drug resistance markers to guide the selection of an effective alternative to DHA-PPQ. Over the last 3 study years, PPQ susceptibility declined dramatically (geomean 50% inhibitory concentration [IC50] increased from 12.8 to 29.6 nM), while mefloquine (MQ) sensitivity doubled (67.1 to 26 nM) in northern Cambodia. These changes in drug susceptibility were significantly associated with a decreased prevalence of P. falciparum multidrug resistance 1 gene (Pfmdr1) multiple copy isolates and coincided with the timing of replacing artesunate-mefloquine (AS-MQ) with DHA-PPQ as the first-line therapy. Widespread chloroquine resistance was suggested by all isolates being of the P. falciparum chloroquine resistance transporter gene CVIET haplotype. Nearly all isolates collected from the most recent years had P. falciparum kelch13 mutations, indicative of artemisinin resistance. Ex vivo bioassay measurements of antimalarial activity in plasma indicated 20% of patients recently took antimalarials, and their plasma had activity (median of 49.8 nM DHA equivalents) suggestive of substantial in vivo drug pressure. Overall, our findings suggest DHA-PPQ failures are associated with emerging PPQ resistance in a background of artemisinin resistance. The observed connection between drug policy changes and significant reduction in PPQ susceptibility with mitigation of MQ resistance supports reintroduction of AS-MQ, in conjunction with monitoring of the P. falciparum mdr1 copy number, as a stop-gap measure in areas of DHA-PPQ failure. PMID:26014942

  20. Synthesis and in vitro antimalarial activity of novel chalcone derivatives / Frans Johannes Smit

    OpenAIRE

    Smit, Frans Johannes

    2014-01-01

    Malaria is endemic in 106 countries worldwide. This disease is caused by a parasite from the genus Plasmodium. Of the five species that infect humans, Plasmodium falciparum is the most virulent, with over three billion people at risk and around 660 000 deaths reported in 2011. Of these deaths, 91% were in the African region, while 86% were children under the age of five. In light of the widespread development of resistance by malaria parasites against the classic antimalarial drugs, such as c...

  1. Probing the Antimalarial Mechanism of Artemisinin and OZ277 (Arterolane) with Nonperoxidic Isosteres and Nitroxyl Radicals ▿

    OpenAIRE

    Fügi, Matthias A.; Wittlin, Sergio; Dong, Yuxiang; Vennerstrom, Jonathan L.

    2009-01-01

    Peroxidic antimalarials such as the semisynthetic artemisinins are critically important in the treatment of drug-resistant malaria. Nevertheless, their peroxide bond-dependent mode of action is still not well understood. Using combination experiments with cultured Plasmodium falciparum cells, we investigated the interactions of the nitroxide radical spin trap, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), and four of its analogs with artemisinin and the ozonide drug development candidate OZ27...

  2. Probing the antimalarial mechanism of artemisinin and OZ277 (arterolane) with nonperoxidic isosteres and nitroxyl radicals.

    Science.gov (United States)

    Fügi, Matthias A; Wittlin, Sergio; Dong, Yuxiang; Vennerstrom, Jonathan L

    2010-03-01

    Peroxidic antimalarials such as the semisynthetic artemisinins are critically important in the treatment of drug-resistant malaria. Nevertheless, their peroxide bond-dependent mode of action is still not well understood. Using combination experiments with cultured Plasmodium falciparum cells, we investigated the interactions of the nitroxide radical spin trap, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), and four of its analogs with artemisinin and the ozonide drug development candidate OZ277. The antagonism observed for combinations of artemisinin or OZ277 with the TEMPO analogs supports the hypothesis that the formation of carbon-centered radicals is critical for the activity of these two antimalarial peroxides. The TEMPO analogs showed a trend toward greater antagonism with artemisinin than they did with OZ277, an observation that can be explained by the greater tendency of artemisinin-derived carbon-centered radicals to undergo internal self-quenching reactions, resulting in a lower proportion of radicals available for subsequent chemical reactions such as the alkylation of heme and parasite proteins. In a further mechanistic experiment, we tested both artemisinin and OZ277 in combination with their nonperoxidic analogs. The latter had no effect on the antimalarial activities of the former. These data indicate that the antimalarial properties of peroxides do not derive from reversible interactions with parasite targets. PMID:20028825

  3. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model

    Science.gov (United States)

    Wargo, A.R.; Huijben, S.; De Roode, J. C.; Shepherd, J.; Read, A.F.

    2007-01-01

    Malaria infections frequently consist of mixtures of drug-resistant and drug-sensitive parasites. If crowding occurs, where clonal population densities are suppressed by the presence of coinfecting clones, removal of susceptible clones by drug treatment could allow resistant clones to expand into the newly vacated niche space within a host. Theoretical models show that, if such competitive release occurs, it can be a potent contributor to the strength of selection, greatly accelerating the rate at which resistance spreads in a population. A variety of correlational field data suggest that competitive release could occur in human malaria populations, but direct evidence cannot be ethically obtained from human infections. Here we show competitive release after pyrimethamine curative chemotherapy of acute infections of the rodent malaria Plasmodium chabaudi in laboratory mice. The expansion of resistant parasite numbers after treatment resulted in enhanced transmission-stage densities. After the elimination or near-elimination of sensitive parasites, the number of resistant parasites increased beyond that achieved when a competitor had never been present. Thus, a substantial competitive release occurred, markedly elevating the fitness advantages of drug resistance above those arising from survival alone. This finding may explain the rapid spread of drug resistance and the subsequently brief useful lifespans of some antimalarial drugs. In a second experiment, where subcurative chemotherapy was administered, the resistant clone was only partly released from competitive suppression and experienced a restriction in the size of its expansion after treatment. This finding raises the prospect of harnessing in-host ecology to slow the spread of drug resistance. ?? 2007 by The National Academy of Sciences of the USA.

  4. Multi Drug Resistant (MDR and Extensively Resistant (XDR Tuberculosis

    Directory of Open Access Journals (Sweden)

    Salih Cesur

    2013-08-01

    Full Text Available Multi drug resistant tuberculosis (MDR-TB is defined as tuberculosis that is resistant to at least isoniazid and rifampicin, the two most powerful first-line anti-TB drugs. Extensively drug resistant tuberculosis (XDR-TB is defined as tuberculosis that is resistant to resistant to isoniazid and rifampin and to any fluoroquinolone and at least one of three injectable second-line drugs (namely, amikacin, kanamicin, or capreomycin. MDR-TB and XDR- TB are great dangers that threaten the public health. XDR-TB has been reported from many countries including the United States. In Turkey, among newly diagnosed cases, it was reported that the number of MDR-TB patients was 101 (3.1%, MDR-TB rate in the retreatment cases was 17.7% (90 patients, and MDR-TB rate in all cases was 5.1 (191 patients in 2005. The percentages were calculated through the number of patients who were tested in terms of susceptibility for both isoniazide and rifampin. In 2009, it was reported that the number of MDR-TB patients was 99 (2.7% among newly diagnosed cases, it was 123 (20.5 % in the retreatment cases and the total number of MDR-TB cases was 222 (5.1%. The first patient with XDR-TB was identified in 2010 in Turkey. Diagnosis of XDR TB takes several weeks by using conventional culture-based methods, although (however some molecular test can detect it rapidly. Treatment of XDR-TB patients is difficult and usually requiring at least 18-24 months of four to six second-line anti-TB drugs. The success rate with the treatment is about 30-50%, and mortality rate is higher in HIV-infected patients. Prevention of contact to XDR-TB patients is more complicated by the lack of a proven effective preventive treatment for XDR latent tuberculosis infection. Rapid diagnostic tests and new anti-TB drugs are needed to control the spread of this worldwide public health problem. [Dis Mol Med 2013; 1(4.000: 72-76

  5. Antituberculosis drug resistance patterns in adults with tuberculous meningitis

    DEFF Research Database (Denmark)

    Senbayrak, Seniha; Ozkutuk, Nuri; Erdem, Hakan;

    2015-01-01

    BACKGROUND: Tuberculous meningitis (TBM) caused by Mycobacterium tuberculosis resistant to antituberculosis drugs is an increasingly common clinical problem. This study aimed to evaluate drug resistance profiles of TBM isolates in adult patients in nine European countries involving 32 centers to...

  6. An insight into the drug resistance profile & mechanism of drug resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Patel, Achchhe Lal; Chaudhry, Uma; Sachdev, Divya; Sachdeva, Poonam Nagpal; Bala, Manju; Saluja, Daman

    2011-10-01

    Among the aetiological agents of treatable sexually transmitted diseases (STDs), Neissseria gonorrhoeae is considered to be most important because of emerging antibiotic resistant strains that compromise the effectiveness of treatment of the disease - gonorrhoea. In most of the developing countries, treatment of gonorrhoea relies mainly on syndromic management rather than the aetiological based therapy. Gonococcal infections are usually treated with single-dose therapy with an agent found to cure > 95 per cent of cases. Unfortunately during the last few decades, N. gonorrhoeae has developed resistance not only to less expensive antimicrobials such as sulphonamides, penicillin and tetracyclines but also to fluoroquinolones. The resistance trend of N. gonorrhoeae towards these antimicrobials can be categorised into pre-quinolone, quinolone and post-quinolone era. Among the antimicrobials available so far, only the third-generation cephalosporins could be safely recommended as first-line therapy for gonorrhoea globally. However, resistance to oral third-generation cephalosporins has also started emerging in some countries. Therefore, it has become imperative to initiate sustained national and international efforts to reduce infection and misuse of antibiotics so as to prevent further emergence and spread of antimicrobial resistance. It is necessary not only to monitor drug resistance and optimise treatment regimens, but also to gain insight into how gonococcus develops drug resistance. Knowledge of mechanism of resistance would help us to devise methods to prevent the occurrence of drug resistance against existing and new drugs. Such studies could also help in finding out new drug targets in N. gonorrhoeae and also a possibility of identification of new drugs for treating gonorrhoea. PMID:22089602

  7. Clinical relevance of HCV antiviral drug resistance.

    Science.gov (United States)

    Welsch, C; Zeuzem, S

    2012-10-01

    The approval of direct-acting antiviral agents (DAAs) against the hepatitis C virus (HCV) NS3 protease revolutionized antiviral therapy in chronic hepatitis C. They mark the beginning of an era with drugs designed to inhibit specific viral proteins involved in the virus life cycle rather than the nonspecific antiviral activity of interferon. Upcoming generations of antivirals are expected that lead to viral eradication in most patients who undergo treatment with hope held for years that HCV can be cured without interferon. Antiviral drug resistance plays a key role in DAA-treatment failure. Knowledge on molecular escape mechanisms of resistant variants, their time to wild-type reversal and potential persistence is of upmost importance to design treatment strategies for patients with previous DAA-treatment failure. PMID:23006585

  8. Engaging Resistant Adolescents in Drug Abuse Treatment

    OpenAIRE

    Waldron, Holly Barrett; Kern-Jones, Sheryl; Turner, Charles W.; Peterson, Thomas R.; Ozechowski, Timothy J.

    2006-01-01

    In the first phase of a two-part treatment development study, families with a treatment-resistant, drug-abusing adolescent (n=42) were offered 12 sessions of Community Reinforcement and Family Training (CRAFT). This parent-focused intervention was designed to help parents facilitate their adolescents' entry in treatment and support adolescents' subsequent behavior change and to improve parent and family functioning. In the second phase, successfully engaged adolescents (n=30) were offered 12 ...

  9. Antibacterial Cleaning Products and Drug Resistance

    OpenAIRE

    Aiello, Allison E.; Marshall, Bonnie; Levy, Stuart B.; Della-Latta, Phyllis; Lin, Susan X.; Larson, Elaine

    2005-01-01

    We examined whether household use of antibacterial cleaning and hygiene products is an emerging risk factor for carriage of antimicrobial drug–resistant bacteria on hands of household members. Households (N = 224) were randomized to use of antibacterial or nonantibacterial cleaning and hygiene products for 1 year. Logistic regression was used to assess the influence of antibacterial product use in homes. Antibacterial product use did not lead to a significant increase in antimicrobial drug re...

  10. Multi-drug resistant Ewingella Americana

    International Nuclear Information System (INIS)

    We report a case of pneumonia due to multi-drug resistant Ewingella Americana in a young patient admitted in the Intensive Care Unit of Hera General Hospital, Makkah, Saudi Arabia with severe head injury in a road traffic accident. He was an Indonesian pilgrim who had traveled to the Kingdom of Saudi Arabia to perform Hajj in December 2007. Ewingella Americana was identified to be the pathogen of pneumonia with clinical signs and symptoms along with positive radiological findings. (author)

  11. Investigation of Traditional Palestinian Medicinal Plant Inula viscosa as Potential Anti-malarial Agent

    Directory of Open Access Journals (Sweden)

    M. Akkawi

    2014-10-01

    Full Text Available Malaria is a life threatening parasitic disease which is prevalent mainly in developing countries; it is the main cause of global mortality and morbidity. Development and search of novel and effective anti-malarial agents to overcome chloroquine resistance have become a very important issue. Most anti-malarial drugs target the erythrocytic stage of malaria infection, where hemozoin synthesis takes place and is considered a crucial process for the parasite survival. Throughout last decades, natural products have been a significant source of chemotherapeutics especially against malaria. Inula viscosa, Inula viscosa , is a shrub that grows around the Mediterranean basin and considered as an important Palestinian traditional medicinal herb. In this research it was found that the Palestinian flora Inula viscosa alcoholic extract has a significant and promising anti-malarial effect in both in vitro and in vivo systems. The crude alcoholic extract of Inula viscosa has the capability to impede the formation of &beta-hematin in vitro; with an efficiency of about 93% when compared to the standard chloroquine which gave 94% at comparable concentrations. in vivo studies showed that this crude extract inhibited the growth of Plasmodium parasites in the red blood cells at a rate of about 96.6%, with an EC50 value of 0.55 ng/mL. Several secondary plant metabolites may be responsible for this anti-malarial activity; the effect also may be most probably due to the presence of high concentrations of nerolidol which has often been found at high concentrationsin this plant. Nerolidol shows a stronger inhibition of hypoxanthine incorporation than quinine. Its anti-malarial effect is potentiated by other essential oils. Nerolidol is also found in several Artemisia species and in Cymbopogon citratus (lemongrass and Virola surinamensis, all plants known for their anti-malarial properties.

  12. The challenge of developing robust drugs to overcome resistance

    OpenAIRE

    Anderson, Amy C; Schiffer, Celia; Pollastri, Michael; Peet, Norton P.

    2011-01-01

    Drug resistance is problematic in microbial disease, viral disease and cancer. Understanding at the outset that resistance will impact the effectiveness of any new drug that is developed for these disease categories is imperative. In this Feature, we detail approaches that have been taken with selected drug targets to reduce the susceptibility of new drugs to resistance mechanisms. We will also define the concepts of robust drugs and resilient targets, and discuss how the design of robust dru...

  13. The genetics of drug resistance in malaria parasites*

    OpenAIRE

    Beale, G. H.

    1980-01-01

    The available experimental data on the genetics of drug resistance in malaria parasites are reviewed. Seven possible mechanisms for the origin of drug resistance are considered, and it is pointed out that spontaneous gene mutation is probably the most important. Experiments on the production of pyrimethamine-resistant and chloroquine-resistant strains of rodent Plasmodium species, and on the inheritance of such drug resistance, are reviewed. Relevant biochemical data are also considered in re...

  14. Antimalarial therapy selection for quinolone resistance among Escherichia coli in the absence of quinolone exposure, in tropical South America.

    Directory of Open Access Journals (Sweden)

    Ross J Davidson

    Full Text Available BACKGROUND: Bacterial resistance to antibiotics is thought to develop only in the presence of antibiotic pressure. Here we show evidence to suggest that fluoroquinolone resistance in Escherichia coli has developed in the absence of fluoroquinolone use. METHODS: Over 4 years, outreach clinic attendees in one moderately remote and five very remote villages in rural Guyana were surveyed for the presence of rectal carriage of ciprofloxacin-resistant gram-negative bacilli (GNB. Drinking water was tested for the presence of resistant GNB by culture, and the presence of antibacterial agents and chloroquine by HPLC. The development of ciprofloxacin resistance in E. coli was examined after serial exposure to chloroquine. Patient and laboratory isolates of E. coli resistant to ciprofloxacin were assessed by PCR-sequencing for quinolone-resistance-determining-region (QRDR mutations. RESULTS: In the very remote villages, 4.8% of patients carried ciprofloxacin-resistant E. coli with QRDR mutations despite no local availability of quinolones. However, there had been extensive local use of chloroquine, with higher prevalence of resistance seen in the villages shortly after a Plasmodium vivax epidemic (p<0.01. Antibacterial agents were not found in the drinking water, but chloroquine was demonstrated to be present. Chloroquine was found to inhibit the growth of E. coli in vitro. Replica plating demonstrated that 2-step QRDR mutations could be induced in E. coli in response to chloroquine. CONCLUSIONS: In these remote communities, the heavy use of chloroquine to treat malaria likely selected for ciprofloxacin resistance in E. coli. This may be an important public health problem in malarious areas.

  15. Disagreement in genotyping results of drug resistance alleles of the Plasmodium falciparum dihydrofolate reductase (Pfdhfr) gene by allele-specific PCR (ASPCR) assays and Sanger sequencing.

    Science.gov (United States)

    Sharma, Divya; Lather, Manila; Dykes, Cherry L; Dang, Amita S; Adak, Tridibes; Singh, Om P

    2016-01-01

    The rapid spread of antimalarial drug resistance in Plasmodium falciparum over the past few decades has necessitated intensive monitoring of such resistance for an effective malaria control strategy. P. falciparum dihydropteroate synthase (Pfdhps) and P. falciparum dihydrofolate reductase (Pfdhfr) genes act as molecular markers for resistance against the antimalarial drugs sulphadoxine and pyrimethamine, respectively. Resistance to pyrimethamine which is used as a partner drug in artemisinin combination therapy (ACT) is associated with several mutations in the Pfdhfr gene, namely A16V, N51I, C59R, S108N/T and I164L. Therefore, routine monitoring of Pfdhfr-drug-resistant alleles in a population may help in effective drug resistance management. Allele-specific PCR (ASPCR) is one of the commonly used methods for molecular genotyping of these alleles. In this study, we genotyped 55 samples of P. falciparum for allele discrimination at four codons of Pfdhfr (N51, C59, S108 and I164) by ASPCR using published methods and by Sanger's DNA sequencing method. We found that the ASPCR identified a significantly higher number of mutant alleles as compared to the DNA sequencing method. Such discrepancies arise due to the non-specificity of some of the allele-specific primer sets and due to the lack of sensitivity of Sanger's DNA sequencing method to detect minor alleles present in multiple clone infections. This study reveals the need of a highly specific and sensitive method for genotyping and detecting minor drug-resistant alleles present in multiple clonal infections. PMID:26407876

  16. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum

    Science.gov (United States)

    Vaidya, Akhil B.; Morrisey, Joanne M.; Zhang, Zhongsheng; Das, Sudipta; Daly, Thomas M.; Otto, Thomas D.; Spillman, Natalie J.; Wyvratt, Matthew; Siegl, Peter; Marfurt, Jutta; Wirjanata, Grennady; Sebayang, Boni F.; Price, Ric N.; Chatterjee, Arnab; Nagle, Advait; Stasiak, Marcin; Charman, Susan A.; Angulo-Barturen, Iñigo; Ferrer, Santiago; Belén Jiménez-Díaz, María; Martínez, María Santos; Gamo, Francisco Javier; Avery, Vicky M.; Ruecker, Andrea; Delves, Michael; Kirk, Kiaran; Berriman, Matthew; Kortagere, Sandhya; Burrows, Jeremy; Fan, Erkang; Bergman, Lawrence W.

    2014-01-01

    The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na+ regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na+ homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na+ homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes. PMID:25422853

  17. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum.

    Science.gov (United States)

    Vaidya, Akhil B; Morrisey, Joanne M; Zhang, Zhongsheng; Das, Sudipta; Daly, Thomas M; Otto, Thomas D; Spillman, Natalie J; Wyvratt, Matthew; Siegl, Peter; Marfurt, Jutta; Wirjanata, Grennady; Sebayang, Boni F; Price, Ric N; Chatterjee, Arnab; Nagle, Advait; Stasiak, Marcin; Charman, Susan A; Angulo-Barturen, Iñigo; Ferrer, Santiago; Belén Jiménez-Díaz, María; Martínez, María Santos; Gamo, Francisco Javier; Avery, Vicky M; Ruecker, Andrea; Delves, Michael; Kirk, Kiaran; Berriman, Matthew; Kortagere, Sandhya; Burrows, Jeremy; Fan, Erkang; Bergman, Lawrence W

    2014-01-01

    The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na(+) regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na(+) homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na(+) homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes. PMID:25422853

  18. Antimalarials and the fight against malaria in Brazil.

    Science.gov (United States)

    Carmargo, Luiz Ma; de Oliveira, Saulo; Basano, Sergio; Garcia, Célia Rs

    2009-08-01

    Malaria, known as the "fevers," has been treated for over three thousand years in China with extracts of plants of the genus Artemisia (including Artemisia annua, A. opiacea, and A. lancea) from which the active compound is artemisin, a sesquiterpene that is highly effective in the treatment of the disease, especially against young forms of the parasite. South American Indians in the seventeenth century already used an extract of the bark of chinchona tree, commonly named "Jesuits' powder." Its active compound was isolated in 1820 and its use spread all over the world being used as a prophylactic drug during the construction of the Madeira-Mamoré railroad in the beginning of the twentieth century. During the 1920s to the 1940s, new antimalarial drugs were synthesized to increase the arsenal against this parasite. However, the parasite has presented systematic resistence to conventional antimalarial drugs, driving researchers to find new strategies to treat the disease. In the present review we discuss how Brazil treats Plasmodium-infected patients. PMID:19753125

  19. Plasmodium falciparum Thioredoxin Reductase (PfTrxR) and Its Role as a Target for New Antimalarial Discovery.

    Science.gov (United States)

    McCarty, Sara E; Schellenberger, Amanda; Goodwin, Douglas C; Fuanta, Ngolui Rene; Tekwani, Babu L; Calderón, Angela I

    2015-01-01

    The growing resistance to current antimalarial drugs is a major concern for global public health. The pressing need for new antimalarials has led to an increase in research focused on the Plasmodium parasites that cause human malaria. Thioredoxin reductase (TrxR), an enzyme needed to maintain redox equilibrium in Plasmodium species, is a promising target for new antimalarials. This review paper provides an overview of the structure and function of TrxR, discusses similarities and differences between the thioredoxin reductases (TrxRs) of different Plasmodium species and the human forms of the enzyme, gives an overview of modeling Plasmodium infections in animals, and suggests the role of Trx functions in antimalarial drug resistance. TrxR of Plasmodium falciparum is a central focus of this paper since it is the only Plasmodium TrxR that has been crystallized and P. falciparum is the species that causes most malaria cases. It is anticipated that the information summarized here will give insight and stimulate new directions in which research might be most beneficial. PMID:26111176

  20. Plasmodium falciparum Thioredoxin Reductase (PfTrxR and Its Role as a Target for New Antimalarial Discovery

    Directory of Open Access Journals (Sweden)

    Sara E. McCarty

    2015-06-01

    Full Text Available The growing resistance to current antimalarial drugs is a major concern for global public health. The pressing need for new antimalarials has led to an increase in research focused on the Plasmodium parasites that cause human malaria. Thioredoxin reductase (TrxR, an enzyme needed to maintain redox equilibrium in Plasmodium species, is a promising target for new antimalarials. This review paper provides an overview of the structure and function of TrxR, discusses similarities and differences between the thioredoxin reductases (TrxRs of different Plasmodium species and the human forms of the enzyme, gives an overview of modeling Plasmodium infections in animals, and suggests the role of Trx functions in antimalarial drug resistance. TrxR of Plasmodium falciparum is a central focus of this paper since it is the only Plasmodium TrxR that has been crystallized and P. falciparum is the species that causes most malaria cases. It is anticipated that the information summarized here will give insight and stimulate new directions in which research might be most beneficial.

  1. Current Perspectives on HIV-1 Antiretroviral Drug Resistance

    OpenAIRE

    Pinar Iyidogan; Anderson, Karen S.

    2014-01-01

    Current advancements in antiretroviral therapy (ART) have turned HIV-1 infection into a chronic and manageable disease. However, treatment is only effective until HIV-1 develops resistance against the administered drugs. The most recent antiretroviral drugs have become superior at delaying the evolution of acquired drug resistance. In this review, the viral fitness and its correlation to HIV-1 mutation rates and drug resistance are discussed while emphasizing the concept of lethal mutagenesis...

  2. A microarray-based system for the simultaneous analysis of single nucleotide polymorphisms in human genes involved in the metabolism of anti-malarial drugs

    Directory of Open Access Journals (Sweden)

    Qi Weihong

    2009-12-01

    Full Text Available Abstract Background In order to provide a cost-effective tool to analyse pharmacogenetic markers in malaria treatment, DNA microarray technology was compared with sequencing of polymerase chain reaction (PCR fragments to detect single nucleotide polymorphisms (SNPs in a larger number of samples. Methods The microarray was developed to affordably generate SNP data of genes encoding the human cytochrome P450 enzyme family (CYP and N-acetyltransferase-2 (NAT2 involved in anti-malarial drug metabolisms and with known polymorphisms, i.e. CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, and NAT2. Results For some SNPs, i.e. CYP2A6*2, CYP2B6*5, CYP2C8*3, CYP2C9*3/*5, CYP2C19*3, CYP2D6*4 and NAT2*6/*7/*14, agreement between both techniques ranged from substantial to almost perfect (kappa index between 0.61 and 1.00, whilst for other SNPs a large variability from slight to substantial agreement (kappa index between 0.39 and 1.00 was found, e.g. CYP2D6*17 (2850C>T, CYP3A4*1B and CYP3A5*3. Conclusion The major limit of the microarray technology for this purpose was lack of robustness and with a large number of missing data or with incorrect specificity.

  3. Aberrant splicing and drug resistance in AML.

    Science.gov (United States)

    de Necochea-Campion, Rosalia; Shouse, Geoffrey P; Zhou, Qi; Mirshahidi, Saied; Chen, Chien-Shing

    2016-01-01

    The advent of next-generation sequencing technologies has unveiled a new window into the heterogeneity of acute myeloid leukemia (AML). In particular, recurrent mutations in spliceosome machinery and genome-wide aberrant splicing events have been recognized as a prominent component of this disease. This review will focus on how these factors influence drug resistance through altered splicing of tumor suppressor and oncogenes and dysregulation of the apoptotic signaling network. A better understanding of these factors in disease progression is necessary to design appropriate therapeutic strategies recognizing specific alternatively spliced or mutated oncogenic targets. PMID:27613060

  4. Drug Resistant Tuberculosis — Is There Hope?

    OpenAIRE

    Manish Kumar Goel; Pardeep Khanna

    2010-01-01

    Tuberculosis remains a worldwide public healthproblem. India has the highest burden of tuberculosis inthe world and accounts for nearly 2/5th of global burdenand 2/3rd of burden in SEAR countries. The XDR- TB wasfirst described in March 2006 and has also beenreported in India. The emergence of XDR – TB isassociated with a very low probability cure and a highcase fatality as evidenced by various researchers.Extensively drug-resistant tuberculosis is rapidly fatal ifnot treated. Some studies re...

  5. Poor quality vital anti-malarials in Africa - an urgent neglected public health priority

    Directory of Open Access Journals (Sweden)

    Newton Paul N

    2011-12-01

    Full Text Available Abstract Background Plasmodium falciparum malaria remains a major public health problem. A vital component of malaria control rests on the availability of good quality artemisinin-derivative based combination therapy (ACT at the correct dose. However, there are increasing reports of poor quality anti-malarials in Africa. Methods Seven collections of artemisinin derivative monotherapies, ACT and halofantrine anti-malarials of suspicious quality were collected in 2002/10 in eleven African countries and in Asia en route to Africa. Packaging, chemical composition (high performance liquid chromatography, direct ionization mass spectrometry, X-ray diffractometry, stable isotope analysis and botanical investigations were performed. Results Counterfeit artesunate containing chloroquine, counterfeit dihydroartemisinin (DHA containing paracetamol (acetaminophen, counterfeit DHA-piperaquine containing sildenafil, counterfeit artemether-lumefantrine containing pyrimethamine, counterfeit halofantrine containing artemisinin, and substandard/counterfeit or degraded artesunate and artesunate+amodiaquine in eight countries are described. Pollen analysis was consistent with manufacture of counterfeits in eastern Asia. These data do not allow estimation of the frequency of poor quality anti-malarials in Africa. Conclusions Criminals are producing diverse harmful anti-malarial counterfeits with important public health consequences. The presence of artesunate monotherapy, substandard and/or degraded and counterfeit medicines containing sub-therapeutic amounts of unexpected anti-malarials will engender drug resistance. With the threatening spread of artemisinin resistance to Africa, much greater investment is required to ensure the quality of ACTs and removal of artemisinin monotherapies. The International Health Regulations may need to be invoked to counter these serious public health problems.

  6. Plant-Derived Antimalarial Agents: New Leads and Efficient Phytomedicines. Part II. Non-Alkaloidal Natural Products

    Directory of Open Access Journals (Sweden)

    Alaíde Braga de Oliveira

    2009-08-01

    Full Text Available Malaria is still the most destructive and dangerous parasitic infection in many tropical and subtropical countries. The burden of this disease is getting worse, mainly due to the increasing resistance of Plasmodium falciparum against the widely available antimalarial drugs. There is an urgent need for new, more affordable and accessible antimalarial agents possessing original modes of action. Natural products have played a dominant role in the discovery of leads for the development of drugs to treat human diseases, and this fact anticipates that new antimalarial leads may certainly emerge from tropical plant sources. This present review covers most of the recently-published non-alkaloidal natural compounds from plants with antiplasmodial and antimalarial properties, belonging to the classes of terpenes, limonoids, flavonoids, chromones, xanthones, anthraquinones, miscellaneous and related compounds, besides the majority of papers describing antiplasmodial crude extracts published in the last five years not reviewed before. In addition, some perspectives and remarks on the development of new drugs and phytomedicines for malaria are succinctly discussed.

  7. The medical and surgical treatment of drug-resistant tuberculosis

    OpenAIRE

    Calligaro, Gregory L.; Moodley, Loven; Symons, Greg; Dheda, Keertan

    2014-01-01

    Multi drug-resistant tuberculosis (MDR-TB) and extensively drug-resistant TB (XDR-TB) are burgeoning global problems with high mortality which threaten to destabilise TB control programs in several parts of the world. Of alarming concern is the emergence, in large numbers, of patients with resistance beyond XDR-TB (totally drug-resistant TB; TDR-TB or extremely drug resistant TB; XXDR-TB). Given the burgeoning global phenomenon of MDR-TB, XDR-TB and TDR-TB, and increasing international migrat...

  8. PfMDR2 and PfMDR5 are dispensable for Plasmodium falciparum asexual parasite multiplication but change in vitro susceptibility to anti-malarial drugs

    NARCIS (Netherlands)

    Velden, M. van der; Rijpma, S.R.; Russel, F.G.M.; Sauerwein, R.W.; Koenderink, J.B.

    2015-01-01

    BACKGROUND: Membrane-associated ATP binding cassette (ABC) transport proteins hydrolyze ATP in order to translocate a broad spectrum of substrates, from single ions to macromolecules across membranes. In humans, members from this transport family have been linked to drug resistance phenotypes, e.g.,

  9. Young Women's Experiences of Resisting Invitations to Use Illicit Drugs

    Science.gov (United States)

    Koehn, Corinne V.; O'Neill, Linda K.

    2011-01-01

    Ten young women were interviewed regarding their experiences of resisting invitations to use illicit drugs. Hermeneutic phenomenology was used to gather and analyze information. One key theme was the motivations that inspired women to refuse drug offers. Young women resisted drug invitations because of their desires to be authentic, protect their…

  10. Evaluation of Idaho's DARE "Drug Abuse Resistance Education Projects."

    Science.gov (United States)

    Silva, Roberta K.

    The goal of DARE (Drug Abuse Resistance Education) is not to completely eliminate the drug and alcohol problems of society. It is a proactive prevention program designed to equip youth (focusing on elementary school) with skills for resisting peer pressure to experiment with drugs, and to manage anger without resorting to violence or the use of…

  11. Evaluation of Idaho's DARE "Drug Abuse Resistance Education" Projects.

    Science.gov (United States)

    Silva, Roberta K.

    The DARE (Drug Abuse Resistance Education) program teaches students decision-making skills, shows them how to resist peer pressure to experiment with drugs and alcohol, and provides positive alternatives to drug use. This report looks at one state's DARE programs. Included are an overview of the implementation process, a program appraisal with…

  12. Evaluation of the ex vivo antimalarial activity of organotin (IV) ethylphenyldithiocarbamate on erythrocytes infected with Plasmodium berghei NK 65.

    Science.gov (United States)

    Awang, Normah; Jumat, Hafizah; Ishak, Shafariatul Akmar; Kamaludin, Nurul Farahana

    2014-06-01

    Malaria is the most destructive and dangerous parasitic disease. The commonness of this disease is getting worse mainly due to the increasing resistance of Plasmodium falciparum against antimalarial drugs. Therefore, the search for new antimalarial drug is urgently needed. This study was carried out to evaluate the effects of dibutyltin (IV) ethylphenyldithiocarbamate (DBEP), diphenyltin (IV) ethylphenyldithiocarbamate (DPEP) and triphenyltin (IV) ethylphenyldithiocarbamate (TPEP) compounds as antimalarial agents. These compounds were evaluated against erythrocytes infected with Plasmodium berghei NK65 via ex vivo. Organotin (IV) ethylphenyldithiocarbamate, [R(n)Sn(C9H10NS2)(4-n)] with R = C4H9 and C6H5 for n = 2; R = C6H5 for n = 3 is chemically synthesised for its potential activities. pLDH assay was employed for determination of the concentration that inhibited 50% of the Plasmodium's activity (IC50) after 24 h treatment at concentration range of 10-0.0000001 mg mL(-1). Plasmodium berghei NK65 was cultured in vitro to determine the different morphology of trophozoite and schizont. Only DPEP and TPEP compounds have antimalarial activity towards P. berghei NK65 at IC50 0.094±0.011 and 0.892±0.088 mg mL(-1), respectively. The IC50 of DPEP and TPEP were lowest at 30% parasitemia with IC50 0.001±0.00009 and 0.0009±0.0001 mg mL(-1), respectively. In vitro culture showed that TPEP was effective towards P. berghei NK65 in trophozoite and schizont morphology with IC50 0.0001±0.00005 and 0.00009±0.00003 μg mL(-1), respectively. In conclusion, DPEP and TPEP have antimalarial effect on erythrocytes infected with P. berghei NK65 and have potential as antimalarial and schizonticidal agents. PMID:26035957

  13. Bedaquiline: A novel antitubercular drug for multidrug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    H Nagabushan

    2014-01-01

    Full Text Available Multidrug-resistant and extensively drug-resistant tuberculosis (TB are emerging global health threats. Bedaquiline is a new antituberculous drug belonging to the diarylquinoline class that efficiently inhibits the adenosine triphosphate synthase enzyme of Mycobacterium tuberculosis. It is a bactericidal and long-acting drug. It inhibits both dormant as well as replicating bacterial sub-populations and thus shortens the duration of TB treatment. This drug has been approved by the Food and Drug Administration in December 2012 for the management of multidrug resistant-TB. The drug marks the introduction of a new addition to the TB armamentarium after four decades.

  14. Within-Host Selection of Drug Resistance in a Mouse Model of Repeated Incomplete Malaria Treatment: Comparison between Atovaquone and Pyrimethamine.

    Science.gov (United States)

    Nuralitha, Suci; Siregar, Josephine E; Syafruddin, Din; Roelands, Jessica; Verhoef, Jan; Hoepelman, Andy I M; Marzuki, Sangkot

    2016-01-01

    The evolutionary selection of malaria parasites within individual hosts is an important factor in the emergence of drug resistance but is still not well understood. We have examined the selection process for drug resistance in the mouse malaria agent Plasmodium berghei and compared the dynamics of the selection for atovaquone and pyrimethamine. Resistance to these drugs has been shown to be associated with genetic lesions in the dihydrofolate reductase gene in the case of pyrimethamine and in the mitochondrial cytochrome b gene for atovaquone. A mouse malaria model for the selection of drug resistance, based on repeated incomplete treatment (RICT) with a therapeutic dose of antimalarial drugs, was established. The number of treatment cycles for the development of stable resistance to atovaquone (2.47 ± 0.70; n = 19) was found to be significantly lower than for pyrimethamine (5.44 ± 1.46; n = 16; P < 0.0001), even when the parental P. berghei Leiden strain was cloned prior to the resistance selection. Similar results were obtained with P. berghei Edinburgh. Mutational changes underlying the resistance were identified to be S110N in dihydrofolate reductase for pyrimethamine and Y268N, Y268C, Y268S, L271V-K272R, and G280D in cytochrome b for atovaquone. These results are consistent with the rate of mitochondrial DNA mutation being higher than that in the nucleus and suggest that mutation leading to pyrimethamine resistance is not a rare event. PMID:26503662

  15. Molecular modeling of the voltammetric oxidation at a glassy carbon electrode of the antimalarial drug primaquine and its prodrugs succinylprimaquine and maleylprimaquine

    International Nuclear Information System (INIS)

    The 8-aminoquinoline primaquine (PQ) is the only antimalarial drug used as tissue schizonticide and relapsing malaria. Antichagasic activity was also reported. Nevertheless, as it also shows serious side effects, prodrugs such as succinyl and maleyl derivatives have been proposed to decrease its toxicity. Although PQ mechanism of action has not been completely elucidated, the promotion of oxidative stress is an advanced hypothesis that could explain its activity in both plasmodia and trypanosome parasites. The oxidation of PQ and its prodrugs, maleylprimaquine (MPQ) and succinylprimaquine (SPQ), was studied by cyclic voltammetry using glassy carbon electrode. All compounds were oxidized in aqueous medium, with the charge transfer process being pH-dependent in acidic medium and pH-independent in a weak basic medium, being the neutral form more easily oxidized. This indicated that the protonation of the nitrogen atoms displays a determinant role in the voltammetric oxidation, being both prodrugs more easily oxidized than PQ protonated forms, in the order: SPQ < MPQ < PQ. For a better understanding of this behavior, a molecular modeling study was performed using the AM1 semi-empirical method from Spartan 04 for Linux (v.119, Wavefunction Inc.). The medium pH showed to be fundamental not only to the electronic density of the quinoline ring but also to the rearrangement of the nitrogen side chain. The electronic density of primaquine non-protonated quinoline ring is higher than that in its protonated and diprotonated species. Also, the use of prodrugs and the degree of saturation of the carriers (maleic or succinic acid) interfere with this feature. SPQ and MPQ have a slight increase in the quinoline electronic density in comparison to PQ. Nevertheless, the carrier in the side chain of SPQ is closer to the quinoline ring than it is in MPQ, which accounts for the higher electronic density in the former. The most significant effect occurs in the correspondent protonated

  16. Active case detection, treatment of falciparum malaria with combined chloroquine and sulphadoxine/pyrimethamine and vivax malaria with chloroquine and molecular markers of anti-malarial resistance in the Republic of Vanuatu

    Directory of Open Access Journals (Sweden)

    Rogers William O

    2010-04-01

    Full Text Available Abstract Background Chloroquine-resistant Plasmodium falciparum was first described in the Republic of Vanuatu in the early 1980s. In 1991, the Vanuatu Ministry of Health instituted new treatment guidelines for uncomplicated P. falciparum infection consisting of chloroquine/sulphadoxine-pyrimethamine combination therapy. Chloroquine remains the recommended treatment for Plasmodium vivax. Methods In 2005, cross-sectional blood surveys at 45 sites on Malo Island were conducted and 4,060 adults and children screened for malaria. Of those screened, 203 volunteer study subjects without malaria at the time of screening were followed for 13 weeks to observe peak seasonal incidence of infection. Another 54 subjects with malaria were followed over a 28-day period to determine efficacy of anti-malarial therapy; chloroquine alone for P. vivax and chloroquine/sulphadoxine-pyrimethamine for P. falciparum infections. Results The overall prevalence of parasitaemia by mass blood screening was 6%, equally divided between P. falciparum and P. vivax. Twenty percent and 23% of participants with patent P. vivax and P. falciparum parasitaemia, respectively, were febrile at the time of screening. In the incidence study cohort, after 2,303 person-weeks of follow-up, the incidence density of malaria was 1.3 cases per person-year with P. vivax predominating. Among individuals participating in the clinical trial, the 28-day chloroquine P. vivax cure rate was 100%. The 28-day chloroquine/sulphadoxine-pyrimethamine P. falciparum cure rate was 97%. The single treatment failure, confirmed by merozoite surface protein-2 genotyping, was classified as a day 28 late parasitological treatment failure. All P. falciparum isolates carried the Thr-76 pfcrt mutant allele and the double Asn-108 + Arg-59 dhfr mutant alleles. Dhps mutant alleles were not detected in the study sample. Conclusion Peak seasonal malaria prevalence on Malo Island reached hypoendemic levels during the study

  17. A pivot mutation impedes reverse evolution across an adaptive landscape for drug resistance in Plasmodium vivax

    OpenAIRE

    Ogbunugafor, C. Brandon; Hartl, Daniel

    2016-01-01

    Background: The study of reverse evolution from resistant to susceptible phenotypes can reveal constraints on biological evolution, a topic for which evolutionary theory has relatively few general principles. The public health catastrophe of antimicrobial resistance in malaria has brought these constraints on evolution into a practical realm, with one proposed solution: withdrawing anti-malarial medication use in high resistance settings, built on the assumption that reverse evolution occurs ...

  18. Anti-malarial activity and toxicity assessment of Himatanthus articulatus, a plant used to treat malaria in the Brazilian Amazon

    OpenAIRE

    Vale, Valdicley V; Thyago C. Vilhena; Trindade, Rafaela C Santos; Ferreira, Márlia Regina C; Percário, Sandro; Soares, Luciana F; Pereira, Washington Luiz A; Geraldo C. Brandão; Oliveira, Alaíde B; Dolabela, Maria F; De Vasconcelos, Flávio

    2015-01-01

    Background Plasmodium falciparum has become resistant to some of the available drugs. Several plant species are used for the treatment of malaria, such as Himatanthus articulatus in parts of Brazil. The present paper reports the phyto-chemistry, the anti-plasmodial and anti-malarial activity, as well as the toxicity of H. articulatus. Methods Ethanol and dichloromethane extracts were obtained from the powder of stem barks of H. articulatus and later fractionated and analysed. The anti-plasmod...

  19. Study on drug resistance of mycobacterium tuberculosis in patients with pulmonary tuberculosis by drug resistance gene detecting

    International Nuclear Information System (INIS)

    To investigate drug resistance of mycobacterium tuberculosis in different age group, compare detecting effect of two methods and evaluate their the clinical application value, all of the strains of mycobacterium tuberculosis were tested for resistance to RFP, INH SM PZA and EMB by the absolute concentration method on Lowenstein-Jensen medium and the mutation of the rpoB, katG, rpsL, pncA and embB resistance genes in M. tuberculosis was tested by PCR-SSCP. In youth, middle and old age group, the rate of acquired drug resistance was 89.2%, 85.3% and 67.6% respectively, the gene mutation rate was 76.2%, 81.3% and 63.2% respectively. The rate of acquired drug resistance and multiple drug resistance in youth group was much higher than those in other groups. The gene mutation was correlated with drug resistance level of mycobacterium tuberculosis. The gene mutation rate was higher in strains isolated from high concentration resistance than those in strains isolated from low concentration resistance. The more irregular treatment was longer, the rate of drug resistance was higher. Acquired drug resistance varies in different age group. It suggested that surveillance of drug resistence in different age group should be taken seriously, especially in youth group. PCR - SSCP is a sensitive and specific method for rapid detecting rpoB, katG, rpsL, pncA and embB genes mutations of MTB. (authors)

  20. Prediction of resistance development against drug combinations by collateral responses to component drugs

    DEFF Research Database (Denmark)

    Munck, Christian; Gumpert, Heidi; Nilsson Wallin, Annika;

    2014-01-01

    Resistance arises quickly during chemotherapeutic selection and is particularly problematic during long-term treatment regimens such as those for tuberculosis, HIV infections, or cancer. Although drug combination therapy reduces the evolution of drug resistance, drug pairs vary in their ability to...... adaptation to the component drugs. Then, using engineered E. coli strains, we confirmed that drug resistance mutations that imposed collateral sensitivity were suppressed in a drug pair growth environment. These results provide a framework for rationally selecting drug combinations that limit resistance...... do so. Thus, predictive models are needed to rationally design resistance-limiting therapeutic regimens. Using adaptive evolution, we studied the resistance response of the common pathogen Escherichia coli to 5 different single antibiotics and all 10 different antibiotic drug pairs. By analyzing the...

  1. Delamanid: A new armor in combating drug-resistant tuberculosis

    OpenAIRE

    Alphienes Stanley Xavier; Mageshwaran Lakshmanan

    2014-01-01

    Intense search has been made in the discovery of newer anti-TB drugs to tackle the issues such as drug resistance, HIV co-infection and risk of drug-drug interactions in the management of TB. Delamanid, a newer mycobacterial cell wall synthesis inhibitor, received a conditional approval from European medicines agency (EMA) for the treatment of MDR-TB. Preclinical and clinical studies have shown that delamanid has high potency, least risk for drug-drug interactions and better tolerability.

  2. Stop the Spread of Superbugs: Help Fight Drug Resistant Bacteria

    Science.gov (United States)

    ... the Spread of Superbugs Help Fight Drug-Resistant Bacteria For nearly a century, bacteria-fighting drugs known as antibiotics have helped to control and destroy many of the harmful bacteria that can make us sick. But in recent ...

  3. Nanomedicine therapeutic approaches to overcome cancer drug resistance.

    Science.gov (United States)

    Markman, Janet L; Rekechenetskiy, Arthur; Holler, Eggehard; Ljubimova, Julia Y

    2013-11-01

    Nanomedicine is an emerging form of therapy that focuses on alternative drug delivery and improvement of the treatment efficacy while reducing detrimental side effects to normal tissues. Cancer drug resistance is a complicated process that involves multiple mechanisms. Here we discuss the major forms of drug resistance and the new possibilities that nanomedicines offer to overcome these treatment obstacles. Novel nanomedicines that have a high ability for flexible, fast drug design and production based on tumor genetic profiles can be created making drug selection for personal patient treatment much more intensive and effective. This review aims to demonstrate the advantage of the young medical science field, nanomedicine, for overcoming cancer drug resistance. With the advanced design and alternative mechanisms of drug delivery known for different nanodrugs including liposomes, polymer conjugates, micelles, dendrimers, carbon-based, and metallic nanoparticles, overcoming various forms of multi-drug resistance looks promising and opens new horizons for cancer treatment. PMID:24120656

  4. Klebsiella pneumoniae Antimicrobial Drug Resistance, United States, 1998–2010

    OpenAIRE

    Sanchez, Guillermo V.; Master, Ronald N; Clark, Richard B.; Fyyaz, Madiha; Duvvuri, Padmaraj; Ekta, Gupta; Bordon, Jose

    2013-01-01

    We studied antimicrobial-resistant Klebsiella pneumoniae for 1998–2010 by using data from The Surveillance Network. Susceptibility results (n = 3,132,354) demonstrated significant increases in resistance to all antimicrobial drugs studied, except tetracycline. Cross-resistance among carbapenem-resistant K. pneumoniae was lower for tetracycline and amikacin.

  5. New Developments in Antiepileptic Drug Resistance: An Integrative View

    OpenAIRE

    Schmidt, Dieter; Löscher, Wolfgang

    2009-01-01

    Current theories on drug resistance in epilepsy include the drug transporter hypothesis, the drug target hypothesis, and a novel approach called the inherent severity model of epilepsy, which posits that the severity of the disease determines its relative response to medication. Valuable as each of these hypotheses is, none is currently a stand-alone theory that is able to convincingly explain drug resistance in human epilepsy. As a consequence, it may be of interest to update and integrate t...

  6. Bedaquiline: A novel antitubercular drug for multidrug-resistant tuberculosis

    OpenAIRE

    Nagabushan, H.; H. S. Roopadevi

    2014-01-01

    Multidrug-resistant and extensively drug-resistant tuberculosis (TB) are emerging global health threats. Bedaquiline is a new antituberculous drug belonging to the diarylquinoline class that efficiently inhibits the adenosine triphosphate synthase enzyme of Mycobacterium tuberculosis. It is a bactericidal and long-acting drug. It inhibits both dormant as well as replicating bacterial sub-populations and thus shortens the duration of TB treatment. This drug has been approved by the Food and Dr...

  7. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants

    Directory of Open Access Journals (Sweden)

    Valter F de Andrade-Neto

    2007-06-01

    Full Text Available In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae, the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae, respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae, all presented significant in vitro inhibition (more active than quinine and chloroquine of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.

  8. Inhibition of cytochrome bc1 as a strategy for single-dose, multi-stage antimalarial therapy.

    Science.gov (United States)

    Stickles, Allison M; Ting, Li-Min; Morrisey, Joanne M; Li, Yuexin; Mather, Michael W; Meermeier, Erin; Pershing, April M; Forquer, Isaac P; Miley, Galen P; Pou, Sovitj; Winter, Rolf W; Hinrichs, David J; Kelly, Jane X; Kim, Kami; Vaidya, Akhil B; Riscoe, Michael K; Nilsen, Aaron

    2015-06-01

    Single-dose therapies for malaria have been proposed as a way to reduce the cost and increase the effectiveness of antimalarial treatment. However, no compound to date has shown single-dose activity against both the blood-stage Plasmodium parasites that cause disease and the liver-stage parasites that initiate malaria infection. Here, we describe a subset of cytochrome bc1 (cyt bc1) inhibitors, including the novel 4(1H)-quinolone ELQ-400, with single-dose activity against liver, blood, and transmission-stage parasites in mouse models of malaria. Although cyt bc1 inhibitors are generally classified as slow-onset antimalarials, we found that a single dose of ELQ-400 rapidly induced stasis in blood-stage parasites, which was associated with a rapid reduction in parasitemia in vivo. ELQ-400 also exhibited a low propensity for drug resistance and was active against atovaquone-resistant P. falciparum strains with point mutations in cyt bc1. Ultimately, ELQ-400 shows that cyt bc1 inhibitors can function as single-dose, blood-stage antimalarials and is the first compound to provide combined treatment, prophylaxis, and transmission blocking activity for malaria after a single oral administration. This remarkable multi-stage efficacy suggests that metabolic therapies, including cyt bc1 inhibitors, may be valuable additions to the collection of single-dose antimalarials in current development. PMID:25918204

  9. In vitro antimalarial activity of extracts of some plants from a biological reserve in Costa Rica.

    Science.gov (United States)

    Chinchilla, Misael; Valerio, Idalia; Sánchez, Ronald; Mora, Víctor; Bagnarello, Vanessa; Martínez, Laura; Gonzalez, Antonieta; Vanegas, Juan Carlos; Apestegui, Alvaro

    2012-06-01

    Treatment with the usual antimalarial drugs, have induced parasite resistance, reinforcing the need to finding natural antimalarial components that would be found on plants from the forest. Therefore, we decided to look for these components in Costa Rican plants from a protected forest area. Fresh and dry extracts of roots, bark, leaves, flowers and fruits of 25 plants from a biological reserve in Costa Rica, Reserva Biol6gica Alberto Manuel Brenes (REBAMB), were studied in vitro for the presence of substances with antimalarial activity. By studying the inhibition of P berghei schizogony, we assessed the antimalarial activity of several plant extracts: Aphelandra aurantiaca, A. tridentata (Acanthaceae); Xanthosoma undipes (Araceae); Iriartea deltoidea (Arecaceae); Neurolaena lobata (Asteraceae); Senna papillosa, Pterocarpus hayessi, Lonchocarpus pentaphyllus (Fabaceae); Nectandra membranacea, Persea povedae, Cinamomum chavarrianum (Lauraceae); Hampea appendiculata (Malvaceae); Ruagea glabra, Guarea glabra (Meliaceae); Psidium guajava (Myrtaceae); Bocconia frutescens (Papaveraceae); Piper friedrichsthalii (Piperaceae); Clematis dioica (Ranunculaceae); Prunus annularis (Rosaceae); Siparuna thecaphora (Siparunaceae); Solanum arboreum, Witheringia solanacea (Solanaceae); Ticodendrum incognitum (Ticodendraceae); Heliocarpus appendiculatus (Tiliaceae) and Myriocarpa longipes (Urticaceae). We used different parts of the plants as well as fresh and dried extracts for testing IC50. The solid content of the extracts ranged from 1-71.9 microg/mL. The fresh extracts showed stronger activity than the dry ones. Since the plants showing the strongest antimalarial activity are very common in Central America, and some similar genera of these plants have shown positives results in South America, we considered important to present these findings for discussion. On the other hand, this is the first systematic study of this kind ever realized in a circumscribed and protected area of

  10. Competitive release of drug resistance following drug treatment of mixed Plasmodium chabaudi infections

    OpenAIRE

    Read Andrew F; Bell Andrew S; Culleton Richard; de Roode Jacobus C

    2004-01-01

    Abstract Background Malaria infections are often genetically diverse, potentially leading to competition between co-infecting strains. Such competition is of key importance in the spread of drug resistance. Methods The effects of drug treatment on within-host competition were studied using the rodent malaria Plasmodium chabaudi. Mice were infected simultaneously with a drug-resistant and a drug-sensitive clone and were then either drug-treated or left untreated. Transmission was assessed by f...

  11. Public health implications of antiretroviral therapy and HIV drug resistance.

    Science.gov (United States)

    Wainberg, M A; Friedland, G

    1998-06-24

    Widespread use of antiretroviral agents and increasing occurrence of human immunodeficiency virus (HIV) strains resistant to these drugs have given rise to a number of important issues. Some of these concerns are distinct from the obvious question of the relationship between drug resistance and treatment failure and have potentially widespread public health implications. The relevant issues include but are not limited to the following: (1) frequency with which drug-resistant virus may be transmitted via sexual, intravenous, or mother-to-child routes; (2) ability of drug-resistant variants to be transmitted, a question that relates, in part, to the relative fitness of such strains; (3) effectiveness of antiviral therapy in diminishing viral burden in both blood and genital secretions, and whether this may be compromised in persons harboring resistant virus; and (4) importance of patient adherence to antiviral therapy and its relationship to sustained reduction in viral load to minimize the appearance in and transmission of drug-resistant virus from both blood and genital secretions. Thus, prevention of both development of HIV drug resistance as well as transmission of drug-resistant variants is a central issue of public health importance. Unless this topic is appropriately addressed, the likelihood is that drug-resistant variants of HIV, if able to successfully replicate, will sustain the epidemic and limit the effectiveness of antiviral therapy. PMID:9643862

  12. Explaining risk factors for drug-resistant tuberculosis in England and Wales: contribution of primary and secondary drug resistance

    OpenAIRE

    Conaty, S. J.; Hayward, A. C.; Story, A; Glynn, J.R.; Drobniewski, F A; Watson, J.M.

    2004-01-01

    Drug-resistant tuberculosis can be transmitted (primary) or develop during the course of treatment (secondary). We investigated risk factors for each type of resistance. We compared all patients in England and Wales with isoniazid- and multidrug-resistant tuberculosis in two time-periods (1993-1994 and 1998-2000) with patients with fully sensitive tuberculosis, examining separately patients without and with previous tuberculosis (a proxy for primary and secondary drug-resistant tuberculosis)....

  13. Antimalarial activity of Malaysian Plectranthus amboinicus against Plasmodium berghei

    Directory of Open Access Journals (Sweden)

    Norazsida Ramli

    2014-01-01

    Full Text Available Context: Malaria is a mosquito-borne disease caused by parasitic protozoa from the genus of Plasmodium. The protozoans have developed resistance against many of current drugs. It is urgent to find an alternative source of new antimalarial agent. In the effort to discover new antimalarial agents, this research has been conducted on Plectranthus amboinicus. Aims: This study was conducted to evaluate the toxicity and antiplasmodial properties of P. amboinicus. Materials and Methods: Acute oral toxicity dose at 5000 mg/kg was conducted to evaluate the safety of this extract. Twenty mice were divided into control and experimental group. All the mice were observed for signs of toxicity, mortality, weight changes and histopathological changes. Antimalarial activity of different extract doses of 50, 200, 400 and 1000 mg/kg were tested in vivo against Plasmodium berghei infections in mice (five mice for each group during early, established and residual infections. Results: The acute oral toxicity test revealed that no mortality or evidence of adverse effects was seen in the treated mice. The extract significantly reduced the parasitemia by the 50 (P = 0.000, 200 (P = 0.000 and 400 mg/kg doses (P = 0.000 in the in vivo prophylactic assay. The percentage chemo-suppression was calculated as 83.33% for 50 mg/kg dose, 75.62% for 200 mg/kg dose and 90.74% for 400 mg/kg dose. Body weight of all treated groups; T1, T2, T3 and T4 also showed enhancement after 7 days posttreatment. Statistically no reduction of parasitemia calculated for curative and suppressive test. Conclusion: Thus, this extract may give a promising agent to be used as a prophylactic agent of P. berghei infection.

  14. Effect of radiation decontamination on drug-resistant bacteria

    International Nuclear Information System (INIS)

    More than 80% of food poisoning bacteria such as Salmonella are reported as antibiotic-resistant to at least one type antibiotic, and more than 50% as resistant to two or more. For the decontamination of food poisoning bacteria in foods, radiation resistibility on drug-resistant bacteria were investigated compared with drug-sensitive bacteria. Possibility on induction of drug-resistant mutation by radiation treatment was also investigated. For these studies, type strains of Escherichia coli S2, Salmonella enteritidis YK-2 and Staphylococcus aureus H12 were used to induce drug-resistant strains with penicillin G. From the study of radiation sensitivity on the drug-resistant strain induced from E. coli S2, D10 value was obtained to be 0.20 kGy compared with 0.25 kGy at parent strain. On S. enteritidis YK-2, D10 value was obtained to be 0.14 kGy at drug-resistant strain compared with 0.16 kGy at parent strain. D10 value was also obtained to be 0.15 kGy at drug-resistant strain compared with 0.21 kGy at parent strain of St. aureus H12. Many isolates of E. coli 157:H7 or other type of E. coli from meats such as beef were resistant to penicillin G, and looked to be no relationship on radiation resistivities between drug-resistant strains and sensitive strains. On the study of radiation sensitivity on E. coli S2 at plate agars containing antibiotics, higher survival fractions were obtained at higher doses compared with normal plate agar. The reason of higher survival fractions at higher doses on plate agar containing antibiotics should be recovery of high rate of injured cells by the relay of cell division, and drug-resistant strains by mutation are hardly induced by irradiation. (author)

  15. Basigin is a druggable target for host-oriented antimalarial interventions.

    Science.gov (United States)

    Zenonos, Zenon A; Dummler, Sara K; Müller-Sienerth, Nicole; Chen, Jianzhu; Preiser, Peter R; Rayner, Julian C; Wright, Gavin J

    2015-07-27

    Plasmodium falciparum is the parasite responsible for the most lethal form of malaria, an infectious disease that causes a large proportion of childhood deaths and poses a significant barrier to socioeconomic development in many countries. Although antimalarial drugs exist, the repeated emergence and spread of drug-resistant parasites limit their useful lifespan. An alternative strategy that could limit the evolution of drug-resistant parasites is to target host factors that are essential and universally required for parasite growth. Host-targeted therapeutics have been successfully applied in other infectious diseases but have never been attempted for malaria. Here, we report the development of a recombinant chimeric antibody (Ab-1) against basigin, an erythrocyte receptor necessary for parasite invasion as a putative antimalarial therapeutic. Ab-1 inhibited the PfRH5-basigin interaction and potently blocked erythrocyte invasion by all parasite strains tested. Importantly, Ab-1 rapidly cleared an established P. falciparum blood-stage infection with no overt toxicity in an in vivo infection model. Collectively, our data demonstrate that antibodies or other therapeutics targeting host basigin could be an effective treatment for patients infected with multi-drug resistant P. falciparum. PMID:26195724

  16. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin

    Directory of Open Access Journals (Sweden)

    Swain Bijay K

    2009-02-01

    Full Text Available Abstract Background Herbal extracts of Andrographis paniculata (AP and Hedyotis corymbosa (HC are known as hepato-protective and fever-reducing drugs since ancient time and they have been used regularly by the people in the south Asian sub-continent. Methanolic extracts of these two plants were tested in vitro on choloroquine sensitive (MRC-pf-20 and resistant (MRC-pf-303 strains of Plasmodium falciparum for their anti-malarial activity. Methods Growth inhibition was determined using different concentrations of these plant extracts on synchronized P. falciparum cultures at the ring stage. The interactions between these two plant extracts and individually with curcumin were studied in vitro. The performance of these two herbal extracts in isolation and combination were further evaluated in vivo on Balb/c mice infected with Plasmodium berghei ANKA and their efficacy was compared with that of curcumin. The in vivo toxicity of the plant derived compounds as well as their parasite stage-specificity was studied. Results The 50% inhibitory concentration (IC50 of AP (7.2 μg/ml was found better than HC (10.8 μg/ml. Combination of these two herbal drugs showed substantial enhancement in their anti-malarial activity. Combinatorial effect of each of these with curcumin also revealed anti-malarial effect. Additive interaction between the plant extracts (AP + HC and their individual synergism with curcumin (AP+CUR, HC+CUR were evident from this study. Increased in vivo potency was also observed with the combination of plant extracts over the individual extracts and curcumin. Both the plant extracts were found to inhibit the ring stage of the parasite and did not show any in vivo toxicity, whether used in isolation or in combination. Conclusion Both these two plant extracts in combination with curcumin could be an effective, alternative source of herbal anti-malarial drugs.

  17. Combined antiretroviral and anti-tuberculosis drug resistance following incarceration

    OpenAIRE

    Stott, K E; de Oliviera, T; Lessells, R.J.

    2013-01-01

    We describe a case of HIV/tuberculosis (TB) co-infection from KwaZulu-Natal, South Africa, characterised by drug resistance in both pathogens. The development of drug resistance was linked temporally to two periods of incarceration. This highlights the urgent need for improved integration of HIV/TB control strategies within prison health systems and within the broader public health framework.

  18. Adaptation and evolution of drug-resistant Mycobacterium tuberculosis

    NARCIS (Netherlands)

    I.L. Bergval

    2013-01-01

    Many studies have been conducted on drug resistance and the evolution of Mycobacterium tuberculosis. Notwithstanding, many molecular mechanisms facilitating the emergence, adaptation and spread of drug-resistant tuberculosis have yet to be discovered. This thesis reports studies of the adaptive mech

  19. In vitro assessment of drug resistance in Plasmodium falciparum in five States of India

    OpenAIRE

    Anvikar, Anupkumar R.; Sharma, Bhawna; Sharma, S. K.; S.K. GHOSH; Bhatt, R. M.; Kumar, Ashwani; Mohanty, S.S.; Pillai, C. R.; A. P. Dash; Valecha, Neena

    2012-01-01

    Background & objectives: In vitro assays are an important tool to assess baseline sensitivity and monitor the drug response of Plasmodium falciparum over time and place and, therefore, can provide background information for the development and evaluation of drug policies. This study was aimed at determining the in vitro sensitivity of P. falciparum isolates to antimalarials. Methods: The in vitro activity of 108 P. falciparum isolates obtained from five States of India was evaluated using WHO...

  20. Modeling the Impact of Intermittent Preventative Treatment on the Spread of Drug-Resistant Malaria

    OpenAIRE

    Prudhomme O'Meara, Wendy; Smith, David L; McKenzie, F. Ellis

    2006-01-01

    Background Treatment of asymptomatic individuals, regardless of their malaria infection status, with regularly spaced therapeutic doses of antimalarial drugs has been proposed as a method for reducing malaria morbidity and mortality. This strategy, called intermittent preventive treatment (IPT), is currently employed for pregnant women and is being studied for infants (IPTi) as well. As with any drug-based intervention strategy, it is important to understand how implementation may affect the ...

  1. Molecular epidemiology of drug-resistant malaria in western Kenya highlands

    OpenAIRE

    Menge David M; Cui Liwang; Githeko Andrew; Afrane Yaw; Zhong Daibin; Yan Guiyun

    2008-01-01

    Abstract Background Since the late 1980s a series of malaria epidemics has occurred in western Kenya highlands. Among the possible factors that may contribute to the highland malaria epidemics, parasite resistance to antimalarials has not been well investigated. Methods Using parasites from highland and lowland areas of western Kenya, we examined key mutations associated with Plasmodium falciparum resistance to sulfadoxine – pyrimethamine and chloroquine, including dihydrofolate reductase (pf...

  2. Development and evaluation of a solid oral dosage form for an artesunate and mefloquine drug combination / Abel Hermanus van der Watt

    OpenAIRE

    Van der Watt, Abel Hermanus

    2014-01-01

    Malaria affects about forty percent of the world’s population. Annually more than 1.5 million fatalities due to malaria occur and parasite resistance to existing antimalarial drugs such as mefloquine has already reached disturbingly high levels in South-East Asia and on the African continent. Consequently, there is a dire need for new drugs or formulations in the prophylaxis and treatment of malaria. Artesunate, an artemisinin derivative, represents a new category of antimalarials that is eff...

  3. Improving Viral Protease Inhibitors to Counter Drug Resistance.

    Science.gov (United States)

    Kurt Yilmaz, Nese; Swanstrom, Ronald; Schiffer, Celia A

    2016-07-01

    Drug resistance is a major problem in health care, undermining therapy outcomes and necessitating novel approaches to drug design. Extensive studies on resistance to viral protease inhibitors, particularly those of HIV-1 and hepatitis C virus (HCV) protease, revealed a plethora of information on the structural and molecular mechanisms underlying resistance. These insights led to several strategies to improve viral protease inhibitors to counter resistance, such as exploiting the essential biological function and leveraging evolutionary constraints. Incorporation of these strategies into structure-based drug design can minimize vulnerability to resistance, not only for viral proteases but for other quickly evolving drug targets as well, toward designing inhibitors one step ahead of evolution to counter resistance with more intelligent and rational design. PMID:27090931

  4. In vitro and in vivo characterization of the antimalarial lead compound SSJ-183 in Plasmodium models

    Directory of Open Access Journals (Sweden)

    Schleiferböck S

    2013-11-01

    Full Text Available Sarah Schleiferböck,1,2 Christian Scheurer,1,2 Masataka Ihara,3,4 Isamu Itoh,3,4 Ian Bathurst,5,† Jeremy N Burrows,5 Pascal Fantauzzi,5 Julie Lotharius,5 Susan A Charman,6 Julia Morizzi,6 David M Shackleford,6 Karen L White,6 Reto Brun,1,2 Sergio Wittlin1,21Swiss Tropical and Public Health Institute, Basel, 2University of Basel, Basel, Switzerland; 3Drug Discovery Science Research Center, Hoshi University, Shinagawa, Tokyo, Japan; 4Synstar Japan Co, Ltd, Odawara, Japan; 5Medicines for Malaria Venture, Geneva, Switzerland; 6Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia †Ian Bathurst passed away on 26 June 2011Abstract: The objective of this work was to characterize the in vitro (Plasmodium falciparum and in vivo (Plasmodium berghei activity profile of the recently discovered lead compound SSJ-183. The molecule showed in vitro a fast and strong inhibitory effect on growth of all P. falciparum blood stages, with a tendency to a more pronounced stage-specific action on ring forms at low concentrations. Furthermore, the compound appeared to be equally efficacious on drug-resistant and drug-sensitive parasite strains. In vivo, SSJ-183 showed a rapid onset of action, comparable to that seen for the antimalarial drug artesunate. SSJ-183 exhibited a half-life of about 10 hours and no significant differences in absorption or exposure between noninfected and infected mice. SSJ-183 appears to be a promising new lead compound with an attractive antimalarial profile.Keywords: antimalarial studies, cross-resistance, stage-specificity, Plasmodium falciparum

  5. Multi drug resistance tuberculosis: pattern seen in last 13 years

    International Nuclear Information System (INIS)

    Background: Drug resistance in tuberculosis is a serious problem throughout the world especially, after the emergence of multi drug resistant TB strains. Objectives: To estimate drug resistance in TB patients and compare it with previous studies to see the changing trends. Materials and Methods: The PMRC Research Centre receives sputum samples from all the leading hospitals of Lahore. This retrospective analysis was done from 1996 to 2008 on the multi drug resistant TB strains that were seen during these years. Five first lines anti tuberculosis drugs were tested on Lowenstein Jensen medium using standard proportion method. Results: A total of 2661 confirmed isolates of Mycobacterium tuberculosis were seen over the past 13 years. Of the total, 2182 were pulmonary and 479 were extra pulmonary specimens. The patients comprised of those with and without history of previous treatment. These specimens were subjected to drug susceptibility testing. Almost half of the patient had some resistance; multiple drug resistance was seen in 12.3% and 23.0% cases without and with history of previous treatment respectively. Overall resistance to rifampicin was 26.4%, isoniazid 24.1% streptomycin 21.6% ethambutol 13.4% and pyrazinamide 28.4% respectively. Statistically significant difference was seen between primary and acquired resistance. When compared with the reports from previous studies from the same area, there was a trend of gradual increase of drug resistance. Conclusions Resistance to anti tuberculosis drugs is high. Policy message. TB Control Program should start 'DOTS Plus' schemes for which drug susceptibility testing facilities should be available for correctly managing the patients. (author)

  6. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Guillaume Chevereau

    Full Text Available The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the "morbidostat", a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations-an almost paradoxical behavior since this drug causes DNA damage and increases the mutation

  7. Survival probability of drug resistant mutants in malaria parasites.

    OpenAIRE

    Mackinnon, M. J.

    1997-01-01

    This study predicts the ultimate probability of survival of a newly arisen drug resistant mutant in a population of malaria parasites, with a view to understanding what conditions favour the evolution of drug resistance. Using branching process theory and a population genetics transmission model, the probabilities of survival of one- and two-locus new mutants are calculated as functions of the degree of drug pressure, the mean and variation in transmission rate, and the degree of natural sele...

  8. Dynamics of immune response and drug resistance in malaria infection

    OpenAIRE

    Gurarie David; McKenzie F Ellis

    2006-01-01

    Abstract Background Malaria parasites that concurrently infect a host compete on the basis of their intrinsic growth rates and by stimulating cross-reactive immune responses that inhibit each others' growth. If the phenotypes also show different drug sensitivities ('sensitive' vs. 'resistant' strains), drug treatment can change their joint dynamics and the long-term outcome of the infection: most obviously, persistent drug pressure can permit the more resistant, but otherwise competitively-in...

  9. Efflux-Mediated Drug Resistance in Bacteria: an Update

    OpenAIRE

    Li, Xian-Zhi; Nikaido, Hiroshi

    2009-01-01

    Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome although they can also be plasmid-encoded. A previous article (Li X-Z and Nikaido H, Drugs, 2004; 64[2]: 159–204) had provided a comprehensive review regarding efflux-mediated drug resistance in bac...

  10. Overcome Cancer Cell Drug Resistance Using Natural Products

    Directory of Open Access Journals (Sweden)

    Pu Wang

    2015-01-01

    Full Text Available Chemotherapy is one of the major treatment methods for cancer. However, failure in chemotherapy is not uncommon, mainly due to dose-limiting toxicity associated with drug resistance. Management of drug resistance is important towards successful chemotherapy. There are many reports in the Chinese literature that natural products can overcome cancer cell drug resistance, which deserve sharing with scientific and industrial communities. We summarized the reports into four categories: (1 in vitro studies using cell line models; (2 serum pharmacology; (3 in vivo studies using animal models; and (4 clinical studies. Fourteen single compounds were reported to have antidrug resistance activity for the first time. In vitro, compounds were able to overcome drug resistance at nontoxic or subtoxic concentrations, in a dose-dependent manner, by inhibiting drug transporters, cell detoxification capacity, or cell apoptosis sensitivity. Studies in vivo showed that single compounds, herbal extract, and formulas had potent antidrug resistance activities. Importantly, many single compounds, herbal extracts, and formulas have been used clinically to treat various diseases including cancer. The review provides comprehensive data on use of natural compounds to overcome cancer cell drug resistance in China, which may facilitate the therapeutic development of natural products for clinical management of cancer drug resistance.

  11. Shigella Antimicrobial Drug Resistance Mechanisms, 2004–2014

    Science.gov (United States)

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert

    2016-01-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004–2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis. PMID:27191035

  12. Shigella Antimicrobial Drug Resistance Mechanisms, 2004-2014.

    Science.gov (United States)

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert; Stephan, Roger

    2016-06-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004-2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis. PMID:27191035

  13. Mycobacterium tuberculosis resistance to antituberculosis drugs in Mozambique

    Directory of Open Access Journals (Sweden)

    Germano Manuel Pires

    2014-04-01

    Full Text Available OBJECTIVE: To determine the drug resistance profile of Mycobacterium tuberculosis in Mozambique. METHODS: We analyzed secondary data from the National Tuberculosis Referral Laboratory, in the city of Maputo, Mozambique, and from the Beira Regional Tuberculosis Referral Laboratory, in the city of Beira, Mozambique. The data were based on culture-positive samples submitted to first-line drug susceptibility testing (DST between January and December of 2011. We attempted to determine whether the frequency of DST positivity was associated with patient type or provenance. RESULTS: During the study period, 641 strains were isolated in culture and submitted to DST. We found that 374 (58.3% were resistant to at least one antituberculosis drug and 280 (43.7% were resistant to multiple antituberculosis drugs. Of the 280 multidrug-resistant tuberculosis cases, 184 (65.7% were in previously treated patients, most of whom were from southern Mozambique. Two (0.71% of the cases of multidrug-resistant tuberculosis were confirmed to be cases of extensively drug-resistant tuberculosis. Multidrug-resistant tuberculosis was most common in males, particularly those in the 21-40 year age bracket. CONCLUSIONS: M. tuberculosis resistance to antituberculosis drugs is high in Mozambique, especially in previously treated patients. The frequency of M. tuberculosis strains that were resistant to isoniazid, rifampin, and streptomycin in combination was found to be high, particularly in samples from previously treated patients.

  14. Enhanced Transmission of Drug-Resistant Parasites to Mosquitoes following Drug Treatment in Rodent Malaria

    OpenAIRE

    Bell, Andrew S.; Huijben, Silvie; Paaijmans, Krijn P.; Sim, Derek G.; Chan, Brian H. K.; Nelson, William A.; Read, Andrew F.

    2012-01-01

    The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasm...

  15. Bedaquiline: A novel drug to combat multiple drug-resistant tuberculosis

    OpenAIRE

    Divya Goel

    2014-01-01

    Tuberculosis (TB) is among the most common infectious diseases and continues as a major global health problem. The scenario is worsened by the emergence and spread of multiple drug-resistant tuberculosis (MDR-TB) and extensive drug-resistant tuberculosis (XDR-TB). Cure rates are high for drug sensitive strains of Myobacterium tuberculosis if treatment protocols are adhered to, but treatment of MDR-TB and extensive drug drug-resistant strains is virtually impossible. The treatment of MDR-TB an...

  16. Current therapies and future possibilities for drug development against liver-stage malaria.

    Science.gov (United States)

    Raphemot, Rene; Posfai, Dora; Derbyshire, Emily R

    2016-06-01

    Malaria remains a global public health threat, with half of the world's population at risk. Despite numerous efforts in the past decade to develop new antimalarial drugs to surmount increasing resistance to common therapies, challenges remain in the expansion of the current antimalarial arsenal for the elimination of this disease. The requirement of prophylactic and radical cure activities for the next generation of antimalarial drugs demands that new research models be developed to support the investigation of the elusive liver stage of the malaria parasite. In this Review, we revisit current antimalarial therapies and discuss recent advances for in vitro and in vivo malaria research models of the liver stage and their importance in probing parasite biology and the discovery of novel drug candidates. PMID:27249674

  17. Totally drug-resistant tuberculosis and adjunct therapies.

    Science.gov (United States)

    Parida, S K; Axelsson-Robertson, R; Rao, M V; Singh, N; Master, I; Lutckii, A; Keshavjee, S; Andersson, J; Zumla, A; Maeurer, M

    2015-04-01

    The first cases of totally drug-resistant (TDR) tuberculosis (TB) were reported in Italy 10 years ago; more recently, cases have also been reported in Iran, India and South Africa. Although there is no consensus on terminology, it is most commonly described as 'resistance to all first- and second-line drugs used to treat TB'. Mycobacterium tuberculosis (M.tb) acquires drug resistance mutations in a sequential fashion under suboptimal drug pressure due to monotherapy, inadequate dosing, treatment interruptions and drug interactions. The treatment of TDR-TB includes antibiotics with disputed or minimal effectiveness against M.tb, and the fatality rate is high. Comorbidities such as diabetes and infection with human immunodeficiency virus further impact on TB treatment options and survival rates. Several new drug candidates with novel modes of action are under late-stage clinical evaluation (e.g., delamanid, bedaquiline, SQ109 and sutezolid). 'Repurposed' antibiotics have also recently been included in the treatment of extensively drug resistant TB. However, because of mutations in M.tb, drugs will not provide a cure for TB in the long term. Adjunct TB therapies, including therapeutic vaccines, vitamin supplementation and/or repurposing of drugs targeting biologically and clinically relevant molecular pathways, may achieve better clinical outcomes in combination with standard chemotherapy. Here, we review broader perspectives of drug resistance in TB and potential adjunct treatment options. PMID:24809736

  18. Antimalarial activity of some Colombian medicinal plants

    OpenAIRE

    Garavito, G. (G.); Rincon, J.; Arteaga, L.; Hata, Y; Bourdy, Geneviève; Gimenez, A.; Pinzon, R.; Deharo, Eric

    2006-01-01

    Antimalarial activity of 10 vegetal extracts (9 ethanolic extracts and 1 crude alkaloid extract), obtained from eight species traditionally used in Colombia to treat malaria symptoms, was evaluated in culture using Plasmodium falciparum chloroquine resistant (FcB2) strain and in vivo on rodent malaria Plasmodium berghei. The activity on ferriprotoporphyrin biomineralization inhibition test (FBIT) was also assessed. Against Plasmodium falciparum, eight extracts displayed good activity Abuta gr...

  19. Antimicrobial (Drug) Resistance: Methicillin-Resistant Staphylococcus aureus (MRSA)

    Science.gov (United States)

    ... Marketing Share this: Main Content Area Methicillin-Resistant Staphylococcus aureus (MRSA) During the past four decades, methicillin-resistant Staphylococcus aureus , or MRSA, has evolved from a controllable ...

  20. Drug-resistance mechanisms and prevalence of Enterobacter cloacae resistant to multi-antibiotics

    Institute of Scientific and Technical Information of China (English)

    张杰; 顾怡明; 俞云松; 周志慧; 杜小玲

    2004-01-01

    @@The main drug-resistance mechanism of gram-negative bacteria is producing β-lactamases. Two kinds of enzymes cause drug resistance by hydrolyzing oxyimino-cephalosporins and aztreonam: one is chromosomally encoded AmpC β-lactamases, the other is plasmid-mediated extended-spectrum β-lactamases (ESBLs). Enterobacter cloacae can produce both of them, so that these strains are seriously resistance to many antibiotics. In order to study the main drug-resistant mechanism in Enterobacter cloacae, PCR and nucleotide sequencing were performed on 58 multidrug resistant strains.

  1. Synthesis and evaluation of antimalarial activity of curcumin derivatives

    International Nuclear Information System (INIS)

    ne of the main challenges in the development of new antimalarial drugs is to achieve a viable lead candidate with good pharmacokinetic properties. Curcumin has a broad range of biological activities, including antimalarial activity. Herein, we report the antimalarial activity of six curcumin derivatives (6-12) and an initial analysis of their pharmacokinetic properties. Five compounds have demonstrated potent activity against the P. falciparum in vitro (IC50 values ranging from 1.7 to 15.2 μg mL-1), with moderate or low cytotoxicity against the HeLa cell line. The substitution of the carbonyl group in 6 by a 2,4-dinitrophenylhydrazone group (to afford 11) increases the Selective Index. These preliminary results indicate curcumin derivatives as potential antimalarial compounds. (author)

  2. Fitness of Leishmania donovani parasites resistant to drug combinations.

    Directory of Open Access Journals (Sweden)

    Raquel García-Hernández

    2015-04-01

    Full Text Available Drug resistance represents one of the main problems for the use of chemotherapy to treat leishmaniasis. Additionally, it could provide some advantages to Leishmania parasites, such as a higher capacity to survive in stress conditions. In this work, in mixed populations of Leishmania donovani parasites, we have analyzed whether experimentally resistant lines to one or two combined anti-leishmanial drugs better support the stress conditions than a susceptible line expressing luciferase (Luc line. In the absence of stress, none of the Leishmania lines showed growth advantage relative to the other when mixed at a 1:1 parasite ratio. However, when promastigotes from resistant lines and the Luc line were mixed and exposed to different stresses, we observed that the resistant lines are more tolerant of different stress conditions: nutrient starvation and heat shock-pH stress. Further to this, we observed that intracellular amastigotes from resistant lines present a higher capacity to survive inside the macrophages than those of the control line. These results suggest that resistant parasites acquire an overall fitness increase and that resistance to drug combinations presents significant differences in their fitness capacity versus single-drug resistant parasites, particularly in intracellular amastigotes. These results contribute to the assessment of the possible impact of drug resistance on leishmaniasis control programs.

  3. HIV resistance testing and detected drug resistance in Europe

    DEFF Research Database (Denmark)

    Schultze, Anna; Phillips, Andrew N; Paredes, Roger;

    2015-01-01

    calculated using logistic regression with generalized estimating equations. RESULTS: Compared to 74.2% of ART-experienced individuals in 1997, only 5.1% showed evidence of virological failure in 2012. The odds of resistance testing declined after 2004 (global P < 0.001). Resistance was detected in 77.9% of......OBJECTIVES: To describe regional differences and trends in resistance testing among individuals experiencing virological failure and the prevalence of detected resistance among those individuals who had a genotypic resistance test done following virological failure. DESIGN: Multinational cohort...... study. METHODS: Individuals in EuroSIDA with virological failure (>1 RNA measurement >500 on ART after >6 months on ART) after 1997 were included. Adjusted odds ratios (aORs) for resistance testing following virological failure and aORs for the detection of resistance among those who had a test were...

  4. Delamanid: A new armor in combating drug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    Alphienes Stanley Xavier

    2014-01-01

    Full Text Available Intense search has been made in the discovery of newer anti-TB drugs to tackle the issues such as drug resistance, HIV co-infection and risk of drug-drug interactions in the management of TB. Delamanid, a newer mycobacterial cell wall synthesis inhibitor, received a conditional approval from European medicines agency (EMA for the treatment of MDR-TB. Preclinical and clinical studies have shown that delamanid has high potency, least risk for drug-drug interactions and better tolerability.

  5. Compound antimalarial ethosomal cataplasm: preparation, evaluation, and mechanism of penetration enhancement

    OpenAIRE

    Shen S; Liu SZ; Zhang YS; Du MB; Liang AH; Song LH; Ye ZG

    2015-01-01

    Shuo Shen, Shu-Zhi Liu, Yu-Shi Zhang, Mao-Bo Du, Ai-Hua Liang, Li-Hua Song, Zu-Guang Ye Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China Abstract: Malaria is still a serious public health problem in some parts of the world. The problems of recurrence and drug resistance are increasingly more serious. Thus, it is necessary to develop a novel antimalarial agent. The objectives of this study were to construct a novel ...

  6. Bedaquiline for the treatment of drug-resistant tuberculosis.

    Science.gov (United States)

    Bélard, Sabine; Heuvelings, Charlotte C; Janssen, Saskia; Grobusch, Martin P

    2015-05-01

    Bedaquiline is a much-needed novel drug which is highly effective against drug-resistant tuberculosis. While its clinical development has been laudably fast-tracked and the drug is now available for inclusion into treatment regimens when no suitable alternatives exist, clinical experience with bedaquiline is still limited. Phase III trial data and Phase IV studies are needed particularly to study different patient populations and to optimize treatment regimens. Drug resistance to bedaquiline needs to be monitored carefully, and full access to bedaquiline treatment where it is appropriate and needed must be promoted. PMID:25797824

  7. Drug-resistant epilepsy associated with cortical dysplasias

    Directory of Open Access Journals (Sweden)

    I. E. Poverennova

    2013-12-01

    Full Text Available Epilepsy associated with malformations of the cerebral cortex is reported in the literature to account for up to 25% of the total cases of symptomatic epilepsies. It is characterized by the most severe course and often induces drug-resistance in seizures. A group of patients with resistant seizures is singled out among the total number of patients with symptomatic epilepsy caused by cerebral cortical dysgenesis. The most important risk factors for resistance are identified in dysplasias. The prognostically unfavorable clinical features of epilepsy are described. A diagnostic algorithm is proposed to identify risk groups and to prevent drug-resistant forms of epilepsy.

  8. Extensive Drug Resistance Acquired During Treatment of Multidrug-Resistant Tuberculosis

    Science.gov (United States)

    Cegielski, J. Peter; Dalton, Tracy; Yagui, Martin; Wattanaamornkiet, Wanpen; Volchenkov, Grigory V.; Via, Laura E.; Van Der Walt, Martie; Tupasi, Thelma; Smith, Sarah E.; Odendaal, Ronel; Leimane, Vaira; Kvasnovsky, Charlotte; Kuznetsova, Tatiana; Kurbatova, Ekaterina; Kummik, Tiina; Kuksa, Liga; Kliiman, Kai; Kiryanova, Elena V.; Kim, HeeJin; Kim, Chang-ki; Kazennyy, Boris Y.; Jou, Ruwen; Huang, Wei-Lun; Ershova, Julia; Erokhin, Vladislav V.; Diem, Lois; Contreras, Carmen; Cho, Sang Nae; Chernousova, Larisa N.; Chen, Michael P.; Caoili, Janice Campos; Bayona, Jaime; Akksilp, Somsak; Calahuanca, Gloria Yale; Wolfgang, Melanie; Viiklepp, Piret; Vasilieva, Irina A.; Taylor, Allison; Tan, Kathrine; Suarez, Carmen; Sture, Ingrida; Somova, Tatiana; Smirnova, Tatyana G.; Sigman, Erika; Skenders, Girts; Sitti, Wanlaya; Shamputa, Isdore C.; Riekstina, Vija; Pua, Kristine Rose; Therese, M.; Perez, C.; Park, Seungkyu; Norvaisha, Inga; Nemtsova, Evgenia S.; Min, Seonyeong; Metchock, Beverly; Levina, Klavdia; Lei, Yung-Chao; Lee, Jongseok; Larionova, Elena E.; Lancaster, Joey; Jeon, Doosoo; Jave, Oswaldo; Khorosheva, Tatiana; Hwang, Soo Hee; Huang, Angela Song-En; Gler, M. Tarcela; Dravniece, Gunta; Eum, Seokyong; Demikhova, Olga V.; Degtyareva, Irina; Danilovits, Manfred; Cirula, Anda; Cho, Eunjin; Cai, Ying; Brand, Jeanette; Bonilla, Cesar; Barry, Clifton E.; Asencios, Luis; Andreevskaya, Sofia N.; Akksilp, Rattanawadee

    2014-01-01

    Background. Increasing access to drugs for the treatment of multidrug-resistant (MDR) tuberculosis is crucial but could lead to increasing resistance to these same drugs. In 2000, the international Green Light Committee (GLC) initiative began to increase access while attempting to prevent acquired resistance. Methods. To assess the GLC's impact, we followed adults with pulmonary MDR tuberculosis from the start to the end of treatment with monthly sputum cultures, drug susceptibility testing, and genotyping. We compared the frequency and predictors of acquired resistance to second-line drugs (SLDs) in 9 countries that volunteered to participate, 5 countries that met GLC criteria, and 4 countries that did not apply to the GLC. Results. In total, 832 subjects were enrolled. Of those without baseline resistance to specific SLDs, 68 (8.9%) acquired extensively drug-resistant (XDR) tuberculosis, 79 (11.2%) acquired fluoroquinolone (FQ) resistance, and 56 (7.8%) acquired resistance to second-line injectable drugs (SLIs). The relative risk (95% confidence interval [CI]) of acquired resistance was lower at GLC-approved sites: 0.27 (.16–.47) for XDR tuberculosis, 0.28 (.17–.45) for FQ, and 0.15 (.06–.39) to 0.60 (.34–1.05) for 3 different SLIs. The risk increased as the number of potentially effective drugs decreased. Controlling for baseline drug resistance and differences between sites, the odds ratios (95% CIs) were 0.21 (.07–.62) for acquired XDR tuberculosis and 0.23 (.09–.59) for acquired FQ resistance. Conclusions. Treatment of MDR tuberculosis involves substantial risk of acquired resistance to SLDs, increasing as baseline drug resistance increases. The risk was significantly lower in programs documented by the GLC to meet specific standards. PMID:25057101

  9. Bedaquiline: A novel drug to combat multiple drug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    Divya Goel

    2014-01-01

    Full Text Available Tuberculosis (TB is among the most common infectious diseases and continues as a major global health problem. The scenario is worsened by the emergence and spread of multiple drug-resistant tuberculosis (MDR-TB and extensive drug-resistant tuberculosis (XDR-TB. Cure rates are high for drug sensitive strains of Myobacterium tuberculosis if treatment protocols are adhered to, but treatment of MDR-TB and extensive drug drug-resistant strains is virtually impossible. The treatment of MDR-TB and XDR-TB relies on the drugs, which are less potent, more toxic and more costly and have to be administered for the longer duration. No new drug had come in to market for last 40 years, but the emergence of MDR-TB and XDR-TB has spurred interest in the development of novel drugs. For the effective treatment outcome, there is a dire need of new drugs with a different mechanism of action that can tackle both drug sensitive as well as drug-resistant strains. Bedaquiline is one such new drug with unique mechanism of action. Food and Drug Administration has approved bedaquiline for MDR-TB in December 2012. This article reviews the available evidence of efficacy and safety of bedaquiline.

  10. The evolution of drug-resistant malaria

    OpenAIRE

    Plowe, Christopher V.

    2008-01-01

    Molecular epidemiological investigations have uncovered the patterns of emergence and global spread of Plasmodium falciparum resistance to chloroquine and sulfadoxine-pyrimethamine. Malaria parasites highly resistant to chloroquine and pyrimethamine spread from Asian origins to Africa, at great cost to human health and life. If artemisinin-resistant falciparum malaria follows the same pattern, renewed efforts to eliminate and eradicate malaria will be gravely threatened. This paper, adapted f...

  11. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo.

    Science.gov (United States)

    Soares, Roberta Reis; da Silva, José Marcio Fernandes; Carlos, Bianca Cecheto; da Fonseca, Camila Campos; de Souza, Laila Salomé Araújo; Lopes, Fernanda Valério; de Paula Dias, Rafael Mafra; Moreira, Paulo Otávio Lourenço; Abramo, Clarice; Viana, Gustavo Henrique Ribeiro; de Pila Varotti, Fernando; da Silva, Adilson David; Scopel, Kézia Katiani Gorza

    2015-06-01

    Malaria continues to be an important public health problem in the world. Nowadays, the widespread parasite resistance to many drugs used in antimalarial therapy has made the effective treatment of cases and control of the disease a constant challenge. Therefore, the discovery of new molecules with good antimalarial activity and tolerance to human use can be really important in the further treatment of the disease. In this study we have investigated the antiplasmodial activity of 10 synthetic compounds derived from quinoline, five of them combined to sulfonamide and five to the hydrazine or hydrazide group. The compounds were evaluated according to their cytotoxicity against HepG2 and HeLa cell lines, their antimalarial activity against CQ-sensitive and CQ-resistant Plasmodium falciparum strains and, finally, their schizonticide blood action in mice infected with Plasmodium berghei NK65. The compounds exhibited no cytotoxic action in HepG2 and HeLa cell lines when tested up to a concentration of 100 μg/mL. In addition, the hydrazine or hydrazide derivative compounds were less cytotoxic against cell lines and more active against CQ-sensitive and CQ-resistant P. falciparum strains, showing high SI (>1000 when SI was calculated using the CC50 from the 3D7 strain as reference). When tested in vivo, the hydrazine derivative 1f compound showed activity against the development of blood parasites similar to that observed with CQ, the reference drug. Interestingly, the 1f compound demonstrated the best LipE value (4.84) among all those tested in vivo. Considering the in vitro and in vivo activities of the compounds studied here and the LipE values, we believe the 1f compound to be the most promising molecule for further studies in antimalarial chemotherapy. PMID:25920564

  12. Antibiotics in Animal Feed Contribute to Drug-Resistant Germs

    Science.gov (United States)

    ... medlineplus/news/fullstory_158316.html Antibiotics in Animal Feed Contribute to Drug-Resistant Germs: Study Individual farm ... HealthDay News) -- Use of antibiotics in farm animal feed is helping drive the worldwide increase in antibiotic- ...

  13. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis.

    NARCIS (Netherlands)

    Gandhi, N.R.; Nunn, P.; Dheda, K.; Schaaf, H.S.; Zignol, M.; Soolingen, D. van; Jensen, P.; Bayona, J.

    2010-01-01

    Although progress has been made to reduce global incidence of drug-susceptible tuberculosis, the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis during the past decade threatens to undermine these advances. However, countries are responding far too slowly. Of

  14. Aggressive chemotherapy and the selection of drug resistant pathogens.

    Directory of Open Access Journals (Sweden)

    Silvie Huijben

    2013-09-01

    Full Text Available Drug resistant pathogens are one of the key public health challenges of the 21st century. There is a widespread belief that resistance is best managed by using drugs to rapidly eliminate target pathogens from patients so as to minimize the probability that pathogens acquire resistance de novo. Yet strong drug pressure imposes intense selection in favor of resistance through alleviation of competition with wild-type populations. Aggressive chemotherapy thus generates opposing evolutionary forces which together determine the rate of drug resistance emergence. Identifying treatment regimens which best retard resistance evolution while maximizing health gains and minimizing disease transmission requires empirical analysis of resistance evolution in vivo in conjunction with measures of clinical outcomes and infectiousness. Using rodent malaria in laboratory mice, we found that less aggressive chemotherapeutic regimens substantially reduced the probability of onward transmission of resistance (by >150-fold, without compromising health outcomes. Our experiments suggest that there may be cases where resistance evolution can be managed more effectively with treatment regimens other than those which reduce pathogen burdens as fast as possible.

  15. Targeting imperfect vaccines against drug-resistance determinants: a strategy for countering the rise of drug resistance.

    Directory of Open Access Journals (Sweden)

    Regina Joice

    Full Text Available The growing prevalence of antimicrobial resistance in major pathogens is outpacing discovery of new antimicrobial classes. Vaccines mitigate the effect of antimicrobial resistance by reducing the need for treatment, but vaccines for many drug-resistant pathogens remain undiscovered or have limited efficacy, in part because some vaccines selectively favor pathogen strains that escape vaccine-induced immunity. A strain with even a modest advantage in vaccinated hosts can have high fitness in a population with high vaccine coverage, which can offset a strong selection pressure such as antimicrobial use that occurs in a small fraction of hosts. We propose a strategy to target vaccines against drug-resistant pathogens, by using resistance-conferring proteins as antigens in multicomponent vaccines. Resistance determinants may be weakly immunogenic, offering only modest specific protection against resistant strains. Therefore, we assess here how varying the specific efficacy of the vaccine against resistant strains would affect the proportion of drug-resistant vs. -sensitive strains population-wide for three pathogens--Streptococcus pneumoniae, Staphylococcus aureus, and influenza virus--in which drug resistance is a problem. Notably, if such vaccines confer even slightly higher protection (additional efficacy between 1% and 8% against resistant variants than sensitive ones, they may be an effective tool in controlling the rise of resistant strains, given current levels of use for many antimicrobial agents. We show that the population-wide impact of such vaccines depends on the additional effect on resistant strains and on the overall effect (against all strains. Resistance-conferring accessory gene products or resistant alleles of essential genes could be valuable as components of vaccines even if their specific protective effect is weak.

  16. Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis

    Institute of Scientific and Technical Information of China (English)

    REBECCA L DUNNE; LINDA A DUNN; PETER UPCROFT; PETER J O'DONOGHUE; JACQUELINE A UPCROFT

    2003-01-01

    Trichomoniasis is the most common, sexually transmitted infection. It is caused by the flagellated protozoan parasite Trichomonas vaginalis. Symptoms include vaginitis and infections have been associated with preterm delivery, low birth weight and increased infant mortality, as well as predisposing to HIV/AIDS and cervical cancer. Trichomoniasis has the highest prevalence and incidence of any sexually transmitted infection. The 5-nitroimidazole drugs, of which metronidazole is the most prescribed, are the only approved,effective drugs to treat trichomoniasis. Resistance against metronidazole is frequently reported and crossresistance among the family of 5-nitroimidazole drugs is common, leaving no alternative for treatment, with some cases remaining unresolved. The mechanism of metronidazole resistance in T. vaginalis from treatment failures is not well understood, unlike resistance which is developed in the laboratory under increasing metronidazole pressure. In the latter situation, hydrogenosomal function which is involved in activation of the prodrug, metronidazole, is down-regulated. Reversion to sensitivity is incomplete after removal of drug pressure in the highly resistant parasites while clinically resistant strains, so far analysed, maintain their resistance levels in the absence of drug pressure. Although anaerobic resistance has been regarded as a laboratory induced phenomenon, it clearly has been demonstrated in clinical isolates. Pursuit of both approaches will allow dissection of the underlying mechanisms. Many alternative drugs and treatments have been tested in vivo in cases of refractory trichomoniasis, as well as in vitro with some successes including the broad spectrum anti-parasitic drug nitazoxanide. Drug resistance incidence in T. vaginalis appears to be on the increase and improved surveillance of treatment failures is urged.

  17. Fitness of Leishmania donovani parasites resistant to drug combinations.

    OpenAIRE

    Raquel García-Hernández; Verónica Gómez-Pérez; Santiago Castanys; Francisco Gamarro

    2015-01-01

    Drug resistance represents one of the main problems for the use of chemotherapy to treat leishmaniasis. Additionally, it could provide some advantages to Leishmania parasites, such as a higher capacity to survive in stress conditions. In this work, in mixed populations of Leishmania donovani parasites, we have analyzed whether experimentally resistant lines to one or two combined anti-leishmanial drugs better support the stress conditions than a susceptible line expressing luciferase (Luc lin...

  18. Molecular Biology of Drug Resistance in Mycobacterium tuberculosis

    OpenAIRE

    Smith, Tasha; Wolff, Kerstin A; Nguyen, Liem

    2013-01-01

    Tuberculosis (TB) has become a curable disease thanks to the discovery of antibiotics. However, it has remained one of the most difficult infections to treat. Most current TB regimens consist of six to nine months of daily doses of four drugs that are highly toxic to patients. The purpose of these lengthy treatments is to completely eradicate Mycobacterium tuberculosis, notorious for its ability to resist most antibacterial agents, thereby preventing the formation of drug resistant mutants. O...

  19. Tiagabine add-on for drug-resistant partial epilepsy

    OpenAIRE

    Pereira, J; Marson, A G; Hutton, J L

    2012-01-01

    Cochrane Database Syst Rev. 2002;(3):CD001908. Tiagabine add-on for drug-resistant partial epilepsy. Pereira J, Marson AG, Hutton JL. Servico de Neurologia, Hospital de Santo Antonio, Largo Prof. Abel Salazar, 4099-001 Porto, Portugal. Abstract BACKGROUND: Epilepsy is a common neurological condition, affecting almost 0.5 to 1 per cent of the population. Nearly 30 per cent of people with epilepsy are resistant to currently available drugs. Tiagabine...

  20. Combined antiretroviral and antituberculosis drug resistance following incarceration

    Directory of Open Access Journals (Sweden)

    Katharine Elizabeth Stott

    2013-09-01

    Full Text Available We describe a case of HIV/tuberculosis (TB co-infection from KwaZulu-Natal, South Africa, characterised by drug resistance in both pathogens. The development of drug resistance was linked temporally to two periods of incarceration. This highlights the urgent need for improved integration of HIV/TB control strategies within prison health systems and within the broader public health framework.

  1. Nanodrug Formed by Coassembly of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistance.

    Science.gov (United States)

    Zhao, Yuanyuan; Chen, Fei; Pan, Yuanming; Li, Zhipeng; Xue, Xiangdong; Okeke, Chukwunweike Ikechukwu; Wang, Yifeng; Li, Chan; Peng, Ling; Wang, Paul C; Ma, Xiaowei; Liang, Xing-Jie

    2015-09-01

    Carrier-free pure nanodrugs (PNDs) that are composed entirely of pharmaceutically active molecules are regarded as promising candidates to be the next generation of drug formulations and are mainly formulated from supramolecular self-assembly of drug molecules. It benefits from the efficient use of drug compounds with poor aqueous solubility and takes advantage of nanoscale drug delivery systems. Here, a type of all-in-one nanoparticle consisting of multiple drugs with enhanced synergistic antiproliferation efficiency against drug-resistant cancer cells has been created. To nanoparticulate the anticancer drugs, 10-hydroxycamptothecin (HCPT) and doxorubicin (DOX) were chosen as a typical model. The resulting HD nanoparticles (HD NPs) were formulated by a "green" and convenient self-assembling method, and the water-solubility of 10-hydroxycamptothecin (HCPT) was improved 50-fold after nanosizing by coassembly with DOX. The formation process was studied by observing the morphological changes at various reaction times and molar ratios of DOX to HCPT. Molecular dynamics (MD) simulations showed that DOX molecules tend to assemble around HCPT molecules through intermolecular forces. With the advantage of nanosizing, HD NPs could improve the intracellular drug retention of DOX to as much as 2-fold in drug-resistant cancer cells (MCF-7R). As a dual-drug-loaded nanoformulation, HD NPs effectively enhanced drug cytotoxicity to drug-resistant cancer cells. The combination of HCPT and DOX exhibited a synergistic effect as the nanosized HD NPs improved drug retention in drug-resistant cancer cells against P-gp efflux in MCF-7R cells. Furthermore, colony forming assays were applied to evaluate long-term inhibition of cancer cell proliferation, and these assays confirmed the greatly improved cytotoxicity of HD NPs in drug-resistant cells compared to free drugs. PMID:26270258

  2. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin

    OpenAIRE

    Swain Bijay K; Dash Aditya P; Mishra Kirti; Dey Nrisingha

    2009-01-01

    Abstract Background Herbal extracts of Andrographis paniculata (AP) and Hedyotis corymbosa (HC) are known as hepato-protective and fever-reducing drugs since ancient time and they have been used regularly by the people in the south Asian sub-continent. Methanolic extracts of these two plants were tested in vitro on choloroquine sensitive (MRC-pf-20) and resistant (MRC-pf-303) strains of Plasmodium falciparum for their anti-malarial activity. Methods Growth inhibition was determined using diff...

  3. Predicted levels of HIV drug resistance

    DEFF Research Database (Denmark)

    Cambiano, Valentina; Bertagnolio, Silvia; Jordan, Michael R;

    2014-01-01

    with nonnucleoside reverse transcriptase inhibitor (NNRTIs)-resistant virus in South Africa, 275 000 in majority virus [Non-nucleoside reverse transcriptase inhibitor resistant virus present in majority virus (NRMV)] with an unsuppressed viral load. If current diagnosis and retention in care and...

  4. Sphingolipids in neuroblastoma : Their role in drug resistance mechanisms

    NARCIS (Netherlands)

    Sietsma, H; Dijkhuis, AJ; Kamps, W; Kok, JW

    2002-01-01

    Disseminated neuroblastoma usually calls for chemotherapy as the primary approach for treatment. Treatment failure is often attributable to drug resistance. This involves a variety of cellular mechanisms, including increased drug efflux through expression of ATP-binding cassette transporters (e.g.,

  5. Mechanisms of acquired resistance to androgen receptor targeting drugs in castration resistant prostate cancer

    OpenAIRE

    Chism, David D.; De Silva, Dinuka; Whang, Young E.

    2014-01-01

    After initial response to androgen receptor targeting drugs abiraterone or enzalutamide, most patients develop progressive disease and therefore, castration resistant prostate cancer (CRPC) remains a terminal disease. Multiple mechanisms underlying acquired resistance have been postulated. Intratumoral androgen synthesis may resume after abiraterone treatment. A point mutation in the ligand binding domain of androgen receptor may confer resistance to enzalutamide. Emergence of androgen recept...

  6. (Post-)genomic approaches to tackle drug resistance in Leishmania

    OpenAIRE

    Berg, Maya; Mannaert, An; Vanaerschot, Manu; Van Der Auwera, Gert; Dujardin, Jean-Claude

    2013-01-01

    Abstract: Leishmaniasis, like other neglected diseases is characterized by a small arsenal of drugs for its control. To safeguard the efficacy of current drugs and guide the development of new ones it is thus of utmost importance to acquire a deep understanding of the phenomenon of drug resistance and its link with treatment outcome. We discuss here how (post-) genomic approaches may contribute to this purpose. We highlight the need for a clear definition of the phenotypes under consideration...

  7. Gene-Drug Interactions and the Evolution of Antibiotic Resistance

    OpenAIRE

    Palmer, Adam Christopher

    2012-01-01

    The evolution of antibiotic resistance is shaped by interactions between genes, the chemical environment, and an antibiotic's mechanism of action. This thesis explores these interactions with experiments, theory, and analysis, seeking a mechanistic understanding of how different interactions between genes and drugs can enhance or constrain the evolution of antibiotic resistance. Chapter 1 investigates the effects of the chemical decay of an antibiotic. Tetracycline resistant and sensitive bac...

  8. Study on Drug Resistance and Relative Mechanisms of Chlamydia Trachomatis

    Institute of Scientific and Technical Information of China (English)

    侯淑萍; 刘全忠

    2004-01-01

    Abstract: Chlamydia Trachomatis (C.T.) is one of the most common pathogens of human sexually transmitted diseases. Treatment of C.T. infection primarily depends on Tetracyclines, Macrolides and Quinolones, but with the wide use of antibiotics an increasing number of drug-resistant Chlamydia trachomatis cases have been reported. This review summarizes the resistant conditions and the possible resistance mechanisms of C.T..

  9. Extensively Drug-Resistant Tuberculosis (XDR TB)

    Science.gov (United States)

    ... American Community Summit Background Slideset Children Correctional Facilities Homelessness International Travelers Pregnancy Health Disparities Laboratory Information Model Performance Evaluation Program (MPEP) Drug Susceptibility Testing The Uses of Nucleic Acid Amplification ...

  10. Troglitazone reverses the multiple drug resistance phenotype in cancer cells

    Directory of Open Access Journals (Sweden)

    Gerald F Davies

    2009-03-01

    Full Text Available Gerald F Davies1, Bernhard HJ Juurlink2, Troy AA Harkness11Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada; 2College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi ArabiaAbstract: A major problem in treating cancer is the development of drug resistance. We previously demonstrated doxorubicin (DOX resistance in K562 human leukemia cells that was associated with upregulation of glyoxalase 1 (GLO-1 and histone H3 expression. The thiazolidinedione troglitazone (TRG downregulated GLO-1 expression and further upregulated histone H3 expression and post-translational modifications in these cells, leading to a regained sensitivity to DOX. Given the pleiotropic effects of epigenetic changes in cancer development, we hypothesized that TRG may downregulate the multiple drug resistance (MDR phenotype in a variety of cancer cells. To test this, MCF7 human breast cancer cells and K562 cells were cultured in the presence of low-dose DOX to establish DOX-resistant cell lines (K562/DOX and MCF7/DOX. The MDR phenotype was confirmed by Western blot analysis of the 170 kDa P-glycoprotein (Pgp drug efflux pump multiple drug resistance protein 1 (MDR-1, and the breast cancer resistance protein (BCRP. TRG markedly decreased expression of both MDR-1 and BCRP in these cells, resulting in sensitivity to DOX. Silencing of MDR-1 expression also sensitized MCF7/DOX cells to DOX. Use of the specific and irreversible peroxisome proliferator-activated receptor gamma (PPARγ inhibitor GW9662 in the nanomolar range not only demonstrated that the action of TRG on MCF/DOX was PPARγ-independent, but indicated that PPARγ may play a role in the MDR phenotype, which is antagonized by TRG. We conclude that TRG is potentially a useful adjunct therapy in chemoresistant cancers. Keywords: chemotherapy, doxorubicin, breast cancer resistance protein-1, multiple drug resistance, multiple drug resistance protein 1

  11. Drug resistance pattern among afb smear positive retreatment completed cases

    International Nuclear Information System (INIS)

    Worldwide, multidrug resistance (MDR TB) is a serious issue. It has increased over the last decade. Re-treatment completed sputum smear positive cases have much higher incidence of MDR- TB as compared to primary MDR - TB. Objective: To estimate the incidence of drug resistance pattern among AFB smear positive re-treatment completed cases. Study Design: Evidence based prospective study. Study Setting: Institute of Chest Medicine, Mayo Hospital Lahore, Tertiary care hospital affiliated with King Edward Medical University, Lahore, Pakistan. Methodology: A total 50 (Male 22, Female 28) pulmonary TB patients who had completed Re- treatment regimen in the past and are still sputum smear positive for acid fast Bacilli were included in the study. Three consecutive sputum specimens were collected at Aga Khan University collection center at Lahore. The specimen were sent to Aga Khan University Lab Karachi for AFB smear, culture and drug sensitivity both for essential and reserve drugs. Reports for AFB smear were received within a week, while culture and drug sensitivity' reports after 6 weeks. Reports data was analyzed for essential and reserve anti tuberculous drug sensitivity for mycobacterium tuberculosis. Results: Data Analysis revealed MDR TB in 31(62%) patients which include 11 males and 23 females. Individual drug resistance to essential drugs was INH - 62%, Rifampicin - 68%, Ethambutol - 24%, PZA - 25% and Streptomycin - 21 %. Poly drug resistance was determined in' 38% cases. Individual drug resistance to reserve drugs - kanamycin, Amikacin, ofloxacin, Ethionamide and PAS was 4%, 4%, 36%, 10% and 2% respectively. Conclusion: There is a very high proportion of MDR TB in sputum smear AFB positive retreatment cases. Suggestion: Comprehensive measures including DO- TS PLUS are needed to control MDR TB in Pakistan. (author)

  12. Update on antifungal drug resistance mechanisms of Aspergillus fumigatus.

    Science.gov (United States)

    Chamilos, G; Kontoyiannis, D P

    2005-12-01

    Although the arsenal of agents with anti-Aspergillus activity has expanded over the last decade, mortality due to invasive aspergillosis (IA) remains unacceptably high. Aspergillus fumigatus still accounts for the majority of cases of IA; however less susceptible to antifungals non-fumigatus aspergilli began to emerge. Antifungal drug resistance of Aspergillus might partially account for treatment failures. Recent advances in our understanding of mechanisms of antifungal drug action in Aspergillus, along with the standardization of in vitro susceptibility testing methods, has brought resistance testing to the forefront of clinical mycology. In addition, molecular biology has started to shed light on the mechanisms of resistance of A. fumigatus to azoles and the echinocandins, while genome-based assays show promise for high-throughput screening for genotypic antifungal resistance. Several problems remain, however, in the study of this complex area. Large multicenter clinical studies--point prevalence or longitudinal--to capture the incidence and prevalence of antifungal resistance in A. fumigatus isolates are lacking. Correlation of in vitro susceptibility with clinical outcome and susceptibility breakpoints has not been established. In addition, the issue of cross-resistance between the newer triazoles is of concern. Furthermore, in vitro resistance testing for polyenes and echinocandins is difficult, and their mechanisms of resistance are largely unknown. This review examines challenges in the diagnosis, epidemiology, and mechanisms of antifungal drug resistance in A. fumigatus. PMID:16488654

  13. Antimalarial activity of extracts of Malaysian medicinal plants.

    Science.gov (United States)

    Najib Nik A Rahman, N; Furuta, T; Kojima, S; Takane, K; Ali Mohd, M

    1999-03-01

    In vitro and in vivo studies revealed that Malaysian medicinal plants, Piper sarmentosum, Andrographis paniculata and Tinospora crispa produced considerable antimalarial effects. Chloroform extract in vitro did show better effect than the methanol extract. The chloroform extract showed complete parasite growth inhibition as low as 0.05 mg/ml drug dose within 24 h incubation period (Andrographis paniculata) as compared to methanol extract of drug dose of 2.5 mg/ml but under incubation time of 48 h of the same plant spesies. In vivo activity of Andrographis paniculata also demonstrated higher antimalarial effect than other two plant species. PMID:10363840

  14. Modeling and predicting drug resistance rate and strength.

    Science.gov (United States)

    Fullybright, R; Dwivedi, A; Mallawaarachchi, I; Sinsin, B

    2016-08-01

    Drug resistance has been worsening in human infectious diseases medicine over the past several decades. Our ability to successfully control resistance depends to a large extent on our understanding of the features characterizing the process. Part of that understanding includes the rate at which new resistance has been emerging in pathogens. Along that line, resistance data covering 90 infectious diseases, 118 pathogens, and 337 molecules, from 1921 through 2007, are modeled using various statistical tools to generate regression models for the rate of new resistance emergence and for cumulative resistance build-up in pathogens. Thereafter, the strength of the association between the number of molecules put on the market and the number of resulting cases of resistance is statistically tested. Predictive models are presented for the rate at which new resistance has been emerging in infectious diseases medicine, along with predictive models for the rate of cumulative resistance build-up in the aggregate of 118 pathogens as well as in ten individual pathogens. The models are expressed as a function of time and/or as a function of the number of molecules put on the market by the pharmaceutical industry. It is found that molecules significantly induce resistance in pathogens and that new or cumulative drug resistance across infectious diseases medicine has been arising at exponential rates. PMID:27209288

  15. Supramolecular Antibiotic Switches: A Potential Strategy for Combating Drug Resistance.

    Science.gov (United States)

    Bai, Haotian; Lv, Fengting; Liu, Libing; Wang, Shu

    2016-08-01

    Bacterial infectious disease is a serious public health concern throughout the world. Pathogen drug resistance, arising from both rational use and abuse/misuse of germicides, complicates the situation. Aside from developing novel antibiotics and antimicrobial agents, molecular approaches have become another significant method to overcome the problem of pathogen drug resistance. Established supramolecular systems, the antibiotic properties of which can be switched "on" and "off" through host-guest interactions, show great potential in combating issues regarding antibiotic resistance in the long term, as indicated by several recent studies. In this Concept, recently developed strategies for antibacterial regulation are summarized and further directions for research into antibiotic switches are proposed. PMID:27312106

  16. Antimalarial and cytotoxic properties of Chukrasia tabularis A. Juss and Turraea vogelii Hook F. Ex. Benth.

    Science.gov (United States)

    Ogbole, Omonike O; Saka, Yusuf A; Fasinu, Pius S; Fadare, Adenike A; Ajaiyeoba, Edith O

    2016-04-01

    Malaria, caused by plasmodium parasite, is at the moment the highest cause of morbidity and mortality in the tropics. Recently, there is increasing efforts to develop more potent antimalarials from plant sources that will have little or no adverse effects. This study is aimed at investigating the in vivo mice antimalarial and in vitro antiplasmodial effects of two Meliaceae plants commonly used in Nigerian ethnomedicine as part of recipe for treating malaria infection: Chukrasia tabularis and Turraea vogelii. Hot water decoction and methanol extract of both plants were evaluated for their antimalarial activity in vivo using the mice model assay and in vitro using the parasite lactate dehydrogenase (pLDH) assay. The extracts were also assessed for toxicity with brine shrimp lethality assay and in mammalian cell lines using the neural red assay. The in vivo mice model antimalarial study showed that the methanol extract of the stem bark of C. tabularis exhibited the highest % chemosuppression (83.65 ± 0.66) at the highest dosage administered (800 mg/kg) when compared with chloroquine diphosphate, the standard reference drug which had a % suppression of 90.36 ± 0.04 (p < 0.05). The in vitro antiplasmodial study indicated that the aqueous extract of the stem bark of C. tabularis displayed good activity against Plasmodium falciparum chloroquine-sensitive (D6) strain (IC50 of 10.739 μg/mL) and chloroquine-resistant (W2) strain. Chloroquine and artemisinin had <0.163 and <0.0264, respectively. PMID:26911147

  17. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes.

    Science.gov (United States)

    Rudramurthy, Gudepalya Renukaiah; Swamy, Mallappa Kumara; Sinniah, Uma Rani; Ghasemzadeh, Ali

    2016-01-01

    Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals). Antimicrobials are considered "miracle drugs" and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs) depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future. PMID:27355939

  18. Fine-scale genetic characterization of Plasmodium falciparum chromosome 7 encompassing the antigenic var and the drug-resistant pfcrt genes

    Indian Academy of Sciences (India)

    Ruchi Bajaj; Sujata Mohanty; A. P. Dash; Aparup Das

    2008-04-01

    The fact that malaria is still an uncontrolled disease is reflected by the genetic organization of the parasite genome. Efforts to curb malaria should begin with proper understanding of the mechanism by which the parasites evade human immune system and evolve resistance to different antimalarial drugs. We have initiated such a study and presented herewith the results from the in silico understanding of a seventh chromosomal region of the malarial parasite Plasmodium falciparum encompassing the antigenic var genes (coding pfemp1) and the drug-resistant gene pfcrt located at a specified region of the chromosome 7. We found 60 genes of various functions and lengths, majority (61.67%) of them were performing known functions. Almost all the genes have orthologs in other four species of Plasmodium, of which P. chabaudi seems to be the closest to P. falciparum. However, only two genes were found to be paralogous. Interestingly, the drug-resistant gene, pfcrt was found to be surrounded by seven genes coding for several CG proteins out of which six were reported to be responsible for providing drug resistance to P. vivax. The intergenic regions, in this specified region were generally large in size, majority (73%) of them were of more than 500 nucleotide bp length. We also designed primers for amplification of 21 noncoding DNA fragments in the whole region for estimating genetic diversity and inferring the evolutionary history of this region of P. falciparum genome.

  19. Challenges of drug resistance in the management of pancreatic cancer.

    LENUS (Irish Health Repository)

    Sheikh, Rizwan

    2012-02-01

    The current treatment of choice for metastatic pancreatic cancer involves single-agent gemcitabine or a combination of gemcitabine with capecitabine or erlotinib (a tyrosine kinase inhibitor). Only 25–30% of patients respond to this treatment and patients who do respond initially ultimately exhibit disease progression. Median survival for pancreatic cancer patients has reached a plateau due to inherent and acquired resistance to these agents. Key molecular factors implicated in this resistance include: deficiencies in drug uptake, alteration of drug targets, activation of DNA repair pathways, resistance to apoptosis and the contribution of the tumor microenvironment. Moreover, for newer agents including tyrosine kinase inhibitors, overexpression of signaling proteins, mutations in kinase domains, activation of alternative pathways, mutations of genes downstream of the target and\\/or amplification of the target represent key challenges for treatment efficacy. Here we will review the contribution of known mechanisms and markers of resistance to key pancreatic cancer drug treatments.

  20. Long non-coding RNAs in cancer drug resistance development.

    Science.gov (United States)

    Majidinia, Maryam; Yousefi, Bahman

    2016-09-01

    The presence or emergence of chemoresistance in tumor cells is a major burden in cancer therapy. While drug resistance is a multifactorial phenomenon arising from altered membrane transport of drugs, altered drug metabolism, altered DNA repair, reduced apoptosis rate and alterations of drug metabolism, it can also be linked to genetic and epigenetic factors. Long non-coding RNAs (lncRNAs) have important regulatory roles in many aspects of genome function including gene transcription, splicing, and epigenetics as well as biological processes involved in cell cycle, cell differentiation, development, and pluripotency. As such, it may not be surprising that some lncRNAs have been recently linked to carcinogenesis and drug resistance/sensitivity. Research is accelerating to decipher the exact molecular mechanism of lncRNA-regulated drug resistance and its therapeutic implications. In this article, we will review the structure, biogenesis, and mode of action of lncRNAs. Then, the involvement of lncRNAs in drug resistance will be discussed in detail. PMID:27427176

  1. Chitosan-based nanocarriers for antimalarials

    Science.gov (United States)

    Dreve, Simina; Kacso, Iren; Popa, Adriana; Raita, Oana; Bende, A.; Borodi, Gh.; Bratu, I.

    2012-02-01

    The objective of this research was to synthesize and characterize chitosan-based liquid and solid materials with unique absorptive and mechanical properties as carriers for quinine - one of the most used antimalarial drug. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare solid release systems as sponges is presented. The preparation by double emulsification of CTS hydrogels carrying quinine as anti-malarial drug is reported. The concentration of quinine in the CTS hydrogel was 0.08 mmol. Chitosan - drug loaded hydrogel was used to generate solid sponges by freeze-drying at -610°C and 0.09 atm. Structural investigations of the solid formulations were done by Fourier-transformed infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-VIS), spectrofluorimetry, differential scanning calorimetry (DSC) and X-ray diffractometry. The results indicated that the drug molecule is forming temporary chelates in CTS hydrogels and sponges. Electron paramagnetic resonance (EPR) demonstrates the presence of free radicals in a wide range and the antioxidant activity for chitosan - drug supramolecular cross-linked assemblies.

  2. In-silico studies on DegP protein of Plasmodium falciparum in search of anti-malarials.

    Science.gov (United States)

    Sharma, Drista; Soni, Rani; Patel, Sachin; Joshi, Deepti; Bhatt, Tarun Kumar

    2016-09-01

    Despite encouraging progress over the past decade, malaria caused by the Plasmodium parasite continues to pose an enormous disease burden and is one of the major global health problems. The extreme challenge in malaria management is the resistance of parasites to traditional monochemotherapies like chloroquine and sulfadoxine-pyrimethamine. No vaccine is yet in sight, and the foregoing effective drugs are also losing ground against the disease due to the resistivity of parasites. New antimalarials with novel mechanisms of action are needed to circumvent existing or emerging drug resistance. DegP protein, secretory in nature has been shown to be involved in regulation of thermo-oxidative stress generated during asexual life cycle of Plasmodium, probably required for survival of parasite in host. Considering the significance of protein, in this study, we have generated a three-dimensional structure of PfDegP followed by validation of the modeled structure using several tools like RAMPAGE, ERRAT, and others. We also performed an in-silico screening of small molecule database against PfDegP using Glide. Furthermore, molecular dynamics simulation of protein and protein-ligand complex was carried out using GROMACS. This study substantiated potential drug-like molecules and provides the scope for development of novel antimalarial drugs. PMID:27491850

  3. Evidence of Selective Sweeps in Genes Conferring Resistance to Chloroquine and Pyrimethamine in Plasmodium falciparum Isolates in India▿ †

    OpenAIRE

    Mixson-Hayden, Tonya; Jain, Vidhan; McCollum, Andrea M.; Poe, Amanda; Avinash C. Nagpal; Dash, Aditya P; Stiles, Jonathan K.; Udhayakumar, Venkatachalam; Singh, Neeru

    2009-01-01

    Treatment of Plasmodium falciparum is complicated by the emergence and spread of parasite resistance to many of the first-line drugs used to treat malaria. Antimalarial drug resistance has been associated with specific point mutations in several genes, suggesting that these single nucleotide polymorphisms can be useful in tracking the emergence of drug resistance. In India, P. falciparum infection can manifest itself as asymptomatic, mild, or severe malaria, with or without cerebral involveme...

  4. pfmdr1 Amplification and Fixation of pfcrt Chloroquine Resistance Alleles in Plasmodium falciparum in Venezuela ▿ †

    OpenAIRE

    Griffing, Sean; Syphard, Luke; Sridaran, Sankar; McCollum, Andrea M.; Mixson-Hayden, Tonya; Vinayak, Sumiti; Villegas, Leopoldo; Barnwell, John W.; Escalante, Ananias A; Udhayakumar, Venkatachalam

    2010-01-01

    Molecular tools are valuable for determining evolutionary history and the prevalence of drug-resistant malaria parasites. These tools have helped to predict decreased sensitivity to antimalarials and fixation of multidrug resistance genotypes in some regions. In order to assess how historical drug policies impacted Plasmodium falciparum in Venezuela, we examined molecular changes in genes associated with drug resistance. We examined pfmdr1 and pfcrt in samples from Sifontes, Venezuela, and in...

  5. Mechanisms of anti-retroviral drug resistance: implications for novel drug discovery and development.

    Science.gov (United States)

    Emamzadeh-Fard, Sahra; Esmaeeli, Shooka; Arefi, Khalilullah; Moradbeigi, Majedeh; Heidari, Behnam; Fard, Sahar E; Paydary, Koosha; Seyedalinaghi, Seyedahmad

    2013-10-01

    Anti-retroviral drug resistance evolves as an inevitable consequence of expanded combination Anti-retroviral Therapy (cART). According to each drug class, resistance mutations may occur due to the infidel nature of HIV reverse transcriptase (RT) and inadequate drug pressures. Correspondingly, resistance to Nucleoside Reverse Transcriptase Inhibitors (NRTIs) occurs due to incorporation impairment of the agent or its removal from the elongating viral DNA chain. With regard to Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs), resistance mutations may alter residues of the RT hydrophobic pocket and demonstrate high level of cross resistance. However, resistance to Protease Inhibitors requires complex accumulation of primary and secondary mutations that substitute amino acids in proximity to the viral protease active site. Resistance to novel entry inhibitors may also evolve as a result of mutations that affect the interactions between viral glycoprotein and CD4 or the chemokine receptors. According to the current studies, future drug initiative programs should consider agents that possess higher genetic barrier toward resistance for ascertaining adequate drug efficacy among patients who have failed first-line regimens. PMID:24712673

  6. The action of Pseudomonas aeruginosa biofilms in intrinsic drug resistance

    Institute of Scientific and Technical Information of China (English)

    XIE Yi; JIA Wen-xiang; ZENG Wei; YANG Wei-qing; CHENG Xi; LI Xue-ru; WANG Lan-lan; KANG Mei; ZHANG Zai-rong

    2005-01-01

    Background There is a growing interest in studying the relationship between intrinsic resistance and biofilms resistance to drugs. However, the relationship still remains unclear in the macroscopic bacterial growth. Our study is to illuminate the change of bacterial drug resistance of gyrA mutant and active efflux pump during the development of Pseudomonas aeruginosa (P. aeruginosa) biofilms. Methods The strains of type Ⅱ topoisomerase gene mutant (gyrA mutant) and multidrug resistance (MDR) efflux pump were clinical isolates and detected by polymerase chain reaction (PCR). The process of bacterial biofilms development was observed by scanning electron microscope. Triparental mating experiments were performed to transfer report gene of green fluorescent protein (GFP) into P. aeruginosa biofilms strains and followed by analysis of bacterial survival rate between intrinsic resistance and biofilms resistance.Results The fluorescent strains with pGFPuv could develop mature biofilms on Teflon surface. Before a period of 72 hours, the survival rate of biofilms bacteria and intrinsic resistance strains in ciprofloxacin solution was significantly different (P0.05). The carbonyl cyanide m-chlorophenylhydrazone and azithromycin could significantly reduce the drug resistance of biofilm strains and efflux pump strains.Conclusions In the development of P. aeruginosa biofilms, the strains of gyrA mutation and MDR efflux could be conferred with new level of drug resistance. When co-cultured mutated strains with biofilm strains, biofilms may play a major role in bacterial resistance. But after 72 hours incubation (a mature biofilms had been developed), there was no clearly difference between the number of mutant strains and biofilm strains.

  7. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  8. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    1997-01-01

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  9. TWO OPTIMAL CONTROL PROBLEMS IN CANCER CHEMOTHERAPY WITH DRUG RESISTANCE

    Directory of Open Access Journals (Sweden)

    Werner Krabs

    2012-01-01

    Full Text Available We investigate two well-known basic optimal control problems forchemotherapeutic cancer treatment modified by introducing a timedependent “resistance factor”. This factor should be responsible for the effect of the drug resistance of tumor cells on the dynamical growth for the tumor. Both optimal control problems have common pointwise but different integral constraints on the control. We show that in both models the usually practised bang-bang control is optimal if the resistance is sufficiently strong. Further, we discuss different optimal strategies in both models for general resistance.

  10. Drug Repurposing Identifies Inhibitors of Oseltamivir-Resistant Influenza Viruses.

    Science.gov (United States)

    Bao, Ju; Marathe, Bindumadhav; Govorkova, Elena A; Zheng, Jie J

    2016-03-01

    The neuraminidase (NA) inhibitor, oseltamivir, is a widely used anti-influenza drug. However, oseltamivir-resistant H1N1 influenza viruses carrying the H275Y NA mutation spontaneously emerged as a result of natural genetic drift and drug treatment. Because H275Y and other potential mutations may generate a future pandemic influenza strain that is oseltamivir-resistant, alternative therapy options are needed. Herein, we show that a structure-based computational method can be used to identify existing drugs that inhibit resistant viruses, thereby providing a first line of pharmaceutical defense against this possible scenario. We identified two drugs, nalidixic acid and dorzolamide, that potently inhibit the NA activity of oseltamivir-resistant H1N1 viruses with the H275Y NA mutation at very low concentrations, but have no effect on wild-type H1N1 NA even at a much higher concentration, suggesting that the oseltamivir-resistance mutation itself caused susceptibility to these drugs. PMID:26833677

  11. In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense

    Directory of Open Access Journals (Sweden)

    Khodakarim Nastaran

    2010-05-01

    Full Text Available Abstract Background There is an urgent need to identify new anti-malarial drug targets for both prophylaxis and chemotherapy, due to the increasing problem of drug resistance to malaria parasites. In the present study, the aim was to discover novel, effective plant-based extracts for the activity against malaria. Methods Ten plants found in Iran were selected by ethnobotanical survey of medicinal plants. The crude ethanolic extracts were tested for in vitro anti-plasmodial activity against two strains of Plasmodium falciparum: K1 (chloroquine-resistant strain and CY27 (chloroquine-sensitive strain, using the parasite lactate dehydrogenase (pLDH assay. The anti-plasmodial activity of the extracts was also assessed in the 4-day suppressive anti-malarial assay in mice inoculated with Plasmodium berghei (ANKA strain. Crude ethanolic extracts showed good anti-plasmodial activity were further fractionated by partitioning in water and dichloromethane. Results Of 10 plant species assayed, three species: Boerhavia elegans (Choisy, Solanum surattense (Burm.f. and Prosopis juliflora (Sw. showed promising anti-plasmodial activity in vitro (IC50 ≤ 50 μg/ml and in vivo with no toxicity. The dichloromethane fraction of three extracts revealed stronger anti-plasmodial activity than the total extracts. Conclusion Anti-plasmodial activities of extracts of B. elegans and S. surattense are reported for the first time.

  12. Drug resistance mechanisms of fungal biofilms

    OpenAIRE

    Seneviratne, CJ; Samaranayake, LP

    2011-01-01

    Fungi are ubiquitous in nature and exist in soil, water, plants, and in animals and humans. Similar to bacteria, fungi also form confluent biofilms either singly (mono-species) or with other microbial species (mixed-species). Fungal biofilms are known to be highly resistant to the adverse environmental conditions including antimicrobials and biocide compared to its planktonic (free-floating) counterparts. Although bacterial biofilms have been studied in detail, relatively little is known of f...

  13. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria.

    Directory of Open Access Journals (Sweden)

    Andrew S Bell

    Full Text Available The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.

  14. New strategies against drug resistance to herpes simplex virus

    Institute of Scientific and Technical Information of China (English)

    Yu-Chen Jiang; Hui Feng; Yu-Chun Lin; Xiu-Rong Guo

    2016-01-01

    Herpes simplex virus (HSV), a member of the Herpesviridae family, is a significant human pathogen that results in mucocutaneous lesions in the oral cavity or genital infections. Acyclovir (ACV) and related nucleoside analogues can successfully treat HSV infections, but the emergence of drug resistance to ACV has created a barrier for the treatment of HSV infections, especially in immunocompromised patients. There is an urgent need to explore new and effective tactics to circumvent drug resistance to HSV. This review summarises the current strategies in the development of new targets (the DNA helicase/primase (H/P) complex), new types of molecules (nature products) and new antiviral mechanisms (lethal mutagenesis of Janus-type nucleosides) to fight the drug resistance of HSV.

  15. On the molecular basis of the activity of the antimalarial drug chloroquine: EXAFS-assisted DFT evidence of a direct Fe-N bond with free heme in solution

    Science.gov (United States)

    Macetti, Giovanni; Rizzato, Silvia; Beghi, Fabio; Silvestrini, Lucia; Lo Presti, Leonardo

    2016-02-01

    4-aminoquinoline antiplasmodials interfere with the biocrystallization of the malaria pigment, a key step of the malaria parasite metabolism. It is commonly believed that these drugs set stacking π···π interactions with the Fe-protoporphyrin scaffold of the free heme, even though the details of the heme:drug recognition process remain elusive. In this work, the local coordination of Fe(III) ions in acidic solutions of hematin at room temperature was investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy in the 4.0-5.5 pH range, both in the presence and in the absence of the antimalarial drug chloroquine. EXAFS results were complemented by DFT simulations in polarizable continuum media to model solvent effects. We found evidence that a complex where the drug quinoline nitrogen is coordinated with the iron center might coexist with formerly proposed adduct geometries, based on stacking interactions. Charge-assisted hydrogen bonds among lateral chains of the two molecules play a crucial role in stabilizing this complex, whose formation is favored by the presence of lipid micelles. The direct Fe-N bond could reversibly block the axial position in the Fe 1st coordination shell in free heme, acting as an inhibitor for the crystallization of the malaria pigment without permanently hampering the catalytic activity of the redox center. These findings are discussed in the light of possible implications on the engineering of drugs able to thwart the adaptability of the malaria parasite against classical aminoquinoline-based therapies.

  16. Antimicrobial drug resistance ofStaphylococcus aureus in dairy products

    Institute of Scientific and Technical Information of China (English)

    Sasidharan S; Prema B; Yoga Latha L

    2011-01-01

    Objective:To evaluate the prevalence of multidrug resistantStaphylococcus aureus(S. aureus) in dairy products.Methods:Isolation and identification ofS. aureus were performed in3 dairy-based food products. The isolates were tested for their susceptibility to5 different common antimicrobial drugs.Results:Of50 samples examined,5 (10%) were contaminated with S. aureus. Subsequently, the5 isolates were subjected to antimicrobial resistance pattern using five antibiotic discs (methicillin, vancomycin, kanamycin, chloramphenicol and tetracycline). Sample 29 showed resistance to methicillin and vancomycin. Sample18 showed intermediate response to tetracycline. The other samples were susceptible to all the antibiotics tested.Conclusions:The results provide preliminary data on sources of food contamination which may act as vehicles for the transmission of antimicrobial-resistantStaphylococcus.Therefore, it enables us to develop preventive strategies to avoid the emergence of new strains of resistantS. aureus.

  17. Discovery of carbohybrid-based 2-aminopyrimidine analogues as a new class of rapid-acting antimalarial agents using image-based cytological profiling assay.

    Science.gov (United States)

    Lee, Sukjun; Lim, Donghyun; Lee, Eunyoung; Lee, Nakyung; Lee, Hong-Gun; Cechetto, Jonathan; Liuzzi, Michel; Freitas-Junior, Lucio H; Song, Jin Sook; Bae, Myung Ae; Oh, Sangmi; Ayong, Lawrence; Park, Seung Bum

    2014-09-11

    New antimalarial agents that exhibit multistage activities against drug-resistant strains of malaria parasites represent good starting points for developing next-generation antimalarial therapies. To facilitate the progression of such agents into the development phase, we developed an image-based parasitological screening method for defining drug effects on different asexual life cycle stages of Plasmodium falciparum. High-throughput screening of a newly assembled diversity-oriented synthetic library using this approach led to the identification of carbohybrid-based 2-aminopyrimidine compounds with fast-acting growth inhibitory activities against three laboratory strains of multidrug-resistant P. falciparum. Our structure-activity relationship study led to the identification of two derivatives (8aA and 11aA) as the most promising antimalarial candidates (mean EC50 of 0.130 and 0.096 μM against all three P. falciparum strains, selectivity indices >600, microsomal stabilities >80%, and mouse malaria ED50 values of 0.32 and 0.12 mg/kg/day, respectively), targeting all major blood stages of multidrug-resistant P. falciparum parasites. PMID:25137549

  18. Multidrug resistance in oncology and beyond : from imaging of drug efflux pumps to cellular drug targets

    NARCIS (Netherlands)

    Nagengast, Wouter B; Oude Munnink, Thijs H; Dijkers, Eli; Hospers, Geesiena; Brouwers, Adrienne H; Schröder, Carolien P; Lub-de Hooge, Marjolijn; de Vries, Elisabeth G E

    2010-01-01

    Resistance of tumor cells to several structurally unrelated classes of natural products, including anthracyclines, taxanes, and epipodophyllotoxines, is often referred as multidrug resistance (MDR). This is associated with ATP-binding cassette transporters, which function as drug efflux pumps such a

  19. Prevalence of genotypic HIV-1 drug resistance in Thailand, 2002

    Directory of Open Access Journals (Sweden)

    Watitpun Chotip

    2003-03-01

    Full Text Available Abstract Background The prices of reverse transcriptase (RT inhibitors in Thailand have been reduced since December 1, 2001. It is expected that reduction in the price of these inhibitors may influence the drug resistance mutation pattern of HIV-1 among infected people. This study reports the frequency of HIV-1 genetic mutation associated with drug resistance in antiretroviral-treated patients from Thailand. Methods Genotypic resistance testing was performed on samples collected in 2002 from 88 HIV-1 infected individuals. Automated DNA sequencing was used to genotype the HIV-1 polymerase gene isolated from patients' plasma. Results Resistance to protease inhibitors, nucleoside and non-nucleoside reverse transcriptase inhibitors were found in 10 (12%, 42 (48% and 19 (21% patients, respectively. The most common drug resistance mutations in the protease gene were at codon 82 (8%, 90 (7% and 54 (6%, whereas resistant mutations at codon 215 (45%, 67 (40%, 41 (38% and 184 (27% were commonly found in the RT gene. This finding indicates that genotypic resistance to nucleoside reverse transcriptase inhibitors was prevalent in 2002. The frequency of resistant mutations corresponding to non-nucleoside reverse transcriptase inhibitors was three times higher-, while resistant mutation corresponding to protease inhibitors was two times lower than those frequencies determined in 2001. Conclusion This study shows that the frequencies of RT inhibitor resistance mutations have been increased after the reduction in the price of RT inhibitors since December 2001. We believe that this was an important factor that influenced the mutation patterns of HIV-1 protease and RT genes in Thailand.

  20. Drug Resistance and Cancer Stem Cells

    OpenAIRE

    Fonseca, João Pedro Couto

    2012-01-01

    O cancro do pulmão é a principal causa de morte por cancro a nível mundial. Apesar do crescente conhecimento sobre os mecanismos subjacentes ao processo tumorigénico não se tem observado alteração significativa na sobrevivência dos pacientes. É, por isso, urgente encontrar novas estratégias terapêuticas que visem superar a resistência, tanto intrínseca como extrínseca, observada com a quimioterapia corrente. Os tumores são caracterizados pela sua heterogeneidade celular, devido à coexistên...

  1. A new antihypertensive drug ameliorates insulin resistance

    Institute of Scientific and Technical Information of China (English)

    Yan-xia LIU

    2012-01-01

    Insulin resistance (IR)is defined as decreased sensitivity and/or responsiveness to insulin that promote glucose disposal.A growing body of clinical and epidemiologic evidence indicates that essential hypertension and IR often coexist[1].Approximately 50 percent of patients with hypertension can be considered to have IR and hyperinsulinemia[1].This inextricable linkage between hypertension and IR has been identified to increase the prevalence of cardiovascular disease (CVD)and new onset of type Ⅱ diabetes that is the major cause of morbidity and mortality in this clinical syndrome[2].However,the driving force linking IR and hypertension remains to be fully elucidated.

  2. (Post-) Genomic approaches to tackle drug resistance in Leishmania.

    Science.gov (United States)

    Berg, Maya; Mannaert, An; Vanaerschot, Manu; Van Der Auwera, Gert; Dujardin, Jean-Claude

    2013-10-01

    Leishmaniasis, like other neglected diseases is characterized by a small arsenal of drugs for its control. To safeguard the efficacy of current drugs and guide the development of new ones it is thus of utmost importance to acquire a deep understanding of the phenomenon of drug resistance and its link with treatment outcome. We discuss here how (post-)genomic approaches may contribute to this purpose. We highlight the need for a clear definition of the phenotypes under consideration: innate and acquired resistance versus treatment failure. We provide a recent update of our knowledge on the Leishmania genome structure and dynamics, and compare the contribution of targeted and untargeted methods for the understanding of drug resistance and show their limits. We also present the main assays allowing the experimental validation of the genes putatively involved in drug resistance. The importance of analysing information downstream of the genome is stressed and further illustrated by recent metabolomics findings. Finally, the attention is called onto the challenges for implementing the acquired knowledge to the benefit of the patients and the population at risk. PMID:23480865

  3. Multi drug resistance to cancer chemotherapy: Genes involved and blockers

    International Nuclear Information System (INIS)

    During the last three decades, important and considerable research efforts had been performed to investigate the mechanism through which cancer cells overcome the cytotoxic effects of a variety of chemotherapeutic drugs. Most of the previously published work has been focused on the resistance of tumor cells to those anticancer drugs of natural source. Multidrug resistance (MDR) is a cellular cross-resistance to a broad spectrum of natural products used in cancer chemotherapy and is believed to be the major cause of the therapeutic failures of the drugs belonging to different naturally obtained or semisynthetic groups including vinca alkaloids, taxans, epipodophyllotoxins and certain antibiotics. This phenomenon results from overexpression of four MDR genes and their corresponding proteins that act as membrane-bound ATP consuming pumps. These proteins mediate the efflux of many structurally and functionally unrelated anticancer drugs of natural source. MDR may be intrinsic or acquired following exposure to chemotherapy. The existence of intrinsically resistant tumor cell clone before and following chemotherapeutic treatment has been associated with a worse final outcome because of increased incidence of distant metasis. In view of irreplaceability of natural product anticancer drugs as effective chemotherapeutic agents, and in view of MDR as a major obstacle to successful chemotherapy, this review is aimed to highlight the genes involved in MDR, classical MDR blockers and gene therapy approaches to overcome MDR. (author)

  4. Vaults: a ribonucleoprotein particle involved in drug resistance?

    Science.gov (United States)

    Mossink, Marieke H; van Zon, Arend; Scheper, Rik J; Sonneveld, Pieter; Wiemer, Erik A C

    2003-10-20

    Vaults are ribonucleoprotein particles found in the cytoplasm of eucaryotic cells. The 13 MDa particles are composed of multiple copies of three proteins: an M(r) 100 000 major vault protein (MVP) and two minor vault proteins of M(r) 193 000 (vault poly-(ADP-ribose) polymerase) and M(r) 240 000 (telomerase-associated protein 1), as well as small untranslated RNA molecules of approximately 100 bases. Although the existence of vaults was first reported in the mid-1980s no function has yet been attributed to this organelle. The notion that vaults might play a role in drug resistance was suggested by the molecular identification of the lung resistance-related (LRP) protein as the human MVP. MVP/LRP was found to be overexpressed in many chemoresistant cancer cell lines and primary tumor samples of different histogenetic origin. Several, but not all, clinico-pathological studies showed that MVP expression at diagnosis was an independent adverse prognostic factor for response to chemotherapy. The hollow barrel-shaped structure of the vault complex and its subcellular localization indicate a function in intracellular transport. It was therefore postulated that vaults contributed to drug resistance by transporting drugs away from their intracellular targets and/or the sequestration of drugs. Here, we review the current knowledge on the vault complex and critically discuss the evidence that links vaults to drug resistance. PMID:14576851

  5. Live-cell luciferase assay of drug resistant cells

    OpenAIRE

    sprotocols

    2015-01-01

    To date, multiplexing cell-based assay is essential for high-throughput screening of molecular targets. Measuring multiple parameters of a single sample increases consistency and decrease time and cost of assay. Functional assay of living cell is useful as a first step of multiplexing assay, because live-cell assay allows following second assay using cell lysate or stained cell. However, live-cell assay of drug resistant cells that are highly activated of drug efflux mechanisms is sometimes u...

  6. Antibiotic Adjuvants: Diverse Strategies for Controlling Drug-Resistant Pathogens

    OpenAIRE

    Gill, Erin E.; Franco, Octavio L.; Robert E. W. Hancock

    2014-01-01

    The growing number of bacterial pathogens that are resistant to numerous antibiotics is a cause for concern around the globe. There have been no new broad-spectrum antibiotics developed in the last 40 years, and the drugs we have currently are quickly becoming ineffective. In this article, we explore a range of therapeutic strategies that could be employed in conjunction with antibiotics and may help to prolong the life span of these life-saving drugs. Discussed topics include antiresistance ...

  7. Polymer nanotherapeutics for overcoming drug resistance during cancer treatment

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Braunová, Alena; Chytil, Petr; Šírová, Milada; Heinrich, A. K.; Müller, T.; Mäder, K.

    Ostrava: TANGER Ltd., 2015. s. 52-53. ISBN 978-80-87294-59-8. [NANOCON 2015. International Conference /7./. 14.10.2015-16.10.2015, Brno] R&D Projects: GA ČR(CZ) GA15-02986S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : multi-drug resistence * controlled drug release * nanotherapeutics Subject RIV: CD - Macromolecular Chemistry; EB - Genetics ; Molecular Biology (MBU-M)

  8. HIV Drug-Resistant Patient Information Management, Analysis, and Interpretation

    OpenAIRE

    Singh, Yashik; Mars, Maurice

    2012-01-01

    Introduction The science of information systems, management, and interpretation plays an important part in the continuity of care of patients. This is becoming more evident in the treatment of human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS), the leading cause of death in sub-Saharan Africa. The high replication rates, selective pressure, and initial infection by resistant strains of HIV infer that drug resistance will inevitably become an important health car...

  9. Antibiotic residues and drug resistance in human intestinal flora.

    OpenAIRE

    Corpet, D. E.

    1987-01-01

    The effect of residual levels of ampicillin on the drug resistance of fecal flora was studied in human volunteers given 1.5 mg of ampicillin orally per day for 21 days. This treatment failed to have any significant reproducible effect on the number of resistant Escherichia coli in their feces. The effect of continuous administration of small doses of ampicillin, chlortetracycline, or streptomycin in the drinking water was studied in gnotobiotic mice inoculated with a human fecal flora. In thi...

  10. Extensively drug-resistant tuberculosis: epidemiology and management

    Directory of Open Access Journals (Sweden)

    Matteelli A

    2014-04-01

    Full Text Available Alberto Matteelli,1 Alberto Roggi,1 Anna CC Carvalho21Institute of Infectious and Tropical Diseases, WHO Collaborating Centre for TB/HIV Co-Infection, University of Brescia, Brescia, Italy; 2Laboratory of Innovations in Therapies, Education and Bioproducts (LITEB, Oswaldo Cruz Institute (IOC, Oswaldo Cruz Foundation (Fiocruz, Rio de Janeiro, BrazilAbstract: The advent of antibiotics for the treatment of tuberculosis (TB represented a major breakthrough in the fight against the disease. However, since its first use, antibiotic therapy has been associated with the emergence of resistance to drugs. The incorrect use of anti-TB drugs, either due to prescription errors, low patient compliance, or poor quality of drugs, led to the widespread emergence of Mycobacterium tuberculosis strains with an expanding spectrum of resistance. The spread of multidrug-resistant (MDR strains (ie, strains resistant to both isoniazid and rifampicin has represented a major threat to TB control since the 1990s. In 2006, the first cases of MDR strains with further resistance to fluoroquinolone and injectable drugs were described and named extensively drug-resistant TB (XDR-TB. The emergence of XDR-TB strains is a result of mismanagement of MDR cases, and treatment relies on drugs that are less potent and more toxic than those used to treat drug-susceptible or MDR strains. Furthermore, treatment success is lower and mortality higher than achieved in MDR-TB cases, and the number of drugs necessary in the intensive phase of treatment may be higher than the four drugs recommended for MDR-TB. Linezolid may represent a valuable drug to treat cases of XDR-TB. Delamanid, bedaquiline, and PA-824 are new anti-TB agents in the development pipeline that have the potential to enhance the cure rate of XDR-TB. The best measures to prevent new cases of XDR-TB are the correct management of MDR-TB patients, early detection, and proper treatment of existing patients with XDR

  11. Effect and Safety of Shihogyejitang for Drug Resistant Childhood Epilepsy.

    Science.gov (United States)

    Lee, Jinsoo; Son, Kwanghyun; Hwang, Gwiseo; Kim, Moonju

    2016-01-01

    Objective. Herbal medicine has been widely used to treat drug resistant epilepsy. Shihogyejitang (SGT) has been commonly used to treat epilepsy. We investigated the effect and safety of SGT in children with drug resistant epilepsy. Design. We reviewed medical records of 54 patients with epilepsy, who failed to respond to at least two antiepileptic drugs and have been treated with SGT between April 2006 and June 2014 at the Department of Pediatric Neurology, I-Tomato Hospital, Korea. Effect was measured by the response rate, seizure-free rate, and retention rate at six months. We also checked adverse events, change in antiepileptic drugs use, and the variables related to the outcome. Results. Intent-to-treat analysis showed that, after six months, 44.4% showed a >50% seizure reduction, 24.1% including seizure-free, respectively, and 53.7% remained on SGT. Two adverse events were reported, mild skin rash and fever. Focal seizure type presented significantly more positive responses when compared with other seizure types at six months (p = 0.0284, Fisher's exact test). Conclusion. SGT is an effective treatment with excellent tolerability for drug resistant epilepsy patients. Our data provide evidence that SGT may be used as alternative treatment option when antiepileptic drug does not work in epilepsy children. PMID:27047568

  12. Effect and Safety of Shihogyejitang for Drug Resistant Childhood Epilepsy

    Directory of Open Access Journals (Sweden)

    Jinsoo Lee

    2016-01-01

    Full Text Available Objective. Herbal medicine has been widely used to treat drug resistant epilepsy. Shihogyejitang (SGT has been commonly used to treat epilepsy. We investigated the effect and safety of SGT in children with drug resistant epilepsy. Design. We reviewed medical records of 54 patients with epilepsy, who failed to respond to at least two antiepileptic drugs and have been treated with SGT between April 2006 and June 2014 at the Department of Pediatric Neurology, I-Tomato Hospital, Korea. Effect was measured by the response rate, seizure-free rate, and retention rate at six months. We also checked adverse events, change in antiepileptic drugs use, and the variables related to the outcome. Results. Intent-to-treat analysis showed that, after six months, 44.4% showed a >50% seizure reduction, 24.1% including seizure-free, respectively, and 53.7% remained on SGT. Two adverse events were reported, mild skin rash and fever. Focal seizure type presented significantly more positive responses when compared with other seizure types at six months (p=0.0284, Fisher’s exact test. Conclusion. SGT is an effective treatment with excellent tolerability for drug resistant epilepsy patients. Our data provide evidence that SGT may be used as alternative treatment option when antiepileptic drug does not work in epilepsy children.

  13. Evidence for epistatic interactions in antiepileptic drug resistance.

    Science.gov (United States)

    Kim, Myeong-Kyu; Moore, Jason H; Kim, Jong-Ki; Cho, Ki-Hyun; Cho, Yong-Won; Kim, Yo-Sik; Lee, Min-Cheol; Kim, Young-Ok; Shin, Min-Ho

    2011-01-01

    To investigate the epistatic interactions involved in antiepileptic drug (AED) resistance, 26 coding single-nucleotide polymorphisms (SNPs) were selected from 16 candidate genes. A total of 200 patients with drug-resistant localization-related epilepsy and 200 patients with drug-responsive localization-related epilepsy were genotyped individually for the SNPs. Rather than using the traditional parametric statistical method, a new statistical method, multifactor dimensionality reduction (MDR), was used to determine whether gene-gene interactions increase the risk of AED resistance. The MDR method indicated that a combination of four SNPs (rs12658835 and rs35166395 from GABRA1, rs2228622 from EAAT3 and rs2304725 from GAT3) was the best model for predicting susceptibility to AED resistance with a statistically significant testing accuracy of 0.625 (P < 0.001) and cross-validation consistency of 10/10. This best model had an odds ratio of 3.68 with a significant 95% confidence interval of 2.32-5.85 (P < 0.0001). Our results may provide meaningful information on the mechanism underlying AED resistance and, to the best of our knowledge, this is the first report of evidence for gene-gene interactions underlying AED resistance. PMID:21124337

  14. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps.

    Science.gov (United States)

    Marrero-Ponce, Yovani; Iyarreta-Veitía, Maité; Montero-Torres, Alina; Romero-Zaldivar, Carlos; Brandt, Carlos A; Avila, Priscilla E; Kirchgatter, Karin; Machado, Yanetsy

    2005-01-01

    Malaria has been one of the most significant public health problems for centuries. It affects many tropical and subtropical regions of the world. The increasing resistance of Plasmodium spp. to existing therapies has heightened alarms about malaria in the international health community. Nowadays, there is a pressing need for identifying and developing new drug-based antimalarial therapies. In an effort to overcome this problem, the main purpose of this study is to develop simple linear discriminant-based quantitative structure-activity relationship (QSAR) models for the classification and prediction of antimalarial activity using some of the TOMOCOMD-CARDD (TOpological MOlecular COMputer Design-Computer Aided "Rational" Drug Design) fingerprints, so as to enable computational screening from virtual combinatorial datasets. In this sense, a database of 1562 organic chemicals having great structural variability, 597 of them antimalarial agents and 965 compounds having other clinical uses, was analyzed and presented as a helpful tool, not only for theoretical chemists but also for other researchers in this area. This series of compounds was processed by a k-means cluster analysis in order to design training and predicting sets. Afterward, two linear classification functions were derived in order to discriminate between antimalarial and nonantimalarial compounds. The models (including nonstochastic and stochastic indices) correctly classify more than 93% of the compound set, in both training and external prediction datasets. They showed high Matthews' correlation coefficients, 0.889 and 0.866 for the training set and 0.855 and 0.857 for the test one. The models' predictivity was also assessed and validated by the random removal of 10% of the compounds to form a new test set, for which predictions were made using the models. The overall means of the correct classification for this process (leave group 10% full-out cross validation) using the equations with nonstochastic

  15. Can pharmacogenomics improve malaria drug policy?

    OpenAIRE

    Roederer, Mary W; McLeod, Howard; Juliano, Jonathan J

    2011-01-01

    Coordinated global efforts to prevent and control malaria have been a tour-de-force for public health, but success appears to have reached a plateau in many parts of the world. While this is a multifaceted problem, policy strategies have largely ignored genetic variations in humans as a factor that influences both selection and dosing of antimalarial drugs. This includes attempts to decrease toxicity, increase effectiveness and reduce the development of drug resistance, thereby lowering healt...

  16. Detecting Counterfeit Antimalarial Tablets by Near-Infrared Spectroscopy

    Science.gov (United States)

    Counterfeit antimalarial drugs are found in many developing countries, but it is challenging to differentiate between genuine and fakes due to their increasing sophistication. Near-infrared spectroscopy (NIRS) is a powerful tool in pharmaceutical forensics, and we tested this technique for discrim...

  17. Additional drug resistance of multidrug-resistant tuberculosis in patients in 9 countries.

    Science.gov (United States)

    Kurbatova, Ekaterina V; Dalton, Tracy; Ershova, Julia; Tupasi, Thelma; Caoili, Janice Campos; Van Der Walt, Martie; Kvasnovsky, Charlotte; Yagui, Martin; Bayona, Jaime; Contreras, Carmen; Leimane, Vaira; Via, Laura E; Kim, HeeJin; Akksilp, Somsak; Kazennyy, Boris Y; Volchenkov, Grigory V; Jou, Ruwen; Kliiman, Kai; Demikhova, Olga V; Cegielski, J Peter

    2015-06-01

    Data from a large multicenter observational study of patients with multidrug-resistant tuberculosis (MDR TB) were analyzed to simulate the possible use of 2 new approaches to treatment of MDR TB: a short (9-month) regimen and a bedaquiline-containing regimen. Of 1,254 patients, 952 (75.9%) had no resistance to fluoroquinolones and second-line injectable drugs and thus would qualify as candidates for the 9-month regimen; 302 (24.1%) patients with resistance to a fluoroquinolone or second-line injectable drug would qualify as candidates for a bedaquiline-containing regimen in accordance with published guidelines. Among candidates for the 9-month regimen, standardized drug-susceptibility tests demonstrated susceptibility to a median of 5 (interquartile range 5-6) drugs. Among candidates for bedaquiline, drug-susceptibility tests demonstrated susceptibility to a median of 3 (interquartile range 2-4) drugs; 26% retained susceptibility to <2 drugs. These data may assist national TB programs in planning to implement new drugs and drug regimens. PMID:25988299

  18. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors.

    Science.gov (United States)

    Zhang, Gao; Frederick, Dennie T; Wu, Lawrence; Wei, Zhi; Krepler, Clemens; Srinivasan, Satish; Chae, Young Chan; Xu, Xiaowei; Choi, Harry; Dimwamwa, Elaida; Ope, Omotayo; Shannan, Batool; Basu, Devraj; Zhang, Dongmei; Guha, Manti; Xiao, Min; Randell, Sergio; Sproesser, Katrin; Xu, Wei; Liu, Jephrey; Karakousis, Giorgos C; Schuchter, Lynn M; Gangadhar, Tara C; Amaravadi, Ravi K; Gu, Mengnan; Xu, Caiyue; Ghosh, Abheek; Xu, Weiting; Tian, Tian; Zhang, Jie; Zha, Shijie; Liu, Qin; Brafford, Patricia; Weeraratna, Ashani; Davies, Michael A; Wargo, Jennifer A; Avadhani, Narayan G; Lu, Yiling; Mills, Gordon B; Altieri, Dario C; Flaherty, Keith T; Herlyn, Meenhard

    2016-05-01

    Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi. PMID:27043285

  19. Biophysical principles predict fitness landscapes of drug resistance.

    Science.gov (United States)

    Rodrigues, João V; Bershtein, Shimon; Li, Anna; Lozovsky, Elena R; Hartl, Daniel L; Shakhnovich, Eugene I

    2016-03-15

    Fitness landscapes of drug resistance constitute powerful tools to elucidate mutational pathways of antibiotic escape. Here, we developed a predictive biophysics-based fitness landscape of trimethoprim (TMP) resistance for Escherichia coli dihydrofolate reductase (DHFR). We investigated the activity, binding, folding stability, and intracellular abundance for a complete set of combinatorial DHFR mutants made out of three key resistance mutations and extended this analysis to DHFR originated from Chlamydia muridarum and Listeria grayi We found that the acquisition of TMP resistance via decreased drug affinity is limited by a trade-off in catalytic efficiency. Protein stability is concurrently affected by the resistant mutants, which precludes a precise description of fitness from a single molecular trait. Application of the kinetic flux theory provided an accurate model to predict resistance phenotypes (IC50) quantitatively from a unique combination of the in vitro protein molecular properties. Further, we found that a controlled modulation of the GroEL/ES chaperonins and Lon protease levels affects the intracellular steady-state concentration of DHFR in a mutation-specific manner, whereas IC50 is changed proportionally, as indeed predicted by the model. This unveils a molecular rationale for the pleiotropic role of the protein quality control machinery on the evolution of antibiotic resistance, which, as we illustrate here, may drastically confound the evolutionary outcome. These results provide a comprehensive quantitative genotype-phenotype map for the essential enzyme that serves as an important target of antibiotic and anticancer therapies. PMID:26929328

  20. Emerging drug -resistance and guidelines for treatment of malaria

    International Nuclear Information System (INIS)

    The increasing prevalence of multi-resistant Plasmodium falciparum malaria worldwide is a serious public health threat to the global control of malaria, especially in poor countries like Pakistan. In many countries chloroquine-resistance is a huge problem, accounting for more than 90% of malaria cases. In Pakistan, resistance to chloroquine is on the rise and reported in up to 16- 62% of Plasmodium falciparum. Four to 25% of Plasmodium falciparum also reported to be resistant to sulfadoxine-pyrimethamine and several cases of delayed parasite clearance have been observed in patients with Plasmodium falciparum malaria treated with quinine. In this article we have introduced the concept of artemisinin- based combination therapy (ACT) and emphasize the use of empiric combination therapy for all patients with Plasmodium falciparum malaria to prevent development of drug resistance and to obtain additive and synergistic killing of parasite. (author)

  1. Comparative assessment on the prevalence of mutations in the Plasmodium falciparum drug-resistant genes in two different ecotypes of Odisha state, India.

    Science.gov (United States)

    Kar, Narayani Prasad; Chauhan, Kshipra; Nanda, Nutan; Kumar, Ashwani; Carlton, Jane M; Das, Aparup

    2016-07-01

    Considering malaria as a local and focal disease, epidemiological understanding of different ecotypes of malaria can help in devising novel control measures. One of the major hurdles in malaria control lies on the evolution and dispersal of the drug-resistant malaria parasite, Plasmodium falciparum. We herewith present data on genetic variation at the Single Nucleotide Polymorphism (SNP) level in four different genes of P. falciparum (Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps) that confer resistance to different antimalarials in two different eco-epidemiological settings, i.e. Hilly-Forest (HF) and Riverine-Plain (RP), in a high malaria endemic district of Odisha state, India. Greater frequency of antimalarial resistance conferring SNPs and haplotypes was observed in all four genes in P. falciparum, and Pfdhps was the most variable gene among the four. No significant genetic differentiation could be observed in isolates from HF and RP ecotypes. Twelve novel, hitherto unreported nucleotide mutations could be observed in the Pfmdr1 and Pfdhps genes. While the Pfdhps gene presented highest haplotype diversity, the Pfcrt gene displayed the highest nucleotide diversity. When the data on all the four genes were complied, the isolates from HF ecotype were found to harbour higher average nucleotide diversity than those coming from RP ecotype. High and positive Tajima's D values were obtained for the Pfcrt and Pfdhfr genes in isolates from both the HF and RP ecotypes, with statistically significant deviation from neutrality in the RP ecotype. Different patterns of Linkage Disequilibrium (LD) among SNPs located in different drug-resistant genes were found in the isolates collected from HF and RP ecotypes. Whereas in the HF ecotype, SNPs in the Pfmdr1 and Pfdhfr were significantly associated, in the RP ecotype, SNPs located in Pfcrt were associated with Pfmdr1, Pfdhfr and Pfdhps. These findings provide a baseline understanding on how different micro eco-epidemiological settings

  2. Cajachalcone: An Antimalarial Compound from Cajanus cajan Leaf Extract

    Directory of Open Access Journals (Sweden)

    E. O. Ajaiyeoba

    2013-01-01

    Full Text Available Cajanus cajan L, a member of the family Fabaceae, was identified from the Nigerian antimalarial ethnobotany as possessing antimalarial properties. The bioassay-guided fractionation of the crude methanol extract of C. cajan leaves was done in vitro using the multiresistant strain of Plasmodium falciparum (K1 in the parasite lactate dehydrogenase assay. Isolation of compound was achieved by a combination of chromatographic techniques, while the structure of the compound was elucidated by spectroscopy. This led to the identification of a cajachalcone, 2′,6′-dihydroxy-4-methoxy chalcone, as the biologically active constituent from the ethyl acetate fraction. Cajachalcone had an IC50 value of 2.0 μg/mL (7.4 μM and could be a lead for anti-malarial drug discovery.

  3. Flu Resistance to Antiviral Drug in North Carolina

    Centers for Disease Control (CDC) Podcasts

    2011-12-19

    Dr. Katrina Sleeman, Associate Service Fellow at CDC, discusses resistance to an antiviral flu drug in North Carolina.  Created: 12/19/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/19/2011.

  4. What is Multidrug and Extensively Drug Resistant TB?

    Science.gov (United States)

    ... more potent types used to treat MDR TB. Treatment for XDR TB is much more difficult, expensive, and lasts longer. ... of treatment; When healthcare providers prescribe the wrong treatment, the ... poor quality. Drug-resistant TB is more common in people who: Do not ...

  5. P-Glycoprotein and Drug Resistance in Systemic Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Andrea Picchianti-Diamanti

    2014-03-01

    Full Text Available Autoimmune diseases such as systemic lupus erythematosus (SLE, rheumatoid arthritis (RA and psoriatic arthritis (PsA are chronic inflammatory disorders of unknown etiology characterized by a wide range of abnormalities of the immune system that may compromise the function of several organs, such as kidney, heart, joints, brain and skin. Corticosteroids (CCS, synthetic and biologic immunosuppressive agents have demonstrated the capacity to improve the course of autoimmune diseases. However, a significant number of patients do not respond or develop resistance to these therapies over time. P-glycoprotein (P-gp is a transmembrane protein that pumps several drugs out of the cell, including CCS and immunosuppressants; thus, its over-expression or hyper-function has been proposed as a possible mechanism of drug resistance in patients with autoimmune disorders. Recently, different authors have demonstrated that P-gp inhibitors, such as cyclosporine A (CsA and its analogue Tacrolimus, are able to reduce P-gp expression and or function in SLE, RA and PsA patients. These observations suggest that P-gp antagonists could be adopted to revert drug resistance and improve disease outcome. The complex inter-relationship among drug resistance, P-gp expression and autoimmunity still remains elusive.

  6. Mechanisms of antifungal drug resistance in Candida dubliniensis.

    LENUS (Irish Health Repository)

    Coleman, David C

    2010-06-01

    Candida dubliniensis was first described in 1995 and is the most closely related species to the predominant human fungal pathogen Candida albicans. C. dubliniensis is significantly less prevalent and less pathogenic than C. albicans and is primarily associated with infections in HIV-infected individuals and other immunocompromised cohorts. The population structure of C. dubliniensis consists of three well-defined major clades and is significantly less diverse than C. albicans. The majority of C. dubliniensis isolates are susceptible to antifungal drugs commonly used to treat Candida infections. To date only two major patterns of antifungal drug resistance have been identified and the molecular mechanisms of these are very similar to the resistance mechanisms that have been described previously in C. albicans. However, significant differences are evident in the predominant antifungal drug mechanisms employed by C. dubliniensis, differences that reflect its more clonal nature, its lower prevalence and characteristics of its genome, the complete sequence of which has only recently been determined.

  7. Drug Resistance Characteristics and Macrolide-Resistant Mechanisms of Streptococcus pneumoniae in Wenzhou City, China.

    Science.gov (United States)

    Hu, Dakang; Sun, Zheng; Luo, Xinhua; Liu, Shuangchun; Yu, Lianhua; Qu, Ying; Yang, Jinhong; Yu, Jian; Li, Xiangyang; Zhang, Jin

    2016-01-01

    BACKGROUND Streptococcus pneumoniae (SP) is a Gram-positive, alpha-hemolytic, facultative anaerobic member of the genus Streptococcus. The erythromycin-resistant methylase (erm) gene and macrolide efflux (mef) gene are the 2 main genes that can mediate SP. Transposon (Tn) also plays an important role in the collection and metastasis of the gene. In the present study we investigated the drug resistance characteristics and the macrolide-resistant mechanisms of SP in Wenzhou City, China. MATERIAL AND METHODS Sixty-eight strains of SP were isolated from sputum samples of hospitalized children in the Second Affiliated Hospital of Wenzhou Medical University. These strains were analyzed using antimicrobial susceptibility tests to determine their drug resistance to 10 kinds of antibacterials. Macrolide-resistant phenotypes were identified using K-B method. PCR method was used to analyze the erm B gene, mef A gene, and int Tn gene. RESULTS Drug resistance rates of 68 strains of SP were 98.5%, 100.0%, 63.2%, 52.9%, 94.1%, 89.7%, 0.0%, 0.0%, 16.2%, and 14.7% for clindamycin, erythromycin, penicillin G, cefotaxime, tetracycline, sulfamethoxazole/trimethoprim, levofloxacin, vancomycin, chloramphenicol, and amoxicillin, respectively. Total detection rates of the erm B gene, mef A gene, and int Tn gene were 98.5%, 91.2%, and 100.0%, respectively. CONCLUSIONS SP shows significant multi-drug resistance in Wenzhou City, whereas there is no clinical value of macrolides antibiotics for SP. cMLSB mediated by erm B gene is the most predominant phenotype among macrolide-resistant SP. The int Tn gene may play an important role in horizontal transfer and clonal dissemination of SP drug resistance genes in Wenzhou City. PMID:27483416

  8. An outbreak of artemisinin resistant falciparum malaria in Eastern Thailand

    OpenAIRE

    Mallika Imwong; Thantip Jindakhad; Chanon Kunasol; Kreepol Sutawong; Phisitt Vejakama; Dondorp, Arjen M

    2015-01-01

    Artemisinin resistant falciparum malaria is an increasing problem in Southeast Asia, but has not been associated with increased transmission of the disease, yet. During a recent outbreak in 2014 in Ubon Ratchatani, Eastern Thailand, parasites from 101 patients with falciparum malaria were genotyped for antimalarial drug resistance markers. Mutations in the Kelch13 marker for artemisinin resistance were present in 93% of samples, mainly C580Y from 2 major clusters as identified by microsatelli...

  9. Drug resistance of bacteria——present situation and treatment

    Directory of Open Access Journals (Sweden)

    Min ZHAO

    2011-02-01

    Full Text Available Antimicrobial resistance of bacteria is a serious problem worldwide.It has become the difficulty of anti-infection that multidrug-resistance(MDR and drug wide-resistance(DWR gram-negative bacteria are increasing year and year.Alarm has been knolled again on the emerging of Gram-negative pathogens producing the NDM-1 worldwide in 2010.NDM-1 is a new metallo-carbapenemase which is highly resistant to all antibiotics,and has been mostly found among Escherichia coli and Klebsiella pneumoniae.Infections of MDR and DWR Enterobacteriaceae can be effectively treated with tigecycline,polymyxin and fosfomycin on clinic trail.Prevention is very important for reducing the occurring and spreading of MDR and DWR bacteria.

  10. Modeling HIV-1 drug resistance as episodic directional selection.

    Directory of Open Access Journals (Sweden)

    Ben Murrell

    Full Text Available The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

  11. Application of Metabolomics in Drug Resistant Breast Cancer Research

    Directory of Open Access Journals (Sweden)

    Ayesha N. Shajahan-Haq

    2015-02-01

    Full Text Available The metabolic profiles of breast cancer cells are different from normal mammary epithelial cells. Breast cancer cells that gain resistance to therapeutic interventions can reprogram their endogenous metabolism in order to adapt and proliferate despite high oxidative stress and hypoxic conditions. Drug resistance in breast cancer, regardless of subgroups, is a major clinical setback. Although recent advances in genomics and proteomics research has given us a glimpse into the heterogeneity that exists even within subgroups, the ability to precisely predict a tumor’s response to therapy remains elusive. Metabolomics as a quantitative, high through put technology offers promise towards devising new strategies to establish predictive, diagnostic and prognostic markers of breast cancer. Along with other “omics” technologies that include genomics, transcriptomics, and proteomics, metabolomics fits into the puzzle of a comprehensive systems biology approach to understand drug resistance in breast cancer. In this review, we highlight the challenges facing successful therapeutic treatment of breast cancer and the innovative approaches that metabolomics offers to better understand drug resistance in cancer.

  12. How genomics is contributing to the fight against artemisinin-resistant malaria parasites.

    Science.gov (United States)

    Cravo, Pedro; Napolitano, Hamilton; Culleton, Richard

    2015-08-01

    Plasmodium falciparum, the malignant malaria parasite, has developed resistance to artemisinin, the most important and widely used antimalarial drug at present. Currently confined to Southeast Asia, the spread of resistant parasites to Africa would constitute a public health catastrophe. In this review we highlight the recent contributions of genomics to our understanding how the parasite develops resistance to artemisinin and its derivatives, and how resistant parasites may be monitored and tracked in real-time, using molecular approaches. PMID:25910626

  13. Systematic review of the performance of rapid rifampicin resistance testing for drug-resistant tuberculosis.

    Directory of Open Access Journals (Sweden)

    Matthew Arentz

    Full Text Available INTRODUCTION: Rapid tests for rifampicin resistance may be useful for identifying isolates at high risk of drug resistance, including multidrug-resistant TB (MDR-TB. However, choice of diagnostic test and prevalence of rifampicin resistance may both impact a diagnostic strategy for identifying drug resistant-TB. We performed a systematic review to evaluate the performance of WHO-endorsed rapid tests for rifampicin resistance detection. METHODS: We searched MEDLINE, Embase and the Cochrane Library through January 1, 2012. For each rapid test, we determined pooled sensitivity and specificity estimates using a hierarchical random effects model. Predictive values of the tests were determined at different prevalence rates of rifampicin resistance and MDR-TB. RESULTS: We identified 60 publications involving six different tests (INNO-LiPA Rif. TB assay, Genotype MTBDR assay, Genotype MTBDRplus assay, Colorimetric Redox Indicator (CRI assay, Nitrate Reductase Assay (NRA and MODS tests: for all tests, negative predictive values were high when rifampicin resistance prevalence was ≤ 30%. However, positive predictive values were considerably reduced for the INNO-LiPA Rif. TB assay, the MTBDRplus assay and MODS when rifampicin resistance prevalence was < 5%. LIMITATIONS: In many studies, it was unclear whether patient selection or index test performance could have introduced bias. In addition, we were unable to evaluate critical concentration thresholds for the colorimetric tests. DISCUSSION: Rapid tests for rifampicin resistance alone cannot accurately predict rifampicin resistance or MDR-TB in areas with a low prevalence of rifampicin resistance. However, in areas with a high prevalence of rifampicin resistance and MDR-TB, these tests may be a valuable component of an MDR-TB management strategy.

  14. Drug resistance following irradiation of RIF-1 tumors: Influence of the interval between irradiation and drug treatment

    International Nuclear Information System (INIS)

    RIF-1 tumors contain a small number of cells (1 to 100 per 10(6) cells) that are resistant to 5-fluorouracil, methotrexate, or adriamycin. The frequency of drug-resistant cells among individual untreated tumors is highly variable. Radiation, delivered in vivo at doses of 3 to 12 Gy, increases the frequency of methotrexate- and 5-fluorouracil-resistant cells, but not the frequency of adriamycin-resistant cells. The magnitude of induction of 5-fluorouracil and methotrexate resistance shows a complex dependence on the radiation dose and on the interval between irradiation and assessment of drug resistance. For a dose of 3 Gy, induced 5-fluorouracil and methotrexate resistance is seen only after an interval of 5 to 7 days, whereas for a dose of 12 Gy, high levels of induced resistance are observed 1 to 3 days after irradiation. The maximum absolute risk for induction of resistance is 4 per 10(4) cells per Gy for methotrexate, and 3 per 10(6) cells per Gy for 5-fluorouracil. These results indicate that tumor hypoxia may play a role in the increased levels of drug resistance seen after irradiation, and that both genetic and environmental factors may influence radiation-induction of drug resistance. These studies provide essential data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be caused by radiation-induced drug resistance

  15. Magnitude of drug resistant shigellosis: A report from Bangalore

    Directory of Open Access Journals (Sweden)

    Srinivasa H

    2009-01-01

    Full Text Available Shigella is an important cause of acute invasive diarrhea in children and others. Antimicrobial susceptibility of Shigella spp. isolated from diarrhoeal/ dysenteric patients in Bangalore was studied in our hospital from January 2002 to December 2007. One hundred and thirty-four isolates were identified as Shigella species. S. flexneri, S. sonnei , S. boydii and S. dysenteriae were accounted respectively for 64.9%, 21.6%, 8.2% and 3.7% of the total number of Shigella isolated. Of these 56 (41.8% were from children (0 to 14 years and 78 (58.2% were from adults and elderly patients. Over 70% of Shigella isolates were resistant to two or more drugs including Ampicillin and Co-trimoxazole. During 2002 to 2007, resistance to Ampicillin had increased from 46.7% to 68%. For Co-trimoxazole, though the resistance had gradually decreased from 100% to 72%, but still the resistance is high. Chloramphenicol resistance showed sudden decline from 73.3% to 25% from 2002 to 2003, but gradually has reached 48%. Nalidixic acid resistance was more than 70%. All isolates were sensitive to Ciprofloxacin during the period 2002 to 2004, but over the years the resistance pattern gradually increased up to 48%. Ceftriaxone had shown no resistance. The results of the study revealed the endemicity of Shigellosis with S. flexneri as the predominant serogroup. Children were at a higher risk of severe shigellosis. The results also suggest that Ampicillin, Co-trimoxazole, Chloramphenicol, Nalidixic acid and Ciprofloxacin should not be used empirically as the first line drugs in the treatment of Shigellosis. Periodic analysis and reporting of antibiotic susceptibility is an important measure to guide antibiotic treatment.

  16. Genome-wide screening of loci associated with drug resistance to 5-fluorouracil-based drugs.

    Science.gov (United States)

    Ooyama, Akio; Okayama, Yoshihiro; Takechi, Teiji; Sugimoto, Yoshikazu; Oka, Toshinori; Fukushima, Masakazu

    2007-04-01

    Resistance to chemotherapeutic agents represents the chief cause of mortality in cancer patients with advanced disease. Chromosomal aberration and altered gene expression are the main genetic mechanisms of tumor chemoresistance. In this study, we have established an algorithm to calculate DNA copy number using the Affymetrix 10K array, and performed a genome-wide correlation analysis between DNA copy number and antitumor activity against 5-fluorouracil (5-FU)-based drugs (S-1, tegafur + uracil [UFT], 5'-DFUR and capecitabine) to screen for loci influencing drug resistance using 27 human cancer xenografts. A correlation analysis confirmed that the single nucleotide polymorphism (SNP) showing significant associations with drug sensitivity were concentrated in some cytogenetic regions (18p, 17p13.2, 17p12, 11q14.1, 11q11 and 11p11.12), and we identified some genes that have been indicated their relations to drug sensitivity. Among these regions, 18p11.32 at the location of the thymidylate synthase gene (TYMS) was strongly associated with resistance to 5-FU-based drugs. A change in copy number of the TYMS gene was reflected in the TYMS expression level, and showed a significant negative correlation with sensitivity against 5-FU-based drugs. These results suggest that amplification of the TYMS gene is associated with innate resistance, supporting the possibility that TYMS copy number might be a predictive marker of drug sensitivity to fluoropyrimidines. Further study is necessary to clarify the functional roles of other genes coded in significant cytogenetic regions. These promising data suggest that a comprehensive DNA copy number analysis might aid in the quest for optimal markers of drug response. PMID:17425594

  17. Sensitive, resistant and multi-drug resistant Acinetobacter baumanii at Saudi Arabia hospital eastern region.

    Science.gov (United States)

    Ahmed, Mughis Uddin; Farooq, Reshma; Al-Hawashim, Nadia; Ahmed, Motasim; Yiannakou, Nearchos; Sayeed, Fatima; Sayed, Ali Rifat; Lutfullah, Sualiha

    2015-05-01

    Since the Physicians start use of antibiotics long ago with un-notice drug resistance. However actual problem was recognized about 85 years ago. Antibiotic resistant and Multi-drug resistant bacterial strains are at rise throughout the world. It is physicians and researchers to take scientific research based appropriate action to overcome this ever-spreading problem. This study is designed to find out sensitive (S), resistant (R) and multi-drug resistant (MDR) Acinetobacter baumanii strain along with other isolates in the resident patients of Eastern Region of Saudi Arabia. Pseudomonas aeruginosa is excluded from other gram-negative organisms isolated from different sites as it will be dealt separately. This study is based in was retrospective observations designed to collect data of different stains of Acinetobacter baumanii with reference to their Sensitivity (S), Resistance (R), Multi-Drug Resistance (MDR) along with other Gram negative isolated from different sites (from 1st January 2004 to 31st December 2011) at King Abdulaziz Hospital located Eastern Region of Kingdom of Saudi Arabia (KSA). All necessary techniques were used to culture and perform sensitivity of these isolates. There were 4532 isolates out of which 3018 (67%) were from patients. Out of Acinetobacter baumanii infected were 906 (20%) while other 3626 (80%) isolates were miscellaneous. Numbers of patients or cases were 480 (53%) out of 906 isolates and numbers of patients or cases in other organisms were 2538 (70%) out of 3626 isolates. Acinetobacter baumanii infected patients 221 (46%) were male and 259 (54%) were female and the male and female ratio of 1:1.2. In other organisms this male female ratio was almost same. There was steady rise in number of patients and the hence the isolates from 2004 to 2011. Majority of the bacterial strains were isolated as single organism but some were isolated as double or triple or quadruple or more organisms from different sites. Sensitive, Resistant and

  18. Elaboration of a global strategy for containing microbial drug resistance.

    Science.gov (United States)

    Zabicki, W

    2001-01-01

    The World Health Organization is engaged in developing the Global Strategy for Containment of Antimicrobial Resistance. The preliminary document WHO/CDC/CSR/DRS/2000.I Draft has already been distributed, and remarks have been solicited. The World Health Assembly Resolution of 1998 urged Member States to encourage the appropriate and cost-effective use of antimicrobials. Member States were requested to implement effective systems of microbial resistance surveillance and to monitor volumes and patterns of antimicrobial drug use. The phenomenon of antimicrobial resistance is rising rapidly and causing growing international concern. Many countries have undertaken their own national plans to address the problem. The overall aim of the strategy being developed is to find the most effective forms and to prevent the spread of antimicrobial resistance and resistant microbes. The strategy covers the following topics: patients and general community, prescribers, hospitals, veterinarians, manufacturers and drug dispensers, and international aspects. The strategy is being developed on the basis of expert opinions, published reports, reviews of specific topics specially commissioned by various international and national bodies, and a large body of literature with a list of publications containing over 100 items. PMID:17986973

  19. Drug resistance patterns of acinetobacter baumannii in makkah, saudi arabia

    International Nuclear Information System (INIS)

    Background: Acinetobacter baumannii causes infections of respiratory, urinary tract, blood stream and surgical sites. Its clinical significance has increased due to its rapidly developing resistance to major groups of antibiotics used for its treatment. There is limited data available on antimicrobial susceptibility of A. baumannii from Saudi Arabia. Objectives: To determine the patterns of drug resistance of Acinetobacter baumannii and predisposing factors for its acquisition.Subjects and Methods: In this descriptive study, 72 hospitalized patients infected with A baumannii were studied. The clinical and demographic data of the patients were collected using a predesigned questionnaire. Isolation and identification of A.baumannii from all clinical specimens were done using standard microbiological methods. Antibiotic susce ptibility testing was performed by disk diffusion method recommended by Clinical Laboratory Standards Institute. Results: Majority of the isolates (61.1%) were from respiratory tract infections. A.baumannii isolates showed high drug resistance to piperacil lin (93.1%), aztreonam (80.5%), ticarcillin, ampicillin, and tetracycline (76.4%, each) and cefotaxime (75%). Only amikacin showed low rate of resistance compared to other antibiotics (40.3%). About 36% patients had some underlying diseases with diabetes mellitus (11%) being the predominant underlying disease. Conclusions: High antimicrobial resistance to commonly used antibiotics was seen against A.baumannii isolates. Only amikacin was most effective against it. (author)

  20. Drug accumulation in the presence of the multidrug resistance pump

    DEFF Research Database (Denmark)

    Ayesh, S; Litman, Thomas; Stein, W D

    1997-01-01

    We studied the interaction between the multidrug transporter, P-glycoprotein, and two compounds that interact with it: vinblastine, a classical substrate of the pump, and verapamil, a classical reverser. Steady-state levels of accumulation of these two drugs were determined in a multidrug resistant...... P388 leukemia cell line, P388/ADR. The time course of accumulation of these drugs, and the effect of energy starvation and the presence of chloroquine on the level of their steady-state accumulation were quite disparate. Vinblastine inhibited the accumulation of verapamil whereas it enhanced the...

  1. The management of drug resistant seizures in tuberous sclerosis

    Directory of Open Access Journals (Sweden)

    Romina MOAVERO

    2009-12-01

    Full Text Available Tuberous Sclerosis Complex (TSC is a multisystem autosomal dominant genetic disorder resulting from mutations in one of two genes, TSC1 and TSC2. Pathologically TSC is characterized by abnormal cellular differentiation and proliferation, as well as abnormal neuronal migration. The majority of patients with TSC have epilepsy, although the mechanisms underlying epileptogenesis remain unknown. Seizures onset is frequently during the first year of life, and in a sizable proportion of individuals tend to be refractory to antiepileptic drug treatment. This article reviews the progress in understanding drug resistant seizures in TSC, from molecular pathogenesis to the pathophysiological mechanisms of epileptogenesis, and the rationale for appropriate medical and surgical treatment.

  2. Multi drug resistant tuberculosis presenting as anterior mediastinal mass

    Directory of Open Access Journals (Sweden)

    Parmarth Chandane

    2016-01-01

    Full Text Available Enlargement of the mediastinal lymphatic glands is a common presentation of intrathoracic tuberculosis (TB in children. However, usually, the mediastinal TB nodes enlarge to 2.8 ± 1.0 cm. In this report, we describe a case of anterior mediastinal lymphnode TB seen as huge mass (7 cm on computed tomography (CT thorax without respiratory or food pipe compromise despite anterior mediastinum being an enclosed space. CT guided biopsy of the mass cultured Mycobacterium TB complex which was resistant to isoniazide, rifampicin, streptomycin ofloxacin, moxifloxacin, and pyrazinamide. Hence, we report primary multi drug resistant TB presenting as anterior mediastinal mass as a rare case report.

  3. Coherent feedforward transcriptional regulatory motifs enhance drug resistance

    Science.gov (United States)

    Charlebois, Daniel A.; Balázsi, Gábor; Kærn, Mads

    2014-05-01

    Fluctuations in gene expression give identical cells access to a spectrum of phenotypes that can serve as a transient, nongenetic basis for natural selection by temporarily increasing drug resistance. In this study, we demonstrate using mathematical modeling and simulation that certain gene regulatory network motifs, specifically coherent feedforward loop motifs, can facilitate the development of nongenetic resistance by increasing cell-to-cell variability and the time scale at which beneficial phenotypic states can be maintained. Our results highlight how regulatory network motifs enabling transient, nongenetic inheritance play an important role in defining reproductive fitness in adverse environments and provide a selective advantage subject to evolutionary pressure.

  4. A novel way to grow hemozoin-like crystals in vitro and its use to screen for hemozoin inhibiting antimalarial compounds.

    Directory of Open Access Journals (Sweden)

    Vincent Thomas

    Full Text Available BACKGROUND: Hemozoin crystals are normally formed in vivo by Plasmodium parasites to detoxify free heme released after hemoglobin digestion during its intraerythrocytic stage. Inhibition of hemozoin formation by various drugs results in free heme concentration toxic for the parasites. As a consequence, in vitro assays have been developed to screen and select candidate antimalarial drugs based on their capacity to inhibit hemozoin formation. In this report we describe new ways to form hemozoin-like crystals that were incidentally discovered during research in the field of prion inactivation. METHODS: We investigated the use of a new assay based on naturally occurring "self-replicating" particles and previously described as presenting resistance to decontamination comparable to prions. The nature of these particles was determined using electron microscopy, Maldi-Tof analysis and X-ray diffraction. They were compared to synthetic hemozoin and to hemozoin obtained from Plasmodium falciparum. We then used the assay to evaluate the capacity of various antimalarial and anti-prion compounds to inhibit "self-replication" (crystallisation of these particles. RESULTS: We identified these particles as being similar to ferriprotoporphyrin IX crystal and confirmed the ability of these particles to serve as nuclei for growth of new hemozoin-like crystals (HLC. HLC are morphologically similar to natural and synthetic hemozoin. Growth of HLC in a simple assay format confirmed inhibition by quinolines antimalarials at potencies described in the literature. Interestingly, artemisinins and tetracyclines also seemed to inhibit HLC growth. CONCLUSIONS: The described HLC assay is simple and easy to perform and may have the potential to be used as an additional tool to screen antimalarial drugs for their hemozoin inhibiting activity. As already described by others, drugs that inhibit hemozoin crystal formation have also the potential to inhibit misfolded proteins

  5. Artemisinin resistance or tolerance in human malaria patients

    Institute of Scientific and Technical Information of China (English)

    Jerapan Krungkrai; Waranya Imprasittichai; Sumintra Otjungreed; Sawirasagee Pongsabut; Sudaratana R Krungkrai

    2010-01-01

    Malaria is a major cause of morbidity and mortality in the developing world. This situation is mainly due to emergence of resistance to most antimalarial drugs currently available. Artemisinin-based combination treatments are now first-line drugs forPlasmodium falciparum (P. falciparum) malaria. Artemisinin (qinghaosu) and its derivatives are the most rapid acting and efficacious antimalarial drugs. This review highlights most recent investigations into the emergence of artemisinin resistance in falciparum malaria patients on the Thai-Cambodian border, a historical epicenter for multidrug resistance spread spanning over50 years. The study presents the first evidence that highlights the parasites reduced susceptibility to artemisinin treatment by prolonged parasite-clearance times, raising considerable concern on resistance development. Although the exact mechanism of action remains unresolved, development of resistance was proposed based from bothin vitro experiments and human patients. Lines of evidence suggested that the parasites in the patients are in dormant forms, presumably tolerate to the drug pressure. The World Health Organization has launched for prevention and/or containment of the artemisinin-resistant malaria parasites. Taken together, the emergence of artemisinin resistance to the most potent antidote for falciparum malaria, poses a serious threat to global malaria control and prompts renewed efforts for urgent development of new antimalarial weapons.

  6. Drug - Resistance - Associated Mutations and HIV Sub - Type Determination in Drug - Naïve and HIV - Positive Patients under Treatment with Antiretroviral Drugs

    Directory of Open Access Journals (Sweden)

    Naziri, H . (M S c

    2013-09-01

    Full Text Available Abstract Background and Objective: Resistance to antiretroviral agents is a significant concern in clinical management of HIV-infected individuals. Resistance is the result of mutations that develops in the viral protein targeted by antiretroviral agents. Material and Methods: In this cross-sectional study, the blood samples of 40 HIV-positive patients were collected. Twenty of them were drug-naïve and the rest were under treatment for at least one year by antiretroviral agents. Virus genome was extracted from patient's plasma with high-pure-viral-nucleic-acid kit. Then, by means of reverse-transcriptase and specific primers of protease genes were amplified and sequenced. Sequences of genes, drug- antiretroviral- resistant mutations and subtypes were determined using Stanford University’s HIV-drug-resistance databases. Results: Drug-naive patients show 15% resistance to nucleoside-reverse-transcriptase inhibitor (NRTI and 20% resistance to non-nucleoside-reverse-transcriptase inhibitor (NNRTI. Anti-protease resistance is not observed in any patients. In under treatment patients, drug resistance to NNRTI (25% is more than drug resistance to NRTI (20% and the rate of drug resistance to protease inhibitor is 5%. Conclusion: Our findings show a high prevalence of drug-resistant mutations in Iranian-drug-naïve-HIV-infected patients. But in under treatment individuals, the rate of drug resistance is less than previous studies. Keywords: HIV; Nucleoside Inhibitor; Non-Nucleoside Inhibitor; Protease Inhibitor

  7. Analysis of Etiology and Drug Resistance of Biliary Infections

    Institute of Scientific and Technical Information of China (English)

    王欣; 李秋; 邹声泉; 孙自庸; 朱峰

    2004-01-01

    The bile was collected from fro patients with biliary infections, with the bacterium isolated to study the sensitivity of each kind of the bacterium to several antibiotics in common use. Except G- bacterium, we also found some kinds of G+ bacterium in infection bile. G- bacterium were not sensitive to Clindamycin, G+ bacterium were sensitive to Ciprofloxacin. Escherichia coli,Xanthomonas maltophilia, Enterobacter cloacae, Pseudomonas aeruginosa were sensitive to Ampicillin. G+ bacterium were not sensitive to Azactam. Enterococcus faecalis, Enterococcus faecium,Enterobacter cloacae were not sensitive to Ceftazidime. Enterococcus faecalis, Staphylococcus coagulase negative, Staphylococcus epidermidis, Pseudomonas aeruginosa were not sensitive to Ceftriaxone Sodium. We didn't found any bacterium resistance Imipenem. The possibility of the existence of G+ bacterium as well as drug resistance should be considered n patients with biliary infections.The value of susceptibility test should be respected to avoid drug abuse of antibiotics.

  8. Mathematical models of tumor heterogeneity and drug resistance

    Science.gov (United States)

    Greene, James

    In this dissertation we develop mathematical models of tumor heterogeneity and drug resistance in cancer chemotherapy. Resistance to chemotherapy is one of the major causes of the failure of cancer treatment. Furthermore, recent experimental evidence suggests that drug resistance is a complex biological phenomena, with many influences that interact nonlinearly. Here we study the influence of such heterogeneity on treatment outcomes, both in general frameworks and under specific mechanisms. We begin by developing a mathematical framework for describing multi-drug resistance to cancer. Heterogeneity is reflected by a continuous parameter, which can either describe a single resistance mechanism (such as the expression of P-gp in the cellular membrane) or can account for the cumulative effect of several mechanisms and factors. The model is written as a system of integro-differential equations, structured by the continuous "trait," and includes density effects as well as mutations. We study the limiting behavior of the model, both analytically and numerically, and apply it to study treatment protocols. We next study a specific mechanism of tumor heterogeneity and its influence on cell growth: the cell-cycle. We derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations, when the number of cells is large. The model is closely tied to experimental data of cell growth, and includes a novel implementation of

  9. Multi-drug resistant Acinetobacter ventilator-associated pneumonia

    OpenAIRE

    Shete, Vishal B.; Dnyaneshwari P Ghadage; Vrishali A Muley; Bhore, Arvind V.

    2010-01-01

    Background: Ventilator-associated pneumonia (VAP) due to a multi-drug resistant (MDR) Acinetobacter is one of the most dreadful complications, which occurs in the critical care setting. Aims and objectives: To find out the incidence of Acinetobacter infection in VAP cases, to determine various risk factors responsible for acquisition of Acinetobacter infection and to determine the antimicrobial susceptibility pattern of Acinetobacter. Materials and Methods: A total of 60 endotracheal aspirate...

  10. Risk factors for anti-MRSA drug resistance.

    Science.gov (United States)

    Abe, Yasuhisa; Shigemura, Katsumi; Yoshida, Hiroyuki; Fujisawa, Masato; Arakawa, Soichi

    2012-11-01

    Meticillin-resistant Staphylococcus aureus (MRSA)-related infections have recently been spreading and are difficult to control, partly because affected patients are frequently in a poor condition. This study retrospectively investigated recent MRSA-related infections focusing on the relationship between clinical risk factors and anti-MRSA drug resistance. The patients with MRSA-related infections in Kobe University Hospital (Kobe, Japan) in 2009 were enrolled in the study. The relationships between various clinical risk factors as well as MRSA bacterial DNA concentration with minimum inhibitory concentrations (MICs) of anti-MRSA drugs were examined. In total, 44 patients were enrolled in the study and MRSA was isolated from blood (23 patients), urine (12 patients) and nasal secretions (9 patients). There was only one resistant strain to linezolid (LZD) among the anti-MRSA drugs tested, and this strain was considered staphylococcal cassette chromosome mec (SCCmec) type IIa from phage open-reading frame typing analyses. Statistical analyses showed that MRSA bacterial DNA concentration, cancer and use of a respirator, respectively, had a significant relationship with the MICs of LZD (P=0.0058) and arbekacin (ABK) (P=0.0003), of quinupristin/dalfopristin (Q/D) (P=0.0500) and ABK (P=0.0133), and of Q/D (P=0.0198) and vancomycin (P=0.0036). In conclusion, bacterial DNA concentration, cancer and use of a respirator were found to be significant risk factors for lower susceptibilities to anti-MRSA drugs; one strain was resistant to LZD. We suggest that further investigation and surveillance for MRSA-related infection are necessary for preventing the spread of MRSA-related infections. PMID:22999766

  11. Anti-tuberculosis drug resistance in Sub-Saharan Africa: The case of Uganda

    OpenAIRE

    Cobelens, F.G.J.; Joloba, M.L.; Lukoye, D

    2015-01-01

    This thesis reports findings of six studies including two tuberculosis (TB) drug resistance surveys, a comparative study of HIV infection rates among patients enrolled in the survey and those under routine TB/HIV surveillance, two TB molecular epidemiological analyses and a systematic review and meta-analysis of drug-resistant TB in sub-Saharan Africa. It provides a general introduction to anti-tuberculosis drug resistance in the world and associated risk factors. Results from the drug resist...

  12. New drugs to treat multidrug-resistant tuberculosis: the case for bedaquiline

    OpenAIRE

    Leibert E; Danckers M; Rom WN

    2014-01-01

    Eric Leibert, Mauricio Danckers, William N Rom Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, NY, USA Abstract: Mycobacterium tuberculosis develops spontaneous resistance mutants to virtually every drug in use. Courses of therapy select for these mutants and drug-resistant organisms emerge. The development of drug-resistant organisms has reached the point that drug resistance now threatens to undermi...

  13. CHEMOTHERAPY, WITHIN-HOST ECOLOGY AND THE FITNESS OF DRUG-RESISTANT MALARIA PARASITES

    OpenAIRE

    Huijben, Silvie; Nelson, William A.; Wargo, Andrew R.; Sim, Derek G.; Drew, Damien R.; Read, Andrew F.

    2010-01-01

    A major determinant of the rate at which drug-resistant malaria parasites spread through a population is the ecology of resistant and sensitive parasites sharing the same host. Drug treatment can significantly alter this ecology by removing the drug-sensitive parasites, leading to competitive release of resistant parasites. Here, we test the hypothesis that the spread of resistance can be slowed by reducing drug treatment and hence restricting competitive release. Using the rodent malaria mod...

  14. An approach to identifying drug resistance associated mutations in bacterial strains

    OpenAIRE

    2012-01-01

    Background Drug resistance in bacterial pathogens is an increasing problem, which stimulates research. However, our understanding of drug resistance mechanisms remains incomplete. Fortunately, the fast-growing number of fully sequenced bacterial strains now enables us to develop new methods to identify mutations associated with drug resistance. Results We present a new comparative approach to identify genes and mutations that are likely to be associated with drug resistance mechanisms. In ord...

  15. Molecular Genetics of Drug-resistance in Epilepsies

    Directory of Open Access Journals (Sweden)

    Kurupath Radhakrishnan

    2015-06-01

    Full Text Available Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive to antiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genes encoding the proteins that regulate the pharmacokinetics such as P-glycoprotein [ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1, ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7], and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABA receptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intense investigation to unravel the mysteries of AED-resistance. However, till today, a consistent and reliable result that could help the clinician either to predict drug resistance or to overcome it has not been forthcoming. The discrepant results may be related to variations in the definition of drug-resistance, heterogeneous patient populations, ethnic variations in the frequency distribution of single nucleotide polymorphisms (SNPs and the selection of SNPs. Understanding of these limitations of existing studies, hopefully, will help in designing better studies. Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive toantiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genesencoding the proteins that regulate the pharmacokinetics such as P-glycoprotein[ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1,ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7],and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABAreceptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intenseinvestigation to unravel the mysteries of AED-resistance. However, till today, aconsistent and reliable result that could help the clinician either to predict drugresistanceor to overcome it has not been forthcoming. The discrepant results may berelated to variations in the definition of drug-resistance, heterogeneous patientpopulations, ethnic

  16. Technetium-99m Radiopharmaceuticals for Monitoring Drug Resistance. Chapter 12

    International Nuclear Information System (INIS)

    Resistance to chemotherapy constitutes a major obstacle to cancer cures. Cellular mechanisms of resistance involve efflux pumps, P-glycoprotein (Pgp), the product of the MDR1 gene and the related membrane glycoprotein, multidrug resistance associated protein 1 (MRP1). Multidrug resistant cell lines overexpressing Pgp are resistant to a structurally and functionally diverse group of chemotherapeutic agents. Many of these drugs tend to be lipophilic and positively charged at neutral pH. This suggested the application of the two lipophilic cationic 99mTc radiopharmaceuticals currently used for myocardial perfusion, 99mTc-MIBI and 99mTc-Tetrofosmin. Efforts were also made to develop specific 99mTc labelled substrates for Pgp based on lipophilic cationic 99mTc complexes. A large number of studies indicated that 99mTc-MIBI, 99mTc-Tetrofosmin and some related 99mTc compounds are substrates for Pgp. However, it remains uncertain whether these 99mTc labelled compounds are substrates for MRP1. Thus, both 99mTc-MIBI and 99mTc-Tetrofosmin would be general probes of transporter mediated multidrug resistance in tumour cells. (author)

  17. Definition of drug resistance of Mycobacterium tuberculosis to antituberculosis drugs in patients with multidrugresistant tuberculosis and TB with extremely drug resistant depending on the case of the disease

    Directory of Open Access Journals (Sweden)

    Kryzhanovsky D.G.

    2014-11-01

    Full Text Available There was studied the profile of drug resistance to the main (I line and reserve (II line antituberculosis drugs in patients with MDR and XDR tuberculosis, depending of the case of the disease. According to the randomized retrospective research 200 patients with MDR and XDR tuberculosis, who received treatment in the clinic of hospital Municipal institution «Dnipropetrovsk rigional clinical association «Phthisiology» Dnipropetrovsk regional Council» during the period 2010 – 2012 were involved. Data about patients contained the data on a case of the disease and the results of the test of drug sensitivity to MBT. XDR – TB was revealed in 7.5% of patients with MDR tuberculosis. In patients with MDR tuberculosis as compared with patients with XDR tuberculosis «new cases» were diagnosed in 19.5% against 18.5% (p <0.05. In patients with MDR tuberculosis and with XDR tuberculosis resistance to the antituberculosis drug more commonly developed to S - 88.5%, E - 55% and Z - 24%. The presence of MDR-TB and XDR-TB prevails in patients, who underwent previous courses of treatment with anti-TB drugs in case history as compared with patients with «new cases» of treatment. The development of resistance to anti-TB drugs depends on the availability of these drugs in the previous treatment regimens.

  18. Surfactant-based drug delivery systems for treating drug-resistant lung cancer.

    Science.gov (United States)

    Kaur, Prabhjot; Garg, Tarun; Rath, Goutam; Murthy, R S R; Goyal, Amit K

    2016-01-01

    Among all cancers, lung cancer is the major cause of deaths. Lung cancer can be categorized into two classes for prognostic and treatment purposes: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Both categories of cancer are resistant to certain drugs. Various mechanisms behind drug resistance are over-expression of superficial membrane proteins [glycoprotein (P-gp)], lung resistance-associated proteins, aberration of the intracellular enzyme system, enhancement of the cell repair system and deregulation of cell apoptosis. Structure-performance relationships and chemical compatibility are consequently major fundamentals in surfactant-based formulations, with the intention that a great deal investigation is committed to this region. With the purpose to understand the potential of P-gp in transportation of anti-tumor drugs to cancer cells with much effectiveness and specificity, several surfactant-based delivery systems have been developed which may include microspheres, nanosized drug carriers (nanoparticles, nanoemulsions, stealth liposomes, nanogels, polymer-drug conjugates), novel powders, hydrogels and mixed micellar systems intended for systemic and/or localized delivery. PMID:25013959

  19. Additional Drug Resistance of Multidrug-Resistant Tuberculosis in Patients in 9 Countries

    OpenAIRE

    Kurbatova, Ekaterina V.; Dalton, Tracy; Ershova, Julia; Tupasi, Thelma; Caoili, Janice Campos; van der Walt, Martie; Kvasnovsky, Charlotte; Yagui, Martin; Bayona, Jaime; Contreras, Carmen; Leimane, Vaira; Via, Laura E.; Kim, HeeJin; Akksilp, Somsak; Kazennyy, Boris Y.

    2015-01-01

    Data from a large multicenter observational study of patients with multidrug-resistant tuberculosis (MDR TB) were analyzed to simulate the possible use of 2 new approaches to treatment of MDR TB: a short (9-month) regimen and a bedaquiline-containing regimen. Of 1,254 patients, 952 (75.9%) had no resistance to fluoroquinolones and second-line injectable drugs and thus would qualify as candidates for the 9-month regimen; 302 (24.1%) patients with resistance to a fluoroquinolone or second-line ...

  20. Candidate genes for cross-resistance against DNA-damaging drugs

    DEFF Research Database (Denmark)

    Wittig, Rainer; Nessling, Michelle; Will, Rainer D;

    2002-01-01

    Drug resistance of tumor cells leads to major drawbacks in the treatment of cancer. To identify candidate genes for drug resistance, we compared the expression patterns of the drug-sensitive human malignant melanoma cell line MeWo and three derived sublines with acquired resistance to the DNA-dam...